Science.gov

Sample records for sofc micro-chp systems

  1. SOFC-based micro-CHP system as an example of efficient power generation unit

    NASA Astrophysics Data System (ADS)

    Kupecki, Jakub; Badyda, Krzysztof

    2011-12-01

    Microscale combined heat and power (CHP) unit based on solid oxide fuel cells (SOFC) for distributed generation was analyzed. Operation principle is provided, and the technology development in recent years is briefly discussed. System baseline for numerical analysis under steady-state operation is given. Grid-connected unit, fuelled by biogas corresponds to potential market demand in Europe, therefore has been selected for analysis. Fuel processing method for particular application is described. Results of modeling performed in ASPEN Plus engineering software with certain assumptions are presented and discussed. Due to high system electrical efficiency exceeding 40%, and overall efficiency over 80%, technology is an example of highly competitive and sustainable energy generation unit.

  2. MICRO-CHP System for Residential Applications

    SciTech Connect

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  3. Micro-CHP Systems for Residential Applications

    SciTech Connect

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner

  4. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    NASA Astrophysics Data System (ADS)

    Rosendahl, L. A.; Mortensen, Paw V.; Enkeshafi, Ali A.

    2011-05-01

    One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating purposes.

  5. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    SciTech Connect

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  6. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems

  7. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering

  8. The financial viability of an SOFC cogeneration system in single-family dwellings

    NASA Astrophysics Data System (ADS)

    Alanne, Kari; Saari, Arto; Ugursal, V. Ismet; Good, Joel

    In the near future, fuel cell-based residential micro-CHP systems will compete with traditional methods of energy supply. A micro-CHP system may be considered viable if its incremental capital cost compared to its competitors equals to cumulated savings during a given period of time. A simplified model is developed in this study to estimate the operation of a residential solid oxide fuel cell (SOFC) system. A comparative assessment of the SOFC system vis-à-vis heating systems based on gas, oil and electricity is conducted using the simplified model for a single-family house located in Ottawa and Vancouver. The energy consumption of the house is estimated using the HOT2000 building simulation program. A financial analysis is carried out to evaluate the sensitivity of the maximum allowable capital cost with respect to system sizing, acceptable payback period, energy price and the electricity buyback strategy of an energy utility. Based on the financial analysis, small (1-2 kW e) SOFC systems seem to be feasible in the considered case. The present study shows also that an SOFC system is especially an alternative to heating systems based on oil and electrical furnaces.

  9. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    NASA Astrophysics Data System (ADS)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  10. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  11. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  12. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  13. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NASA Astrophysics Data System (ADS)

    Larsen, G. K. H.; van Foreest, N. D.; Scherpen, J. M. A.

    2012-10-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.

  14. Development of Residential SOFC Cogeneration System

    NASA Astrophysics Data System (ADS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  15. Micro-CHP Technologies Roadmap: Meeting 21st Century Residential Energy Needs

    SciTech Connect

    none,

    2003-12-01

    On June 11-12, 2003, at Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power and the residential buildings industry explores solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). Participants outlined a desired future for mCHP systems, identified specific interim technology cost and performance targets, and developed actions to achieve the interim targets and vision. This document, The Micro-CHP Technologies Roadmap, is a result of their deliberations. It outlines a set of actions that can be pursued by both the government and industry to develop mCHP appliances for creating a new approach for households to meet their energy needs.

  16. Status of the TMI SOFC system

    SciTech Connect

    Ruhl, R.C.; Petrik, M.A.; Cable, T.L.

    1996-12-31

    TMI has completed preliminary engineering designs for complete 20kW SOFC systems modules for stationary distributed generation applications using pipeline natural gas [sponsored by Rochester Gas and Electric (Rochester, New York) and EPRI (Palo Alto, California)]. Subsystem concepts are currently being tested.

  17. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  18. Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module

    NASA Astrophysics Data System (ADS)

    Wajs, Jan; Mikielewicz, Dariusz; Bajor, Michał; Kneba, Zbigniew

    2016-09-01

    The results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid - in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC) module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC)), evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system) and steam (in the RC system) as working fluids.

  19. SOFC Systems with Improved Reliability and Endurance

    SciTech Connect

    Ghezel-Ayagh, Hossein

    2015-12-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project was the development of Solid Oxide Fuel Cell (SOFC) technology suitable for ultra-efficient central power generation systems utilizing coal and natural gas fuels and featuring greater than 90% carbon dioxide capture. The specific technical objective of this project was to demonstrate, via analyses and testing, progress towards adequate stack life (≥ 4 years) and stack performance stability (degradation rate ≤ 0.2% per 1000 hours) in a low-cost SOFC stack design. This final technical report summarizes the progress made during the project period of 27 months. Significant progress was made in the areas of cell and stack technology development, stack module development, sub-scale module tests, and Proof-of-Concept Module unit design, fabrication and testing. The work focused on cell and stack materials and designs, balance-of-plant improvements, and performance evaluation covering operating conditions and fuel compositions anticipated for commercially-deployed systems. In support of performance evaluation under commercial conditions, this work included the design, fabrication, siting, commissioning, and operation of a ≥ 50 kWe proof-of-concept module (PCM) power plant, based upon SOFC cell and stack technology developed to date by FuelCell Energy, Inc. (FCE) under the Office of Fossil Energy’s Solid Oxide Fuel Cells program. The PCM system was operated for at least 1000 hours on natural gas fuel at FCE’s facility. The factory cost of the SOFC stack was estimated to be at or below the DOE’s high-volume production cost target (2011 $).

  20. The ways of SOFC systems efficiency increasing

    SciTech Connect

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  1. The effect of fuel feeding method on performance of SOFC-PEFC system

    NASA Astrophysics Data System (ADS)

    Yokoo, M.; Watanabe, K.; Arakawa, M.; Yamazaki, Y.

    We evaluate two kinds of solid-oxide-fuel-cell (SOFC)-polymer-electrolyte-fuel-cell (PEFC) combined systems by numerical simulation to investigate the effect of the fuel feeding method. In one, fuel for the system is reformed by using exhaust heat from the SOFC and is separately supplied to the SOFC and PEFC (parallel SOFC-PEFC system). In the other, fuel is fed to the SOFC first and then SOFC exhaust fuel is fed to the PEFC (series SOFC-PEFC system). The quality of the fuel gas in the SOFC is better in the latter system, whereas the quality of the fuel gas in the PEFC is better in the former. We demonstrate that larger PEFC output can be obtained in the parallel SOFC-PEFC system, since more steam, which is included in the SOFC anode exhaust gas, can be used for the reforming of the fuel for the PEFC. We show that the series SOFC-PEFC system provides higher electrical efficiency because the fuel gas quality has a stronger influence on the electromotive force in the SOFC than in the PEFC.

  2. Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system

    NASA Astrophysics Data System (ADS)

    Wongchanapai, Suranat; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2012-10-01

    The combination of biomass gasification and high-temperature solid oxide fuel cells (SOFCs) offers great potential as a future sustainable power generation system. In order to provide insights into an integrated small-scale SOFC-biomass gasification power generation system, system simulation was performed under diverse operating conditions. A detailed anode-supported planar SOFC model under co-flow operation and a thermodynamic equilibrium for biomass gasification model were developed and verified by reliable experimental and simulation data. The other peripheral components include three gas-to-gas heat exchangers (HXs), heat recovery steam generator (HRSG), burner, fuel and air compressors. To determine safe operating conditions with high system efficiency, energy and exergy analysis was performed to investigate the influence through detailed sensitivity analysis of four key parameters, e.g. steam-to-biomass ratio (STBR), SOFC inlet stream temperatures, fuel utilization factor (Uf) and anode off-gas recycle ratio (AGR) on system performance. Due to the fact that SOFC stack is accounted for the most expensive part of the initial investment cost, the number of cells required for SOFC stack is economically optimized as well. Through the detailed sensitivity analysis, it shows that the increase of STBR positively affects SOFC while gasifier performance drops. The most preferable operating STBR is 1.5 when the highest system efficiencies and the smallest number of cells. The increase in SOFC inlet temperature shows negative impact on system and gasifier performances while SOFC efficiencies are slightly increased. The number of cells required for SOFC is reduced with the increase of SOFC inlet temperature. The system performance is optimized for Uf of 0.75 while SOFC and system efficiencies are the highest with the smallest number of cells. The result also shows the optimal anode off-gas recycle ratio of 0.6. Regarding with the increase of anode off-gas recycle ratio

  3. Realisation of an anode supported planar SOFC system

    SciTech Connect

    Buchkremer, H.P.; Stoever, D.; Diekmann, U.

    1996-12-31

    Lowering the operating temperature of S0FCs to below 800{degrees}C potentially lowers production costs of a SOFC system because of a less expensive periphery and is able to guarantee sufficient life time of the stack. One way of achieving lower operating temperatures is the development of new high conductive electrolyte materials. The other way, still based on state-of-the-art material, i.e. yttria-stabilized zirconia (YSZ) electrolyte, is the development of a thin film electrolyte concept. In the Forschungszentrum Julich a program was started to produce a supported planar SOFC with an YSZ electrolyte thickness between 10 to 20 put. One of the electrodes, i.e. the anode, was used as support, in order not to increase the number of components in the SOFC. The high electronic conductivity of the anode-cermet allows the use of relatively thick layers without increasing the cell resistance. An additional advantage of the supported planar concept is the possibility to produce single cells larger than 10 x 10 cm x cm, that is with an effective electrode cross area of several hundred cm{sup 2}.

  4. 10 kW SOFC Power System Commercialization

    SciTech Connect

    Dan Norrick; Brad Palmer; Charles Vesely; Eric Barringer; John Budge; Cris DeBellis; Rich Goettler; Milind Kantak; Steve Kung; Zhien Liu; Tom Morris; Keith Rackers; Gary Roman; Greg Rush; Liang Xue

    2006-02-01

    Cummins Power Generation (CPG) as the prime contractor and SOFCo-EFS Holdings LLC (SOFCo), as their subcontractor, teamed under the Solid-state Energy Conversion Alliance (SECA) program to develop 3-10kW solid oxide fuel cell systems for use in recreational vehicles, commercial work trucks and stand-by telecommunications applications. The program goal is demonstration of power systems that meet commercial performance requirements and can be produced in volume at a cost of $400/kW. This report summarizes the team's activities during the seventh six-month period (July-December 2005) of the four-year Phase I effort. While there has been significant progress in the development of the SOFC subsystems that can support meeting the program Phase 1 goals, the SOFCo ceramic stack technology has progressed significantly slower than plan and CPG consider it unlikely that the systemic problems encountered will be overcome in the near term. SOFCo has struggled with a series of problems associated with inconsistent manufacturing, inadequate cell performance, and the achievement of consistent, durable, low resistance inter-cell connections with reduced or no precious materials. A myriad of factors have contributed to these problems, but the fact remains that progress has not kept pace with the SECA program. A contributing factor in SOFCo's technical difficulties is attributed to their significantly below plan industry cost share spending over the last four years. This has resulted in a much smaller SOFC stack development program, has contributed to SOFCo not being able to aggressively resolve core issues, and clouds their ability to continue into a commercialization phase. In view of this situation, CPG has conducted an independent assessment of the state-of-the-art in planar SOFC's stacks and have concluded that alternative technology exists offering the specific performance, durability, and low cost needed to meet the SECA objectives. We have further concluded that there is

  5. Development of TMI Logistic Fuel Solid Oxide Fuel Cell (SOFC) for Advanced Military Power Generation Systems

    DTIC Science & Technology

    2007-11-02

    Power generation systems based on the Technology Management, Inc. (TMI) solid oxide fuel cell (SOFC) are an optional modality for military...integrated system using TMI’s proprietary sulfur-tolerant planar solid oxide fuel cell (SOFC) and steam reformer, integrated into a compact unit which

  6. Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system

    NASA Astrophysics Data System (ADS)

    Kuchonthara, Prapan; Bhattacharya, Sankar; Tsutsumi, Atsushi

    A combined power generation system consisting of a solid oxide fuel cell (SOFC) and a gas turbine (GT) with steam and heat recuperation (HR) was evaluated using a commercial process simulation tool, ASPEN Plus. The effect of steam recuperation (SR) on the overall efficiency of the combined system was investigated by comparing the SOFC-GT during heat and steam recuperation (HSR) against the system during only heat recuperation. At low turbine inlet temperatures (TITs), the overall efficiency of the SOFC-GT combined system with heat and steam recuperation improved by showing an increase in TIT and a reduction in pressure ratio (PR). On the other hand, at high TITs, the opposite trend was observed. The integration of steam recuperation was found to improve the overall efficiency and specific power of SOFC-GT combined systems with a relatively compact SOFC component.

  7. X-Ray 3D Metrology System for SOFC Development

    DTIC Science & Technology

    2007-10-01

    KIRK L. YERKES, Ph.D. Deputy for Science Power Division This report is published in the interest of scientific and technical ...accurate feedback to the researchers and developers. Large-scale proliferation of practical SOFC power plants would have ground-breaking impact on our...this technology in routine SOFC development, specifically for studying Sulfur contamination. 15. SUBJECT TERMS SBIR Report , Sulfur Tolerance

  8. 10kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect

    Dan Norrick; Charles Vesely; Todd Romine; Brad Palmer; Greg Rush; Eric Barringer; Milind Kantak; Cris DeBellis

    2003-02-01

    Participants in the SECA 10 kW SOFC Power System Commercialization project include Cummins Power Generation (CPG), the power generation arm of Cummins, Inc., SOFCo-EFS Holdings, LLC (formerly McDermott Technology, Inc.), the fuel cell and fuel processing research and development arm of McDermott International Inc., M/A-COM, the Multi-Layer Ceramics (MLC) processing and manufacturing arm of Tyco Electronics, and Ceramatec, a materials technology development company. CPG functions in the role of prime contractor and system integrator. SOFCo-EFS is responsible for the design and development of the hot box assembly, including the SOFC stack(s), heat exchanger(s), manifolding, and fuel reformer. M/A-COM and SOFCo-EFS are jointly responsible for development of the MLC manufacturing processes, and Ceramatec provides technical support in materials development. In October 2002, McDermott announced its intention to cease operations at McDermott Technology, Inc. (MTI) as of December 31, 2002. This decision was precipitated by several factors, including the announced tentative settlement of the B&W Bankruptcy which would result in all of the equity of B&W being conveyed to a trust, thereby eliminating McDermott's interest in the company, and the desire to create a separate fuel cell entity to facilitate its commercial development. The new fuel cell entity is named SOFCo-EFS Holdings, LLC. All of McDermott's solid oxide fuel cell and fuel processing work will be conducted by SOFCo-EFS, using personnel previously engaged in that work. SOFCo-EFS will continue to be located in the Alliance, OH facility and use the existing infrastructure and test facilities for its activities. While the effort needed to accomplish this reorganization has detracted somewhat from SOFCo's efficiency during the fourth quarter, we believe the improved focus on the core fuel cell and fuel reformation resulting from the reorganization will have a positive impact on the SECA project in the long run. The

  9. Feasibility study for SOFC-GT hybrid locomotive power part II. System packaging and operating route simulation

    NASA Astrophysics Data System (ADS)

    Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott

    2012-09-01

    This work assesses the feasibility of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid power systems for use as the prime mover in freight locomotives. The available space in a diesel engine-powered locomotive is compared to that required for an SOFC-GT system, inclusive of fuel processing systems necessary for the SOFC-GT. The SOFC-GT space requirement is found to be similar to current diesel engines, without consideration of the electrical balance of plant. Preliminary design of the system layout within the locomotive is carried out for illustration. Recent advances in SOFC technology and implications of future improvements are discussed as well. A previously-developed FORTRAN model of an SOFC-GT system is then augmented to simulate the kinematics and power notching of a train and its locomotives. The operation of the SOFC-GT-powered train is investigated along a representative route in Southern California, with simulations presented for diesel reformate as well as natural gas reformate and hydrogen as fuels. Operational parameters and difficulties are explored as are comparisons of expected system performance to modern diesel engines. It is found that even in the diesel case, the SOFC-GT system provides significant savings in fuel and CO2 emissions, making it an attractive option for the rail industry.

  10. Progress in the planar CPn SOFC system design verification

    SciTech Connect

    Elangovan, S.; Hartvigsen, J.; Khandkar, A.

    1996-04-01

    SOFCo is developing a high efficiency, modular and scaleable planar SOFC module termed the CPn design. This design has been verified in a 1.4 kW module test operated directly on pipeline natural gas. The design features multistage oxidation of fuel wherein the fuel is consumed incrementally over several stages. High efficiency is achieved by uniform current density distribution per stage, which lowers the stack resistance. Additional benefits include thermal regulation and compactness. Test results from stack modules operating in pipeline natural gas are presented.

  11. Conceptual study of a 250 kW planar SOFC system for CHP application

    NASA Astrophysics Data System (ADS)

    Fontell, E.; Kivisaari, T.; Christiansen, N.; Hansen, J.-B.; Pålsson, J.

    In August 2002, Wärtsilä Corporation and Haldor Topsøe A/S entered into a co-operation agreement to start joint development program within the planar SOFC technology. The development program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with power outputs above 200 kW for distributed power generation with CHP and for marine applications. In this study, the product concept for a 250 kW natural gas-fuelled atmospheric SOFC plant has been studied. The process has been calculated and optimised for high electrical efficiency. In the calculations, system efficiencies more than 55-85% (electrical co-generation) have been reached. The necessary balance of plant (BoP) components have been identified and the concept for grid connection has been defined. The BoP includes fuel and air supply, anode re-circulation, start-up steam, purge gas, exhaust gas heat recovery, back-up power, power electronics and control system. Based on the analysed system and component information, a conceptual design and cost break down structure for the product have been made. The cost breakdown shows that the stack, system control and power electronics are the major cost factors, while the remaining BoP equipment stands for a minor share of the manufacturing cost. Finally, the feasibility of the SOFC plants has been compared to gas engines.

  12. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    SciTech Connect

    Jifeng Zhang; Jean Yamanis

    2007-09-30

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  13. A global thermo-electrochemical model for SOFC systems design and engineering

    NASA Astrophysics Data System (ADS)

    Petruzzi, L.; Cocchi, S.; Fineschi, F.

    At BMW AG in Munich high-temperature solid oxide fuel cells (SOFCs) are being developed as an auxiliary power unit (APU) for high-class car conveniences. Their design requires simulation of their thermo-electrochemical behaviour in all the conditions that may occur during operation (i.e. heat-up to about 600 °C, start-up to operating temperature, energy-delivering and cool-down). A global thermo-electrochemical model was developed for the whole system and a three-dimensional geometry code was performed using MATLAB programming language. The problems in developing SOFCs are now so many and so different that a very flexible code is necessary. Thus, the code was not only designed in order to simulate each of the operating conditions, but also to test different stack configurations, materials, etc. In every event, the code produces a time-dependent profile of temperatures, currents, electrical and thermal power density, gases concentrations for the whole system. The heat-up and start-up simulations allow: (1) to evaluate the time the cell stack needs to reach operating temperature from an initial temperature distribution, (2) to check the steepest temperature gradients occurring in the ceramic layers (which result in material stresses) and (3) to obtain important information about the pre-operating strategy. Simulation of energy-delivering gives a detailed profile of the temperatures, currents, power density, and allows to define the guidelines in system-controlling. Simulation of cooling-down gives important advises about insulation designing. The aim of this work is to build up a tool to clearly individuate the best designing criteria and operating strategy during the development and the engineering of a SOFC system.

  14. Modelling system efficiencies and costs of two biomass-fuelled SOFC systems

    NASA Astrophysics Data System (ADS)

    Omosun, A. O.; Bauen, A.; Brandon, N. P.; Adjiman, C. S.; Hart, D.

    Increasing demand for power and the depletion of fossil fuels are providing opportunities for the development of fuel cells as power generating systems. This paper investigates the integration of a solid oxide fuel cell (SOFC) with biomass gasification for the production of power and heat (combined heat and power (CHP) system). A steady-state model was developed in the gPROMS modelling tool to investigate the integrated system. The system was modelled for two different options, a cold process involving gas cleaning at a reduced temperature and a hot process involving gas cleaning at a high temperature. For each option, the model was used to determine the system efficiency and prospective costs. The electrical efficiency and overall system efficiency for the hot process were found to be 23 and 60% and for the cold process the efficiencies were 21 and 34%, respectively. Superior heat management in the gas cleaning stage of the hot process results in its higher system efficiency. The capital cost for the hot process appears higher than that for the cold process. This differential capital cost may be justified by the income earned from selling the extra heat produced in the hot process. Conversely, the cold process produces a gas stream with lower levels of impurities than the hot process.

  15. 10 kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect

    Dan Norrick; Brad Palmer; Todd Romine; Charles Vesely; Eric Barringer; Cris DeBellis; Rich Goettler; Kurt Kneidel; Milind Kantak; Steve Kung; Greg Rush

    2003-08-01

    The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop a manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the manufacturing cost to a level of $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to provide a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated into the SECA program to develop a mass-producible design at a factory cost of $400/kW with full cross-functional support for unrestricted commercial sales. The path to market for new technology products in the Cummins system involves two processes. The first is called Product Preceding Technology, or PPT. The PPT process provides a methodology for exploring potentially attractive technologies and developing them to the point that they can be reliably scheduled into a new product development program with a manageable risk to the product introduction schedule or product quality. Once a technology has passed the PPT gate, it is available to be incorporated into a Value Package Introduction (VPI) Program. VPI is the process that coordinates the cross-functional development of a fully supported product. The VPI Program is designed to synchronize efforts in engineering, supply, manufacturing, marketing, finance, and product support areas in such a way that the product, when introduced to the market, represents the maximum value to the customer.

  16. 10 kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect

    Dan Norrick; Brad Palmer; Charles Vesely; Eric Barringer; Cris DeBellis; Rich Goettler; Kurt Kneidel; Milind Kantak; Steve Kung; Tom Morris; Greg Rush

    2004-02-01

    The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop a manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the manufacturing cost to a level of $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to provide a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated into the SECA program to develop a mass-producible design at a factory cost of $400/kW with full cross-functional support for unrestricted commercial sales. The path to market for new technology products in the Cummins system involves two processes. The first is called Product Preceding Technology, or PPT. The PPT process provides a methodology for exploring potentially attractive technologies and developing them to the point that they can be reliably scheduled into a new product development program with a manageable risk to the product introduction schedule or product quality. Once a technology has passed the PPT gate, it is available to be incorporated into a Value Package Introduction (VPI) Program. VPI is the process that coordinates the cross-functional development of a fully supported product. The VPI Program is designed to synchronize efforts in engineering, supply, manufacturing, marketing, finance, and product support areas in such a way that the product, when introduced to the market, represents the maximum value to the customer.

  17. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  18. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  19. Evaluation of Cathode Air Flow Transients in a SOFC/GT Hybrid System Using Hardware in the Loop Simulation.

    PubMed

    Zhou, Nana; Yang, Chen; Tucker, David

    2015-02-01

    Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

  20. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  1. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  2. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    SciTech Connect

    Jezierski, Kelly; Tadd, Andrew; Schwank, Johannes; Kibler, Roland; McLean, David; Samineni, Mahesh; Smith, Ryan; Parvathikar, Sameer; Mayne, Joe; Westrich, Tom; Mader, Jerry; Faubert, F. Michael

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  3. A versatile salt evaporation reactor system for SOFC operando studies on anode contamination and degradation with impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nurk, Gunnar; Holtappels, Peter; Figi, Renato; Wochele, Jörg; Wellinger, Marco; Braun, Artur; Graule, Thomas

    2011-03-01

    The dependence of the degradation kinetics in Ni-CGO (cerium-gadolinium oxide) solid oxide fuel cell (SOFC) anodes upon salt evaporation is demonstrated operando with a custom built versatile reactor system. The system is based on evaporation and subsequent condensation of low concentration salt vapor aerosol mixtures representative of salt vapors typically present in biomass gasification processes. Fast changes in the charge transfer and ohmic resistance are observed in the anodes fuelled with a gas mixture containing a high KCl vapor concentration. Rapid condensation of salt vapors into the porous anode and partial delamination of the anode from the electrolyte surface because of salt deposits inside the porous anode is observed. The flexibility to produce vapor-aerosol mixtures with different concentrations and particle size distributions is proved, and suitability of these aerosols for anode testing in long term fuel cell test is evaluated.

  4. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    NASA Astrophysics Data System (ADS)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  5. Global SOFC activities and evaluation programmes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Noboru

    1994-04-01

    Perhaps there are a few hundred organizations worldwide at present such as universities, research institutes or companies where the research and development of SOFC is carried out, including basic research on materials for SOFCs. This paper, will not refer to the status of basic R&D materials similarities or on a single cell, but will observe developmental activities in Europe, USA and Japan, focusing on the development which has already the stage of fabrication and operation of a SOFC cell stack. Information will also include detailed operation and evaluation of the 25 kW class systems of Westinghouse.

  6. Modelling and control synthesis of a micro-combined heat and power interface for a concentrating solar power system in off-grid rural power applications

    NASA Astrophysics Data System (ADS)

    Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea

    2016-05-01

    Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.

  7. Development of a Low Cost 10kW Tubular SOFC Power System

    SciTech Connect

    Bessette, Norman; Litka, Anthony; Rawson, Jolyon; Schmidt, Douglas

    2013-06-06

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all of the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program

  8. Solid State Energy Conversion Alliance Delphi SOFC

    SciTech Connect

    Steven Shaffer; Gary Blake; Sean Kelly; Subhasish Mukerjee; Karl Haltiner; Larry Chick; David Schumann; Jeff Weissman; Gail Geiger; Ralphi Dellarocco

    2006-12-31

    The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for High Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.

  9. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  10. Diesel reforming for SOFC auxiliary power units

    SciTech Connect

    Borup, R. L.; Parkinson, W. J. ,; Inbody, M. A.; Tafoya, J. I.; Guidry, D. R.

    2004-01-01

    The use of a solid-oxide fuel cell (SOFC) to provide auxiliary power for heavy duty trucks can increase fuel efficiency and reduce emissions by reducing engine idling time. The logical fuel of choice for a truck SOFC APU is diesel fuel, as diesel is the fuel of choice for these vehicles. SOFC's that directly oxidize hydrocarbon fuels have lower power densities than do SOFC's that operate from hydrocarbon reformate, and since the SOFC is a costly component, maximizing the fuel cell power density provides benefits in reducing the overall APU system cost. Thus current SOFC APU systems require the reformation of higher hydrocarbons for the most efficient and cost effect fuel cell system. The objective of this research is to develop the technology to enable diesel reforming for SOFC truck APU applications. Diesel fuel can be reformed into a H{sub 2} and CO-rich fuel feed stream for a SOFC by autothermal reforming (ATR), a combination of catalytic partial oxidation (CPOx), and steam reforming (SR). The typical autothermal reformer is an adiabatic, heterogeneous catalytic reactor and the challenges in its design, operation and durability on diesel fuel are manifold. These challenges begin with the vaporization and mixing of diesel fuel with air and steam where fuel pyrolysis can occur and improper mixing leads to hot and cold spots, which contribute to carbon formation and incomplete fuel conversion. The exotherm of the partial oxidation reaction can generate temperatures in excess of 800 C, a temperature at which catalysts rapidly sinter, thus reducing their lifetime. The temperature rise can be reduced by the steam reforming endotherm, but this requires the addition of water along with proper design to balance the kinetic rates. Carbon formation during operation and startup can lead to catalyst deactivation and fouling of downstream components, thus reducing durability of the fuel processor. Water addition helps to reduce carbon formation, but a key issue is the source

  11. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  12. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  13. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  14. Status of tubular SOFC field unit demonstrations

    NASA Astrophysics Data System (ADS)

    George, Raymond A.

    Siemens Westinghouse is in the final stage of its tubular solid oxide fuel cell (SOFC) development program, and the program emphasis has shifted from basic technology development to cost reduction, scale-up and demonstration of pre-commercial power systems at customer sites. This paper describes our field unit demonstration program including the EDB/ELSAM 100-kW e combined heat and power (CHP) system, the Southern California Edison (SCE) 220-kW e pressurized SOFC/gas turbine (PSOFC/GT) power system, and the planned demonstrations of commercial prototype power systems. In the Spring of 1999, the EDB/ELSAM 100-kW e SOFC-CHP system produced 109 kW e net AC to the utility grid at 46% electrical efficiency and 65 kW t to the hot water district heating system, verifying the analytical predictions. The SCE 220-kW e PSOFC/GT power system will undergo factory startup in the Fall of 1999.

  15. Status of SOFCo SOFC technology development

    SciTech Connect

    Privette, R.; Perna, M.A.; Kneidel, K.

    1996-12-31

    SOFCo, a Babcock & Wilcox/Ceramatec Research & Development Limited Partnership, is a collaborative research and development venture to develop technologies related to planar, solid-oxide fuel cells (SOFCs). SOFCo has successfully demonstrated a kW-class, solid-oxide fuel cell module operating on pipeline natural gas. The SOFC system design integrates the air preheater and the fuel processor with the fuel cell stacks into a compact test unit; this is the platform for multi-kW modules. The cells, made of tape-cast zirconia electrolyte and conventional electrode materials, exhibit excel lent stability in single-cell tests approaching 40,000 hours of operation. Stack tests using 10-cm and 15-cm cells with ceramic interconnects also show good performance and stability in tests for many thousands of hours.

  16. SOFC cells and stacks for complex fuels

    SciTech Connect

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  17. The effect of IGFC warm gas cleanup system conditions on the gas–solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    SciTech Connect

    Trembly, J.P.; Gemmen, R.S.; Bayless, D.J.

    2007-01-01

    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known.Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode.

  18. Formulating liquid hydrocarbon fuels for SOFCs

    NASA Astrophysics Data System (ADS)

    Saunders, G. J.; Preece, J.; Kendall, K.

    The injection of liquid hydrocarbons directly into an SOFC system is considered for application to hybrid vehicles. The main problem is carbon deposition on the nickel anode when molecules such as ethanol or iso-octane are injected directly. Such carbon deposition has been studied using a microtubular SOFC with a mass spectrometer analysing the product gases to investigate the reaction sequence and also to investigate the deposited carbon by temperature programmed oxidation (TPO). The results show that only two liquids could be injected directly onto nickel cermet anodes without serious carbon blockage, methanol and methanoic acid. Even then, TPO experiments revealed deposition of small amounts of carbon which could be prevented by small additions of air or water to the fuel. Gasoline type molecules like iso-octane killed the SOFC in about 30 min operation, with about 90% of the molecular carbon being deposited on the nickel cermet anode. However, certain mixtures of iso-octane, water, alcohol and surfactant were found to produce beneficial results with remarkably low carbon deposition, less than 1% of the molecular carbon appearing on the anode. Such formulations had octane numbers appropriate to internal combustion engine operation.

  19. Power Generation Efficiency of Photovoltaics and a SOFC-PEFC Combined Micro-grid with Time Shift Utilization of the SOFC Exhaust Heat

    NASA Astrophysics Data System (ADS)

    El-Sayed, Abeer Galal; Obara, Shin'ya

    In this study, the combined system of a solid-oxide fuel cell (SOFC) and a proton-exchange membrane fuel cell (PEFC) is developed. The proposed system consists of a SOFC-PEFC combined system and a photovoltaic system (PV) as the energy supply to a micro-grid. The exhaust heat of the SOFC is used for the steam reforming of the bio-ethanol gas with time shift utilization of the exhaust heat of the SOFC in optional time. The SOFC-PEFC combined system with the PV was introduced in a micro-grid of 30 residences in Sapporo, Japan. The operation plan of the system has three cases: without solar power, with 50% and with 100% of solar output power. Moreover, three types of system operation of using the SOFC independent operation, PEFC independent operation and SOFC-PEFC combined system are used to supply the demand side. A comparative study between the types of system operation is presented. The power generation efficiency is investigated for different load patterns: average load pattern, compressed load pattern and extended load pattern. This paper reported that the power generation efficiencies of the proposedsystem in consideration of these load patterns are 27% to 48%.

  20. Tubular SOFC and SOFC/gas turbine combined cycle status and prospects

    SciTech Connect

    Veyo, S.E.; Lundberg, W.L.

    1996-12-31

    Presently under fabrication at Westinghouse for a consortium of Dutch and Danish utilities is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, Netherlands, at an auxiliary district heating plant. Electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50% [net ac/LHV]. For larger capacity systems, the horizon for the efficiency (atmospheric pressure) is about 55%. Pressurization would increase the efficiency. Objectives of the analyses reported were: (1) to document the improved performance potential of the two shaft turbine cycle given access to a better recuperator and lower lead losses, (2) to assess the performance of PSOFC/GT combined cycles in the 3 MW plant application that are based on use of a simple single shaft gas turbine having a design-point turbine inlet temperature that closely matches the temperature of the SOFC exhaust gas (about 850 C), (3) to estimate the performance potential of smaller combined cycle power plants employing a single SOFC submodule, and (4) to evaluate the cogeneration potential of such systems.

  1. Progress in planar SOFC science and technology

    SciTech Connect

    Khandkar, A.C.; Elangovan, S.; Hartvigsen, J.J.

    1996-12-31

    Solid oxide fuel cells offer an attractive alternative to the present power generation technologies. High efficiency, low noise and vibration, and low emissions are prime reasons for developing this technology. Extensive research and development activity has been carried out at SOFCo in advancing the materials and fabrication technologies. The work has resulted in demonstrating a 1.4 kW natural gas fueled SOFC system. The current activities focus on improving the performance and endurance of stacks, evaluating various system concepts leading to viable commercial and military applications. The challenges offered by various developmental areas and the progress made in technology demonstration are discussed.

  2. Solid State Energy Conversion Alliance Delphi SOFC

    SciTech Connect

    Steven Shaffer; Sean Kelly; Larry Chick; Subhasish Mukerjee; David Schumann

    2003-05-20

    The objective of Phase I under this project is to develop a 5 kW SOFC power system for a range of fuels and applications. During Phase I, the following will be accomplished: 1. Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A). 2. Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate catalytic partial oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This topical report covers work performed by Delphi Automotive Systems from January through June 2002 under DOE Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: 1. System Design and Integration 2. SOFC Stack Development 3. Reformer Development The next anticipated Technical Progress Report will be submitted January 30, 2003 and will include tasks contained within the cooperative agreement including development work on the Demonstration System A, if available.

  3. Thermo-Mechanical and Electrochemistry Modeling of Planar SOFC Stacks

    SciTech Connect

    Khaleel, Mohammad A. ); Recknagle, Kurtis P. ); Lin, Zijing; Deibler, John E. ); Chick, Lawrence A. ); Stevenson, Jeffry W. )

    2002-12-01

    Modeling activities at PNNL support design and development of modular SOFC systems. The SOFC stack modeling capability at PNNL has developed to a level at which planar stack designs can be compared and optimized for startup performance. Thermal-fluids and stress modeling is being performed to predict the transient temperature distribution and to determine the thermal stresses based on the temperature distribution. Current efforts also include the development of a model for calculating current density, cell voltage, and heat production in SOFC stacks with hydrogen or other fuels. The model includes the heat generation from both Joule heating and chemical reactions. It also accounts for species production and destruction via mass balance. The model is being linked to the finite element code MARC to allow for the evaluation of temperatures and stresses during steady state operations.

  4. Refractory Glass Seals for SOFC

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  5. Demonstration and System Analysis of High Temperature Steam Electrolysis for Large-Scale Hydrogen Production Using SOFCs

    SciTech Connect

    Michael G. McKellar; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2008-07-01

    At the Idaho National Engineering Laboratory, an integrated laboratory scale (ILS), 15 kW high-temperature electrolysis (HTE) facility has been developed under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. Additionally, a reference process model of a commercial-scale high-temperature electrolysis plant for hydrogen production has been developed. The reference plant design is driven by a 600 megawatt thermal high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The electrolysis unit used to produce hydrogen consists of 4.01×106 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.36 kg/s with the high-temperature helium-cooled reactor concept. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation. The paper will also present the optimized design for the reference nuclear-driven HTE hydrogen production plant which may be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

  6. Fundamental researches of SOFC in Russia

    SciTech Connect

    Demin, A.K.; Neuimin, A.D.; Perfiliev, M.V.

    1996-04-01

    The main results of research on ZrO{sub 2}-based solid electrolytes, electrodes and interconnects are reviewed. The mathematical models of the processes in SOFC are considered. Two types of SOFC stacks composed of tubular and block cells, as well the results of their tests are described.

  7. Progress in High Power Density SOFC Material Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.; Setlock, John A.; Misra, Ajay K.

    2004-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require order of magnitude increase in specific power density and long life under aircraft operating conditions. Advanced SOFC materials and fabrication processes are being developed at NASA GRC to increase specific power density and durability of SOFC cell and stack. Initial research efforts for increasing specific power density are directed toward increasing the operating temperature for the SOFC system and reducing the weight of the stack. While significant research is underway to develop anode supported SOFC system operating at temperatures in the range of 650 - 850 C for ground power generation applications, such temperatures may not yield the power densities required for aircraft applications. For electrode-supported cells, SOFC stacks with power densities greater than 1.0 W/sq cm are favorable at temperatures in excess of 900 C. The performance of various commercial and developmental anode supported cells is currently being evaluated in the temperature range of 900 to 1000 C to assess the performance gains and materials reliability. The results from these studies will be presented. Since metal interconnects developed for lower temperature operation are not practical at these high temperatures, advanced perovskite based ceramic interconnects with high electronic conductivity and lower sintering temperatures are being developed. Another option for increasing specific power density of SOFC stacks is to decrease the stack weight. Since the interconnect contributes to a significant portion of the stack weight, considerable weight benefits can be derived by decreasing its thickness. Eliminating the gas channels in the interconnect by engineering the pore structure in both anode and cathode can offer significant reduction in thickness of the ceramic interconnect material. New solid oxide fuel cells are being developed with porous engineered electrode supported structures with a 10 - 20 micron thin

  8. Nonlinear model predictive control of SOFC based on a Hammerstein model

    NASA Astrophysics Data System (ADS)

    Huo, Hai-Bo; Zhu, Xin-Jian; Hu, Wan-Qi; Tu, Heng-Yong; Li, Jian; Yang, Jie

    To protect solid oxide fuel cell (SOFC) stack and meet the voltage demand of DC type loads, two control loops are designed for controlling fuel utilization and output voltage, respectively. A Hammerstein model of the SOFC is first presented for developing effective control strategies, in which the nonlinear static part is approximated by a radial basis function neural network (RBFNN) and the linear dynamic part is modeled by an autoregressive with exogenous input (ARX) model. As we know, the output voltage of the SOFC changes with load variations. After a primary control loop is designed to keep the fuel utilization as a steady-state constant, a nonlinear model predictive control (MPC) based on the Hammerstein model is developed to control the output voltage of the SOFC. The performance of the MPC controller is compared with that of the PI controller developed in [Y.H. Li, S.S. Choi, S. Rajakaruna, An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system, IEEE Trans. Energy Convers. 20 (2) (2005) 381-387]. Simulation results demonstrate the potential of the proposed Hammerstein model for application to the control of the SOFC, while the excellence of the nonlinear MPC controller for voltage control of the SOFC is proved.

  9. Structural and microstructural characterization and properties of new phases in the Nd-Sr-Co-(Fe/Mn)-O system as air-electrodes in SOFCs.

    PubMed

    Boulahya, K; Muñoz Gil, D; Hassan, M; García Martin, S; Amador, U

    2017-01-24

    New oxides of the (NdSr)n+1MO3n+1 (M = Co and Mn or Fe) series are reported. Compounds of composition NdSrCo0.75Fe0.25O4.10, NdSrCo0.75Mn0.25O4.08 and Nd0.5Sr1.5Co0.75Mn0.25O3.86 are the n = 1 members of the Ruddlesden-Popper homologous series (K2NiF4 structural type) as determined by X-ray diffraction and different transmission electron microscopy techniques. Their crystal structure consists of connected (Co-Fe/Mn)O6 octahedra blocks separated by (Nd/Sr)O rock-salt like layers along the c-axis. Interstitial oxygen atoms or anion vacancies are induced depending on composition. Oxides with interstitial oxygen show good performances as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. The area-specific resistance values of electrodes made of these oxides at 973 K in air are 0.18 Ω cm(2) for NdSrCo0.75Fe0.25O4.10 and NdSrCo0.75Mn0.25O4.08 (comparable to the one of the state-of-the-art materials proposed as cathodes in IT-SOFC), and 1.38 Ω cm(2) for Nd0.5Sr1.5Co0.75Mn0.25O3.86.

  10. Tubular SOFC and SOFC/Gas Turbine combined cycles-status and prospects

    SciTech Connect

    Veyo, S.E.; Lundberg, W.L.

    1996-12-31

    Presently under fabrication at Westinghouse for EDB/ELSAM, a consortium of Dutch and Danish utilities, is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, The Netherlands, at an auxiliary district heating plant (Hulp Warmte Centrale) at the Rivierweg in Westervoort, a site provided by NUON, one of the Dutch participants, and will supply ac power to the utility grid and hot water to the district heating system serving the Duiven/Westervoort area. The electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50%. The analysis of conceptual designs for larger capacity systems indicates that the horizon for the efficiency of simple cycle atmospheric pressure units is about 55%.

  11. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  12. Formulating liquid ethers for microtubular SOFCs

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin; Slinn, Matthew; Preece, John

    One of the key problems of applying solid oxide fuel cells (SOFCs) in transportation is that conventional fuels like kerosene and diesel do not operate directly in SOFCs without prereforming to hydrogen and carbon monoxide which can be handled by the nickel cermet anode. SOFCs can internally reform certain hydrocarbon molecules such as methanol and methane. However, other liquid fuels usable in petrol or diesel internal combustion engines (ICEs) have not easily been reformable directly on the anode. This paper describes a search for liquid fuels which can be mixed with petrol or diesel and also injected directly into an SOFC without destroying the nickel anode. When fuel molecules such as octane are injected onto the conventional nickel/yttria stabilised zirconia (Ni/YSZ) SOFC fuel electrode, the anode rapidly becomes blocked by carbon deposition and the cell power drops to near zero in minutes. This degeneration of the anode can be inhibited by injection of air or water into the anode or by some upstream reforming just before entry to the SOFC. Some smaller molecules such as methane, methanol and methanoic acid produce a slight tendency to carbon deposition but not sufficient to prevent long term operation. In this project we have investigated a large number of molecules and now found that some liquid ethers do not significantly damage the anode when directly injected. These molecules and formulations with other components have been evaluated in this study. The theory put forward in this paper is that carbon-carbon bonds in the fuel are the main reason for anode damage. By testing a number of fuels without such bonds, particularly liquid ethers such as methyl formate and dimethoxy methane, it has been shown that SOFCs can run without substantial carbon formation. The proposal is that conventional fuels can be doped with these molecules to allow hybrid operation of an ICE/SOFC device.

  13. Manufacture of SOFC electrodes by wet powder spraying

    SciTech Connect

    Wilkenhoener, R.; Mallener, W.; Buchkremer, H.P.

    1996-12-31

    The reproducible and commercial manufacturing of electrodes with enhanced electrochemical performance is of central importance for a successful technical realization of Solid Oxide Fuel Cell (SOFC) systems. The route of electrode fabrication for the SOFC by Wet Powder Spraying (WPS) is presented. Stabilized suspensions of the powder materials for the electrodes were sprayed onto a substrate by employing a spray gun. After drying of the layers, binder removal and sintering are performed in one step. The major advantage of this process is its applicability for a large variety of materials and its flexibility with regard to layer shape and thickness. Above all, flat or curved substrates of any size can be coated, thus opening up the possibility of {open_quotes}up-scaling{close_quotes} SOFC technology. Electrodes with an enhanced electrochemical performance were developed by gradually optimizing the different process steps. For example an optimized SOFC cathode of the composition La{sub 0.65}Sr{sub 0.3}MnO{sub 3} with 40% 8YSZ showed a mean overpotential of about -50 mV at a current density of -0.8 A/cm{sup 2}, with a standard deviation amounting to 16 mV (950{degrees}C, air). Such optimized electrodes can be manufactured with a high degree of reproducibility, as a result of employing a computer-controlled X-Y system for moving the spray gun. Several hundred sintered composites, comprising the substrate anode and the electrolyte, of 100x 100 mm{sup 2} were coated with the cathode by WPS and used for stack integration. The largest manufactured electrodes were 240x240 mm{sup 2}, and data concerning their thickness homogeneity and electrochemical performance are given.

  14. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    PubMed

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  15. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    PubMed Central

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  16. MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS

    SciTech Connect

    Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep; Sun, Xin; Khaleel, Mohammad A.

    2008-03-26

    This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed to capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.

  17. Development of Cathode Materials for Low Temperature SOFCs

    SciTech Connect

    Simner, Steve P. ); Bonnett, Jeff F. ); Canfield, Nathan L. ); Meinhardt, Kerry D. ); Shelton, Jayne P.; Sprenkle, Vince L. ); Stevenson, Jeffry W. )

    2002-11-21

    This paper details some of the recent efforts towards SOFC cathode development conducted at Pacific Northwest National Laboratory (PNNL). It is widely established that the performance of low-temperature SOFCs is highly dependent on cathode polarization losses, which must be minimized to optimize the SOFC power densities.

  18. Development of Osaka gas type planar SOFC

    SciTech Connect

    Iha, M.; Shiratori, A.; Chikagawa, O.

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  19. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  20. Sonochemistry in the service of SOFC research.

    PubMed

    Sakkas, Petros M; Schneider, Oliver; Sourkouni, Georgia; Argirusis, Christos

    2014-11-01

    Decoration of SOFC anode cermets with metal nanoparticles (NPs) enchance their ability and stability in natural gas to hydrogen reform. A novel sonoelectrochemical approach of Au-NPs synthesis (mean 12.31±2.69nm) is suggested, according to which the sonication is held constant while the electrochemical activity is either pulsed or continuous. The gold colloidal solution is cosonicated with state of the art cermet powder to yield particles decorated with Au-NPs. Nevertheless sonochemical routes of mixed molybdenum, rhenium or tungsten mixed oxides synthesis are utilized in order to decorate SOFC anode cermets. The decoration loading achieved spanned from 0.1 to 10.0wt.%.

  1. Characterization of ceria-based SOFCs

    SciTech Connect

    Doshi, R.; Roubort, J.; Krumpelt, M.

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700 C) offer many advantages over conventional zirconia-based fuel cells operating at higher temperatures. Cathode performance is being improved by using better materials and/or microstructures. Fabrication of thin dense electrolytes is also necessary to achieve high cell performances.

  2. Status of SOFC development at Siemens

    SciTech Connect

    Drenckhahn, W.; Blum, L.; Greiner, H.

    1996-12-31

    The Siemens SOFC development programme reached an important milestone in June 1995. A stack operating with hydrogen and oxygen produced a peak power of 10.7 kW at a current density of 0.7 A/cm{sup 2} and was running for more than 1400 hours. The SOFC configuration is based on a flat metal separator plate using the multiple cell array design. Improved PENs, functional layer and joining technique were implemented. Based on this concept, a 100 kW plant was designed The SOFC development at Siemens has been started in 1990 after a two years preparation phase. The first period with the goal of the demonstration of a 1 kW SOFC stack operation ended in 1993. This important milestone was finally reached in the begin of 1994. The second project phase with the final milestone of a 20 kW module operation will terminate at the end of 1996. This result will form a basis for the next phase in which a 50 to 100 kW pilot plant will be built and tested.

  3. FRACTURE FAILURE CRITERIA OF SOFC PEN STRUCTURE

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-30

    Thermal stresses and warpage of the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature and mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN structures of solid oxide fuel cells (SOFC) during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. The porous nature of anode and cathode in the PEN structures determines presence of the initial flaws and crack on the interfaces of anode/electrolyte/cathode and in the interior of the materials. The sintering/assembling induced stresses may cause the fracture failure of PEN structure. Therefore, fracture failure criteria for SOFC PEN structures is developed in order to ensure the structural integrity of the cell and stack of SOFC. In this paper, the fracture criteria based on the relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  4. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  5. Reducing the Manufacturing Cost of Tubular SOFC Technology

    SciTech Connect

    George, R.A.; Bessette, N.F.

    1997-12-31

    In recent years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop a `MWe Class` (1-3 MWe) pressurized SOFC (PSOFC) gas turbine (GT) combined cycle power system for distributed power applications because of its: (1) ultra high efficiency (approx. 63% net AC/LHV CH{sub 4}), (2) its compatibility with a factory packaged, minimum site work philosophy, and (3) its cost effectiveness. Since then two cost studies on this market entry product performed by consultants to the U.S. Department of Energy have confirmed Westinghouse cost studies that fully installed costs of under $1300/kWe can be achieved in the early commercialization years for such small PSOFC/GT power systems. The paper will present the results of these cost studies in the areas of cell manufacturing cost, PSOFC generator manufacturing cost, balance-of-plant (BOP) cost, and system installation cost. In addition, cost of electricity calculations will be presented.

  6. Digital Manufacturing of Gradient Meshed SOFC Sealing Composites with Self-Healing Capabilities

    SciTech Connect

    Kathy Lu; Christopher Story; W.T. Reynolds

    2007-12-21

    Solid oxide fuel cells (SOFC) hold great promise for clean power generation. However, high temperature stability and long term durability of the SOFC components have presented serious problems in SOFC technological advancement and commercialization. The seals of the fuel cells are the most challenging area to address. A high temperature gas seal is highly needed which is durable against cracking and gas leakage during thermal cycling and extended operation. This project investigates a novel composite seal by integrating 3D printed shape memory alloy (SMA) wires into a glass matrix. The SMA we use is TiNiHf and the glass matrix we use is SrO-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} (SLABS). Dilatometry shows to be an extremely useful tool in providing the CTEs. It pinpoints regions of different CTEs under simulated SOFC thermal cycles for the same glass. For the studied SLABS glass system, the region with the greatest CTE mismatch between the glass seal and the adjacent components is 40-500 C, the typical heating and cooling regions for SOFCs. Even for low temperature SOFC development, this region is still present and needs to be addressed. We have demonstrated that the proposed SLABS glass has great potential in mitigating the thermal expansion mismatch issues that are limiting the operation life of SOFCs. TiNiHf alloy has been successfully synthesized with the desired particle size for the 3DP process. The TiNiHf SMA shape memory effect very desirably overlaps with the problematic low CTE region of the glass. This supports the design intent that the gradient structure transition, phase transformation toughening, and self-healing of the SMA can be utilized to mitigate/eliminate the seal problem. For the 3DP process, a new binder has been identified to match with the specific chemistry of the SMA particles. This enables us to directly print SMA particles. Neutron diffraction shows to be an extremely useful tool in providing information

  7. Fabrication and characteristics of unit cell for SOFC

    SciTech Connect

    Kim, Gwi-Yeol; Eom, Seung-Wook; Moon, Seong-In

    1996-12-31

    Research and development on solid oxide fuel cells in Korea have been mainly focused on unit cell and small stack. Fuel cell system is called clean generation system which not cause NOx or SOx. It is generation efficiency come to 50-60% in contrast to 40% of combustion generation system. Among the fuel cell system, solid oxide fuel cell is constructed of ceramics, so stack construction is simple, power density is very high, and there are no corrosion problems. The object of this study is to develop various composing material for SOFC generation system, and to test unit cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  8. Siemens SOFC Test Article and Module Design

    SciTech Connect

    Pierre, Joseph F.

    2011-03-31

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  9. Liquid Tin Anode SOFC JP-8 Start-up

    DTIC Science & Technology

    2008-10-01

    PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Inventions (DD882) TECHNICAL REPORT ARMY ARO Liquid Tin Anode SOFC JP-8... REPORT Liquid Tin Anode SOFC JP-8 Start-up 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This program demonstrated the feasibility to use CellTech...2008 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Aug-2008 Liquid Tin Anode SOFC JP-8 Start-up Report Title ABSTRACT This

  10. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs

    DTIC Science & Technology

    2007-11-02

    Appendix D - Sintering & Reduction of Hybrid Electrolyte Honeycomb 53 Appendix E - Design and Thermo-mechanical Analysis of LCMs for SOFCs 61...mechanical Analysis of LCMs for SOFC Applications Lead Faculty: David L. McDowell Graduate Students: Benjamin Dempsey (thermal-fluid and electronic...K., Onda, K., Esaki, Y., Sakaki, Y., Nagata, S., “Performance analysis of planar-type unit SOFC considering current and temperature distributions

  11. SOFC Interconnect and Compressive Seal Development at PNNL

    SciTech Connect

    Chou, Y S.; Yang, Z Gary; Singh, Prabhakar; Stevenson, Jeffry W.; Xia, Gordon

    2005-11-01

    The development of solid oxide fuel cell (SOFC) technology represents an opportunity to achieve significant improvements in energy conversion efficiency and reduction of undesirable emissions. However, many technical challenges still need to be overcome before the utilization of the advantages of SOFC can take place. These challenges include the need for improved interconnects and seals for planar SOFC stacks. In this paper, we briefly summarize recent progress at PNNL in these two research areas.

  12. Mechanistic Enhancement of SOFC Cathode Durability

    SciTech Connect

    Wachsman, Eric

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  13. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2009-08-11

    Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  14. Development of 5kW class MOLB type SOFC

    SciTech Connect

    Hattori, M.; Esaki, Y.; Sakaki, Y.

    1996-12-31

    Fuel cell development has been accelerated in recent years primarily due to its high efficiency and minimum environmental effect. Especially SOFC is receiving greater attention due to its excellent characteristics. Among several types of SOFC, MOLB (MOno block Layer Built) type SOFC provides following advantages for a large scale power plant; (1) Suitable for mass production, and (2) able to obtain high power density. Chubu Electric Power Company, Inc. (CEPCO) and Mitsubishi Heavy Industries, LTD. (MHI) have jointly developed and evaluated the MOLB type SOFC on since 1990. This paper presents recent progress on it.

  15. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Devinder; Hernández-Pacheco, Eduardo; Hutton, Phillip N.; Patel, Nikhil; Mann, Michael D.

    This work presents a thermodynamic analysis of the carbon deposition in a solid oxide fuel cell (SOFC) fueled by a biomass gasifier. Integrated biomass-SOFC units offer considerable benefits in terms of efficiency and fewer emissions. SOFC-based power plants can achieve a system efficiency of 70-80% (including heat utilization) as compared to 30-37% for conventional systems. The fuel from the biomass gasifier can contain considerable amounts of tars depending on the type of gasifier used. These tars can lead to the deposition of carbon at the anode side of SOFCs and affect the performance of the fuel cells. This paper thermodynamically studies the risk of carbon deposition due to the tars present in the feed stream and the effect various parameters like current density, steam, and temperature have on carbon deposition. Since tar is a complex mixture of aromatics, it is represented by a mixture of toluene, naphthalene, phenol, and pyrene. A total of 32 species are considered for the thermodynamic analysis, which is done by the Gibbs energy minimization technique. The carbon deposition is shown to decrease with an increase in current density and becomes zero after a critical current density. Steam in the feed stream also decreases the amount of carbon deposition. With the increase in temperature the amount of carbon first decreases and then increases.

  16. Effect of Samarium Oxide on the Electrical Conductivity of Plasma-Sprayed SOFC Anodes

    NASA Astrophysics Data System (ADS)

    Panahi, S. N.; Samadi, H.; Nemati, A.

    2016-10-01

    Solid oxide fuel cells (SOFCs) are rapidly becoming recognized as a new alternative to traditional energy conversion systems because of their high energy efficiency. From an ecological perspective, this environmentally friendly technology, which produces clean energy, is likely to be implemented more frequently in the future. However, the current SOFC technology still cannot meet the demands of commercial applications due to temperature constraints and high cost. To develop a marketable SOFC, suppliers have tended to reduce the operating temperatures by a few hundred degrees. The overall trend for SOFC materials is to reduce their service temperature of electrolyte. Meanwhile, it is important that the other components perform at the same temperature. Currently, the anodes of SOFCs are being studied in depth. Research has indicated that anodes based on a perovskite structure are a more promising candidate in SOFCs than the traditional system because they possess more favorable electrical properties. Among the perovskite-type oxides, SrTiO3 is one of the most promising compositions, with studies demonstrating that SrTiO3 exhibits particularly favorable electrical properties in contrast with other perovskite-type oxides. The main purpose of this article is to describe our study of the effect of rare-earth dopants with a perovskite structure on the electrical behavior of anodes in SOFCs. Sm2O3-doped SrTiO3 synthesized by a solid-state reaction was coated on substrate by atmospheric plasma spray. To compare the effect of the dopant on the electrical conductivity of strontium titanate, different concentrations of Sm2O3 were used. The samples were then investigated by x-ray diffraction, four-point probe at various temperatures (to determine the electrical conductivity), and a scanning electron microscope. The study showed that at room temperature, nondoped samples have a higher electrical resistance than doped samples. As the temperature was increased, the electrical

  17. Use of wastewater treatment plant biogas for the operation of Solid Oxide Fuel Cells (SOFCs).

    PubMed

    Lackey, Jillian; Champagne, Pascale; Peppley, Brant

    2016-09-14

    Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NOx, SOx, and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H2 dilutions were tested (N2, Ar, CO2) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H2 partial pressure in the reformate resulting from higher H2O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO2, 60 kg CH4 and 18 kg N2O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H2, 16.1% CO, 16.5% CO2, 0.7% N2, humidified to 2.3 or 20 mol% H2O). Higher humidification yielded better performance as the WGS reaction produced more H2 with additional H2O. It was concluded that AD-derived biogas, when cleaned to remove H2S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs.

  18. Mica-based Composite Compressive Seals for SOFC

    SciTech Connect

    Chou, Y S.; Meinhardt, Kerry D.; Stevenson, Jeffry W.; Singh, Prabhakar

    2004-07-07

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals are required for long-term stability and integrity in the high temperature SOFC environment during normal and transient operations. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Compressive seals potentially offer a significant and unique advantage over the other approaches by providing a means of mechanically ''de-coupling'' adjacent stack components, thereby minimizing the need for closely matching the coefficients of thermal expansion (CTE) of the various SOFC stack components. In an attempt to help the SOFC industry overcome sealing challenges, PNNL is developing mica-based hybrid compressive seals which exhibit leak rates 2 to 3 orders of magnitude lower than obtained with simple mica gasket seals.

  19. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  20. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  1. Analysis of SOFCs Using Reference Electrodes

    SciTech Connect

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  2. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  3. TPV Power Generation System Using a High Temperature Metal Radiant Burner

    NASA Astrophysics Data System (ADS)

    Qiu, K.; Hayden, A. C. S.; Entchev, E.

    2007-02-01

    Interest has grown in micro-combined heat and power (micro-CHP). Thermophotovoltaic (TPV) generation of electricity in fuel-fired furnaces is one of the micro-CHP technologies that are attracting technical attention. Previous investigations have shown that a radiant burner that can efficiently convert fuel chemical energy into radiation energy is crucial to realize a practical TPV power system. In this work, we developed a TPV power generation system using a gas-fired metal radiant burner. The burner consists of a high temperature alloy emitter, which could have an increased emissivity at short wavelengths and low emissivity at long wavelengths. The metal emitter is capable of bearing high temperatures of interest to fuel-fired TPV power conversion. GaSb TPV cells were tested in the combustion-driven radiant source. Electric output characteristics of the TPV cells were investigated at various operating conditions. The electric power output of the TPV cells was demonstrated to be promising. At an emitter temperature of 1185°C, an electric power density of 0.476 W/cm2 was generated by the GaSb cells. It is shown that the metal emitter is attractive and could be applied to practical fuel-fired TPV power systems.

  4. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  5. An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes.

    PubMed

    Li, Xiaxi; Liu, Mingfei; Lee, Jung-pil; Ding, Dong; Bottomley, Lawrence A; Park, Soojin; Liu, Meilin

    2015-09-07

    Thermally robust and chemically inert Ag@SiO2 nanoprobes are employed to provide the surface enhanced Raman scattering (SERS) effect for an in situ/operando study of the early stage of carbon deposition on nickel-based solid oxide fuel cell (SOFC) anodes. The enhanced sensitivity to carbon enables the detection of different stages of coking, offering insights into intrinsic coking tolerance of material surfaces. Application of a thin coating of gadolinium doped ceria (GDC) enhances the resistance to coking of nickel surfaces. The electrochemically active Ni-YSZ interface appears to be more active for hydrocarbon reforming, resulting in the accumulation of different hydrocarbon molecules, which can be readily removed upon the application of an anodic current. Operando SERS is a powerful tool for the mechanistic study of coking in SOFC systems. It is also applicable to the study of other catalytic and electrochemical processes in a wide range of conditions.

  6. Predictive control of SOFC based on a GA-RBF neural network model

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Juan; Zhu, Xin-Jian; Cao, Guang-Yi; Tu, Heng-Yong

    Transients in a load have a significant impact on the performance and durability of a solid oxide fuel cell (SOFC) system. One of the main reasons is that the fuel utilization changes drastically due to the load change. Therefore, in order to guarantee the fuel utilization to operate within a safe range, a nonlinear model predictive control (MPC) method is proposed to control the stack terminal voltage as a proper constant in this paper. The nonlinear predictive controller is based on an improved radial basis function (RBF) neural network identification model. During the process of modeling, the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. And then a nonlinear predictive control algorithm is applied to track the voltage of the SOFC. Compared with the constant fuel utilization control method, the simulation results show that the nonlinear predictive control algorithm based on the GA-RBF model performs much better.

  7. Cassette less SOFC stack and method of assembly

    DOEpatents

    Meinhardt, Kerry D

    2014-11-18

    A cassette less SOFC assembly and a method for creating such an assembly. The SOFC stack is characterized by an electrically isolated stack current path which allows welded interconnection between frame portions of the stack. In one embodiment electrically isolating a current path comprises the step of sealing a interconnect plate to a interconnect plate frame with an insulating seal. This enables the current path portion to be isolated from the structural frame an enables the cell frame to be welded together.

  8. Cycle Analysis using Exhaust Heat of SOFC and Turbine Combined Cycle by Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Takezawa, Shinya; Wakahara, Kenji; Araki, Takuto; Onda, Kazuo; Nagata, Susumu

    A power generating efficiency of solid oxide fuel cell (SOFC) and gas turbine combined cycle is fairly high. However, the exhaust gas temperature of the combined cycle is still high, about 300°C. So it should be recovered for energy saving, for example, by absorption chiller. The energy demand for refrigeration cooling is recently increasing year by year in Japan. Then, we propose here a cogeneration system by series connection of SOFC, gas turbine and LiBr absorption chiller to convert the exhaust heat to the cooling heat. As a result of cycle analysis of the combined system with 500kW class SOFC, the bottoming single-effect absorption chiller can produce the refrigerating capacity of about 120kW, and the double-effect absorption chiller can produce a little higher refrigerating capacity of about 130kW without any additional fuel. But the double-effect absorption chiller became more expensive and complex than the single-effect chiller.

  9. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  10. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    NASA Astrophysics Data System (ADS)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  11. Model development for a SOFC button cell using H 2S as fuel

    NASA Astrophysics Data System (ADS)

    Monder, Dayadeep S.; Nandakumar, K.; Chuang, Karl T.

    In this paper we present a hierarchy of models built to describe the overall performance of a single H 2S fuelled button cell solid oxide fuel cell (SOFC). The cell, used in the experimental studies of Liu et al. [M. Liu, G. Wei, J. Luo, A.R. Sanger, K.T. Chuang, Use of metal sulfides as anode catalysts in H 2S-air SOFCs, J. Electrochem. Soc. 150 (2003) 1025-1029], was a planar cell with a circular disc-like electrode assembly and the fuel and air flowing through a concentric cylindrical tube assembly. The goal is to model the electrochemical reaction coupled with mass transfer, fluid flow and current/voltage distribution in an yttria stabilized zirconia electrolyte fuel cell assembly operated between 750 and 850 °C. The models built range in complexity from an algebraic system of equations that calculates the activation, concentration and ohmic losses, to a two-dimensional finite element model that solves all the physics in the SOFC simultaneously. Kinetic parameters in these (progressively more comprehensive) models have been estimated and compared, leading hopefully to more accurate estimates for these parameters.

  12. Investigation and improvement of SOFC composite cathodes

    NASA Astrophysics Data System (ADS)

    Bidrawn, Fred

    The focus of this dissertation is on the preparation, performance, and long term stability of SOFC composite cathodes prepared by infiltration methods. The majority of the work that follows aims to improve the understanding of the processes contributing to cathode deactivation and to propose strategies to lessen the extent of this deactivation. Through this understanding of the factors governing cathode performance, improvements can be made in overall cathode performance which can in turn lead to lower operating temperatures. The fuel cells used in this work were prepared by tapecasting and infiltration methods. Composite YSZ-perovskite electrodes were prepared by infiltration of stoichiometric ratios of perovskite precursor nitrate salts into a porous YSZ scaffold. First, the influence of ionic conductivity on the performance of solid oxide fuel cell cathodes was studied for electrodes prepared by infiltration of 40-wt% La0.8Ca0.2FeO3 (LCF), La0.8 Sr0.2FeO3 (LSF), and La0.8Ba0.2 FeO3 (LBF) into porous YSZ scaffolds. Although ionic conductivity varied by over an order of magnitude, no significant difference was observed in the performance of each material, suggesting that oxygen ion diffusion through perovskite film is not a rate limiting step for the oxygen reduction process within the cathode. Next, the effect of various infiltrated dopants on the performance of SOFC cathodes was examined. The addition of dopants had little influence on the 1123-K composite electrodes but all dopants tested improved the performance of the 1373-K, suggesting that the improved performance is related to structural changes in the electrode, rather than to improved catalytic properties or ionic conductivity. Based on these results, a model was developed to understand the performance of these electrodes. Two rate-limiting cases are considered for oxygen transfer into the YSZ fins: diffusion through the perovskite film or reactive adsorption of O2 at the perovskite surface. In agreement

  13. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part B: Applications

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-09-01

    An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.

  14. Development of cofired type planar SOFC

    SciTech Connect

    Taira, Hiroaki; Sakamoto, Sadaaki; Zhou, Hua-Bing

    1996-12-31

    We have developed fabrication process for planar SOFC fabricated with cofired anode/electrolyte/cathode multilayers and interconnects. By cofiring technique for the multilayers, we expect to reduce the thickness of the electrolyte layers, resulting in decrease of innerimpedance, and achieve low production cost. On the other hand, the cofiring technique requires that the sintering temperature, the shrinkage profiles and the thermal expansion characteristics of all component materials should be compatible with the other. It is, therefore, difficult to cofire the multilayers with large area. Using the multilayers with surface area of 150cm{sup 2}, we fabricated the multiple cell stacks. The maximum power of 5x4 multiple cell stack (5 planes of cells in series, 4 cells in parallel in each planes 484cm{sup 2} effective electrode area of each cell planes) was 601W (0.25Wcm{sup -2}, Uf=40%). However, the terminal voltage of the multiple cell stack decreased by the cause of cell cracking, gas leakage and degradation of cofired multilayers. This paper presents the improvements of cofired multilayers, and the performance of multiple cell stacks with the improved multilayers.

  15. Characterization of ceria-based SOFCs

    SciTech Connect

    Doshi, R.; Routbort, J.; Krumpelt, M.

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700{degrees}C) offer many advantages over the conventional zirconia-based fuel cells operating at higher temperatures. Reduced operating temperatures result in: (1) Application of metallic interconnects with reduced oxidation problems (2) Reduced time for start-up and lower energy consumption to reach operating temperatures (3) Increased thermal cycle ability for the cell structure due to lower thermal stresses of expansion mismatches. While this type of fuel cell may be applied to stationary applications, mobile applications require the ability for rapid start-up and frequent thermal cycling. Ceria-based fuel cells are currently being developed in the U.K. at Imperial College, Netherlands at ECN, and U.S.A. at Ceramatec. The cells in each case are made from a doped ceria electrolyte and a La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} cathode.

  16. Development status of planar SOFCs at Sanyo

    SciTech Connect

    Miyake, Yasuo; Akiyama, Yukinori; Yasuo, Takashi

    1996-12-31

    A 2 kW class combined cell stacked module (182 cm{sup 2} X 4X 17) was examined. An output power of 2.47 kW and output power density of 0.20 W/cm{sup 2} were obtained at the current density of 0.3 A/cm{sup 2}. The temperature uniformity is an important factor to develop large scale SOFC modules. Therefore, in this 2 kW class module, one cell was divided into four smaller unit cells to decrease temperature difference across these cells. Moreover, an internal heat-exchanging duct was arranged to spend the surplus heat effectively in the middle of the module. As for the basic research, the followings were investigated to improve thermal cycle characteristics. One was to adopt a silica/alumina-based sealing, material in order to absorb the thermal expansion difference between the electrolyte and the separator. Deterioration was quite small after 12 thermal cycles with a 150 by 150 mm single cell. The other was to use a heat-resisting ferritic alloy as a separator in a 50 by 50 mm single cell in order to decrease the thermal expansion coefficient of the separator. High performance was obtained for 2000 hours at 900{degrees}C in an endurance test and deterioration was quite small after a thermal cycle.

  17. Oxide diffusion in innovative SOFC cathode materials.

    PubMed

    Hu, Y; Thoréton, V; Pirovano, C; Capoen, E; Bogicevic, C; Nuns, N; Mamede, A-S; Dezanneau, G; Vannier, R N

    2014-01-01

    Oxide diffusion was studied in two innovative SOFC cathode materials, Ba(2)Co(9)O(14) and Ca(3)Co(4)O(9)+δ derivatives. Although oxygen diffusion was confirmed in the promising material Ba(2)Co(9)O(14), it was not possible to derive accurate transport parameters because of an oxidation process at the sample surface which has still to be clarified. In contrast, oxygen diffusion in the well-known Ca(3)Co(4)O(9)+δ thermoelectric material was improved when calcium was partly substituted with strontium, likely due to an increase of the volume of the rock salt layers in which the conduction process takes place. Although the diffusion coefficient remains low, interestingly, fast kinetics towards the oxygen molecule dissociation reaction were shown with surface exchange coefficients higher than those reported for the best cathode materials in the field. They increased with the strontium content; the Sr atoms potentially play a key role in the mechanism of oxygen molecule dissociation at the solid surface.

  18. Approaches to mitigate metal catalyst deactivation in solid oxide fuel cell (SOFC) fuel electrodes

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence

    While Ni/YSZ cermets have been used successfully in SOFCs, they also have several limitations, thus motivating the use of highly conductive ceramics to replace the Ni components in SOFC anodes. Ceramic electrodes are promising for use in SOFC anodes because they are expected to be less susceptible to sintering and coking, be redox stable, and be more tolerant of impurities like sulfur. In this thesis, for catalytic studies, the infiltration procedure has been used to form composites which have greatly simplified the search for the best ceramics for anode applications. In the development of ceramic fuel electrodes for SOFC, high performance can only be achieved when a transition metal catalyst is added. Because of the high operating temperatures, deactivation of the metal catalyst by sintering and/or coking is a severe problem. In this thesis, two approaches aimed at mitigating metal catalyst deactivation which was achieved by: 1) designing a catalyst that is resistant to coking and sintering and 2) developing a new method for catalyst deposition, will be presented. The first approach involved synthesizing a self-regenerating, "smart" catalyst, in which Co, Cu, or Ni were inserted into the B-site of a perovskite oxide under oxidizing conditions and then brought back to the surface under reducing conditions. This restores lost surface area of sintered metal particles through an oxidation/reduction cycle. Results will be shown for each of the metals, as well as for Cu-Co mixed metal systems, which are found to exhibit good tolerance to carbon deposition and interesting catalytic properties. The second strategy involves depositing novel Pd CeO2 core-shell nanostructure catalysts onto a substrate surface which had been chemically modified to anchor the nanoparticles. The catalyst deposited onto the chemically modified, hydrophobic surface is shown to be uniform and well dispersed, and exhibit excellent thermal stability to temperatures as high as 1373 K. Similar metal

  19. A 1000-cell SOFC reactor for domestic cogeneration

    NASA Astrophysics Data System (ADS)

    Alston, T.; Kendall, K.; Palin, M.; Prica, M.; Windibank, P.

    A cogeneration system was built using 1000 cells with the intention of supplying 30 kW of hot water and 500 W of power. The basis of the cogenerator was the small tubular SOFC design. 8Y zirconia was mixed into a plastic paste and extruded to form thin-walled tubes. The process produced a zirconia material with high strength and good electrical properties. After drying and firing to full density, electrodes were coated onto the inner and outer surfaces of the electrolyte, then sintered. Current collecting wires were wound around the tubular cells and the tubes were assembled into a reactor. Either hydrogen or a premix of natural gas and air was fed through the tubes and ignited by a hot wire. The ignition shock did not damage the cells in any way. Cycling was achieved within minutes. A steel heat exchanger/recuperator was used to feed hot air to the cell stack. The electrical output was measured via a potentiostat.

  20. Synchrotron Investigations of SOFC Cathode Degradation

    SciTech Connect

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  1. Corrosion Performance of Ferritic Steel for SOFC Interconnect Applications

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Jablonski, P.D.; Alman, D.E.

    2006-11-01

    Ferritic stainless steels have been identified as potential candidates for interconnects in planar-type solid oxide fuel cells (SOFC) operating below 800ºC. Crofer 22 APU was selected for this study. It was studied under simulated SOFC-interconnect dual environment conditions with humidified air on one side of the sample and humidified hydrogen on the other side at 750ºC. The surfaces of the oxidized samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.

  2. Advanced materials and design for low temperature SOFCs

    DOEpatents

    Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo

    2016-05-17

    Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.

  3. New approach to the electrical representation of SOFC

    NASA Astrophysics Data System (ADS)

    Magonski, Zbigniew; Dziurdzia, Barbara

    2016-12-01

    Three layer structure of Solid Oxide Fuel Cell (SOFC), where a thin semi-conducting layer of electrolyte separates the anode from the cathode, shows a strong similarity to typical semiconductor devices built on the basis of P-N junctions, like diodes or transistors. On the basis of this similarity, the attempt of application of Shockley's formula for the expression of a current-voltage relation of SOFC is presented. The proposed approach enables a more accurate estimation of the ion exchange current, than the approach based on the Tafel's formula.

  4. Acrylic acid and electric power cogeneration in an SOFC reactor.

    PubMed

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu

    2009-04-21

    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  5. Balance of plant for SOFC experiences with the planning, engineering, construction and testing of a 10 kW planar SOFC pilot plant

    SciTech Connect

    Klov, K.; Sundal, P.; Monsen, T.; Vik, A.

    1996-12-31

    The Statoil Solide Oxide Fuel Cell Research Program was started in January 1991. Some results from this Program were presented to the 1994 Fuel Cell Seminar in San Diego. The final technical milestone for the program was to design, engineer, construct and test a 10 kW pilot plant. From the very beginning, the importance of coordination and integration in the development of components, subsystems and systems, combined with basic research on cell and stack performance, were established as the guidelines for the program. In this way the progress towards the final goal was not a matter of making the best individual cell, the best stack or a superior balance of plant, but to build an efficient, reliable and operative pilot plant system, and thus make a further step towards a verification of commercial SOFC system technology.

  6. Development of SOFC anodes resistant to sulfur poisoning and carbon deposition

    NASA Astrophysics Data System (ADS)

    Choi, Song Ho

    The advantages of solid oxide fuel cells (SOFCs) over other types of fuel cells include high energy efficiency and excellent fuel flexibility. In particular, the possibility of direct utilization of fossil fuels and renewable fuels (e.g., bio-fuels) may significantly reduce the cost of SOFC technologies. However, it is known that these types of fuels contain many contaminants that may be detrimental to SOFC performance. Among the contaminants commonly encountered in readily available fuels, sulfur-containing compounds could dramatically reduce the catalytic activity of Ni-based anodes under SOFC operating conditions. While various desulphurization processes have been developed for the removal of sulfur species to different levels, the process becomes another source of high cost and system complexity in order to achieve low concentration of sulfur species. Thus, the design of sulfur tolerant anode materials is essential to durability and commercialization of SOFCs. Another technical challenge to overcome for direct utilization of hydrocarbon fuels is carbon deposition. Carbon formation on Ni significantly degrades fuel cell performance by covering the electrochemically active sites at the anode. Therefore, the prevention of the carbon deposition is a key technical issue for the direct use of hydrocarbon fuels in a SOFC. In this research, the surface of a dense Ni-YSZ anode was modified with a thin-film coating of niobium oxide (Nb2O5) in order to understand the mechanism of sulfur tolerance and the behavior of carbon deposition. Results suggest that the niobium oxide was reduced to NbO 2 under operating conditions, which has high electrical conductivity. The NbOx coated dense Ni-YSZ showed sulfur tolerance when exposed to 50 ppm H2S at 700°C over 12 h. Raman spectroscopy and XRD analysis suggest that different phases of NbSx formed on the surface. Further, the DOS (density of state) analysis of NbO2, NbS, and NbS2 indicates that niobium sulfides can be considered

  7. Using Simulink Simulation to Evaluate Load Following Characteristics of SOFC Generator with Heat Exchanger Considering Heat Balance

    NASA Astrophysics Data System (ADS)

    Tuyen, Nguyen Duc; Fujita, Goro; Yokoyama, Ryuichi; Koyanagi, Kaoru; Funabashi, Toshihisa; Nomura, Masakatsu

    That ever increasing electricity consumption, progress in power deregulation, and rising public awareness for environment have created more interest in fuel cell distributed generation. Among different types of fuel cells, solid oxide fuel cells (SOFCs) manifest themselves as great potential applications due to many advantages such as low emission, high efficiency, and high power rating. On the other hand, SOFC systems are beneficial because they can convert fuel such as natural gas (almost CH4) which is supplied by widespread systems in many countries into electricity efficiently using internal reforming. In facts, the load demand changes flexibly and fuel cell life time decreases by rapid thermal change. Its lifetime may be extended by maintaining in appropriate temperature. Therefore, it is important to acquire the load following performance as well as control of operation temperature. This paper addresses components of the simple SOFC power unit model with heat exchanger (HX) included. Typical dynamical submodels are used to follow the variation of load demand at a local location that considers temperature characteristics using the Matlab-SIMULINK program.

  8. All-Ceramic SOFC Tolerant to Oxygen, Carbon and Sulfur

    SciTech Connect

    Coffey, Greg W. ); Hardy, John S. ); Meinhardt, Kerry D. ); Marina, Olga A. ); Simner, Steve P. )

    2002-11-21

    Novel strontium titanate-ceria composite solid oxide fuel cell (SOFC) anode materials[1] were tested in single electrolyte-supported cells in the temperature range 600-900 degrees centigrade. Power densities of 420 to 350 mW/cm2 were generated in wet hydrogen at 0.7 Volt at 850 and 800 degrees centigrade, respectively. Moreover, ceramic anodes offered higher tolerance to oxidizing environments, sulfur-containing environments and hydrocarbons.

  9. Study on durability for thermal cycle of planar SOFC

    SciTech Connect

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  10. Investigation of Performance of SCN-1 Pure Glass as Sealant Used in SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2010-03-01

    As its name implies, self-healing glass seal has the potential of restoring its mechanical properties upon being reheated to stack operating temperature, even when it has experienced some cooling induced damage/crack at room temperature. Such a self-healing feature is desirable for achieving high seal reliability during thermal cycling. On the other hand, self-healing glass is also characterized by its low mechanical stiffness and high creep rate at the typical operating temperature of SOFCs. Therefore, from a design’s perspective, it is important to know the long term geometric stability and thermal mechanical behaviors of the self-healing glass under the stack operating conditions. These predictive capabilities will guide the design and optimization of a reliable sealing system that potentially utilizes self-healing glass as well as other ceramic seal components in achieving the ultimate goal of SOFC. In this report, we focused on predicting the effects of various generic seal design parameters on the stresses in the seal. For this purpose, we take the test cell used in the leakage test for compliant glass seals conducted in PNNL as our initial modeling geometry. The effect of the ceramic stopper on the geometry stability of the self-healing glass sealants is studied first. Then we explored the effect of various interfaces such as stopper and glass, stopper and PEN, as well stopper and IC plate, on the geometry stability and reliability of glass during the operating and cooling processes.

  11. A Symmetrical, Planar SOFC Design for NASA's High Specific Power Density Requirements

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.

    2007-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require an order of magnitude increase in specific power density (1.0 kW/kg) and long life. While significant research is underway to develop anode supported cells which operate at temperatures in the range of 650-800 C, concerns about Cr-contamination from the metal interconnect may drive the operating temperature down further, to 750 C and lower. Higher temperatures, 900-1000 C, are more favorable for SOFC stacks to achieve specific power densities of 1.0 kW/kg. Since metal interconnects are not practical at these high temperatures and can account for up to 75% of the weight of the stack, NASA is pursuing a design that uses a thin, LaCrO3-based ceramic interconnect that incorporates gas channels into the electrodes. The bi-electrode supported cell (BSC) uses porous YSZ scaffolds, on either side of a 10-20 microns electrolyte. The porous support regions are fabricated with graded porosity using the freeze-tape casting process which can be tailored for fuel and air flow. Removing gas channels from the interconnect simplifies the stack design and allows the ceramic interconnect to be kept thin, on the order of 50 -100 microns. The YSZ electrode scaffolds are infiltrated with active electrode materials following the high temperature sintering step. The NASA-BSC is symmetrical and CTE matched, providing balanced stresses and favorable mechanical properties for vibration and thermal cycling.

  12. Novel Metal-Ceramic Joining for Planar SOFCs

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2005-05-01

    We are investigating a new method of ceramic-to-metal joining, referred to as reactive air brazing (RAB), as a potential method of sealing planar solid oxide fuel cells (SOFCs). In the present study, yttria stabilized zirconia (YSZ) and FeCrAlY were selected as subject materials in order to simulate the cell-to-frame seal in planar SOFC. YSZ plates were joined with FeCrAlY foils, using various CuO-Ag and CuO-Ag-TiO2 braze compositions. Metallographic analysis revealed that a majority of the CuO in the braze preferentially migrates to the braze/FeCrAlY interface, indicating a stronger affinity and interaction between the CuO and the alumina scale that had formed on the FeCrAlY than with the YSZ substrate. The addition of TiO2 to the braze appeared to have no significant effect on the microstructure or mechanical properties of the YSZ/FeCrAlY joints, unlike what had been observed previously in YSZ/YSZ joining. Four-point bend tests indicated that joint strength improves with increasing CuO content up to 8 mol% CuO, the maximum concentration of copper oxide tetsed, likely due to the concomitant improvement in braze wettability. A maximum bend strength of 101 MPa was achieved using the 8 mol% CuO braze composition, demonstrating the feasibility of this joining technique for sealing planar SOFCs.

  13. Development of 10kW SOFC module

    SciTech Connect

    Hisatome, N.; Nagata, K.; Kakigami, S.

    1996-12-31

    Mitsubishi Heavy industries, Ltd. (MHI) has been developing tubular type Solid Oxide Fuel Cells (SOFC) since 1984. A 1 kW module of SOFC has been continuously operated for 3,000 hours with 2 scheduled thermal cycles at Electric Power Development Co., Inc. (EPDC) Wakamatsu Power Station in 1993. We have obtained of 34% (HHV as H{sub 2}) module efficiency and deterioration rate of 2% Per 1,000 hours in this field test. As for next step, we have developed 10 kW module in 1995. The 10 kW module has been operated for 5,000 hours continuously. This module does not need heating support to maintain the operation temperature, and the module efficiency was 34% (HHV as H{sub 2}). On the other hand, we have started developing the technology of pressurized SOFC. In 1996, pressurized MW module has been tested at MHI Nagasaki Shipyard & Machinery, Works. We are now planning the development of pressurized 10 kW module.

  14. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  15. A review of standardising SOFC measurement and quality assurance at FZJ

    NASA Astrophysics Data System (ADS)

    Haanappel, V. A. C.; Smith, M. J.

    The need for standardisation/quality assurance (QA) is argued for citing extant problems with consistency, repeatability and reliability of data. A review of the cell testing procedure/QA system used at Forschungszentrum Jülich (FZJ) is given including an outline of how the FZJ system was developed. This is put in the context of more extensive QA systems following the outlines of the ISO 9000 series standards. Examples are used to illustrate how and why a number of standard cell test parameters was adopted. It was found that pre-normative research used to define testing parameters led to an improvement in cell performance generally. Therefore, it is recommended that other solid oxide fuel cells (SOFC) labs develop standardisation in testing and QA systems to maintain and improve their measurement processes.

  16. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; H. Skip Mieney

    2003-06-09

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.

  17. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC

    NASA Astrophysics Data System (ADS)

    Laosiripojana, N.; Assabumrungrat, S.

    This study investigated the possible use of methane, methanol, and ethanol with steam as a direct feed to Ni/YSZ anode of a direct internal reforming Solid Oxide Fuel Cell (DIR-SOFC). It was found that methane with appropriate steam content can be directly fed to Ni/YSZ anode without the problem of carbon formation, while methanol can also be introduced at a temperature as high as 1000 °C. In contrast, ethanol cannot be used as the direct fuel for DIR-SOFC operation even at high steam content and high operating temperature due to the easy degradation of Ni/YSZ by carbon deposition. From the steam reforming of ethanol over Ni/YSZ, significant amounts of ethane and ethylene were present in the product gas due to the incomplete reforming of ethanol. These formations are the major reason for the high rate of carbon formation as these components act as very strong promoters for carbon formation. It was further observed that ethanol with steam can be used for an indirect internal reforming operation (IIR-SOFC) instead. When ethanol was first reformed by Ni/Ce-ZrO 2 at the temperature above 850 °C, the product gas can be fed to Ni/YSZ without the problem of carbon formation. Finally, it was also proposed from the present work that methanol with steam can be efficiently fed to Ni/YSZ anode (as DIR operation) at the temperature between 900 and 975 °C without the problem of carbon formation when SOFC system has sufficient space volume at the entrance of the anode chamber, where methanol can homogeneously convert to CH 4, CO, CO 2, and H 2 before reaching SOFC anode.

  18. Global Failure Criteria for SOFC Positive/Electrolyte/Negative (PEN) Structure

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2007-04-01

    Due to the mismatch of thermal expansion coefficients (TEC) of the various layer materials in SOFC, the internal stresses are unavoidable under temperature differential. In order to create the reliable cell and stack of solid oxide fuel cell (SOFC), it is necessary to develop a failure criterion for SOFC PEN structures for the initial failures occurred during cell/stack assembly. In this paper, a global failure criterion is developed for the initial design against mechanical failure of the PEN structure in high temperature SOFCs. The relationship of the critical energy release rate and critical curvature and maximum displacement of the warpage of the cells caused by the temperature differential is established so that the failure reliability of SOFC PEN structures may be determined by the measurement of the curvature and displacement of the warpaged cells.

  19. Porous Yttria-Stabilized Zirconia Microstructures for SOFC Anode Fabrication

    NASA Astrophysics Data System (ADS)

    Palakkathodi Kammampata, Sanoop

    Solid oxide fuel cells (SOFCs) are electrochemical devices that convert fuels, such as hydrogen and natural gas, to electricity at high efficiencies, e.g., up to 90 %. SOFCs are emerging as a key technology for energy production that also minimize greenhouse gas emissions compared to conventional thermal power generation. SOFCs, which are normally based on nickel-yttria stabilized zirconia (YSZ) anodes, undergo degradation with time due to their high operating temperatures and their susceptibility to damage due to anode oxidation (redox cycling) and poisoning. Ni infiltration into porous YSZ scaffolds is considered to be a promising approach for overcoming some of these problems and enhancing their redox tolerance. However, long-term instability of the morphology of these types of anodes is an important problem. The focus of this thesis was therefore to develop methods to form porous YSZ scaffolds and attempt to construct stable Ni-YSZ anodes with reasonable electrochemical performance by infiltration. In this work, the issue of long-term instability was considered to originate from both the porous YSZ scaffold microstructure and the Ni infiltration precursor employed. To study this more closely, two different porous YSZ scaffold microstructures were developed by using tape casting, followed by Ni infiltration using a polymeric precursor, known to form a continuous Ni phase, rather than electrically separated Ni particles. Ni infiltration into porous YSZ scaffolds with large grains (0.5 microm) and large pores (two types of pores: ˜0.5 microm and 5 microm) resulted in extensive Ni particle growth that resulted in poor stability and poor electrochemical performance (0.5 Ω cm2 per electrode at 800°C). Ni infiltration into a scaffold having finer grains and pores (˜200 nm each) resulted in anodes with a much lower polarization resistance of 0.11 Ω cm2 per electrode at 800°C, increasing by ˜5 % after 108 hours at this temperature.

  20. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

    2010-03-01

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  1. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    SciTech Connect

    Matsuzaki, Y.; Hishinuma, M.

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  2. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2010-05-01

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  3. Stability and robustness of metal-supported SOFCs

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Lau, Grace Y.; Jacobson, Craig P.; DeJonghe, Lutgard C.; Visco, Steven J.

    Tubular metal-supported SOFCs with YSZ electrolyte and electrodes comprising porous YSZ backbone and infiltrated Ni and LSM catalysts are operated at 700 °C. Tolerance to five complete anode redox cycles and five very rapid thermal cycles is demonstrated. The power output of a cell with as-infiltrated Ni anode degrades rapidly over 15 h operation. This degradation can be attributed primarily to coarsening of the fine infiltrated Ni particles. A cell in which the infiltrated Ni anode is precoarsened at 800 °C before operation at 700 °C shows dramatically improved stability. Stable operation over 350 h is demonstrated.

  4. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  5. Anode protection system for shutdown of solid oxide fuel cell system

    SciTech Connect

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  6. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    SciTech Connect

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electron microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to

  7. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  8. Innovative low temperature SOFCs and advanced materials

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, X. T.; Xu, J.; Zhu, Z. G.; Ji, S. J.; Sun, M. T.; Sun, J. C.

    High ionic conductivity, varying from 0.01 to 1 S cm -1 between 300 and 700 °C, has been achieved for the hybrid and nano-ceria-composite electrolyte materials, demonstrating a successful application for advanced low temperature solid oxide fuel cells (LTSOFCs). The LTSOFCs were constructed based on these new materials. The performance of 0.15-0.25 W cm -2 was obtained in temperature region of 320-400 °C for the ceria-carbonate composite electrolyte, and of 0.35-0.66 W cm -2 in temperature region of 500-600 °C for the ceria-lanthanum oxide composites. The cell could even function at as low as 200 °C. The cell has also undergone a life test for several months. A two-cell stack was studied, showing expected performance successfully. The excellent LTSOFC performance is resulted from both functional electrolyte and electrode materials. The electrolytes are two phase composite materials based on the oxygen ion and proton conducting phases, or two rare-earth oxides. The electrodes used were based on the same composite material system having excellent compatibility with the electrolyte. They are highly catalytic and conductive thus creating the excellent performances at low temperatures. These innovative LT materials and LTSOFC technologies would open the door for wide applications, not only for stationary but also for mobile power sources.

  9. Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe

    NASA Astrophysics Data System (ADS)

    Arsalis, Alexandros

    Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid SOFC-gas turbine-steam turbine systems ranging in size from 1.5 to 10 MWe. The fuel cell model used in this research work is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbine cycle. The current work considers the possible benefits of using the exhaust gases in a HRSG in order to produce steam which drives a steam turbine for additional power output. Four different steam turbine cycles are considered in this research work: a single-pressure, a dual-pressure, a triple pressure, and a triple pressure with reheat. The models have been developed to function both at design (full load) and off-design (partial load) conditions. In addition, different solid oxide fuel cell sizes are examined to assure a proper selection of SOFC size based on efficiency or cost. The thermoeconomic analysis includes cost functions developed specifically for the different system and component sizes (capacities) analyzed. A parametric study is used to determine the most viable system/component syntheses/designs based on maximizing total system efficiency or minimizing total system life cycle cost.

  10. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  11. Power generation characteristics of tubular type SOFC by wet process

    SciTech Connect

    Tajiri, H.; Nakayama, T.; Kuroishi, M.

    1996-12-31

    The development of a practical solid oxide fuel cell requires improvement of a cell performance and a cell manufacturing technology suitable for the mass production. In particular tubular type SOFC is thought to be superior in its reliability because its configuration can avoid the high temperature sealing and reduce the thermal stress resulting from the contact between cells. The authors have fabricated a tubular cell with an air electrode support by a wet processing technique, which is suitable for mass production in improving a power density. To enhance the power output of the module, the Integrated Tubular-Type (ITT) cell has been developed. This paper reports the performance of the single cells with various active anode areas and the bundle with series-connected 9-ITT cells with an active anode area of 840 cm{sup 2}.

  12. FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR

    SciTech Connect

    Michael A. Carpenter

    2004-03-30

    The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

  13. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution

    NASA Astrophysics Data System (ADS)

    Ahmed, Khaliq; Fӧger, Karl

    2017-03-01

    The SOFC is well-established as a high-efficiency energy conversion technology with demonstrations of micro-CHP systems delivering 60% net electrical efficiency [1]. However, there are key challenges in the path to commercialization. Foremost among them is stack durability. Operating at high temperatures, the SOFC invariably suffers from thermally induced material degradation. This is compounded by thermal stresses within the SOFC stack which are generated from a number of interacting factors. Modelling is used as a tool for predicting undesirable temperature and current density gradients. For an internal reforming SOFC, fidelity of the model is strongly linked to the representation of the fuel reforming reactions, which dictate species concentrations and net heat release. It is critical for simulation of these profiles that the set of reaction rate expressions applicable for the particular anode catalyst are chosen in the model. A relatively wide spectrum of kinetic correlations has been reported in the literature. This work presents a comparative analysis of the internal distribution of temperature, current, voltage and compositions on a SOFC anode, using various combinations of reaction kinetics and equilibrium expressions for the reactions. The results highlight the significance of the fuel reforming chemistry and kinetics in the prediction of cell performance.

  14. An integral proton conducting SOFC for simultaneous production of ethylene and power from ethane.

    PubMed

    Fu, Xian-Zhu; Luo, Jing-Li; Sanger, Alan R; Danilovic, Nemanja; Chuang, Karl T

    2010-03-28

    A novel, integral, tri-layered, proton conducting membrane SOFC was readily fabricated for simultaneous conversion of ethane at 650-700 degrees C to electrical power and ethylene with high selectivity.

  15. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  16. The study of Au/MoS 2 anode catalyst for solid oxide fuel cell (SOFC) using H 2S-containing syngas fuel

    NASA Astrophysics Data System (ADS)

    Xu, Zheng-Rong; Luo, Jing-Li; Chuang, Karl T.

    Au/MoS 2 is a promising anode catalyst for conversion of all components of H 2S-containing syngas in solid oxide fuel cell (SOFC). MoS 2-supported nano-Au particles have catalytic activity for conversion of CO when syngas is used as fuel in SOFC systems, thus preventing poisoning of MoS 2 active sites by CO. In contrast to use of MoS 2 as anode catalyst, performance of Au/MoS 2 anode catalyst improves when CO is present in the feed. Current density over 600 mA cm -2 and maximum power density over 70 mW cm -2 were obtained at 900 °C, showing that Au/MoS 2 could be potentially used as sulfur-tolerant catalyst in fuel cell applications.

  17. Chemically stable proton conducting doped BaCeO₃ -no more fear to SOFC wastes.

    PubMed

    Kannan, Ramaiyan; Singh, Kalpana; Gill, Sukhdeep; Fürstenhaupt, Tobias; Thangadurai, Venkataraman

    2013-01-01

    Development of chemically stable proton conductors for solid oxide fuel cells (SOFCs) will solve several issues, including cost associated with expensive inter-connectors, and long-term durability. Best known Y-doped BaCeO3 (YBC) proton conductors-based SOFCs suffer from chemical stability under SOFC by-products including CO2 and H2O. Here, for the first time, we report novel perovskite-type Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3-δ by substituting Sr for Ba and co-substituting Gd + Zr for Ce in YBC that showed excellent chemical stability under SOFC by-products (e.g., CO2 and H2O) and retained a high proton conductivity, key properties which were lacking since the discovery of YBCs. In situ and ex- situ powder X-ray diffraction and thermo-gravimetric analysis demonstrate superior structural stability of investigated perovskite under SOFC by-products. The electrical measurements reveal pure proton conductivity, as confirmed by an open circuit potential of 1.15 V for H2-air cell at 700°C, and merits as electrolyte for H-SOFCs.

  18. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    DTIC Science & Technology

    2008-04-09

    Oxide Fuel Cell (LTA- SOFC ) Prepared By CellTech Power , LLC, 131 Flanders Road, MA, 01581 April, 2008 Final Report Contract... REPORT Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA- SOFC ) 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This...logistic fuel only. The aim of this program was to advance LTA- SOFC technology with respect to direct conversion of JP-8. U 1. REPORT DATE (DD-MM-YYYY) 4

  19. Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas

    SciTech Connect

    Martinez, Andrew; Gerdes, Kirk; Gemmen, Randall; Postona, James

    2010-03-20

    A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

  20. Surface Exchange and Bulk Diffusivity of LSCF as SOFC Cathode: Electrical Conductivity Relaxation and Isotope Exchange Characterizations

    SciTech Connect

    Li, Yihong; Gerdes, Kirk; Horita, Teruhisa; Liu, Xingbo

    2013-05-05

    The oxygen diffusion coefficient (D) and surface exchange coefficient (k) of a typical SOFC cathode material, La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-δ} (LSCF) were characterized by both electrical conductivity relaxation (ECR) and oxygen isotope exchange (IE) methods. Conductivity relaxation experiments were conducted at 800°C for small step changes in partial pressure of oxygen (P{sub O{sub 2}} ), both decreasing and increasing, from 0.02 atm to 0.20 atm. The results revealed P{sub O{sub 2}} dependent hysteresis with the reduction process requiring more equilibration time than oxidation. Analysis of the experimental data indicated that the surface exchange coefficient is a function of the final oxygen partial pressure in an isothermal system. In addition, both forward and backward oxygen reduction reaction constants, which are vital for the fundamental understanding of SOFC cathode reaction mechanisms, are investigated based on the relationship between surface exchange coefficient and P{sub O{sub 2}} . The direct comparisons between the results from both ECR and IE were presented and the possible experimental errors in both methods were discussed.

  1. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  2. Anode gas recirculation for improving the performance and cost of a 5-kW solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Torii, Ryohei; Tachikawa, Yuya; Sasaki, Kazunari; Ito, Kohei

    2016-09-01

    Solid oxide fuel cells (SOFCs) have the potential to efficiently convert chemical energy into electricity and heat and are expected to be implemented in stationary combined heat and power (CHP) systems. This paper presents the heat balance analysis for a 5-kW medium-sized integrated SOFC system and the evaluation of the effect of anode gas recirculation on the system performance. The risk of carbon deposition on an SOFC anode due to anode gas recirculation is also assessed using the C-H-O diagram obtained from thermodynamic equilibrium calculations. These results suggest that a higher recirculation ratio increases net fuel utilization and improves the electrical efficiency of the SOFC system. Furthermore, cost simulation of the SOFC system and comparison with the cost of electricity supply by a power grid indicates that the capital cost is sufficiently low to popularize the SOFC system in terms of the total cost over one decade.

  3. Evaluation of a Functional Interconnect System for SOFC's

    SciTech Connect

    Matthew Bender; James Rakowski

    2010-12-31

    The overall objective of this project was to validate the concept and application of a functional interconnect, based on a ferritic stainless steel, for a solid oxide fuel cell through manufacturing trials, laboratory testing, and field experience. The materials of construction and their surfaces were to be optimized for the particular service conditions and include low-cost ferritic stainless steels, novel postprocess treatments, and third-party coatings. This work aimed to optimize specific aspects of substrate alloy chemistry and to study the effects of long-term exposures on resistive oxide film structure and chemistry, interaction with applied surface coatings, and effectiveness of novel surface treatments.

  4. ANODE, CATHODE AND THIN FILM STUDIES FOR LOW TEMPERATURE SOFC'S

    SciTech Connect

    Dr. Wayne Huebner; Dr. Harlan U. Anderson

    1999-11-01

    In this research the microstructure {leftrightarrow} property relations in solid oxide fuel cells (SOFC's) are being studied to better understand the mechanisms involved in cell performance. The overall aim is to fabricate SOFC's with controlled, stable, high performance microstructure. Most cathode studies were completed in the last DOE contract; studies during this year focused more on the influence of nonstoichiometry on the electrical performance. Studies indicate that nonstoichiometric La{sub x}Sr{sub 0.20}MnO{sub 3}(x = 0.70, 0.75, and 0.79) cathode compositions exhibit the best properties. A series of studies using these compositions fired on at temperatures of 1100, 1200, 1300 and 1400 C were performed. In all instances, 1200 C was the optimum, with the x = 0.70 composition being the best. It has an overpotential of only 0.04V at 1 A/cm{sup 2}. SEM analyses indicated no second phases or interdiffusion is detectable. Studies on optimization of anode compositions yielded the optimum volume fraction of Ni (45vol%), the best sintering temperature/time (1400 C/2 h), and the best starting materials (glycine-nitrate derived NiO and normal YSZ). In essence these results simply reflect the optimum microstructure. As such, they are being used to guide the development of optimized anodes for lower temperature operation based on Cu/CeO{sub 2} cermets. Marked success has been achieved on the placement of thin YSZ electrolytes on porous Ni/YSZ electrodes. The process being used is a transfer technique in which dense YSZ films are initially fabricated on NaCl or polymeric substrates, followed by partial dissolution of the substrate and placement of the film on the porous substrate. This technique has allowed us to produce structures with film thicknesses ranging from 70 to 3000 nm, and grain sizes ranging from 2 to 300 nm. Cells based on electrolytes this thick should operate in the 400--700 C range.

  5. Long-term commitment of Japanese gas utilities to PAFCs and SOFCs

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kiyokazu; Kasahara, Komei

    Tokyo Gas and Osaka Gas have been committed to addressing the energy- and environment-related issues of Japan through promotion of natural gas, an energy friendly to the environment. Being aware of the diversifying market needs (e.g. efficient energy utilization, rising demand for electricity, etc.), active efforts have been made in marketing gas-fired air-conditioning and co-generation systems. In this process, a high priority has also been placed on fuel cells, particularly for realizing their market introduction. Since their participation in the TARGET Program in USA in 1972, the two companies have been involved with the field testing and operation of phosphoric acid fuel cells (PAFCs), whose total capacity has amounted to 12.4 MW. The two companies have played a vital role in promoting and accelerating fuel cell development through the following means: (1) giving incentives to manufacturers through purchase of units and testing, (2) giving feedback on required specifications and technical problems in operation, and (3) verifying and realizing long-term operation utilizing their maintenance techniques. It has been expected that the primary goal of the cumulative operation time of 40 000 h shall be achieved in the near future. Work has also been in progress to develop SOFC. In the joint R&D of a 25-kW solid oxide fuel cell (SOFC) with Westinghouse, the record operation time of 13 000 h has been achieved. Though still twice as much as the average price of competing equipment, the commercialization of PAFCs is close at hand. By utilizing government spending and subsidies for field testing, work will be continued to verify reliability and durability of PAFCs installed at users' sites. These activities have been expected to contribute to realizing economically viable systems and enhance market introduction. The superlative advantages of fuel cells, particularly their environment-friendly qualities, should be best taken advantage of at an appropriate time. In

  6. Measurement of residual stresses in deposited films of SOFC component materials

    SciTech Connect

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y.

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  7. Military Requirements for JP-8 Reformers and Solid Oxide Fuel Cell Power Systems

    DTIC Science & Technology

    2005-12-01

    requirements for military electric power . The report offers design recommendations to minimize the procurement cost of the SOFC system. The report ...design, develop, and fabricate a military SOFC Power Plant up to 10 kW for military applications, which will include military diesel and JP-8 fuel...the military’s current and future electric power needs and capabilities, (2) the requirements for building a military SOFC power system with design

  8. Development of a high-performance composite cathode for LT-SOFC

    NASA Astrophysics Data System (ADS)

    Lee, Byung Wook

    Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were

  9. Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerisation

    NASA Astrophysics Data System (ADS)

    Tarancón, A.; Dezanneau, G.; Arbiol, J.; Peiró, F.; Morante, J. R.

    Ultrafine powders with applicability in solid oxide fuel cells (SOFCs) were prepared by a novel method based on a polyacrylamide gel-combustion process: Zr 0.84Y 0.16O 1.92 (8YSZ), Ce 0.8Gd 0.2O 1.9 (CGO), La 0.9Sr 0.1Ga 0.8Mg 0.2O 2.85 (LSGM), La 2Mo 2O 9, La 0.8Sr 0.2CoO 3- δ (LSC) and La 0.8Sr 0.2FeO 3- δ (LSF). Synthesized powders present desirable characteristics for powder consolidation and sintering, including nanometric crystal size (10-40 nm), narrow size distribution and the possibility of aggregate disagglomeration via soft ball milling. A classical screen-printing method is presented as a novel thin dense layer deposition technique. First results on deposition of quasi-full-density thin films of 8YSZ (around 5 μm thick) were obtained at a sintering temperature of 1300 °C with sintering times of 10 h in air.

  10. Catalyst-infiltrated supporting cathode for thin-film SOFCs

    SciTech Connect

    Yamahara, Keiji; Jacobson, Craig P.; Visco, Steven J.; De Jonghe,Lutgard C.

    2004-04-12

    The fabrication and electrochemical performance of co-fired,LSM-SYSZ [i.e., La0.65Sr0.30MnO3 (LSM) - (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89] supported thin-film cells were examined using humidified hydrogen as a fuel. Co-firing of bi-layers and tri-layers was successful at 1250 C by optimizing the amount of carbon pore formers. A power density of a factor of 2.5 higher than that recently reported for the same type of cell at 800 C [3] was obtained for a cell with cobalt infiltration into the supporting cathode: the peak power densities were 455, 389, 285, 202, 141mW/cm2 at 800, 750, 700, 650, 600 C, respectively, and in most cases power densities at 0.7V exceeded more than 90 percent of the peak output. Increasing the cathode porosity from 43 to 53 percent improved peak power densities by as much as 1.3, shifting the diffusion limitation to high current densities. Cobalt infiltration into the support improved those by as much as a factor of 2 due to a significant reduction in non-ohmic resistance. These results demonstrate that cobalt catalyst-infiltrated LSM can be effective and low-cost supporting electrodes for reduced temperature, thin film SOFCs.

  11. Effect of interconnect creep on long-term performance of SOFC of one cell stacks

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2008-02-01

    Creep deformation becomes relevant for a material when the operating temperature is near or exceeds half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the solid oxide fuel cells (SOFC) under development in the SECA program are around 1073oK. High temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and CTE compatibility with other SOFC components. Since the melting temperature of most stainless steel is around 1800oK, possible creep deformation of IC under the typical cell operating temperature should not be neglected. In this paper, the effects of interconnect creep behavior on stack geometry change and stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the fuel and air channel geometry changes due to creep of the ferritic stainless steel interconnect, therefore indicating possible SOFC performance change under long term operations. IC creep models were incorporated into SOFC-MP and Mentat FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long term steady state operating temperature. It is found that creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel and the air flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  12. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces

    SciTech Connect

    Kevin Blinn; Yongman Choi; Meilin Liu

    2009-08-11

    The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

  13. Modeling the Electrochemistry of an SOFC through the Electrodes and Electrolyte

    SciTech Connect

    Ryan, Emily M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-12-01

    This paper describes a distributed electrochemistry model of the solid oxide fuel cell (SOFC) electrodes and electrolyte. The distributed electrochemistry (DEC) model solves the transport, reactions, and electric potential through the thickness of the SOFC electrodes. The DEC model allows the local conditions within the electrodes to be studied and allows for a better understanding of how electrochemical and microstructural parameters affect the electrodes. In this paper the governing equations and implementation of the DEC model are presented along with several case studies which are used to investigate the sensitivity of the cathode to the microstructural and electrochemical parameters of the model and to explore methods of improving the electrochemical performance of the SOFC cathode.

  14. Quantifying the Interfacial Strength of Oxide Scale and SS 441 Substrate Used in SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-08-15

    Under a typical SOFC working environment, oxide scale will grow on the metallic interconnects in oxidant environment. The growth of the oxide scale induces the growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate, which may lead to scale delamination/buckling and eventual spallation during stack cooling, even leading to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. As a powerful contender of ferritic interconnects used in SOFC, its interfacial strength between the oxide scale and SS 441 substrate is very important for its application. In this paper, we applied an integrated experimental/analytical methodology to quantify the interfacial adhesion strength between oxide scale and metallic interconnect. The predicted interfacial strength is discussed in detailed

  15. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode.

    PubMed

    Fu, Xian-Zhu; Lin, Jie-Yuan; Xu, Shihong; Luo, Jing-Li; Chuang, Karl T; Sanger, Alan R; Krzywicki, Andrzej

    2011-11-21

    A dehydrogenation anode is reported for hydrocarbon proton conducting solid oxide fuel cells (SOFCs). A Cu-Cr(2)O(3) nanocomposite is obtained from CuCrO(2) nanoparticles as an inexpensive, efficient, carbon deposition and sintering tolerant anode catalyst. A SOFC reactor is fabricated using a Cu-Cr(2)O(3) composite as a dehydrogenation anode and a doped barium cerate as a proton conducting electrolyte. The protonic membrane SOFC reactor can selectively convert ethane to valuable ethylene, and electricity is simultaneously generated in the electrochemical oxidative dehydrogenation process. While there are no CO(2) emissions, traces of CO are present in the anode exhaust when the SOFC reactor is operated at over 700 °C. A mechanism is proposed for ethane electro-catalytic dehydrogenation over the Cu-Cr(2)O(3) catalyst. The SOFC reactor also has good stability for co-generation of electricity and ethylene at 700 °C.

  16. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  17. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Raj Singh

    2012-06-30

    Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermal transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.

  18. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    SciTech Connect

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are also proposed.

  19. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  20. Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces.

    PubMed

    Li, Xiaxi; Blinn, Kevin; Fang, Yingcui; Liu, Mingfei; Mahmoud, Mahmoud A; Cheng, Shuang; Bottomley, Lawrence A; El-Sayed, Mostafa; Liu, Meilin

    2012-05-07

    SERS provided by sputtered silver was employed to detect trace amounts of chemical species on SOFC electrodes. Considerable enhancement of Raman signal and lowered detection threshold were shown for coked nickel surfaces, CeO(2) coatings, and cathode materials (LSM and LSCF), suggesting a viable approach to probing electrode degradation and surface catalytic mechanism.

  1. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD).

    PubMed

    Oh, Eun-Ok; Whang, Chin-Myung; Lee, Yu-Ri; Park, Sun-Young; Prasad, Dasari Hari; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Lee, Hae-Weon

    2012-07-03

    An extremely thin bilayer electrolyte consisting of yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is successfully fabricated on a sintered NiO-YSZ substrate. Major processing flaws are effectively eliminated by applying local constraints to YSZ nanoparticles, and excellent open circuit voltage and cell performance are demonstrated in a solid oxide fuel cell (SOFC) at intermediate operating temperatures.

  2. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Prasad Enjeti; J.W. Howze

    2003-12-01

    This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

  3. Development and analysis of micro-polygeneration systems and adsorption chillers

    NASA Astrophysics Data System (ADS)

    Gluesenkamp, Kyle

    About a fifth of all primary energy in the US is consumed by residential buildings, mostly for cooling, heating and to provide electricity. Furthermore, retrofits are essential to reducing this consumption, since the buildings that exist today will comprise over half of those in use in 2050. Residential combined heat and power (or micro CHP, defined by <5 kW electrical generation capacity) has been identified as a retrofit technology which can reduce energy consumption in existing homes during the heating season by 5-30%. This thesis investigates the addition of a thermally-driven chiller/heat pump to a CHP system (to form a trigeneration system) to additionally provide savings during the cooling season, and enhance heating season savings. Scenarios are identified in which adding thermally-driven equipment to a micro CHP system reduces primary energy consumption, through analytical and experimental investigations. The experimental focus is on adsorption heat pump systems, which are capable of being used with the CHP engines (prime movers) that are already widely deployed. The analytical analysis identifies energy saving potential off-grid for today's prime movers, with potential on-grid for various fuel cell technologies. A novel dynamic test facility was developed to measure real-world residential trigeneration system performance using a prototype adsorption chiller. The chiller was designed and constructed for this thesis and was driven by waste heat from a commercially available natural gas-fueled 4 kW (electric) CHP engine. A control strategy for the chiller was developed, enabling a 5-day experiment to be run using a thermal load profile based on moderate Maryland summer air conditioning loads and typical single-family domestic hot water demand, with experimental results in agreement with models. In this summer mode, depending on electrical loads, the trigeneration system used up to 36% less fuel than off-grid separate generation and up to 29% less fuel than

  4. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical

  5. Oxygen Transport Kinetics in Infiltrated SOFCs Cathode by Electrical Conductivity Relaxation Technique

    SciTech Connect

    Li, Yihong; Gerdes, Kirk; Liu, Xingbo

    2013-07-01

    Infiltration has attracted increasing attention as an effective technique to modify SOFC cathodes to improve cell electrochemical performance while maintaining material compatibility and long-term stability. However, the infiltrated material's effect on oxygen transport is still not clear and detailed knowledge of the oxygen reduction reaction in infiltrated cathodes is lacking. In this work, the technique of electrical conductivity relaxation (ECR) is used to evaluate oxygen exchange in two common infiltrated materials, Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} and La{sub 0.6}Sr{sub 0.4}CoO{sub 3-δ}. The ECR technique is also used to examine the transport processes in a composite material formed with a backbone of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-δ} and possessing a thin, dense surface layer composed of the representative infiltrate material. Both the surface oxygen exchange process and the oxygen exchange coefficient at infiltrate/LSCF interface are reported. ECR testing results indicate that the application of infiltrate under certain oxygen partial pressure conditions produces a measureable increase in the fitted oxygen exchange parameter. It is presently only possible to generate hypotheses to explain the observation. However the correlation between improved electrochemical performance and increased oxygen transport measured by ECR is reliably demonstrated. The simple and inexpensive ECR technique is utilized as a direct method to optimize the selection of specific infiltrate/backbone material systems for superior performance.

  6. A symmetrical, planar SOFC design for NASA's high specific power density requirements

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.; Sofie, Stephen W.

    Solid oxide fuel cell (SOFC) systems for aircraft applications require an order of magnitude increase in specific power density (1.0 kW kg -1) and long life. While significant research is underway to develop anode supported cells which operate at temperatures in the range of 650-800 °C, concerns about Cr-contamination from the metal interconnect may drive the operating temperature down further, to 750 °C and lower. Higher temperatures, 850-1000 °C, are more favorable in order to achieve specific power densities of 1.0 kW kg -1. Since metal interconnects are not practical at these high temperatures and can account for up to 75% of the weight of the stack, NASA is pursuing a design that uses a thin, LaCrO 3-based ceramic interconnect that incorporates gas channels into the electrodes. The bi-electrode supported cell (BSC) uses porous YSZ scaffolds, on either side of a 10-20 μm electrolyte. The porous support regions are fabricated with graded porosity using the freeze-tape casting process which can be tailored for fuel and air flow. Removing gas channels from the interconnect simplifies the stack design and allows the ceramic interconnect to be kept thin, on the order of 50-100 μm. The YSZ electrode scaffolds are infiltrated with active electrode materials following the high-temperature sintering step. The NASA-BSC is symmetrical and CTE matched, providing balanced stresses and favorable mechanical properties for vibration and thermal cycling.

  7. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; Cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  8. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  9. Development of MnCoO Coating with New Aluminizing Process for Planar SOFC Stacks

    SciTech Connect

    Choi, Jung-Pyung; Weil, K. Scott; Chou, Y. S.; Stevenson, Jeffry W.; Yang, Zhenguo

    2011-03-22

    Low-cost, chromia-forming steels find widespread use in SOFCs at operating temperatures below 800°C, because of their low thermal expansion mismatch and low cost. However, volatile Cr-containing species originating from this scale poison the cathode material in the cells and subsequently cause power degradation in the devices. To prevent this, a conductive manganese cobaltite coating has been developed. However, this coating is not compatible with forming hermetic seals between the interconnect or window frame component and ceramic cell. This coating reacts with sealing materials. Thus, a new aluminizing process has been developed for the sealing regions in these parts, as well as for other metallic stack and balance-of-plant components. From this development, the sealing performance and SOFC stack performance became very stable.

  10. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    SciTech Connect

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  11. EFFECT OF METALLIC INTERCONNECT THICKNESS ON ITS LONG-TERM PERFORMANCE IN SOFCS

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01

    At the operating environment of solid oxide fuel cells (SOFCs), oxide scale will grow on the ferritic interconnect (IC) surface unavoidably and furfures induce growth stress in oxide scale and along the interface of the oxide scale and IC substrate. A combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. In this paper, the effect of the ferritic IC thickness on the delamination/spallation of the oxide scale was investigated numerically. The predicted results show that the interfacial shear stresses increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation.

  12. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  13. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    SciTech Connect

    Song, Rak-Hyun; Shin, Dong Ryul; Dokiya, Masayuki

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  14. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  15. Performance Impact Associated with Ni-Based SOFCs Fueled with Higher Hydrocarbon-Doped Coal Syngas

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory A.; Gerdes, Kirk; Chen, Yun; Song, Xueyan; Zondlo, John

    2015-03-01

    Energy generation strategies demonstrating high efficiency and fuel flexibility are desirable in the contemporary energy market. When integrated with a gasification process, a solid oxide fuel cell (SOFC) can produce electricity at efficiencies exceeding 50 pct by consuming fuels such as coal, biomass, municipal solid waste, or other opportunity wastes. The synthesis gas derived from such fuel may contain trace species (including arsenic, lead, cadmium, mercury, phosphorus, sulfur, and tars) and low concentration organic species that adversely affect the SOFC performance. This work demonstrates the impact of exposure of the hydrocarbons ethylene, benzene, and naphthalene at various concentrations. The cell performance degradation rate is determined for tests exceeding 500 hours at 1073 K (800 °C). Cell performance is evaluated during operation with electrochemical impedance spectroscopy, and exposed samples are post-operationally analyzed by scanning electron microscopy/energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The short-term performance is modeled to predict performances to the desired 40,000-hours operational lifetime for SOFCs. Possible hydrocarbon interactions with the nickel anode are postulated, and acceptable hydrocarbon exposure limits are discussed.

  16. Single-level optimization of a hybrid SOFC-GT power plant

    NASA Astrophysics Data System (ADS)

    Calise, F.; Dentice d'Accadia, M.; Vanoli, L.; von Spakovsky, M. R.

    The detailed synthesis/design optimization of a hybrid solid oxide fuel cell-gas turbine (SOFC-GT) power plant is presented in this paper. In the first part of the paper, the bulk-flow model used to simulate the plant is discussed. The performance of the centrifugal compressors and radial turbine is determined using maps, properly scaled in order to match the values required for mass flow rate and pressure ratio. Compact heat exchangers are simulated using Colburn and friction factor correlations. For the SOFC, the cell voltage versus current density curves (i.e. polarization curves) are generated on the basis of the Nernst potential and overvoltages. Validation of the SOFC polarization curves is accomplished with data available from Siemens Westinghouse. Both the steam-methane pre-reforming and internal reforming processes are modeled assuming the water-gas shift reaction to be equilibrium-controlled and the demethanization reactions to be kinetically controlled. Finally, a thermoeconomic model is developed by introducing capital cost functions for each plant component. The whole plant is first simulated for a fixed configuration. Then, a synthesis/design optimization of the plant is carried out using a traditional single-level approach. The results of the optimization are presented and discussed.

  17. Evaluation of a Surface Treatment on the Performance of Stainless Steels for SOFC Interconnect Applications

    SciTech Connect

    Alman, D.E.; Holcomb, Adler, T.A.; G.R.; Wilson, R.D.; Jablonski, P.D.

    2007-04-01

    Pack cementation-like Cerium based surface treatments have been found to be effective in enhancing the oxidation resistance of ferritic steels (Crofer 22APU) for solid oxide fuel cell (SOFC) applications. The application of either a CeN- or CeO2 based surface treatment results in a decrease in weight gain by a factor of three after 4000 hours exposure to air+3%H2O at 800oC. Similar oxide scales formed on treated and untreated surfaces, with a continuous Cr-Mn outer oxide layer and a continuous inner Cr2O3 layer formed on the surface. However, the thickness of the scales, and the amount of internal oxidation were significantly reduced with the treatment, leading to the decrease in oxidation rate. This presentation will detail the influence of the treatment on the electrical properties of the interconnect. Half-cell experiments (LSM cathode sandwiched between two steel interconnects) and full SOFC button cell experiments were run with treated and untreated interconnects. Preliminary results indicate the Ce treatment can improve SOFC performance.

  18. Effect of interlayer on structure and performance of anode-supported SOFC single cells.

    PubMed

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-09-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm(2) at 800 degrees C and 0.44 W/cm(2) at 700 degrees C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer.

  19. Refinement of numerical models and parametric study of SOFC stack performance

    NASA Astrophysics Data System (ADS)

    Burt, Andrew C.

    The presence of multiple air and fuel channels per fuel cell and the need to combine many cells in series result in complex steady-state temperature distributions within Solid Oxide Fuel Cell (SOFC) stacks. Flow distribution in these channels, when non-uniform, has a significant effect on cell and stack performance. Large SOFC stacks are very difficult to model using full 3-D CFD codes because of the resource requirements needed to solve for the many scales involved. Studies have shown that implementations based on Reduced Order Methods (ROM), if calibrated appropriately, can provide simulations of stacks consisting of more than 20 cells with reasonable computational effort. A pseudo 2-D SOFC stack model capable of studying co-flow and counter-flow cell geometries was developed by solving multiple 1-D SOFC single cell models in parallel on a Beowulf cluster. In order to study cross-flow geometries a novel Multi-Component Multi-Physics (MCMP) scheme was instantiated to produce a Reduced Order 3-D Fuel Cell Model. A C++ implementation of the MCMP scheme developed in this study utilized geometry, control volume, component, and model structures allowing each physical model to be solved only for those components for which it is relevant. Channel flow dynamics were solved using a 1-D flow model to reduce computational effort. A parametric study was conducted to study the influence of mass flow distribution, radiation, and stack size on fuel cell stack performance. Using the pseudo 2-D planar SOFC stack model with stacks of various sizes from 2 to 40 cells it was shown that, with adiabatic wall conditions, the asymmetry of the individual cell can produce a temperature distribution where high and low temperatures are found in the top and bottom cells, respectively. Heat transfer mechanisms such as radiation were found to affect the reduction of the temperature gradient near the top and bottom cell. Results from the reduced order 3-D fuel cell model showed that greater

  20. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  1. Refined computational modeling of SOFCs degradation due to trace impurities in coal syngas

    NASA Astrophysics Data System (ADS)

    Sezer, Hayri

    The Solid Oxide Fuel Cell (SOFC) is a good alternative for clean and efficient power generation. These cells can be operated directly on a wide variety of fuels including biogas, hydrocarbon fuels and synthesized coal gas (syngas), which is a promising avenue for utilization of coal with much less environmental impact. One of the challenges in this technology is poisoning of SOFC anodes by trace impurities contained in coal syngas. One such impurity, phosphine is known to cause catastrophic failure of SOFC anode even at <10ppm concentrations. Fuel impurity degradation patterns can vary by different operating conditions such as humidity, applied current, temperature and anode thickness. In the present study, more detailed models are developed to predict the typical degradation behaviors observed in SOFC anode due to phosphine by extension of an in-house one-dimensional computational code. This model is first used to predict the effect of steam concentration on phosphine induced degradation in anode supported SOFCs. The model is refined based on the experimental observation, which indicate that the phosphine degradation is less severe in the absence of steam. Simulations results showed good agreement with experimental data. Then, a sensitivity analysis, using dual numbers automatic differentiation (DNAD) is performed to investigate the influence of empirical model parameters on model outputs, electrical potential, ohmic and polarization losses. Further, the refined one-dimensional model is extended to a three-dimensional model to study the phosphine induced performance degradation in relatively large planar cells operating on hydrogen fuel. The empirical model parameters are calibrated using button cell experiments and sensitivity analysis as a guide. These parameters are then used in planar cell simulations. The results from the three dimensional model show that the contaminant coverage of nickel and fuel distribution inside the anode is highly non-uniform. These

  2. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhang; Yoshiba, Fumihiko; Watanabe, Takao; Weng, Shilie

    In this work, a fully three-dimensional mathematical model for planar porous-electrode-supported (PES) solid oxide fuel cell (SOFC) has been constructed to simulate the steady state electrochemical characteristics and multi-species/heat transport. The variation of chemical species concentrations, temperature, potential, current and current density for two types of PES-SOFC developed by central research institute of electric power industry (CRIEPI) of Japan are studied in the co-flow pattern. In the numerical computation, the governing equations for continuity, momentum, mass, energy and electrical charge conservation are solved simultaneously using the finite volume method. Activation, ohmic, and concentration polarizations are considered as the main sources of irreversibility. The Butler-Volmer equation, Ohm's law, and Darcy's gas model with constant porosity and permeability are used to determine the polarization over-potential, respectively. The output voltages measured in experiments and calculated using the above models agree well. For the cell using the same material and manufacturing process, the results show the type-II PES-SOFC is with better performance. However, the electrolyte of type-II PES-SOFC should be with higher maximum ionic conductivity. Furthermore, these results will be used to evaluate the overall performance of a PES-SOFC stack, and to significantly help optimize their design and operation in practical applications.

  3. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Boder, M.; Dittmeyer, R.

    When using natural gas as fuel for the solid oxide fuel cell (SOFC), direct internal reforming lowers the requirement for cell cooling and, theoretically, offers advantages with respect to capital cost and efficiency. The high metal content of a nickel/zirconia anode and the high temperature, however, cause the endothermic reforming reaction to take place very fast. The resulting drop of temperature at the inlet produces thermal stresses, which may lower the system efficiency and limit the stack lifetime. To reduce the reforming rate without lowering the electrochemical activity of the cell, a wet impregnation procedure for modifying conventional cermets by coverage with a less active metal was developed. As the coating material copper was chosen. Copper is affordable, catalytically inert for the reforming reaction and exhibits excellent electronic conductivity. The current density-voltage characteristics of the modified units showed that it is possible to maintain a good electrochemical performance of the cells despite the catalytic modification. A copper to nickel ratio of 1:3 resulted in a strong diminution of the catalytic reaction rate. This indicates that the modification could be a promising method to improve the performance of solid oxide fuel cells with direct internal reforming of hydrocarbons.

  4. Synthesis of praseodymium doped cerium oxides by the polymerization-combustion method for application as anodic component in SOFC devices

    NASA Astrophysics Data System (ADS)

    Cruz Pacheco, A. F.; Gómez Cuaspud, J. A.; López, E. Vera

    2016-02-01

    This work reports the synthesis and the characterization of six oxides; it is based on Ce1-xPrxO2 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) system, which is obtained by the polymerization- combustion technique for potential applications on design of advanced electrodic components, for solid oxide fuel cells (SOFC). Initially the solid precursors are characterized by infrared spectroscopy (FTIR) and thermal analysis (TGA-DTA), allowing to determine the formation of prevalent citrate species and the optimal temperature for the consolidation of the desired crystalline phases. The X-ray diffraction (XRD) and the transmission electron microscopy analysis (TEM) are performed over calcined samples which provided information about the formation of a fluorite phase with grain distribution, surface, textural and morphological properties consistent with the nanometric obtaining crystallites (30nm), it is oriented along the (1 1 1) facet, with d spacings of 0.31nm for the main diffraction signal. These results indicate the effectiveness of the proposed synthesis method for potential applications in the design of advanced anodic materials for solid oxide fuel cells.

  5. Recovery Act: Demonstration of a SOFC Generator Fueled by Propane to Provide Electrical Power to Real World Applications

    SciTech Connect

    Bessette, Norman

    2016-08-01

    The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portable generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.

  6. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  7. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    SciTech Connect

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  8. Investigation of AISI 441 Ferritic Stainless Steel and Development of Spinel Coatings for SOFC Interconnect Applications

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Wang, Chong M.; Nie, Zimin; Templeton, Joshua D.; Singh, Prabhakar; Stevenson, Jeffry W.

    2008-05-30

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare and spinel coated AISI 441 were studied in terms of metallurgical characteristics, oxidation behavior, and electrical performance. The conventional melt metallurgy used for the bulk alloy fabrication leads to significant processing cost reduction and the alloy chemistry with the presence of minor alloying additions of Nb and Ti facilitate the strengthening by precipitation and formation of Laves phase both inside grains and along grain boundaries during exposure in the intermediate SOFC operating temperature range. The Laves phase formed along the grain boundaries also ties up Si and prevents the formation of an insulating silica layer at the scale/metal interface during prolonged exposure. The substantial increase in ASR during long term oxidation due to oxide scale growth suggested the need for a conductive protection layer, which could also minimize Cr evaporation. In particular, Mn1.5Co1.5O4 based surface coatings on planar coupons drastically improved the electrical performance of the 441, yielding stable ASR values at 800ºC for over 5,000 hours. Ce-modified spinel coatings retained the advantages of the unmodified spinel coatings, and also appeared to alter the scale growth behavior beneath the coating, leading to a more adherent scale. The spinel protection layers appeared also to improve the surface stability of 441 against the anomalous oxidation that has been observed for ferritic stainless steels exposed to dual atmosphere conditions similar to SOFC interconnect environments. Hence, it is anticipated that, compared to unmodified spinel coatings, the Ce-modified coatings may lead to superior structural stability and electrical performance.

  9. An Integrated Approach to Modeling and Mitigating SOFC Failure

    SciTech Connect

    Jianmin Qu; Andrei Fedorov; Comas Haynes

    2006-05-15

    The specific objectives of this project were: (1) To develop and demonstrate the feasibility of an integrated predictive computer-based tool for fuel cell design and reliability/durability analysis, (2) To generate new scientific and engineering knowledge to better enable SECA Industry Teams to develop reliable, low-cost solid-oxide fuel cell power generation systems, (3) To create technology breakthroughs to address technical risks and barriers that currently limit achievement of the SECA performance and cost goals for solidoxide fuel cell systems, and (4) To transfer new science and technology developed in the project to the SECA Industry Teams. Through this three-year project, the Georgia Tech's team has demonstrated the feasibility of the solution proposed and the merits of the scientific path of inquiry, and has developed the technology to a sufficient level such that it can be utilized by the SECA Industry Teams. This report summarizes the project's results and achievements.

  10. Co-flow planar SOFC fuel cell stack

    DOEpatents

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  11. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    SciTech Connect

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  12. Selection and Evaluation of Heat-Resistant Alloys for Planar SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Weil, K. Scott; Paxton, Dean M.; Stevenson, Jeffry W.

    2002-11-21

    Over the past several years, the steady reduction in SOFC operating temperatures to the intermediate range of 700~850oC [1] has made it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs. However, to be a durable and reliable, a metal or alloy has to satisfy several functional requirements specific to the interconnect under SOFC operating conditions. Specifically, the interconnect metal or alloy should possess the following properties: (i) Good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) Thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) High electrical conductivity through both the bulk material and in-situ formed oxide scales; (iv) Bulk and interfacial thermal mechanical reliability and durability at the operating temperature; (v) Compatibility with other materials in contact with interconnects such as seals and electrical contact materials.

  13. Fuel reforming and electrical performance studies in intermediate temperature ceria-gadolinia-based SOFCs

    NASA Astrophysics Data System (ADS)

    Livermore, Stephanie J. A.; Cotton, John W.; Ormerod, R. Mark

    The methane reforming and carbon deposition characteristics of two nickel/ceria-gadolinia cermet anodes have been studied over the temperature range 550-700°C, for use in intermediate temperature ceria-gadolinia (CGO)-based solid oxide fuel cells (SOFCs), using conventional catalytic methods and temperature-programmed spectroscopy. The electrical performance and durability of planar CGO-based SOFCs with a 280-μm-thick CGO electrolyte, screen printed cathode and different screen printed nickel/CGO cermet anodes have been studied over the temperature range 500-650°C. Temperature-programmed reduction has been used to study the reduction characteristics of the anodes, and indicates the presence of "bulk" NiO particles and smaller NiO particles in intimate contact with the ceria. Both anodes show good activity towards methane steam reforming with methane activation occurring at temperatures as low as 210°C; steady-state steam reforming of methane was observed using a methane-rich mixture at 650°C, with 20% methane conversion. Post-reaction temperature-programmed oxidation has been used to determine the amount of carbon deposited during reforming and the strength of its interaction with the anode.

  14. Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Maupin, Gary D.; Stevenson, Jeffry W.

    2006-12-20

    Conductive oxide coatings are used as protection layers on metallic interconnects in SOFCs to improve their surface stability and electrical performance, as well as to mitigate or prevent chromium poisoning to cells. This paper discusses materials requirements for this particular application and summarizes our systematic study on varied conductive oxides as potential candidate materials for protection layers on stainless steel substrates. Overall, it appeared that chromites such as (La,Sr)CrO3 improved surface stability, but might not be good candidates for the protection layer applications due to chromium vaporization, albeit at a lower rate than Cr2O3, from these oxides at high temperatures in air or moist air. The application of non-chromite perovskite (La,Sr)FeO3 protection layers resulted in improved oxidation resistance and electrical performance. It is doubtful, however, that LSF can be an effective barrier to prevent chromium release during long term SOFC stack operation due to chromium diffusion through the LSF coatings. With a high oxygen ion conductivity, the coatings of Sn-doped In2O3 failed to provide protection to the metal substrate and are thus not suitable for the protection layer applications. The best performance was achieved using thermally-grown (Mn,Co)3O4 spinel protection layers that substantially improved the surface stability of the metal substrates, and prevented chromium outward migration.

  15. Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Simner, Steven P.; Stevenson, Jeffry W.

    2005-08-01

    To protect solid oxide fuel cells (SOFCs) from chromium poisoning and improve metallic interconnect stability, manganese cobaltite spinel protection layers with a nominal composition of Mn1.5Co1.5O4 were thermally grown on Crofer22 APU, a ferritic stainless steel. Thermal, electrical and electrochemical investigations indicated that the spinel protection layers not only significantly decreased the contact area specific resistance (ASR) between a LSF cathode and the stainless steel interconnect, but also inhibited the sub-scale growth on the stainless steel by acting as a barrier to the inward diffusion of oxygen. A long-term thermal cycling test demonstrated excellent structural and thermomechanical stability of these spinel protection layers, which also acted as a barrier to outward chromium cation diffusion to the interconnect surface. The reduction in the contact ASR and prevention of Cr migration achieved by application of the spinel protection layers on ferritic stainless steel resulted in improved stability and electrochemical performance of SOFCs.

  16. Superstructure formation and variation in Ni-GDC cermet anodes in SOFC.

    PubMed

    Li, Zhi-Peng; Mori, Toshiyuki; Auchterlonie, Graeme John; Zou, Jin; Drennan, John

    2011-05-28

    The microstructures and spatial distributions of constituent elements at the anode in solid oxide fuel cells (SOFCs) have been characterized by analytical transmission electron microscopy (TEM). High resolution TEM observations demonstrate two different types of superstructure formation in grain interiors and at grain boundaries. Energy-filtered TEM elemental imaging qualitatively reveals that mixture zones exist at metal-ceramic grain boundaries, which is also quantitatively verified by STEM energy dispersive X-ray spectroscopy. It was apparent that both metallic Ni and the rare-earth elements Ce/Gd in gadolinium-doped ceria can diffuse into each other with equal diffusion lengths (about 100 nm). This will lead to the existence of mutual diffusion zones at grain boundaries, accompanied by a change in the valence state of the diffusing ions, as identified by electron energy-loss spectroscopy (EELS). Such mutual diffusion is believed to be the dominant factor that gives rise to superstructure formation at grain boundaries, while a different superstructure is formed at grain interiors, as a consequence solely of the reduction of Ce(4+) to Ce(3+) during H(2) treatment. This work will enhance the fundamental understanding of microstructural evolution at the anode, correlating with advancements in sample preparation in order to improve the performance of SOFC anodes.

  17. Synthesis of yttria-doped bismuth oxide powder by carbonate coprecipitation for IT-SOFC electrolyte.

    PubMed

    Lee, J G; Kim, S H; Yoon, H H

    2011-01-01

    Yttria-doped bismuth oxide (YBO) powders were synthesized by ammonium carbonate coprecipitation for the preparation of electrolytes of an intermediate temperature solid oxide fuel cell (IT-SOFC). The starting salts were yttrium and bismuth nitrate. The crystal structures and the morphological characteristics of the particles were analyzed by XRD and SEM, respectively. The ionic conductivity of the sintered pellet was measured by an electrochemical impedance analyzer. The size of the calcined YBO powders were in the range of 20-100 nm as measured by SEM images. The YBO pellets had a face-centered cubic structure, and their crystallite size was about 54-88 nm. The ionic conductivity of the YBO pellets sintered at 800 degrees C was observed to be 2.7 x 10(-1) Scm-(-1) at 700 degrees C. The ball-milling of the YBO powder before it was pelletized was found to have been unrequired probably because of a good sinterability of the YBO powders that was prepared via the ammonium carbonate coprecipitation method. The results showed that the ammonium carbonate coprecipitation process could be used as the cost-efficient method of producing YBO electrolytes for IT-SOFC.

  18. Effect of inhomogeneous re-oxidation on Ni-based SOFC oxidation resistance

    NASA Astrophysics Data System (ADS)

    Lou, Kang; Wang, Feng Hui; Lu, Yong Jun; Zhao, Xiang

    2016-09-01

    Inhomogeneous re-oxidation, which causes graded NiO content along anode thickness, has been confirmed to be a key reason for Ni-based cell cracking during redox progress. In this paper, an analytical model is developed to estimate the impact of inhomogeneous re-oxidation on Ni-based solid oxide fuel cell (SOFC) oxidation resistance. And experiments, in which the SOFC was partially re-oxidized, were implemented for model trial. Model results show that electrolyte internal stress can be significantly reduced (from 367 MPa to 135 MPa, when the oxidation degree is 60%), and the electrolyte can remain intact even when the oxidation degree reaches about 70%, if the anode was re-oxidized uniformly. This impact of inhomogeneous re-oxidation on stress in the electrolyte decreases as the anode thickness increases. Scanning electron microscopic (SEM) images of partially oxidized anode cross-sections confirmed that Ni oxidation was inhomogeneous, in which the outer regions of the anode became almost fully oxidized, while the inner regions remained metallic. And the inhomogeneity increases with the redox times. Consequently, it is important to avoid gradients in NiO content during oxidation progress to prevent cell cracking.

  19. Deposition and Evaluation of Protective PVD Coatings on Ferritic Stainless Steel SOFC Interconnects

    SciTech Connect

    Gorokhovsky, Vladimir I.; Gannon, Paul; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; Kopczyk, M.; Van Vorous, D.; Yang, Z Gary; Stevenson, Jeffry W.; Visco, s.; jacobson, c.; Kurokawa, H.; Sofie, Stephen W.

    2006-09-21

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are gaining attention to increase longterm stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used for deposition of two-segment coatings with Cr-Co-Al-O-N based sublayer and Mn-Co-O top layer. Coatings were deposited on ferritic steel and subsequently annealed in air for various time intervals. Surface oxidation was investigated using RBS, SEM and EDS analyses. Cr volatilization was evaluated using a transpiration apparatus and ICP-MS analysis of the resultant condensate. Electrical conductivity (Area Specific Resistance) was studied as a function of time using the four-point technique with Ag electrodes. The oxidation behavior, Cr volatilization rate, and electrical conductivity of the coated and uncoated samples are reported. Transport mechanisms for various oxidizing species and coating diffusion barrier properties are discussed.

  20. Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design

    NASA Astrophysics Data System (ADS)

    Calì, M.; Santarelli, M. G. L.; Leone, P.

    Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.

  1. MECHANICAL PROPERTIES OF CATHODE-INTERCONNECT INTERFACES IN PLANAR SOFCs

    SciTech Connect

    Wang, Yanli; Armstrong, Beth L; Trejo, Rosa M; Bai, Jianming; Watkins, Thomas R; Lara-Curzio, Edgar

    2010-01-01

    The residual stresses in manganese cobaltite, i.e., Mn1.5Co1.5O4, coatings applied onto alloys 441 and Crofer 22 APU were determined by X-Ray Diffraction. The residual stresses were found to be tensile at 800 C for both systems. The residual stress for spinel-coated AL441 relaxed with time and reached a value of 0.16 0.02 GPa after 300 minutes. The stress relaxation process was slower for spinel-coated Crofer and reached a value of 0.23 0.01 GPa after 500 minutes. Four-point bend SENB testing technique was used to evaluate the toughness of the interfaces between LSM10, i.e., (La0.9Sr0.1)0.98MnO3+δ, and spinel-coated AL441 and Crofer. Sandwich test specimens were prepared by sintering the LSM10 layer at 900 C for four hours in air or under PO2 cyclic conditions. The strain energy release rate was found to be 1.52 0.11 J/m2 for regular sintering and 1.47 0.15 J/m2 for sintering with cyclic PO2 treatment. This difference was found to be statistically insignificant.

  2. EFFECT OF SURFACE CONDITION ON SPALLATION BEHAVIOR OF OXIDE SCALE ON SS 441 SUBSTRATE USED IN SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-03-01

    As operating temperature of SOFC decreases, ferritic stainless steel has attracted a great deal of attention for its use as an interconnect in SOFCs because of its gas-tightness, low electrical resistivity, ease of fabrication, and cost-effectiveness. However, oxidation reaction of the metallic interconnects in a typical SOFC working environment is unavoidable. The growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation during stack cooling, which can lead to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we investigated the effect of the surface conditions on the interfacial strength of oxide scale and SS441 substrate experimentally. Contrary to the conventional sense, it was found that rough surface of SS441 substrate will decrease the interfacial adhesive strength of the oxide scale and SS441 substrate

  3. The design of stationary and mobile solid oxide fuel cell-gas turbine systems

    NASA Astrophysics Data System (ADS)

    Winkler, Wolfgang; Lorenz, Hagen

    A general thermodynamic model has shown that combined fuel cell cycles may reach an electric-efficiency of more than 80%. This value is one of the targets of the Department of Energy (DOE) solid oxide fuel cell-gas turbine (SOFC-GT) program. The combination of a SOFC and GT connects the air flow of the heat engine and the cell cooling. The principle strategy in order to reach high electrical-efficiencies is to avoid a high excess air for the cell cooling and heat losses. Simple combined SOFC-GT cycles show an efficiency between 60 and 72%. The combination of the SOFC and the GT can be done by using an external cooling or by dividing the stack into multiple sub-stacks with a GT behind each sub-stack as the necessary heat sink. The heat exchangers (HEXs) of a system with an external cooling have the benefit of a pressurization on both sides and therefore, have a high heat exchange coefficient. The pressurization on both sides delivers a low stress to the HEX material. The combination of both principles leads to a reheat (RH)-SOFC-GT cycle that can be improved by a steam turbine (ST) cycle. The first results of a study of such a RH-SOFC-GT-ST cycle indicate that a cycle design with an efficiency of more than 80% is possible and confirm the predictions by the theoretical thermodynamic model mentioned above. The extremely short heat-up time of a thin tubular SOFC and the market entrance of the micro-turbines give the option of using these SOFC-GT designs for mobile applications. The possible use of hydrocarbons such as diesel oil is an important benefit of the SOFC. The micro-turbine and the SOFC stack will be matched depending on the start-up requirements of the mobile system. The minimization of the volume needed is a key issue. The efficiency of small GTs is lower than the efficiency of large GTs due to the influence of the leakage within the stages of GTs increasing with a decreasing size of the GT. Thus, the SOFC module pressure must be lower than in larger

  4. The Development of Low-Cost Integrated Composite Seal for SOFC: Materials and Design Methodologies

    SciTech Connect

    Xinyu Huang; Kristoffer Ridgeway; Srivatsan Narasimhan; Serg Timin; Wei Huang; Didem Ozevin; Ken Reifsnider

    2006-07-31

    This report summarizes the work conducted by UConn SOFC seal development team during the Phase I program and no cost extension. The work included composite seal sample fabrication, materials characterizations, leak testing, mechanical strength testing, chemical stability study and acoustic-based diagnostic methods. Materials characterization work revealed a set of attractive material properties including low bulk permeability, high electrical resistivity, good mechanical robustness. Composite seal samples made of a number of glasses and metallic fillers were tested for sealing performance under steady state and thermal cycling conditions. Mechanical testing included static strength (pull out) and interfacial fracture toughness measurements. Chemically stability study evaluated composite seal material stability after aging at 800 C for 168 hrs. Acoustic based diagnostic test was conducted to help detect and understand the micro-cracking processes during thermal cycling test. The composite seal concept was successfully demonstrated and a set of material (coating composition & fillers) were identified to have excellent thermal cycling performance.

  5. Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics

    NASA Astrophysics Data System (ADS)

    Yoon, Jongsik; Araujo, Roy; Grunbaum, Nicolás; Baqué, Laura; Serquis, Adriana; Caneiro, Alberto; Zhang, Xinghang; Wang, Haiyan

    2007-10-01

    Nanostructured cathode thin films with vertically-aligned nanopores (VANP) were processed using a pulsed laser deposition technique (PLD). These VANP structures enhance the oxygen-gas phase diffusivity, thus improve the overall thin film SOFC performance. La 0.5Sr 0.5CoO 3 (LSCO) and La 0.4Sr 0.6Co 0.8Fe 0.2O 3 (LSCFO) were deposited on various substrates (YSZ, Si and pressed Ce 0.9Gd 0.1O 1.95 disks). Microstructures and properties of the nanostructured cathodes were characterized by TEM, HRTEM, SEM and electrochemical measurements. Additionally these well-aligned VANP structures relieve or partially relieve the internal thermal stress and lattice strain caused by the differences of thermal expansion coefficients and lattice mismatch between the electrode and the electrolyte.

  6. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode

    NASA Astrophysics Data System (ADS)

    Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.

    2015-02-01

    Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.

  7. A numerical study of cell-to-cell variations in a SOFC stack

    NASA Astrophysics Data System (ADS)

    Burt, A. C.; Celik, I. B.; Gemmen, R. S.; Smirnov, A. V.

    A numerical investigation of cell-to-cell voltage variation is performed by considering the impact of flow distribution and heat transfer on a SOFC stack. The stack model used is based on a one-dimensional co-flow cell model developed in prior work. The influence of radiative heat transfer between the PEN (positive electrode, electrolyte, negative electrode body) and the neighboring separator plates on the temperature distribution is also considered. Variations in cell voltage are attributed to asymmetries in stack geometry (boundary effects) and non-uniformity in flow rates, more particularly, flow thermal capacity. Simulations were done in a parallel computing environment with each cell computed in a separate (CPU) process. This natural decomposition of the fuel cell stack reduced the number of communicated variables thereby improving computational performance. The parallelization scheme implemented utilized a message passing interface (MPI) protocol where cell-to-cell communication is achieved via exchange of temperature and thermal fluxes between neighboring cells.

  8. Activation of H(2) oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions.

    PubMed

    Deleebeeck, Lisa; Shishkin, Maxim; Addo, Paul; Paulson, Scott; Molero, Hebert; Ziegler, Tom; Birss, Viola

    2014-05-28

    Ni-YSZ (yttria-stabilized zirconia) cermets are known to be very good anodes in solid oxide fuel cells (SOFCs), which are typically operated at 700-1000 °C. However, they are expected to be increasingly degraded as the operating temperature is lowered in the presence of H2S (5-10 ppm) in the H2 fuel stream. However, at 500 to 600 °C, a temperature range rarely examined for sulphur poisoning, but of great interest for next generation SOFCs, we report that H2S-exposed Ni-YSZ anodes are catalytic towards the H2 oxidation reaction, rather than poisoned. By analogy with bulk Ni3S2/YSZ anodes, shown previously to enhance H2 oxidation kinetics, it is proposed that a thin layer of Ni sulphide, akin to Ni3S2, is forming, at least at the triple point boundary (TPB) region under our conditions. To explain why Ni3S2/YSZ is so active, it is shown from density functional theory (DFT) calculations that the O(2-) anions at the Ni3S2/YSZ TPB are more reactive towards hydrogen oxidation than is O(2-) at the Ni/YSZ TPB. This is accounted for primarily by structural transformations of Ni3S2 during H2 oxidation, rather than by the electronic properties of this interface. To understand why a thin layer of Ni3S2 could form when a single monolayer of sulphur on the Ni surface is the predicted surface phase under our conditions, it is possible that the reaction of H2 with O(2-), forming water, prevents sulphur from re-equilibrating to H2S. This may then promote Ni sulphide formation, at least in the TPB region.

  9. Structural and defect chemistry guidelines for Sr(V,Nb)O3-based SOFC anode materials.

    PubMed

    Macías, J; Yaremchenko, A A; Fagg, D P; Frade, J R

    2015-04-28

    Structural and defect chemistry guidelines were used for Nb-substituted SrVO3-δ materials, designed to meet SOFC anode requirements, with emphasis on redox tolerance, thermochemical compatibility with other SOFC materials, electrical conductivity and adjustable changes in oxygen stoichiometry for their prospective impact on electrocatalytic performance. SrV1-xNbxO3-δ (x = 0-0.30) ceramics were prepared by solid-state synthesis and sintered at 1773 K in a reducing atmosphere. XRD and SEM/EDS showed that under these conditions a single-phase cubic perovskite structure appears up to x ≈ 0.25. Electrical conductivity is metallic-like and nearly p(O2)-independent. Although substitution by niobium decreases the conductivity, which still exceeds 100 S cm(-1) for x ≤ 0.20 at temperatures below 1273 K, it also expands the stability domain of the cubic perovskite phase and suppresses partly high thermochemical expansion characteristic of parent SrVO3-δ. The upper p(O2) limit of phase stability was found to shift from ∼2 × 10(-15) atm for the undoped material to ∼2 × 10(-12) atm for x = 0.30, whereas the average thermal expansion coefficient at 773-1223 K decreased from 22.7 × 10(-6) to 13.3 × 10(-6) K(-1). SrV1-xNbxO3-δ perovskites undergo oxidative decomposition in air, which causes dimensional and microstructural changes. However, sluggish kinetics of oxidation under inert gas conditions results in nearly reversible behavior in relatively short-term redox cycles between reducing and inert atmospheres. Subtle structural changes and a close correlation with point defect chemistry clarify these sluggish changes and provide guidelines to retain the metastability.

  10. Lattice Expansion of LSCF-6428 Cathodes Measured by In-situ XRD during SOFC Operation

    SciTech Connect

    Hardy, John S.; Templeton, Jared W.; Edwards, Danny J.; Lu, Zigui; Stevenson, Jeffry W.

    2012-01-03

    A new capability has been developed for analyzing solid oxide fuel cells (SOFCs). This paper describes the initial results of in-situ x-ray diffraction (XRD) of the cathode on an operating anode-supported solid oxide fuel cell. It has been demonstrated that XRD measurements of the cathode can be performed simultaneously with electrochemical measurements of cell performance or electrochemical impedance spectroscopy (EIS). While improvements to the technique are still to be made, the XRD pattern of a lanthanum strontium cobalt ferrite (LSCF) cathode with the composition La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF-6428) was found to continually but gradually change over the course of more than 60 hours of operation in air under typical SOFC operating conditions. It was determined that the most significant change was a gradual increase in the cubic lattice parameters of the LSCF from 3.92502 Å (as determined from the integration of the first 20 hours of XRD patterns) to 3.92650 Å (from the integration of the last 20 hours). This analysis also revealed that there were several peaks from unidentified minor phases that increased in intensity over this timeframe. After a temporary loss of airflow early in the test, the cell generated between 225 and 250 mW/cm2 for the remainder of the test. A large low frequency arc in the impedance spectra suggests the cell performance was gas diffusion limited and that there is room for improvement in air delivery to the cell.

  11. Cost projections for planar solid oxide fuel cell systems

    SciTech Connect

    Krist, K.; Wright, J.D.; Romero, C.; Chen, Tan Ping

    1996-12-31

    The Gas Research Institute (GRI) is funding fundamental research on solid oxide fuel cells (SOFCs) that operate at reduced temperature. As part of this effort, we have carried out engineering analysis to determine what areas of research can have the greatest effect on the commercialization of SOFCs. Previous papers have evaluated the markets for SOFCs and the amount which a customer will be willing to pay for fuel cell systems or stacks in these markets, the contribution of materials costs to the total stack cost, and the benefits and design requirements associated with reduced temperature operation. In this paper, we describe the cost of fabricating SOFC stacks by different methods. The complete analysis is available in report form.

  12. Development of low coefficient of thermal expansion (CTE) nickel alloys for potential use as interconnects in SOFC

    SciTech Connect

    Alman, David E.; Jablonski, Paul D.

    2004-11-01

    This paper deals with the development of low coefficient of thermal expansion (CTE) nickel-base superalloys for potential use as interconnects for SOFC. Ni-Mo-Cr alloys were formulated with CTE on the order of 12.5 to 13.5 x10-6/°C. The alloys were vacuum induction melted and reduced to sheet via a combination of hot and cold working. Dilatometry was used to measure CTE of the alloys. Oxidation behavior of the alloys at 800°C in dry and moist air is reported. The results are compared to results for Haynes 230 (a commercial Ni-base superalloy) and for Crofer 22APU (a commercial ferritic stainless steel designed specifically for use as an SOFC interconnect).

  13. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    SciTech Connect

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  14. REACTIVE AIR BRAZING OF LSCoF AND ALUMINA WITH Ag-V2O5 ALLOYS FOR SOFC APPLICATIONS

    SciTech Connect

    Zink, Nathan M.; Meier, Alan; Weil, K. Scott; Hardy, John S.

    2005-05-31

    The feasibility of brazing LSCoF ceramic substrates with silver-vanadium pentoxide (Ag-V{sub 2}O{sub 5}) alloys for use in solid oxide fuel cell (SOFC) applications was studied. Preliminary testing was also performed on the Ag-V{sub 2}O{sub 5}/alumina (Al{sub 2}O{sub 3}) system in order to determine the feasibility of brazing LSCoF to Fecralloy{trademark} with an Ag-V{sub 2}O{sub 5} alloy since an Al{sub 2}O{sub 3} layer is formed on the Fecralloy surface prior to brazing. Sessile drop tests were performed using liquid Ag with 1 to 20 weight percent (wt%) V{sub 2}O{sub 5} additions at either 1000 or 1100 C. Similar to previous results for Ag-CuO alloys, additions of V{sub 2}O{sub 5} resulted in a decrease in the apparent contact angle and a transition from non-wetting to wetting behavior for both substrate materials. Mechanical test samples were fabricated by brazing using Ag with 1, 2 and 5 wt% V{sub 2}O{sub 5} additions. For the Ag-V{sub 2}O{sub 5}/LSCoF samples, the joint fracture strengths ranged from 10 to 30% of the monolithic LSCoF fracture strength ({sigma}{sub joint} = 26 {+-} 9 MPa versus {sigma}{sub LSCoF} = 151 {+-} 24 MPa). An SEM/EDS microstructural analysis of the brazed cross-sections indicated the formation of a vanadium rich reaction product at the braze/LSCoF interface. It is hypothesized that the reaction product provided improved chemical bonding at the interface that resulted in the modest joint strengths. In the the Ag-V{sub 2}O{sub 5}/Al{sub 2}O{sub 3} system, although the contact angles were less than 90{sup o}, all of the brazed Al{sub 2}O{sub 3} samples failed to bond during brazing or fractured during sample preparation. These poor adhesion results indicate potential problems with the Fecralloy{trademark}/Ag-V{sub 2}O{sub 5}/LSCoF system.

  15. High temperature phase transition in SOFC anodes based on Sr{sub 2}MgMoO{sub 6-{delta}}

    SciTech Connect

    Marrero-Lopez, D.; Pena-Martinez, J.; Ruiz-Morales, J.C.; Martin-Sedeno, M.C.; Nunez, P.

    2009-05-15

    The double perovskite Sr{sub 2}MgMoO{sub 6-{delta}} has been recently reported as an efficient anode material for solid oxide fuel cells (SOFCs). In the present work, this material have been investigated by high temperature X-ray diffraction (XRD), differential scanning calorimetry (DSC) and impedance spectroscopy to further characterise its properties as SOFC anode. DSC and XRD measurements indicate that Sr{sub 2}MgMoO{sub 6-{delta}} exhibits a reversible phase transition around 275 deg. C from triclinic (I1-bar) with an octahedral tilting distortion to cubic (Fm3-barm) without octahedral distortion. This phase transition is continuous with increasing temperature without any sudden cell volume change during the phase transformation. The main effect of the phase transformation is observed in the electrical conductivity with a change in the activation energy at low temperature. La{sup 3+} and Fe-substituted Sr{sub 2}MgMoO{sub 6-{delta}} phases were also investigated, however these materials are unstable under oxidising conditions due to phase segregations above 600 deg. C. - Graphical abstract: The double perovskite Sr{sub 2}MgMoO{sub 6}, recently proposed as an efficient SOFC anode for direct hydrocarbon oxidation, exhibits a reversible structural phase transition from triclinic to cubic at 275 deg. C.

  16. Experimental Study of the Aging and Self-Healing of Glass/Ceramic Sealant Used in SOFCs

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Khaleel, Mohammad A.

    2010-01-01

    High operating temperatures of solid oxide fuel cells (SOFCs) require that sealant must function at a high temperature between 600oC and 900oC and in the oxidizing and reducing environments of fuel and air. This paper describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals in the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant.

  17. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-08-01

    Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.

  18. Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process

    SciTech Connect

    Chen, Changcheng; Liu, Mingfei; Yang, Lei; Liu, Meilin

    2011-03-09

    A simple phase-inversion process is successfully combined with a dip-coating process to fabricate anode-supported micro-tubular solid oxide fuel cells (SOFCs). Several processing parameters were systematically investigated to optimize cell microstructure and performance, including the amount of pore former used in the support substrate and the number of electrolyte coatings. Single cells with ~240 μm thick NiO-YSZ support and 10 μm thick YSZ electrolyte were successfully fabricated, demonstrating peak power densities of 752 and 277 mW cm-2 at 800 and 600 °C, respectively, when a composite cathode consisting of La0.85Sr0.15MnO3 and Sm0.2Ce0.8O2-δ was used. This simple fabrication technique can be readily used for optimization of fuel cell microstructures and for cost-effective fabrication of high-performance SOFCs, potentially reducing the cost of SOFC technologies.

  19. High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas

    NASA Astrophysics Data System (ADS)

    Hofmann, Ph.; Schweiger, A.; Fryda, L.; Panopoulos, K. D.; Hohenwarter, U.; Bentzen, J. D.; Ouweltjes, J. P.; Ahrenfeldt, J.; Henriksen, U.; Kakaras, E.

    This paper presents the results from a 150 h test of a commercial high temperature single planar solid oxide fuel cell (SOFC) operating on wood gas from the Viking two-stage fixed-bed downdraft gasifier, which produces an almost tar-free gas, that was further cleaned for particulates, sulphur and tar traces. The chosen SOFC was electrolyte supported with a nickel/gadolinium-doped cerium oxide (Ni-GDC) anode, known for its carbon deposition resistance. Through humidification the steam to carbon ratio (S/C) was adjusted to 0.5, which results in a thermodynamically carbon free condition at the SOFC operating temperature T = 850 °C. The cell operated with a fuel utilisation factor (U f) around 30% and a current density of 260 mA cm -2 resulting in an average power density of 207 mW cm -2. Throughout the duration of the test, only a minor cell overpotential increase of 10 mV was observed. Nevertheless, the V- j (voltage-current density) curves on H 2/N 2 before and after the wood gas test proved identical. Extensive SEM/EDS examination of the cell's anode showed that there was neither carbon deposition nor significant shifts in the anode microstructure or contamination when compared to an identical cell tested on H 2/N 2 only.

  20. Effect of SOFC Interconnect-Coating Interactions on Coating Properties and Performance

    SciTech Connect

    Jeffrey W. Fergus

    2012-09-05

    The high operating temperature of solid oxide fuel cells (SOFCs) provides good fuel flexibility which expands potential applications, but also creates materials challenges. One such challenge is the interconnect material, which was the focus of this project. In particular, the objective of the project was to understand the interaction between the interconnect alloy and ceramic coatings which are needed to minimize chromium volatilization and the associated chromium poisoning of the SOFC cathode. This project focused on coatings based on manganese cobalt oxide spinel phases (Mn,Co)3O4, which have been shown to be effective as coatings for ferritic stainless steel alloys. Analysis of diffusion couples was used to develop a model to describe the interaction between (Mn,Co)3O4 and Cr2O3 in which a two-layer reaction zone is formed. Both layers form the spinel structure, but the concentration gradients at the interface appear like a two-phase boundary suggesting that a miscibility gap is present in the spinel solid solution. A high-chromium spinel layer forms in contact with Cr2O3 and grows by diffusion of manganese and cobalt from the coating material to the Cr2O3. The effect of coating composition, including the addition of dopants, was evaluated and indicated that the reaction rate could be decreased with additions of iron, titanium, nickel and copper. Diffusion couples using stainless steel alloys (which form a chromia scale) had some similarities and some differences as compared to those with Cr2O3. The most notable difference was that the high-chromium spinel layer did not form in the diffusion couples with stainless steel alloys. This difference can be explained using the reaction model developed in this project. In particular, the chromia scale grows at the expense of the alloy, the high-chromia layer grows at the expense of chromia scale and the high-chromia layer is consumed by diffusion of chromium into the coating material. If the last process (dissolution

  1. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  2. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs

    SciTech Connect

    Eric D. Wachsman

    2006-09-30

    This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

  3. PROGRESS IN HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION USING PLANAR SOFC TECHNOLOGY

    SciTech Connect

    O'Brien, J. E.; Herring, J. S.; Stoots, C. M.; Hawkes, G. L.; Hartvigsen, J., J.; Mehrdad Shahnam

    2005-04-01

    A research program is under way at the Idaho National Laboratory to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. The research program includes both experimental and modeling activities. Selected results from both activities are presented in this paper. Experimental results were obtained from a ten-cell planar electrolysis stack, fabricated by Ceramatec , Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Stack performance is shown to be dependent on inlet steam flow rate. A three-dimensional computational fluid dynamics (CFD) model was also created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in the experimental electrolysis stack. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT1. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with

  4. Tailoring Fe-Base Alloys for Intermediate Temperature SOFC Interconnect Application

    SciTech Connect

    J.H. Zhu; M.P. Brady; H.U. Anderson

    2007-12-31

    This report summarized the research efforts and major conclusions for our SECA Phase I and II project focused on Cr-free or low Cr Fe-Ni based alloy development for intermediate temperature solid oxide fuel cell (SOFC) interconnect application. Electrical conductivity measurement on bulk (Fe,Ni){sub 3}O{sub 4} coupons indicated that this spinel phase possessed a higher electrical conductivity than Cr{sub 1.5}Mn{sub 1.5}O{sub 4} spinel and Cr{sub 2}O{sub 3}, which was consistent with the low area specific resistance (ASR) of the oxide scale formed on these Fe-Ni based alloys. For Cr-free Fe-Ni binary alloys, although the increase in Ni content in the alloys improved the oxidation resistance, and the Fe-Ni binary alloys exhibited adequate CTE and oxide scale ASR, their oxidation resistance needs to be further improved. Systematic alloy design efforts have led to the identification of one low-Cr (6wt.%) Fe-Ni-Co based alloy which formed a protective, electrically-conductive Cr{sub 2}O{sub 3} inner layer underneath a Cr-free, highly conductive spinel outer layer. This low-Cr, Fe-Ni-Co alloy has demonstrated a good CTE match with other cell components; high oxidation resistance comparable to that of Crofer; low oxide scale ASR with the formation of electrically-insulating phases in the oxide scale; no scale spallation during thermal cycling; adequate compatibility with cathode materials; and comparable mechanical properties with Crofer. The existence of the Cr-free (Fe,Co,Ni){sub 3}O{sub 4} outer layer effectively reduced the Cr evaporation and in transpiration testing resulted in a 6-fold decrease in Cr evaporation as compared to a state-of-the-art ferritic interconnect alloy. In-cell testing using an anode supported cell with a configuration of Alloy/Pt/LSM/YSZ/Ni+YSZ indicates that the formation of the Cr-free spinel layer via thermal oxidation was effective in blocking the Cr migration and thus improving the cell performance stability. Electroplating of the Fe

  5. 3-D model of thermo-fluid and electrochemical for planar SOFC

    NASA Astrophysics Data System (ADS)

    Wang, Guilan; Yang, Yunzhen; Zhang, Haiou; Xia, Weisheng

    A numerical simulation tool for calculating the planar solid oxide fuel cells was described. The finite volume method was employed for the simulation, which was on the basis of the fundamental conservation laws of mass, momentum, energy and electrical charge. Temperature distributions, molar concentrations of gaseous species, current density and over potential were calculated using a single cell unit model with double channels of co-flow and counter-flow cases. The influences of operating conditions and anode structure on the performances of SOFC were also discussed. Simulation results show that the co-flow case has more uniform temperature and current density distributions and smaller temperature gradients, thus offers thermostructural advantages than the counter-flow case. Moreover, in co-flow case, with the increasing of delivery rate, temperature and hydrogen mass fraction of fuel, average temperature of PEN, current density and activation potential also rise. However, with increasing the delivery rate of air, average temperature of PEN decreases. In particular, it is effective to improve the output voltage by reducing the thickness of anode or increasing its porosity.

  6. Sites for catalysis and electrochemistry in solid oxide fuel cell (SOFC) anode

    NASA Astrophysics Data System (ADS)

    Rostrup-Nielsen, J. R.; Hansen, J. B.; Helveg, S.; Christiansen, N.; Jannasch, A.-K.

    2006-12-01

    Fuel cells represent a challenging overlap of catalysis and electrochemistry. This is illustrated by anode reactions in a solid oxide fuel cell. The sites for catalytic conversion of methane and electrochemical conversion of hydrogen on an SOFC anode appear not to be the same. The fuel (methane, hydrogen, etc.) is activated by chemisorption on the nickel surface of the anode. This is linked to the electrochemical reaction at the interface of the electrolyte and the nickel crystals converting oxygen ions into electrons and water by reactions with adsorbed hydrogen atoms resulting from the activation of the fuel. The sites for these reactions appear not to be the same. This is reflected by different sensitivities of the two steps to sulphur poisoning. The role of different sites on the nickel surface for the steam reforming reaction is well understood in terms of impact on activity for methane activation, carbon formation and sintering. The study is supplemented by an analysis of anodes having been exposed to 13000 of operation using a number of characterisation methods.

  7. Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

    SciTech Connect

    Morgan, Dane

    2015-09-30

    This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr)2CoO4 / perovskite (La,Sr)CoO3 heterostructure compared to pure (La,Sr)CoO3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in the performance of (La,Sr)CoO3 and (La,Sr)(Co,Fe)O3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr)2CoO4 and (La,Sr)CoO3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.

  8. Electrodeposition of Mn-Co Alloys on Stainless Steels for SOFC Interconnect Application

    SciTech Connect

    Wu, J.; Jiang, Y.; Johnson, C.; Gong, M.; Liu, X.

    2007-09-01

    Chromium-containing ferritic stainless steels are the most popular materials for solid oxide fuel cell (SOFC) interconnect applications because of its oxidation resistance and easy fabrication process. However, excessive scale growth and chromium evaporation will degrade the cell performance. Highly conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. Mn1.5Co1.5O4 spinel is one of the most promising coatings for interconnect application because of its high conducitivy, good chromium retention capability, as well as good CTE match. Electroplating of alloys or thin film multilayers followed by controlled oxidation to the desired spinel phase offers an additional deposition option. In the present study binary Mn/Co alloys was fabricated by electrodeposition, and polarization curves were used to characterize the cathodic reactions on substrate surface. By controlling the current density precisely, coatings with Mn/Co around 1:1 has been successfully deposited in Mn/Co =10 solutions, SEM and EDX was used to characterize the surface morphology and composition.

  9. Développement de matériaux pour les piles à combustibles SOFC

    NASA Astrophysics Data System (ADS)

    Dubourdieu, G.; Gauthier, G.; Henry, J. Y.; Sanchette, F.; Delépine, J.; Lefebvre-Joud, F.

    2002-04-01

    Dans le cadre des nouveaux programmes du CEA dédiés aux Nouvelles Technologies pour l'Energie, l'un des axes concerne les piles à combustible haute température et tout solide (SOFC). Deux voies de recherche sont présentées ici ; l'une traite de l'élaboration d'électrolytes connus - de type zircone yttriée - en couche mince, par des techniques de dépôt PVD ou CVD à injection, ceci dans le but d'un fonctionnement à plus basse température. L'autre a trait au développement de matériaux d'anode compatibles avec l'utilisation directe du méthane à la place de l'hydrogène. Les chromates de lanthane substitué par le strontium, dont une méthode de synthèse sous forme de poudres très divisées est présentée ici, semblent être des matériaux prometteurs pour cette application, à condition qu'ils ne subissent pas de dégradation en fonctionnement.

  10. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  11. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  12. Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling

    SciTech Connect

    Eric Wachsman; Keith L. Duncan

    2006-09-30

    This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at

  13. DC electrodeposition of Mn–Co alloys on stainless steels for SOFC interconnect application

    SciTech Connect

    Wu, Junwei; Jiang, Yinglu; Johnson, Christopher; Liu, Xingbo

    2008-03-01

    High conductivity coatings that resist oxide scale growth and reduce chromium evaporation are needed to make stainless steel interconnect materials viable for long-term stable operation of solid oxide fuel cells (SOFC). Mn1.5Co1.5O4 spinel is one of the most promising coatings for interconnect application because of its high conductivity, good chromium retention capability, as well as good CTE match to ferritic stainless steels. Mn–Co electrodeposition followed by oxidization is potentially a low cost method for fabrication of (Mn,Co)3O4 spinel coatings. This work looks at the co-deposition of Mn–Co alloys for this application. As a guide to optimize the deposition process, characterizations of the cathodic reactions and reaction potentials are done using polarization curves. It was found that as cobalt concentration was varied that the alloy composition became richer in cobalt, indicating that the deposition is regular co-deposition process. It was also found that at 0.05M Co concentration in excess gluconate the Mn–Co alloys composition could be tuned by varying the current density. Coatings with Mn–Co around 1:1 could be obtained at a current density of 250 mA/cm2. However, the higher potential increased hydrogen production making the films more porous. Oxidation of the alloy coatings showed that much of the porosities could be eliminated during oxidation. It was found in a number of samples that fully dense coatings where obtained. The composition of the oxidized coating was found to become enriched in Mn, possibly due to the Mn fast diffusion from the substrate.

  14. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Deliver Order 0002: Power-Dense, Solid Oxide Fuel Cell Systems: High-Performance, High-Power-Density Solid Oxide Fuel Cells - Materials and Load Control

    DTIC Science & Technology

    2010-04-01

    report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval...and fuel cell. This controller could be readily adapted to current fuel cell powered vehicles. 15. SUBJECT TERMS solid oxide fuel cell, SOFC , solid...oxide fuel cell electrodes, SOFC systems, hybrid power systems 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF

  15. Functionally Graded Bismuth Oxide/Zirconia Bilayer Electrolytes for High-Performance Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs).

    PubMed

    Joh, Dong Woo; Park, Jeong Hwa; Kim, Doyeub; Wachsman, Eric D; Lee, Kang Taek

    2017-03-15

    A functionally graded Bi1.6Er0.4O3 (ESB)/Y0.16Zr0.84O1.92 (YSZ) bilayer electrolyte is successfully developed via a cost-effective screen printing process using nanoscale ESB powders on the tape-cast NiO-YSZ anode support. Because of the highly enhanced oxygen incorporation process at the cathode/electrolyte interface, a novel bilayer solid oxide fuel cell (SOFC) yields extremely high power density of ∼2.1 W cm(-2) at 700 °C, which is a 2.4 times increase compared to that of the YSZ single electrolyte SOFC.

  16. The governance of innovation diffusion - a socio-technical analysis of energy policy

    NASA Astrophysics Data System (ADS)

    Nolden, C.

    2012-10-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.

  17. High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management

    NASA Astrophysics Data System (ADS)

    Kattke, K. J.; Braun, R. J.; Colclasure, A. M.; Goldin, G.

    Effective thermal integration of system components is critical to the performance of small-scale (<10 kW) solid oxide fuel cell systems. This paper presents a steady-state design and simulation tool for a highly-integrated tubular SOFC system. The SOFC is modeled using a high fidelity, one-dimensional tube model coupled to a three-dimensional computational fluid dynamics (CFD) model. Recuperative heat exchange between SOFC tail-gas and inlet cathode air and reformer air/fuel preheat processes are captured within the CFD model. Quasi one-dimensional thermal resistance models of the tail-gas combustor (TGC) and catalytic partial oxidation (CPOx) complete the balance of plant (BoP) and SOFC coupling. The simulation tool is demonstrated on a prototype 66-tube SOFC system with 650 W of nominal gross power. Stack cooling predominately occurs at the external surface of the tubes where radiation accounts for 66-92% of heat transfer. A strong relationship develops between the power output of a tube and its view factor to the relatively cold cylinder wall surrounding the bundle. The bundle geometry yields seven view factor groupings which correspond to seven power groupings with tube powers ranging from 7.6-10.8 W. Furthermore, the low effectiveness of the co-flow recuperator contributes to lower tube powers at the bundle outer periphery.

  18. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  20. Optimization of a 200 kW SOFC cogeneration power plant. Part II: variation of the flowsheet

    NASA Astrophysics Data System (ADS)

    Riensche, Ernst; Meusinger, Josefin; Stimming, Ulrich; Unverzagt, Guido

    An energetic and economic analysis of a decentralized natural gas-fuelled solid oxide fuel cell (SOFC) power plant in the range of 200 kW capacity is carried out. All calculations start from a basic plant concept with a simple flowsheet and a basic parameter set of SOFC operation and economic data. Changes in costs of electricity and plant efficiencies are determined for variations of the plant concept. Flowsheets with gas recycling by blowers or jet boosters are described. Cathode gas recycling by jet boosters turns out to be more advantageous with respect to the costs of electricity than gas recycling by hot gas fans. The influence of pressure drop in the cathode gas circuit is analyzed. In case of anode gas recycling an internal steam circuit exists. This has the advantage that the external steam generator is eliminated and that the steam concentration in the exhaust gas is reduced. Therefore, a higher amount of excess heat can be used. Removal of useful heat at higher temperature levels diminishes the driving temperature differences and enlarges the heat exchange area of the recuperative heat exchangers located downstream.

  1. Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments

    NASA Astrophysics Data System (ADS)

    Santarelli, Massimo; Quesito, Francesco; Novaresio, Valerio; Guerra, Cosimo; Lanzini, Andrea; Beretta, Davide

    2013-11-01

    This work focuses on the heterogeneous reactions taking place in a tubular anode-supported solid oxide fuel cell (SOFC) when the designated fuel is biogas from anaerobic digestion directly feeding the fuel cell. Operational maps of the fuel cell running on direct reforming of biogas were first obtained. Hence a mathematical model incorporating the kinetics of reforming reactions on Ni catalyst was used to predict the gas composition profile along the fuel channel. The model was validated against experimental data based on polarization curves. Also, the anode off-gas composition was collected and analyzed through a gas chromatograph. Finally, the model has been used to predict and analyze the gas composition change along the anode channel to evaluate effectiveness of the direct steam reforming when varying cell temperature, inlet fuel composition and the type of reforming process. The simulations results confirmed that thermodynamic-equilibrium conditions are not fully achieved inside the anode channel. It also outlines that a direct biogas utilization in an anode-supported SOFC is able to provide good performance and to ensure a good conversion of the methane even though when the cell temperature is far from the nominal value.

  2. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis

    SciTech Connect

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.; Khaleel, Mohammad A.

    2006-04-07

    This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anode ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.

  3. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface. The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.

  4. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  5. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  6. Seca Coal-Based Systems Program

    SciTech Connect

    Matthew Alinger

    2008-05-31

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed degradation

  7. Modeling of gas turbine - solid oxide fuel cell systems for combined propulsion and power on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel Francis

    This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (<10%) decrease in power density. Thermodynamic models of SOFCs, catalytic partial oxidation (CPOx) reactors, and three GT engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed that account for equilibrium gas phase and electrochemical reaction, pressure losses, and heat losses in ways that capture `down-the-channel' effects (a level of fidelity necessary for making meaningful performance, mass, and volume estimates). Models are created in a NASA-developed environment called Numerical Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty <1%. Reductions of 15-20% are possible at the 200 kW power level. GT-SOFCs are also able to provide more electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important

  8. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  9. Evaluation of SmCo and SmCoN magnetron sputtering coatings for SOFC interconnect applications

    SciTech Connect

    Wu, Junwei; Jiang, Yinglu; Johnson, C.D.; Liu, Xingbo

    2008-01-10

    Cobalt or cobalt containing coatings are promising for SOFC interconnect applications because of their high conductivity. We have investigated SmCo and SmCoN coatings deposited by magnetron sputtering from a SmCo (5% Sm) target on to Crofer 22 APU substrates. The composition, structure, surface morphology, and electrical conductivity of the coated substrates were characterized by SEM/EDX, XRD and ASR measurements. Addition of Sm enhances the oxidation resistance and the Cr retention capability of the coatings. The use of nitride as a precursor stabilizes Sm during oxidation of the films, thus inhibiting diffusion of Fe, resulting in a more compact coating and lowering ASR. The combined advantages of Sm addition to cobalt and the use of a nitride as a precursor, makes SmCoN coatings a promising new interconnect coating material.

  10. In situ X-ray spectromicroscopy investigation of the material stability of SOFC metal interconnects in operating electrochemical cells.

    PubMed

    Bozzini, Benedetto; Tondo, Elisabetta; Prasciolu, Mauro; Amati, Matteo; Abyaneh, Majid Kazemian; Gregoratti, Luca; Kiskinova, Maya

    2011-08-22

    The present in situ study of electrochemically induced processes occurring in Cr/Ni bilayers in contact with a YSZ electrolyte aims at a molecular-level understanding of the fundamental aspects related to the durability of metallic interconnects in solid oxide fuel cells (SOFCs). The results demonstrate the potential of scanning photoelectron microspectroscopy and imaging to follow in situ the evolution of the chemical states and lateral distributions of the constituent elements (Ni, Cr, Zr, and Y) as a function of applied cathodic potential in a cell working at 650 °C in 10(-6) mbar O(2) ambient conditions. The most interesting findings are the temperature-induced and potential-dependent diffusion of Ni and Cr, and the oxidation-reduction processes resulting in specific morphology-composition changes in the Ni, Cr, and YSZ areas.

  11. Formation of a thin-layer electrolyte for SOFC by magnetic pulse compaction of tapes cast of nanopowders

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Lipilin, A. S.; Kotov, Yu. A.; Khrustov, V. R.; Shkerin, S. N.; Paranin, S. N.; Spirin, A. V.; Kaygorodov, A. S.

    From the analysis of the scientific and technical literature it is possible to determine the trend of development of technologies for preparation of thin films of solid electrolytes for SOFC as the most promising one. The use of powder compaction technologies and weakly agglomerated nanosized powders for this purpose has some advantages. The present study deals with physicochemical properties of electrolytes based on zirconia and ceria and electrochemical cells loaded with these electrolytes. Weakly agglomerated nanopowders with particles about 15 nm in size were produced by laser sputtering. Films 15-25 μm thick were obtained from nanopowders of the electrolytes by butyral resin slip casting. Uniaxial and radial magnetic pulse compaction of the cast films was performed at 0.1-1.6 GPa. The apparent density of the compacts accounted for 0.5-0.7 of the theoretical value. Sintering at temperatures of 900-1250 °C provided electrolytes having the relative density of 0.92-0.98. The analysis of the structure and the conductivity of the solid electrolytes, which was performed using samples shaped as flat thin disks 15-30 mm in diameter and 10 μm to 2 mm thick, and the examination of the electrochemical characteristics of the cells made of an ultrafine solid electrolyte in the form of tubes having the diameter of about 10 mm and walls 80-250 μm thick confirmed that the ceramic samples were gas-tight and had not laminations. The conductivity of, e.g. the YSZ electrolyte was 0.08-0.112 S cm -1. The electrochemical cells, which were tested in the regime of a fuel cell with a solid electrolyte synthesized using the proposed technologies, provided the specific power of about 1 W cm -2 at 800-850 °C even without optimization of the electrodes. Thus, the ultrafine solid electrolytes met the requirements imposed on SOFC ceramics.

  12. Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping

    NASA Astrophysics Data System (ADS)

    Ding, Xifeng; Hua, Guixiang; Ding, Dong; Zhu, Wenliang; Wang, Hongjin

    2016-02-01

    Apatite-type Lanthanum silicate (LSO) is among the most promising electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) owing to the high conductivity and low activation energy at lower temperature than traditional doped-zirconia electrolyte. The ionic conductivity as well as the sintering density of lanthanum silicate oxy-apatite, La10Si6-xCuxO27-δ (LSCO, 0 ≤ x ≤ 2), was effectively enhanced through a small amount of doped copper. The phase composition, relative density, ionic conductivity and thermal expansion behavior of La10Si6-xCuxO27-δ was systematically investigated by X-ray diffraction (XRD), Archimedes' drainage method, scanning electron microscope (SEM), electrochemical impedance spectra (EIS) and thermal dilatometer techniques. With increasing copper doping content, the ionic conductivity of La10Si6-xCuxO27-δincreased, reaching a maximum of 4.8 × 10-2 S cm-1 at 800 °C for x = 1.5. The improved ionic conductivity could be primarily associated with the enhanced grain conductivity. The power output performance of NiO-LSCO/LSCO/LSCF single cell was superior to that obtained on NiO-LSO/LSO/LSCF at different temperatures using hydrogen as fuel and oxygen as oxidant, which could be attributed to the enhanced oxygen ionic conductivity as well as the sintering density for the copped doped lanthanum silicate. In conclusion, the apatite La10Si4.5Cu1.5O25.5 is a promising candidate electrolyte for IT-SOFCs.

  13. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  14. Multi-loop control strategy of a solid oxide fuel cell and micro gas turbine hybrid system

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Juan; Zhu, Xin-Jian

    2011-10-01

    Solid oxide fuel cell and micro gas turbine (SOFC/MGT) hybrid system is a promising distributed power technology. In order to ensure the system safe operation as well as long lifetime of the fuel cell, an effective control manner is expected to regulate the temperature and fuel utilization at the desired level, and track the desired power output. Thus, a multi-loop control strategy for the hybrid system is investigated in this paper. A mathematical model for the SOFC/MGT hybrid system is built firstly. Based on the mathematical model, control cycles are introduced and their design is discussed. Part load operation condition is employed to investigate the control strategies for the system. The dynamic modeling and control implementation are realized in the MATLAB/SIMULINK environment, and the simulation results show that it is feasible to build the multi-loop control methods for the SOFC/MGT hybrid system with regard to load disturbances.

  15. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and

  16. Modeling a 5 kWe planar solid oxide fuel cell based system operating on JP-8 fuel and a comparison with tubular cell based system for auxiliary and mobile power applications

    NASA Astrophysics Data System (ADS)

    Tanim, Tanvir; Bayless, David J.; Trembly, Jason P.

    2014-01-01

    A steady state planar solid oxide fuel cell (P-SOFC) based system operating on desulfurized JP-8 fuel was modeled using Aspen Plus simulation software for auxiliary and mobile power applications. An onboard autothermal reformer (ATR) employed to reform the desulfurized JP-8 fuel was coupled with the P-SOFC stack to provide for H2 and CO as fuel, minimizing the cost and complexity associated with hydrogen storage. Characterization of the ATR reformer was conducted by varying the steam to carbon ratio (H2O/C) from 0.1 to 1.0 at different ATR operating temperatures (700-800 °C) while maintaining the P-SOFC stack temperature at 850 °C. A fraction of the anode recycle was used as the steam and heat source for autothermal reforming of the JP-8 fuel, intending to make the system lighter and compact for mobile applications. System modeling revealed a maximum net AC efficiency of 37.1% at 700 °C and 29.2% at 800 °C ATR operating temperatures, respectively. Parametric analyses with respect to fuel utilization factor (Uf) and current density (j) were conducted to determine optimum operating conditions. Finally, the P-SOFC based system was compared with a previously published [1] tubular solid oxide fuel cell based (T-SOFC) system to identify the relative advantages over one another.

  17. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  18. Biomass-to-electricity: analysis and optimization of the complete pathway steam explosion--enzymatic hydrolysis--anaerobic digestion with ICE vs SOFC as biogas users.

    PubMed

    Santarelli, M; Barra, S; Sagnelli, F; Zitella, P

    2012-11-01

    The paper deals with the energy analysis and optimization of a complete biomass-to-electricity energy pathway, starting from raw biomass towards the production of renewable electricity. The first step (biomass-to-biogas) is based on a real pilot plant located in Environment Park S.p.A. (Torino, Italy) with three main steps ((1) impregnation; (2) steam explosion; (3) enzymatic hydrolysis), completed by a two-step anaerobic fermentation. In the second step (biogas-to-electricity), the paper considers two technologies: internal combustion engines and a stack of solid oxide fuel cells. First, the complete pathway has been modeled and validated through experimental data. After, the model has been used for an analysis and optimization of the complete thermo-chemical and biological process, with the objective function of maximization of the energy balance at minimum consumption. The comparison between ICE and SOFC shows the better performance of the integrated plants based on SOFC.

  19. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  20. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2016-10-01

    The crystal structure and oxygen stoichiometry of the proposed double perovskite solid oxide fuel cell (SOFC) anode material PrBaMn2O5+δ were determined under SOFC anode conditions via in-situ neutron diffraction. Measurements were performed in reducing atmospheres between 692 K and 984 K. The structure was fit to a tetragonal (space group P4/mmm) layered double perovskite structure with alternating Pr and Ba A-site cation layers. Under all conditions examined, the oxygen sites in the Ba and Mn layers were fully occupied, while the sites in the Pr layer were close to completely vacant. The results of the neutron diffraction experiments are compared to previous thermogravimetric analysis experiments to verify the accuracy of both experiments. PrBaMn2O5+δ was shown to be stable over a wide range of reducing atmospheres similar to anode operating conditions in solid oxide fuel cells without significant structural changes.

  1. Electrical stability of a novel sealing glass with (Mn,Co)-spinel coated Crofer22APU in a simulated SOFC dual environment

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Xia, Guanguang; Yang, Zhenguo

    2010-09-01

    A novel alkaline-earth silicate (Sr-Ca-Y-B-Si-Zn) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sandwiched between two metallic interconnect plates and tested for electrical stability in dual environmnet at elevated temperatures of 800-850 degrees C. A ferritic stainless steel (Crofer22APU) was used as the metallic interconnect material in the as-received state and coated with (Mn,Co)3O4 spinel. The isothermal aging results showed stable electrical resistivity at 800-850 degrees C for ~500-1000 hr. The electrical resistivities at 800 or 850 degrees C of the spinel-coated samples were lower than the as-received ones; however, they were still several orders of magnitude higher than typical SOFC functional parts. Interfacial microstructure was characterized and possible reactions are discussed.

  2. SECA Coal-Based Systems – LGFCS

    SciTech Connect

    Goettler, Richard

    2016-03-31

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale distributed power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. The overall goal of this project is to demonstrate, through analysis and testing, progress towards adequate stack life and stability in a low-cost solid-oxide fuel cell (SOFC) stack design. The emphasis of the proposed work has been the further understanding of the degradation mechanisms present within the LGFCS SOFC stack and development of the active layers to mitigate such mechanisms for achievement of a lower rate of power degradation. Performance enhancement has been achieved to support cost reduction. Testing is performed at a range of scales from single cells to ~350 kW bundles and ultimately pressurized 15kW blocks in test rigs that are representative of the product system cycle. The block is the representative fuel cell module that forms the building block for the LGFCS SOFC power system.

  3. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    NASA Astrophysics Data System (ADS)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  4. Characterization and Development of BaZrO3 /NiO Composites for use as Anodes in Proton Conducting SOFCs

    NASA Astrophysics Data System (ADS)

    Khan, Islam; Dillon, Kelly; Camata, Renato; Genau, Amber

    2015-04-01

    Solid oxide fuel cells (SOFCs) are devices that convert chemical energy to electrical energy directly through oxidation of the fuel. The basic structure of SOFCs consists of three parts: an anode and a cathode that are separated by an electrolyte. The focus of this work is on developing and characterizing anode materials for proton-conducting SOFCs which use ceramic material BaZrO3 as the electrolyte. These anodes are made using a BaZrO3 -Ni composite, known as a cermet (ceramic and metal), which has shown potential as anode materials for these devices. The conventional method for making BaZrO3 -Ni cermets consist of an intermediate stage composite material BaZrO3 -NiO that have a strong influence on the final properties of the anode. Composites consisting of the two phases, BaZrO3 and NiO, with different weight ratios were made into pellets (0.5-inch diameter) using a mechanical mixing method followed by sintering at high temperatures. Optical microscopy image analysis showed grain growth in both phases as well as presence of porosity. The effect of sintering temperature on the densification of the composite powders was analyzed and the results showed that higher temperature enabled higher densification of the composites. Electrochemical impedance spectroscopy indicated there are two factors that contribute to the impedance in the structure of the composite materials, and possible sources for each factor are discussed. UAB College of Arts and Sciences.

  5. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model

    NASA Astrophysics Data System (ADS)

    Song, Tae Won; Sohn, Jeong Lak; Kim, Jae Hwan; Kim, Tong Seop; Ro, Sung Tack; Suzuki, Kenjiro

    A quasi-two dimensional (quasi-2D) model is proposed as a tool to predict the performance of solid oxide fuel cell (SOFC) system composed of bundles of tubular SOFCs and internal reformers. The model is developed by considering heat and mass transfer characteristics mainly along the longitudinal direction of the system, and the electrochemical reaction in its perpendicular direction. With this model, the temperature distribution in the fuel and the air streams along the longitudinal direction of the bundles of tubular SOFCs and internal reformers can be easily predicted. The predicted cell temperature along the longitudinal direction of the tubular SOFC shows important phenomena, which include the temperature rise near the entrance of the fuel cell by the electrochemical reaction and its decrease due to heat transferred from the fuel cell to the internal reformer that absorbs heat in reforming reactions. Also, it is found that different system arrangements and component characteristics influence significantly the heat-transfer characteristics, and possibly the system performance. The results from the quasi-2D model are applied to the performance analysis of a tubular SOFC/micro gas turbine (MGT) hybrid system.

  6. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  7. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    SciTech Connect

    Irshad, Muneeb; Siraj, Khurram E-mail: khurram.uet@gmail.com; Javed, Fayyaz; Ahsan, Muhammad; Rafique, Muhammad Shahid; Raza, Rizwan E-mail: khurram.uet@gmail.com; Shakir, Imran

    2016-02-15

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  8. Preparation and conductivity measurement of 7-8 mol % YSZ and 12 mol % CSZ for electrolyte SOFC

    NASA Astrophysics Data System (ADS)

    Budiana, B.; Fitriana, F.; Ayu, N.; Suasmoro, S.

    2016-08-01

    The study of 7YSZ (93% ZrO2-7%Y2O3), 8YSZ (92% ZrO2-8%Y2O3), and CSZ (88% ZrO2-12% CaO) as SOFC electrolytes have been carried out successfully. 7YSZ and 8YSZ powders were prepared by solid state reaction method of mixed Y2O3 and ZrO2 followed by calcination at 1350 °C for 1 hour, while CSZ was commercial products. Pellets of 7YSZ, 8YSZ, and CSZ were prepared by 1.2 gr, pressed at 40 MPa and sintered at 1550 °C for 4 hours. Rietveld refinement revealed that 7YSZ comprised 47.27% monoclinic, 52.65% cubic, and 0.008% Y2O3 cubic, while 8YSZ comprised 48.45% monoclinic, 49.32% cubic, 2.23% Y2O3 cubic and CSZ has 88% ZrO2 and 12% CaO. Ionic conductivity and activation energy were obtained from Cole- Cole Plot of impedance, the activation energy of 7YSZ=1.03eV, 8YSZ=0.96eV and CSZ=0.78eV.

  9. An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Shiyi; Xue, Zhipeng; Wang, Dong; Xiang, Wenguo

    2012-10-01

    In this paper, the solid oxide fuel cell/gas turbine (SOFC/GT) cycle is integrated with coal gasification and chemical looping hydrogen generation (CLHG) for electric power production with CO2 capture. The CLHG-SOFC/GT plant is configurated and the schematic process is modeled using Aspen Plus® software. Syngas, produced by coal gasification, is converted to hydrogen with CO2 separation through a three-reactors CLHG process. Hydrogen is then fueled to SOFC for power generation. The unreacted hydrogen from SOFC burns in a combustor and drives gas turbine. The heat of the gas turbine exhaust stream is recovered in HRSG for steam bottoming cycle. At a system pressure of 20 bar and a cell temperature of 900 °C, the CLHG-SOFC/GT plant has a net power efficiency of 43.53% with no CO2 emissions. The hybrid power plant performance is attractive because of high energy conversion efficiency and zero-CO2-emission. Key parameters that influence the system performance are also discussed, including system operating pressure, cell temperature, fuel utilization factor, steam reactor temperature, CO2 expander exhaust pressure and inlet gas preheating.

  10. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  11. Modeling of Water-Breathing Propulsion Systems Utilizing the Aluminum-Seawater Reaction and Solid-Oxide Fuel Cells

    DTIC Science & Technology

    2011-01-01

    system because it well suited for analysis of complicated thermodynamic 22 systems. NPSS allows for the simple linking of various flow...developed SOFC model. The analysis will focus on the design of a power section for a nominal 38 inch diameter UUV. This choice is made to match the work...2 ≈⋅      = π (1-12) The analysis will show the relative improvements in volumetric energy density that are possible from the HAC- SOFC

  12. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  13. Porous YSZ impregnated with La0.4Sr0.5Ba0.1TiO3 as a possible composite anode for SOFCs fueled with sour feeds

    NASA Astrophysics Data System (ADS)

    Vincent, Adrien L.; Hanifi, Amir R.; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R.; Etsell, Thomas H.; Sarkar, Partha

    2012-10-01

    The system LSBT/YSZ (LSBT is La0.4Sr0.5Ba0.1TiO3) is a promising combination as an anode material for full ceramic SOFCs. An anode comprising a porous layer of YSZ impregnated with LSBT shows good performance for conversion of high sulfur content fuels. The microstructures within the composite matrix were determined and correlated with the parameters of the production process. The anodes were characterized electrochemically using impedance spectroscopy (EIS) and potentiodynamic tests performed at 850 °C with various fuels to determine the effect of H2S in the feeds: H2, H2/H2S (5000 ppm), CH4, CH4/H2S (5000 ppm). The highest power densities (200 mW cm-2 in H2/H2S) were obtained for LSBT/YSZ composites after impregnation six times with LSBT, corresponding to 12.6 wt% LSBT; further impregnations dramatically decreased performance as a result of restricted access of fuel to active sites.

  14. Hybrid Solid Oxide Fuel Cell/Gas Turbine System Design for High Altitude Long Endurance Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.

    2006-01-01

    A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.

  15. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    NASA Astrophysics Data System (ADS)

    Entchev, Evgueniy; Yang, Libing

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW el SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy.

  16. Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels

    SciTech Connect

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Zondlod, John; Celik, Ismail; Song, Xueyan; Gerdes, Kirk

    2013-03-07

    The interaction of trace (ppm) phosphine with the nickel/yttria stabilized zirconia (YSZ) anode of commercial solid oxide fuel cells has been investigated and evaluated for both synthesis gas and hydrogen fuels in an effort to examine P–Y reactions. The Ni poisoning effects reported in literature were confirmed and degradation was examined by electrochemical methods and post-test microstructural and chemical analyses. The results indicate that P-induced degradation rates and mechanisms are fuel dependent and that degradation of cells operated in synthesis gas (syngas) with phosphine is more severe than that of cells operated in hydrogen with phosphine. As reported in published literature, a cell operated in syngas containing 10 ppm phosphine demonstrated significant microstructural degradation within the Ni phase, including formation of Ni–P phases concentrated on the outer layer of the anode and significant pitting corrosion in the Ni grains. In this research, a previously undetected YPO{sub 4} phase is observed at the YSZ/YSZ/Ni triple grain junctions located at the interface with the YSZ electrolyte. Tetragonal YSZ (t-YSZ) and cubic-YSZ (c-YSZ) domains with sizes of several tens of nanometers are also newly observed along the Ni/YSZ interface. These observations contrast with data obtained for a cell operated in dry hydrogen with phosphine, where no YPO{sub 4} phase is observed and the alternating t-YSZ and c-YSZ domains at the Ni/YSZ interface are smaller with typical sizes of 5–10 nm. The data imply that electrolyte attack by P is a potentially debilitating mode of degradation in SOFC anodes, and that the associated reaction mechanisms and rates are worthy of further examination.

  17. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; Lü, Zhe; Ai, Na; Chen, Xiangjun; Hu, Jinyan; Huang, Xiqiang; Su, Wenhui

    Sm 0.2Ce 0.8O 1.9 (SDC)-impregnated La 0.7Sr 0.3MnO 3 (LSM) composite cathodes were fabricated on anode-supported yttria-stabilized zirconia (YSZ) thin films. Electrochemical performances of the solid oxide fuel cells (SOFCs) were investigated in the present study. Four single cells, i.e., Cell-1, Cell-2, Cell-3 and Cell-4 were obtained after the fabrication of four different cathodes, i.e., pure LSM and SDC/LSM composites in the weight ratios of 25/75, 36/64 and 42/58, respectively. Impedance spectra under open-circuit conditions showed that the cathode performance was gradually improved with the increasing SDC loading. Similarly, the maximum power densities (MPD) of the four cells were increased with the SDC amount below 700 °C. Whereas, the cell performance of Cell-4 was lower than that of Cell-3 at 800 °C, arising from the increased concentration polarization at high current densities. This was caused by the lowered porosity with the impregnation cycle. This disadvantage could be suppressed by lowering the operating temperature or by increasing the oxygen concentration at the cathode side. The ratio of electrode polarization loss in the total voltage drop versus current density showed that the cell performance was primarily determined by the electrode polarization. The contribution of the ohmic resistance was increased when the operating temperature was lowered. When a 100 ml min -1 oxygen flow was introduced to the cathode side, Cell-3 produced MPDs of 1905, 1587 and 1179 mW cm -2 at 800, 750 and 700 °C, respectively. The high cell outputs demonstrated the merits of the novel and effective SDC-impregnated LSM cathodes.

  18. Experimental investigations of the microscopic features and polarization limiting factors of planar SOFCs with LSM and LSCF cathodes

    NASA Astrophysics Data System (ADS)

    Leone, P.; Santarelli, M.; Asinari, P.; Calì, M.; Borchiellini, R.

    The paper deals with the microscopic and polarization evaluation of planar circular-shaped seal-less SOFC cells from InDEC ® with an outline of performance limiting factors at reduced temperature. The cells consist of porous NiO-YSZ anode as mechanical support, NiO-YSZ anode active layer, yttria-stabilized zirconia (YSZ) electrolyte, and only differ for the cathode design. A first design (ASC1) with strontium doped lanthanum manganate LSM-YSZ cathode functional layer (CFL) and LSM cathode current collector layer (CCCL); the second design (ASC2) with yttria doped ceria (YDC) barrier layer and lanthanum strontium cobalt ferrite oxide (LSCF) cathode. The microscopic analysis was performed using SEM methods. The electrical characterization was performed by taking current-voltage measurements over a range of temperatures between 650 and 840 °C with hydrogen as fuel, and air as oxidant. The analysis of performance showed that at 740 °C the voltage of 700 mV is reached at around a double value of current density in the case of ASC2. Further, the dependence of performance on the various polarization contributions was rationalized on the basis of an analytical model. Through a parameter estimation on the experimental data, it was possible to determine some polarization parameters for the two cells such as the effective exchange current densities, ohmic resistance and anodic limiting current density. It is shown that the performance limitation at low temperature is due to activation polarization for ASC1 and ohmic polarization for ASC2. Based on the results of the investigation, it is concluded that LSCF cathodes are really effective for decreasing the cathode activation polarization, allowing the reduction of operating temperature.

  19. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of

  20. A solid oxide fuel cell power system: 1992--1993 field operation

    SciTech Connect

    Veyo, S.E.; Kusunoki, A.; Takeuchi, S.; Kaneko, S.; Yokoyama, H.

    1994-05-01

    Westinghouse has deployed fully integrated, automatically controlled, packaged solid oxide fuel cell (SOFC) power generation systems in order to obtain useful customer feedback. Recently, Westinghouse has deployed 20 kW class natural gas fueled SOFC generator modules integrated into two 25 kW SOFC systems, the first with The UTILITIES, a Japanese consortium. The UTILITIES 25 kW SOFC system is the focus of this paper. The unit was shipped to the Rokko Island Test Center for Advanced Energy Systems (near Kobe, Japan) operated by Kansai Electric Power Co.; testing was initiated February 1992. Module A operated for 2601 hours at an ave output 16.6 kW dc; final shutdown was induced by current stability problems with dissipator (restart not possible because of damaged cells). Module B operated for 1579 hours at ave output 17.8 kWdc. The unit was damaged by operation at excessively high fuel utilization > 91%. It was rebuilt and returned to Rokko Island. This module B2 operated for 1843 hours on PNG; shutdown was cuased by air supply failure. After a new blower and motor were installed July 1993, the system was restarted August 5, 1993 and operated continuously until November 10, 1993, when an automatic shutdown was induced as part of a MITI licensing inspection. After restart, the unit passed 6000 hours of operation on desulfurized PNG on January 25, 1994. Westinghouse`s future plans are outlined.

  1. Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation

    NASA Astrophysics Data System (ADS)

    Palsson, Jens; Selimovic, Azra; Sjunnesson, Lars

    The Department of Heat and Power Engineering at Lund University in Sweden has been conducting theoretical studies of combined SOFC and gas turbine (SOFC/GT) cycles. The overall goal is an unbiased evaluation of performance prospects and operational behaviour of such systems. The project is part of a Swedish national program on high-temperature fuel cells. Results of continuous studies started earlier by authors are presented. Recent developments in modelling techniques has resulted in a more accurate fuel cell model giving an advantage over previous system studies based on simplified SOFC models. The fuel cell model has been improved by detailed representation of resistive cell losses, reaction kinetics for the reforming reaction and heat conduction through the solid part of the cell. This SOFC model has further been confirmed against the literature and integrated into simulation software, Aspen Plus™. Recent calculations have focused on a system with external pre-reforming and anode gas recirculation for the internal supply of steam. A reference system, sized at 500 kW, has also been analyzed in variants with gas turbine reheat and air compression intercooling. In addition, knowledge of stack and system behaviour has been gained from sensitivity studies. It is shown that the pressure ratio has a large impact on performance and that electrical efficiencies of more than 65% are possible at low pressure ratios.

  2. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    NASA Astrophysics Data System (ADS)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  3. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  4. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  5. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  6. The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications

    DTIC Science & Technology

    2014-01-01

    MITE Micro Tactical Expendable NRL (US) National Research Laboratory PEM Polymer- electrolyte membrane SOFC Solid -oxide fuel cell UAS...fundamental knowledge of polymer- electrolyte membrane fuel- cell characteristics and the methodology used to characterise fuel-cell systems. Given the...authors developed fundamental knowledge of polymer- electrolyte membrane (PEM) fuel cells through experiments conducted on a commercially available

  7. Solid oxide fuel cell power system development

    SciTech Connect

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  8. A-site deficient Ba 1- xCo 0.7Fe 0.2Ni 0.1O 3- δ cathode for intermediate temperature SOFC

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Cheng, Ling-zhi; Han, Min-Fang

    A-site cation-deficient Ba 1- xCo 0.7Fe 0.2Nb 0.1O 3- δ (B 1- xCFN, x = 0.00-0.15) oxides are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The reactivity between B 1- xCFN and gadolinia doped ceria (GDC) is observed at different temperature, and no second phase is detected under 1050 °C. The increasing in A-site cation deficiency results in a steady decrease in cathode polarization resistance. Among the various B 1- xCFN oxides test, GDC based anode supported cells with B 0.9CFN cathode possess the smallest interfacial polarization resistance (R p). The R p is as low as 0.283 and 0.046 Ω cm 2 at 500 and 600 °C, respectively. The anode supported cell with B 0.9CFN provides maximum power densities of 1062 and 1139 mW cm -2 at 600 and 650 °C, respectively. The results suggest that B 0.9CFN is a great potential cathode material for IT-SOFCs.

  9. Novel alkaline earth silicate sealing glass for SOFC, Part I: the effect of nickel oxide on the thermal and mechanical properties

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Gow, Robert N.

    2007-06-01

    This is a two-part study of a novel Sr-Ca-Ni-Y-B silicate sealing glass for solid oxide fuel cells (SOFC). In this paper (Part I), the effect of NiO on glass forming, thermal, and mechanical properties was studied with two different approaches: glass making and composite glass. In the following paper (Part II), sealing and interfacial microstructure of candidate composite glass with 10v percent NiO will be addressed. In Part I, higher NiO content in the glass resulted in precipitation during the glass making process, and the sintered powder compacts of these glasses showed extensive macro- and micro-cracks. Coefficient of thermal expansion (CTE) showed large decrease for glass with higher NiO contents. On the other hand, glass-based composites showed no fracture even with NiO content as high as 15 percent. The CTE of the composite glass, which increased with increasing NiO content (consistent with the rule of mixtures prediction), could be adjusted to match the CTE of SOFC components. Phase characterization by XRD identified phases of YBO3 and NiO in the glass, which were likely responsible for the poor mechanical and thermal properties for the glass making approach.

  10. Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steel

    SciTech Connect

    Gannon, Paul; Gorokhovsky, Vladimir I.; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; White, P T.; Sofie, Stephen W.; Yang, Z Gary; Mccready, David E.; Visco, S.; Jacobson, C.; Kurokawa, H.

    2007-11-01

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are required to increase long-term stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used to deposit two-segment coatings with Cr-Al-Y-O nanocomposite bottom segments and Mn-Co-O spinel-based top segments. Coatings were deposited on ferritic steels and subsequently annealed in air for various times. Surface oxidation was investigated using SEM/EDS, XRD and RBS analyses. Cr-volatilization was evaluated by transpiration and ICP-MS analysis of the resultant condensate. Time dependent Area Specific Resistance (ASR) was studied using the four-point technique. The oxidation behavior, Cr volatilization rate, and ASR of coated and uncoated samples are reported. Significant long-term (>1,000 hours) surface stability, low ASR, and dramatically reduced Cr-volatility were observed with the coated specimens. Improvement mechanisms, including the coating diffusion barrier properties and electrical conductivity are discussed.

  11. Dynamic Changes in LSM Nanoparticles on YSZ: A Model System for Non-stationary SOFC Cathode Behavior

    SciTech Connect

    Woo, L Y; Glass, R S; Gorte, R J; Orme, C A; Nelson, A J

    2009-01-05

    The interaction between nanoparticles of strontium-doped lanthanum manganite (LSM) and single crystal yttria-stabilized zirconia (YSZ) was investigated using atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM)/energy-dispersive x-ray spectroscopy (EDX). Nanoparticles of LSM were deposited directly onto single crystal YSZ substrates (100) using an ultrasonic spray nozzle. As samples were annealed from 850 C to 1250 C, nanoparticles gradually decreased in height and eventually disappeared completely. Subsequent reduction in H{sub 2}/H{sub 2}O at 700 C resulted in the reappearance of nanoparticles. Studies were carried out on identical regions of the sample allowing the same nanoparticles to be characterized at different temperatures. Morphological changes indicate the formation of a thin layer of LSM, and XPS results support the observation by indicating an increase in signal from the La and Sr and a decrease in signal from the Y and Zr with increasing temperature. SEM/EDX was used to verify that the nanoparticles in the reduced sample contained La. The changes in the LSM/YSZ morphology may be important in explaining the non-stationary behavior observed in operating fuel cells. The thin layer of LSM initially results in poor cathode performance; reducing conditions then lead to film disruptions, indicating nano/microporosity, that increase oxygen ion diffusion and performance.

  12. Correlation between phase structure and electrical conduction in BISNVOX system for intermediate temperature solid oxide fuel cells (IT-SOFC)

    NASA Astrophysics Data System (ADS)

    Beg, Saba; Hafeez, Shehla; Al-Areqi, Niyazi A. S.

    2010-11-01

    Samples of Sn4+-substituted bismuth vanadate, formulated as Bi4Sn x V2- x O11-( x /2)- δ in the composition range 0.07 ≤ x ≤ 0.30, were prepared by standard solid-state reactions. Sample characterization and the principal phase transitions (α ↔ β, β ↔ γ and γ‧ ↔ γ) were investigated by FT-IR spectroscopy, X-ray powder diffraction, differential thermal analysis (DTA) and AC impedance spectroscopy. For composition x = 0.07, the α ↔ β and β ↔ γ phase transitions were observed at temperatures of 451 and 536°C, respectively. DTA thermograms and Arrhenius plots of conductivities revealed the γ‧ ↔ γ phase transition at 411 and 423°C for x = 0.20 and 0.30, respectively. AC impedance plots showed that conductivity is mainly due to the grain contribution, which is evident in the enhanced short-range diffusion of oxide ion vacancy in the grains with increasing temperature. The highest ionic conductivity (5.03 × 10-5 S cm-1 at 300°C) was observed for the x = 0.17 solid solution with less pronounced thermal hysteresis.

  13. Development of Ca-doped LaCr03 feed material and its plasma coating for SOFC applications

    NASA Astrophysics Data System (ADS)

    Purohit, R. D.; Nair, Sathi R.; Prakash, Deep; Sinha, P. K.; Sharma, B. P.; Sreekumar, K. P.; Ananthapadmanabhan, P. V.; Das, A. K.; Gantayet, L. M.

    2010-02-01

    In order to realize SOFC as power generating devices, multiple cells are connected in series through an interconnect material to accumulate the voltage output. The interconnect should have very low permeability for the gases used. A novel solution combustion process has been developed for producing the phase pure, well-sinterable powders of Ca-doped LaCrO3 interconnect material. A process has been developed to produce the coarse granules as a feed material using combustion-synthesized powder for plasma spray through (a) preparation of granules through cold iso-static pressing followed by breaking and sieving (b) sintering of the green granules followed by sieving. The flow ability and deposition efficiency studies on +45-75 and 75-125 μm powders suggested that +45-75 powder is more suitable for the plasma spray coating. The plasma process parameters; plasma power, flow rate of carrier gases and distance between substrate and plasma gun have been optimized to achieve required coating characteristics. The as-produced coating using 20 kW power plasma gun on the porous Sr-doped LaMnO3 cathode substrates has been examined by SEM. An adherent coating of about 100 μm has been observed in the micrographs. No large cracks were observed throughout the coating. However, the coating was not found to be impervious in nature. Also the micrographs showed incomplete melting of the plasma-coated material. The similar experiments were performed using a higher power (approx 60 Kw) plasma gun. The coated coupons were tested for leakage by checking water penetration. It was found that water did not penetrate for quite a long time. Therefore, the coupon was further tested for leakage by keeping it over a port connected to vacuum pump. The vacuum attained was 7×10-3 mbar and it was maintained for four consecutive days. The SEM studies on the coated sample showed a quite dense coating along with a very few small local pores.

  14. Power decoupling control of a solid oxide fuel cell and micro gas turbine hybrid power system

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Juan; Huang, Qi; Zhu, Xin-Jian

    Solid Oxide Fuel Cell (SOFC) integrated into Micro Gas Turbine (MGT) is a multivariable nonlinear and strong coupling system. To enable the SOFC and MGT hybrid power system to follow the load profile accurately, this paper proposes a self-tuning PID decoupling controller based on a modified output-input feedback (OIF) Elman neural network model to track the MGT output power and SOFC output power. During the modeling, in order to avoid getting into a local minimum, an improved particle swarm optimization (PSO) algorithm is employed to optimize the weights of the OIF Elman neural network. Using the modified OIF Elman neural network identifier, the SOFC/MGT hybrid system is identified on-line, and the parameters of the PID controller are tuned automatically. Furthermore, the corresponding decoupling control law is achieved by the conventional PID control algorithm. The validity and accuracy of the decoupling controller are tested by simulations in MATLAB environment. The simulation results verify that the proposed control strategy can achieve favorable control performance with regard to various load disturbances.

  15. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  16. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh; Faress Rahman

    2002-12-31

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the October 2002 to December 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The following activities have been carried out during this reporting period: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} Part-load performance analysis was conducted {lg_bullet} Primary system concept was down-selected {lg_bullet} Dynamic control model has been developed {lg_bullet} Preliminary heat exchanger designs were prepared {lg_bullet} Pressurized SOFC endurance testing was performed

  18. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  19. Investigating the Integration of a Solid Oxide Fuel Cell and a Gas Turbine System with Coal Gasification Technologies

    DTIC Science & Technology

    2001-09-01

    conceptually integrate the hybrid power system with existing and imminent coal gasification technologies. The gasification technologies include the Kellogg...Brown Root (KBR) Transport Reactor and entrained coal gasification . Parametric studies will be performed wherein pertinent fuel cell stack process...dependent variables of interest. Coal gasification data and a proven SOFC model will be used to test the theoretical integration. Feasibility and

  20. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    SciTech Connect

    Hsu, M.; Nathanson, D.; Bradshaw, D.T.

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  1. Comparison of Preanode and Postanode Carbon Dioxide Separation for IGFC Systems

    SciTech Connect

    Liese, Eric

    2010-01-01

    This paper examines the arrangement of a solid oxide fuel cell (SOFC) within a coal gasification cycle, this combination generally being called an integrated gasification fuel cell cycle. This work relies on a previous study performed by the National Energy Technology Laboratory (NETL) that details thermodynamic simulations of integrated gasification combined cycle (IGCC) systems and considers various gasifier types and includes cases for 90% CO2 capture (2007, “Cost and Performance Baseline for Fossil Energy Plants, Vol. 1: Bituminous Coal and Natural Gas to Electricity,” National Energy Technology Laboratory Report No. DOE/NETL-2007/1281). All systems in this study assume a Conoco Philips gasifier and cold-gas clean up conditions for the coal gasification system (Cases 3 and 4 in the NETL IGCC report). Four system arrangements, cases, are examined. Cases 1 and 2 remove the CO2 after the SOFC anode. Case 3 assumes steam addition, a water-gas-shift (WGS) catalyst, and a Selexol process to remove the CO2 in the gas cleanup section, sending a hydrogen-rich gas to the fuel cell anode. Case 4 assumes Selexol in the cold-gas cleanup section as in Case 3; however, there is no steam addition, and the WGS takes places in the SOFC and after the anode. Results demonstrate significant efficiency advantages compared with IGCC with CO2 capture. The hydrogen-rich case (Case 3) has better net electric efficiency compared with typical postanode CO2 capture cases (Cases 1 and 2), with a simpler arrangement but at a lower SOFC power density, or a lower efficiency at the same power density. Case 4 gives an efficiency similar to Case 3 but also at a lower SOFC power density. Carbon deposition concerns are also discussed

  2. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  3. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2003-06-06

    This report summarizes the interconnect work being performed at Delphi. Materials were chosen for this interconnect project were chosen from ferritic and austenitic stainless steels, and nickel-based superalloys. The alloys are thermally cycled in air and a wet hydrogen atmosphere. The oxide scale adherence, electrical resistance and oxidation resistance are determined after long-term oxidation of each alloy. The oxide scale adherence will be observed using a scanning electron microscope. The electrical resistance of the oxidized alloys will be determined using an electrical resistance measurement apparatus which has been designed and is currently being built. Data from the electrical resistance measurement is expected to be provided in the second quarter.

  4. Evaluation of solid oxide fuel cell systems for electricity generation

    NASA Technical Reports Server (NTRS)

    Somers, E. V.; Vidt, E. J.; Grimble, R. E.

    1982-01-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  5. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  6. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  7. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Unknown

    2002-03-01

    This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

  8. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  9. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-δ double perovskite as anode material

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Yang, Yating

    2016-09-01

    Development of high-performing and redox-stable ceramic oxide electrode materials is a crucial technical step for direct hydrocarbon solid oxide fuel cells (SOFCs) operating at intermediate temperatures (550-700 °C). Here we report a nickel-free double perovskite, Sr2FeNb0.2Mo0.8O6-δ (SFNM20), for SOFC anode, and this anode shows outstanding performances with high resistance against carbon build-up and redox cycling in hydrocarbon fuels. At 800 °C, the SFNM20 anode shows electrical conductivity of 5.3 S cm-1 in 5% H2 and peak power densities of 520 and 380 mW cm-2 using H2 and CH4 as the fuel, respectively. The cell exhibits a very stable performance under different constant current loads in H2 and CH4 at 700 °C and high redox stability against the gas environment changes in the anode chamber. In addition, the electrode is structurally stable in various fuels, suggesting that it is a feasible material candidate for the electrode of high-performing SOFCs.

  10. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect

    Uday B. Pal; Srikanth Gopalan

    2006-01-12

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  11. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia.

    PubMed

    van Duin, Adri C T; Merinov, Boris V; Jang, Seung Soon; Goddard, William A

    2008-04-10

    We present the ReaxFF reactive force field developed to provide a first-principles-based description of oxygen ion transport through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for ReaxFF were optimized to reproduce quantum mechanical (QM) calculations on relevant condensed phase and cluster systems. We validated the use of ReaxFF for fuel cell applications by using it in molecular dynamics (MD) simulations to predict the oxygen ion diffusion coefficient in yttria-stabilized zirconia as a function of temperature. These values are in excellent agreement with experimental results, setting the stage for the use of ReaxFF to model the transport of oxygen ions through the YSZ electrolyte for SOFC. Because ReaxFF descriptions are already available for some catalysts (e.g., Ni and Pt) and under development for other high-temperature catalysts, we can now consider fully first-principles-based simulations of the critical functions in SOFC, enabling the possibility of in silico optimization of these materials. That is, we can now consider using theory and simulation to examine the effect of materials modifications on both the catalysts and transport processes in SOFC.

  12. SECA Coal-Based Systems

    SciTech Connect

    Joseph Pierre

    2010-09-01

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandia-stabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandia-stabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement wi th the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  13. SECA Coal-Based Systems

    SciTech Connect

    Pierre, Joseph

    2010-09-10

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandiastabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandiastabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement with the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  14. Modeling and Optimization of Renewable and Hybrid Fuel Cell Systems for Space Power and Propulsion

    DTIC Science & Technology

    2010-11-14

    fuel cell technology and solar energy. 15. SUBJECT TERMS Mathematical Models, Regenerative Fuel Cell System, Self-sustainable cabinet 16. SECURITY...second year, the group elaborated the design of the integration of the PEMFC (instead of an SOFC) into RFC systems. The design consisted of a solar ...charged continuously. The batteries then feed an electrolyzer, which fills up an H2 reservoir that feeds a NEXA 1.2 kW PEMFC stack. The water produced in

  15. Novel solid oxide fuel cell system controller for rapid load following

    NASA Astrophysics Data System (ADS)

    Mueller, Fabian; Jabbari, Faryar; Gaynor, Robert; Brouwer, Jacob

    A novel SOFC system control strategy has been developed for rapid load following. The strategy was motivated from the performance of a baseline control strategy developed from control concepts in the literature. The basis for the fuel cell system control concepts are explained by a simplified order of magnitude time scale analysis. The control concepts are then investigated in a detailed quasi-two-dimensional integrated dynamic system model that resolves the physics of heat transfer, chemical kinetics, mass convection and electrochemistry within the system. The baseline control strategy is based on the standard operating method of constant utilization with no control of the combustor temperature. Simulation indicates that with this control strategy large combustor transients can take place during load transients because the fuel flow to the combustor increases faster than the air flow. To alleviate this problem, a novel control structure that maintains the combustor temperature within acceptable ranges without any supplementary hardware was introduced. The combustor temperature is controlled by manipulating the current to change the combustor inlet stoichiometry. The load following capability of SOFC systems is inherently limited by anode compartment fuel depletion during the time of fuel delivery delay. This research indicates that future SOFC systems with proper system and control configurations can exhibit excellent load following characteristics.

  16. Ionic conductivity, structural and thermal properties of pure and Sr 2+ doped Y 2Ti 2O 7 pyrochlores for SOFC

    NASA Astrophysics Data System (ADS)

    Gill, Jasmeet Kaur; Pandey, O. P.; Singh, K.

    2011-11-01

    In the present study, SrO doped Yttrium titanate pyrochlore was synthesized using solid state reaction technique. The sintering characteristics, crystal structure, thermal and conductivity behavior of doped and undoped pyrochlores have been studied to find their suitability in solid oxide fuel cells (SOFC). The as-prepared samples were characterized using X-ray diffraction (XRD), Fourier-Transform-Infrared spectroscopy (FT-IR), thermal-gravimetric analysis (TGA) and ac conductivity up to 900 °C. The results are discussed in light of oxygen vacancy formation and structural disordering. Undoped and doped yttrium titanate with SrO ( x = 0.1) exhibits single Y 2Ti 2O 7 phase with relative density of 94%. It was observed that further doping of SrO ( x = 0.2-0.4) leads to formation of Y 2Ti 2O 7 phase along with SrTiO 3 phase. Excessive SrO ( x = 0.4) results in increase in ionic conductivity to 1.50 × 10 -1 S cm -1 whereas it impedes the densification process with relative density of 85%.

  17. Operating properties of SOFCs using BaCe{sub 0.8}Gd{sub 0.2}O{sub 3{minus}{alpha}} electrolyte

    SciTech Connect

    Taniguchi, Noboru; Yasumoto, Eiichi; Gamo, Takaharu

    1995-12-31

    The performances and the long term operating properties of SOFCs using BaCe{sub 0.8}Gd{sub 0.2}O{sub 3 {minus}{alpha}} (BCG) ceramics as the electrolyte have been investigated. A hydrogen-air fuel cell using BCG electrolyte with a thickness of 0.5mm exhibited good performance at 800 C. Its short-circuit current was 0.9A/cm{sup 2} and there was hardly any degradation of BCG electrolyte in 1600 hours of operation. When the quasi-fuel gas containing 8% CO{sub 2}, which was expected by the reformation of the city gas(CH{sub 4}) at 800 C, was supplied to this cell, its short-circuit currents showed 0.63A/cm{sup 2} and the cell worked stably under the discharge current density of 100mA/cm{sup 2} for 2500 hours. Some sintered metals (Fe,Co,Ni) were examined as a anode material for this electrolyte. Ni is a promising anode material for BCG electrolyte from the point of view of performance and durability.

  18. Effect of PEG additive on anode microstructure and cell performance of anode-supported MT-SOFCs fabricated by phase inversion method

    NASA Astrophysics Data System (ADS)

    Ren, Cong; Liu, Tong; Maturavongsadit, Panita; Luckanagul, Jittima Amie; Chen, Fanglin

    2015-04-01

    Anode-supported micro-tubular solid oxide fuel cells (MT-SOFCs) have been fabricated by phase inversion method. For the anode support preparation, N-methyl-2-pyrrolidone (NMP), polyethersulfone (PESf) and poly ethylene glycol (PEG) were applied as solvent, polymer binder and additive, respectively. The effect of molecular weight and amount of PEG additive on the thermodynamics of the casting solutions was characterized by measuring the coagulation value. Viscosity of the casting slurries was also measured and the influence of PEG additive on viscosity was studied and discussed. The presence of PEG in the casting slurry can significantly influence the final anode support microstructure. Based on the microstructure result and the measured gas permeation value, two anode supports were selected for cell fabrication. For cell with the anode support fabricated using slurry with PEG additive, a maximum cell power density of 704 mW cm-2 is obtained at 750 °C with humidified hydrogen as fuel and ambient air as oxidant; cell fabricated without any PEG additive shows the peak cell power density of 331 mW cm-2. The relationship between anode microstructure and cell performance was discussed.

  19. Low-Temperature Anode-Supported SOFC with Ultra-Thin Ceria-Based Electrolytes Prepared by Modified Sol—Gel Route

    NASA Astrophysics Data System (ADS)

    Lin, Hongfei; Ding, Changsheng; Sato, Kazuhisa; Tsutai, Yoshifumi; Hashida, Toshiyuki

    The utilization of anode-supported electrolytes is a very promising strategy to improve the electrical performance in solid oxide fuel cells (SOFCs) application, because it is possible to decrease considerably the electrolytes thickness. In this paper, ultra-thin ceria-based electrolyte films were successfully prepared on porous NiO/GDC anode support. The electrolyte films with thickness of 0.5-1 µm were deposited by a novel citrate sol-gel route combined with a suspension spray coating technique. The characterization and microstructure of the ultra-thin films were investigated by DTA/TGA, XRD and FE-SEM. The results showed that ceria-based films prepared were pure fluorite type nanocrystalline, homogenous and almost fully dense. Electrochemical performance of single cells based on the ultra-thin electrolyte films was also tested. The single cell with electrolyte thickness of 1 µm provided an OCV of 0.832 V at 500 °C which was close to that of the reported single cell with thicker ceria-based electrolyte film of 10 µm, and maximum power densities of 59.6, 121.9 and 133.8 mW/cm2 at 500, 600, and 700 °C, respectively. These ultra-thin electrolyte films showed good combination with the porous NiO/GDC anode supports, and good insulating ability for inactive electron migration at temperatures less than 600 °C.

  20. Internal reforming over nickel/zirconia anodes in SOFCS oparating on methane: influence of anode formulation, pre-treatment and operating conditions

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine M.; Ormerod, R. Mark

    Internal methane reforming over nickel/zirconia cermet anodes has been studied in detail using a thin-walled extruded zirconia tubular SOFC reactor. The influence of anode formulation, anode pre-treatment, operating temperature and methane/steam ratio on the reforming characteristics, resistance to carbon deposition and durability of the anode have been investigated under actual operating conditions. Post-reaction TPO has been used to determine the amount of carbon deposition and its strength of interaction with the anode. A 90-vol.% nickel/zirconia anode shows higher activity than a 50-vol.% Ni anode at higher reforming temperatures, and shows very good durability. Pre-reducing the anodes in H 2 at 1173 K leads to a more active reforming catalyst. Carbon is removed from the anodes in two processes during TPO, suggesting two types of carbon species. As the reforming temperature increases both carbon types are removed at higher temperature, and there is an increase in the relative population of the more strongly bound form of carbon.

  1. Dopants to enhance SOFC cathodes based on Sr-doped LaFeO 3 and LaMnO 3

    NASA Astrophysics Data System (ADS)

    Bidrawn, F.; Kim, G.; Aramrueang, N.; Vohs, J. M.; Gorte, R. J.

    The influence of various infiltrated dopants on the performance of solid oxide fuel cell (SOFC) cathodes was examined. The cathodes were prepared by infiltration of nitrate salts into porous yttria-stabilized zirconia (YSZ) to produce composites with 40-wt% of either La 0.8Sr 0.2FeO 3 (LSF) or La 0.8Sr 0.2MnO 3 (LSM) and were then calcined to either 1123 or 1373 K. The addition of dopants had little influence on the 1123-K composite electrodes but all dopants tested improved the performance of the 1373-K composites. With 1373-K, LSF-YSZ electrodes, the open-circuit impedances decreased dramatically following the addition of 10-wt% YSZ, 0.5-wt% Pd, 10-wt% Ce 0.8Sm 0.2O 1.9 (SDC), 10-wt% CaO, and 10-wt% K 2O. Similarly, the 1373-K, LSM-YSZ electrodes were enhanced by the addition of 10-wt% CeO 2, 1-wt% Pd, and 10-wt% YSZ. Since the improved performance was close to that of the corresponding LSF-YSZ and LSM-YSZ electrodes that had been calcined to only 1123 K, it is suggested that the improved performance is related to structural changes in the electrode, rather than to improved catalytic properties or ionic conductivity.

  2. Optimum Operation Condition on Distributed Power Supply System with Micro Gas Turbine/Solid Oxide Fuel Cell

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Yamada, Miki; Usui, Hiromoto; Komoda, Yoshiyuki

    In order to find the optimum operation condition of a distributed power supply system of 30kW class micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system with the combination of line electric power and supplied gas, a system analysis has been performed. In this study, an absorption chiller and a boiler were mounted to utilize the exhausted heat from the MGT/SOFC system. The time variation of energy consumption in 24 hours for house and market models was taken into consideration for the calculation of the energy saving ratio of the present system. The operation ratio defined with the ratio of power supply of MGT/SOFC system to the power required at the peak load was changed as a parameter. From the comparison with the system using line power and gas, it is found that the present system shows high energy saving ratio around 0.4 of the operation ratio, but the energy saving ratio severely decreases in the range of high operation ratio. In this study, it is revealed that the thermal storage system effectively improves the energy saving ratio especially for the house model in winter season.

  3. AFFORDABLE MULTI-LAYER CERAMIC (MLC) MANUFACTURING FOR POWER SYSTEMS (AMPS)

    SciTech Connect

    E.A. Barringer, Ph.D.

    2002-11-27

    McDermott Technology, Inc. (MTI) is attempting to develop high-performance, cost-competitive solid oxide fuel cell (SOFC) power systems. Recognizing the challenges and limitations facing the development of SOFC stacks comprised of electrode-supported cells and metallic interconnects, McDermott Technology, Inc. (MTI) has chosen to pursue an alternate path to commercialization. MTI is developing a multi-layer, co-fired, planar SOFC stack that will provide superior performance and reliability at reduced costs relative to competing designs. The MTI approach combines state-of-the-art SOFC materials with the manufacturing technology and infrastructure established for multi-layer ceramic (MLC) packages for the microelectronics industry. The rationale for using MLC packaging technology is that high quality, low-cost manufacturing has been demonstrated at high volumes. With the proper selection of SOFC materials, implementation of MLC fabrication methods offers unique designs for stacks (cells and interconnects) that are not possible through traditional fabrication methods. The MTI approach eliminates use of metal interconnects and ceramic-metal seals, which are primary sources of stack performance degradation. Co-fired cells are less susceptible to thermal cycling stresses by using material compositions that have closely matched coefficients of thermal expansion between the cell and the interconnect. The development of this SOFC stack technology was initiated in October 1999 under the DOE cosponsored program entitled ''Affordable Multi-layer Ceramic Manufacturing for Power Systems (AMPS)''. The AMPS Program was conducted as a two-phase program: Phase I--Feasibility Assessment (10/99--9/00); and Phase II--Process Development for Co-fired Stacks (10/00-3/02). This report provides a summary of the results from Phase I and a more detailed review of the results for Phase II. Phase I demonstrated the feasibility for fabricating multi-layer, co-fired cells and interconnects and

  4. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  5. SECA Coal-Based Systems - FuelCell Energy, Inc.

    SciTech Connect

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  6. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric

  7. Experimental simulation on the integration of solid oxide fuel cell and micro-turbine generation system

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Hsiang; Hsiao, Chi-An; Lee, Chien-Hsiung; Chyou, Yau-Pin; Tsai, Yu-Ching

    Solid oxide fuel cell (SOFC) is characterized in high performance and high temperature exhaust, and it has potential to reach 70% efficiency if combined with gas turbine engine (GT). Because the SOFC is in developing stage, it is too expensive to obtain. This paper proposes a feasibility study by using a burner (Comb A) to simulate the high temperature exhaust gas of SOFC. The second burner (Comb B) is connected downstream of Comb A, and preheated hydrogen is injected to simulate the condition of sequential burner (SeqB). A turbocharger and a water injection system are also integrated in order to simulate the situation of a real SOFC/GT hybrid system. The water injection system is used to simulate the water mist addition at external reformer. Results show that this configuration can simulate the SOFT/GT hybrid system successfully. Water mist addition will increase the GT rotational speed, but an optimal amount exists during the variation of water injection. In residual fuel addition test, hydrogen shows good combustion efficiency and preheating temperature is the dominant parameter for hydrogen burning in SeqB even without flame holding mechanism in it. When preheating temperature is among 450-600 °C, hydrogen will have almost 100% combustion efficiency at 90% engine loading, and GT will get a higher rotational speed for the same energy input. But when the engine operates at 100% loading, the combustion efficiency will decrease while fuel utilization (U f) setting is increasing. When raising the preheated temperature to 650-700 °C, the combustion efficiency will increase rapidly.

  8. Synergistic effects of Ni 1- xCo x-YSZ and Ni 1- xCu x-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H 2S

    NASA Astrophysics Data System (ADS)

    Grgicak, Catherine M.; Pakulska, Malgosia M.; O'Brien, Julie S.; Giorgi, Javier B.

    Preparation and performance of bimetallic Ni (1- x)Co x-YSZ and Ni (1- x)Cu x-YSZ anodes were tested to overcome common deficiencies of carbon and sulfur poisoning in SOFCs. Ni 1- xCo xO-YSZ and Ni (1- x)Cu xO-YSZ precursors were synthesized via co-precipitation of their respective chlorides. Single cell solid oxide fuel cells of these bimetallic anodes were tested in H 2, CH 4, and H 2S/CH 4 fuel mixtures. Addition of Cu 2+ into the NiO lattice resulted in large metal particle sizes and decreased SOFC performance. Addition of Co 2+ into the NiO lattice to form Ni 0.92Co 0.08O-YSZ anode precursor produced a cermet with a large BET surface area and active metal surface area, thus increasing the rate of hydrogen oxidation for this sample. The performance of both bimetallics was found to quickly degrade in dry CH 4 due to carbon deposition and lifting of the anode from the electrolyte. However, Ni 0.69Co 0.31-YSZ showed superior activity in a 10% (v/v) H 2S/CH 4 fuel mixture, surpassing performance with H 2 fuel, thereby demonstrating the exciting prospect of using sulfidated Ni (1- x)Co x-YSZ as SOFC anodes in sulfur containing methane streams. The active anode becomes a sulfidated alloy (Ni-Co-S) under operating conditions. This anode showed enhanced performance, which surpassed those of sulfidated Ni and Co anodes, thereby suggesting a synergistic behaviour in the Ni-Co-S anode.

  9. Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework

    NASA Astrophysics Data System (ADS)

    Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.

    A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.

  10. Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs

    DOE PAGES

    Meng, Xiangwei; Lü, Shiquan; Liu, Shouxiu; ...

    2015-06-15

    In this paper, the B-site cation-excess K2NiF4-type structure oxide, Pr2Ni0.75Cu0.25Ga0.05O4+δ (PNCG) is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD result shows that PNCG cathode is chemically compatible with the electrolyte Gd0.1Ce0.9O2-δ (GDC) at 900 °C for 5 h. The PNCG material exhibits a semiconductor to metal transition around 425 °C. The thermal expansion coefficient (TEC) of the PNCG sample is 12.72×10-6 K-1 between 30 and 850 °C in air. The polarization resistance (Rp) of PNCG cathode on GDC electrolyte is 0.105, 0.197 and 0.300 Ω cm2 at 800, 750, 700 °C, respectively. A maximum powermore » density of 371 mW cm-2 is obtained at 800 °C for single-cell with 300 μm thick GDC electrolyte and PNCG cathode. Finally, the results of this study demonstrate that PNCG can be a promising cathode material for IT-SOFCs.« less

  11. Visualizing the Structural Evolution of LSM/xYSZ Composite Cathodes for SOFC by in-situ Neutron Diffraction

    PubMed Central

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-01-01

    Thermal stability of composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO3−δ (LSM) and (Y2O3)x(ZrO2)1−x (xYSZ, x = 3, 6, 8 and 10), is determined using in-situ neutron diffraction. Thanks to the most advanced high flux neutron source, our work highlights the visualization of the phase evolutions in heterogeneous material systems at high temperatures, along with the analysis of the diffusion activities of transition metal ions that reveal the reaction mechanism and kinetics. It is found that the tetragonal-to-cubic phase transition in YSZ at T > 900°C leads to a heterogeneous redistribution of Mn ions. The subsequent reaction of LSM and YSZ occurring at T > 1100°C is revealed as a three-stage kinetic process, yielding La2Zr2O7, SrZrO3 and MnO. The diffusion activities of Y, Mn and La ions in the heterogeneous systems at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM is found strongly correlated to ions' behaviors as functions of temperature. PMID:24899139

  12. Visualizing the structural evolution of LSM/xYSZ composite cathodes for SOFC by in-situ neutron diffraction.

    PubMed

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-06-05

    Thermal stability of composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO(3-δ) (LSM) and (Y2O3)(x)(ZrO2)(1-x) (xYSZ, x = 3, 6, 8 and 10), is determined using in-situ neutron diffraction. Thanks to the most advanced high flux neutron source, our work highlights the visualization of the phase evolutions in heterogeneous material systems at high temperatures, along with the analysis of the diffusion activities of transition metal ions that reveal the reaction mechanism and kinetics. It is found that the tetragonal-to-cubic phase transition in YSZ at T > 900°C leads to a heterogeneous redistribution of Mn ions. The subsequent reaction of LSM and YSZ occurring at T > 1100°C is revealed as a three-stage kinetic process, yielding La2Zr2O7, SrZrO3 and MnO. The diffusion activities of Y, Mn and La ions in the heterogeneous systems at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM is found strongly correlated to ions' behaviors as functions of temperature.

  13. Visualizing the Structural Evolution of LSM/xYSZ Composite Cathodes for SOFC by in-situ Neutron Diffraction

    SciTech Connect

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-01-01

    Composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO3- (LSM) and (Y2O3)x(ZrO2)1-x (xYSZ, x = 3, 6, 8 and 10), have the thermal stability unraveled at elevated temperatures by using in-situ neutron diffraction. The Rietveld refinement analysis of neutron diffraction visualizes the phase evolutions and the ion activities in the material systems. The phase transition of tetragonal YSZ at T > 900 C leads to a heterogeneous redistribution of Mn ions. The reaction of LSM and YSZ occurring at T > 1100 C was revealed as a three-stage process, yielding La2Zr2O7, SrZrO3 and MnO. The activities of Y, Mn and La ions at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM was found strongly correlated to ions behaviors.

  14. Systems Analysis Developed for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  15. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  16. Present status and future prospects for fuel cell power systems

    NASA Astrophysics Data System (ADS)

    Anahara, Rioji; Yokokawa, Sumio; Sakurai, Masahiro

    1993-03-01

    'Fuel-cell' generating plants, which convert chemical energy directly into electric energy differ from conventional generating plants by the absence of rotating machines. Such plants are expected to see increasing practical use. Fuel-cell systems under development for practical use are phosphoric acid (PAFC), molten carbonate (MCFC), solid oxide (SOFC), and proton exchange membrane (PEMFC). PAFC, which is the closest of these systems to commercialization, has been developed vigorously by the United States and Japan. This paper describes the history of fuel-cell development, state of PAFC development, and key inverter technologies.

  17. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  18. Effect of concentration of Sm2O3 and Yb2O3 and synthesizing temperature on electrical and crystal structure of (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y electrolytes fabricated for IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Kayalı, Refik; Özen, Mürivet Kaşıkcı; Bezir, Nalan Çiçek; Evcin, Atilla

    2016-05-01

    For intermediate temperature solid oxide fuel cells (IT-SOFCs), (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary systems (x=0.01 and y= 0.11), (x=0.05 and y= 0.07), (x=0.07 and y=0.05), and (x=0.11 and y=0.01) as electrolytes have been fabricated at different temperatures (700, 750, and 800 °C) by solid state ceramic technique (SST). The characterization of the samples has been performed by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), four point-probe method (FPPM), X-ray energy diffraction spectroscopy (EDX), and differential thermal analysis (DTA). XRD measurements have shown that only the samples (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y (x=0.01, y=0.11 synthesized at 700, 750, and 800 °C) and (x=0.05, y=0.07 synthesized at 800 °C) have stable fluorite type face centered cubic (FCC) δ-phase. SEM images have shown the morphology of the stable samples. The conductivity and the operation temperature region of the samples have been determined from Arrhenius curves obtained from the FPPM measurements data and they vary from 1.83 to 9.95×10-1 S cm-1. Moreover, activation energy of the samples have been calculated by means of Arrhenius curves of the samples and relationships between them and the conductivity of the samples have been investigated in detail. The results obtained from XRD and FPPM measurements were confirmed by the DTA measurements.

  19. Ceria-based SOFC development

    SciTech Connect

    Doshi, R.; Krumpelt, M.

    1996-02-01

    The advantages of lowering the operating temperature of solid oxide fuel cells have led to efforts to develop fuel cells based on electrolytes like ceria which have a higher conductivity than zirconia. Lowering the operating temperature, however, causes increased electrode polarization. The currently used cathode material for higher temperature operation, lanthanum manganite, is inadequate for operation below 650--700{degrees}C. Therefore, to develop fuel cells for operation at 500{degrees}C, new electrode materials need to be. developed. It is recognized that the cathode performance requires the most improvement due to significantly slower oxygen reduction kinetics and/or oxygen diffusion kinetics through the electrode. In fact, for fuel cells made with thin electrolytes, the cathode accounts for up to 90% of the total voltage loss under load. Results on fuel cell tests in methanol and hydrogen and on new cathode materials are reported here. The results on new cathode materials are compared with known material properties, like nonstoichiometry and oxygen diffusion coefficients.

  20. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  1. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOEpatents

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  2. Study of Geometric Stability and Structural Integrity of Self-Healing Glass Seal System Used in Solid Oxide Fuel Cells

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2011-02-15

    A self-healing glass seal has the potential of restoring its mechanical properties upon being reheated to SOFC stack operating temperature, even when it has experienced some cooling induced damage/cracking at room temperature. Such a self-healing feature is desirable for achieving high seal reliability during thermal cycling. On the other hand, self-healing glass is also characterized by its low mechanical stiffness and high creep rate at the typical operating temperature of SOFCs. Therefore, geometry stability and structural integrity of the glass seal system becomes critical to its successful application in SOFCs. In this paper, the geometry stability of the self-healing glass and the influence of various interfacial conditions of ceramic stoppers with the PEN, IC, and glass seal on the structural integrity of the glass seal during the operating and cooling down processes are studied using finite element analyses. For this purpose, the test cell used in the leakage tests for compliant glass seals conducted at PNNL is taken as the initial modeling geometry. The effect of the ceramic stopper on the geometry stability of the self-healing glass sealants is studied first. Two interfacial conditions of the ceramic stopper and glass seals, i.e., bonded (strong) or un-bonded (weak), are considered. Then the influences of interfacial strengths at various interfaces, i.e., stopper/glass, stopper/PEN, as well as stopper/IC plate, on the geometry stability and reliability of glass during the operating and cooling processes are examined.

  3. Energy and environmental evaluation of solid oxide fuel cell system for tri-generation in residential applications

    NASA Astrophysics Data System (ADS)

    Al Moussawi, Houssein; Fardoun, Farouk; Louahlia-Gualous, Hasna

    2016-07-01

    This study presents an evaluation of a solid oxide fuel system modeled with its energy balance of plant components in order to recover its exhaust waste heat and develop a combined cooling, heating, and power system. A hydrogen-fueled SOFC is modeled in MATLAB and a 3D drawn building are imported into TRNSYS where system performances are assessed. An optimization approach is employed to find the best system sizing. Energetic and environmental assessments shows better performance as the system size increases which suggests the necessity of an economic study application.

  4. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  5. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    SciTech Connect

    Lukas, Michael

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  6. Performance of Ni/ScSZ cermet anode modified by coating with Gd 0.2Ce 0.8O 2 for an SOFC running on methane fuel

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Ye, X. F.; Wang, S. R.; Nie, H. W.; Shi, J.; Hu, Q.; Qian, J. Q.; Sun, X. F.; Wen, T. L.

    A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd 0.2Ce 0.8O 2) prepared using a simple combustion process within the pores of the anode for a solid oxide fuel cell (SOFC) running on methane fuel. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Then, the short-term stability for the cells with the Ni/ScSZ and 2.0 wt.%GDC-coated Ni/ScSZ anodes in 97%CH 4/3%H 2O at 700 °C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.098 to 1.179 V, and power densities increased from 224 to 848 mW cm -2, as the operating temperature of an SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 °C in humidified methane. The coating of nano-sized Gd 0.2Ce 0.8O 2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cells. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Introduction of nano-sized GDC particles into the pores of porous Ni/ScSZ anode will result in a substantial increase in the ionic conductivity of the anode and increase the triple phase boundary region expanding the number of sites available for electrochemical activity. No significant degradation in performance has been observed after 84 h of cell testing when 2.0 wt.%GDC-coated Ni/ScSZ anode was exposed to 97%CH 4/3%H 2O at 700 °C. Very little carbon was detected on the anodes, suggesting that carbon deposition was limited during cell operation. Consequently, the GDC coating on the pores of anode made it possible to have good stability for long-term operation due to low carbon deposition.

  7. Dynamic Octahedral Breathing in Oxygen-Deficient Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) Perovskite Performing as a Cathode in Intermediate-Temperature SOFC.

    PubMed

    Gong, Yudong; Sun, Chunwen; Huang, Qiu-an; Alonso, Jose Antonio; Fernández-Díaz, Maria Teresa; Chen, Liquan

    2016-03-21

    Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.

  8. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations

  9. System level modeling and component level control of fuel cells

    NASA Astrophysics Data System (ADS)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  10. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    PubMed Central

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  11. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  12. Reliability analysis and initial requirements for FC systems and stacks

    NASA Astrophysics Data System (ADS)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  13. Fuel Cell Introduction into a Class 8 Truck

    DTIC Science & Technology

    2003-09-11

    tractor and a plan for modeling was initiated. As prograas is made with Solid Oxide Fuel Cell ( SOFC ) technology, the reformer to mate with the SOFC ...made with Solid Oxide Fuel Cell ( SOFC ) technology, the reformer to mate with the SOFC will be markedly different from current reformers and remains the...zeolite based air conditioning system. Thl$ work is still in progress. As progress is made ’IIIith Solid Oxide Fuel Cell ( SOFC ) technology, the reformer

  14. Direct methane oxidation over a Bi 2O 3-GDC system

    NASA Astrophysics Data System (ADS)

    Huang, Ta-Jen; Li, Jia-Fu

    A novel ceramic system was prepared by adding Bi 2O 3 to gadolinia-doped ceria (GDC). This Bi 2O 3-GDC system was characterized by temperature-programmed and fixed-temperature reaction of methane in the absence of gas-phase oxygen. It was found that adding Bi 2O 3 to GDC can promote the catalytic activity for direct methane oxidation. A Bi 2O 3 loading of 25 wt% in the Bi 2O 3-GDC system maximized the activity of direct methane oxidation. Possible carbon deposition after the reaction can be negligible. In the temperature range of an intermediate-temperature solid oxide fuel cell (SOFC), pre-reduction promotes methane oxidation activity. At temperatures of about 600 °C or lower, only CO 2 and H 2O are produced. However, CO and H 2 can be produced only at a temperature of about 700 °C or higher. This Bi 2O 3-GDC system can be applied to design SOFC anode materials for complete methane oxidation and thus full electricity generation, without syngas cogeneration, at low temperature.

  15. Status of commercial fuel cell powerplant system development

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin

    1987-01-01

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  16. Status of commercial fuel cell powerplant system development

    NASA Astrophysics Data System (ADS)

    Warshay, Marvin

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  17. Electrochemically influenced cation inter-diffusion and Co3O4 formation on La0.6Sr0.4CoO3 infiltrated into SOFC cathodes

    DOE PAGES

    Song, Xueyan; Lee, Shiwoo; Chen, Yun; ...

    2015-06-18

    Nanosized LSC electrocatalyst was infiltrated into a porous scaffold cathode composed of Sm2O3-doped CeO2 (SDC) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) in a commercial button solid oxide fuel cell (SOFC). To understand the stability of cathodes infiltrated with LSC, the infiltrated composite cells were subjected to both electrochemical operating and thermal aging states at 750 °C for 1500 h. Nanostructure and local chemistry evolution of La0.6Sr0.4CoO3 (LSC) infiltrated cathodes upon operation and aging were investigated by transmission electron microscopy. After operation, the LSC remained a cubic perovskite, and the crystal grains exhibit comparable size to as-infiltrated LSC grains. Inter-diffusion of Fe from themore » LSCF to a Fe-incorporated LSC layer developed on the LSCF backbone. However, only sharp interfaces were observed between LSC and SDC backbone in the as-infiltrated cathode and such interfaces remain after operation. The infiltrated LSC on the SDC backbone also retains granular particle morphology. Furthermore, newly grown Co3O4 nanocrystals were found in the operated cathode. After thermal aging, on the other hand, cation inter-diffusion across the interfaces of the infiltrate particles and the cathode backbones is less than that from the operated cells. Lastly, the following hypothesis is proposed: Co3O4 forms on LSC arising from local charge balancing between cobalt and oxygen vacancies.« less

  18. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3±δ).

    PubMed

    Huber, Anne-Katrin; Falk, Mareike; Rohnke, Marcus; Luerssen, Bjoern; Gregoratti, Luca; Amati, Matteo; Janek, Jürgen

    2012-01-14

    Mixed-conducting perovskite-type electrodes which are used as cathodes in solid oxide fuel cells (SOFCs) exhibit pronounced performance improvement after cathodic polarization. The current in situ study addresses the mechanism of this activation process which is still unknown. We chose the new perovskite-type material La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) which is a potential candidate for use in symmetrical solid oxide fuel cells (SFCs). We prepared La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) thin film model electrodes on YSZ (111) single crystals by pulsed laser deposition (PLD). Impedance spectroscopy (EIS) measurements show that the kinetics of these electrodes can be drastically improved by applying a cathodic potential. To understand the origin of the enhanced electrocatalytic activity the surfaces of operating LSCrM electrodes were studied in situ (at low pressure) with spatially resolving X-ray photoelectron spectroscopy (μ-ESCA, SPEM) and quasi static secondary ion mass spectrometry (ToF-SIMS) after applying different electrical potentials in the SIMS chamber. We observed that the electrode surfaces which were annealed at 600 °C are enriched significantly in strontium. Subsequent cathodic polarization decreases the strontium surface concentration while anodic polarization increases the strontium accumulation at the electrode surface. We propose a mechanism based on the reversible incorporation of a passivating SrO surface phase into the LSCrM lattice to explain the observed activation/deactivation process.

  19. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect

    Gerdes, Kirk; Richards, George

    2014-04-16

    data capturing operational degradation. The data were matched by a 3D multi-physics simulation of SOFC operational performance assuming that the entire performance loss related to coarsening of the cathode triple phase boundary (3PB). The predicted 3PB coarsening was then used to tune the mobility parameters of a phase field model describing microstructural evolution of the lanthanum strontium manganate (LSM)/ yttria stabilized zirconia (YSZ) system. Once calibrated, the phase field model predicted continuous microstructural coarsening processes occurring over the operating period, which could be extrapolated to performance periods of longer duration and also used to produce 3D graphical representations. NETL researchers also completed significant electrode engineering research complimented by 3D multi-physics simulations. In one key activity researchers generated an illustration demonstrating that control of infiltrate deposition can provide cell manufacturers with significant additional operational and engineering control over the SOFC stack. Specifically, researchers demonstrated that by engineering the deposition of electrocatalyst inside the cathode, the distribution of overpotential across the cell could be controlled to either decrease the average cell overpotential value or minimize cross-cell overpotential gradient. Results imply that manufacturers can establish improved engineering control over stack operation by implementing infiltration technology in SOFC cathodes.

  20. Syngas generation from n-butane with an integrated MEMS assembly for gas processing in micro-solid oxide fuel cell systems.

    PubMed

    Bieberle-Hütter, A; Santis-Alvarez, A J; Jiang, B; Heeb, P; Maeder, T; Nabavi, M; Poulikakos, D; Niedermann, P; Dommann, A; Muralt, P; Bernard, A; Gauckler, L J

    2012-11-21

    An integrated system of a microreformer and a carrier allowing for syngas generation from liquefied petroleum gas (LPG) for micro-SOFC application is discussed. The microreformer with an overall size of 12.7 mm × 12.7 mm × 1.9 mm is fabricated with micro-electro-mechanical system (MEMS) technologies. As a catalyst, a special foam-like material made from ceria-zirconia nanoparticles doped with rhodium is used to fill the reformer cavity of 58.5 mm(3). The microreformer is fixed onto a microfabricated structure with built-in fluidic channels and integrated heaters, the so-called functional carrier. It allows for thermal decoupling of the cold inlet gas and the hot fuel processing zone. Two methods for heating the microreformer are compared in this study: a) heating in an external furnace and b) heating with the two built-in heaters on the functional carrier. With both methods, high butane conversion rates of 74%-85% are obtained at around 550 °C. In addition, high hydrogen and carbon monoxide yields and selectivities are achieved. The results confirm those from classical lab reformers built without MEMS technology (N. Hotz et al., Chem. Eng. Sci., 2008, 63, 5193; N. Hotz et al., Appl. Catal., B, 2007, 73, 336). The material combinations and processing techniques enable syngas production with the present MEMS based microreformer with high performance for temperatures up to 700 °C. The functional carrier is the basis for a new platform, which can integrate the micro-SOFC membranes and the gas processing unit as subsystem of an entire micro-SOFC system.

  1. Investigation into the effect of Si doping on the performance of Sr(1-y)Ca(y)MnO(3-δ) SOFC cathode materials.

    PubMed

    Porras-Vazquez, Jose M; Losilla, Enrique R; Keenan, Philip J; Hancock, Cathryn A; Kemp, Thomas F; Hanna, John V; Slater, Peter R

    2013-04-21

    In this paper we report the successful incorporation of silicon into Sr1-yCayMnO3-δ perovskite materials for potential applications in cathodes for solid oxide fuel cells. The Si substitution onto the B site of a (29)Si enriched Sr1-yCayMn1-xSixO3-δ perovskite system is confirmed by (29)Si MAS NMR measurements at low B0 field. The very large paramagnetic shift (~3000-3500 ppm) and anisotropy (span ~4000 ppm) suggests that the Si(4+) species experiences both Fermi contact and electron-nuclear dipolar contributions to the paramagnetic interaction with the Mn(3+/4+) centres. An improvement in the conductivity is observed for low level Si doping, which can be attributed to two factors. The first of these is attributed to the tetrahedral coordination preference of Si leading to the introduction of oxide ion vacancies, and hence a partial reduction of Mn(4+) to give mixed valence Mn. Secondly, for samples with high Sr levels, the undoped systems adopt a hexagonal perovskite structure containing face sharing of MnO6 octahedra, while Si doping is shown to help to stabilise the more highly conducting cubic perovskite containing corner linked octahedra. The level of Si, x, required to stabilise the cubic Sr1-yCayMn1-xSixO3-δ perovskite in these cases is shown to decrease with increasing Ca content; thus cubic symmetry is achieved at x = 0.05 for the Sr0.5Ca0.5Mn1-xSixO3-δ series; x = 0.075 for Sr0.7Ca0.3Mn1-xSixO3-δ; x = 0.10 for Sr0.8Ca0.2Mn1-xSixO3-δ; and x = 0.15 for SrMn1-xSixO3-δ. Composites with 50% Ce0.9Gd0.1O1.95 were examined on dense Ce0.9Gd0.1O1.95 pellets. For all series an improvement in the area specific resistances (ASR) values is observed for the Si-doped samples. Thus these preliminary results show that silicon can be incorporated into perovskite cathode materials and can have a beneficial effect on the performance.

  2. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    NASA Astrophysics Data System (ADS)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  3. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  4. Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control

    NASA Astrophysics Data System (ADS)

    Sanandaji, Borhan M.; Vincent, Tyrone L.; Colclasure, Andrew M.; Kee, Robert J.

    This paper describes a systematic method for developing model-based controllers for solid-oxide fuel cell (SOFC) systems. To enhance the system efficiency and to avoid possible damages, the system must be controlled within specific operating conditions, while satisfying a load requirement. Model predictive control (MPC) is a natural choice for control implementation. However, to implement MPC, a low-order model is needed that captures the dominant dynamic behavior over the operating range. A linear parameter varying (LPV) model structure is developed and applied to obtain a control-oriented dynamic model of the SOFC stack. This approach effectively reduces a detailed physical model to a form that is compatible with MPC. The LPV structure includes nonlinear scheduling functions that blend the dynamics of locally linear models to represent nonlinear dynamic behavior over large operating ranges. Alternative scheduling variables are evaluated, with cell current being shown to be an appropriate choice. Using the reduced-order model, an MPC controller is designed that can respond to the load requirement over a wide range of operation changes while maintaining input-output variables within specified constraints. To validate the approach, the LPV-based MPC controller is applied to the high-order physical model.

  5. Solid oxide fuel cell/gas turbine trigeneration system for marine applications

    NASA Astrophysics Data System (ADS)

    Tse, Lawrence Kar Chung; Wilkins, Steven; McGlashan, Niall; Urban, Bernhard; Martinez-Botas, Ricardo

    2011-03-01

    Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost. This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation. It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens. The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.

  6. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the

  7. Dynamic behaviour of SOFC short stacks

    NASA Astrophysics Data System (ADS)

    Molinelli, Michele; Larrain, Diego; Autissier, Nordahl; Ihringer, Raphaël; Sfeir, Joseph; Badel, Nicolas; Bucheli, Olivier; Van herle, Jan

    Electrical output behaviour obtained on solid oxide fuel cell stacks, based on planar anode supported cells (50 or 100 cm 2 active area) and metallic interconnects, is reported. Stacks (1-12 cells) have been operated with cathode air and anode hydrogen flows between 750 and 800 °C operating temperature. At first polarisation, an activation phase (increase in power density) is typically observed, ascribed to the cathode but not clarified. Activation may extend over days or weeks. The materials are fairly resistant to thermal cycling. A 1-cell stack cycled five times in 4 days at heating/cooling rates of 100-300 K h -1, showed no accelerated degradation. In a 5-cell stack, open circuit voltage (OCV) of all cells remained constant after three full cycles (800-25 °C). Power output is little affected by air flow but markedly influenced by small fuel flow variation. Fuel utilisation reached 88% in one 5-cell stack test. Performance homogeneity between cells lay at ±4-8% for three different 5- or 6-cell stacks, but was poor for a 12-cell stack with respect to the border cells. Degradation of a 1-cell stack operated for 5500 h showed clear dependence on operating conditions (cell voltage, fuel conversion), believed to be related to anode reoxidation (Ni). A 6-cell stack (50 cm 2 cells) delivering 100 W el at 790 °C (1 kW el L -1 or 0.34 W cm -2) went through a fuel supply interruption and a thermal cycle, with one out of the six cells slightly underperforming after these events. This cell was eventually responsible (hot spot) for stack failure.

  8. SOFC seal and cell thermal management

    DOEpatents

    Potnis, Shailesh Vijay; Rehg, Timothy Joseph

    2011-05-17

    The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

  9. Compliant Glass Seals for SOFC Stacks

    SciTech Connect

    Chou, Yeong -Shyung; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  10. Viscous Glass Sealants for SOFC Applications

    SciTech Connect

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  11. Flexible ceramic gasket for SOFC generator

    DOEpatents

    Zafred, Paolo; Prevish, Thomas

    2009-02-03

    A solid oxide fuel cell generator (10) contains stacks of hollow axially elongated fuel cells (36) having an open top end (37), an oxidant inlet plenum (52), a feed fuel plenum (11), a combustion chamber (94) for combusting reacted oxidant/spent fuel; and, optionally, a fuel recirculation chamber (106) below the combustion chamber (94), where the fuel recirculation chamber (94) is in part defined by semi-porous fuel cell positioning gasket (108), all within an outer generator enclosure (8), wherein the fuel cell gasket (108) has a laminate structure comprising at least a compliant fibrous mat support layer and a strong, yet flexible woven layer, which may contain catalytic particles facing the combustion chamber, where the catalyst, if used, is effective to further oxidize exhaust fuel and protect the open top end (37) of the fuel cells.

  12. Status of SOFC development in USA

    SciTech Connect

    Hooie, D.T.

    1993-06-01

    Solid oxide fuel cells represent a highly efficient power generation/cogeneration source in the United States and worldwide. Currently, the US is a leader in this technology in the tubular, monolithic and planar solid oxide fuel cell areas. In addition, research is being conducted in intermediate temperature solid oxide fuel cells. An overview of the status of these technologies, research, and critical issues is presented.

  13. Investigation into the effect of Si doping on the cell symmetry and performance of Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} SOFC cathode materials

    SciTech Connect

    Porras-Vazquez, Jose M.; Smith, R.I.; Slater, Peter R.

    2014-05-01

    In this paper we report the successful incorporation of silicon into Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} perovskite materials for potential applications as electrode materials for Solid Oxide Fuel Cells. It is observed that Si doping leads to a change from a tetragonal or orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). The structures of the phases, SrFe{sub 0.85}Si{sub 0.15}O{sub 3−δ}, Sr{sub 0.75}Ca{sub 0.25}Fe{sub 0.85}Si{sub 0.15}O{sub 3−δ} and Sr{sub 0.5}Ca{sub 0.5}Fe{sub 0.85}Si{sub 0.15}O{sub 3−δ}, were analysed using neutron powder diffraction. The data confirmed the cubic unit cell, with no long range oxygen vacancy ordering. Conductivity measurements showed an improvement in the conductivity on Si doping, especially for samples with high Ca content. Composite electrodes comprising 50% Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} and 50% Sr{sub 1−y}Ca{sub y}(Fe/Si)O{sub 3−δ} on dense Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} pellets were therefore examined in air. An improvement in the area specific resistances (ASR) values is observed for the Si-doped samples with respect to the undoped samples. Thus the results show that silicon can be incorporated into Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ}-based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode material in Solid Oxide Fuel Cells (SOFC). - Graphical abstract: X-ray diffraction patterns for: (left) Sr{sub 0.75}Ca{sub 0.25}Fe{sub 1−x}Si{sub x}O{sub 3−δ} (x=0, 0.05, 0.10 and 0.15) and (right) Sr{sub 0.25}Ca{sub 0.75}Fe{sub 1−x}Si{sub x}O{sub 3−δ} (x=0, 0.05, 0.10 and 0.15), showing the stabilization of the cubic form of these series through silicon doping. For the latter Sr{sub 0.25}Ca{sub 0.75}Fe{sub 1−x}Si{sub x}O{sub 3−δ} phase, the stabilisation is not quite complete at 15% Si doping. - Highlights: • In Sr{sub 1−y}Ca{sub y}Fe{sub 1−x}Si{sub x}O{sub 3

  14. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  15. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  16. Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs

    SciTech Connect

    Meng, Xiangwei; Lü, Shiquan; Liu, Shouxiu; Liu, Xiaoyan; Sui, Yingrui; Li, Xiuyan; Pang, Mingjun; Wang, Biao; Ji, Yuan; Hu, Michael Z.

    2015-06-15

    In this paper, the B-site cation-excess K2NiF4-type structure oxide, Pr2Ni0.75Cu0.25Ga0.05O4+δ (PNCG) is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD result shows that PNCG cathode is chemically compatible with the electrolyte Gd0.1Ce0.9O2-δ (GDC) at 900 °C for 5 h. The PNCG material exhibits a semiconductor to metal transition around 425 °C. The thermal expansion coefficient (TEC) of the PNCG sample is 12.72×10-6 K-1 between 30 and 850 °C in air. The polarization resistance (Rp) of PNCG cathode on GDC electrolyte is 0.105, 0.197 and 0.300 Ω cm2 at 800, 750, 700 °C, respectively. A maximum power density of 371 mW cm-2 is obtained at 800 °C for single-cell with 300 μm thick GDC electrolyte and PNCG cathode. Finally, the results of this study demonstrate that PNCG can be a promising cathode material for IT-SOFCs.

  17. The need for nano-scale modeling in solid oxide fuel cells.

    PubMed

    Ryan, E M; Recknagle, K P; Liu, W; Khaleel, M A

    2012-08-01

    Solid oxide fuel cells (SOFCs) are high temperature fuel cells, which are being developed for large scale and distributed power systems. SOFCs promise to provide cleaner, more efficient electricity than traditional fossil fuel burning power plants. Research over the last decade has improved the design and materials used in SOFCs to increase their performance and stability for long-term operation; however, there are still challenges for SOFC researchers to overcome before SOFCs can be considered competitive with traditional fossil fuel burning and renewable power systems. In particular degradation due to contaminants in the fuel and oxidant stream is a major challenge facing SOFCs. In this paper we discuss ongoing computational and experimental research into different degradation and design issues in SOFC electrodes. We focus on contaminants in gasified coal which cause electrochemical and structural degradation in the anode, and chromium poisoning which affects the electrochemistry of the cathode. Due to the complex microstructures and multi-physics of SOFCs, multi-scale computational modeling and experimental research is needed to understand the detailed physics behind different degradation mechanisms, the local conditions within the cell which facilitate degradation, and its effects on the overall SOFC performance. We will discuss computational modeling research of SOFCs at the macro-, meso- and nano-scales which is being used to investigate the performance and degradation of SOFCs. We will also discuss the need for a multi-scale modeling framework of SOFCs, and the application of computational and multi-scale modeling to several degradation issues in SOFCs.

  18. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    NASA Astrophysics Data System (ADS)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  19. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  20. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  1. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.

    PubMed

    Wu, Bin; Zhang, Xiangping; Shang, Dawei; Bao, Di; Zhang, Suojiang; Zheng, Tao

    2016-08-01

    A typical biogas system with three utilization pathways, i.e., biogas upgrading, biogas combined heat and power (CHP), biogas solid oxide fuel cells (SOFCs) were designed. It was assessed from the viewpoint of energy, environment and economy by using energy efficiency, green degree and net present value index respectively. The assessment considered the trade-off relationships among these indexes, which is more comprehensive than previous systematic evaluation work only included single or two of the pathway(s) by using one or two of the index(es). Assessment results indicated that biogas upgrading pathway has the highest systematic energy efficiency (46.5%) and shortest payback period (8.9year) with the green degree production is the lowest (9.29gd/day). While for biogas SOFC pathway, although the green degree production is the highest (21.77gd/day), the payback period is longer (14.5year) and the energy efficiency is 13.6% lower than the biogas upgrading pathway.

  2. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner

    NASA Astrophysics Data System (ADS)

    Yen, Tzu-Hsiang; Hong, Wen-Tang; Huang, Wei-Ping; Tsai, Yu-Ching; Wang, Hung-Yu; Huang, Cheng-Nan; Lee, Chien-Hsiung

    An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of U f = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.

  3. US Army Power Overview

    DTIC Science & Technology

    2010-09-01

    Cells (DMFC, RMFC, SOFC ), Batteries & Stirl ing (LFP, Kinemat ic) * Packaged & Reformed Fuels: Methanol, Propane, NaBH4, Ammonia Borane * Direct JP-8...Fuel Goal - SOFC , Stirl ing Burner ~ RENEWABLES/ALTERNATIVE ENERGY * Solar, Wind Energy Storage Systems * Bio-Fuels, Hydrogen Generation ~ MOBILE...Alternative Fuels Advanced Battery Chemistries Fielded Zn-Air Li-MnO2 Li-Ion DMFC RMFC Adv RMFC Stirling & SOFC -propane SOFC & Stirling - JP-8 Li

  4. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  5. Center for Efficiency in Sustainable Energy Systems

    SciTech Connect

    Abraham, Martin

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  6. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    SciTech Connect

    Tapia-Ahumada, K.; Pérez-Arriaga, I. J.; Moniz, Ernest J.

    2013-10-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies - particularly combined cycle units - are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. Highlights: Capacity displacements and daily operation of an electric power system are explored; Benefits depend on energy mix, prices, and micro-CHP technology and control scheme; Benefits are observed mostly in winter when micro-CHP heat and power are fully used; Micro-CHPs mostly displace installed capacity from natural gas combined cycle units; and, Tariff design impacts economic efficiency of the system and operation of micro-CHPs.

  7. THERMAL AND ELECTRICAL PROPERTIES OF Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (x = 0.4, 0 ≤ y ≤ 0.25) AS CATHODE MATERIAL FOR IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Burnwal, Suman Kumar; Kistaiah, P.

    2015-03-01

    Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (BSCFNi; x = 0.4, 0 ≤ y ≤ 0.25) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. An emphasis is made on the effect of Ni-doping on crystal structure, thermal expansion coefficient (TEC) and dc electrical conductivity. A cubic perovskite structure was observed in the X-ray diffraction (XRD) measurement. The TEC of BSCFNi obtained for 0 ≤ y ≤ 0.25, varies in the range of (12.38-18.81) × 10-6 K-1, measured in the temperature range of 30°C to 800°C. The electrical conductivity which is a major defect of Ba0.5Sr0.5CoxFe1-xO3-δ (BSCF) was improved by Ni-doping. The compound with y = 0.20 and 0.25 demonstrated a conductivity of σ = 62.59 S-cm-1 and 72.64 S-cm-1 at 400°C and 77.01 S-cm-1 and 89.68 S-cm-1 at 500°C.

  8. Anode-supported tubular SOFCs based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte fabricated by dip coating

    SciTech Connect

    Chen, Changcheng; Liu, Mingfei; Bai, Yaohui; Yang, Lei; Xie, Erqing; Liu, Meilin

    2011-03-26

    Anode-supported tubular solid oxide fuel cells (SOFCs) based on a proton and oxide ion mixed conductor, BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb), have been fabricated using a dip coating and co-firing process. This new fabrication technique effectively reduced the Ohmic resistances of tubular cells to ~ 0.1 and ~ 0.3 Ω cm2 at 750 and 600 °C, respectively. Typical tubular cells with Ni-BZCYYb anode, BZCYYb electrolyte, and La0.4Sr0.1Co0.2Fe0.8O3-δ(LSCF)-BZCYYb composite cathode demonstrated much-improved performance, achieving peak power densities of 1.13, 0.81, 0.63, and 0.53 W cm-2 at 750, 700, 650, and 600 °C, respectively, when humidified (3 v% water vapor) hydrogen was used as fuel and ambient air as oxidant.

  9. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kiebach, Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila; Sieborg, Bertil; Chen, Ming; Hjelm, Johan; Norrman, Kion; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2016-05-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates were demonstrated. Furthermore, the long-term stability of the Ag-Al2TiO5 composite braze was studied under relevant SOFC and SOEC conditions. The stability of brazed Crofer/Ag-Al2TiO5/NiO-YSZ assemblies in reducing atmosphere and in pure oxygen was investigated over 500 h at 850 °C. Additionally, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (-0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating that the developed braze system is applicable for the use in SOFC/SOEC stacks.

  10. Solid oxide fuel cell commercialization in the United States

    SciTech Connect

    Williams, M.C.

    1995-03-01

    This paper discusses aspects of solid oxide fuel cell (SOFC) technology commercialization in the US. It provides the status of the major SOFC developments occurring in the US by addressing both intermediate- and high-temperature SOFC`s, several SOFC designs, including both planar and tubular, and SOFC system configurations. This paper begins with general characteristics, proceeds with designs and system configurations, and finishes with a discussion of commercialization, funding, and policies. The US Department of Energy`s (DOE) Morgantown Energy Technology Center (METC) is the lead US DOE center for the implementation of a Research, Development, and Demonstration Program to develop fuel cells for stationary power. METC`s stakeholders include the electric power and gas industries, as well as fuel cell developers and others. This paper offers some new perspectives on SOFC development and commercialization which come from the broad consideration of the commercialization efforts of the entire fuel cell industry.

  11. Electrochemically influenced cation inter-diffusion and Co3O4 formation on La0.6Sr0.4CoO3 infiltrated into SOFC cathodes

    SciTech Connect

    Song, Xueyan; Lee, Shiwoo; Chen, Yun; Gerdes, Kirk

    2015-06-18

    Nanosized LSC electrocatalyst was infiltrated into a porous scaffold cathode composed of Sm2O3-doped CeO2 (SDC) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) in a commercial button solid oxide fuel cell (SOFC). To understand the stability of cathodes infiltrated with LSC, the infiltrated composite cells were subjected to both electrochemical operating and thermal aging states at 750 °C for 1500 h. Nanostructure and local chemistry evolution of La0.6Sr0.4CoO3 (LSC) infiltrated cathodes upon operation and aging were investigated by transmission electron microscopy. After operation, the LSC remained a cubic perovskite, and the crystal grains exhibit comparable size to as-infiltrated LSC grains. Inter-diffusion of Fe from the LSCF to a Fe-incorporated LSC layer developed on the LSCF backbone. However, only sharp interfaces were observed between LSC and SDC backbone in the as-infiltrated cathode and such interfaces remain after operation. The infiltrated LSC on the SDC backbone also retains granular particle morphology. Furthermore, newly grown Co3O4 nanocrystals were found in the operated cathode. After thermal aging, on the other hand, cation inter-diffusion across the interfaces of the infiltrate particles and the cathode backbones is less than that from the operated cells. Lastly, the following hypothesis is proposed: Co3O4 forms on LSC arising from local charge balancing between cobalt and oxygen vacancies.

  12. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  13. Modeling of indirect carbon fuel cell systems with steam and dry gasification

    NASA Astrophysics Data System (ADS)

    Ong, Katherine M.; Ghoniem, Ahmed F.

    2016-05-01

    An indirect carbon fuel cell (ICFC) system that couples coal gasification to a solid oxide fuel cell (SOFC) is a promising candidate for high efficiency stationary power. This study couples an equilibrium gasifier model to a detailed 1D MEA model to study the theoretical performance of an ICFC system run on steam or carbon dioxide. Results show that the fuel cell in the ICFC system is capable of power densities greater than 1.0 W cm-2 with H2O recycle, and power densities ranging from 0.2 to 0.4 W cm-2 with CO2 recycle. This result indicates that the ICFC system performs better with steam than with CO2 gasification as a result of the faster electro-oxidation kinetics of H2 relative to CO. The ICFC system is then shown to reach higher current densities and efficiencies than a thermally decoupled gasifier + fuel cell (G + FC) system because it does not include combustion losses associated with autothermal gasification. 55-60% efficiency is predicted for the ICFC system coupled to a bottoming cycle, making this technology competitive with other state-of-the-art stationary power candidates.

  14. Current status of fuel cell based combined heat and power systems for residential sector

    NASA Astrophysics Data System (ADS)

    Ellamla, Harikishan R.; Staffell, Iain; Bujlo, Piotr; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-10-01

    Combined Heat and Power (CHP) is the sequential or simultaneous generation of multiple forms of useful energy, usually electrical and thermal, in a single and integrated system. Implementing CHP systems in the current energy sector may solve energy shortages, climate change and energy conservation issues. This review paper is divided into six sections: the first part defines and classifies the types of fuel cell used in CHP systems; the second part discusses the current status of fuel cell CHP (FC-CHP) around the world and highlights the benefits and drawbacks of CHP systems; the third part focuses on techniques for modelling CHP systems. The fourth section gives a thorough comparison and discussion of the two main fuel cell technologies used in FC-CHP (PEMFC and SOFC), characterising their technical performance and recent developments from the major manufacturers. The fifth section describes all the main components of FC-CHP systems and explains the issues connected with their practical application. The last part summarises the above, and reflects on micro FC-CHP system technology and its future prospects.

  15. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  16. Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class

    DTIC Science & Technology

    2012-02-01

    less evidence was found for widespread market support for HTPEM technology at the powers of interest. SOFC is currently a higher technical ... SOFC A risk assessment matrix was developed to consider the potential risks involved with integrating any new power system into a generic ship...system volume but retained adequate redundancy. • The three twin-pack SOFC modules and matching power systems are connected to a single main

  17. Synthesis and characterization of novel Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} perovskite material and possible application as a cathode for low–intermediate temperature SOFCs

    SciTech Connect

    Njoku, Chima Benjamin; Ndungu, Patrick Gathura

    2015-08-15

    Highlights: • Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using sol–gel methods. • Material was thoroughly characterized using Raman, FTIR, XRD, HRTEM, SEM, and TGA. • Electrochemical performance showed the materials are a promising new cathode material for low temperature SOFC. - Abstract: A novel perovskite material, Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} was synthesized using a sol–gel technique. The materials were calcined at temperatures of 800 °C, 900 °C, and 1000 °C and then characterized using X-ray diffraction, Raman and infrared spectroscopy, high resolution transmission electron microscopy and scanning electron microscopy (SEM). The particle sizes and crystallite sizes increased with increasing calcination temperature and formed perovskite type materials with some separate magnetite and iridium oxide. The powders were used to assemble button cells using samarium doped ceria as the electrolyte and NiO/SDC as the anode materials. The electrochemical properties were investigated using a Fiaxell open flanges test set-up and a Nuvant™ Powerstat-05 potentiostat/galvanostat. The Ce{sub 0.8}Sm{sub 0.2}Fe{sub 0.9}Ir{sub 0.03}Co{sub 0.07}O{sub 3−δ} cathode material calcined at 1000 °C exhibited the most promising performance, with a maximum power density of 0.400 W/cm{sup 2}, a current density of 0.8 A/cm{sup 2}, and a corresponding area specific resistance of 0.247 Ωcm{sup 2} at 500 °C. The button cells were reasonably stable over15 h.

  18. Thermodynamic data of Ba{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3−δ} SOFC cathode material

    SciTech Connect

    Botea-Petcu, A.; Tanasescu, S.; Varazashvili, V.; Lejava, N.; Machaladze, T.; Khundadze, M.; Maxim, F.; Teodorescu, F.; Martynczuk, J.; Yáng, Z.; Gauckler, L.J.

    2014-09-15

    Graphical abstract: Partial molar energy of oxygen dissolution (ΔG{sup −}{sub O{sub 2}}) and equilibrium partial pressure of oxygen (log⁡p{sub O{sub 2}}) of perovskite material with the composition Ba{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3−δ} as a function of temperature. - Highlights: • We report relevant data for thermodynamic stability of Ba{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3−δ} perovskite compound. • Temperature of structural transformations related to the charge compensation of the material system is evidenced. • The results are discussed based on the properties-defect structure relationship. - Abstract: The compound Ba{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3−δ} with perovskite structure has been studied focusing mainly on the thermodynamic stability in correlation to the change in the oxygen stoichiometry. The thermochemical behavior has been investigated from room temperature to 1300 K by thermal gravimetry and differential thermal analysis in air and by calorimetry in scanning mode in Argon. The temperature dependence of enthalpy (ΔH{sup T}{sub 298}) in the temperature range of 300–900 K was measured by drop calorimetry. Thermodynamic properties represented by the relative partial molar free energies, enthalpies and entropies of oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressures of oxygen have been obtained in the temperature range of 823–1273 K using solid electrolyte electrochemical cells (EMF). The influence of the oxygen stoichiometry on the thermodynamic properties was examined using a coulometric titration technique coupled with EMF measurements. The results are discussed based on the strong correlation between the energetic parameters and the charge compensation of the material system.

  19. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    SciTech Connect

    James M. Rakowski

    2006-09-30

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost

  20. Materials issues in solid oxide fuel cell systems

    SciTech Connect

    Ziomek-Moroz, M.

    2007-03-02

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). The presence of carbon oxides in the fuel can cause significant performance problems resulting in decreasing the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC below ~800 ºC may allow less expensive metallic materials to be used for interconnects. This presentation provides insight on the material performance of ferritic steels in fuels containing carbon oxides and seeks to quantify the extent of possible degradation due to carbon species in the gas stream.

  1. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mingyi, Liu; Bo, Yu; Jingming, Xu; Jing, Chen

    High-temperature steam electrolysis (HTSE), a reversible process of solid oxide fuel cell (SOFC) in principle, is a promising method for highly efficient large-scale hydrogen production. In our study, the overall efficiency of the HTSE system was calculated through electrochemical and thermodynamic analysis. A thermodynamic model in regards to the efficiency of the HTSE system was established and the quantitative effects of three key parameters, electrical efficiency (η el), electrolysis efficiency (η es), and thermal efficiency (η th) on the overall efficiency (η overall) of the HTSE system were investigated. Results showed that the contribution of η el, η es, η th to the overall efficiency were about 70%, 22%, and 8%, respectively. As temperatures increased from 500 °C to 1000 °C, the effect of η el on η overall decreased gradually and the η es effect remained almost constant, while the η th effect increased gradually. The overall efficiency of the high-temperature gas-cooled reactor (HTGR) coupled with the HTSE system under different conditions was also calculated. With the increase of electrical, electrolysis, and thermal efficiency, the overall efficiencies were anticipated to increase from 33% to a maximum of 59% at 1000 °C, which is over two times higher than that of the conventional alkaline water electrolysis.

  2. Fuel cell powered small unmanned aerial systems (UASs) for extended endurance flights

    NASA Astrophysics Data System (ADS)

    Chu, Deryn; Jiang, R.; Dunbar, Z.; Grew, Kyle; McClure, J.

    2015-05-01

    Small unmanned aerial systems (UASs) have been used for military applications and have additional potential for commercial applications [1-4]. For the military, these systems provide valuable intelligence, surveillance, reconnaissance and target acquisition (ISRTA) capabilities for units at the infantry, battalion, and company levels. The small UASs are light-weight, manportable, can be hand-launched, and are capable of carrying payloads. Currently, most small UASs are powered by lithium-ion or lithium polymer batteries; however, the flight endurance is usually limited less than two hours and requires frequent battery replacement. Long endurance small UAS flights have been demonstrated through the implementation of a fuel cell system. For instance, a propane fueled solid oxide fuel cell (SOFC) stack has been used to power a small UAS and shown to extend mission flight time. The research and development efforts presented here not only apply to small UASs, but also provide merit to the viability of extending mission operations for other unmanned systems applications.

  3. A high fuel utilizing solid oxide fuel cell cycle with regard to the formation of nickel oxide and power density

    NASA Astrophysics Data System (ADS)

    Nehter, Pedro

    Within this study a novel high fuel utilizing (High-uf) SOFC system is presented with special focus on the formation of nickel oxide, system efficiency and the required cell area at a fixed system performance of 1 MW. Within the High-uf SOFC cycle, a second SOFC stack is used to utilize a further part of the residual hydrogen of the first SOFC stack. This could be feasible by using an anode gas condenser, which is implemented between the first and the second stack. This reduces the water fraction of the anode gas and thereby the tendency of nickel oxide formation in case of a further fuel utilization. Thus, a higher total fuel utilization can be reached with the second SOFC stack. With the High-uf SOFC cycle, the system efficiency is increased by 7%-points compared to the simple atmospheric SOFC cycle. Furthermore, the average cell voltage and the fuel utilization are varied to carry out a first optimization of the stack's power density. The results of this optimization have shown that the required cell area of the simple SOFC cycle can be slightly reduced by decreasing the fuel utilization, whereas the High-uf SOFC cycle shows an opposite effect. Here, the required cell area can be reduced at constant voltages by increasing the fuel utilization. Thus, higher system efficiencies could be reached with the High-uf SOFC cycle by using the same cell area as the simple SOFC cycle and at the same tendency of nickel oxide formation. A second condenser behind the second SOFC stack could be used to increase the carbon dioxide mass fraction up to 92%. This could be interesting for CO 2-sequestring applications as well.

  4. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krumpelt, M.; Myles, K. M.

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed.

  5. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-04-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R&D issues.

  6. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R D issues.

  7. Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class

    DTIC Science & Technology

    2012-02-01

    for HTPEM technology at the powers of interest. SOFC is currently a higher technical development risk than HTPEM, but is likely in the longer term...temperature’ technologies. Of the high temperature fuel cell technologies (600-1,000°C), SOFC offers the highest power density and potential...start-up times associated with larger HTPEM and SOFC systems also have implications for naval ships requiring rapid power availability or black

  8. SECA Coal-Based Systems - LGFCS

    SciTech Connect

    Goettler, Richard

    2013-08-01

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program is aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations in subsequent phases. LGFCS is currently in Phase 2 of the program with the Phase 1 test carrying over for completion during Phase 2. Major technical results covering the initial Phase 2 budget period include: Metric Stack Testing: 1. The Phase I metric test is a ~7.6 kW block test (2 strips) in Canton that started in March 2012 and logged 2135 hours of testing prior to an event that required the test to be shutdown. The degradation rate through 2135 hours was 0.4%/1000 hours, well below the Phase I target of 2%/1000 hours and the Phase 2 target of 1.5%/1000 hours. 2. The initial Phase II metric test consisting of 5 strips (~19 kW) was started in May 2012. At the start of the test OCV was low and stack temperatures were out of range. Shutdown and inspection revealed localized structural damage to the strips. The strips were repaired and the test restarted October 11, 2012. 3. Root cause analysis of the Phase 1 and initial Phase 2 start-up failures concluded a localized short circuit across adjacent tubes/bundles caused localized heating and thermal stress fracture of substrates. Pre-reduction of strips rather than in-situ reduction within block test rigs now provides a critical quality check prior to block testing. The strip interconnect design has been modified to avoid short circuits. Stack Design: 1. Dense ceramic strip components were redesigned to achieve common components and a uniform design for all 12 bundles of a strip while meeting a flow uniformity of greater

  9. Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell

    NASA Astrophysics Data System (ADS)

    Liao, Tianjun; Cai, Ling; Zhao, Yingru; Chen, Jincan

    2016-02-01

    Through the combination of the current models of solid oxide fuel cells (SOFCs) and thermophotovoltaic cells (TPVCs), a new model of the hybrid device composed of an SOFC, a regenerator, and a TPVC with integrated back surface reflector (BSR) is proposed. Analytical expressions for the power output and efficiency of two subsystems and hybrid device are derived. The relations between the performance of the TPVC and the operating current density of the SOFC in the hybrid device are revealed. The performance characteristics of the hybrid device are discussed in detail. The maximum power output density is calculated. The optimally operating region of the hybrid device is determined, compared with the performance of the SOFC in the hybrid device. The choice criteria of some key parameters are given. Moreover, it is proved that the proposed model can exploit the waste heat produced in SOFCs more efficiently than other SOFC-based hybrid systems.

  10. Reactivity of Lanthanide Ferrite SOFC Cathodes with YSZ Electrolyte

    SciTech Connect

    Anderson, Michael D; Stevenson, Jeffry W; Simner, Steve P

    2004-04-22

    The reactivity of yttria-stabilized zirconia (YSZ) with compounds of the form Ln0.8Sr0.2FeO3 (Ln=Sm, Pr, Nd and a mixed lanthanide precursor) and La0.8M0.2FeO3 (M=Ba, Ca) was investigated, and compared to the comprehensively studied La0.8Sr0.2FeO3 (LSF-20) composition. With the exception of Ca, all variants showed either increased reactivity with YSZ (compared to the base LSF-20), or a lack of phase purity after calcination at 1200-1300°C

  11. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  12. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  13. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.

    2016-08-01

    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  14. Feasibility of a Stack Integrated SOFC Optical Chemical Sensor

    SciTech Connect

    Michael A. Carpenter

    2007-09-30

    The DOE-NETL Innovative Concepts (IC) phase II program investigated the feasibility of harsh environment compatible chemical sensors based on monitoring the surface plasmon resonance (SPR) bands of metal nanoparticle doped YSZ nano-cermets, as a function of fuel concentrations, impurities e.g. CO and temperature(500-900 C). In particular, Au nanoparticles (AuNPs) exhibit a strong surface plasmon resonance (SPR) band whose shape and spectral position is not only highly dependent on the refractive index of the host medium but also on chemical reactions at the interface between the metal and the surrounding environment. Studies have been completed on the oxygen and temperature dependence of the SPR band of the AuNPs, CO sensing studies, oxygen/hydrogen titration experiments, ethanol sensing studies and finally NO{sub 2} sensing studies. Reversible changes in the SPR band are observed for all chemical exposure studies with the sensing mechanism being determined by the oxidative or reductive properties of the exposure gases. Reactions which remove charge from the AuNPs was observed to cause a redshift in the SPR band, while charge donation to the AuNPs causes a blue shift in the SPR band. CO, hydrogen and ethanol in air mixtures were all reductive in nature as they reacted with the YSZ bound oxygen anions forming CO{sub 2} or H{sub 2}O thus ultimately inducing charge donation to the AuNPs and a blue shift in the SPR band. While NO{sub 2} and oxygen were oxidative and induced the production of YSZ bound oxygen anions, charge removal from the AuNPs and a redshift in the SPR band.

  15. Segregated exhaust SOFC generator with high fuel utilization capability

    DOEpatents

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.

  16. Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphorus

    SciTech Connect

    Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.; Edwards, Danny J.; Coffey, Greg W.; Pederson, Larry R.

    2010-01-22

    The interaction of phosphorus in synthetic coal gas with the nickel-based anode of solid oxide fuel cells has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 to 800oC in synthetic coal gas containing 0.5 to 10 ppm phosphorus, introduced as phosphine. Two primary modes of degradation were observed. The most obvious was the formation of a series of bulk nickel phosphide phases, of which Ni3P, Ni5P2, Ni12P5 and Ni2P were identified. Phosphorus was essentially completely captured by the anode, forming a sharp boundary between converted and unconverted anode portions. These products partially coalesced into large grains, which eventually affected electronic percolation through the anode support. Thermodynamic calculations predict that formation of the first binary nickel phosphide phase is possible at sub-parts per billion concentrations in coal gas at temperatures relevant to fuel cell operation. A second mode of degradation is attributed to surface diffusion of phosphorus to the active anode/electrolyte interface to form an adsorption layer. Direct evidence for the presence of such an adsorption layer on nickel was obtained by surface spectroscopies on fracture surfaces. Further, cell performance losses were observed well before the entire anode was converted to bulk nickel phosphide. Impedance spectroscopy revealed that these losses were primarily due to growth in electrodic resistance, whereas large ohmic increases were visible when the entire anode was converted to nickel phosphide phases. The rate of resistance growth for anode-supported cells showed a very low dependence on phosphorus concentration, attributed to phosphorus activity control within the anode by bulk nickel phosphide products.

  17. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs

    SciTech Connect

    Azad, Abul K.; Hakem, Afizul; Petra, Pg. M. Iskandar

    2015-05-15

    La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5-x}Mn{sub 0.5}Ti{sub x}O{sub 3} (x = 0.1, 0.2) has been synthesized in solid state reaction method and tested as a potential anode material for solid oxide fuel cells. Rietveld refinement of X-ray powder diffraction data using Fullprof software shows that the materials crystallize in the rhombohedral symmetry in the R-3C space group. The cell parameters are: a = b = 5.5286 (4) Å, c = 13.408(1) Å, α = β = 90°, γ = 120°. Particle size distribution measurements show that the average particle size for x = 0.1 and 0.2 was 232.66 nm and 176.63 nm, respectively. The potential on particles were found to be −22.86 mV and −27.73 mV, for x = 0.1 and x = 0.2, respectively. Thermal expansion measurement using thermo-mechanical analyzer shows that the thermal expansion coefficient is 13.96 × 10{sup −6}/°C which is close to the thermal expansion of the state-of–the art YSZ electrolyte. Microstructure has been observed from scanning electron microscopy which shows a porous structure. Energy dispersive X-ray shows that the percentage of the different cations and anions in the structure are close to the chemical occupancies.

  18. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  19. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  20. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  1. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  2. Microchemical Systems for Fuel Processing and Conversion to Electrical Power

    DTIC Science & Technology

    2007-03-15

    53 8.2 Materials and Structural Analysis for Micro SOFC ... Thermodynamic analysis of methanol partial oxidation. ............................................ 37 Figure 31: SEM images of 23 weight % silver-palladium...product selectivity and heat of reaction for methanol partial oxidation based on thermodynamics analysis . In the absence of oxygen, the reaction is

  3. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect

    Uday B. Pal; Srikanth Gopalan

    2005-01-24

    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  4. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; McPhail, Stephen J.; Pumiglia, Davide; Carlini, Maurizio

    2016-09-01

    This study reviews the status of life cycle assessment (LCA) of Solid Oxide Fuel Cells (SOFCs) and methodological aspects, communicates SOFC environmental performance, and compares the environmental performance with competing power production technologies using a life cycle perspective. Results indicate that power generation using SOFCs can make a significant contribution to the aspired-to greener energy future. Despite superior environmental performance, empirical studies indicate that economic performance is predominantly the highest-ranked criterion in the decision making process. Future LCA studies should attempt to employ comprehensive dynamic multi-criteria environmental impact analysis coupled with economic aspects, to allow a robust comparison of results. A methodology framework is proposed to achieve simultaneously ambitious socio-economic and environmental objectives considering all life cycle stages and their impacts.

  5. Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5

    NASA Technical Reports Server (NTRS)

    Mak, Audie; Meier, John

    2007-01-01

    This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.

  6. Modeling and control of tubular solid-oxide fuel cell systems. I: Physical models and linear model reduction

    NASA Astrophysics Data System (ADS)

    Colclasure, Andrew M.; Sanandaji, Borhan M.; Vincent, Tyrone L.; Kee, Robert J.

    This paper describes the development of a transient model of an anode-supported, tubular solid-oxide fuel cell (SOFC). Physically based conservation equations predict the coupled effects of fuel channel flow, porous-media transport, heat transfer, thermal chemistry, and electrochemistry on cell performance. The model outputs include spatial and temporal profiles of chemical composition, temperature, velocity, and current density. Mathematically the model forms a system of differential-algebraic equations (DAEs), which is solved computationally. The model is designed with process-control applications in mind, although it can certainly be applied more widely. Although the physical model is computationally efficient, it is still too costly for incorporation directly into real-time process control. Therefore, system-identification techniques are used to develop reduced-order, locally linear models that can be incorporated directly into advanced control methodologies, such as model predictive control (MPC). The paper illustrates the physical model and the reduced-order linear state-space model with examples.

  7. ONR Manhatten Project

    DTIC Science & Technology

    2011-03-18

    efficient ATR mode once system is at temperature for ATR to begin. • Solid Oxide Fuel Cell ( SOFC ) o Converts fuel reformate to power; operates between...09 (Written Concurrence) 7. How are we leveraging other tech programs: DOD program leveraging • OSD High Temperature Fuel Cell ( SOFC ) Based Auxiliary

  8. A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications

    NASA Astrophysics Data System (ADS)

    Marra, Dario; Sorrentino, Marco; Pianese, Cesare; Iwanschitz, Boris

    2013-11-01

    The paper focuses on the experimental identification and validation of a neural network (NN) model of solid oxide fuel cells (SOFC) aimed at implementing on-field diagnosis of SOFC-based distributed power generators. The use of a black-box model is justified by the complexity and the incomplete knowledge of SOFC electrochemical processes, which may be awkward to simulate given the limited computational resources available on-board in SOFC systems deployed on-field. Suited training procedures and model input selection are proposed to improve NNs accuracy and generalization in predicting voltage variation due to degradation. Particularly, standing the interest in condition monitoring of SOFC performance throughout stack lifetime, input variables were selected in such a way as to account for the time evolution of SOFC stack performance. Different SOFC stacks outputs were tested to assess the generalization capabilities when extending NN prediction to those stacks for which no training data were gathered. The simulations performed on the test sets show the NN ability in simulating real voltage trajectory with satisfactory accuracy, thus confirming the high potential of the proposed model for real-time use on SOFC systems.

  9. Technical problems to be solved before the solid oxide fuel cell will be commercialized

    SciTech Connect

    Bagger, C.; Hendriksen, P.V.; Mogensen, M.

    1996-12-31

    The problems which must be solved before SOFC-systems are competitive with todays power production technology are of both technical and economical nature. The cost of SOFC stacks at the 25 kW level of today is about 30,000 ECU/kW and it is bound to come down to about 500 ECU/kW. The allowable cost of a SOFC system is anticipated to be around 1500 ECU/kW. As part of the Danish SOFC program (DK-SOFC) a 0.5 kW stack was built and tested during the second half of 1995. Based upon the experience gained, an economic analysis has been made. The tools required to approach an economically acceptable solution are outlined below.

  10. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    PubMed

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) .

  11. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  12. Characterization of a novel, highly integrated tubular solid oxide fuel cell system using high-fidelity simulation tools

    NASA Astrophysics Data System (ADS)

    Kattke, K. J.; Braun, R. J.

    2011-08-01

    A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the

  13. The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: Investigations into the effect of operational temperature and HCl concentration

    NASA Astrophysics Data System (ADS)

    Trembly, J. P.; Gemmen, R. S.; Bayless, D. J.

    The performance of solid oxide fuel cells (SOFCs) using simulated coal-derived syngas, with and without hydrogen chloride (HCl), was studied. Electrolyte-supported SOFCs were tested potentiostatically at 0.7 V at 800 and 900 °C with simulated coal syngas containing 0, 20, and 160 ppm HCl. The results from the tests without HCl show good performance with little degradation over 100 h of operation. Both 20 and 160 ppm HCl were shown to cause performance losses in the SOFCs after injection into the system. Although the tests presented in this paper show that HCl does cause degradation to SOFC performance, the cell performance was recoverable upon the removal of HCl from the fuel. Also recent results from anticipated Integrated Gasification Combined Cycle IGCC warm/hot-gas-cleanup technologies suggest that HCl will be removed to levels that will not cause any significant performance losses in SOFCs.

  14. Fuel Cell Airframe Integration Study for Short-Range Aircraft. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick

    2006-01-01

    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.

  15. Ztek`s ultra high efficiency fuel cell/gas turbine combination

    SciTech Connect

    Hsu, M.; Nathanson, D.

    1995-10-19

    Ztek is proceeding on development of an ultra-high efficiency hybrid system of its Planar SOFC with a gas turbine, realizing shared cost and performance benefits. The gas turbine as the Balance-of-Plant was a logical selection from a fuel cell system perspective because of (1) the high-power-density energy conversion of gas turbines; (2) the unique compatibility of the Ztek Planar SOFC with gas turbines, and (3) the availability of low-cost commercial gas turbine systems. A Tennessee Valley Authority/Ztek program is ongoing, which addresses operation of the advanced Planar SOFC stacks and design scale-up for utility power generation applications.

  16. A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe.

    PubMed

    Evangelisti, Sara; Clift, Roland; Tagliaferri, Carla; Lettieri, Paola

    2017-03-22

    By means of the life cycle assessment methodology, the purpose of this study is to assess the environmental impact when biomethane from organic waste produced at residential level is used to supply energy to a group of dwellings in the distributed generation paradigm. Three different Combined Heat and Power systems, such as fuel cells, Stirling engine and micro gas turbine, installed at household level are assessed in two different settings: one in Northern Europe (UK) and one in Southern Europe (Italy). Different operating strategies are investigated for each technology. Moreover, marginal electricity production technologies are analysed to assess their influence on the results. This study has demonstrated that the type of bio-methane fed micro-CHP technology employed has a significantly different environmental impact: fuel cells are the most environmentally friendly solution in every category analysed; Stirling engines, although can supply heat to the largest number of dwellings are the least environmentally friendly technology. However, key factors investigated in the model presented in this paper influence the decision making on the type of technology adopted and the operating strategy to be implemented.

  17. Fault diagnosis and prognostic of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, XiaoJuan; Ye, Qianwen

    2016-07-01

    One of the major hurdles for solid oxide fuel cell (SOFC) commercialization is poor long-term performance and durability. Accurate fault diagnostic and prognostic technologies are two important tools to improve SOFC durability. In literature, plenty of diagnosis techniques for SOFC systems have been successfully designed. However, no literature studies SOFC fault prognosis approaches. In this paper a unified fault diagnosis and prognosis strategy is presented to identify faults (anode poisoning, cathode humidification or normal) and predict the remaining useful life for SOFC systems. Using a squares support vector machine (LS-SVM) classifier, a diagnosis model is built to identify SOFC different types of faults. After fault detection, two hidden semi-Mark models (HSMMs) are respectively employed to estimate SOFC remaining useful life in the case of anode poisoning and cathode humidification. The simulation results show that the fault recognition rates with the LS-SVM model are at best 97%, and the predicted error of the remaining useful life is within ±20%.

  18. Review of the micro-tubular solid oxide fuel cell. Part I. Stack design issues and research activities

    NASA Astrophysics Data System (ADS)

    Lawlor, V.; Griesser, S.; Buchinger, G.; Olabi, A. G.; Cordiner, S.; Meissner, D.

    Fuel cells are devices that convert chemical energy in hydrogen enriched fuels into electricity electrochemically. Micro-tubular solid oxide fuel cells (MT-SOFCs), the type pioneered by K. Kendall in the early 1990s, are a variety of SOFCs that are on the scale of millimetres compared to their much larger SOFC relatives that are typically on the scale of tens of centimetres. The main advantage of the MT-SOFC, over its larger predecessor, is that it is smaller in size and is more suitable for rapid start up. This may allow the SOFC to be used in devices such as auxiliary power units, automotive power supplies, mobile electricity generators and battery re-chargers. The following paper is Part I of a two part series. Part I will introduce the reader to the MT-SOFC stack and its applications, indicating who is researching what in this field and also specifically investigate the design issues related to multi-cell reactor systems called stacks. Part II will review in detail the combinations of materials and methods used to produce the electrodes and electrolytes of MT-SOFC's. Also the role of modelling and validation techniques used in the design and improvement of the electrodes and electrolytes will be investigated. A broad range of scientific and engineering disciplines are involved in a stack design. Scientific and engineering content has been discussed in the areas of thermal-self-sustainability and efficiency, sealing technologies, manifold design, electrical connections and cell performance optimisation.

  19. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect

    Sullivan, Neal P.

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  20. Miniature environmental chamber enabling in situ scanning probe microscopy within reactive environments.

    PubMed

    Nonnenmann, Stephen S; Bonnell, Dawn A

    2013-07-01

    Developments in solid oxide fuel cells (SOFCs) continue to be one of the most intensely studied areas involving energy-producing systems, in an attempt to partially alleviate rapidly growing energy concerns. Direct, experimental observation of the governing electrochemical processes have remained largely elusive, due to high operating temperatures in the range of 400 °C-1000 °C. Here we outline the design and development of a miniature environmental chamber that enables a standard atomic force microscopes access to realistic SOFC operating conditions (T = 600 °C) for direct interrogation of electrochemical phenomena within SOFC cross-sections.

  1. Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control

    NASA Astrophysics Data System (ADS)

    Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel

    2015-02-01

    Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

  2. SECA Coal-Based Systems - LGFCS

    SciTech Connect

    Goettler, Richard

    2014-01-31

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program has been aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations as a path to commercialization. Significant progress was achieved in reducing to practice a higher performance and lower cost cell technology, identifying and overcoming degradation mechanisms, confirming the structural capability of the porous substrate for reliability, maturing the strip design for improved flow to allow high fuel utilization operation while minimizing degradation mechanisms and obtaining full scale block testing at 19 kW under representative conditions for eventual product and meeting SECA degradation metrics. The SECA program has played a key role within the overall LGFCS development program in setting the foundation of the technology to justify the progression of the technology to the next level of technology readiness testing.

  3. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VNIITF. Proposals on scientific and technical collaboration and SOFC commercialization

    SciTech Connect

    Kleschev, Yu.N.; Chukharev, V.F.

    1996-04-01

    This paper describes proposals on scientific and technical collaborations pertaining to solid oxide fuel cell commercialization. Topics included for discussion are: materials research and manufacture; market estimation and cost; directions of collaboration; and project of proposals on joint enterprise creation.

  4. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VIITF proposals on scientific and technical collaboration and SOFC commercialization

    SciTech Connect

    Kleschev, Yu.N.; Chulharev, V.F.

    1996-04-01

    Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.

  5. Solar system positioning system

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Chui, Talso

    2006-01-01

    Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

  6. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2015-03-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam gasification and tubular SOFC technologies are modelled. The cathode recycle and electric heater integration options are not attractive in comparison to the base case anode recycle system. Thermal integration, i.e. using SOFC flue gas as gasifier oxidant, is desirable. Lowering the syngas preheat temperature (prior to SOFC anodes) is highly recommended and is more practical than lowering the cathode air preheat temperature. Results of the parametric study indicate that: steam to carbon ratio and biomass moisture content should be as low as possible; fuel utilisation factor can change the mode of operation of the plant (focus on electricity or heat); high temperature syngas cleaning is very attractive; gasification air preheating is more attractive than gasification steam superheating. High efficiencies are predicted, proving the technical feasibility of BG-SOFC CHP systems.

  7. Cummins Power Generation SECA Phase 1

    SciTech Connect

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  8. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  9. Immune System

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Immune System KidsHealth > For Teens > Immune System A A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  10. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect

    Krishnan, Gopala N.; Jayaweera, Palitha; Perez, Jordi; Hornbostel, M.; Albritton, John R.; Gupta, Raghubir P.

    2007-10-31

    The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700° to 900°C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700°, 750°, and 800°C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800°C. The electrical performance of SOFC

  11. AlliedSignal solid oxide fuel cell technology

    SciTech Connect

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K.

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  12. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.

    2016-11-01

    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  13. Planar Solid-Oxide Fuel Cell System Demonstration at UT SimCenter

    DTIC Science & Technology

    2015-12-09

    presented in this report, potential of using the density-based approach for solving chemically reacting flow inside a catalytic reactor and SOFC is... reactor temperature profile and reforming efficiency. As a surrogate fuel, n-dodecane has the chemical formula of Q2H26 with hydrogen content 15.28 wt...microchannel reactors [101,102]. Flow with high turbulence can improve hot-spots since the turbulent flow enhances the heat transfer coefficient

  14. Data Systems vs. Information Systems

    PubMed Central

    Amatayakul, Margret K.

    1982-01-01

    This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.

  15. The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program

    NASA Astrophysics Data System (ADS)

    Williams, Mark C.; Strakey, Joseph P.; Surdoval, Wayne A.

    The U.S. Department of Energy (DOE) Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading a program for the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell/turbine hybrid power generation systems for near-term distributed generation markets, with emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions for research under the Solid State Energy Conversion Alliance (SECA) initiative to develop and commercialize modular, low cost, and fuel flexible SOFC systems. Through advanced materials, processing and system integration research and development (R&D), the SECA initiative will reduce the fuel cell cost to $400 kW -1 for stationary and auxiliary power unit markets. The SECA industry teams and core program have made significant progress in scale-up and performance. Presidential initiatives are focusing research toward a new hydrogen economy. The movement to a hydrogen economy would accomplish several strategic goals, namely that SOFCs have no emissions, and hence figure significantly in DOE strategies. The SOFC hybrid is a key part of the FutureGen plant, a major new DOE FE initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power while other parts of the plant could produce hydrogen and sequester CO 2. The produced hydrogen can be used in fuel cell cars and for SOFC distributed generation applications.

  16. Operating Systems.

    ERIC Educational Resources Information Center

    Denning, Peter J.; Brown, Robert L.

    1984-01-01

    A computer operating system spans multiple layers of complexity, from commands entered at a keyboard to the details of electronic switching. In addition, the system is organized as a hierarchy of abstractions. Various parts of such a system and system dynamics (using the Unix operating system as an example) are described. (JN)

  17. Respiratory System

    MedlinePlus

    ... this page from the NHLBI on Twitter. The Respiratory System The respiratory system is made up of organs ... vessels, and the muscles that enable breathing. The Respiratory System Figure A shows the location of the respiratory ...

  18. Lymph system

    MedlinePlus

    Lymphatic system ... Dains JE, Flynn JA, Solomon BS, Stewart RW. Lymphatic system. In: Ball JW, Dains JE, Flynn JA, Solomon ... 2015:chap 9. Hall JE. The microcirculation and lymphatic system: capillary fluid exchange, interstitial fluid, and lymph flow. ...

  19. Digestive System

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Digestive System KidsHealth > For Parents > Digestive System A A A ... the body can absorb and use. About the Digestive System Almost all animals have a tube-type digestive ...

  20. Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.

    2002-01-01

    The presentation provides an overview of requirement and interpretation letters, mechanical systems safety interpretation letter, design and verification provisions, and mechanical systems verification plan.

  1. Systems Thinking (and Systems Doing).

    ERIC Educational Resources Information Center

    Brethower, Dale M.; Dams, Peter-Cornelius

    1999-01-01

    Introduces human performance technology (HPT) by answering the following questions related to: what systems does; practical issues and questions to which systems thinking is relevant; research questions and answers with respect to systems thinking; how HPT practitioners can do systems thinking; systems thinking tools; what is and is not known…

  2. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.

    PubMed

    Kirtley, John D; Halat, David M; McIntyre, Melissa D; Eigenbrodt, Bryan C; Walker, Robert A

    2012-11-20

    Carbon formation or "coking" on solid oxide fuel cell (SOFC) anodes adversely affects performance by blocking catalytic sites and reducing electrochemical activity. Quantifying these effects, however, often requires correlating changes in SOFC electrochemical efficiency measured during operation with results from ex situ measurements performed after the SOFC has been cooled and disassembled. Experiments presented in this work couple vibrational Raman spectroscopy with chronopotentiometry to observe directly the relationship between graphite deposited on nickel cermet anodes and the electrochemical performance of SOFCs operating at 725 °C. Raman spectra from Ni cermet anodes at open circuit voltage exposed to methane show a strong vibrational band at 1556 cm(-1) assigned to the "G" mode of highly ordered graphite. When polarized in the absence of a gas-phase fuel, these carbon-loaded anodes operate stably, oxidizing graphite to form CO and CO(2). Disappearance of graphite intensity measured in the Raman spectra is accompanied by a steep ∼0.8 V rise in the cell potential needed to keep the SOFC operating under constant current conditions. Continued operation leads to spectroscopically observable Ni oxidation and another steep rise in cell potential. Time-dependent spectroscopic and electrochemical measurements pass through correlated equivalence points providing unequivocal, in situ evidence that identifies how SOFC performance depends on the chemical condition of its anode. Chronopotentiometric data are used to quantify the oxide flux necessary to eliminate the carbon initially present on the SOFC anode, and data show that the oxidation mechanisms responsible for graphite removal correlate directly with the electrochemical condition of the anode as evidenced by voltammetry and impedance measurements. Electrochemically oxidizing the Ni anode damages the SOFC significantly and irreversibly. Anodes that have been reconstituted following electrochemical oxidation of

  3. Novel Fuel Cells for Coal Based Systems

    SciTech Connect

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  4. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    PubMed

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  5. Development of 2D dynamic model for hydrogen-fed and methane-fed solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, X. J.; Fong, K. F.

    2016-10-01

    A new two-dimensional (2D) dynamic model is developed in Fortran to study the mass and energy transport, the velocity field and the electrochemical phenomena of high-temperature solid oxide fuel cell (SOFC). The key feature of this model is that gas properties, reaction heat, open circuit voltage, ohmic voltage and exchange current density are temperature-dependent. Based on this, the change of gas temperature and related characteristics can be evaluated in this study. The transient performances of SOFC, like heat-up and start-up processes, are therefore assessed accordingly. In this 2D dynamic SOFC model, chemical and electrochemical reaction, flow field, mass and energy transfer models are coupled in order to determine the current density, the mass fraction and the temperature of gas species. Mass, momentum and energy balance equations are discretized by finite difference method. Performance evaluation in current density, electrical efficiency and overall efficiency is conducted for the effects of different operating parameters in SOFC. The present model can serve as a valuable tool for in-depth performance evaluation of other design and operating parameters of SOFC unit, as well as further dynamic simulation and optimization of SOFC as a prime mover in cogeneration or trigeneration system.

  6. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  7. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    SciTech Connect

    Chen, Yu; Ding, Dong; Wei, Tao; Liu, Meilin

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H2O, 5% CO2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO4 was significantly decreased.

  8. Investigation and Design Studies of SOFC Electrode Performance at Elevated Pressure

    SciTech Connect

    Ted Ohrn; Shung Ik Lee

    2010-07-31

    An experimental program was set forth to study fuel cell performance at pressure and under various compositions. Improvement in cathode electrode performance is on the order of 33-40% at pressures of 6.4 Bara compared to atmospheric pressure. Key cathode operational parameters are the concentration and partial pressure of O2, and temperature. The effect of partial pressure of oxygen (PO2) decreases the activation polarization, although there appears to be a secondary effect of absolute pressure as well. The concentration of oxygen impacts the diffusion component of the polarization, which is largely insensitive to absolute pressure. The effect of pressure was found to reduce the total polarization resistance of full fuel-cells beyond the reduction determined for the cathode alone. The total reduction in ASR was on the order of 0.10 ohm-cm2 for a pressure increase from 1 to 6.5 Bara, with about 70% of the improvement being realized from 1 to 4 Bara. An important finding was that there is an effect of steam on the cathode that is highly temperature dependent. The loss of performance at temperatures below 850 C was very large for the standard LSM + YSZ cathodes.

  9. Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs

    SciTech Connect

    Li Zhipeng; Mori, Toshiyuki; Auchterlonie, Graeme John; Zou Jin; Drennan, John

    2011-09-15

    Analytical transmission electron microscopy, in particular with the combination of energy dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), has been performed to investigate the microstructure and microchemistry of the interfacial region between the cathode (La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, LSCF) and the electrolyte (Gd-doped ceria, GDC). Two types of diffusions, mutual diffusion between cathode and electrolyte as well as the diffusion along grain boundaries, have been clarified. These diffusions suggest that the chemical stability of LSCF and GDC are not as good as previously reported. The results are more noteworthy if we take into consideration the fact that such interdiffusions occur even during the sintering process of cell preparation. - Graphical Abstract: Two types of diffusions, the mutual diffusion and the diffusion along grain boundaries, occurred at the cathode/electrolyte interface of intermediate temperature solid state fuel cells, during cell preparation. The mutual diffusion is denoted by black arrows and the diffusion along grain boundaries assigned by pink arrows. Highlights: > All the cations in cathode (LSCF) and electrolyte (GDC) can mutually diffuse into each other. > Diffusing elements will segregate at grain boundaries or triple junctions around the cathode/electrolyte interface. > Two types of diffusions, the mutual diffusion and diffusion along grain boundaries, have been clarified thereafter.

  10. Layered YSZ/SCSZ/YSZ Electrolytes for Intermediate Temperature SOFC Part I: Design and Manufacturing

    SciTech Connect

    Orlovskaya, Nina; Klimov, Mikhail; Huang, Xinyu; Cullen, David A; Graule, Thomas; Kuebler, Jakob

    2012-01-01

    (Sc2O3)0.1(CeO2)0.01(ZrO2)0.89 (SCSZ) ceramic electrolyte has superior ionic conductivity in the intermediate temperature range (700 800 C), but it does not exhibit good phase and chemical stability in comparison with 8 mol% Y2O3 ZrO2 (YSZ). To maintain high ionic conductivity and improve the stability in the whole electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed. Because of a mismatch of coefficients of thermal expansion and Young's moduli of SCSZ and YSZ phases, upon cooling of the electrolytes after sintering, thermal residual stresses will arise, leading to a possible strengthening of the layered composite and, therefore, an increase in the reliability of the electrolyte. Laminated electrolytes with three, four, and six layers design were manufactured using tape-casting, lamination, and sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at 30 m, the thickness of the SCSZ inner layer varied from 30 m for a Y SC Y three-layered electrolyte, 60 m for a Y 2SC Y four-layered electrolyte, and 120 m for a Y 4SC Y six-layered electrolyte. The microstructure, crystal structure, impurities present, and the density of the sintered electrolytes were characterized by scanning and transmission electron microscopy, X-ray and neutron diffraction, secondary ion mass spectroscopy, and water immersion techniques.

  11. Preparation of Nanocomposite GDC/LSCF Cathode Material for IT-SOFC by Induction Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Almeida, Veronica Alexandra B.; Gitzhofer, François

    2011-01-01

    Homogeneous mixtures of Ce0.8Gd0.2O1.9 (GDC) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) nanopowders were successfully synthesized using induction plasma by axial injection of a solution. The resulting nanocomposite powders consisted of two kinds of nanopowders with different mass ratio of GDC/LSCF, such as 3/7 and 6/4. The morphological features, crystallinity, and the phases of the synthesized powders were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), local energy-dispersive x-ray spectroscopy (EDS) analysis, and x-ray diffraction (XRD). The nanopowders are almost globular in shape with a diameter smaller than 100 nm and their BET specific areas are around 20 m2 g-1. The GDC and LSCF phases are well distributed in the nanopowders. In addition, suspensions, made with the as-synthesized composite nanopowders and ethanol, were used to deposit cathode coatings using suspension plasma spray (SPS). Micro-nanostructures of the coatings are discussed. The coatings are homogeneous and porous (51% porosity) with cauliflower structures.

  12. Inkjet Printing of Anode Supported SOFC: Comparison of Slurry Pasted Cathode and Printed Cathode (POSTPRINT)

    DTIC Science & Technology

    2010-02-01

    existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments...and the cathode current collection layer, LSM. - Terpineol was used as the solvent for the ink slurries. Polyvinyl butyral PVB, butyl benzyl phthalate...previous study. Increased solids Table I. Ink compositions. Constituent Anode interlayer g Electrolyte g - Terpineol 10 10 YSZ 0.3 2.4,1.2 NiO

  13. Theoretical Studies of Oxygen Reduction and Proton Transfer in SOFCs and Nerve Agents on Selected Surfaces

    DTIC Science & Technology

    2015-11-19

    Distinguished Faculty of Benedict College 2013 Changyong Qin, Excellence in Teaching Award by SCICU 2014 The number of undergraduates funded by this...for main group thermochemistry , thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and

  14. TEM characterization of Au-based alloys to join YSZ to steel for SOFC applications

    SciTech Connect

    Lin, Kun-Lin; Singh, Mrityunjay; Asthana, Rajiv

    2012-01-15

    The microstructures of two gold-based alloys with compositions (in wt.%) of 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V following oxidation at 850 Degree-Sign C for 200 min were characterized by analytical transmission electron microscopy with energy dispersive spectroscopy and by scanning electron microscopy. In the oxidized 96.4Au-3Ni-0.6Ti interlayer, a dense scale composed of nickel oxide (NiO) and nickel titanate (NiTiO{sub 3}) formed at the alloy surface. No evidence of titanium oxide was found because there was not enough Ti present to form titanium oxide. In the oxidized 97.5Au-0.75Ni-1.75V interlayer, loose vanadium oxide (V{sub 2}O{sub 5}) and nickel vanadate (Ni{sub 2}V{sub 2}O{sub 7}) formed and were distributed within the oxidized 97.5Au-0.75Ni-1.75V interlayer. Similarly, because of the low Ni content in the alloys, no NiO formed. The oxide products in the 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V interlayers after oxidation are consistent with the Pilling-Bedworth (PB) ratio considerations. - Highlights: Black-Right-Pointing-Pointer Two commercial Au-based reactive metallic interlayers were oxidized at 850 Degree-Sign C for 200 min. Black-Right-Pointing-Pointer The oxidized products at the surface were characterized by TEM/EDS and SEM. Black-Right-Pointing-Pointer NiO and NiTiO{sub 3} formed at the oxidized 96.4Au-3Ni-0.6Ti interlayer. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} and Ni{sub 2}V{sub 2}O{sub 7} were found in the oxidized 97.5Au-0.75Ni-1.75V interlayer. Black-Right-Pointing-Pointer These oxide products are consistent with the Pilling-Bedworth (PB) ratio considerations.

  15. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    DTIC Science & Technology

    2010-12-28

    Officer: Dr. Michele Anderson (ONR 332; 703-696-1938) Amount awarded: $44,856 Final Report 20110103009 DEFENSE TECHNICAL INFORMATION CENTER...for this document can be found in the DTICf Technical Report Database. DISTRIBUTION STATEMENT A. Approved for public release; distribution is...may use this MS Word file to submit the Technical Section of the ONR End of Year Report . Please include any images, tables, graphs, and equations

  16. Reforming of JP-8 in Microplasmas for Compact SOFC Power 500 W

    DTIC Science & Technology

    2012-11-30

    hydrocarbon bonds. Presently, knowledge of the mechanisms controlling the efficiency of microplasma-mediated reactions is sorely lacking; we propose...for soldier power. This experimental study exposes various hydrocarbons that are representative of key compounds in JP-8 to microplasma conditions... hydrocarbons under various microplasma conditions. Effective models permit understanding of the mechanisms. (a) Papers published in peer-reviewed journals (N

  17. Experimental analysis and modeling for a circular-planar type IT-SOFC

    NASA Astrophysics Data System (ADS)

    Bedogni, S.; Campanari, S.; Iora, P.; Montelatici, L.; Silva, P.

    This work presents an experimental analysis of circular-planar type intermediate-temperature solid oxide fuel cells, and the interpretation of the experimental results with a finite volume model. The model is developed to generate cell mass and energy balances and internal cell profiles for all the relevant thermodynamic or electrochemical variables, and includes a fluid-dynamic analysis focusing on the investigation of the cell internal flow conditions. Experiments have been carried out at the Edison laboratories, where several single cells fuelled with hydrogen were subject to polarization curve analysis and internal temperature measurements. The model is calibrated and validated over experimental voltage-current data, provides information on cell internal losses and demonstrates the capacity of predicting the single cell behavior and overall energy balances when changing significantly the cell operating conditions. The discussion also addresses the effects of diffusion losses appearing in the experiments carried out at high current output and low fuel hydrogen content.

  18. Protective coating on stainless steel interconnect for SOFCs:Oxidation kinetics and electrical properties

    SciTech Connect

    Chen, Xuan; Hou, Peggy Y.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2004-04-01

    An effective, dense and well adherent coating was produced on 430SS that has the result of significantly reducing the oxidation rate of this alloy at elevated temperatures. The coating is essentially a Mn-Co-O spinel, applied in powder form, and compacted to improve its green density. A simplified model is presented that allows an assessment of the effects of the contact and scale geometries. For 850 C, an ASR can be predicted of approximately 0.5 cm2, after 50,000hrs in air, taking in to account a factor of 10 penalty for unfavorable contact geometries. The effect of the densified Mn-Co spinel coating is to reduce significantly Cr2O3 sub-scale formation, lower the thermal expansion mismatch, and increase the electronic conductivity of the scale. The findings point to several potential remedies for achieving coatings on 430 SS that allow for metal interconnects with a service life of 50,000 hrs or more. Considering contact geometries, such service life is unlikely to be possible above operating temperatures of about 700 C, unless highly specialized alloys are used, with potential processing and cost penalties.

  19. Improvement in SOFC anode performance by finely-structured Ni/YSZ cermet prepared via heterocoagulation.

    PubMed

    Sunagawa, Yoji; Yamamoto, Katsutoshi; Muramatsu, Atsushi

    2006-03-30

    A novel preparation technique for a nanostructured anode for a solid oxide fuel cell is investigated. By mixing nanometer-sized NiO and YSZ powders in a pH-controlled aqueous media, a fine mixture of nanoparticles is successfully obtained through heterocoagulation. The anode prepared from thus prepared mixture has a large triple phase boundary and shows a great improvement in the anode performance by increasing the electric conductivity and effective surface area.

  20. EFFECT OF GEOMETRY AND OPERATING PARAMETERS ON SIMULATED SOFC STACK TEMPERATURE UNIFORMITY

    SciTech Connect

    Koeppel, Brian J.; Lai, Canhai; Khaleel, Mohammad A.

    2011-08-10

    A uniform temperature field is desirable in the solid oxide fuel cell stack to avoid local hot regions that contribute to material degradation, thermal stresses, and differences in electrochemical performance. Various geometric and operational design changes were simulated by numerical modeling of co-flow and counter-flow multi-cell stacks, and the effects on stack maximum temperature, stack temperature difference, and maximum cell temperature difference were characterized. The results showed that 40-60% on-cell steam reforming of methane and a reduced reforming rate of 25-50% of the nominal rate was beneficial for a more uniform temperature field. Fuel exhaust recycling up to 30% was shown to be advantageous for reforming fuels and co-flow stacks with hydrogen fuel, but counter-flow stacks with hydrogen fuel showed higher temperature differences. Cells with large aspect ratios showed a more uniform temperature response due to either the strong influence of the inlet gas temperatures or the greater thermal exchange with the furnace boundary condition. Improved lateral heat spreading with thicker interconnects was demonstrated, but greater improvements towards a uniform thermal field for the same amount of interconnect mass could be achieved using thicker heat spreader plates appropriately distributed along the stack height.