Sample records for sofia flying observatory

  1. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  2. Early Science Results from SOFIA, the Worlds Largest Airborne Observatory

    NASA Astrophysics Data System (ADS)

    De Buizer, J.

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the largest flying observatory ever built, consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt. By flying at altitudes up to 45000 feet, the observatory gets above 99.9% of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This talk will review some of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and the optical occultation photometer HIPO.

  3. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA DFRC after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA's Dryden Flight Research Center after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  4. SOFIA: Science Vision and Current Status

    NASA Technical Reports Server (NTRS)

    Horner, Scott D.

    2010-01-01

    This slide presentation details the science and status of the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is a 2.5 m Telescope designed to fit into a modified Boeing 747SP aircraft. It will have imaging and spectroscopy from .03 micron to 1.6 mm, emphasizing the obscured infrared spectrum (i.e., 30-300 micron). It will fly between 39,000 to 45,000 feet, above over 99.8 % of the water vapor which obscures the infrared from other ground based telescopes. Since it is on a ground based airplane, the instrumentation can be interchangeable between flights, it can fly anywhere and anytime. Diagrams show an overview of the observatory, the optical layout, and a comparison of SOFIA with the other major IR Imaging spectroscopic Space Observatories. Pictures include a shot of the installation of the primary mirror, and the Telescope instrument interface. Charts show the first generation instruments, and their ranges of spectral observation. Also the presentation reviews the science questions that SOFIA's instruments will assist in reviewing.

  5. The Next Generation Airborne Observatory - SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Davidson, J. A.

    1993-05-01

    NASA and the astronomical community have planned SOFIA - the Stratospheric Observatory for Infrared Astronomy - to extend and expand the capabilities of airborne astronomy. Just as the KAO telescope has three times the aperture of its Learjet predecessor, SOFIA's aperture will be three times that of the KAO. Thus SOFIA will surpass the angular resolution of the KAO by a factor of three and its per-pixel sensitivity by at least a factor of nine at wavelengths beyond 10 \\mm.. Following the tradition of the KAO and Learjet programs, the user community will provide most of the SOFIA focal plane instruments. Scientists will fly their new instruments as soon as they become operational, assuring immediate application of state-of-the-art technology throughout the anticipated 20 year observatory lifetime. Annual peer review of submitted proposals guarantees a vigorous observing program. Armed by 15-20 different instrument teams, reinforced by an additional ~ 50 guest investigator groups, and flying 160 8-hour sorties per year, SOFIA will attack a very broad range of astronomical problems. To name just a few, SOFIA will: probe km-scale structure of planetary atmospheres and ring systems; measure the luminosity function of young stellar objects down to values ~ less. 0.1 L\\sun.; identify accreting protostars; and trace structure and location of dominant energetic activity in IR-luminous galaxies with ~ 1 kpc resolution at 100 Mpc. The Astronomy and Astrophysics Survey (Bahcall) committee ranked SOFIA as the highest priority moderate cost new mission for NASA in the 1990s. SOFIA has been thoroughly studied and is ready to start development. If funding is available in FY95, SOFIA could be flying by the end of the decade.

  6. Flying the Infrared Skies: An Authentic SOFIA Educator Experience

    NASA Astrophysics Data System (ADS)

    Manning, J. G.

    2015-11-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.

  7. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2009-06-01

    SOFIA is a 2.5-meter infrared airborne telescope in a Boeing 747-SP that will begin will begin science flights in mid-2009. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA will be used to conduct spectroscopic and imaging observations throughout the infrared and sub-mm region with an average transmission of greater than 80 percent. The SOFIA first-generation instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The characteristics and status of the observatory and its instrumentation will be briefly reviewed. SOFIA`s operations schedule and opportunities for observers and instrument developers will be described.

  8. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial sciencemore » flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.« less

  9. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    NASA Technical Reports Server (NTRS)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  10. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert; Becklin, Eric; Young, Erick; Krabbe, Alfred; Marcum, Pamela; Roellig, Thomas

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 and is capable of observations from 0.3 microns to 1.6 mm with an average transmission greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 8 to 10 hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. SOFIA will initially fly with eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and future instrumentation developments. The operational characteristics of the SOFIA first-generation instruments are summarized and we give several specific examples of the types of scientific studies to which these instruments are expected to make fundamental scientific contributions.

  11. The Stratospheric Observatory for Infrared Astronomy (SOFIA) - Current Status, Recent Results, Future Plans, and Synergies with the AKARI Archive

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2017-01-01

    The Stratospheric Observatory for Infrared Astronomy comprises a 2.7m diameter telescope mounted in a heavily modified B747SP aircraft. The SOFIA program is a joint US NASA and German DLR program, with the development and operations costs split roughly 80%:20%, respectively. Although the observatory is funded by these two nations, its observing time is open to proposals from astronomers of any nationality. The observatory has been flying and taking scientific data since 2010 and currently observes astronomical targets from the stratosphere for approximately 800 research flight hours per year. Seven science instruments (with an eighth coming online in 2020) cover the visible to sub-millimeter wavelengths with a variety of spectral resolutions ranging up to 1e8. The AKARI Archive with its 1.7 to 180 micron wavelength coverage is a natural complementary source for follow-up observations with SOFIA. This presentation will cover the current SOFIA technical capabilities and will present a few recent science highlights that demonstrate the SOFIA/AKARI complementarity. The presentation will also cover the SOFIA proposal process and will summarize other partnership opportunities for additional observing time on SOFIA.

  12. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP that began science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters with an average transmission of greater than 80 percent. SOFIA is staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. About 100 eight to ten hour flights per year are expected by 2014, and the observatory will operate until the mid 2030's. We will review the status of the SOFIA facility, its initial complement of science instruments, and the opportunities for advanced instrumentation.

  13. High and Dry: Trading Water Vapor, Fuel and Observing Time for SOFIA

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kurklu, Elif

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over it's 20 year lifetime, and will commence operations in early 2005. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20 deg to 60 deg of elevation. A significant problem in future SOFIA operations is that of scheduling Facility Instrument (E) flights in support of the SOFIA General Investigator (GI) program. GIs are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Approximately 70 GI flight per year are expected, with 5-15 observations per flight.

  14. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Gehrz, R. D.; Callis, H. H. S.

    2007-09-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region with an average transmission of >= 80%. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  15. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  16. A Technical Overview and Description of SOFIA (Stratospheric Observatory for Infrared Astronomy)

    NASA Technical Reports Server (NTRS)

    Kunz, Nans

    2003-01-01

    This paper provides a technical overview of SOFIA, a unique airborne observatory, from an engineering perspective. It will do this by describing several of the systems of this observatory that are common with mountain top ground based observatories but mostly emphasize those more unique features and systems that are required to facilitate world class astronomy from a highly modified Boeing 747-SP flying at Mach 0.84 in the Stratosphere. This paper provides a technical overview of SOFIA by reviewing each of the performance specifications (the level one requirements for development) and describing some of the technical advancements for the telescope as well as the platform required to achieve these performance specifications. The technical advancements involved include mirror technologies, control system features, the telescope suspension system, and the aircraft open port cavity with associated cavity door that opens in flight and tracks the telescope elevation angle. For background this paper will provide a brief programmatic overview of the SOFIA project including the joint project arrangement between the US and Germany (NASA and DLR). Additionally, this paper will describe the up to date status of the development of SOFIA as the Observatory nears the date of the first test flight in the summer of 2004.

  17. SOFIA: The future of airborne astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    1995-01-01

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  18. Spectroscopic observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint US and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high-resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light spectroscopic science are discussed.

  19. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of ≳ 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  20. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.

    2009-08-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA's first generation instrument complement includes high-speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2010, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  1. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2008-07-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project will operate a 2.5-meter infrared airborne telescope in a Boeing 747SP. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations in the infrared and submillimeter region with an average transmission of 80%. SOFIA has a wide instrument complement including broadband imaging cameras, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas and will conclude in winter of 2008-09. SOFIA will be staged out of Dryden's aircraft operations facility at Palmdale, Site 9, CA for science operations. The SOFIA Science Center will be at NASA Ames Research Center, Moffet Field, CA. First science flights will begin in 2009, the next instrument call and first General Observer science call will be in 2010, and a full operations schedule of ~120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities, and examples of first light and early mission science are discussed.

  2. SOFIA production

    NASA Image and Video Library

    2017-10-05

    On Oct. 5, 2017, researchers aboard the flying observatoy SOFIA, the Stratospheric Observatory for Infrared Astronomy, studied the atmosphere of Neptune's moon Triton as it cast a faint shadow on eEarth's surface during a two-minute, eclipse like event called an occultation. The team successfully maneuvered the specially equipped Boeing 747SP aircraft, and made observations of the distant star's light as it passed through Triton's atmosphere.

  3. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  4. Taking Outreach to New Heights with SOFIA

    NASA Astrophysics Data System (ADS)

    Dodds, J.; Wold-Brennon, R.

    2014-12-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) mission conducts an Education and Public Outreach program that leverage the unique attributes of the world's largest airborne observatory. After reaching a series of milestones, SOFIA achieved Full Operational Capability (FOC) in May, 2014, equivalent to a launch in the space telescope world. Still in early stages, the Airborne Astronomy Ambassadors (AAA) effort aspires to improve teaching, inspire students, and inform U.S. communities by incorporating educators into the crew, where they fly to the stratosphere and engage with scientists and mission specialists. The program's 55 Ambassadors, selected through a highly competitive national call for applications, flew aboard the aircraft during 3 science phases of observatory operations. These dedicated educators not only incorporate content knowledge and specific components of their experience into their curricula and education programming, they also appear and present at events in their communities. Their efforts to date have impacted thousands. During the presentation, SOFIA Ambassadors will overview this national program, share experiences during flight weeks, and present the spectrum of successful outreach efforts implemented.Outcomes: Participants will obtain updates on the SOFIA AAA program, receive information on the future of this national program, and benefit from examples of using authentic science experiences to improve professional practices.

  5. Status of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.; de Buizer, J.; Herter, T.; Keller, L. D.; Krabbe, A.; Marcum, P. M.; Roellig, T. L.; Sandell, G. H. L.; Temi, P.; Vacca, W. D.; Young, E. T.; Zinnecker, H.

    2011-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA), a joint US/German project, is a 2.5-m infrared airborne telescope carried by a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 ft (13.72 km). This facility is capable of observing from 0.3 μm to 1.6 mm with an average transmission greater than 80% averaged over all wavelengths. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA. The SOFIA Science Mission Operations (SMO) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights began in 2010 and a full operations schedule of up to one hundred 8 to 10 hour-long flights per year will be reached by 2014. The observatory is expected to operate until the mid-2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs that will resolve broad features due to dust and large molecules, and high-resolution spectrometers capable of studying the kinematics of atomic and molecular gas at sub-km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and for future instrumentation development. The operational characteristics of the SOFIA first-generation instruments are summarized. The status of the flight test program is discussed and we show First Light images obtained at wavelengths from 5.4 to 37 μm with the FORCAST imaging camera. Additional information about SOFIA is available at http://www.sofia.usra.edu and http://www.sofia.usra.edu/Science/docs/SofiaScienceVision051809-1.pdf.

  6. NASA SOFIA International Year of Light (IYL) Event: Infrared Light: Hanging out in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Clark, Coral; Backman, Dana E.; Harman, Pamela; Veronico, Nicholas

    2015-01-01

    As an International Year of Light committee endorsed event, Infrared Light: Hanging out in the Stratosphere will engage learners around the world, linking participants with scientists at work on board NASA SOFIA, the world's largest flying observatory. This major event will showcase science-in-action, interviews, live data, and observations performed both aboard the aircraft and at partner centers on land.SOFIA (Stratospheric Observatory For Infrared Astronomy) is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR) consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division. Science investigators leverage SOFIA's unique capabilities to study the universe at infrared wavelengths by making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA received Full Operating Capacity status in May, 2014, and astrophysicists will continue to utilize the observatory and upgraded instruments to study astronomical objects and phenomena, including star birth and death; planetary system formation; identification of complex molecules in space; planets, comets, and asteroids in our solar system; and nebulae and dust in galaxies.This landmark event will reflect and build on the ProjectLink. In October 1995, SOFIA's predecessor, the Kuiper Airborne Observatory (KAO), performed the first satellite links from an airplane to the ground. The KAO downlinked to the Exploratorium museum (SF, CA), where over 200 students watched the webcast, conversed, and participated in simultaneous observations at the world-renowned science museum. SOFIA will now take this concept into the 21st century, utilizing internet technologies to engage and inspire 100,000+ learners of all ages through simultaneous presentations and appearances by over 70 SOFIA Educators at schools and informal learning institutions across the U.S. and around the world, and build bridges for future authentic opportunities with high impact in STEM education.

  7. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2010-06-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 feet and is capable of observations from 0.3 microns to 1.6 mm with an average transmission of greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. Open door test flights began in December of 2009. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 eight to ten hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. We review the status of the SOFIA facility and its initial complement of eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution.

  8. Observations of Exoplanets with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R.; Becklin, E.

    2010-10-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-meter infrared airborne telescope in a Boeing 747-SP that will begin science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA will be used to conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.9 millimeters with an average transmission of greater than 80 percent. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These and future instruments will give SOFIA the potential to make unique contributions to the characterization of the atmospheres of exoplanets that transit their parent stars. First-light images obtained on May 26, 2010 with the FORCAST imager will be shown. We will discuss several types of experiments that are being contemplated with respect to observations of exoplanets .

  9. Star & Planet Formation Studies and Opportunities with SOFIA

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly Ennico

    2018-01-01

    Star formation, the most fundamental process in the universe, is linked to planet formation and thus to the origin and evolution of life. We have a general outline of how planets and stars form, yet unraveling the details of the physics and chemistry continues to challenge us. The infrared and submillimeter part of the spectrum hold the most promise for studying the beginnings of star formation. The observational landscape recently shaped by Spitzer, Herschel and ALMA, continues to challenge our current theories. SOFIA, the Stratospheric Observatory for Infrared Astronomy, equipped with state-of-the-art infrared instrumentation to a vantage point at 45,000 feet (13.7 kilometers) flight altitude that is above 99.9 percent of the Earth's water vapor, enables observations in the infrared through terahertz frequencies not possible from the ground. SOFIA is a community observatory, about to start its sixth annual observing cycle. My talk will focus on recent results in advancing star and planet formation processes using SOFIA's imaging and polarimetric capabilities, and the upcoming science enabled by the 3rd generation instrument High-Resolution Mid-Infrared Spectrometer (HIRMES) to be commissioned in 2019. I will show how mid-infrared imaging is used to test massive star formation theories, how far-infrared polarimetry on sub-parsec scales is directly testing the role of magnetic fields in molecular clouds, and how velocity-resolved high-resolution spectroscopy will push forward our understanding of proto-planetary disk science. I will also summarize upcoming opportunities with the SOFIA observatory. For the latest news about your flying observatory, see https://sofia.usra.edu/.

  10. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  11. SpS1-SOFIA studies of stellar evolution

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.; Roellig, T. L.

    2010-11-01

    The U.S./German Stratospheric Observatory for Infrared Astronomy (SOFIA, Figure 1) is a 2.5-meter infrared airborne telescope in a Boeing 747-SP flying in the stratosphere at altitudes as high as 45,000 feet where the atmospheric transmission averages ≥ 80% throughout the 0.3 - 1600 μm spectral region. SOFIA's first-generation instruments include broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km s-1 resolution. These and future instruments will enable SOFIA to make unique contributions to studies of the physics and chemistry of stellar evolution for many decades. Science flights will begin in 2010. A full operations schedule of at least 100 flights per year will begin in 2014 and will continue for 20 years. The SOFIA Guest Investigator (GI) program, open to investigators worldwide, will constitute the major portion of the SOFIA observing program.

  12. SOFIA Education and Public Outreach (EPO): Scientist/Educator Partnerships at 41,000 Feet

    NASA Astrophysics Data System (ADS)

    Backman, D.; Devore, E.; Bennett, M.

    2003-12-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a unique opportunity for education and public outreach (EPO). SOFIA is the first research observatory -- airborne or ground-based -- in which close participation by educators and journalists is being designed into both the physical facility and the administrative structure of the observatory. With the overall goal of contributing to the public's awareness and understanding of science in general and astronomy in particular, the SOFIA EPO program will include formal K-12 and undergraduate educational activities, informal education, public outreach, and media relations. One of the most exciting and unique aspects of the SOFIA EPO program is the observatory's ability to carry up to 10 educators on science flights, enabling those educators to partner with scientists and participate in real research. Some 200 formal and informal educators per year are expected to participate in the SOFIA Airborne Astronomy Ambassadors program once full-scale operation is achieved. Educators who have participated in the Airborne Astronomy Ambassadors program will be encouraged to continue their scientific partnerships and will be supported in their efforts to carry new-found knowledge and enthusiasm to their students, other educators in their communities and the general public. The Airborne Astronomy Ambassadors will be supported as a national network via continued communications and material support from the SOFIA EPO program office, and will constitute a wide-spread outreach cadre for NASA and space sciences based on their experiences with airborne astronomy. Scientists, engineers, and other members of the SOFIA team will be encouraged to partner with local teachers and visit their classrooms as a part of the SOFIA Education Partners Program. Training for scientist-educators will be offered via the Astronomical Society of the Pacific's Project ASTRO network of astronomy education sites around the USA. This program will enable students to interact with scientists and other professionals on a one-to-one basis. Participating educators may fly onboard SOFIA with their scientist partners. Scientists who participate in this program will be able to work with educators and students in their local communities to forge long-lasting science education partnerships. The SOFIA EPO staff is interested in forming collaborations with interested organizations, other NASA missions, and individual astronomers. SOFIA is being developed and will be operated for NASA by USRA. The EPO program is being developed and will be operated jointly by the SETI Institute and the Astronomical Society of the Pacific.

  13. Damping SOFIA: passive and active damping for the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Keas, Paul J.; Glaese, Roger M.

    2001-07-01

    The Stratospheric Observatory For Infrared Astronomy, SOFIA is being developed by NASA and the German space agency, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), with an international contractor team. The 2.5-meter reflecting telescope of SOFIA will be the world's largest airborne telescope. Flying in an open cavity on a modified 747 aircraft, SOFIA will perform infrared astronomy while cruising at 41,000 feet and while being buffeted by a 550- mile-per-hour slipstream. A primary system requirement of SOFIA is tracking stability of 0.2 arc-seconds, and a 3-axis pointing control model has been used to evaluate the feasibility of achieving this kind of stability. The pointing control model shows that increased levels of damping in certain elastic modes of the telescope assembly will help achieve the tracking stability goal and also expand the bandwidth of the attitude controller. This paper describes the preliminary work that has been done to approximate the reduction in image motion yielded by various structure configurations that use reaction masses to attenuate the flexible motions of the telescope structure. Three approaches are considered: passive tuned-mass dampers, active-mass dampers, and attitude control with reaction-mass actuators. Expected performance improvements for each approach, and practical advantages and disadvantages associated with each are presented.

  14. Facility Instrumentation for SOFIA: Technical Specifications and Scientific Goals

    NASA Astrophysics Data System (ADS)

    Stacey, G. J.

    2000-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne observatory consisting of a 2.5 m telescope in a modified Boeing 747 SP. First light is expected in late 2002. Three "Facility Class" instruments were among the first generation of instruments selected to fly on SOFIA. These instruments, currently under development are (1) a 5 to 38 um imaging photometer based on twin As:Si and Sb:Sb BIB arrays (FORCAST), (2) a 40 to 300 um photometer based on three arrays of bolometers, and (3) a 17 to 210 um eschelle grating spectrometer based on an Sb:Sb BIB array and a Ge:Sb and stressed Ge:Ga array of photoconductors. I will discuss both the technical aspects of these facility instruments, and some of the exciting new science that is possible with these ground breaking instruments on an airborne 2.5 meter telescope. Science topics include circumstellar debris disks, star formation, the Galactic Center, and distant galaxies.

  15. A new window on the cosmos: The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.; de Pater, I.; Lester, D. F.; Roellig, T. L.; Woodward, C. E.

    2009-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German Project to develop and operate a gyrostabilized 2.5-m telescope in a Boeing 747-SP. This observatory will allow astronomical observations from 0.3 μm to sub-millimeter wavelengths at stratospheric altitudes as high as 45,000 ft where the atmosphere is not only cloud-free, but largely transparent at infrared wavelengths. The dynamics and chemistry of interstellar matter, and the details of embedded star formation will be key science goals. In addition, SOFIA's unique portability will enable large-telescope observations at sites required to observe transient phenomena and location specific events. SOFIA will offer the convenient accessibility of a ground-based telescope for servicing, maintenance, and regular technology upgrades, yet will also have many of the performance advantages of a space-based telescope. Initially, SOFIA will fly with nine first-generation focal plane instruments that include broad-band imagers, moderate resolution spectrographs that will resolve broad features from dust and large molecules, and high resolution spectrometers capable of studying the chemistry and detailed kinematics of molecular and atomic gas. First science flights will begin in 2010, leading to a full operations schedule of about 120 8-10 h flights per year by 2014. The next call for instrument development that can respond to scientifically exciting new technologies will be issued in 2010. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community with cutting edge focal plane technology. We summarize the operational characteristics of the first-generation instruments and give specific examples of the types of fundamental scientific studies these instruments are expected to make.

  16. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Joseph, R. D.

    2009-08-01

    The SOFIA is a 2.5-meter telescope built into a Boeing 747 airplane. It will fly at altitudes between 12-14 km above 99.8% of the atmospheric water vapor, making possible observations throughout the far-infrared and submillimeter spectral region. Nine focal plane instruments providing imaging and low-to-high resolution spectroscopy will be available. It will be operated as a guest observer facility. The first call for ``Early Basic Science'' will be issued in December 2009, the call for Demonstration Science will be issued early in 2010, and the call for Cycle 0 Guest Investigator programs is planned for January 2011.

  17. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    ERIC Educational Resources Information Center

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  18. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  19. The Stratospheric Observatory for Infrared Astronomy - A New Tool for Planetary Science

    NASA Astrophysics Data System (ADS)

    Ruzek, M. J.; Becklin, E.; Burgdorf, M. J.; Reach, W.

    2010-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German effort to fly a 2.5 meter telescope on a modified Boeing 747SP aircraft at stratospheric altitudes where the atmosphere is largely transparent at infrared wavelengths. Key goals of the observatory include understanding the formation of stars and planets; the origin and evolution of the interstellar medium; the star formation history of galaxies; and planetary science. SOFIA offers the convenient accessibility of a ground-based observatory coupled with performance advantages of a space-based telescope. SOFIA’s scientific instruments can be exchanged regularly for repairs, to accommodate changing scientific requirements, and to incorporate new technologies. SOFIA’s portability will enable specialized observations of transient and location-specific events such as stellar occultations of Trans-Neptunian Objects. Unlike many spaceborne observatories, SOFIA can observe bright planets and moons directly, and can observe objects closer to the sun than Earth, e.g. comets in their most active phase, and the planet Venus. SOFIA’s first generation instruments cover the spectral range of .3 to 240 microns and have been designed with planetary science in mind. The High-speed Imaging Photometer for Occultations (HIPO) is designed to measure occultations of stars by Kuiper Belt Objects, with SOFIA flying into the predicted shadows and timing the occultation ingress and egress to determine the size of the occulting body. HIPO will also enable transit observations of extrasolar planets. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) and the High-resolution Airborne Wideband Camera (HAWC) will enable mid-infrared and far-infrared (respectively) imaging with a wide range of filters for comets and giant planets, and colorimetric observations of small, unresolved bodies to measure the spectral energy distribution of their thermal emission. The German Receiver for Astronomy at Terahertz Frequencies (GREAT) will measure far-infrared and microwave spectral lines at km/s resolution to search for molecular species and achieve a significant improvement over current knowledge of abundance and distribution of water in planetary bodies. The Echelon Cross Echelle Spectrograph (EXES) and the Field Imaging Far Infrared Line Spectrometer (FIFI LS) will provide high-resolution spectral data between 5 and 210 microns to support mineralogical analysis of solar system and extrasolar debris disk dust and observe spectral features in planetary atmospheres. The First Light Infrared Test Experiment Camera (FLITECAM) will offer imaging and moderate resolution spectroscopy at wavelengths between 1 and 5 microns for observations of comets and asteroids, and can be used simultaneously with HIPO to characterize the atmosphere of transiting exoplanets. SOFIA’s first light flight occurred in May, 2010 and the first short science observing program is scheduled to begin in November, 2010. The Program will issue a call for new instrumentation proposals in the summer of 2011, as well as regular calls for observing proposals beginning in late summer 2011. SOFIA is expected to make ~120 science mission flights each year when fully operational in 2014.

  20. Stratospheric Observatory for Infrared Astronomy (SOFIA): Infrared Sensor Development and Science Capabilities

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Ruzek, M.

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a unique airborne observatory designed to operate in the lower stratosphere to altitudes as high as 45,000 feet and above 99.8 percent of Earths obscuring atmospheric water vapor. SOFIA's capabilities enable science and observations that will complement and extend past, present and future infrared (IR) telescopes in wavelength range, angular and spectral resolution, and observing flexibility. The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is nearing readiness for for open door flights and demonstration of early science results. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at high resolution. First science flights will begin in early 2010. A great strength of SOFIA is the enormous breadth of its capabilities and the flexibility with which those capabilities can be modified and improved to take advantage of advances in infrared technology. This paper and presentation will highlight the following points: A 2.5-meter effective-diameter optical-quality telescope for diffraction-limited imaging beyond 25 micrometers, giving the sharpest view of the sky provided by any current or developmental IR telescope operating in the 30-60 micrometers region; Wavelength coverage from 0.3 micrometers to 1.6 mm and high resolution spectroscopy (R to 105) at wavelengths between 5 and 150 micrometers; An 8 arcmin FOV allowing use of very large detector arrays; Ready observer access to science instruments which can be serviced in flight and changed between flights; A low-risk ability to incorporate new science-enabling instrument technologies and to create a whole "new" observatory several times during the lifetime of the facility; Opportunity for continuous training of instrumentalists to develop and test the next generation of instrumentation for both suborbital and space applications; Mobility, which allows access to the entire sky and a vastly increased number of stellar occultation events; Unique opportunities for educators and journalists to participate first-hand in exciting astronomical observations. The mid- and far-IR wavelength regions are key to studying the dusty universe. SOFIA science emphasizes four major themes: Star and planet formation; the interstellar medium of the Milky Way; Galaxies and the galactic center; and Planetary science. These capabilities will enable a wide range of science investigations over SOFIA's 20-year operational lifetime. This paper will address SOFIA's nine first-light science instruments, capabilities, and development.

  1. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can generate flights enables humans to assess and analyze complex tradeoffs between fuel consumption, estimated science quality and the percentage of scheduled observations. Due to the changing nature of SOFIA scheduling problems, this functionality will play a crucial role in optimizing science and minimizing costs during operations. In the full paper, we will summarize the technical challenges that have been met in order to build this system. These include: design of the search algorithm, design of appropriate heuristics and approximations, and reduction in the size of the search space. We will also describe technical challenges that are currently being addressed, including the extension of the existing approach to handle new solution criteria. Finally, we will describe a variety of cultural challenges that the astronomical community must address in order to successfully use SOFIA, and describe how the AFT can be used to address some of these challenges. Specifically, many of the intended science users are accustomed to using ground-based or space-based observatories; we will identify some differences that arise due to the nature of airborne observatories, and how the AFT can be extended to provide useful services to ease these cultural differences.

  2. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  3. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  4. Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  5. Layout of personnel accommodations for the SOFIA

    NASA Astrophysics Data System (ADS)

    Daughters, David M.; Bruich, J. G.; Arceneaux, Gregory P.; Zirretta, Jason; Caton, William B.

    2000-06-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) Observatory is based upon a refurbished and heavily modified Boeing 747 SP aircraft. The Observatory, which provides accommodations for the Deutsches Zentrum Fur Luftund Raumfahrt 2.5 m telescope, science investigator teams, scientific instruments, mission crew and support systems. The US contractor team has removed most of the aircraft original furnishings and designed a new Layout of Personnel Accommodations (LOPA) tailored to SOFIA's needs.

  6. Sofia Science Working Group

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    The purpose of this grant was to enable the Principal Investigator (P.I.) to travel to and participate in the meetings and activities of the NASA SOFIA Science Working Group (SSWG), and to spend time working on some of the associated technical issues relating to the SOFIA (Stratospheric Observatory for Infrared Astronomy) project. The SOFIA Science Working Group was established to help develop the plans and specifications for the next-generation airborne observatory ("SOFIA"), which is now under development. The P.I. was asked to serve on the SSWG due to his experience in airborne astronomy: he has developed several astronomical instruments for the Kuiper Airborne Observatory NASA's previous airborne astronomy platform (which was decommissioned in 1995 in preparation for SOFIA). SOFIA, which will be a 747 SP aircraft carrying a 2.7 meter diameter telescope, is a joint project sponsored by NASA and DLR (the German space agency), and is now under development by a consortium including Universities Space Research Association (USRA), Raytheon, Sterling Software, and United Airlines. Further details on the SOFIA project can be found on the internet at http: //sofia. arc. nasa. gov. Rather than develop the SOFIA observatory in-house, NASA decided to privatize the project by issuing a Request for Proposals (RFP). The respondents to this RFP were consortia of private organizations which together had the required facilities and expertise to be able to carry out the project; the winner was the group led by USRA. One of the main roles of the SSWG was to help develop the technical specifications for the SOFIA observatory. In particular, the SSWG provided advice to NASA on the specifications that were written into the RFP, particularly those which had an important impact on the scientific productivity of the observatory. These specifications were discussed at the meetings of the SSWG, which were held primarily at NASA/Ames (in California) and at NASA Headquarters (in Washington DC). Apart from these meetings, members of the SSWG were expected to perform more detailed analyses of the impact of certain parameters and specifications on the performance of astronomical instruments. The SSWG ended its activities with the selection of the USRA team in January 1997.

  7. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  8. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  9. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2012-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP. SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters. At SOFIA's maximum service ceiling of 45,000 feet, the average transmission at these wavelengths is greater than 80 percent. SOFIA flys out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations (SMO) Center is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes broadband imagers and spectrographs that can resolve spectral features due to dust and large molecules, and high resolution spectrometers facilitating kinematic studies of molecular and atomic gas lines at km/s resolution. More than 30 science flights of 10 hours length (take-off to landing) were conducted in the past year. About 100 eight to ten hour flights per year are planned by 2014, and the observatory will operate until the mid-2030's.

  10. NASA's Stratospheric Observatory for Infrared Astronomy 747SP shows off its new blue-and-white livery at L-3 Communications' Integrated Systems in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP is shown at L-3 Communications Integrated Systems' facility in Waco, Texas, where major modifications and installation was performed. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  11. NASA's newly painted Stratospheric Observatory for Infrared Astronomy 747SP is pushed back from L-3 Communications' Integrated Systems hangar in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP aircraft sits outside a hangar at L-3 Communications Integrated Systems' facility in Waco, Texas. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  12. Stratospheric Observatory for Infrared Astronomy (SOPHIA) Mirror Coating Facility

    NASA Astrophysics Data System (ADS)

    Austin, Ed

    The joint US and German project, Stratospheric Observatory for Infrared Astronomy (SOFIA), to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began late last year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOPHIA. The 2.5 meter telescope will be designed and built by a consortium of German companies. The observatory is expected to operate for over 29 years with the first science flights beginning in 2001. The SOPHIA Observatory will fly at and above 12.5 km, where the telescope will collect radiation in the wavelength range from 0.3 micrometers to a 1.6 millimeters. Universities Space Research Association (USRA) with support from NASA is currently evaluating methods of recoating the primary mirror in preparation for procurement of mirror coating equipment. The decision analysis technique, decision criteria and telescope specifications will be discussed.

  13. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Casey, Sean C.; Davidson, Jacqueline A.; Savage, Maureen L.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association , teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the preliminary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation are discussed.

  14. Vibration isolation system for the Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Kaiser, T.; Kunz, N.

    1988-01-01

    The Vibration Isolation System for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is studied. Included are discussions of the various concepts, design goals, concerns, and the proposed configuration for the Vibration Isolation System.

  15. Stratospheric observatory for infrared astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA survey project related to astrochemistry is discussed.

  16. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  17. NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  18. Occultation Evidence for Haze in Pluto's Atmosphere in 2015 at the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Zuluaga, C.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; Röser, H. P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-12-01

    On UT 29 June 2015, the occultation by Pluto of a bright star (r'=11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) as well as several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone. Combined analysis of the data sets leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, we find that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere. This work was supported by NASA grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams), and by the National Research Foundation of South Africa. Co-authors were visiting observers on SOFIA, at the Keck Observatory, the Magellan Observatory, the SARA-CT Observatory, the Mt. John University Observatory, and the Auckland Observatory.

  19. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    2003-06-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Brown Dwarf research; some of these are discussed.

  20. SOFIA Science Working Group

    NASA Technical Reports Server (NTRS)

    Zmuldzinas, J.

    1997-01-01

    The SOFIA Science Working Group was established to help develop the plans and specifications for the next-generation airborne observatory ("SOFIA"), which is now under development. The P.I. has developed several astronomical instruments for the Kuiper Airborne Observatory, NASA's previous airborne astronomy platform (which was decommisioned in 1995 in preparation for SOFIA). SOFIA, which will be a 747 SP aircraft carrying a 2.7 meter diameter telescope, is a joint project sponsored by NASA and DLR (the German space agency), and is now under development by a consortium including Universities Space Research Association (USRA), Raytheon, Sterling Software, and United Airlines. Rather than develop the SOFIA observatory in-house, NASA decided to privatize the project by issuing a Request for Proposals (RFP). The respondents to this RFP were consortia of private organizations which together had the required facilities and expertise to be able to carry out the project; the winner was the group led by USRA. One of the main roles of the SSWG was to help develop the technical specifications for the SOFIA observatory. In particular, the SSWG provided advice to NASA on the specifications that were written into the RFP, particularly those which had an important impact on the scientific productivity of the observatory. These specifications were discussed at the meetings of the SSWG, which were held primarily at NASA/Ames (in California) and at NASA Headquarters (in Washington DC). Apart from these meetings, members of the SSWG were expected to perform more detailed analyses of the impact of certain parameters and specifications on the performance of astronomical instruments. The SSWG ended its activities with the selection of the USRA team in January 1997.

  1. SOFIA: A Promising Resource for Future Nova Studies

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Sofia Science Team

    2014-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-m telescope carried on board a Boeing 747-SP aircraft. Optimized for observations from infrared through sub-mm wavelengths, SOFIA observes from an altitude of 37,000 - 45,000 feet, above 99% of the atmospheric water vapor. The Observatory's complement of instruments possesses a broad range of capabilities, many of which are especially well suited for observations of classical novae, recurrent novae, and other cataclysmic variables. Here we present a selection of the instruments available on board SOFIA that may prove to be very useful for future novae studies.

  2. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Horn, Jochen M. M.

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now well into development. Work on the aircraft and the telescope has started. First science flights will begin in 2003 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA project related to astrochemistry is discussed.

  3. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Davidson, J. A.; Horn, J. M. M.

    1999-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now in its second year of development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2002 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow astronomical surveys that were not possible on the KAO. Two future SOFIA projects related to cosmology and astrochemistry are discussed.

  4. Star Formation Studies with SOFIA and its Synergy with TMT

    NASA Astrophysics Data System (ADS)

    De Buizer, James

    2014-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a modified Boeing 747 aircraft equipped with a 2.5m telescope that performs observations at high altitude from the optical to the sub-mm. The observatory just reached full operational capability in April of this year. Given that it is slated for a 20-year mission lifetime, SOFIA will overlap TMT by more than a decade. I will discuss the contrasting and complementary features of SOFIA and TMT in the context of star formation, discuss some of the early results from SOFIA in this field, and finish with a discussion of how TMT data can enhance and extended our understanding of star formation processes.[This talk could also be generalized to discuss more about synergies between SOFIA and TMT in a broader context (not just star formation), should the organizers prefer that.

  5. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1997-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001, and the observatory is expected to operate for over 20 years. The specifications, instruments and science potential of SOFIA are discussed.

  6. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The SOFIA project to develop and operate a 2 5-meter infrared telescope in a Boeing 747-SP is in its final stages of development First science flights will begin in 2008 with the observatory designed to operate for over 20 years Status of the development and technical issues will be discussed along with the expected sensitivity and first light science instruments Also discussed will be examples of the science to be carried out and opportunities for the science community to use SOFIA

  7. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    2004-12-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Dust Debris Disks; some of these are discussed.

  8. SOFIA: The Next Generation Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Dunham, Edward; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    SOFIA, the Stratospheric Observatory For Infrared Astronomy, will carry a 2.5 meter telescope into the stratosphere on 160 7.5 hour flights per year. At stratospheric altitudes SOFIA will operate above 99% of the water vapor in the Earth's atmosphere, allowing observation of wide regions of the infrared spectrum that are totally obscured from even the best ground-based sites. Its mobility and long range will allow worldwide observation of ephemeral events such as occultations and eclipses. SOFIA will be developed jointly by NASA and DARA, the German space agency. It has been included in the President's budget request to Congress for a development start in FY96 (this October!) and enjoys strong support in Germany. This talk will cover SOFIA's scientific goals, technical characteristics, science operating plan, and political status.

  9. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  10. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  11. The SOFIA flight crew descends the stairs after ferrying the 747SP airborne observatory from Waco, TX, to NASA's Dryden Flight Research Center in California

    NASA Image and Video Library

    2007-05-31

    The SOFIA flight crew, consisting of Co-pilot Gordon Fullerton; DFRC, Pilot Bill Brocket; DFRC, Test Conductor Marty Trout; DFRC, Test Engineer Don Stonebrook; L-3, and Flight Engineer Larry Larose; JSC, descend the stairs after ferrying the 747SP airborne observatory from Waco, Texas, to its new home at NASA's Dryden Flight Research Center in California. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  12. Exoplanet Observations in SOFIA's Cycle 1

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel

    2013-06-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micron photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in the field of characterization of the physical properties of exoplanets: parallel optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments and possible future dedicated instrumentation. Here we present spectrophotometric exoplanet observations that were or will be conducted in SOFIA's cycle 1.

  13. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  14. Stratospheric Observatory for Infrared Astronomy (SOFIA) Acoustical Resonance Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Kehoe, Michael W.; Gupta, Kajal K.; Kegerise, Michael A.; Ginsberg, Jerry H.; Kolar, Ramesh

    2009-01-01

    A request was submitted on September 2, 2004 concerning the uncertainties regarding the acoustic environment within the Stratospheric Observatory for Infrared Astronomy (SOFIA) cavity, and the potential for structural damage from acoustical resonance or tones, especially if they occur at or near a structural mode. The requestor asked for an independent expert opinion on the approach taken by the SOFIA project to determine if the project's analysis, structural design and proposed approach to flight test were sound and conservative. The findings from this assessment are recorded in this document.

  15. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1999-03-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP is now in full development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20 per cent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow much more use by scientists than was possible on the KAO.

  16. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2006. The observatory is expected to operate for over 20 years. The first light science instruments and some science projects will be discussed.

  17. Erik Lindbergh unveils a plaque commemorating his grandfather to dedicate the 747 Clipper Lindbergh, a NASA airborne infrared observatory known as SOFIA

    NASA Image and Video Library

    2007-05-21

    Erik Lindbergh, grandson of aviator Charles Lindbergh, unveiled a plaque commemorating his grandfather on the 80th anniversary of Charles Lindbergh's transatlantic flight. The event was a dedication of the 747 Clipper Lindbergh, a NASA airborne infrared observatory that is beginning test flights in preparation for conducting world-class airborne astronomy. The project is known as the Stratospheric Observatory for Infrared Astronomy, or SOFIA.

  18. Development of the SOFIA Image Processing Tool

    NASA Technical Reports Server (NTRS)

    Adams, Alexander N.

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a Boeing 747SP carrying a 2.5 meter infrared telescope capable of operating between at altitudes of between twelve and fourteen kilometers, which is above more than 99 percent of the water vapor in the atmosphere. The ability to make observations above most water vapor coupled with the ability to make observations from anywhere, anytime, make SOFIA one of the world s premiere infrared observatories. SOFIA uses three visible light CCD imagers to assist in pointing the telescope. The data from these imagers is stored in archive files as is housekeeping data, which contains information such as boresight and area of interest locations. A tool that could both extract and process data from the archive files was developed.

  19. Infrared Astrophysics in the SOFIA Era - An Overview

    NASA Astrophysics Data System (ADS)

    Yorke, Harold W.

    2018-06-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) provides the international astronomical community access to a broad range of instrumentation that covers wavelengths spanning the near to far infrared. The high spectral resolution of many of these instruments in several wavelength bands is unmatched by any existing or near future planned facility. The far infrared polarization capabilities of one of its instruments, HAWC+, is also unique. Moreover, SOFIA allows for additional instrument augmentations, as new state-of-the-art photometric, spectrometric, and polarimetric capabilities have been added and are being further improved. The fact that SOFIA provides ample mass, power, computing capabilities as well as 4K cooling eases the constraints on future instrument design, technical readiness, and the instrument build to an extent not possible for space-borne missions. We will review SOFIA's current and future planned capabilities and highlight specific science areas for which the stratospheric observatory will be able to significantly advance Origins science topics.

  20. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Helton, A. L.; SOFIA Science Team

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.7-m telescope mounted on board a Boeing 747-SP aircraft. Optimized for observations from infrared through sub-mm wavelengths, SOFIA observes from an altitude of 37,000 - 45,000 feet, above 99% of the atmospheric water vapor. The Observatory’s complement of instruments exhibits a broad range of capabilities that are well suited for the observation of dusty astronomical sources. During its first year of preliminary operations, SOFIA made a number of exciting observations, including the discovery of a new high-mass protostar in the Orion Nebula (IRc4), the first detection of OD outside our Solar System, the detection of interstellar mercapto radicals (SH), and some of the highest resolution mid-IR observations of the transient Galactic circumnuclear ring to date. Here we present a selection of the available instruments available on board SOFIA and discuss their potential for future studies of dust in the Universe.

  1. Occultation Spectrophotometry of Extrasolar Planets with SOFIA

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku; Morse, Jon A.

    2014-04-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 μm photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.

  2. Occultation Spectrophotometry of Extrasolar Planets with SOFIA

    NASA Technical Reports Server (NTRS)

    Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku

    2012-01-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5- meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micrometer photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPOFLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.

  3. NASA's SOFIA infrared observatory in flight for the first of a series of test flights to verify the flight performance of the highly modified Boeing 747SP

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  4. NASA's SOFIA infrared observatory and F/A-18 safety chase during the first series of test flights to verify the flight performance of the modified Boeing 747SP

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  5. NASA's SOFIA infrared observatory lifts off on the first of a series of test flights to verify the flight performance of the highly modified Boeing 747SP

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  6. SOFIA pointing history

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Kunz, Nans; Temi, Pasquale; Krabbe, Alfred; Wagner, Jörg; Süß, Martin

    2014-07-01

    The original pointing accuracy requirement of the Stratospheric Observatory for Infrared Astronomy SOFIA was defined at the beginning of the program in the late 1980s as very challenging 0.2 arcsec rms. The early science flights of the observatory started in December 2010 and the observatory has reached in the mean time nearly 0.7 arcsec rms, which is sufficient for most of the SOFIA science instruments. NASA and DLR, the owners of SOFIA, are planning now a future 4 year program to bring the pointing down to the ultimate 0.2 arcsec rms. This may be the right time to recall the history of the pointing requirement and its verification and the possibility of its achievement via early computer models and wind tunnel tests, later computer aided end-to-end simulations up to the first commissioning flights some years ago. The paper recollects the tools used in the different project phases for the verification of the pointing performance, explains the achievements and may give hints for the planning of the upcoming final pointing improvement phase.

  7. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint US and German SOFIA project to develop and operate a 2.5 m infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2007. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  8. Overview of SOFIA's General Capabilities and Project Status

    NASA Astrophysics Data System (ADS)

    Tielens, A.

    2005-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-meter telescope installed in a Boeing 747-SP to be flown at altitudes higher than ˜12 km. This allows observations in the stratosphere above virtually all of the atmosphere's water vapor. SOFIA's first generation scientific instruments span wavelengths from 0.3 to 700 microns. Upcoming engineering test flights will be followed by scientific test flights commissioning the observatory and instruments. In regular operations there are planned more than 120 research flights per year with as much as 8 to 10 hours of observing time per flight.

  9. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  10. SOFIA: A Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.; Thorley, G.; Caroff, L. J.

    1991-01-01

    SOFIA is described as it was originally (May 1988) for the Space and Earth Sciences Advisory Committee (SESAC). The format and questions were provided by SESAC as a standard for judging the merit of potential U.S. space science projects. This version deletes Section IIF, which addressed development costs of the SOFIA facility. SOFIA's unique astronomical potential is described and it is shown how it complements and supports existing and planned facilities.

  11. Expected SOFIA sensitivity, characteristics, US science instrument complement and operations concept.

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Davidson, J. A.

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation, are discussed.

  12. Capabilities, performance, and status of the SOFIA science instrument suite

    NASA Astrophysics Data System (ADS)

    Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, E. E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Smith, Erin C.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffery E.; Young, Erick T.; Zell, Peter T.

    2013-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5-40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60-240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3-1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1-5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42-210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5-28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50-240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.

  13. SOFIA lightweight primary mirror

    NASA Astrophysics Data System (ADS)

    Espiard, Jean; Tarreau, Michel; Bernier, Joel; Billet, Jacques; Paseri, Jacques

    1998-08-01

    Thanks to its experience in lightweighting ceramic glass mirrors by machining, R.E.O.S.C. won the contract for designing and manufacturing the primary mirror and its lateral fixations of the 2.7 m. SOFIA telescope which will be installed aboard a 747 SP Boeing aircraft to constitute the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  14. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2008. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of 1-st light spectroscopic astrochemistry science are discussed.

  15. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  16. SOFIA general investigator science program

    NASA Astrophysics Data System (ADS)

    Young, Erick T.; Andersson, B.-G.; Becklin, Eric E.; Reach, William T.; Sankrit, Ravi; Zinnecker, Hans; Krabbe, Alfred

    2014-07-01

    SOFIA is a joint project between NASA and DLR, the German Aerospace Center, to provide the worldwide astronomical community with an observatory that offers unique capabilities from visible to far-infrared wavelengths. SOFIA consists of a 2.7-m telescope mounted in a highly modified Boeing 747-SP aircraft, a suite of instruments, and the scientific and operational infrastructure to support the observing program. This paper describes the current status of the observatory and details the General Investigator program. The observatory has recently completed major development activities, and it has transitioned into full operational status. Under the General Investigator program, astronomers submit proposals that are peer reviewed for observation on the facility. We describe the results from the first two cycles of the General Investigator program. We also describe some of the new observational capabilities that will be available for Cycle 3, which will begin in 2015.

  17. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    NASA Astrophysics Data System (ADS)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  18. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association, teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed.

  19. NASA SOFIA Captures Images of the Planetary Nebula M2-9

    NASA Image and Video Library

    2012-03-29

    Researchers using NASA Stratospheric Observatory for Infrared Astronomy SOFIA have captured infrared images of the last exhalations of a dying sun-like star. This image is of the planetary Nebula M2-9.

  20. NASA Dryden's two T-38A mission support aircraft fly in tight formation while conducting a pitot-static airspeed calibration check near Edwards Air Force Base

    NASA Image and Video Library

    2007-09-26

    NASA Dryden Flight Research Center's two T-38A Talon mission support aircraft flew together for the first time on Sept. 26, 2007 while conducting pitot-static airspeed calibration checks during routine pilot proficiency flights. The two aircraft, flown by NASA research pilots Kelly Latimer and Frank Batteas, joined up with a NASA Dryden F/A-18 flown by NASA research pilot Dick Ewers to fly the airspeed calibrations at several speeds and altitudes that would be flown by the Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP during its initial flight test phase. The T-38s, along with F/A-18s, serve in a safety chase role during those test missions, providing critical instrument and visual monitoring for the flight test series.

  1. SOFIA secondary mirror Hindle test analysis

    NASA Astrophysics Data System (ADS)

    Davis, Paul K.

    2003-02-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a NASA facility, nearing completion, consisting of an infrared telescope of 2.5 meter system aperture flying in a modified Boeing 747. Its Cassegrain secondary mirror has recently completed polishing. The SOFIA Project Office at Ames Research Center considered it important to perform an independent analysis of secondary mirror figure. The polishing was controlled by the standard test for a convex hyperboloid, the Hindle test, in a modified form with a meniscus lens partially reflecting on the concave face, rather than a fully reflecting mirror with a central hole. The spacing between this meniscus lens and the secondary mirror was controlled by three peripherally located spacing spheres. This necessitated special analysis to determine what the resulting curvature and conic constant of the mirror would be, if manufacturing imprecisions of the test set-up components were to be taken into account. This set-up was specially programmed, and the resulting hyperboloid calculated for the nominal case, and all extreme cases from the reported error limits on the manufacturing of the components. The results were then verified using the standard program CODE-V of Optical Research Associates. The conclusion is that the secondary mirror has a vertex radius of curvature of 954.05 mm +/- .1 mm (design value: 954.13), and a conic constant of -1.2965 +/- .001 (dimensionless, design value: -1.298). Such small divergences from design are to be expected, and these are within the refocusing ability of SOFIA, and would result in an acceptably small amount of spherical aberration in the image.

  2. Exploring the Interstellar Medium with SOFIA

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.

    2004-01-01

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is being developed to operate at wavelengths from 0.3 microns to 1.6 mm over a 20 year lifetime. Its 2.5 m effective diameter telescope will be diffraction limited (approximately 8.5 arc seconds FWHM at 100 microns) at wavelengths beyond about 5 microns. Its B747SP aircraft platform will allow coverage of the entire sky and enable observation of ephemeral events. Nine first-generation focal plane instruments are being built, and more will be added later. These attributes assure SOFIA a vital role in future studies of the interstellar medium (ISM), in addition to topics such as the solar system. SOFIA observers will explore the gamut of ISM topics: star formation; the Galactic Center; debris disks; recycling of materials through the stellar life cycle; the origin and evolution of biogenic materials; shock, photodissociation, and photoexcitation physics; gas and grain chemistry. Imaging, spectroscopy, and eventually polarimetry covering much of the infrared spectrum will all be part of SOFIA's arsenal in the attack on these and other important problems. The talk will describe the observatory, its status, its science instruments and anticipated program. SOFIA is a joint program of NASA in the U.S. and DLR in Germany. Broad participation by the international science community in SOFIA observations will be encouraged via annual proposal opportunities and user-friendly tools. Roughly 80% of the observing time will be granted by the U.S. and 20% by Germany. For further information, see http://sofia.arc.nasa.gov.

  3. SOFIA Update and Science Vision

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly

    2017-01-01

    I will present an overview of the SOFIA program, its science vision and upcoming plans for the observatory. The talk will feature several scientific highlights since full operations, along with summaries of planned science observations for this coming year, platform enhancements and new instrumentation.

  4. Erik Lindbergh, grandson of famed aviator Charles Lindbergh, yanks the bunting to reveal the Clipper Lindbergh name on NASA's SOFIA 747SP on June 27, 2007

    NASA Image and Video Library

    2007-06-27

    Erik Lindbergh, grandson of famed aviator Charles Lindbergh, yanks the bunting to reveal the Clipper Lindbergh name on NASA's SOFIA Boeing 747SP on June 27, 2007. More than 250 VIPs, news media and guests joined NASA, DLR, USRA and other SOFIA staff for the debut of the airborne observatory at NASA Dryden.

  5. Tiny two-inch string tufts blanket the telescope cavity door and related fairings to aid visual monitoring of airflow patterns during SOFIA 747SP flight tests

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  6. NASA's SOFIA 747SP bearing a German-built 2.5-meter infrared telescope in its rear fuselage taxis up to NASA Dryden's ramp after a ferry flight from Waco, TX

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA 747SP bearing a German-built 2.5-meter infrared telescope in its rear fuselage taxis up to NASA Dryden's ramp after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  7. Segmented air bearing in micronozzle technology for the project SOFIA

    NASA Astrophysics Data System (ADS)

    Muth, Michael; Schulz, Bernd

    1997-10-01

    Since 1986 there is a cooperation between NASA and DARA, Germany's space agency, to develop a flying telescope three times the size and ten times the light gathering ability of its predecessor -- the Kuiper Airborne Observatory. This project is called SOFIA -- Stratospheric Observatory for Infrared Astronomy. The 2.5 meter telescope for the visible through the infrared and the sub-millimeter wavelengths to the microwaves will be mounted in a modified Boeing 747-SP with a cavity at the port side behind the wings. It can be opened at stratospheric altitudes of around 41,000 feet, above 99.9 percent of the interfering water vapor. When not in use, the telescope will be sheltered from environment by a door in the fuselage. Vibrations of the aircraft would spoil the telescope's images. Therefore the telescope has to be isolated from the aircraft's structure. One promising solution for the rotational uncoupling is a segmented spherical air bearing with a bearing sphere diameter of 1.2 meter, which carries the telescope on a thin air cushion. In this paper a new technology of air bearings with micro nozzles manufactured with the aid of a laser is presented. The innovation is rooted in the unique combination of excellent static and dynamic characteristics. These types of air bearings were developed at the Lehrstuhl fur Feingeratebau und Mikrotechnik at the Technical University of Munich, and they are produced in series by the AeroLas GmbH, Munich.

  8. SOFIA - Science Potential for Extrasolar Planet Reseaarch

    NASA Astrophysics Data System (ADS)

    Sandell, G.; Becklin, E. E.; Dunham, E. W.

    The joint U.S. and German Stratospheric Observatory For Infrared Astronomy (SOFIA) project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. The telescope was delivered to the U.S. in September 2002 and will be integrated into the aircraft in early 2003. First science flights will begin in late 2004. Once fully operational the observatory will do 960 observing hours/year, with an expected lifetime of over 20 years. We give an overview of the characteristics of the observatory and its first suite of nine instruments, three of which are facility instruments, five are principal investigator instruments and one is a specialty instrument.

  9. SOFIA science instruments: commissioning, upgrades and future opportunities

    NASA Astrophysics Data System (ADS)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  10. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  11. Exoplanetary Science: Instrumentation, Observations, and Expectations

    NASA Technical Reports Server (NTRS)

    McElwain, Michael

    2011-01-01

    More than 700 exoplanets have been discovered and studied using indirect techniques, leading our field into the exciting new era of comparative exoplanetology. However, the direct detection of exoplanetary systems still remains at the sensitivity limits of both ground- and space-based observatories. The development of new technologies for adaptive optics systems and high contrast instruments continues to increase the ability to directly study exoplanets. The scientific impact of these developments has promising prospects for both short and long timescales. In my talk, I will discuss recent highlights from the SEEDS survey and the current instrumentation in use at the Subaru telescope. SEEDS is a high contrast imaging strategic observing program with 120 nights of time allocated at the NAOJ's flagship optical and infrared telescope. I will also describe new instrumentation I designed to improve the SEEDS capabilities and efficiency. Finally, I will briefly discuss the conceptual design of a transiting planet camera to fly as a potential second generation instrument on-board NASA's SOFIA observatory.

  12. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Wolf, J.

    2004-05-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, will carry a 3-meter-class telescope onboard a Boeing 747SP aircraft to altitudes of 41,000 to 45,000 ft, above most of the atmosphere's IR-absorbing water vapor. The telescope was developed and built in Germany and has been delivered to the U.S. in September 2002. The integration into the B747SP has been com- pleted and functional tests are under way in Waco, Texas. In early 2005 flight-testing of the observatory will initially be dedi-cated to the re-certification of the modified aircraft, then performance tests of the telescope and the electronics and data systems will commence. Later in 2005 after transferring to its home base, NASA's Ames Research Center in Moffett Field, California, SOFIA will start astrophysical observations. A suite of specialized infrared cameras and spectrometers covering wave-lengths between 1 and 600 ?m is being developed by U.S. and German science institutions. In addition to the infrared instruments, a high-speed visible range CCD camera will use the airborne observatory to chase the shadows of celestial bodies during occultations. Once SOFIA will be in routine operations with a planned observing schedule of up to 960 hours at altitude per year, it might also be available as a platform to serendipitous observations not using the main telescope, such as recordings of meteor streams or the search for extra-solar planets transiting their central stars. These are areas of research in which amateur astronomers with relatively small telescopes and state-of-the-art imaging equipment can contribute.

  13. Teacher Professional Development with SOFIA from Inception to Flight

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Lacy, J.; Sneden, C.; EXES Teacher Associates, SOFIA

    2012-01-01

    Since January 1998 Texas science and math teachers have met several times per year in a program centered on SOFIA, the Stratospheric Observatory for Infrared Astronomy. Initial meetings focused on astronomical instrumentation as the ground-based TEXES (Texas Echelon Cross Echelle Spectrograph) and its SOFIA successor, EXES, were developed and built. Sixty-nine different teachers have been involved in the seventy-nine Saturday meetings between January 1998 and October 2011. A typical meeting included an update on SOFIA, an expert talk on a science or technology topic, and a Standards-linked activity that they can carry back to use in their classrooms. Many of the participants have presented activities or reports to their colleagues. A variety of guest-presenters - faculty, staff, and graduate students as well as visitors (both in person and through videoconference) - enriched the program with their expertise. Some Saturday meetings included field trips to Waco to visit the SOFIA aircraft modification; other trips sent subsets of teachers to McDonald Observatory for TEXES' early observations, to Hawaii for observing runs on the IRTF or Gemini, and to various locations for American Astronomical Society meetings. The participants report their increased knowledge of astronomical concepts and of the culture of professional astronomy. By spreading the SOFIA EXES teacher program over such a long period, the staff has formed strong professional bonds with the participants while the participants have shared their experiences with each other. Support from USRA grant 8500-98-008; the National Science Foundation AST- 0607312, AST- 0607708, and AST-0908978; and SOFIA Education/Public Outreach through the SETI Institute 08-SC-1022 is gratefully acknowledged.

  14. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  15. A High-Altitude Site Survey for SOFIA

    NASA Astrophysics Data System (ADS)

    Haas, Michael R.; Pfister, Leonhard

    1998-03-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a modified Boeing 747-SP equipped with a 2.5 m telescope dedicated to astronomical research. Currently under joint development by the US (NASA) and Germany (DLR), it is scheduled to begin operations in late 2001. The ability of SOFIA to carry out its mission will depend strongly on the meteorological conditions at and above flight altitudes in the vicinity of its home base. The most important meteorological factors are the frequency of high-altitude clouds and the magnitude of the water vapor overburdens. This paper performs a high-altitude site survey by gathering together the best available meteorological data, defining metrics, and evaluating them for a variety of sites. These metrics are found to corroborate past airborne experience and to be consistent with well-known global circulation patterns, convection, and upper tropospheric dynamics. They indicate that there are significant variations in the weather at SOFIA flight altitudes. Particularly in summer, some continental US sites are shown to be worse than Hawaii, where high-altitude cirrus clouds and the associated moisture have historically caused significant losses in the amount and quality of the astronomical data collected by NASA's Kuiper Airborne Observatory. SOFIA's planned home base, Moffett Field, CA, is found to have excellent high-altitude weather and to be one of the best continental US sites.

  16. Evolution of the SOFIA tracking control system

    NASA Astrophysics Data System (ADS)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  17. On sky testing of the SOFIA telescope in preparation for the first science observations

    NASA Astrophysics Data System (ADS)

    Harms, Franziska; Wolf, Jürgen; Waddell, Patrick; Dunham, Edward; Reinacher, Andreas; Lampater, Ulrich; Jakob, Holger; Bjarke, Lisa; Adams, Sybil; Grashuis, Randy; Meyer, Allan; Bower, Kenneth; Schweikhard, Keith; Keilig, Thomas

    2009-08-01

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is an airborne observatory that will study the universe in the infrared spectrum. A Boeing 747-SP aircraft will carry a 2.5 m telescope designed to make sensitive infrared measurements of a wide range of astronomical objects. In 2008, SOFIA's primary mirror was demounted and coated for the first time. After reintegration into the telescope assembly in the aircraft, the alignment of the telescope optics was repeated and successive functional and performance testing of the fully integrated telescope assembly was completed on the ground. The High-speed Imaging Photometer for Occultations (HIPO) was used as a test instrument for aligning the optics and calibrating and tuning the telescope's pointing and control system in preparation for the first science observations in flight. In this paper, we describe the mirror coating process, the subsequent telescope testing campaigns and present the results.

  18. SOFIA primary mirror fabrication and testing

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel; Plainchamp, Patrick

    2001-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint American-German project dedicated to performing IR astronomy on board a Boeing Aircraft, in near space condition. First flight of the Observatory is planned for 2003. The REOSC Products Unit of SAGEM SA (France) has been contracted by Kayser Threde (Germany) for the design and fabrication of the 2.7-meter diameter, F/1.19 parabolic lightweight SOFIA primary mirror as well as the M3 dichroic and folding mirror assembly. This paper will report the design, fabrication and test of the lightweight primary mirror. The mirror structure has been obtained by machining it out from a solid Zerodur blank. It is the world's largest of this type today. Axial and lateral mirror support system has been conceptually designed and engineered by SAGEM-REOSC engineers in relation with Kayser Threde team. The optical surface is an F/1.19 parabola polished to a high level of quality.

  19. FLITECAM: delivery and performance on SOFIA

    NASA Astrophysics Data System (ADS)

    Logsdon, Sarah E.; McLean, Ian S.; Becklin, E. E.; Hamilton, Ryan T.; Vacca, William D.; Waddell, Patrick

    2016-08-01

    We present a performance report for FLITECAM, a 1-5 μm imager and spectrograph, upon its acceptance and delivery to SOFIA (Stratospheric Observatory for Infrared Astronomy). FLITECAM has two observing configurations: solo configuration and "FLIPO" configuration, which is the co-mounting of FLITECAM with the optical instrument HIPO (PI E. Dunham, Lowell Observatory). FLITECAM was commissioned in the FLIPO configuration in 2014 and flew in the solo configuration for the first time in Fall 2015, shortly after its official delivery to SOFIA. Here we quantify FLITECAM's imaging and spectral performance in both configurations and discuss the science capabilities of each configuration, with examples from in-flight commissioning and early science data. The solo configuration (which comprises fewer warm optics) has better sensitivity at longer wavelengths. We also discuss the causes of excess background detected in the in-flight FLITECAM images at low elevations and describe the current plan to mitigate the largest contributor to this excess background.

  20. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  1. SOFIA: first science highlights and future science potential

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    2013-06-01

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a joint project between NASA and the German Aerospace Agency (DLR) to develop and operate a 2.5 m airborne telescope in a highly modified Boeing 747SP aircraft that can fly as high as 45 000 feet (13.7 km). This is above 99.8 % of the precipitable water vapor which blocks much of the mid- and far-infrared radiation from reaching ground-based telescopes. In this review, we briefly discuss the characteristics of the Observatory and present a number of early science highlights obtained with the FORCAST camera in 5-40 micron spectral region and with the GREAT heterodyne spectrometer in the 130-240 micron spectral region. The FORCAST images in Orion show the discovery of a new high-mass protostar (IRc4), while GREAT observations at 1 km s-1 velocity resolution detected velocity-resolved, redshifted ammonia spectra at 1.81 THz in absorption against several strong far-infrared dust continuum sources, clear evidence of substantial protostellar infall onto massive (non-ionizing) protostars. These powerful new data allow us to determine how massive stars form in our Galaxy. Another highlight is the stunning image taken by FORCAST that reveals the transient circumnuclear 1.5 pc radius (dust) ring around our Galactic center, heated by hundreds of massive stars in the young nuclear star cluster. The GREAT heterodyne spectrometer also observed the circumnuclear ring in highly excited CO rotational lines, indicative of emission from warm dense molecular gas with broad velocity structure, perhaps due to local shock heating. GREAT also made superb mapping observations of the [C II] fine structure cooling line at 158 microns, for example in M17-SW molecular cloud-star cluster interface, observations which disprove the simple canonical photodissociation models. The much better baseline stability of the GREAT receivers (compared to Herschel HIFI) allows efficient on-the-fly mapping of extended [C II] emission in our galaxy and also in other nearby spiral galaxies. Of particular note is the GREAT discovery of two new molecules outside the solar system: OD (the deuterated OH hydroxyl radical) as well as mercapto radical SH, both in absorption near 1.4 THz, a frequency gap where Herschel was blind. A special highlight was the 2011 June 23 UT stellar occultation by Pluto using the HIPO high speed photometer and the FDC fast diagnostic camera. This difficult but successful observation, which was both space-critical (within 100 km) and time-critical (within 1 min), proved that SOFIA can be in the right place at the right time, when important transient events occur.

  2. NASA African American History Month Profile - Kimberly Ennix-Sandhu (AFRC)

    NASA Image and Video Library

    2018-02-20

    Kimberly Ennix-Sandhu is the SOFIA Operations Center System Safety Lead at NASA Armstrong Flight Research Center. SOFIA is the Stratospheric Observatory for Infrared Astronomy. Kimberly has worked for NASA for 27 years. She started out in jet and rocket propulsion research engineering and moved to Safety and Mission Assurance as a system safety engineer.

  3. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and implemented teacher professional development workshops. Their efforts have impacted thousands of students and teachers.

  4. SOFIA Aircraft Visits NASA Ames, Reporter Package for TWAN/Web

    NASA Image and Video Library

    2011-10-19

    Taking a break from its science mission flights, the Stratospheric Observatory For Infrared Astronomy or SOFIA came to NASA Ames Research Center to offer tours to employees and VIP's alike. For two days, the aircraft was opened up so that dignitaries, members of the media, NASA employees and the general public could take self-guided tours of the aircraft.

  5. Becoming reality: the SOFIA telescope

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred

    2003-02-01

    After 4.5 years of development, the telescope of the Stratospheric Observatory For Infrared Astronomy, SOFIA is becoming reality. The telescope module was delivered at the end of August 2002 from Germany to Waco/Texas, where the integration into the aircraft will begin in fall 2002. Here I present a progress report and describe the recent achievements as well as the status of the telescope.

  6. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  7. Searching for Cool Dust. II. Infrared Imaging of The OH/IR Supergiants, NML Cyg, VX Sgr, S Per, and the Normal Red Supergiants RS Per and T Per

    NASA Astrophysics Data System (ADS)

    Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J.; Shenoy, Dinesh; Gehrz, Robert D.; Helton, L. Andrew; Marengo, Massimo; Hinz, Philip M.; Hoffmann, William F.

    2018-05-01

    New MMT/MIRAC (9–11 μm), SOFIA/FORCAST (11–37 μm), and Herschel/PACS (70 and 160 μm) infrared (IR) imaging and photometry is presented for three famous OH/IR red supergiants (NML Cyg, VX Sgr, and S Per) and two normal red supergiants (RS Per and T Per). We model the observed spectral energy distributions (SEDs) using radiative-transfer code DUSTY. Azimuthal average profiles from the SOFIA/FORCAST imaging, in addition to dust mass distribution profiles from DUSTY, constrain the mass-loss histories of these supergiants. For all of our observed supergiants, the DUSTY models suggest that constant mass-loss rates do not produce enough dust to explain the observed infrared emission in the stars’ SEDs. Combining our results with Shenoy et al. (Paper I), we find mixed results with some red supergiants showing evidence for variable and high mass-loss events while others have constant mass loss over the past few thousand years. Based on observations obtained with: (1) the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart; and (2) the MMT Observatory on Mt. Hopkins, AZ, a joint facility of the Smithsonian Institution and the University of Arizona.

  8. A Decade Of Teacher Professional Development With SOFIA's EXES And TEXES

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Lacy, J. H.; Sneden, C.; Teacher Associates, EXES

    2007-12-01

    Since January 1998 central Texas grade 6-12 science and math teachers have met several times per year to learn first-hand about how a scientific instrument, the Echelon Cross Echelle Spectrograph (EXES), is being developed and built for SOFIA. In addition to learning about the technology of astronomical instrumentation, they have learned about the development of SOFIA, the scheduling and preparation for observing runs, and a wide range of astronomical topics. A typical Saturday meeting includes an update on SOFIA, EXES, and its ground-based prototype, TEXES (Texas Echelon Cross Echelle Spectrograph); one or more presentations on a science or technology topic; and a Standards-linked activity that they can carry back to use in their classrooms. A variety of guest-presenters - faculty, staff, and graduate students as well as visitors (e. g., Jackie Davidson and Alan Tokunaga) - enrich the program with their expertise. Field trips are important supplements to the program; the entire group visited Waco three times to observe the SOFIA aircraft modification while selected members have accompanied scientists to McDonald Observatory, IRTF, and Gemini for observing runs. In addition, the immediacy offered by live videoconferences with TEXES observers at IRTF and Gemini brought the participants a unique appreciation of nighttime observing at a professional observatory. The participants report their increased knowledge of astronomical concepts and of the culture of professional astronomy. By spreading the SOFIA EXES teacher program over its first decade of development, the staff has formed strong professional bonds with the participants while the participants have shared their experiences with each other. Support from USRA grant 8500-98-008 and the National Science Foundation AST-0607312 and AST- 0607708 is gratefully acknowledged.

  9. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  10. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  11. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Mike

    1992-01-01

    A summary is presented of plans for the future NASA astrophysics missions called SIRTF (Space Infrared Telescope Facility), SOFIA (Stratospheric Observatory for Infrared Astronomy), SMIM (Submillimeter Intermdiate Mission), and AIM (Astrometric Interferometry Mission), the Greater Observatories, and MFPE (Mission From Planet Earth). Technology needs for these missions are briefly described.

  12. Development of silicon carbide mirrors: the example of the Sofia secondary mirror

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Antoine, Pascal

    2017-11-01

    The 352 mm tip-tilt SOFIA Secondary Mirror has been developed by the ASTRIUM / BOOSTEC joint venture SiCSPACE, taking full benefit of the intrinsic properties of the BOOSTEC S-SiC sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM SAS. Achieved performances include a low mass of 1.7 kg, a very high stiffness with a first resonant frequency higher than 2000 Hz and an optical surface accuracy corresponding to a maximum WFE of 50 nm rms. This mirror is part of the joint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory For Infrared Astronomy (SOFIA).

  13. SOFIA: On the Pathway toward Habitable Worlds

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Angerhausen, D.; Becklin, E. E.; Greenhouse, M. A.; Horner, S.; Krabbe, A.; Swain, M. R.; Young, E. T.

    2010-10-01

    The U.S./German Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared airborne telescope in a Boeing 747-SP, will conduct 0.3 - 1,600 μm photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA’s first light cameras and spectrometers, as well as future generations of instruments, will enable SOFIA to make unique contributions to the characterization of the physical properties of proto-planetary disks around young stellar objects and of the atmospheres of exoplanets that transit their parent stars. We describe several types of experiments that are being contemplated.

  14. SOFIA Technology: The NASA Airborne Astronomy Ambassador (AAA) Experience and Online Resources

    NASA Astrophysics Data System (ADS)

    Clark, C.; Harman, P. K.; Backman, D. E.

    2016-12-01

    SOFIA, an 80/20 partnership of NASA and the German Aerospace Center (DLR), consists of a modified Boeing 747SP carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is the largest airborne observatory in the world, capable of observations impossible for even the largest and highest ground-based telescopes. The SOFIA Program Office is at NASA ARC, Moffett Field, CA; the aircraft is based in Palmdale, CA. During its planned 20-year lifetime, SOFIA will foster development of new scientific instrumentation and inspire the education of young scientists and engineers. Astrophysicists are awarded time on SOFIA to study many kinds of astronomical objects and phenomena. Among the most interesting are: Star birth, evolution, and death Formation of new planetary systems Chemistry of complex molecules in space Planet and exoplanet atmospheres Galactic gas & dust "ecosystems" Environments around supermassive black holes SOFIA currently has eight instruments, five US-made and three German. The instruments — cameras, spectrometers, and a photometer,— operate at near-, mid- and far-infrared wavelengths, each spectral range being best suited to studying particular celestial phenomena. NASA's Airborne Astronomy Ambassadors' (AAAs) experience includes a STEM immersion component. AAAs are onboard during two overnight SOFIA flights that provide insight into the acquisition of scientific data as well as the interfaces between the telescope, instrument, & aircraft. AAAs monitor system performance and view observation targets from their dedicated workstation during flights. Future opportunities for school district partnerships leading to selection of future AAA cohorts will be offered in 2018-19. AAAs may access public archive data via the SOFIA Data Cycle System (DCS) https://dcs.sofia.usra.edu/. Additional SOFIA science and other resources are available at: www.sofia.usra.edu, including lessons that use photovoltaic circuits, and other technology for the classroom.

  15. Submillimeter Spectroscopy with SOFIA

    NASA Technical Reports Server (NTRS)

    Erickson, E.; Gisten, R.; Moseley, H.; Poglitsch, A.; Zmuidzinas, J.

    2005-01-01

    Four submillimeter spectrometers are being developed for use on SOFIA, the Stratospheric Observatory for Infrared Astronomy. They will be nearly diffraction limited by SOFIA'S 2.5 m telescope, giving for example images of 8.5 arc seconds FWHM at 100 microns. The instruments are FlFI LS, an integral-field imaging grating spectrometer (MPE) covering 40-210 microns with 150 km/s resolution; SAFIRE an imaging Fabry-Perot spectrometer covering 100-'650 microns with resolution 200 km/s, and two heterodyne receivers with resolving powers up to 0.03 km/s: GREAT covering bands from 158-187 um, 110-125, and 62-65 microns, and CASIMIR, operating from 150-264 and 508-588 microns. These instruments will enable a variety of studies including topics relating to the origins of stars, planets, and biogenic materials in the interstallar medium of our own and other galaxies. Opportunities for observing with these and the other SOFIA instruments will be available to general investigators. SOFIA is a joint project of NASA in the U.S. and DLR in Germany.

  16. Computation of the Fluid and Optical Fields About the Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Coupling of Fluids, Dynamics, and Control Laws on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    The June 1992 to May 1993 grant NCC-2-677 provided for the continued demonstration of Computational Fluid Dynamics (CFD) as applied to the Stratospheric Observatory for Infrared Astronomy (SOFIA). While earlier grant years allowed validation of CFD through comparison against experiments, this year a new design proposal was evaluated. The new configuration would place the cavity aft of the wing, as opposed to the earlier baseline which was located immediately aft of the cockpit. This aft cavity placement allows for simplified structural and aircraft modification requirements, thus lowering the program cost of this national astronomy resource. Three appendices concerning this subject are presented.

  17. SOFIA pointing and chopping: performance and prospect

    NASA Astrophysics Data System (ADS)

    Reinacher, Andreas; Lammen, Yannick; Graf, Friederike; Jakob, Holger

    2016-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5m infrared telescope built into a Boeing 747 SP. In 2014 SOFIA reached its Full Operational Capability milestone and nowadays takes off about three times a week to observe the infrared sky from altitudes above most of the atmosphere's water vapor content. Despite reaching this major milestone the work to improve the observatory's performance is continuing in many areas. This paper focuses on the telescope's current pointing and chopping performance and gives an overview over the ongoing and foreseen work to further improve in those two areas. Pointing performance as measured with the fast focal plane camera in flight is presented and based on that data it is elaborated how and in which frequency bands a further reduction of image jitter might be achieved. One contributor to the remaining jitter as well as the major actuator to reduce jitter with frequencies greater than 5 Hz is SOFIA's Secondary Mirror Assembly (SMA) or Chopper. As-is SMA jitter and chopping performance data as measured in flight is presented as well as recent improvements to the position sensor cabling and calibration and their effect on the SMA's pointing accuracy. Furthermore a brief description of a laboratory mockup of the SMA is given and the intended use of this mockup to test major hardware changes for further performance improvement is explained.

  18. Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; hide

    2017-01-01

    The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.

  19. Airborne Measurements of Venus Cloud-top H2O and HDO from NASA’s SOFIA in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Tsang, Constantine; Encrenaz, Therese; DeWitt, Curtis N.; Richter, Matthew; Irwin, Patrick

    2017-10-01

    The determination of the D/H ratio in Venus’s atmosphere using water (H2O) and light water (HDO) has been used as evidence for the loss of a global sized ocean in the distant past on paleo-Venus. Measurements of atmospheric water vapour at and above the cloud level is also important as water is a key ingredient in the production of the hydrated H2SO4 clouds that prevail globally on Venus. While variations in latitude and local solar time of H2O at the cloud tops has been most recently measured by ESA’s Venus Express spacecraft, the data is sporadic due to the limb sounding geometry needed to make these measurements.Here we present H2O and HDO measurements from January 2017 from NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) using the EXES mid-infrared spectrometer flying at 40,000 ft where the relatively low telluric absorption makes detection of Venusian H2O possible. Two observation sequences were obtained that yielded spatially resolved maps of H2O and HDO at R~89,000 centered at 7.21 µm (1380 cm-1). We will also discuss the preliminary retrieved values of D/H ratios at the 65 km altitude probed at this wavelength.

  20. Where is Tropopause?

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.

    2004-01-01

    Much of the earth science that is being proposed for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Upper-Deck Research Facility (SURF) deals with issues related to the tropopause, which will be near SOFIA'S flight level at mid-latitudes. Interpreting in situ or remote aerosol, hydrometeor, and trace gas measurements will require accurate knowledge of the tropopause location. Examples of such measurements are presented, and a brief discussion is given on the Microwave Temperature Profiler (MTP), which the earth science community has used in the past to determine the tropopause height.

  1. SOFIA Program SE and I Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Fobel, Laura J.; Brignola, Michael P.

    2011-01-01

    Once a "Troubled Project" threatened with cancellation, the Stratospheric Observatory for Infrared Astronomy (SOFIA) Program has overcome many difficult challenges and recently achieved its first light images. To achieve success, SOFIA had to overcome significant deficiencies in fundamental Systems Engineering identified during a major Program restructuring. This presentation will summarize the lessons learn in Systems Engineering on the SOFIA Program. After the Program was reformulated, an initial assessment of Systems Engineering established the scope of the problem and helped to set a list of priorities that needed to be work. A revised Systems Engineering Management Plan (SEMP) was written to address the new Program structure and requirements established in the approved NPR7123.1A. An important result of the "Technical Planning" effort was the decision by the Program and Technical Leadership team to re-phasing the lifecycle into increments. The reformed SOFIA Program Office had to quickly develop and establish several new System Engineering core processes including; Requirements Management, Risk Management, Configuration Management and Data Management. Implementing these processes had to consider the physical and cultural diversity of the SOFIA Program team which includes two Projects spanning two NASA Centers, a major German partnership, and sub-contractors located across the United States and Europe. The SOFIA Program experience represents a creative approach to doing "System Engineering in the middle" while a Program is well established. Many challenges were identified and overcome. The SOFIA example demonstrates it is never too late to benefit from fixing deficiencies in the System Engineering processes.

  2. A new test environment for the SOFIA secondary mirror assembly to reduce the required time for in-flight testing

    NASA Astrophysics Data System (ADS)

    Lammen, Yannick; Reinacher, Andreas; Brewster, Rick; Greiner, Benjamin; Graf, Friederike; Krabbe, Alfred

    2016-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) reached its full operational capability in 2014 and takes off from the NASA Armstrong Flight Research Center to explore the universe about three times a week. Maximizing the program's scientific output naturally leaves very little flight time for implementation and test of improved soft- and hardware. Consequently, it is very important to have a comparable test environment and infrastructure to perform troubleshooting, verifications and improvements on ground without interfering with science missions. SOFIA's Secondary Mirror Mechanism is one of the most complex systems of the observatory. In 2012 a first simple laboratory mockup of the mechanism was built to perform basic controller tests in the lower frequency band of up to 50Hz. This was a first step to relocate required engineering tests from the active observatory into the laboratory. However, to test and include accurate filters and damping methods as well as to evaluate hardware modifications a more precise mockup is required that represents the system characteristics over a much larger frequency range. Therefore the mockup has been improved in several steps to a full test environment representing the system dynamics with high accuracy. This new ground equipment allows moving almost the entire secondary mirror test activities away from the observatory. As fast actuator in the optical path, the SMM also plays a major role in SOFIA's pointing stabilization concept. To increase the steering bandwidth, hardware changes are required that ultimately need to be evaluated using the telescope optics. One interesting concept presented in this contribution is the in- stallation of piezo stack actuators between the mirror and the chopping mechanism. First successful baseline tests are presented. An outlook is given about upcoming performance tests of the actively controlled piezo stage with local metrology and optical feedback. To minimize the impact on science time, the laboratory test setup will be expanded with an optical measurement system so that it can be used for the vast majority of testing.

  3. SOFIA/FORCAST Resolves 30 - 40 μm Extended Emission in Nearby AGN

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay; Lopez-Rodriguez, Enrique; Packham, Christopher C.; Ichikawa, Kohei; Togi, Aditya

    2018-06-01

    We present arcsecond-scale observations in the 30 - 40 μm range of seven nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the 31.5 and 37.1 μm filters of the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We find extended diffuse emission in the 37.1 μm images in our sample, and isolate this from unresolved torus emission. Using Spitzer/IRS spectra, we determine the dominant mid-infrared (MIR) emission source and attribute it to dust in the narrow line region (NLR) or star formation. We compare the optical NLR and radio jet axes to the extended 37.1 μm emission and find coincident axes for three sources.

  4. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700-1200 GHz frequency range.

  5. ED15-0187-236

    NASA Image and Video Library

    2015-06-27

    This high-dynamic range (HDR) photo of the Stratospheric Observatory for Infrared Astronomy (SOFIA) was captured just before sunset at the Christchurch International Airport in Christchurch, New Zealand while aircraft crews were preparing for a nighttime observation flight.

  6. SOFIA's primary mirror assembly is cradled on its dolly as technicians prepare to move it into a "clean room" at NASA Dryden's Aircraft Operations Facility

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  7. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  8. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  9. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  10. Technicians with ropes carefully guide the primary mirror assembly as a crane slowly moves it toward its transport cradle after removal from the SOFIA aircraft

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  11. Building Bigger, Better Instruments with Dry Cryostats

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Voellmer, George

    2010-01-01

    The cylindrical instrument volume allowable n SOFIA is large, comprising perhaps 400 liters at 4K. However, the cryogen accommodation to enable this environment consumes roughly 20% of the volume, and worsens rues, airworthiness/safety, and handling/operation, Present-day pulse tube coolers have negligible cold volumes, provide adequate cooling powers, and reach colder temperatures than stored cryogen. In addition, they permit safer, more reliable, lower maintenance instrument operation. While the advantages of dry cryostats are well-known and commonly used in labs and ground-based astronomical facilities, SOFIA would require some charges in accommodations to permit a pulse tube cooler to operate on board, Whil e these changes are not negligible, we present our investigation into the feasibility and desirability of making SOFIA a dry cryostat-capable observatory

  12. Airworthiness verification of an airborne telescope in practice

    NASA Astrophysics Data System (ADS)

    Dreger, Hartmut; Bremers, Eckhard; Kuehn, Juergen; Eisentraeger, Peter

    2003-02-01

    The SOFIA Telescope is part of the outer hull of the pressurized passenger cabin of the SOFIA aircraft, in which the aircraft crew, the astronomers and their guests are located during flight. Therefore the telescope - including the science instrument - is an airworthiness relevant component of the observatory and has to fulfill airworthiness standards ac-cording the Federal Aviation Authority. The airworthiness issues were main drivers in the process of design, manufacturing, quality control, testing and documentation. The paper describes the experience gotten during this troublesome, exciting and costly job.

  13. AIRES: an Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Colgan, S. W. J.; Roellig, T.; Simpson, J. P.; Telesco, C. M.; Pina, R. K.; Young, E. T.; Wolf, J.

    1997-12-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, is a 2.7 meter telescope which is scheduled to begin observations in a Boeing 747 in October 2001. Among other SOFIA science instruments recently selected for development is the facility spectrometer AIRES. AIRES is designed for studies of a broad range of phenomena occuring in the interstellar medium (ISM) which are uniquely enabled by SOFIA. Examples include accretion and outflow in protostars and young stellar objects, the morphology, dynamics, and excitation of neutral and ionized gas at the Galactic center, and the recycling of material to the ISM from evolved stars. Astronomers using AIRES will be able to select any wavelength from 17 to 210 mu m., with corresponding spectral resolving powers ranging from 60,000 to 4000 in less than a minute. This entire wavelength range is important because it contains spectral features, often widely separated in wavelength, which characterize fundamental ISM processes. AIRES will utilize two-dimensional detector arrays and a large echelle grating to achieve spectral imaging with excellent sensitivity and unparalleled angular resolution at these wavelengths. As a facility science instrument, AIRES will provide guest investigators frequent opportunities for far infrared spectroscopic observations when SOFIA begins operations.

  14. Juggling Act: Re-Planning and Building on Observatory...Simultaneously!

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie; Daws, Patricia

    2011-01-01

    SOFIA (Stratospheric Observatory for Infrared Astronomy) is a major SMD program that has been required to meet several requirements and implement major planning and business initiatives overthe past 1 1/2 years, in the midst of system development and flight test phases. The program was required to implementing JCL and EVM simultaneously, as well as undergo a major replan and Standing Review Board - and all without impacting technical schedule progress. The team developed innovative processes that met all the requirements, and improved Program Management process toolsets. The SOFIA team, being subject to all the typical budget constraints, found ways to leverage existing roles in new ways to meet the requirements without creating unmanageable overhead. The team developed strategies and value added processes - such as improved risk identification, structured reserves management, cost/risk integration - so that the effort expended resulted in a positive return to the program.

  15. Characterization of the mechanical properties of the SOFIA secondary mirror mechanism in a multi-stage approach

    NASA Astrophysics Data System (ADS)

    Greiner, Benjamin; Lammen, Yannick; Reinacher, Andreas; Krabbe, Alfred; Wagner, Jörg

    2016-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) uses its compact and highly integrated Secondary Mirror Mechanism (SMM) to switch between target positions on the sky in a square wave pattern. This chopping motion excites eigenmodes of the mechanism structure, which limit controller and observatory performance. We present the setup and results of experimental modal tests performed on different building stages of a test-bench model as well as on the original flight hardware. Test results were correlated to simulations employing a finite element model in order to identify excited mode shapes and contributing flexible components of the Secondary Mirror Mechanism. It was possible to isolate the motion of the compensation ring and its elastic mounts as the vibration mode inducing the main disturbance at about 300 Hz, which is currently the main mode shape limiting the performance of the chopping controller.

  16. Flight Opportunities for Science Teacher EnRichment

    NASA Astrophysics Data System (ADS)

    Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.

    1994-12-01

    The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.

  17. Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.

  18. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  19. Enhancements to a superconducting quantum interference device (SQUID) multiplexer readout and control system

    NASA Astrophysics Data System (ADS)

    Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.

    2004-10-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  20. SOFIA FORCAST Far-IR Photometry of Comet ISON and Constraints on the Coma Grain Size Distribution

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; DeBuizer, J. M.; Kelley, M. S.; Woodward, C. E.; Harker, D. E.; Reach, W. T.; Sitko, M. L.; Russell, R. W.; Gehrz, R. D.; dePater, Imke; hide

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the nearly isotropic Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) observations were executed on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) by the FORCAST instrument on 2013 October 25 UT (r(sub h)=1.18 AU, Delta=1.5AU). Photometry was obtained in FORCAST filters centered at 11.1, 19.7, and 31.5 micron. The observations compliment a large world-wide effort to observe and characterize comet ISON.

  1. Optical design for SOFIA

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Maa, Scott S.; Rajan, N.

    1989-01-01

    A preliminary first-order optical design for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presented. This is a Cassegrain design with a 3 meter diameter, approximately f/1 primary mirror. Phenomena limiting the image quality of the telescope are divided into 'seeing', optics, and guidance. An error budget is presented for these categories and specific effects contributing to each. The seeing effects from the shear layer between the telescope cavity and the external air are expected to be dominant. Results are presented on the necessary thermal, optical, structural and guidance requirements to maintain contributions of these phenomena below that of the shear-layer seeing.

  2. NASA Dryden Status

    NASA Technical Reports Server (NTRS)

    Jacobson, Steve R.

    2009-01-01

    This slide presentation reviews several projects that NASA Dryden personnel are involved with: Integrated Resilient Aircraft Controls Project (IRAC), NASA G-III Research Aircraft, X-48B Blended Wing Body aircraft, Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Orion CEV Launch Abort Systems Tests.

  3. A gravitationally lensed starburst galaxy at z=1.03 detected by SOFIA/HAWC+

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Ma, Jingzhe; Cooray, Asantha; Nayyeri, Hooshang; Timmons, Nicholas

    2018-01-01

    We present a high S/N~20 detection at 89 micron (in 15 mins) of the Herschel-selected gravitationally lensed starburst galaxy HATLASJ1429-0028 with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z=0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared galaxy at z=1.03. Is this high luminosity powered by pure star formation (SF) or an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star-formation dominated. SOFIA/HAWC+ allows the broad-band spectral energy distribution of the galaxy to be studied between 20 - 100 micron, which is an important wavelength range for further constraining the fractional AGN contribution to the total IR luminosity. Multi-wavelength SED modeling constrains the AGN fraction to be < 1%. The detection of a source at z of 1 shows the potential of utilizing SOFIA/HAWC+ for distant galaxy studies and the potential to decompose SF/AGN that cannot be obtained with other current facilities.

  4. Numerical simulation of the SOFIA flowfield

    NASA Technical Reports Server (NTRS)

    Klotz, Stephen P.

    1994-01-01

    This report provides a concise summary of the contribution of computational fluid dynamics (CFD) to the SOFIA (Stratospheric Observatory for Infrared Astronomy) project at NASA Ames and presents results obtained from closed- and open-cavity SOFIA simulations. The aircraft platform is a Boeing 747SP and these are the first SOFIA simulations run with the aircraft empennage included in the geometry database. In the open-cavity run the telescope is mounted behind the wings. Results suggest that the cavity markedly influences the mean pressure distribution on empennage surfaces and that 110-140 decibel (db) sound pressure levels are typical in the cavity and on the horizontal and vertical stabilizers. A strong source of sound was found to exist on the rim of the open telescope cavity. The presence of this source suggests that additional design work needs to be performed in order to minimize the sound emanating from that location. A fluid dynamic analysis of the engine plumes is also contained in this report. The analysis was part of an effort to quantify the degradation of telescope performance resulting from the proximity of the port engine exhaust plumes to the open telescope bay.

  5. Quasi-Optical SIS Mixer Development

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    This grant supported our ongoing development of sensitive quasi-optical SIS mixers for the submillimeter band. The technology developed under this grant is now being applied to NASA missions, including the NASA/USRA SOFIA airborne observatory and and the ESA/NASA FIRST/Herschel space astronomy mission.

  6. Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Strovers, Brian K.

    2011-01-01

    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification.

  7. Automated and Scalable Data Reduction in the textsc{Sofia} Data Processing System

    NASA Astrophysics Data System (ADS)

    Krzaczek, R.; Shuping, R.; Charcos-Llorens, M.; Alles, R.; Vacca, W.

    2015-09-01

    In order to provide suitable data products to general investigators and other end users in a timely manner, the Stratospheric Observatory for Infrared Astronomy SOFIA) has developed a framework supporting the automated execution of data processing pipelines for the various instruments, called the Data Processing System (DPS), see Shuping et al. (2014) for overview). The primary requirement is to process all data collected from a flight within eight hours, allowing data quality assessments and inspections to be made the following day. The raw data collected during a flight requires processing by a number of different software packages and tools unique to each combination of instrument and mode of operation, much of it developed in-house, in order to create data products for use by investigators and other end-users. The requirement to deliver these data products in a consistent, predictable, and performant manner presents a significant challenge for the observatory. Herein we present aspects of the DPS that help to achieve these goals. We discuss how it supports data reduction software written in a variety of languages and environments, its support for new versions and live upgrades to that software and other necessary resources (e.g., calibrations), its accommodation of sudden processing loads through the addition (and eventual removal) of computing resources, and close with an observation of the performance achieved in the first two observing cycles of SOFIA.

  8. HAWC+/SOFIA Instrumental Polarization Calibration

    NASA Astrophysics Data System (ADS)

    Michail, Joseph M.; Chuss, David; Dowell, Charles D.; Santos, Fabio; Siah, Javad; Vaillancourt, John; HAWC+ Instrument Team

    2018-01-01

    HAWC+ is a new far-infrared polarimeter for the NASA/DLR SOFIA (Stratospheric Observatory for Infrared Astronomy) telescope. HAWC+ has the capability to measure the polarization of astronomical sources with unprecedented sensitivity and angular resolution in four bands from 50-250 microns. Using data obtained during commissioning flights, we implemented a calibration strategy that separates the astronomical polarization signal from the induced instrumental polarization. The result of this analysis is a map of the instrumental polarization as a function of position in the instrument's focal plane in each band. The results show consistency between bands, as well as with other methods used to determine preliminary instrumental polarization values.

  9. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and implemented teacher professional development workshops. Their efforts have impacted thousands of students and teachers.

  10. NASA’s Kuiper Airborne Observatory 1974-1995 - Twenty One Years of Discovery

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    The Gerard P. Kuiper Airborne Observatory (KAO) forged a unique record in the annals of astronomy. Teams of scientists developed and flew with their specialized, state-of-the-art instruments to make observations not possible from the ground, at wavelengths from 0.3 µm to 1.6 mm. The talk will describe the KAO and its legacy of scientific findings, infrared instrumentation technology, experience for young astronomers and their impact on the field of infrared astronomy - and the rationale for SOFIA.

  11. Flight opportunities for science teacher enrichment

    NASA Technical Reports Server (NTRS)

    Devore, Edna; Gillespie, Carlton, Jr.; Hull, Garth; Koch, David

    1995-01-01

    NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program will expand nation-wide to serve fifty teachers per year on board the Kuiper Airborne Observatory. In the future, the Stratospheric Observatory for Infrared Astronomy (SOFIA) will bring more than one-hundred teachers per year on board for astronomical research mission. FOSTER is supported by a grant to the SETI Institute from the NASA Astrophysics Division, NAGW-3291.

  12. Numerical simulation of the SOFIA flow field

    NASA Technical Reports Server (NTRS)

    Klotz, Stephen P.

    1995-01-01

    This report provides a concise summary of the contribution of computational fluid dynamics (CFD) to the SOFIA (Stratospheric Observatory for Infrared Astronomy) project at NASA Ames and presents results obtained from closed- and open-cavity SOFIA simulations. The aircraft platform is a Boeing 747SP and these are the first SOFIA simulations run with the aircraft empennage included in the geometry database. In the open-cavity runs the telescope is mounted behind the wings. Results suggest that the cavity markedly influences the mean pressure distribution on empennage surfaces and that 110-140 decibel (db) sound pressure levels are typical in the cavity and on the horizontal and vertical stabilizers. A strong source of sound was found to exist on the rim of the open telescope cavity. The presence of this source suggests that additional design work needs to be performed in order to minimize the sound emanating from that location. A fluid dynamic analysis of the engine plumes is also contained in this report. The analysis was part of an effort to quantify the degradation of telescope performance resulting from the proximity of the port engine exhaust plumes to the open telescope bay.

  13. SOFIA Closed- and Open-Door Aerodynamic Analyses

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen; Frederick, Mike; Smith, Mark

    2012-01-01

    Work to evaluate the aerodynamic characteristics and the cavity acoustic environment of the SOFIA (Stratospheric Observatory for Infrared Astronomy) airplane has been completed. The airplane has been evaluated in its closed-door configuration, as well as several open-door configurations. Work performed included: acoustic analysis tool development, cavity acoustic evaluation, stability and control parameter estimation, air data calibration, and external flow evaluation. Qualitative airflow data were obtained during the closed- and open-door flights using tufts on the aft portion of the fuselage. Video was taken from a chase plane. This video was analyzed for various flight conditions, and general flow descriptions of the aft fuselage of the 747SP were developed for the different closed and open door configurations.

  14. Parallel Adaptive High-Order CFD Simulations Characterizing Cavity Acoustics for the Complete SOFIA Aircraft

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak

    2014-01-01

    This paper presents one-of-a-kind MPI-parallel computational fluid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft of a Boeing 747SP. These simulations focus on how the unsteady flow field inside and over the cavity interferes with the optical path and mounting of the telescope. A temporally fourth-order Runge-Kutta, and spatially fifth-order WENO-5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh refinement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32,000 cores and 4 billion cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregularities caused by the highly complex geometry. Limits to scaling beyond 32K cores are identified, and targeted code optimizations are discussed.

  15. Pointing and control system performance and improvement strategies for the SOFIA Airborne Telescope

    NASA Astrophysics Data System (ADS)

    Graf, Friederike; Reinacher, Andreas; Jakob, Holger; Lampater, Ulrich; Pfueller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Fasoulas, Stefanos

    2016-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has already successfully conducted over 300 flights. In its early science phase, SOFIA's pointing requirements and especially the image jitter requirements of less than 1 arcsec rms have driven the design of the control system. Since the first observation flights, the image jitter has been gradually reduced by various control mechanisms. During smooth flight conditions, the current pointing and control system allows us to achieve the standards set for early science on SOFIA. However, the increasing demands on the image size require an image jitter of less than 0.4 arcsec rms during light turbulence to reach SOFIA's scientific goals. The major portion of the remaining image motion is caused by deformation and excitation of the telescope structure in a wide range of frequencies due to aircraft motion and aerodynamic and aeroacoustic effects. Therefore the so-called Flexible Body Compensation system (FBC) is used, a set of fixed-gain filters to counteract the structural bending and deformation. Thorough testing of the current system under various flight conditions has revealed a variety of opportunities for further improvements. The currently applied filters have solely been developed based on a FEM analysis. By implementing the inflight measurements in a simulation and optimization, an improved fixed-gain compensation method was identified. This paper will discuss promising results from various jitter measurements recorded with sampling frequencies of up to 400 Hz using the fast imaging tracking camera.

  16. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  17. NASA's Orgins Space Telescope Mission and Its Synergies with SOFIA

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. The science program that has been selected to drive the OST performance requirements is broad, covering four main themes: Charting the Rise of Metals, Dust, and the First Galaxies; Unveiling the Growth of Black Holes and Galaxies Over Cosmic Time; Tracing the Signatures of Life and the Ingredients of Habitable Worlds; and Characterizing Small Bodies in the Solar System. The OST telescope itself will have a primary mirror diameter of 8-15 m (depending on the launch vehicle that is selected), will be diffraction-limited at 40m, and will be actively cooled to approximately 5K. Five science instruments have been base-lined for the observatory: a heterodyne instrument covering 150-500 m with a spectral resolving power of R1e7; a low-spectral resolution (R500) spectrometer covering 35-500 m; a high-spectral resolution (R1e5) spectrometer covering 50-500 m; a far-infrared imager (R15) covering 35-500m; and a mid-infrared imagerspectrometer (R15-500) covering 6-40m. In addition to having a vastly higher sensitivity than the corresponding SOFIA instrumentation that will allow more detailed follow-up of SOFIAs discoveries, the OST mission will be configured to provide efficient large-area mapping, which will further complement SOFIAs science capabilities by providing new targets for study by SOFIA. Furthermore, new SOFIA instruments can provide an excellent testbed for the advanced far-infrared detector technologies what will be required to achieve the anticipated OST performance.

  18. The integrated motion measurement simulation for SOFIA

    NASA Astrophysics Data System (ADS)

    Kaswekar, Prashant; Greiner, Benjamin; Wagner, Jörg

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy SOFIA consists of a B747-SP aircraft, which carries aloft a 2.7-meter reflecting telescope. The image stability goal for SOFIA is 0:2 arc-seconds rms. The performance of the telescope structure is affected by elastic vibrations induced by aeroacoustic and suspension disturbances. Active compensation of such disturbances requires a fast way of estimating the structural motion. Integrated navigation systems are examples of such estimation systems. However they employ a rigid body assumption. A possible extension of these systems to an elastic structure is shown by different authors for one dimensional beam structures taking into account the eigenmodes of the structural system. The rigid body motion as well as the flexible modes of the telescope assembly, however, are coupled among the three axes. Extending a special mathematical approach to three dimensional structures, the aspect of a modal observer based on integrated motion measurement is simulated for SOFIA. It is in general a fusion of different measurement methods by using their benefits and blinding out their disadvantages. There are no mass and stillness properties needed directly in this approach. However, the knowledge of modal properties of the structure is necessary for the implementation of this method. A finite-element model is chosen as a basis to extract the modal properties of the structure.

  19. Far-Infrared Heterodyne Spectrometer for Sofia

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1998-01-01

    The project goal was to evaluate the scientific capabilities and technical requirements for a far-infrared heterodyne spectrometer suitable for the SOFIA Airborne Observatory, which is now being developed by NASA under contract to the Universities Space Research Association (USRA). The conclusions detailed below include our specific recommendations for astronomical observations, as well as our intended technical approach for reaching these scientific goals. These conclusions were presented to USRA in the form of a proposal to build this instrument. USRA subsequently awarded the University of Colorado a 3-year grant to develop the proposed Hot-Electron micro-Bolometer (HEB) mixer concept for high frequencies above 3 THz, as well as other semiconductor mixer technologies suitable for high sensitivity receivers in the 2-6 THz frequency band.

  20. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    NASA Astrophysics Data System (ADS)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  1. Aircraft system aft telescope cavity configuration study for Stratospheric Observatory for Infrared Astronomy (SOFIA), phase 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The SOFIA Aircraft System (AS) Phase 1 Study was a broad-based study which addressed itself to satisfying technical and programmatic requirements by drawing from existing technology and applying cost-efficient commercial approaches to the aircraft modification. In this SOFIA AS Phase 2 Study, five critical areas of the aircraft were selected for more detailed investigation: forward pressure bulkhead, aft bulkhead, 'free' shell to bulkhead interface, shell cut-out to bulkhead interface, and flooring. The in-depth investigation of these areas upon a finite element model (FEM), with a fine grid model in areas of particular interest, is discussed. The FEM code used is called 'STRAP' and was developed by the engineering firm, Rasmussen and Associates. STRAP is NASTRAN compatible to within 1%. The loads applied to the model were approximated from known 747 envelope conditions. The areas of investigation, and a section through the fuselage is shown. The thrust of this investigation was to develop the design concepts conceived under phase 1 to the point where detailed design could be undertaken with a high level of confidence.

  2. Parallel Adjective High-Order CFD Simulations Characterizing SOFIA Cavity Acoustics

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak

    2016-01-01

    This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A temporally fourth-order accurate Runge-Kutta, and spatially fth-order accurate WENO- 5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.

  3. Parallel Adaptive High-Order CFD Simulations Characterizing SOFIA Cavitiy Acoustics

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak

    2015-01-01

    This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A tempo- rally fourth-order accurate Runge-Kutta, and a spatially fth-order accurate WENO-5Z scheme were used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.

  4. Stringent upper limit of CH4 on Mars based on SOFIA/EXES observations

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Richter, M. J.; DeWitt, C.; Boogert, A.; Encrenaz, T.; Sagawa, H.; Nakagawa, H.; Vandaele, A. C.; Giuranna, M.; Greathouse, T. K.; Fouchet, T.; Geminale, A.; Sindoni, G.; McKelvey, M.; Case, M.; Kasaba, Y.

    2018-03-01

    Discovery of CH4 in the Martian atmosphere has led to much discussion since it could be a signature of biological and/or geological activities on Mars. However, the presence of CH4 and its temporal and spatial variations are still under discussion because of the large uncertainties embedded in the previous observations. We performed sensitive measurements of Martian CH4 by using the Echelon-Cross-Echelle Spectrograph (EXES) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) on 16 March 2016, which corresponds to summer (Ls = 123.2∘) in the northern hemisphere on Mars. The high altitude of SOFIA ( 13.7 km) enables us to significantly reduce the effects of terrestrial atmosphere. Thanks to this, SOFIA/EXES improves our chances of detecting Martian CH4 lines because it reduces the impact of telluric CH4 on Martian CH4, and allows us to use CH4 lines in the 7.5 μm band which has less contamination. However, our results show no unambiguous detection of Martian CH4. The Martian disk was spatially resolved into 3 × 3 areas, and the upper limits on the CH4 volume mixing ratio range from 1 to 9 ppb across the Martian atmosphere, which is significantly less than detections in several other studies. These results emphasize that release of CH4 on Mars is sporadic and/or localized if the process is present.

  5. Diffraction Effects in the SOFIA Telescope and Cavity Door

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Davis, P. K.

    2005-12-01

    Calculations of diffraction phenomena for SOFIA (the Stratospheric Observatory for Infrared Astronomy) are described. The analyses establish the diffraction-limited point-spread function for the planned central obscuration of the telescope, confirm the specification for the oversized primary mirror diameter, evaluate spider diffraction effects, and determine the variation in focal-plane flux with position of the telescope relative to the cavity door. The latter is a concern because motion between the door aperture and the telescope can vary the flux from a point source and the sky background by diffraction (even when the door aperture does not physically obstruct the geometrical beam). We find all these effects to be acceptable in terms of observatory performance, with the possible exception of fractional background variations 3E-3 at wavelengths 1mm. Fractional background variations larger than 1E-6 can exceed photon shot noise in one second for broad-band, background-limited infrared detectors systems. However, we expect that synchronous signal demodulation using the telescope's chopping secondary mirror will obviate this effect, assuming modulation of the diffracted sky radiation by the relative motion of the door and telescope occurs at frequencies well below the chopoper frequency. This work is supported by the National Aeronautics and Space Administration.

  6. Pluto occultation on 2015 June 29 UTC with central flash and atmospheric spikes just before the New Horizons flyby

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Person, Michael J.; Sickafoose, Amanda A.; Zuluaga, Carlos A.; Kosiarek, Molly R.; Abe, Fumio; Nagakane, Masayuki; Suzuki, Daisuke; Tristram, Paul J.; Arredondo, Anicia

    2017-11-01

    We observed the occultation by Pluto of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 2015 June 29 UTC. At the Univ. of Canterbury Mt. John Observatory (New Zealand), under clear skies throughout, we used a POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. At the Auckland Observatory, we used a POETS and a PICO on 0.5-m and 0.4-m telescopes, with 0.4 s and 2 s cadences, respectively, obtaining ingress observations before clouds moved in. The Mt. John light curves show a central flash, indicating that we were close to the center of the occultation path. Analysis of our light curves show that Pluto's atmosphere remains robust. The presence of spikes at both sites in the egress and ingress shows atmospheric layering. We coordinated our observations with aircraft observations (Bosh et al., 2017) with the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our chords helped constrain the path across Pluto that SOFIA saw. Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days before the flyby of NASA's New Horizons spacecraft.

  7. The SOFIA Mission Control System Software

    NASA Astrophysics Data System (ADS)

    Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.

    1999-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.

  8. Searching for Cool Dust in the Mid-to-far Infrared: The Mass-loss Histories of the Hypergiants μ Cep, VY CMa, IRC+10420, and ρ Cas

    NASA Astrophysics Data System (ADS)

    Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Marengo, Massimo; Gehrz, Robert D.; Helton, L. Andrew; Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M.

    2016-03-01

    We present mid- and far-IR imaging of four famous hypergiant stars: the red supergiants μ Cep and VY CMa, and the warm hypergiants IRC +10420 and ρ Cas. Our 11-37 μm SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics 8-12 μm imaging of μ Cep and IRC +10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars’ strong silicate emission features. We find μ Cep’s mass-loss rate to have declined by about a factor of five over a 13,000 year history, ranging from 5 × 10-6 down to ˜1× 10-6 M⊙ yr-1. The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates that its mass-loss history is limited to the last ˜1200 years, with an average rate of 6 × 10-4 M⊙ yr-1. We find two distinct periods in the mass-loss history of IRC +10420 with a high rate of 2 × 10-3 M⊙ yr-1 until approximately 2000 years ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of ρ Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events. Based on observations obtained with: (1) the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart; and (2) the MMT Observatory on Mt. Hopkins, AZ, a joint facility of the Smithsonian Institution and the University of Arizona.

  9. J-Black: a stray light coating for optical and infrared systems

    NASA Astrophysics Data System (ADS)

    Waddell, Patrick; Black, David S.

    2016-07-01

    A new stray light coating, called J-Black, has been developed for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). The coating is a layered composition of Nextel-Suede 3101 primers and top coats and silicon carbide grit. J-Black has been applied to large areas of the SOFIA airborne telescope and is currently operating within the open cavity environment of the Boeing 747. Over a series of discrete filter bands, from 0.4 to 21 microns, J-Black optical and infrared reflectivity performance is compared with other available coatings. Measured total reflectance values are less than 2% at the longest wavelengths, including at high incidence angles. Detailed surface structure characteristics are also compared via electron and ion microscopy. Environmental tests applicable for aerospace applications are presented, as well as the detailed steps required to apply the coating.

  10. Flowfield and acoustic characteristics of telescope cavity in SOFIA platform

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.

    1995-01-01

    Unsteady three-dimensional flowfields are calculated for the Stratospheric Observatory For Infrared Astronomy (SOFIA) at both free-flight cruise and wind tunnel conditions with a view to help in the design process of an acoustically quiet telescope cavity and to understand the flow physics of a three dimensional cavity. The calculation method is based on the numerical solution of thin layer Navier-Stokes equations on a Chimera overset grid system. The Boeing 747-200 aircraft is examined as one option for the SOFIA platform. The flowfield domain is composed of 45 grids consisting of over 4.1 million points. Numerical simulations are performed for both wind tunnel and free-flight cruise conditions at one freestream condition of M(infinity) = 0.85, alpha = 2.5 deg. Comparison of results from wind tunnel simulation show good agreement with experimental data for time-averaged surface pressures, drag for the empennage, and sound pressure levels and power spectra at various locations within the cavity and on the telescope. The presence of the open cavity induces an incremental drag increase, an increased acoustic radiation, and an increase in unsteady pressure loads on the telescope. Its impact on the effectiveness of aircraft control surfaces appears minimal.

  11. Development of the SOFIA silicon carbide secondary mirror

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Antoine, Pascal; Varin, Jean-Luc; Bittner, Hermann; Erdmann, Matthias

    2003-02-01

    The SOFIA telescope is ajoint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory for IR Astronomy to be flown in a specially adapted Boeing 747 SP plane, Kayser-Threde being resopinsible for the development of the Telescope Optics. The φ 352 mm Secondary Mirror is mounted ona chopping mechanism to allow avoidance of background noise during IR observations. Stiffness associated to lightness is a major demand for such a mirror to achieve high frequency chopping. This leads to select SIlicon Carbide for the mirror blank. Its development has been run by the ASTRIUM/BOOSTEC joint venture SiCSPACE, taking full benefit of the instrinsic properties of the BOOSTEC SiC-100 sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM. Achieved performances include a low mass of 1.97 kg, a very high stiffness with a first resonant frequency of 1865 Hz and a measured optical surface accuracy of 39 nm rms, using Ion Beam Figuring. It is proposed here to present the major design features of the SOFIA Secondary Mirror, highlighting the main advantages of using Silicon Carbide, the main steps of its development and the achieved optomechanical performances of the developed mirror.

  12. SOFIA's secondary mirror assembly: in-flight performance and control approach

    NASA Astrophysics Data System (ADS)

    Reinacher, Andreas; Lammen, Yannick; Roeser, Hans-Peter

    2016-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5m infrared telescope built into a Boeing 747 SP. In 2014 SOFIA reached its Full Operational Capability milestone and nowadays takes off about three times a week to observe the infrared sky from altitudes above most of the atmosphere's water vapor content. An actively controlled 352mm SiC secondary mirror is used for infrared chopping with peak-to-peak amplitudes of up to 10 arcmin and chop frequencies of up to 20Hz and also as actuator for fast pointing corrections. The Swiss-made Secondary Mirror Mechanism (SMM) is a complex, highly integrated and compact flexure based mechanism that has been performing with remarkable reliability during recent years. Above mentioned capabilities are provided by the Tilt Chopper Mechanism (TCM) which is one of the two stages of the SMM. In addition the SMM is also used to establish a collimated telescope and to adjust the telescope focus depending on the structure's temperature which ranges from about 40°C at takeoff in Palmdale, CA to about -40°C in the stratosphere. This is achieved with the Focus Center Mechanism (FCM) which is the base stage of the SMM on which the TCM is situated. Initially the TCM was affected by strong vibrations at about 300 Hz which led to unacceptable image smearing. After some adjustments to the PID-type controller it was finally decided to develop a completely new control algorithm in state space. This pole placement controller matches the closed loop system poles to those of a Bessel filter with a corner frequency of 120 Hz for optimal square wave behavior. To reduce noise present on the position and current sensors and to estimate the velocity a static gain Kalman Filter was designed and implemented. A system inherent delay is incorporated in the Kalman filter design and measures were applied to counteract the actuators' hysteresis. For better performance over the full operational temperature range and to represent an amplitude dependent non-linearity the underlying model of the Kalman filter adapts in real-time to those two parameters. This highly specialized controller was developed over the course of years and only the final design is introduced here. The main intention of this contribution is to present the currently achieved performance of the SOFIA chopper over the full amplitude, frequency, and temperature range. Therefore a range of data gathered during in-flight tests aboard SOFIA is displayed and explained. The SMM's three main performance parameters are the transition time between two chop positions, the stability of the Secondary Mirror when exposed to the low pressures, low temperatures, aerodynamic, and aeroacoustic excitations present when the SOFIA observatory operates in the stratosphere at speeds of up to 850 km/h, and finally the closed-loop bandwidth available for fast pointing corrections.

  13. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  14. Modeling SOFIA/FORCAST spectra of the classical nova V5568 Sgr with 3D pyCloudy

    NASA Astrophysics Data System (ADS)

    Calvén, Emilia; Helton, L. Andrew; Sankrit, Ravi

    2017-06-01

    We present our first results modelling Nova V5668 Sgr using the pseudo-3D photoionization code pyCloudy (Morisset 2013). V5668 Sgr is a classical nova of the FeII class (Williams et al. 2015; Seach 2015) showing signs of a bipolar flow (Banerjee et al. 2015). We construct a grid of models, which use hour-glass morphologies and a range of C, N, O and Ne abundances, to fit a suite of spectroscopic data in the near and mid-IR obtained between 82 to 556 days after outburst. The spectra were obtained using the FORCAST mid-IR instrument onboard the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the 1.2m near-IR telescope of the Mount Abu Infrared Observatory. Additional photometric data from FORCAST, The STONY BROOK/SMARTS Atlas of (mostly) Southern Novae (Walter et al., 2012) and the American Association of Variable Star Observers (AAVSO) were used to supplement the spectral data to obtain the SED of the nova at different times during its evolution. The work presented here is the initial step towards developing a large database of 1D and 3D models that may be used to derive the elemental abundances and dust properties of classical novae.

  15. Observational Research on Star and Planetary System Formation

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    1998-07-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  16. Limb shape observations at the Pic du Midi Observatory. Determination of the solar gravitational moments

    NASA Astrophysics Data System (ADS)

    Rozelot, J. P.; Lefebvre, S.

    The accurate shape of the Sun has been actively debated since 1974. So far, balloon and satellite experiments achieved the required sensibility to measure the expected small asphericities of the solar limb shape. However, exceptional good meteorological conditions encountered during several missions at the Pic du Midi Observatory have permitted to measure the coefficients shape of the solar limb on the two first Legendre polynomials expansion. In theory, this photospheric outer shape is sensitive to the interior rate, and asphericities can be explained both in terms of gravitational moments and thermal wind. We present observations made at the Pic du Midi Observatory and we compare results with these obtained by SDS (Sofia et al., 1994, 1996) and SOHO/MDI (Kuhn, 1999). The accepted and dedicated PICARD space mission on this subject is briefly presented.

  17. Far-Infrared Heterodyne Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.

    1998-01-01

    This report summarizes work done under NASA Grant NAG2-1062 awarded to the University of Colorado. The project goal was to evaluate the scientific capabilities and technical requirements for a far-infrared heterodyne spectrometer suitable for the SOFIA Airborne Observatory, which is now being developed by NASA under contract to the Universities Space Research Association (USRA). The conclusions detailed below include our specific recommendations for astronomical observations, as well as our intended technical approach for reaching these scientific goals. These conclusions were presented to USRA in the form of a proposal to build this instrument. USRA subsequently awarded the University of Colorado a 3-year grant (USRA 8500-98-010) to develop the proposed Hot-Electron micro-Bolometer (HEB) mixer concept for high frequencies above 3 THz, as well as other semiconductor mixer technologies suitable for high sensitivity receivers in the 2-6 THz frequency band.

  18. Investigation of particle sizes in Pluto's atmosphere from the 29 June 2015 occultation

    NASA Astrophysics Data System (ADS)

    Sickafoose, Amanda A.; Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; de, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristam, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    The 29 June 2015 observations of a stellar occultation by Pluto, from SOFIA and ground-based sites in New Zealand, indicate that haze was present in the lower atmosphere (Bosh et al., this conference). Previously, slope changes in the occultation light curve profile of Pluto’s lower atmosphere have been attributed to haze, a steep thermal gradient, and/or a combination of the two. The most useful diagnostic for differentiating between these effects has been observing occultations over a range of wavelengths: haze scattering and absorption are functions of particle size and are wavelength dependent, whereas effects due to a temperature gradient should be largely independent of observational wavelength. The SOFIA and Mt. John data from this event exhibit obvious central flashes, from multiple telescopes observing over a range of wavelengths at each site (Person et al. and Pasachoff et al., this conference). SOFIA data include Red and Blue observations from the High-speed Imaging Photometer for Occultations (HIPO, at ~ 500 and 850 nm), First Light Infrared Test Camera (FLITECAM, at ~1800 nm), and the Focal Plan Imager (FPI+, at ~ 600 nm). Mt. John data include open filter, g', r', i', and near infrared. Here, we analyze the flux at the bottom of the light curves versus observed wavelength. We find that there is a distinct trend in flux versus wavelength, and we discuss applicable Mie scattering models for different particle size distributions and compositions (as were used to characterize haze in Pluto's lower atmosphere in Gulbis et al. 2015).SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by the National Research Foundation of South Africa, NASA SSO grants NNX15AJ82G (Lowell Observatory), PA NNX10AB27G (MIT), and PA NNX12AJ29G (Williams College), and the NASA SOFIA Cycle 3 grant NAS2-97001 issued by USRA.

  19. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  20. Thermostructural Analysis of the SOFIA Fine Field and Wide Field Imagers Subjected to Convective Thermal Shock

    NASA Technical Reports Server (NTRS)

    Kostyk, Christopher B.

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a highly modified Boeing 747-SP with a 17- ton infrared telescope installed in the aft portion of the aircraft. Unlike ground- and space-based platforms, SOFIA can deploy to make observations anytime, anywhere, in the world. The originally designed aircraft configuration included a ground pre-cool system, however, due to various factors in the history of the project, that system was not installed. This lack of ground pre-cooling was the source of the concern about whether or not the imagers would be exposed to a potentially unsafe thermostructural environment. This concern was in addition to the already-existing concern of some project members that the air temperature rate of change during flight (both at the same altitude as well as ascent or descent) could cause the imagers to be exposed to an unsafe thermostructural environment. Four optical components were identified as the components of concern: two of higher concern (one in each imager), and two of lower concern (one in each imager). The analysis effort began by analyzing one component, after which the analyses for the other components was deemed unnecessary. The purpose of this report is to document these findings as well as lessons learned from the effort.

  1. The SOFIA aircraft and its modification

    NASA Astrophysics Data System (ADS)

    Kunz, Nans

    2003-02-01

    The primary focus of this paper is to describe the development of a highly modified aircraft that carries a twenty ton telescope to the stratosphere and then loiters at this desired altitude to act as the observatory platform and dome. When the aircraft has reached its nominal cruise condition of Mach 0.84 in the stratosphere, a large cavity door opens (the dome opens), exposing a large portion of the interior of the fuselage that contains the telescope optics directly to the Universe. The topics covered in this paper include: the relevant criteria and the evaluation process that resulted in the selection of a Boeing 747-SP, the evolution of the design concept, the description of the structural modification including the analysis methods and tools, the aerodynamic issues associated with an open port cavity and how they were addressed, and the aeroloads/ disturbances imparted to the telescope and how they were measured in the wind tunnel and extrapolated to full size. This paper is complementary to a previous paper presented at the 2000 Airborne Telescope Systems conference which describes the challenges associated with the development of the SOFIA Telescope. For completeness, this paper also provides a brief overview of the SOFIA project including the joint project arrangement between NASA and DLR, a top level overview of the requirements, and finally the current project status.

  2. Early Science Planning of Protoplanetary Disks and Protostars in the Orion Nebula Cluster Using SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; Adams, J. D.; Herter, T. L.; Gull, G.; Henderson, C.; Schoenwald, J.; Keller, L.; Megeath, T. S.

    2011-01-01

    The Faint Object Camera for the SOFIA Telescope (FORCAST) is a mid-infrared facility instrument for the Stratospheric Observatory For Infrared Astronomy (SOFIA). In late May of this year, FORCAST achieved first light on SOFIA during a Telescope Assembly characterization flight, successfully taking photometry of Jupiter, its moons, and M82 from an altitude of 35,000 ft. Analysis of images of Jupiter and one of its moons, Ganymede, show the in-flight sensitivity to be comparable to that expected from preflight (lab) measurements and models. In preparation for SOFIA Short Science, we constructed Spectral Energy Distributions (SEDs) for known proplyds and protostars (Smith et al. 2005) in the core of the Orion molecular cloud using 2MASS (Skrutskie et al. 2006), IRAC on Spitzer, TReCS on Gemini South (Smith et al. 2005), and 880mm SCUBA data (Mann and Williams 2009). FORCAST will provide important wavelength coverage (20 - 40 microns) which when used in conjunction with previous data will constrain the physical properties of the proplyds and protostars. We fit the observed SEDs with those from radiative transfer models for circumstellar disks and protostars from Robitaille et al (2006, 2007). With these models, we can extrapolate into the 20 - 40 micron region of FORCAST and determine the range of models that FORCAST is capable of detecting. Using the FORCAST sensitivity model and the SEDs of known proplyds, we expect to detect 67% of the proplyds found by other investigations. However, detectability will be greatly influenced by the presence of structures in the diffuse dust emission associated with the HII region complex. Comparing FORCAST observations with the radiative transfer models will help to understand the physical properties of proplyds and protostars, and perhaps illuminate the impact of their environments, such as photoevaporation of disks and effects from crowding.

  3. Evaluation of Aircraft Platforms for SOFIA by Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Klotz, S. P.; Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The selection of an airborne platform for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is based not only on economic cost, but technical criteria, as well. Technical issues include aircraft fatigue, resonant characteristics of the cavity-port shear layer, aircraft stability, the drag penalty of the open telescope bay, and telescope performance. Recently, two versions of the Boeing 747 aircraft, viz., the -SP and -200 configurations, were evaluated by computational fluid dynamics (CFD) for their suitability as SOFIA platforms. In each configuration the telescope was mounted behind the wings in an open bay with nearly circular aperture. The geometry of the cavity, cavity aperture, and telescope was identical in both platforms. The aperture was located on the port side of the aircraft and the elevation angle of the telescope, measured with respect to the vertical axis, was 500. The unsteady, viscous, three-dimensional, aerodynamic and acoustic flow fields in the vicinity of SOFIA were simulated by an implicit, finite-difference Navier-Stokes flow solver (OVERFLOW) on a Chimera, overset grid system. The computational domain was discretized by structured grids. Computations were performed at wind-tunnel and flight Reynolds numbers corresponding to one free-stream flow condition (M = 0.85, angle of attack alpha = 2.50, and sideslip angle beta = 0 degrees). The computational domains consisted of twenty-nine(29) overset grids in the wind-tunnel simulations and forty-five(45) grids in the simulations run at cruise flight conditions. The maximum number of grid points in the simulations was approximately 4 x 10(exp 6). Issues considered in the evaluation study included analysis of the unsteady flow field in the cavity, the influence of the cavity on the flow across empennage surfaces, the drag penalty caused by the open telescope bay, and the noise radiating from cavity surfaces and the cavity-port shear layer. Wind-tunnel data were also available to compare to the CFD results; the data permitted an assessment of CFD as a design tool for the SOFIA program.

  4. Performance of Backshort-Under-Grid Kilopixel TES Arrays for HAWC+

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Benford, D. J.; Dowell, C. D.; Fixsen, D. J.; Hilton, G. C.; Irwin, K. D.; Jhabvala, C. A.; Maher, S. F.; Miller, T. M.; Moseley, S. H.; hide

    2016-01-01

    We present results from laboratory detector characterizations of the first kilopixel BUG arrays for the High- resolution Wideband Camera Plus (HAWC+) which is the imaging far-infrared polarimeter camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our tests demonstrate that the array performance is consistent with the predicted properties. Here, we highlight results obtained for the thermal conductivity, noise performance, detector speed, and first optical results demonstrating the pixel yield of the arrays.

  5. Submillimeter Spectroscopy with a 500-1000 GHz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    Sub-millimeter Spectroscopy with a 500-1000 GHz SIS Receiver, which extended over the period October 1, 1991 through January 31, 1997. The purpose of the grant was to fund the development and construction of a sensitive heterodyne receiver system for the submillimeter band (500-1000 GHz), using our newly-developed sensitive superconducting (SIS) detectors, and to carry out astronomical observations with this system aboard the NASA Kuiper Air- borne Observatory (a Lockheed C-141 aircraft carrying a 91 cm telescope). A secondary purpose of the grant was to stimulate the continued development of sensitive submillimeter detectors, in order to prepare for the next-generation airborne observatory, SOFIA, as well as future space missions (such as the ESA/NASA FIRST mission).

  6. Environmental testing for new SOFIA flight hardware

    NASA Astrophysics Data System (ADS)

    Lachenmann, Michael; Wolf, Jürgen; Strecker, Rainer; Weckenmann, Benedikt; Trimpe, Fritz; Hall, Helen J.

    2014-07-01

    New flight hardware for the Stratospheric Observatory for Infrared Astronomy (SOFIA) has to be tested to prove its safety and functionality and to measure its performance under flight conditions. Although it is not expected to experience critical issues inside the pressurized cabin with close-to-normal conditions, all equipment has to be tested for safety margins in case of a decompression event and/or for unusual high temperatures, e.g. inside an electronic unit caused by a malfunction as well as unusual high ambient temperatures inside the cabin, when the aircraft is parked in a desert. For equipment mounted on the cavity side of the telescope, stratospheric conditions apply, i.e., temperatures from -40 °C to -60°C and an air pressure of about 0.1 bar. Besides safety aspects as not to endanger personnel or equipment, new hardware inside the cavity has to function and to perform to specifications under such conditions. To perform these tests, an environmental test laboratory was set up at the SOFIA Science Center at the NASA Ames Research Center, including a thermal vacuum chamber, temperature measurement equipment, and a control and data logging workstation. This paper gives an overview of the test and measurement equipment, shows results from the commissioning and characterization of the thermal vacuum chamber, and presents examples of the component tests that were performed so far. To test the focus position stability of optics when cooling them to stratospheric temperatures, an auto-collimation device has been developed. We will present its design and results from measurements on commercial off-the-shelf optics as candidates for the new Wide Field Imager for SOFIA as an example.

  7. The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2009-01-01

    The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.

  8. The Orion Nebula in the Far-Infrared: High-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie W.; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2017-03-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail. Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.

  9. Utilization of CAD/CAE for concurrent design of structural aircraft components

    NASA Technical Reports Server (NTRS)

    Kahn, William C.

    1993-01-01

    The feasibility of installing the Stratospheric Observatory for Infrared Astronomy telescope (named SOFIA) into an aircraft for NASA astronomy studies is investigated using CAD/CAE equipment to either design or supply data for every facet of design engineering. The aircraft selected for the platform was a Boeing 747, chosen on the basis of its ability to meet the flight profiles required for the given mission and payload. CAD models of the fuselage of two of the aircraft models studied (747-200 and 747 SP) were developed, and models for the component parts of the telescope and subsystems were developed by the various concurrent engineering groups of the SOFIA program, to determine the requirements for the cavity opening and for design configuration. It is noted that, by developing a plan to use CAD/CAE for concurrent engineering at the beginning of the study, it was possible to produce results in about two-thirds of the time required using traditional methods.

  10. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; hide

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [OI] as a proxy for activity from water (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS, which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB), which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R approx. 21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections.

  11. Simultaneous multicolour optical and near-IR transit photometry of GJ 1214b with SOFIA

    NASA Astrophysics Data System (ADS)

    Angerhausen, D.; Dreyer, C.; Placek, B.; Csizmadia, Sz.; Eigmüller, Ph.; Godolt, M.; Kitzmann, D.; Mallonn, M.; Becklin, E. E.; Collins, P.; Dunham, E. W.; Grenfell, J. L.; Hamilton, R. T.; Kabath, P.; Logsdon, S. E.; Mandell, A.; Mandushev, G.; McElwain, M.; McLean, I. S.; Pfueller, E.; Rauer, H.; Savage, M.; Shenoy, S.; Vacca, W. D.; Van Cleve, J. E.; Wiedemann, M.; Wolf, J.

    2017-12-01

    Context. The benchmark exoplanet GJ 1214b is one of the best studied transiting planets in the transition zone between rocky Earth-sized planets and gas or ice giants. This class of super-Earth or mini-Neptune planets is unknown in our solar system, yet is one of the most frequently detected classes of exoplanets. Understanding the transition from rocky to gaseous planets is a crucial step in the exploration of extrasolar planetary systems, in particular with regard to the potential habitability of this class of planets. Aims: GJ 1214b has already been studied in detail from various platforms at many different wavelengths. Our airborne observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA) add information in the Paschen-α cont. 1.9 μm infrared wavelength band, which is not accessible by any other current ground- or space-based instrument due to telluric absorption or limited spectral coverage. Methods: We used FLIPO, the combination of the High-speed Imaging Photometer for Occultations (HIPO) and the First Light Infrared TEst CAMera (FLITECAM) and the Focal Plane Imager (FPI+) on SOFIA to comprehensively analyse the transmission signal of the possible water-world GJ 1214b through photometric observations during transit in three optical and one infrared channels. Results: We present four simultaneous light curves and corresponding transit depths in three optical and one infrared channel, which we compare to previous observations and current synthetic atmospheric models of GJ 1214b. The final precision in transit depth is between 1.5 and 2.5 times the theoretical photon noise limit, not sensitive enough to constrain the theoretical models any better than previous observations. This is the first exoplanet observation with SOFIA that uses its full set of instruments available to exoplanet spectrophotometry. Therefore we use these results to evaluate SOFIA's potential in this field and suggest future improvements. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A120

  12. Proceedings of the VI Serbian-Bulgarian Astronomical Conference, May 7 - 11 2008, Belgrade, Serbia

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Tsvetkov, M.; Popović, L. C.; Golev, V.

    2009-07-01

    The Sixth Serbian-Bulgarian Astronomical Conference was organized by Belgrade Astronomical Observatory, and held in Belgrade, in the building of Mathematical Faculty in Jagiceva Street, from 75th to 11th May 2008. Co-organizers were Mathematical Faculty, Astronomical Society "Rudjer Boskovic", Institute of Astronomy of the Bulgarian Academy of Sciences (BAS), Space Research Institute of BAS and Department of Astronomy of the University of Sofia. Co-chairmen of the Scientific Organizing Committee were Milan Dimitrijevic and Milcho Tsvetkov and Co-vice chairmen Luka C. Popovic and Valeri Golev. Chair of the Local Organizing Committee was Andjelka Kovacevic. The conference [was] attended by 58 participants. From Serbia were 36, from Belgrade Astronomical Observatory, Mathematical Faculty, Faculty of Sciences from Nis, Institute of Physics from Zemum, High School for pedagogues of occupational studies from Aleksinac, Faculty of Sciences from Kragujevac, Mathematical Institute of Serbian Academy of Sciences and Arts, Astronomical Society "Rudjer Boskovic" and Astronomical Society "Magellanic Cloud." From Bulgaria were present 17 colleagues: Svetlana Boeva, Ana Borisova, Momchil Dechev, Peter Duchlev, Lostadinka Koleva, Georgi Petrov, Vasil Popov, Konstatin Stavrev, Katya Ysvetkova and Milcho Tsvetkov from Institute of Astronomy of BAS, Rumen Bogdanovski and Krasmimira Ianova from Space Research Institute of BAS, Georgi R. Ivanov, Georgi Petrov and Grigor Nikolov from Department of Astronomy, Sofia University "St Kliment Ohridski,", Yavor Chapanov from Central Laboratory for Geodesy of BAS and Petya Pavlova from Technical University of Sofia, Branch Plovdiv. Besides participants from Serbia and Bulgaria the Conference [was] attended [by] Vlado Milicevic from Canada, Jan Vondrak from Czech Republic, Aytap Sezer from Turkey and Tetyana Sergeeva and Alexandr Sergeev from Ukraine. On the Conference were presented 13 invited lectures, 22 short talks and 35 posters, in total 70 contributions. In these proceedings are 47 papers, 10 invited lectures, 12 contributed papers and 25 poster papers. Within the frame of cultural program in the library of Astronomical Observatory was organized a multimedia evening "Astronomy, Poetry and Art." Moderator was Andjelka Kovacevic. Poetry with cosmical inspiration was presented by Milan S. Dimitrijevic, Milcho Tsvetkov, Natasha Stanic, Tetyana Sergeeva, Jan Vondrak and Katya Tsvetkova with musical accompaniment by Zoran Simic and Edi Bon. Also a video presentation of paintings of Zoran Simic, inspired by the Universe accompanied by him by guitar was performed. An excursion to the excavations of the Roman colony Viminacium was organized for the participants. The Sixth Serbian-Bulgarian Astronomical Conference was fruitful and important for the further development of collaboration, common activities and planning of the joint scientific investigations and projects.

  13. Erik Lindbergh christens NASA's 747 Clipper Lindbergh with a special commemorative concoction representing local, NASA, and industry partners

    NASA Image and Video Library

    2007-05-21

    Erik Lindbergh christens NASA's 747 Clipper Lindbergh, the Stratospheric Observatory for Infrared Astronomy, with a special commemorative concoction representing local, NASA, and industry partners. The liquid consisted of a small amount of California wine representing NASA Dryden where the aircraft will be stationed, a small amount of Dr. Pepper (a Waco, TX invention), a quantity of French bottled water (to symbolize Charles Lindbergh's flight to Paris on this date), and a dash of German beer to represent the SOFIA German industry partners.

  14. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  15. Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay; Lopez-Rodriguez, Enrique; Packham, Christopher C.; Ramos-Almeida, Cristina; Alonso-Herrero, Almudena; Levenson, Nancy; Radomski, James; Ichikawa, Kohei; Garcia-Bernete, Ismael; Gonzalez-Martin, Omaira; Diaz Santos, Tanio; Martinez-Paredes, Mariela

    2017-06-01

    We present 31.5 μm imaging photometry of 11 nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We tentatively detect extended 31 μm emission for the first time in our sample. In combination with this new data set, subarcsecond resolution 1-18 μm imaging and 7.5-13 μm spectroscopic observations were used to compute the nuclear spectral energy distribution (SED) of each galaxy. We found that the turnover of the torus emission does not occur at wavelengths ≤31.5 μm, which we interpret as a lower-limit for the wavelength of peak emission. We used Clumpy torus models to fit the nuclear infrared (IR) SED and infer trends in the physical parameters of the AGN torus for the galaxies in the sample. Including the 31.5 μm nuclear flux in the SED 1) reduces the number of clumpy torus models compatible with the data, and 2) modifies the model output for the outer radial extent of the torus for 10 of the 11 objects. Specifically, six (60%) objects show a decrease in radial extent while four (40%) show an increase. We find torus outer radii ranging from <1pc to 8.4 pc. We also present new 37.1 μm imaging data for 4 of the 11 Seyfert galaxies, as well as 3 additional Seyferts.

  16. SOFIA Observations of SN 2010jl: Another Non-Detection of the 9.7 Micrometer Silicate Dust Feature

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Fox, Ori D.

    2015-01-01

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 micrometers of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 micrometers, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millennia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 micrometer feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01-0.05 solar mass of carbonaceous dust radiating at a temperature of approximately 550-620 degrees Kelvin. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-infrared observations, none of which show signs of emission from silicate dust in their infrared spectra.

  17. SOFIA tracking image simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Charles R.; Gross, Michael A. K.

    2016-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) tracking camera simulator is a component of the Telescope Assembly Simulator (TASim). TASim is a software simulation of the telescope optics, mounting, and control software. Currently in its fifth major version, TASim is relied upon for telescope operator training, mission planning and rehearsal, and mission control and science instrument software development and testing. TASim has recently been extended for hardware-in-the-loop operation in support of telescope and camera hardware development and control and tracking software improvements. All three SOFIA optical tracking cameras are simulated, including the Focal Plane Imager (FPI), which has recently been upgraded to the status of a science instrument that can be used on its own or in parallel with one of the seven infrared science instruments. The simulation includes tracking camera image simulation of starfields based on the UCAC4 catalog at real-time rates of 4-20 frames per second. For its role in training and planning, it is important for the tracker image simulation to provide images with a realistic appearance and response to changes in operating parameters. For its role in tracker software improvements, it is vital to have realistic signal and noise levels and precise star positions. The design of the software simulation for precise subpixel starfield rendering (including radial distortion), realistic point-spread function as a function of focus, tilt, and collimation, and streaking due to telescope motion will be described. The calibration of the simulation for light sensitivity, dark and bias signal, and noise will also be presented

  18. Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana

    1999-01-01

    This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.

  19. Development of the FPI+ as facility science instrument for SOFIA cycle four observations

    NASA Astrophysics Data System (ADS)

    Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Krabbe, Alfred

    2016-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft, accommodating a 2.5m infrared telescope. This airborne observation platform takes astronomers to flight altitudes of up to 13.7 km (45,000ft) and therefore allows an unobstructed view of the infrared universe at wavelengths between 0.3 m and 1600 m. SOFIA is currently completing its fourth cycle of observations and utilizes eight different imaging and spectroscopic science instruments. New instruments for SOFIAs cycle 4 observations are the High-resolution Airborne Wideband Camera-plus (HAWC+) and the Focal Plane Imager (FPI+). The latter is an integral part of the telescope assembly and is used on every SOFIA flight to ensure precise tracking on the desired targets. The FPI+ is used as a visual-light photometer in its role as facility science instrument. Since the upgrade of the FPI camera and electronics in 2013, it uses a thermo-electrically cooled science grade EM-CCD sensor inside a commercial-off-the-shelf Andor camera. The back-illuminated sensor has a peak quantum efficiency of 95% and the dark current is as low as 0.01 e-/pix/sec. With this new hardware the telescope has successfully tracked on 16th magnitude stars and thus the sky coverage, e.g. the area of sky that has suitable tracking stars, has increased to 99%. Before its use as an integrated tracking imager, the same type of camera has been used as a standalone diagnostic tool to analyze the telescope pointing stability at frequencies up to 200 Hz (imaging with 400 fps). These measurements help to improve the telescope pointing control algorithms and therefore reduce the image jitter in the focal plane. Science instruments benefit from this improvement with smaller image sizes for longer exposure times. The FPI has also been used to support astronomical observations like stellar occultations by the dwarf planet Pluto and a number of exoplanet transits. Especially the observation of the occultation events benefits from the high camera sensitivity, fast readout capability and the low read noise and it was possible to achieve high time resolution on the photometric light curves. This paper will give an overview of the development from the standalone diagnostic camera to the upgraded guiding/tracking camera, fully integrated into the telescope, while still offering the diagnostic capabilities and finally to the use as a facility science instrument on SOFIA.

  20. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.

  1. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, M. J.; Bosh, A. S.; Levine, S. E.

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event withmore » a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.« less

  2. Comprehension and retrieval of failure cases in airborne observatories

    NASA Technical Reports Server (NTRS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-01-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  3. Comprehension and retrieval of failure cases in airborne observatories

    NASA Astrophysics Data System (ADS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-05-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  4. Flexible body control of the airborne telescope SOFIA

    NASA Astrophysics Data System (ADS)

    Kaercher, Hans J.

    2002-07-01

    Airborne telescopes have, compared with earthbound or space telescopes, by far the most worse environment during operations. They must not only deal with aircraft vibrations, but also with large temperature differences and aero-acoustic loads including standing waves. System simulations are particularly useful for verifying the design performance in this environment. They should include the behavior of the overall opto-mechanical system, the environmental loads and the pointing control system itself. SOFIA - the "Stratospheric Observatory for Infrared Astronomy" - is a 2,7 m infrared telescope in an open cavity of a Boeing 747 aircraft. At present the telescope is under construction in the MAN premises in Augsburg. Simulations during the design phase of the telescope showed, that there are resonance effects in the telescope excited by the cavity acoustics. The excitations disturb the pointing behavior above the allowances. This paper describes, how the overall system was simulated, how the resonance modes will be compensated by "flexible body control", and how the pointing control system will be finally optimized during test flights in an pointing improvement phase.

  5. Debris search around (486958) 2014 MU69: Results from SOFIA and ground-based occultation campaigns

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Buie, Marc W.; Porter, Simon Bernard; Zangari, Amanda Marie; Stern, S. Alan; Ennico, Kimberly; Reach, William T.; Pfueller, Enrico; Wiedemann, Manuel; Fraser, Wesley Cristopher; Camargo, Julio; Young, Leslie; Wasserman, Lawrence H.; New Horizons MU69 Occultation Team

    2017-10-01

    The New Horizons spacecraft is scheduled to fly by the cold classical KBO 2014 MU69 on 1-Jan-2019. The spacecraft speed relative to the MU69 will be in excess of 14 km/s. At these encounter velocities, impact with debris could be fatal to the spacecraft. We report on searches for debris in the neighborhood of MU69 conducted from SOFIA and ground-based sites. SOFIA observed the star field around MU69 on 10-Jul-2017 (UT) with their Focal Plane Imager (FPI+), operating at 20 Hz from 7:25 to 8:10 UT, spanning the time of the predicted occultation. Several large fixed telescopes observed the 3-Jun-2017, 10-Jul-2017 and/or the 17-Jul-2017 occultation events, including the 4-meter SOAR telescope, the 8-meter Gemini South telescope, and many 16-inch portable telescopes that were arranged in picket fences in South Africa and Argentina. We report on the light curves from these observing platforms and constraints on the optical depth due to debris or rings within the approximate Hill sphere (about 60,000 km across) of MU69. This work was supported by the New Horizons mission and NASA, with astrometric support from the Gaia mission and logistical support from Argentina and the US embassies in Buenos Aires and CapeTown. At SOAR, data acquisition has been done with a Raptor camera (visitor instrument) funded by the Observatorio Nacional/MCTIC.

  6. SOFIA (+FORCAST) Infrared Spectrophotometry of Comet C/2012 K1 (PanStarrs)

    NASA Astrophysics Data System (ADS)

    Woodward, Charles E.; Kelley, Michael S.P.; Wooden, Diane H.; Harker, David E.; De Buizer, James M.; Gicquel, Adeline

    2014-11-01

    Observing and modeling the properties of small, primitive bodies in the solar system whose origins lie beyond the frost line (> 5 AU) provides critical insight into the formation of the first Solar System solids and establishes observation constraints for planetary system formation invoking migration - the ‘Grand Tack’ epoch followed by the ‘Nice Model’ events - that yielded terrestrial planets in the habitable zone. The characteristics of comet dust can provide evidence to validate the new, emerging picture of small body populations - including comet families - resulting from planetary migration in the early Solar System. Here we present preliminary results of infrared 8 to 27 micron spectrophotometric observations of comet C/2012 K1 (PanStarrs), a dynamically new (1/a0 < 50e-6) Oort Cloud comet, conducted with the NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) facility during a series of three flights over the period from 2014 June 06-11 UT. During this interval comet C/2012 K1 (PanStarrs) was at a heliocentric distance of ~1.64 AU and a geocentric distance of ~1.74 AU (pre-perihelion). As a "new" comet (first inner solar system passage), the coma grain population may be extremely pristine, unencumbered by a rime and insufficiently irradiated by the Sun to carbonize its surface organics. We will discuss the derived coma grain properties inferred from modeling of the spectral energy distribution derived from the SOFIA (+FORCAST) data and highlight our preliminary conclusions. Continued observations of comets, especially dynamically young Oort Cloud targets, in the 5-37 micron infrared spectral range accessible with SOFIA (+FORCAST) will provide key observational clues to ascertaining the origins of silicates within our protoplanetary disk, and will serve to place our early disk evolution within the context of other circumstellar disks observed today that may contain the seeds of rocky, terrestrial planets.

  7. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  8. Test What You Fly?

    NASA Astrophysics Data System (ADS)

    Margolies, Don

    2002-10-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  9. Distributed framework for dyanmic telescope and instrument control

    NASA Astrophysics Data System (ADS)

    Ames, Troy J.; Case, Lynne

    2003-02-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a devices IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High

  10. A Thorough View of the Nuclear Region of NGC 253: Combined Herschel, SOFIA, and APEX Data Set

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, J. P.; Güsten, R.; Harris, A.; Requena-Torres, M. A.; Menten, K. M.; Weiß, A.; Polehampton, E.; van der Wiel, M. H. D.

    2018-06-01

    We present a large set of spectral lines detected in the 40″ central region of the starburst galaxy NGC 253. Observations were obtained with the three instruments SPIRE, PACS, and HIFI on board the Herschel Space Observatory, upGREAT on board the SOFIA airborne observatory, and the ground-based Atacama Pathfinder EXperiment telescope. Combining the spectral and photometry products of SPIRE and PACS, we model the dust continuum spectral energy distribution (SED) and the most complete 12CO line SED reported so far toward the nuclear region of NGC 253. The properties and excitation of the molecular gas were derived from a three-component non-LTE radiative transfer model, using the SPIRE 13CO lines and ground-based observations of the lower-J 13CO and HCN lines, to constrain the model parameters. Three dust temperatures were identified from the continuum emission, and three components are needed to fit the full CO line SED. Only the third CO component (fitting mostly the HCN and PACS 12CO lines) is consistent with a shock-/mechanical-heating scenario. A hot core chemistry is also argued as a plausible scenario to explain the high-J 12CO lines detected with PACS. The effect of enhanced cosmic-ray ionization rates, however, cannot be ruled out and is expected to play a significant role in the diffuse and dense gas chemistry. This is supported by the detection of ionic species like OH+ and H2O+, as well as the enhanced fluxes of the OH lines with respect to those of H2O lines detected in both PACS and SPIRE spectra.

  11. Detection of Interstellar Ortho-D2H+ with SOFIA

    NASA Astrophysics Data System (ADS)

    Harju, Jorma; Sipilä, Olli; Brünken, Sandra; Schlemmer, Stephan; Caselli, Paola; Juvela, Mika; Menten, Karl M.; Stutzki, Jürgen; Asvany, Oskar; Kamiński, Tomasz; Okada, Yoko; Higgins, Ronan

    2017-05-01

    We report on the detection of the ground-state rotational line of ortho-D2H+ at 1.477 THz (203 μm) using the German REceiver for Astronomy at Terahertz frequencies (GREAT) on board the Stratospheric Observatory For Infrared Astronomy (SOFIA). The line is seen in absorption against far-infrared continuum from the protostellar binary IRAS 16293-2422 in Ophiuchus. The para-D2H+ line at 691.7 GHz was not detected with the APEX telescope toward this position. These D2H+ observations complement our previous detections of para-H2D+ and ortho-H2D+ using SOFIA and APEX. By modeling chemistry and radiative transfer in the dense core surrounding the protostars, we find that the ortho-D2H+ and para-H2D+ absorption features mainly originate in the cool (T < 18 K) outer envelope of the core. In contrast, the ortho-H2D+ emission from the core is significantly absorbed by the ambient molecular cloud. Analyses of the combined D2H+ and H2D+ data result in an age estimate of ˜5 × 105 yr for the core, with an uncertainty of ˜2 × 105 yr. The core material has probably been pre-processed for another 5 × 105 years in conditions corresponding to those in the ambient molecular cloud. The inferred timescale is more than 10 times the age of the embedded protobinary. The D2H+ and H2D+ ions have large and nearly equal total (ortho+para) fractional abundances of ˜10-9 in the outer envelope. This confirms the central role of {{{H}}}3+ in the deuterium chemistry in cool, dense gas, and adds support to the prediction of chemistry models that also {{{D}}}3+ should be abundant in these conditions.

  12. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  13. Stellar Occultation Studies of the Solar System

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    Earth-based observations of stellar occultations provide extremely high spatial resolution for bodies in the outer solar system, about 10,000 times better than that of traditional imaging observations. Stellar occultation data can be used to establish the structure of atmospheres and rings of solar system bodies at high spatial resolution. Airborne occultation observations are particularly effective, since the controlled mobility of the observing platform allows the observer to fly within the optimum part of the occultation shadow for most events that are visible from Earth. Airborne observations are carried out above any clouds and are nearly free of scintillation noise from the Earth's atmosphere. KAO occultation observations resulted in the first detection of gravity waves in the Martian atmosphere, discovery of the Uranian rings, the first detection of Pluto's atmosphere, the first Earth-based investigations of Triton's atmosphere, and the discovery of narrow jets from Chiron's nucleus. The first SOFIA occultation opportunity will be an investigation of Pluto's atmospheric structure in November, 2002, and will resolve a problem that has lingered since the KAO discovery observation fourteen years earlier. We plan to continue our successful airborne occultation program with the greatly enhanced capability provided by SOFIA. We propose here to replace our KAO occultation photometer with one having twice the throughput, half the noise, a somewhat wider wavelength range, four times the field of view, and ten times the frame rate to optimize its performance and to capitalize on the larger collecting area offered by SOFIA. It will also allow for simultaneous visible and IR occultation observations, greatly enriching the results that we can obtain from occultations. We call this new imaging occultation photometer HOPI (High-speed Occultation Photometer and Imager). HOPI will provide a signal-to-noise ratio two to four times that of our present photometer for a given event, will permit useful observations of the more numerous events involving fainter stars, and will allow higher time resolution observations to be made. HOPI's characteristics also make it an ideal instrument for initial and ongoing evaluations of the SOFIA telescope's performance.

  14. Imaging spectroscopy of Mars in the thermal infrared: seasonal variations of H2O2 and mapping of the D/H ratio

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; DeWitt, Curtis; Richter, Matthew; Greathouse, Thomas; Fouchet, Thierry; Lefevre, Franck; Montmessin, Franck; Forget, Francois; Bezard, Bruno; Atreya, Sushil

    2017-04-01

    Since 2002, we have been monitoring the spatial distribution and the seasonal variations of H2O2 on Mars, using high-resolution imaging spectroscopy with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the Infrared Telescope Facility (IRTF) at Maunakea Observatory (Hawaii). These observations have shown that a better agreement with global climate models is obtained when heterogeneous chemistry is introduced in the photochemical model (Encrenaz et al. 2015, AA 578, A127). In addition, in April 2014, we have obtained a map of D/H on Mars using the Echelon Cross Echelle Spectrograph (EXES) aboard the stratospheric Observatory for Infrared Astronomy (SOFIA; Encrenaz et al. 2015, AA 586, A62). In 2016, new observations have been obtained on H2O2 with TEXES and on D/H with EXES, allowing us to better analyze the seasonal variations of these parameters. These data will be presented and compared with previous measurements.

  15. Observing Cool Dust Around Active Galactic Nuclei Using the Sofia Telescope

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay

    2017-02-01

    Dust surrounding the supermassive black holes (SMBH) in active galactic nuclei (AGN) intercepts high-energy radiation caused by material rapidly encircling the black hole. The dust re-radiates at low-energy mid-infrared (MIR) wavelengths, which are highly attenuated by water vapor in the Earth's atmosphere. For ground-based telescopes, the atmosphere is completely opaque from 30 microns to the submillimeter regime, making ground-based observations at wavelengths longer than 30 microns impossible. Space-based telescopes can be costly, and are oftentimes very small (< 1 m). As an alternative, NASA built the Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft, a 2.5-m telescope carried on board a Boeing 747 airframe. In this dissertation, new photometric observations of 15 AGN are analyzed. They were obtained during Observing Cycles 2 and 4 on the SOFIA telescope using the 31.5 and 37.1 micron filters on the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). NGC 1068 was observed in the 19.7, 31.5, and 37.1 micron filters using FORCAST, as well as the 53 micron filter on the HAWC+ instrument. Observed differences in AGN properties are largely explained by a unified model in which dust fills a toroidal region surrounding the SMBH, blocking direct view of the center in some lines of sight. Observations show that this dust lies in the central 1 - 10 pc from the black hole. Subarcsecond-resolution photometric and spectroscopic data between 1 - 20 microns have been used to compute the nuclear spectral energy distributions (SEDs) of the torus for most objects in this sample. Although these previous studies have effectively described torus model parameters, the lack of high spatial resolution observations at longer wavelengths leaves the SED largely unconstrained. Without 31.5 micron data, the model tends to overestimate the SED output and wavelength of peak emission, which is tentatively found between 30 - 40 microns. Including the 31.5 micron nuclear flux in the SED 1) reduces the number of clumpy torus models compatible with the data, and 2) modifies the model output for the outer radial extent of the torus. These observations of the central 0.1 - 1 kpc ( 3 - 4 arseconds) of the AGN sample are the highest resolution images available in the 30 - 40 micron wavelength range. However, for AGN at distances on the order of tens of Mpc, SOFIA cannot resolve the parsec-scale torus structure, and contamination from diffuse IR emission and star formation (SF) can contaminate nuclear observations. This dissertation focuses on isolating torus emission from diffuse extended emission in order to 1) add 30 - 40 micron photometric data to the IR SED of the torus and its model parameters, and 2) identify the origin of diffuse extended emission. Extended emission within the FWHM of SOFIA that is not associated with SF ostensibly originates in the narrow line region.

  16. Use of Lactobacillus johnsonii in broilers challenged with Salmonella sofia.

    PubMed

    Olnood, Chen G; Beski, Sleman S M; Choct, Mingan; Iji, Paul A

    2015-09-01

    The effects of Lactobacillus johnsonii (L. johnsonii) on gut microflora, bird performance and intestinal development were assessed using 288 one-day-old Cobb broilers challenged with Salmonella sofia ( S . sofia ). The experiment was a 3 × 2 factorial design which consisted of three treatments, a negative control (NC) with no additives, a positive control (PC) containing antimicrobials (zinc-bacitracin, 50 mg/kg) and a probiotic group (Pro), and with the two factors being unchallenged or challenged with S . sofia . A probiotic preparation of L . johnsonii (10 9 cfu/chick) was administered to chicks individually by oral gavage on days 1, 3, 7 and 12. Chicks were individually challenged with S. sofia (10 7 cfu/chick) by oral gavage on d 2, 8 and 13. Results showed that the challenge itself markedly reduced ( P < 0.05) bird performance and feed intake. And, transient clinical symptoms of the infection with S . sofia were observed from the second time they were challenged with S . sofia in the negative challenge groups. The novel probiotic candidate L . johnsonii reduced the number of S . sofia and Clostridium perfringens in the gut environment, and improved the birds' colonization resistance to S . sofia .

  17. New measurements of D/H on Mars using EXES aboard SOFIA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; DeWitt, C.; Richter, M. J.; Greathouse, T. K.; Fouchet, T.; Montmessin, F.; Lefèvre, F.; Bézard, B.; Atreya, S. K.; Aoki, S.; Sagawa, H.

    2018-05-01

    The global D/H ratio on Mars is an important measurement for understanding the past history of water on Mars; locally, through condensation and sublimation processes, it is a possible tracer of the sources and sinks of water vapor on Mars. Measuring D/H as a function of longitude, latitude and season is necessary for determining the present averaged value of D/H on Mars. Following an earlier measurement in April 2014, we used the Echelon Cross Echelle Spectrograph (EXES) instrument on board the Stratospheric Observatory for Infrared Astronomy (SOFIA) facility to map D/H on Mars on two occasions, on March 24, 2016 (Ls = 127°), and January 24, 2017 (Ls = 304°), by measuring simultaneously the abundances of H2O and HDO in the 1383-1391 cm-1 range (7.2 μm). The D/H disk-integrated values are 4.0 (+0.8, -0.6) × Vienna Standard Mean Ocean Water (VSMOW) and 4.5 (+0.7, -0.6) × VSMOW, respectively, in agreement with our earlier result. The main result of this study is that there is no evidence of strong local variations in the D/H ratio nor for seasonal variations in the global D/H ratio between northern summer and southern summer.

  18. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  19. Navier-Stokes Flowfield Simulation of Boeing 747-200 as Platform for SOFIA

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.R.

    1994-01-01

    Steady and unsteady viscous, three-dimensional flowfields are calculated using a thin layer approximation of Navier-Stokes equations in conjunction with Chimera overset grids. The finite-difference numerical scheme uses structured grids and a pentadiagonal flow solver called "OVERFLOW". The configuration of Boeing 747-200 has been chosen as one of configurations to be used as a platform for the SOFIA (Stratospheric Observatory For Infrared Astronomy). Initially, the steady flowfield of the full aircraft is calculated for the clean configuration (without a cavity to house telescope). This solution is then used to start the unsteady flowfield of a configuration containing cavity housing the observation telescope and its peripheral units. Analysis of unsteady flowfield in the cavity and its influence on the tail empennage, as well as the noise due to turbulence and optical quality of the flow are the main focus of this study. For the configuration considered here, the telescope housing cavity is located slightly downstream of the portwing. The entire flow-field is carefully constructed using 45 overset grids and consists of nearly 4 million grid points. All the computations axe done at one freestream flow condition of M(sub infinity) = 0.85, alpha = 2.5deg, and a Reynolds of Re = 1.85x10deg

  20. The Orion Nebula in the Far-Infrared: high-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2015-08-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. These spectral maps are the largest and highest spatially resolved to date. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations (J in the range of 10 to 30), allowing us to analyse of the heated molecular gas.The observations were taken during the commissioning of FIFI-LS last year and as recent as this March. The results are still preliminary as the data reduction and calibration is still under development.

  1. FORCAST Observations of Galactic Evolved Stars: Measurements of Carbonaceous Dust, Crystalline Silicates, and Fullerenes from SOFIA

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen; Sloan, G. C.; Keller, L. D.; Groenewegen, M. A. T.

    2018-01-01

    We present preliminary results from two projects to observe the mid-infrared spectra of evolved stars in the Milky Way using the FORCAST instrument on SOFIA. In the first project, we observed a set of 31 carbon stars over the course of three cycles (government shutdowns contributed to the delays in the program execution), covering a wavelength range of 5-13.7 μm, which includes prominent dust and gas diagnostics. The sources were selected to sample portions of period and flux phase space which were not covered in existing samples from older telescopes such as the Infrared Space Observatory (ISO) or Infrared Astronomical Satellite (IRAS). In the second project, we searched for fullerene emission (C60) at 18.9 μm in Galactic sources with crystalline silicate emission. Although most evolved stars are either carbon-rich or oxygen- (silicate-) rich, fullerenes, a carbon-rich molecule, have been observed in several oxygen-rich evolved stars whose silicate emission features are crystalline rather than the more usual amorphous types. None of our targets show clear signatures of fullerene emission.Support for this work was provided by NASA through awards SOF 03-0079, SOF 03-0104, and SOF 04-0129 issued by USRA.

  2. Pluto’s Atmosphere from the 23 June 2011 Stellar Occultation: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Dunham, E. W.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Armhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedermann, M.; Roesser, H.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. L.; Miceli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J.; Rapoport, S.; Ritchie, I.

    2012-10-01

    The double stellar occultation by Pluto and Charon of 2011 June 23 was observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 resulted in the best occultation chords recorded for the event, in three optical wavelength bands. The data obtained from SOFIA were combined with chords obtained from the ground at the IRTF (including a full spectral light curve), the USNO--Flagstaff Station, and Leeward Community College to give a detailed profile of Pluto’s atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee, or kink in the light curves separating them as was observed in 1988 (Millis et al. 1993), rather than the smoothly transitioning bowl-shaped light curves of recent years (Elliot et al. 2007). We analyze the upper atmosphere by fitting a model to all of the light curves obtained, resulting in a half-light radius of 1288 ± 1 km. We analyze the lower atmosphere with two different methods to provide results under the separate assumptions of particulate haze and a strong thermal gradient. Results indicate that the lower atmosphere evolves on short seasonal timescales, changing between 1988 and 2006, and then returning to approximately the 1988 state in 2011, though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again excepting the overall pressure changes. No evidence of the onset of atmospheric collapse predicted by frost migration models is yet seen, and the atmosphere appears to be remaining at a stable pressure level. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory.

  3. Distributed Framework for Dynamic Telescope and Instrument Control

    NASA Astrophysics Data System (ADS)

    Ames, Troy J.; Case, Lynne

    2002-12-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device?s IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a principal investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.

  4. Distributed Framework for Dynamic Telescope and Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy J.; Case, Lynne

    2002-01-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.

  5. A Central Flash at an Occultation of a Bright Star by Pluto Soon Before New Horizons' Flyby

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Sickafoose, Amanda A.; Person, Michael J.; Abe, Fumio; Suzuki, Daisuke; Nagakane, Masayuki; Tristam, Paul J.

    2015-11-01

    From the Mt. John Observatory, New Zealand, we were so close to the center of the occultation path on 29 June 2015 UTC that we observed a modest central flash from the focusing of starlight from a 12th-magnitude star. The star was one of the brightest ever in our years of continual monitoring that started in 2002. At the time of Pluto's perihelion in 1989, it was feared from models that Pluto's atmosphere might collapse by now, a motivation for the timely launch of New Horizons; some models now allow Pluto to retain its atmosphere throughout its orbit.We used our frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope of Canterbury U. We also observed with a Lowell Obs. infrared camera on the "AAVSO" 0.6-m Optical Craftsman telescope; and obtained 3-color photometry at a slower cadence on a second 0.6-m telescope. We coordinated with the overflight of SOFIA and its 2.5-m telescope, which benefited from last-minute astrometry, and the Auckland Observatory's and other ground-based telescopes.Our light curves show a modest central flash; our tentative geometrical solution shows that we were only about 50 km from the occultation path's centerline. The flash is from rays lower than otherwise accessible in Pluto's atmosphere. Our light curves, at such high cadence that we see spikes caused by atmospheric effects that we had not seen so well since our 2002 Mauna Kea occultation observations, show that Pluto's atmosphere had not changed drastically since our previous year's observations. Our data provide a long-term context for New Horizon's highly-detailed observations of Pluto's atmosphere in addition to providing a chord for the geometrical solution that includes SOFIA's observations.Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We are grateful to Alan Gilmore, Pam Kilmartin, Robert Lucas, and Carolle Varughese for assistance at Mt. John. We thank the AAVSO for use of the AAVSOnet 0.6-m telescope and Arne Henden for assistance.

  6. SOFIA First Generation Science Instruments

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Meyer, Allan W.

    2003-01-01

    SOFIA will provide 0.3- 1600 pm wavelength coverage, excellent FIR/submm angular resolution, a variety of focal plane instruments, and access to them throughout a 20-year lifetime. These attributes assure SOFIA a vital role in future observations of the interstellar medium, and in numerous other studies. SOFIA is a joint program of NASA in the U.S. and DLR in Germany. Observing time will be arranged by annual peer review of proposals, with roughly 80 percent of the time granted by the U.S. and 20 percent of the time granted by Germany. International proposals may be submitted to either time allocation committee. SOFIA is expected to begin science flights in 2005.

  7. SOFIA Science Imagery

    NASA Image and Video Library

    2017-09-14

    SCI2012_0003: SOFIA mid-infrared image of the planetary nebula Minkowski 2-9 (M2-9), also known as the Butterfly Nebula, compared with a visual-wavelength Hubble Space Telescope image at the same scale and orientation. The nebula is composed of two lobes of gas & dust expelled from a dying star with about the mass of our Sun that is seen at the center of the lobes. The HST image shows mostly ionized gas in the lobes whereas the SOFIA image shows mostly solid grains condensing in the gas. The SOFIA data were obtained during SOFIA's Early Science program in 2011 by a Guest Investigator team led by Michael Werner of Caltech/JPL using the FORCAST camera (P.I.Terry Herter, Cornell University). Credit: SOFIA image, RGB = 37, 24, 20 microns; NASA/DLR/USRA/DSI/FORCAST team/M. Werner et al./A. Helton, J. Rho; HST image: NASA/ESA/NSF/AURA/Hubble Heritage Team/STScI/B. Balick, V. Icke, G. Mellema

  8. A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA

    NASA Astrophysics Data System (ADS)

    Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred

    2016-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.

  9. High Resolution SOFIA/EXES Spectroscopy of CH4 and SO2 toward Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.; Richter, Matt; DeWitt, Curtis; Indriolo, Nick; Neufeld, David A.; Karska, Agata; Bergin, Edwin A.; Smith, Rachel L.; Montiel, Edward

    2017-01-01

    The ro-vibrational transitions of molecules in the near to mid-infrared are excellent tracers of the composition, dynamics, and excitation of the inner regions of Young Stellar Objects (YSOs). They sample a wide range of excitations in a short wavelength range, they can be seen in absorption against strong hot dust continuum sources, and they trace molecules without permanent dipole moment not observable at radio wavelengths. In particular, at high infrared spectral resolution, spatial scales smaller than those imaged by millimeter wave interferometers can be studied dynamically.We present high resolution (R=λ/Δλ˜50,000-100,000 6-12 km/s) infrared (7-8 μm) spectra of massive YSOs observed with the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory For Infrared Astronomy (SOFIA). Absorption lines of gas phase methane (CH4) are detected in our Cycle 2 observations. CH4 is thought to be a starting point of the formation of carbon chain molecules. Abundances are derived in the different dynamical regions along the sight-line towards the central star by comparing the line profiles to those of CO and other species observed at ground based facilities such as EXES' sister instrument TEXES at IRTF and Gemini. A search is also conducted for sulfur-dioxide, using data from our ongoing Cycle 4 program. SO2 was previously detected towards these massive YSOs with the space-based ISO/SWS instrument (Keane et al. 2001, A&A 376, L5) at much lower spectral resolution (R˜2,000). At high spectral resolution we should be able to pin-point the dynamical location of this SO2 gas. Up to 98% of the sulfur in dense clouds and protostellar envelopes is presently missing, and we are searching for that with the EXES/SOFIA observations.

  10. A High Spatial Resolution Study of Far IR Emission of Galaxies

    NASA Technical Reports Server (NTRS)

    Caldwell, Barrie A.

    2000-01-01

    This grant funded observations, data reduction, professional publications and travel for scientific efforts on the Kuiper Airborne Observatory. The research project was successfully completed. New insights into the distribution of far infrared emission across star forming regions was obtained, and student training was achieved. The efforts contributed towards new observing strategies, such as calibration and intercomparison of data from different infrared astronomical observing platforms, that will impact future NASA missions, such as SOFIA. The results of the effort have been presented in several papers in the refereed literature, including: "The Structure of IR Luminous Galaxies at 100 Microns". " Far Infrared Thermal Emission from the Inner Cooling Flow Region of NGC1275". "Distribution of Light in the "Dusty Hand" Galaxy NGC2146".

  11. Selected computations of transonic cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.

  12. Coupled RANS/LES for SOFIA Cavity Acoustic Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen L.

    2010-01-01

    A fast but accurate approach is described for the determination of the aero-acoustic properties of a large cavity at subsonic flight speeds. This approach employs a detachededdy simulation model in the free-shear layer at the cavity opening and the surrounding boundary layer, but assumes inviscid flow in the cavity and in the far field. The reduced gridding requirements in the cavity, in particular, lead to dramatic improvements in the time required for the computation. Results of these computations are validated against wind-tunnel data. This approach will permit significantly more flight test points to be evaluated computationally in support of the Stratospheric Observatory For Infrared Astronomy flight-test program being carried out at NASA s Dryden Flight Research Center.

  13. Evaluation of a new rapid diagnostic test for the detection of influenza and RSV.

    PubMed

    Gómez, Sara; Prieto, Columbiana; Vera, Carmen; R Otero, Joaquín; Folgueira, Lola

    2016-05-01

    Influenza viruses and respiratory syncytial virus (RSV) can cause an acute respiratory disease that occurs seasonally in epidemic waves. This retrospective study was conducted to evaluate the Sofia(®) Influenza A+B and the Sofia(®) RSV fluorescence immunoassays (FIAs), two novel rapid detection tests (RDTs) for influenza A and B and RSV. Two hundred and nine breath samples were selected from patients with respiratory symptoms determined to be positive/negative for influenza A, influenza B or RSV using one of the reference diagnostic techniques, cell culture and/or RT-PCR (Simplexa™Flu A/B & RSV). The Sofia Influenza A+B FIA was tested on 123 samples (63 from children and 60 from adults) and the Sofia RSV FIA was tested on 86 pediatric samples. Sensitivity and specificity values of both assays were calculated assuming the reference techniques as the gold standard. Sensitivity and specificity values for the Sofia Influenza A+B FIA were 73.1% and 97.8%, respectively. Sensitivity and specificity values for the Sofia RSV FIA were 87.5% and 86.7%, respectively. The sensitivity results obtained for the two assays were considerably higher than those reported for other RDTs. In conclusion, the Sofia Influenza A+B and the Sofia RSV FIAs are appropriate tools for the rapid diagnosis of these viruses. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Code Sharing and Collaboration: Experiences from the Scientist's Expert Assistant Project and their Relevance to the Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)

    2001-01-01

    In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing between groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for SOFIA, the SIRTF planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, defacto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA - both successes and failures - and offer some lessons learned that may promote further successes in collaboration and re-use.

  15. Comparison of Sofia Legionella FIA and BinaxNOW® Legionella urinary antigen card in two national reference centers.

    PubMed

    Beraud, L; Gervasoni, K; Freydiere, A M; Descours, G; Ranc, A G; Vandenesch, F; Lina, G; Gaia, V; Jarraud, S

    2015-09-01

    The Sofia Legionella Fluorescence Immunoassay (FIA; Quidel) is a recently introduced rapid immunochromatographic diagnostic test for Legionnaires' disease using immunofluorescence technology designed to enhance its sensitivity. The aim of this study was to evaluate its performance for the detection of urinary antigens for Legionella pneumophila serogroup 1 in two National Reference Centers for Legionella. The sensitivity and specificity of the Sofia Legionella FIA test were determined in concentrated and nonconcentrated urine samples, before and after boiling, in comparison with the BinaxNOW® Legionella Urinary Antigen Card (UAC; Alere). Compared with BinaxNOW® Legionella UAC, the sensitivity of the Sofia Legionella test was slightly higher in nonconcentrated urine samples and was identical in concentrated urine samples. The specificity of the Sofia Legionella FIA test was highly reduced by the concentration of urine samples. In nonconcentrated samples, a lack of specificity was observed in 2.3 % of samples, all of them resolved by heat treatment. The Sofia Legionella FIA is a sensitive test for detecting Legionella urinary antigens with no previous urine concentration. However, all positive samples have to be re-tested after boiling to reach a high specificity. The reading is automatized on the Sofia analyzer, which can be connected to laboratory information systems, facilitating accurate and rapid reporting of results.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauer, Carolyn S.; Pearson, John C.; Drouin, Brian J.

    The spectrum of ethyl cyanide, or propionitrile (CH{sub 3}CH{sub 2}CN), has been repeatedly observed in the interstellar medium with large column densities and surprisingly high temperatures in hot core sources. The construction of new, more sensitive, observatories accessing higher frequencies such as Herschel, ALMA, and SOFIA have made it important to extend the laboratory data for ethyl cyanide to coincide with the capabilities of the new instruments. We report extensions of the laboratory measurements of the rotational spectrum of ethyl cyanide in its ground vibrational state to 1.6 THz. A global analysis of the ground state, which includes all ofmore » the previous data and 3356 newly assigned transitions, has been fitted to within experimental error to J = 132, K = 36, using both Watson A-reduced and Watson S-reduced Hamiltonians.« less

  17. The 2012 MW5.6 earthquake in the vicinity of the city of Sofia

    NASA Astrophysics Data System (ADS)

    Simeonova, Stela; Solakov, Dimcho; Aleksandrova, Irena; Dimitrova, Liliya; Popova, Iliana; Raykova, Plamena

    2013-04-01

    The territory of Bulgaria represents a typical example of high seismic risk area in the eastern part of the Balkan Peninsula. The neotectonic movements on the Balkan Peninsula were controlled by extensional collapse of the Late Alpin orogen, and were influenced by extension behind the Aegean arc and by the complicated vertical and horizontal movements in the Pannonian region. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia seismic zone that is the most populated (more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. Seismicity in the zone is related mainly to the marginal neotectonic faults of Sofia graben. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=IX-X MSK64. The 1858 earthquake caused heavy destruction in the town of Sofia and the appearance of thermal springs in the western part of the town. After a quiescence of about 50 years a strong event with M=6.5 occurred in 1905 near the western marginal part of the Sofia zone. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64). The earthquake caused a lot of damages in the town and changed the capacity of the thermal mineral springs in Sofia and the surrounding villages. The earthquake was felt in an area of 50000 km2 and followed by aftershocks, which lasted more than one year. Almost a century later (95 years) an earthquake of moment magnitude 5.6 hit Sofia seismic zone, on May 22nd, 2012, at 25 km south west of the city of Sofia. This shallow earthquake was largely felt in the region and up to Greece, FYROM, Serbia and Romania. No severe injuries have been reported so far, though a state of emergency was declared in Pernik (the closest city to the epicenter) and superficial damages were observed. The present study was aimed at both presenting the results of seismological study carried out (such as analysis of wave forms, fault plane solutions, spatial distribution of intensity field, temporal aftershocks distribution) and at weighting in the balance to stress outstanding problems. The earthquake hit Bulgaria on May 22, 2012 gave lots of precious lessons to learn, especially in anticipating other disaster that may occur un-predictably in the future.

  18. Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Bellido, J. A.; Belov, K.; Belz, J. W.; Bergman, D. R.; Cao, Z.; Clay, R. W.; Cooper, M. D.; Dai, H.; Dawson, B. R.; Everett, A. A.; Fedorova, Yu. A.; Girard, J. H.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C.; Kieda, D. B.; Kim, K.; Kirn, M. A.; Loh, E. C.; Manago, N.; Marek, L. J.; Martens, K.; Martin, G.; Matthews, J. A.; Matthews, J. N.; Meyer, J. R.; Moore, S. A.; Morrison, P.; Moosman, A. N.; Mumford, J. R.; Munro, M. W.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Sarracino, J. S.; Sasaki, M.; Schnetzer, S. R.; Shen, P.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Taylor, S. F.; Thomas, S. B.; Thompson, T. N.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Vanderveen, T. D.; Zech, A.; Zhang, X.

    2004-04-01

    We have measured the cosmic ray spectrum above 1017.2 eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.

  19. SOFIA: a flexible source finder for 3D spectral line data

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel S.; Staveley-Smith, Lister; Courtois, Hélène

    2015-04-01

    We introduce SOFIA, a flexible software application for the detection and parametrization of sources in 3D spectral line data sets. SOFIA combines for the first time in a single piece of software a set of new source-finding and parametrization algorithms developed on the way to future H I surveys with ASKAP (WALLABY, DINGO) and APERTIF. It is designed to enable the general use of these new algorithms by the community on a broad range of data sets. The key advantages of SOFIA are the ability to: search for line emission on multiple scales to detect 3D sources in a complete and reliable way, taking into account noise level variations and the presence of artefacts in a data cube; estimate the reliability of individual detections; look for signal in arbitrarily large data cubes using a catalogue of 3D coordinates as a prior; provide a wide range of source parameters and output products which facilitate further analysis by the user. We highlight the modularity of SOFIA, which makes it a flexible package allowing users to select and apply only the algorithms useful for their data and science questions. This modularity makes it also possible to easily expand SOFIA in order to include additional methods as they become available. The full SOFIA distribution, including a dedicated graphical user interface, is publicly available for download.

  20. Hoffmeister, Cuno (1892-1968)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    German astronomer, founder of the Sonnenberg Observatory. Discovered thousands of variable stars through repeated photography of the sky and his technique of `fly-spanking', comparing the size of the stellar images to identify changes....

  1. An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Mark Rupert, with BioServe Space Technologies, checks the canisters, or incubators, that will hold an experiment to fly on mission STS-93. The incubators will hold a mix of fruit fly embryos and larvae to examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. The incubators are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.

  2. An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Jake Freeman and Mark Rupert, with BioServe Space Technologies, check canisters, or incubators, that will hold fruit fly embryos and larvae for an experiment to fly on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. The incubators are part of the Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.

  3. Usefulness of Sofia Pneumococcal FIA® test in comparison with BinaxNOW® Pneumococcal test in urine samples for the diagnosis of pneumococcal pneumonia.

    PubMed

    Burgos, Joaquin; Garcia-Pérez, Jorge N; di Lauro, Sabina González; Falcó, Vicenç; Pumarola, Tomás; Almirante, Benito; Teresa Martín Gomez, M

    2018-04-13

    The Sofia Pneumococcal FIA® test is a recently introduced immunofluorescent assay automatically read aimed to detect Streptococcus pneumoniae antigen in urine. The aim of this study was to evaluate the usefulness of SofiaFIA® urinary antigen test (UAT) in comparison with classical immunochromatographic BinaxNOW® test for the diagnosis of pneumococcal pneumonia (PP). Observational study was conducted in the Hospital Universitari Vall d'Hebron from December 2015 to August 2016. Consecutive adult patients diagnosed of pneumonia and admitted to the emergency department in whom UAT was requested were prospectively enrolled. Paired pneumococcal UAT was performed (BinaxNOW® and SofiaFIA®) in urine samples. To assess the performance of both tests, patients were categorized into proven PP (isolation of S. pneumoniae in sterile fluid) or probable PP (isolation of S. pneumoniae in respiratory secretion). Sensitivity, specificity, and concordance were calculated. A total of 219 patients with pneumonia were enrolled, of whom 14% had a proven or probable PP, 22% a non-pneumococcal etiology, and 64% an unidentified pathogen. Concordance between tests was good (κ = 0.81). Sensitivity of SofiaFIA® and BinaxNOW® UAT was 78.6 and 50% for proven PP (p = 0.124), and 74.2 and 58% for proven/probable PP (p = 0.063). Specificity for both tests was 83.3 and 85.5% for proven and proven/probable PP. In patients without an identified pathogen, SofiaFIA® test was positive in 33 (23.6%) cases and BinaxNOW® in 25 (17.8%), so Sofia Pneumococcal FIA® detected 32.6% more cases than BinaxNOW® (p = 0.001). Sofia Pneumococcal FIA® test showed an improved sensitivity over visual reading of BinaxNOW® test without a noticeable loss of specificity.

  4. The Inner 25 au Debris Distribution in the ϵ Eri System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Kate Y. L.; Rieke, George H.; Ballering, Nicholas P.

    Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 μ m resolved disk image of ϵ Eri, the closest debris disk around a star similar to the early Sun. Combiningmore » with the Spitzer resolved image at 24 μ m and 15–38 μ m excess spectrum, we examine two proposed origins of the inner debris in ϵ Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.« less

  5. THIS: A Next Generation Tuneable Heterodyne Infrared Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf

    2004-01-01

    A new infrared heterodyne instrument has been developed which allows the use of both tuneable diode lasers (TDL) and quantum cascade lasers (QCL) as local oscillators (LO). The current frequency tuning range of our system extends from 900 to 1100/cm depending on the availability of lasers but is planned to be extended to 600/cm soon. The IF-bandwidth is 1.4 GHz using an acousto-optical spectrometer (AOS). The frequency resolution and stability of the system is approximately 10(exp 7). Currently, mercury-cadmium-telluride (MCT) detectors are used as mixers while new devices like quantum-well-infrared-photodetectors (QWIP) and hot-electron-bolometers (HEB) are investigated. The IF-bandwidth can be extended to about 3 GHz by using a new broadband acousto-optical spectrometer presently under development. The instrument is fully transportable and can be attached to any infrared or optical telescope. The semiconductor laser is stabilized to a Fabry-Perot ring-resonator, which is also used as an efficient diplexer to superimpose the local-oscillator and the signal radiation. As a first step measurements of trace gases in Earth's atmosphere and non-LTE emission from Venus' atmosphere were carried out as well as observations of molecular features in sunspots. Further astronomical observations from ground-based telescopes and the airborne observatory SOFIA are planned for the future. Of particular interest are molecules without a permanent dipole moment like H2, CH4, C2H2 etc.

  6. Fifty-four Years of Adventures in Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, Eric Eric

    2018-01-01

    My adventures in infrared astronomy started when I was a grad student in 1965 with the discovery of an infrared-bright object (now known as the Becklin-Neugebauer Object) in the Orion Nebula. In 1966, I made the first measurements of the infrared radiation from the center of the Milky Way Galaxy. I was fortunate enough to be able to take advantage of the 2.2 micron sky survey carried out by Neugebauer and Leighton (1969), which produced many remarkable discoveries, the most spectacular being the heavily dust-embedded carbon star IRC+10216, thebrightest object in the sky at 5 microns outside the solar system. In the 1970’s there was a growth in Infrared astronomy with the availability of many new facilities such as the Kuiper Airborne Observatory, (KAO) which I used extensively with Mike Werner and Ian Gatley for many unique observations. In 1977, I moved to Hawaii to work on the NASA IRTF 3- meter telescope. Many discoveries were made, including the first direct measurements of the rings of Jupiter at 2.2 microns (with Gareth Wynn-Williams) and the discovery of the first L dwarf star around a white dwarf (with Ben Zuckerman). In the 1980’s the introduction of large format arrays changed the way we did infrared astronomy. With Ian McLean, I moved to UCLA in 1990 to start the IR lab and get involved in Keck development and science. In 1995, Andrea, Ghez, Mark Morris and I started looking for evidence of a possible massive Black Hole in the Galactic Center. Spectacular observations using the Keck10 meter telescopes with large format near-infrared arrays and adaptive optics led to the confirmation of the presence of such a black hole and an estimate of its mass (4xE6 M (Sun)). In 1996, I began working on the Stratospheric Observatory For Infrared Astronomy (SOFIA) and I will finish my talk by discussing SOFIA observations of the ring of dust and gas orbiting the massive black hole in the center

  7. Optical instrumentation for science and formation flying with a starshade observatory

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  8. Measurement of the flux of ultrahigh energy cosmic rays from monocular observations by the High Resolution Fly's Eye experiment.

    PubMed

    Abbasi, R U; Abu-Zayyad, T; Amann, J F; Archbold, G; Bellido, J A; Belov, K; Belz, J W; Bergman, D R; Cao, Z; Clay, R W; Cooper, M D; Dai, H; Dawson, B R; Everett, A A; Fedorova, Yu A; Girard, J H V; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Hüntemeyer, P; Jones, B F; Jui, C C H; Kieda, D B; Kim, K; Kirn, M A; Loh, E C; Manago, N; Marek, L J; Martens, K; Martin, G; Matthews, J A J; Matthews, J N; Meyer, J R; Moore, S A; Morrison, P; Moosman, A N; Mumford, J R; Munro, M W; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Sarracino, J S; Sasaki, M; Schnetzer, S R; Shen, P; Simpson, K M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Taylor, S F; Thomas, S B; Thompson, T N; Thomson, G B; Tupa, D; Westerhoff, S; Wiencke, L R; VanderVeen, T D; Zech, A; Zhang, X

    2004-04-16

    We have measured the cosmic ray spectrum above 10(17.2) eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.

  9. Comet C/2012 S1 (ISON): Observations of the Dust Grains from SOFIA and of the Atomic Gas from NSO Dunn and McMath-Pierce Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.

    2013-12-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections [12,13,17,18,19]. References: [1] Adams, J.D., et al. 2012, SPIE, 8446, 16; [2] Kelley, M.S., Wooden, D.H. 2009, PSS, 57, 1133; [3] Harker et al. 2002, ApJ, 580, 579; [4] Hayward et al. 2000, ApJ, 538, 428; [5] Hadamcik, E., Levasseur-Regourd, A.C. 2003, JQSRT, 79-80, 661; [6] Wooden, D.H. 2004, ApJL, 612, L77; [7] Woodward et al. 2011, AJ, 141, 181; [8] Kelley et al. 2010, LPSC, 41, #2375; [9] Kelley, M.S. et al. 2011, AAS, 211, 560; [10] Wooden, D.H. 2008, SSRv, 138, 75; [11] Lindsay et al. 2013, ApJ, 766, 54; [12] Preston, G. W. 1967, ApJ, 147, 718; [13] Slaughter, C.D. 1969, AJ, 74, 929; [14] McKay et al. 2012, Icarus, 222, 684; [15] Cavallini, F., 2006, Solar Phys., 236, 415; [16] Jess et al., 2010, Solar Phys, 261, 363; [17] Watanabe, J-I. et al. 2003, ApJ, 585, L159; [18] Leblanc, F. et al. 2008, A&A, 482, 293; [19] Fulle, M. et al. 2013, ApJL, 771, L21

  10. TRW Video News: Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Kennedy Space Center sponsored video release presents live footage of the Chandra X-ray Observatory prior to STS-93 as well as several short animations recreating some of its activities in space. These animations include a Space Shuttle fly-by with Chandra, two perspectives of Chandra's deployment from the Shuttle, the Chandra deployment orbit sequence, the Initial Upper Stage (IUS) first stage burn, and finally a "beauty shot", which represents another animated view of Chandra in space.

  11. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact tool, final verification of the dewar pressure vessel design requires a complete, detailed real fluid compressible flow model of the vent stack. The wall heat flux resulting from a loss of vacuum insulation increases the dewar pressure, which actuates the pressure relief mechanism and results in high-speed flow through the dewar vent stack. At high pressures, the flow can be choked at the vent stack inlet, at the exit, or at an intermediate transition or restriction. During previous SOFIA analyses, it was observed that there was generally a readily identifiable section of the vent stack that would limit the flow – e.g., a small diameter entrance or an orifice. It was also found that when the supercritical helium was approximated as an ideal gas at the dewar condition, the calculated mass flow rate based on choking at the limiting entrance or transition was less than the mass flow rate calculated using the detailed real fluid model2. Using this lower mass flow rate would yield a conservative prediction of the dewar’s wall heat flux capability. The simplified method of the current work was developed by building on this observation.

  12. Sofia Ionescu, the first woman neurosurgeon in the world.

    PubMed

    Ciurea, Alexandru-Vlad; Moisa, Horatiu Alexandru; Mohan, Dumitru

    2013-11-01

    The authors present the activity of Mrs. Sofia Ionescu, the one female surgeon who was nominated as the first woman neurosurgeon in the world. Sofia Ionescu worked in the field of neurosurgery for 47 years, performing all the known neurosurgical procedures of the time. She made herself known through her incredible surgical skill and her enormous work power. Due to her incredible modesty and workload, she never participated at international congresses or manifestations. The nomination as first woman neurosurgery took place in Marrakech, Morocco, during the 2005 WFNS Congress. Although some claim that Diana Beck was the first woman neurosurgeon in the world, our theory suggests otherwise. The first documented surgical intervention performed by Diana Beck dates to 1952. Sofia Ionescu operated for the first time on a human brain as early as 1944. Furthermore, Diana Beck's actions surfaced in the year 1947, long after the war had ended and Sofia Ionescu had become a neurosurgeon. Copyright © 2013. Published by Elsevier Inc.

  13. SOFIA Science Imagery

    NASA Image and Video Library

    2017-09-14

    SCI2016_0001: SOFIA/GREAT [O I] spectrum at 4.7 THz (63 μm) superimposed on a picture of Mars. Absorption line depth is approximately 10% of the continuum. The abundance of atomic oxygen computed from the data is less than expected from the Forget et al. 1999 global circulation & photochemical model. Credit: SOFIA/GREAT spectrum: NASA/DLR/USRA/DSI/MPIfR/GREAT Consortium/MPIfS/Rezac et al. 2015; Mars image: NASA

  14. JPRS Report, East Europe.

    DTIC Science & Technology

    1990-08-30

    88-20-97 12 Trade Union of Automotive Transportation Workers Iliya Aleksiev 106 G. Dimitrov St., Sofia 1233 31-00-32 13 Independent Trade Union...1040 (temporary) 866-516 17 Union of Railwaymen in Bul- garia Kiril Tsvetkov 3 Ivan Vazov St., F. BDZh, Sofia 843-41-44 18 Federation of...Communications Workers Georgi Bochev 1 Gavril Genov St., Sofia 1000 87-83-03 20 League of Transportation Trade Unions Atanas Stanev 106 G. Dimitrov

  15. R and D ekes out an increase in FY 2015 budget request

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, David

    2014-05-01

    With spending caps in place, President Obama proposes an off-budget fund to support additional R and D. NASA would ground a flying observatory, and DOE would sharply curtail its nonproliferation programs.

  16. First Results on Interstellar Magnetic Fields from the HAWC+ Instrument for SOFIA

    NASA Astrophysics Data System (ADS)

    Dowell, C. Darren; HAWC+ Instrument Team; HAWC+ Science Team

    2018-06-01

    HAWC+, a second-generation SOFIA instrument designed to map far-infrared intensity and polarization, was commissioned in late 2016 and made first science observations in SOFIA Cycles 4 and 5. We describe basic characteristics of the instrument, report on the commissioning flights and data analysis pipeline, and show some example science products resulting from Guaranteed-Time Observations (GTO). HAWC+ and SOFIA provide unique access to the far-infrared (50 - 250 micron) spectral range for polarimetry. Far-IR polarization arises from dust grains aligned with respect to the magnetic field, as well as synchrotron radiation, and the GTO program focuses primarily on the magnetic field structure of nearby molecular clouds and the Galactic center, and the physical characteristics of dust.

  17. An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Shawn Bengtson, with Lockheed Martin, checks population cages containing fruit flies. The larvae of the flies are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. That information could lead to understanding the effect of microgravity on human nervous system connectivity. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.

  18. VizieR Online Data Catalog: SOFIA Massive (SOMA) Star Formation Survey. I. (De Buizer+, 2017)

    NASA Astrophysics Data System (ADS)

    De Buizer, J. M.; Liu, M.; Tan, J. C.; Zhang, Y.; Beltran, M. T.; Shuping, R.; Staff, J. E.; Tanaka, K. E. I.; Whitney, B.

    2018-02-01

    The following eight sources, AFGL 4029, AFGL 437, IRAS 07299-1651, G35.20-0.74, G45.45+0.05, IRAS 20126+4104, Cepheus A, and NGC 7538 IRS9, were observed by SOFIA with the FORCAST instrument (see Table 1). Data were taken on multiple flights spanning the Early Science period, Cycle 1, and Cycle 2 SOFIA observing cycles (spanning 2011 May to 2014 June). (4 data files).

  19. HAWCPol: a first-generation far-infrared polarimeter for SOFIA

    NASA Astrophysics Data System (ADS)

    Dowell, C. Darren; Cook, Brant T.; Harper, D. Al; Lin, Lung-Sheng; Looney, Leslie W.; Novak, Giles; Stephens, Ian; Berthoud, Marc; Chuss, David T.; Crutcher, Richard M.; Dotson, Jessie L.; Hildebrand, Roger H.; Houde, Martin; Jones, Terry J.; Krejny, Megan; Lazarian, Alexandre; Moseley, S. Harvey; Tassis, Kostas; Vaillancourt, John E.; Werner, Michael W.

    2010-07-01

    We describe our ongoing project to build a far-infrared polarimeter for the HAWC instrument on SOFIA. Far-IR polarimetry reveals unique information about magnetic fields in dusty molecular clouds and is an important tool for understanding star formation and cloud evolution. SOFIA provides flexible access to the infrared as well as good sensitivity to and angular resolution of continuum emission from molecular clouds. We are making progress toward outfitting HAWC, a first-generation SOFIA camera, with a four-band polarimeter covering 50 to 220 microns wavelength. We have chosen a conservative design which uses quartz half-wave plates continuously rotating at ~0.5 Hz, ball bearing suspensions, fixed wire-grid polarizers, and cryogenic motors. Design challenges are to fit the polarimeter into a volume that did not originally envision one, to minimize the heating of the cryogenic optics, and to produce negligible interference in the detector system. Here we describe the performance of the polarimeter measured at cryogenic temperature as well as the basic method we intend for data analysis. We are on track for delivering this instrument early in the operating lifetime of SOFIA.

  20. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  1. Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA

    NASA Astrophysics Data System (ADS)

    Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.

    2018-01-01

    One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).

  2. American Rhinologic Society

    MedlinePlus

    ... 2017 6th Bulgarian-Italian Rhinology Friendship Meeting Sofia Hotel Balkan, Sofia, Bulgaria, December 1-3, 2017 9. ... place in a new venue, the Omni Shoreham Hotel in Washington, DC. An expanded footprint stretching from ...

  3. A New Laboratory For Terahertz Characterization Of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara; Liu, Lunjun; Breyer, Fiona; Schonert, Ryan; O'Shea, Kyle; Roesner, Rebecca

    2016-06-01

    Most studies conducted with observatories such as ALMA, SOFIA, PLANCK, and Herschel will benefit from knowledge of (1) the predominant cosmic dust species in various environments and (2) the mm/sub-mm optical properties of cosmic dusts, including the temperature dependent-emissivity and spectral index. We have undertaken two efforts to enable the laboratory study of cosmic analogs dusts in the frequency range 60-2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  4. AFRC2016-0116-065

    NASA Image and Video Library

    2016-04-15

    The newest instrument, an infrared camera called the High-resolution Airborne Wideband Camera-Plus (HAWC+), was installed on the Stratospheric Observatory for Infrared Astronomy, SOFIA, in April of 2016. This is the only currently operating astronomical camera that makes images using far-infrared light, allowing studies of low-temperature early stages of star and planet formation. HAWC+ includes a polarimeter, a device that measures the alignment of incoming light waves. With the polarimeter, HAWC+ can map magnetic fields in star forming regions and in the environment around the supermassive black hole at the center of the Milky Way galaxy. These new maps can reveal how the strength and direction of magnetic fields affect the rate at which interstellar clouds condense to form new stars. A team led by C. Darren Dowell at NASA’s Jet Propulsion Laboratory and including participants from more than a dozen institutions developed the instrument.

  5. Laboratory Spectroscopy of Planetary Ices in the VUV and THz Spectral Regions

    NASA Technical Reports Server (NTRS)

    Gerakines, P.; Hilton, D.; Sangala, B.

    2010-01-01

    I will describe efforts to study the spectroscopy of condenser) films at low temperature (10-150 K) in both the far-infrared/THz (30-3000 microns) and vacuum-ultraviolet (VUV, 100-200 nm.) ranges of the electromagnetic spectrum. In each of these wavelength ranges, there is a general lack of laboratory data for ices relevant to astrophysical environments such as the outer Solar System. These studies are focused on mixtures of candidate species applicable to planets and satellites in the outer solar system, such as those dominated by H2O or N2 with other important species such as CO2, CH4, and NH3. We will discuss our results in relation to analyses of VUV data sets from the UVIS instrument on Cassini, far-infrared data from missions such as Herschel and SOFIA, as well as sub-mm observatories such as ALMA.

  6. Undergraduate Research Program Between SCU and SOFIA

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin Rose; Andersson, B.-G.

    2018-06-01

    We present results on an undergraduate research program run in collaboration between Santa Clara University (SCU), a predominately undergraduate liberal arts college and the SOFIA Science Center/USRA. We have started a synergistic program between SCU and SOFIA (located at NASA Ames) where the students are able to be fully immersed in astronomical research; from helping to write telescope observing proposal; to observing at a world-class telescope; to reducing and analyzing the data that they acquired and ultimately to presenting/publishing their findings. A recently awarded NSF collaborative grant will allow us to execute and expand this program over the next several years. In this poster we present some of our students research and their success after the program. In addition, we discuss how a small university can actively collaborate with a large government-funded program like SOFIA, funded by NASA.

  7. ARC-2010-ACD10-0242-022

    NASA Image and Video Library

    2010-12-17

    German Deligation visits Ames SOFIA Science Office for briefing. Left to right Jochen Homann, German State Secretary Federal Ministry of Economics and Technology, and Manuel Wiedemann, post-doctorate student from the Deutsches SOFIA Institute, University of Stuttgart.

  8. Interferometry on a Balloon; Paving the Way for Space-based Interferometers

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  10. Ionizing radiation environment for the TOMS mission

    NASA Technical Reports Server (NTRS)

    Lauriente, M.; Maloy, J. O.; Vampola, A. L.

    1992-01-01

    The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.

  11. SOFIA®RSV: prospective laboratory evaluation and implementation of a rapid diagnostic test in a pediatric emergency ward.

    PubMed

    Tran, Léa C; Tournus, Céline; Dina, Julia; Morello, Rémy; Brouard, Jacques; Vabret, Astrid

    2017-06-26

    Respiratory syncytial virus (RSV) is responsible for severe respiratory infections and higher costs in medical care. The two aims of this work were to assess the performances of SOFIA ® RSV tests in "real-life-laboratory" conditions (study 1) and implemented at point-of-care testing in a pediatric emergency department (ED, study 2), during two consecutive winter seasons. In study 1, fresh nasopharyngeal swabs from patients of all ages were sampled in 1.5 ml of Universal virological Transport Medium (UTM) and prospectively tested using SOFIA ® RSV tests. In study 2, conducted in a pediatric ED, nasopharyngeal swabs were placed in 3 ml of UTM. All SOFIA ® RSV tests were confirmed by molecular testing, considered as reference method. The epidemiological and clinical features of tested patients, as well as the care of these patients after obtaining quick results were evaluated. The sensitivities of SOFIA ® RSV in infants (aged under 24 months) performed in the laboratory and in the pediatric ED were respectively 95% (95% CI: 86.8-98.1) and 74.8% (95% CI: 68.0-80.9) compared to PCR. In study 1, the sensitivity among children (from 2 to 15 years old) and adults (above 15 years old) dropped to 45% (95% CI: 23.1-68.5) and 59% (95% CI: 32.9-81.6), respectively. In study 2, there were some differences in bed-management of SOFIA ® RSV positive compared to SOFIA ® RSV negative infants. SOFIA ® RSV tests performed in the laboratory and in the pediatric ED show high and satisfactory sensitivities among young children under 24 months, which supports its robustness and reliability. However, the impact of these tests on patient care at point-of-care cannot be clearly assessed when considering the limits of the study 2 design.

  12. VizieR Online Data Catalog: Observation of six NSVS eclipsing binaries (Dimitrov+, 2015)

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. P.; Kjurkchieva, D. P.

    2017-11-01

    We managed to separate a sample of about 40 ultrashort-period candidates from the Northern Sky Variability Survey (NSVS, Wozniak et al. 2004AJ....127.2436W) appropriate for follow-up observations at Rozhen observatory (δ>-10°). Follow-up CCD photometry of the targets in the VRI bands was carried out with the three telescopes of the Rozhen National Astronomical Observatory. The 2-m RCC telescope is equipped with a VersArray CCD camera (1340x1300 pixels, 20 μm/pixel, field of 5.35x5.25 arcmin2). The 60-cm Cassegrain telescope is equipped with a FLI PL09000 CCD camera (3056x3056 pixels, 12 μm/pixel, field of 17.1x17.1 arcmin2). The 50/70 cm Schmidt telescope has a field of view (FoV) of around 1° and is equipped with a FLI PL 16803 CCD camera, 4096x4096 pixels, 9 μm/pixel size. (4 data files).

  13. KSC-99pp0290

    NASA Image and Video Library

    1999-03-09

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Mark Rupert, with BioServe Space Technologies, checks the canisters, or incubators, that will hold an experiment to fly on mission STS-93. The incubators will hold a mix of fruit fly embryos and larvae to examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. The incubators are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B

  14. KSC-99pp0291

    NASA Image and Video Library

    1999-03-09

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Jake Freeman and Mark Rupert, with BioServe Space Technologies, check canisters, or incubators, that will hold fruit fly embryos and larvae for an experiment to fly on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. The incubators are part of the Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B

  15. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  16. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  17. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports, publications, news and so on. This large growth of astronomical data and the necessity of an easy access to those data led to the foundation of the International Virtual Observatory Alliance (IVOA). IVOA was formed in June 2002. By January 2005, the IVOA has grown to include 15 funded VO projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, Italy, Japan, Korea, Russia, Spain, the United Kingdom, and the United States. At the time being Bulgaria is not a member of European Astronomical Virtual Observatory and as the Bulgarian Virtual Observatory is not a legal entity, we are not members of IVOA. The main purpose of the project is Bulgarian Virtual Observatory to join the leading virtual astronomical institutions in the world. Initially the Bulgarian Virtual Observatory will include: - BG Galaxian virtual observatory; - BG Solar virtual observatory; - Department Star clusters of IA, BAS; - WFPDB group of IA, BAS. All available data will be integrated in the Bulgarian centers of astronomical data, conducted by the Wide Field Plate Archive data centre. For the above purpose POSTGRESQL or/and MySQL will be installed on the server of BG-VO and SAADA tools, ESO-MEX or/and DAL ToolKit to transform our FITS files in standard format for VO-tools. A part of the participants was acquainted with the principles of these products during the "Days of virtual observatory in Sofia" January, 2008.

  18. An infrared high resolution silicon immersion grating spectrometer for airborne and space missions

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David

    2014-08-01

    Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.

  19. ARC-2010-ACD10-0242-018

    NASA Image and Video Library

    2010-12-17

    German Deligation visits Ames SOFIA Science Office for briefing and enjoy a Ames tour. .Jochen Homann, Sectretary of State, Federal Ministry of Economics and Technology, speaks with Robert R. 'Bob' Meyer, NASA SOFIA Program Manager (based at the Dryden Aircraft Operations Facility, DAOF, Palmdale, California).

  20. 1986: A Big Year in Space.

    ERIC Educational Resources Information Center

    Haggerty, James J.

    1985-01-01

    Several major space programs in development for a decade or more will come to fruition in 1986. This illustrated summary amplifies several of these projects including: California space shuttle operations; fly-by Uranus; look at Comet Halley; space observatory; and others. Projects are significant in scientific potential and capability advancement.…

  1. Verification of CH4 on Mars and investigation of its temporal and spatial variations by SOFIA/EXES

    NASA Astrophysics Data System (ADS)

    Aoki, Shohei

    2015-10-01

    Discovery of CH4 in the Martian atmosphere has led to much discussion since it could be a signature of on-going and/or past biological/geological activities on Mars. However, the presence of CH4 and its temporal and spatial variations are still under discussion because previous observations had large uncertainties. We propose sensitive measurements of the Martian CH4 by SOFIA/EXES in order to verify the presence and investigate its temporal and spatial variation. Our primal goal is to demonstrate the firm detection of CH4 on Mars. SOFIA/EXES allows us to perform sensitive observations of the Martian CH4 from the Earth using the 7.5 um band. The high altitude of SOFIA telescope (~12 km) enables us to significantly reduce the effects of terrestrial atmosphere, and high spectral resolution of EXES (R~90,000) enables us to detect the tiny lines of the Martian CH4. We request to perform weekly observations of CH4 by SOFIA/EXES during larger Doppler-shift period (between Feb./2016-March/2016). The large Doppler shift (-14.3 - -17.3 km/s) allows us to separate the Martian and terrestrial CH4 lines. In addition, owing to the relatively large diameter of the SOFIA telescope (~ 2.5 m), geographical distribution of CH4 (3 x 3 areas over the Martian disk) can be investigated. Last but not least, we plan to perform joint observations with (1) the spacecraft-borne MEX/PFS, (2) the ground-based T60/MILAHI, (3) ground-based IRTF/CSHELL, and (4) in-situ Curiosity/TLS. Combination of the current best instruments for the joint observations provide definitive confirmation of the presence (or absence) of CH4, and clues to search for the source.

  2. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  3. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  4. Active Galactic Nucleus

    NASA Image and Video Library

    2017-09-14

    SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook

  5. ARC-2010-ACD10-0242-021

    NASA Image and Video Library

    2010-12-17

    German Deligation visits Ames SOFIA Science Office for briefing. Left to right Jochen Homann, German State Secretary Federal Ministry of Economics and Technology, Dr. Benno Bunse, President & CEO, German American Chamber of Commerce, New York, Manuel Wiedemann, post-doctorate student from the Deutsches SOFIA Institute, University of Stuttgart.

  6. The NASA Cyclone Global Navigation Satellite System (CYGNSS): A Constellation of Bi-static Ocean Scatterometer Microsatellites to Probe the Inner Core of Hurricanes

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.

    2014-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.

  7. Destination Innovation: Episode 2 SOFIA: Window to the Hidden Universe

    NASA Image and Video Library

    2012-03-21

    Destination Innovation is a new series that explores the research, science and other projects underway at NASA's Ames Research Center. Episode 2 focuses on SOFIA, a highly modified Boeing 747SP aircraft with a 17-ton telescope assembly allowing scientists to peer deeper into the universe than ever before.

  8. KSC-99pp0293

    NASA Image and Video Library

    1999-03-09

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Shawn Bengtson, with Lockheed Martin, checks population cages containing fruit flies. The larvae of the flies are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. That information could lead to understanding the effect of microgravity on human nervous system connectivity. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B

  9. Making Astronomy and Space Science Accessible to the Blind and Visually Impaired

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, B.; Hoette, V.; Grice, N.

    2003-12-01

    One of the biggest obstacles blind and visually impaired people face in science is the ubiquity of important graphical information, which is generally not made available in alternate formats accessible to them. Funded by NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS), we have recently formed a team of scientists and educators from universities, the SOFIA NASA mission, a science museum, an observatory, and schools for the blind. Our goal is to develop and test Braille/tactile space science activities that actively engage students from elementary grades through introductory college-level in space science. We will discuss effective strategies and low-cost technologies that can be used to make graphical information accessible. We will also demonstrate examples, such a thermal expansion graphics created from telescope images of the Moon and other celestial objects, a tactile planisphere, three-dimensional models of near-Earth asteroids and tactile diagrams of their orbits, and an infrared detector activity.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughoutmore » the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.« less

  11. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  12. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2017-06-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia's beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia's beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.

  13. Living in Sofia is associated with a risk for antibiotic resistance in Helicobacter pylori: a Bulgarian study.

    PubMed

    Boyanova, Lyudmila; Ilieva, Juliana; Gergova, Galina; Evstatiev, Ivailo; Nikolov, Rossen; Mitov, Ivan

    2013-11-01

    The aim of the retrospective study was to evaluate geographic regions and residence places as possible risk factors for primary Helicobacter pylori antibiotic resistance in Bulgaria. Data from Sofia region, exhibiting the highest living density, were compared to those from other residence places. In total, 588 H. pylori strains from untreated adults who filled a questionnaire were evaluated. Strain susceptibility was assessed by a breakpoint susceptibility test. Resistance rates to metronidazole and clarithromycin have been found to increase, and that to tetracycline has been found to decrease over years. Clarithromycin resistance was 1.7-fold higher in Sofia inhabitants (23.5 %) than elsewhere (13.8 %) and 4.7-fold higher than that in villages (5.0 %). Moreover, the clarithromycin resistance rate was 2.6-fold lower in northern region (8.2 %) than in southern region (21.7 %). On multivariate analysis, sex and residence place were independent predictors for metronidazole resistance. Men were at lower risk for metronidazole resistance compared with women [odds ratio (OR) 0.703; 95 % confidence interval (CI) 0.499-0.990]. Importantly, Sofia inhabitants were at higher risk for the resistance compared with those living elsewhere (OR 1.453; 95 % CI 1.009-2.093). In conclusion, living in Sofia was associated with a risk for antibiotic resistance in H. pylori-positive adults. Living density could be associated with H. pylori resistance rates.

  14. Two Nights on a Flying Observatory: A KAO Journal

    NASA Technical Reports Server (NTRS)

    Stryker, Pam; Willis, Marsha

    1994-01-01

    We are the first participants in the "Science in the Stratosphere" program, sponsored by NASA and the University of Texas at Austin. The purpose of the program is to bring the techniques and excitement of modem astronomy into the classroom. Our job is to become familiar with the normal KAO operations, and learn from the staff and scientists during an actual observing flight. We are going to fly on missions to observe galactic and extragalactic star-forming regions in the far infrared region of the spectrum. All of our expectations spring from this simple working description. Little do we know, however, what really lies ahead for us!

  15. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII. The usable and realistic ground motion maps for urban areas are generated: - either from the assumption of a "reference earthquake" - or directly, showing values of macroseimic intensity generated by a damaging, real earthquake. In the study, applying deterministic approach, earthquake scenario in macroseismic intensity ("model" earthquake scenario) for the city of Sofia is generated. The deterministic "model" intensity scenario based on assumption of a "reference earthquake" is compared with a scenario based on observed macroseimic effects caused by the damaging 2012 earthquake (MW5.6). The difference between observed (Io) and predicted (Ip) intensities values is analyzed.

  16. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  17. A Well-Started Beginning Elementary Teacher's Beliefs and Practices in Relation to Reform Recommendations about Inquiry-Based Science

    ERIC Educational Resources Information Center

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's…

  18. Astrometrical observations of Pluto-Charon system with the automated telescopes of Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. Yu.; Bashakova, E. A.; Devyatkin, A. V.

    2016-03-01

    The space probe "New Horizons" was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft performed close fly-by to Pluto on 14th of July 2015 and obtained the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto-Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulations were performed to calculate the differences between positions of photocenter and barycenter of Pluto-Charon system.

  19. A simple model for coupled acoustic-structure resonance in Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Ginsberg, Jerry H.

    2005-04-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a joint project of NASA and the Deutsches Zentrum fur Luft- und Raumfahrt that has mounted a 2.5 m, 20 000 kg infrared telescope on a bulkhead of a specially modified Boeing 747-SP. A large sliding door will expose the observation bay to the exterior flow field at Mach 0.85 and 13 km altitude. In the open configuration the interaction of turbulence vortices generated at the leading and trailing edges of the opening has the possibility of inducing a strong acoustic signal. A concern has been raised that the peak frequencies of such a signal might coincide with the cavity resonances. The present work examines the transfer function for a known source in order to identify the cavity resonances. Simplistic reasoning argues that the worst case would occur if the cavity resonant frequencies are close to structural resonances. However, the structure's impedance is very low at its resonances, which means that the cavity resonant frequencies are shifted from their nominal values. The present work uses a simple one-dimensional waveguide model, in which one end is terminated by a damped single-degree-of-freedom oscillator, to explain the coupled-fluid structure resonance. The characteristic equation and formulas for the pressure and displacement transfer functions are derived. Analysis of these results leads to some surprising insights regarding the role of a structure's stiffness and mass. [Work supported by the NASA.

  20. Slow Fires Still Burn: Results of a Preservation Assessment of Libraries in L'viv, Ukraine and Sofia, Bulgaria.

    ERIC Educational Resources Information Center

    Baird, Brian J.; Schaffner, Bradley L.

    2003-01-01

    Discussion of the threat of disintegration of library collections in East Central Europe focuses on a study of collection condition surveys and preservation operations of three major academic libraries in L'viv, Ukraine and Sofia, Bulgaria. Considers inferior materials used to produce most Slavic publications and inadequate facilities to house the…

  1. Progress on SOFIA primary mirror

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel

    2000-06-01

    REOSC, SAGEM Group, has a significant contribution to the SOFIA project with the design and fabrication of the 2.7-m primary mirror and its fixtures as well as the M3 mirror tower assembly. This paper will primarily report the progress made on the primary mirror design and the first important manufacturing step: its lightweighting by machining pockets from the rear side of the blank.

  2. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  3. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  4. An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Dr. Haig Keshishian checks fruit fly larvae in a petri dish. The larvae are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. Dr. Keshishian, from Yale University, is the principle investigator for the experiment. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high- temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.

  5. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a very low rupture velocity. The low rupture velocity can mean slow-faulting, which brings to slow release of accumulated seismic energy. The slow release energy does principally little to moderate damages. Additionally wave form of the earthquake shows low frequency content of P-waves (the maximum P-wave is at 1.19 Hz) and the specific P- wave displacement spectral is characterise with not expressed spectrum plateau and corner frequency. These and other signs suggest us to the conclusion, that the 2012 Mw5.6 earthquake can be considered as types of slow earthquake, like a low frequency quake. The study is based on data from Bulgarian seismological network (NOTSSI), the local network (LSN) deployed around Kozloduy NPP and System of Accelerographs for Seismic Monitoring of Equipment and Structures (SASMES) installed in the Kozloduy NPP. NOTSSI jointly with LSN and SASMES provide reliable information for multiple studies on seismicity in regional scale.

  6. High Spectral Resolution SOFIA/EXES Observations of C2H2 toward Orion IRc2

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem; Colgan, Sean W. J.; Le Gal, Romane; Acharyya, Kinsuk; Huang, Xinchuan; Lee, Timothy J.; Herbst, Eric; deWitt, Curtis; Richter, Matt; Boogert, Adwin; McKelvey, Mark

    2018-03-01

    We present high spectral resolution observations from 12.96 to 13.33 microns toward Orion IRc2 using the mid-infrared spectrograph, Echelon-Cross-Echelle Spectrograph (EXES), at Stratospheric Observatory for Infrared Astronomy (SOFIA). These observations probe the physical and chemical conditions of the Orion hot core, which is sampled by a bright, compact, mid-infrared background continuum source in the region, IRc2. All 10 of the rovibrational C2H2 transitions expected in our spectral coverage are detected with high signal-to-noise ratios (S/Ns), yielding continuous coverage of the R-branch lines from J = 9–8 to J = 18–17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. The isotopologue, 13CCH2, is clearly detected with a high S/N. This enabled a direct measurement of the 12C/13C isotopic ratio for the Orion hot core of 14 ± 1 and an estimated maximum value of 21. We also detected several HCN rovibrational lines. The ortho and para C2H2 ladders are clearly separate, and tracing two different temperatures, 226 K and 164 K, respectively, with a non-equilibrium ortho to para ratio (OPR) of 1.7 ± 0.1. Additionally, the ortho and para V LSR values differ by about 1.8 ± 0.2 km s‑1, while the mean line widths differ by 0.7 ± 0.2 km s‑1, suggesting that these species are not uniformly mixed along the line of sight to IRc2. We propose that the abnormally low C2H2 OPR could be a remnant from an earlier, colder phase, before the density enhancement (now the hot core) was impacted by shocks generated from an explosive event 500 years ago.

  7. Polish and European SST Assets: the Solaris-Panoptes Global Network of Robotic Telescopes and the Borowiec Satellite Laser Ranging System

    NASA Astrophysics Data System (ADS)

    Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Litwicki, M.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Helminiak, K.; Borek, R.; Chodosiewicz, P.

    2016-09-01

    We present the assets of the Nicolaus Copernicus Astronomical Center, Space Research Center (both of the Polish Academy of Sciences), two Polish companies Sybilla Technologies, Cillium Engineering and a non-profit research foundation Baltic Institute of Technology. These assets are enhanced by telescopes belonging to The Open University (UK), the Max Planck Institute for Extraterrestrial Physics and in the future the Radboud University. They consist of the Solaris-Panoptes global network of optical robotic telescopes and the satellite laser ranging station in Borowiec, Poland. These assets will contribute to the Polish and European Space Surveillance and Tracking (SST) program. The Solaris component is composed of four autonomous observatories in the Southern Hemisphere. Solaris nodes are located at the South African Astronomical Observatory (Solaris-1 and Solaris-2), Siding Spring Observatory, Australia (Solaris-3) and Complejo Astronomico El Leoncito, Argentina (Solaris-4). They are equipped with 0.5-m telescopes on ASA DDM-160 direct drive mounts, Andor iKon-L cameras and housed in 3.5-m Baader Planetarium (BP) clamshell domes. The Panoptes component is a network of telescopes operated by software from Sybilla Technologies. It currently consists of 4 telescopes at three locations, all on GM4000 mounts. One 0.36-m (Panoptes-COAST, STL- 1001E camera, 3.5 BP clamshell dome) and one 0.43-m (Panoptes-PIRATE, FLI 16803 camera, 4.5-m BP clamshell dome, with planned exchange to 0.63-m) telescope are located at the Teide Observatory (Tenerfie, Canary Islands), one 0.6-m (Panoptes-COG, SBIG STX 16803 camera, 4.5-m BP clamshell dome) telescope in Garching, Germany and one 0.5-m (Panoptes-MAM, FLI 16803 camera, 4.5-m BP slit dome) in Mammendorf, Germany. Panoptes-COAST and Panoptes-PIRATE are owned by The Open University (UK). Panoptes-COG is owned by the Max Planck Institute

  8. From a Sounding Rocket per Year to an Observatory per Lifetime

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    When I began my career as an X-ray astronomer/astrophysicist we launched new experiments at a cadence of approximately one per year. The majority of each these projects involved a newly developed instrument, revolutionary for its time. Then, innovation in instrument development could proceed in parallel with friendly competition amongst a number of groups. Thus, I was privileged to help develop and fly X-ray concentrators and telescopes, crystal spectrometers, and two types of X ]ray polarimeters. I have also been privileged to play a central role in design, development, calibration and operation of the Chandra X ]Ray Observatory. I will contrast these phases of my career both from a historical perspective and for the lessons I would pass on for the future.

  9. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-01

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar "weed" species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular "flowers." With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  10. Observations on SOFIA Observation Scheduling: Search and Inference in the Face of Discrete and Continuous Constraints

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Gross, Michael; Kuerklu, Elif

    2003-01-01

    We did cool stuff to reduce the number of IVPs and BVPs needed to schedule SOFIA by restricting the problem. The restriction costs us little in terms of the value of the flight plans we can build. The restriction allowed us to reformulate part of the search problem as a zero-finding problem. The result is a simplified planning model and significant savings in computation time.

  11. Multiple co morbid conditions in patient with Mast Cell Activation Syndrome

    DTIC Science & Technology

    2017-10-26

    conditions in patient \\\\·ith Mast Cell Activation Syndron1e Sb. GRANT NUMBER Sc. PROGRAM.ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Maj Sofia...13. SUPPLEMENTARY NOTES 14. ABSTRACT Multiple co-n1orhid conditions in patient \\Vith Mast Cell Activation Syndrotne Sofia M. Szari.MD. and James...Defense. !NTR()D{JCT!ON: Mast cell activation disorders {MCAD) have been associated \\Vilh Connective Tissue Disorders (CTD) and orthostatic

  12. Mapping PAH sizes in NGC 7023 with SOFIA

    NASA Astrophysics Data System (ADS)

    Croiset, B. A.; Candian, A.; Berné, O.; Tielens, A. G. G. M.

    2016-05-01

    Context. NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chemical evolution of the PAH molecules which, in turn, depends on the local physical conditions. Aims: Our goal is to map PAH sizes in NGC 7023 with respect to the location of the star. We focus on the north west (NW) photo-dissociation region (PDR) and the south PDR of NGC 7023 to understand the photochemical evolution of PAHs, using size as a proxy. Methods: We use the unique capabilities of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe a 3.2' × 3.4' region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7'') at 3.3 and 11.2 μm. We compare the SOFIA images with existing images of the PAH emission at 8.0 μm (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the extended red emission (Hubble Space Telescope and Canadian French Hawaiian Telescope), and H2 (2.12 μm). We create maps of the 11.2/3.3 μm ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 μm ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAH database to translate the 11.2/3.3 μm ratio to PAH sizes. Results: The 11.2/3.3 μm ratio map shows the smallest PAH concentrate on the PDR surface (H2 and extended red emission) in the NW and south PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (Nc) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. Conclusions: The high-resolution PAH size map enables us to follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR cavity, the PAH abundance drops as the smallest PAH are broken down. The average PAH size increases in the cavity where only the largest species survive or are converted into C60 by photochemical processing.

  13. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.

  14. Extremely compact secondary mirror unit for the SOFIA Telescope capable of 6-degree-of-freedom alignment plus chopping

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Moerschell, Joseph

    1998-08-01

    SOFIA is a 2.5-m telescope to be carried on a special Boeing 747 for airborne observations at about 15'000 m. The paper describes the main features of the secondary mirror unit. The SOFIA secondary mirror needs active control for alignment along five degrees of freedom as well as for very fast chopping with a frequency up to 20 Hz. Moreover the general optical concept and the housing of the telescope inside a Boeing 747 have required the design of a very compact mechanism: indeed while the secondary mirror has a diameter of 350 mm the entire height of the secondary mirror unit (including the mirror) cannot be greater than 300 mm, which makes the SOFIA design much more compact than any other similar project. The objective is achieved by a very tight integration between a novel hexapod mechanism, in charge of tilt offsets and alignment along 3 axes, and a fast chopping mechanism based on advanced flexure structure technology. In the hexapod mechanism (which is in fact capable of 6-dof), the six linear actuators are arranged in an original geometry in order to leave as much space as possible to the overlying chopping system. Also, the actuators' `hinges' are here materialized by flexure elements. Three motorized levers are linked by flexure elements to the mirror isostatic interface as well as to a reaction ring for compensating angular momentum, which is mechanically driven together with the mirror. This a major difference from other designs (e.g. Keck or VLT) where the compensation mass is driven and controlled separately. The SOFIA solution obtains thus various advantages in term of used volume and has a simpler control system. Various details of the chopping mechanism are provided in the paper. Simulation preliminary results are also given.

  15. Study of persistent fog in Bulgaria with Sofia Stability Index, GNSS tropospheric products and WRF simulations

    NASA Astrophysics Data System (ADS)

    Stoycheva, Anastasiya; Manafov, Ilian; Vassileva, Keranka; Guerova, Guergana

    2017-08-01

    The topography of the high valley, in which the Bulgarian capital Sofia is located, predispose the seasonal character of fog formation in anticyclonic conditions. The fog in Sofia is mainly in the cold season, with the highest frequency of registrations in December and January. During the anticyclonic conditions the clear sky and calm or nearly calm conditions favour the formation of inversions and hence the fog formation. The maximum of fog registrations is at 6 UTC and minimum at 15 UTC but during prolonged fog a low visibility is registered also between 12 and 15 UTC. A prolonged fog is registered in Sofia between 3 and 10 January 2014 and is studied by using surface synoptic observations and vertically Integrated Water Vapour (IWV) derived from Global Navigation Satellite Systems (GNSS). The fog is separated in two parts: 1) part I - radiation fog (3-5 January) and 2) part II - advection fog (7-10 January). The Sofia Stability Index (SSI) is computed using surface temperature observation at 600 and 2300 m asl. The SSI is found to give additional information about the development and the dissipation of inversion layer especially for the part II fog. IWV is derived from two GNSS stations at 600 and 1120 m asl. and clearly detects the change in the air mass between the part I and II (5-6 January) fog. Furthermore, dependence between diurnal IWV cycle and fog formation/dissipation is found with IWV variation being lowest during the days with fog. A comparison of SSI and index computed using the WRF Numerical Weather Prediction model temperatures (SSI-W) shows good correlation but an negative off-set. Assimilation of surface and upper-air observations in the WRF model resulted in partial improvement of the index (10%), which is a result of moderate improvement of the vertical temperature profile.

  16. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  17. ASTRO-1: a 1.8m unobscured space observatory for next generation UV/visible astrophysics and exoplanet exploration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Egerman, Robert; Morse, Jon A.; Wilkes, Belinda

    2016-07-01

    The Hubble Space Telescope has been a scientific marvel that has provided unimaginable imagery and scientific discovery. Its exquisite UV/Visible imaging performance is unmatched from the ground. In NASA's future planning, the earliest possible successor mission would be in the 3030s, well beyond the expected lifetime of Hubble. The ASTRO-1 space telescope is a 1.8m off-axis (unobscured) observatory that looks to fill this critical void with Hubble-like performance to continue the scientific quest while also providing the possibility for exoplanet research with a coronagraphic instrument and/or a free flying starshade. BoldlyGo Institute seeks to reach beyond NASA funding to leverage the high public interest in space research and exploration, and the search for life beyond Earth.

  18. Probes Measure Gases for Environmental Research

    NASA Technical Reports Server (NTRS)

    2015-01-01

    NASA's Orbiting Carbon Observatory-2 satellite will make the first space-based measurements of carbon dioxide in Earth's atmosphere. In support of the mission, Goddard Space Flight Center will fly air missions from Wallops Flight Facility to gather finer-grained data in areas of interest. Goddard started working with Blacksburg, Virginia-based Aeroprobe Corporation through the SBIR program in 2008 to develop sensors for such flights, and the company has since commercialized the resulting product.

  19. Flying Fast and High: Operational Flight Planning for Maximum Data Return for Airborne Snow Observatory Mountain Surveys

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Painter, T. H.; Richardson, M.; Wallach, A.; Deems, J. S.; Bormann, K. J.

    2017-12-01

    The Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) uses an airborne laser scanner to map snow depth, and imaging spectroscopy to map snow albedo in order to estimate snow water equivalent and melt rate over mountainous, hydrologic basin-scale areas. Optimization of planned flight lines requires the balancing of many competing factors, including flying altitude and speed, bank angle limitation, laser pulse rate and power level, flightline orientation relative to terrain, surface optical properties, and data output requirements. These variables generally distill down to cost vs. higher resolution data. The large terrain elevation variation encountered in mountainous terrain introduces the challenge of narrow swath widths over the ridgetops, which drive tight flightline spacing and possible dropouts over the valleys due to maximum laser range. Many of the basins flown by ASO exceed 3,000m of elevation relief, exacerbating this problem. Additionally, sun angle may drive flightline orientations for higher-quality spectrometer data, which may change depending on time of day. Here we present data from several ASO missions, both operational and experimental, showing the lidar performance and accuracy limitations for a variety of operating parameters. We also discuss flightline planning strategies to maximize data density return per dollar, and a brief analysis on the effect of short turn times/steep bank angles on GPS position accuracy.

  20. Manufacturing and integration of the SOFIA suspension assembly

    NASA Astrophysics Data System (ADS)

    Sust, Eberhard; Weis, Ulrich; Bremers, Eckhard; Schubbach, Walter

    2003-02-01

    The Suspension Assembly is the most complex mechanical subsystem of the SOFIA telescope, responsible for suspending and positioning the telescope in the aircraft on the sky. It is a highly integrated system comprising of a vibration isolating system, a spherical hydraulic bearing, a spherical torque motor, a coarse drive and airworthiness relevant components like brakes, hard-stops etc. The components were manufactured under airworthiness standards by dedicated suppliers and integrated and commissioned in 2001/2002 at MAN Technologie in Augsburg. The paper describes the experience gotten during the manufacturing and integration process.

  1. NIMBUS: A Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.; Mandell, Avi; Woodgate, Bruce E.; Spiegel, David S.; Madhusudhan, Nikku; Amatucci, Edward; Blake, Cullen; Budinoff, Jason; Burgasser, Adam; Burrows, Adam; hide

    2012-01-01

    We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This instrument will enable many exciting observations in the new age of precision astronomy. This optical design splits the beam into 8 separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise photometry for a wide variety of astrophysical sources

  2. Terahertz and far-infrared synchrotron spectroscopy and global modeling of methyl mercaptan, CH332SH

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Lees, R. M.; Crabbe, G. T.; Myshrall, J. A.; Müller, H. S. P.; Endres, C. P.; Baum, O.; Lewen, F.; Schlemmer, S.; Menten, K. M.; Billinghurst, B. E.

    2012-09-01

    In this work, terahertz and Fourier transform far-infrared (FTFIR) synchrotron spectra of methyl mercaptan, CH3SH, have been investigated in order to provide new laboratory information for enhanced observations of this species in interstellar molecular clouds and star-forming regions. Like its methanol cousin, methyl mercaptan has particularly rich spectra associated with its large-amplitude internal rotation that extend throughout the THz and FIR regions. We have recorded new spectra for CH3SH from 1.1-1.5 and 1.790-1.808 THz at the University of Cologne as well as high-resolution FTFIR synchrotron spectra from 50-550 cm-1 at 0.001 cm-1 resolution on the far-IR beam-line at the Canadian Light Source. Assignments are reported for rotational quantum numbers up to J ≈ 40 and K ≈ 15, and torsional states up to vt = 2 for the THz measurements and vt = 3 for the FTFIR observations. The THz and FTFIR measurements together with literature results have been combined in a global analysis of a dataset comprising a total of 1725 microwave and THz frequencies together with ˜18000 FTFIR transitions, ranging up to vt = 2 and Jmax = 30 for MW/THz and 40 for FTFIR. The global fit employs 78 torsion-rotation parameters and has achieved a weighted standard deviation of ˜1.1. A prediction list (vt ≤ 2, J ≤ 45 and K ≤ 20) has been generated from the model giving essentially complete coverage of observable CH332SH transitions within the bandwidths of major new astronomical facilities such as HIFI (Heterodyne Instrument for the Far Infrared) on the Herschel Space Observatory, ALMA (Atacama Large Millimeter Array), SOFIA (Stratospheric Observatory For Infrared Astronomy) and APEX (Atacama Pathfinder Experiment) to close to spectroscopic accuracy.

  3. Heterodyne Detection in MM & Sub-mm Waves Developed at Paris Observatory

    NASA Astrophysics Data System (ADS)

    Beaudin, G.; Encrenaz, P.

    Millimeter and submillimeter-wave observations provide important informations for the studies of atmospheric chemistry and of astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of its high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100 GHz - 700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the submillimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state sources are often not powerful enough for most of the applications at millimetre or sub-millimetre wavelengths: large efforts using new planar components and integrated circuits on membrane substrate or new techniques (photomixing, QCL) are now in progress in few groups. The new large projects as SOFIA, Herschel, ALMA and the post-Herschel missions for astronomy, the other projects for aeronomy, meteorology (Megha-tropiques-Saphir) and for planetary science (ROSETTA, Mars exploration, ...), will benefit from the new developments to hunt more molecules.

  4. The Bending Vibrations of the C_3-ISOTOPOLOGUES in the 1.9 Terahertz Region

    NASA Astrophysics Data System (ADS)

    Breier, A.; Büchling, Thomas; Lutter, Volker; Schnierer, Rico; Fuchs, Guido W.; Giesen, Thomas

    2016-06-01

    Short carbon chains are fundamental for the chemistry of stellar and interstellar ambiences. The linear carbon chain molecule C_3 has been found in various interstellar and circumstellar environments, encompassing diffuse interstellar clouds, star forming regions, shells of late type stars, as well as cometary tails. Due to the lack of a permanent dipole moment C_3 can only be detected by electronic transitions in the visible spectral range or by vibrational bands in the mid-and far-infrared region. We performed experiments where C_3 was produced via laser-ablation of a graphite rod with a 3 bar He purge and a subsequent adiabatic expansion into a vaccum resulting in a supersonic jet. We report laboratory measurements of the lowest bending mode transitions of six 13C-isotopologues of the linear C_3 molecule. Fifty-eight transitions have been measured between 1.8-1.9 THz with an accuracy of better than 1 MHz. Molecular parameters have been derived to give accurate line frequency positions of all 13C isotopologues to ease their future interstellar detection. A dedicated observation for singly substituted 13CCC is projected within the SOFIA airborne observatory mission.

  5. Superconducting Mixers for Far-Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.; Grossman, E. R.; Reintsema, C. D.; Ono, R. H.; Gerecht, E.

    2002-01-01

    The goal of this project was to fabricate and test planar arrays of superconducting mixers for the 2-6 THz band. The technology is intended for multi-beam receivers aboard Explorer-class missions and the SOFIA Airborne Observatory. The mixer technology is the superconducting transition-edge microbolometer, which is more commonly known as the Hot-Electron micro-Bolometer (HEB). As originally proposed, two superconducting technologies were to be developed: (1) low-Tc niobium HEBs which could approach quantum-noise-limited sensitivities but require cooling to 2- 4 K, and (2) high-Tc YBCO HEBs with sensitivities 10 times worse but with a relaxed cooling requirement of 30-60 K. The low-Tc devices would be best for astronomy applications on SOFIA, whereas the high-Tc devices would be more suitable for planetary missions using systems without stored cryogens. The work plan called for planar micro-fabrication and initial testing of HEB devices at the NIST Boulder clean-room facility. Subsequent assembly and RF testing of selected devices would be done at the CASA laboratory at U. Colorado. Approximately 1-year after work began on this project, Dr. Eyal Gerecht joined the NIST group, and assumed day-to-day responsibility for Nb-HEB development at NIST outside of micro-fabrication. The YBCO-HEB work was to be guided by Dr. Ron Ono, who was the NIST expert in YBCO technology. Unfortunately, recurrent health problems limited the time Ron could devote to the project in its first year. These problems became aggravated in early 2001, and sadly led to Ron's death in October, 2001. His loss was not only a blow to his friends and associates at NIST, but was mounted by the US superconductivity community at large. With his passing, work on high-Tc HEBs ceased at NIST. There was no one to replace him or his expertise. Our work subsequently shifted solely to Nb-HEB devices. In the sections which follow, our progress in the development of diffusion-cooled Nb-HEB mixers is detailed. To simplify the terminology, these devices will subsequently be called DHEB mixers to distinguish them from phonon-cooled devices (PHEBs).

  6. HAWC+/SOFIA observations of Rho Oph A: far-infrared polarization spectrum

    NASA Astrophysics Data System (ADS)

    Santos, Fabio; Dowell, Charles D.; Houde, Martin; Looney, Leslie; Lopez-Rodriguez, Enrique; Novak, Giles; Ward-Thompson, Derek; HAWC+ Science Team

    2018-01-01

    In this work, we present preliminary results from the HAWC+ far-infrared polarimeter that operates on the SOFIA airborne observatory. The densest portions of the Rho Ophiuchi molecular complex, known as Rho Oph A, have been mapped using HAWC+ bands C (89 microns) and D (155 microns). Rho Oph A is a well known nearby star forming region. At the target's distance of approximately 130 pc, our observations provide excellent spatial resolution (~5 mpc in band C).The magnetic field map suggests a compressed and distorted field morphology around Oph S1, a massive B3 star that is the main heat source of Rho Oph A. We compute the ratio p(D)/p(C), where p(C) and p(D) are the polarization degree maps at bands C and D, respectively. This ratio estimates the slope of the polarization spectrum in the far-infrared. Although the slope is predicted to be positive by dust grain models, previous observations of other molecular clouds have revealed that negative slopes are common. In Rho Oph A, we find that there is a smooth gradient of p(D)/p(C) across the mapped field. The change in p(D)/p(C) is well correlated with the integrated NH3 (1,1) emission. A positive slope dominates the lower density and well illuminated portions of the cloud, whereas a transition to a negative slope is observed at the denser and less evenly illuminated cloud core.We interpret the positive to negative slope transition as being consistent with the radiative torques (RATs) grain alignment theory. For the sight lines of higher column density, polarized emission from the warmer outer cloud layers is added to emission from the colder inner well-shielded layers lying along the same line-of-sight. Given that the outer layers receive more radiation from Oph S1, their grain alignment efficiency is expected to be higher according to RATs. The combination of warmer, well aligned grains with cooler, poorly aligned grains is what causes the negative slope. This effect is not present in the sight lines of lower column density, due to the much lower extinction.

  7. Hubble Monitors Supernova In Nearby Galaxy M82

    NASA Image and Video Library

    2014-02-26

    This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our sun, or a giant star. Astronomers using a ground-based telescope discovered the explosion on January 21, 2014. This Hubble photograph was taken on January 31, as the supernova approached its peak brightness. The Hubble data are expected to help astronomers refine distance measurements to Type Ia supernovae. In addition, the observations could yield insights into what kind of stars were involved in the explosion. Hubble’s ultraviolet-light sensitivity will allow astronomers to probe the environment around the site of the supernova explosion and in the interstellar medium of the host galaxy. Because of their consistent peak brightness, Type Ia supernovae are among the best tools to measure distances in the universe. They were fundamental to the 1998 discovery of the mysterious acceleration of the expanding universe. A hypothesized repulsive force, called dark energy, is thought to cause the acceleration. Among the other major NASA space-based observatories used in the M82 viewing campaign are Spitzer Space Telescope, Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Gamma-ray Space Telescope, Swift Gamma Ray Burst Explorer, and the Stratospheric Observatory for Infrared Astronomy (SOFIA). Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    NASA Astrophysics Data System (ADS)

    Bourtsoukidis, Efstratios; Helleis, Frank; Tomsche, Laura; Fischer, Horst; Hofmann, Rolf; Lelieveld, Jos; Williams, Jonathan

    2017-12-01

    Volatile organic compounds (VOCs) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom-built fast gas chromatography-mass spectrometry (GC-MS) system with a time resolution of 2-3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes), hydrocarbons (e.g isoprene), oxygenated VOCs (acetone, propanal, butanone) and aromatics (e.g. benzene, toluene) from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (˜ 6 °C s-1) the sample enrichment traps to -140 °C, and a new chromatographic oven designed for rapid cooling rates (˜ 30 °C s-1) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExMR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work endorses the use of SOFIA for aircraft operation and demonstrates the value of relatively high-frequency, multicomponent measurements in atmospheric chemistry research.

  9. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  10. On the watch for geomagnetic storms

    USGS Publications Warehouse

    Green, Arthur W.; Brown, William M.

    1997-01-01

    Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.

  11. KSC-2015-1328

    NASA Image and Video Library

    2015-02-10

    Birds fly past the SpaceX Falcon 9 rocket standing on its seaside launch pad at Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. The rocket is set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. The mission is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  12. 1400898

    NASA Image and Video Library

    2014-07-01

    THE SOLAR PROBE PLUS CUP INSTRUMENT WILL BE PART OF THE SOLAR PROBE PLUS MISSION TO STUDY THE SUN. THE CUP WILL FLY ON THE SPACECRAFT ON THE OUTSIDE OF THE SHIELD AND WILL "CATCH" CHARGED PARTICLES FROM THE SUN AND ANALYZE THEM. A TEAM FROM THE HARVARD SMITHSONIAN ASTROPHYSICS OBSERVATORY IS BUILDING THIS INSTRUMENT AND TESTED AN ENGINEERING MODEL OF THE CUP IN AN ENVIRONMENTAL TEST FACILITY AT NASA'S MARSHALL SPACE FLIGHT CENTER.INSIDE THE VACUUM CHAMBER, THE PROBE WAS EXPOSED TO AN ENVIRONMENTAL CONDITIONS SIMILAR TO THOSE FOUND IN SPACE

  13. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  14. Monitoring CO2 sources and sinks from space : the Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2006-01-01

    NASA's Orbiting Carbon Observatory (OCO) will make the first space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to characterize the geographic distribution of CO2 sources and sinks and quantify their variability over the seasonal cycle. OCO is currently scheduled for launch in 2008. The observatory will carry a single instrument that incorporates three high-resolution grating spectrometers designed to measure the near-infrared absorption by CO2 and molecular oxygen (O2) in reflected sunlight. OCO will fly 12 minutes ahead of the EOS Aqua platform in the Earth Observing System (EOS) Afternoon Constellation (A-Train). The in-strument will collect 12 to 24 soundings per second as the Observatory moves along its orbit track on the day side of the Earth. A small sampling footprint (<3 km2 at nadir) was adopted to reduce biases in each sounding associated with clouds and aerosols and spatial variations in surface topography. A comprehensive ground-based validation program will be used to assess random errors and biases in the XCO2 product on regional to continental scales. Measurements collected by OCO will be assimilated with other environmental measurements to retrieve surface sources and sinks of CO2. This information could play an important role in monitoring the integrity of large scale CO2 sequestration projects.

  15. Assessing Surface BRDF-related Biases Using Target Mode Retrievals from the Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Natraj, V.; McDuffie, J. L.; O'Dell, C.; Eldering, A.; Fu, D.; Wunch, D.; Wennberg, P. O.

    2015-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first dedicated Earth remote sensing satellite to study atmospheric carbon dioxide from space, and was launched successfully on July 2, 2014. In the target mode of observation, the Observatory will lock its view onto a specific surface location, and will scan back and forth over that target while flying overhead. A target track pass can last for up to 9 minutes. Over that time period, the Observatory can acquire as many as 12,960 samples at local zenith angles that vary between 0° and 85°. Here, we analyze target track measurements over several of the OCO-2 validation sites where ground-based solar-looking Fourier Transform Spectrometers are located. Preliminary analysis of target mode retrievals using the operational algorithm show biases that appear to be due to not accounting for bidirectional surface reflection (BRDF) effects, i.e., the non-isotropic nature of surface reflection. To address this issue, we implement a realistic BRDF model. The column averaged CO2 dry air mole fraction (XCO2) results using this new model show much less variation with scattering angle (or airmass). Further, the retrieved aerosol optical depth (AOD) is in much better agreement with coincident AERONET values. We also use information content analysis to evaluate the degrees of freedom with respect to BRDF parameters, and investigate cross-correlations between the parameters.

  16. Epsilon Eridani Inner Asteroid Belt

    NASA Image and Video Library

    2017-09-14

    SCI2017_0004: Artist's illustration of the Epsilon Eridani system showing Epsilon Eridani b, right foreground, a Jupiter-mass planet orbiting its parent star at the outside edge of an asteroid belt. In the background can be seen another narrow asteroid or comet belt plus an outermost belt similar in size to our solar system's Kuiper Belt. The similarity of the structure of the Epsilon Eridani system to our solar system is remarkable, although Epsilon Eridani is much younger than our sun. SOFIA observations confirmed the existence of the asteroid belt adjacent to the orbit of the Jovian planet. Credit: NASA/SOFIA/Lynette Cook

  17. Astronomy from Space: The Hubble, Herschel and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.

  18. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    NASA Astrophysics Data System (ADS)

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  19. Effect of dietary inclusion of spray-dried porcine plasma on performance, some physiological and immunological response of broiler chickens challenged with Salmonella sofia.

    PubMed

    Beski, S S M; Swick, R A; Iji, P A

    2016-10-01

    This study was conducted to investigate the effect of spray-dried porcine plasma (SDPP) in broiler chickens under Salmonella sofia disease challenge. The experiment comprised five starter diets: positive control (no supplement), diet supplemented with in-feed antibiotics (IFA; salinomycin 0.05% + zinc bacitracin 0.033%) and diets supplemented with SDPP at 10 or 20 g/kg diet. All four of these groups were challenged with S. sofia, while a fifth group was unchallenged and used as the negative control. The experimental diets were fed to 14 days; then, the birds were switched to commercial-type grower and finisher diets. Oral inoculation of the challenged groups with S. sofia occurred on day 8, 10 and 12. Body weight was significantly higher in the birds fed diets containing IFA and SDPP than in the challenged control group, but it was only significant in starter and grower phases. In general, there was an improvement in the weights of the immune-related organs, but it was only significant for the weight of the bursa of SDPP-fed birds at 13 days. At day 13, blood potassium content was lower and the concentrations of IgG and IgM tended to be lower in the birds fed on low-SDPP starter diets than those of the other groups. There were significant differences in the concentration of lactic acid in the ileum and acetic acid, formic acid, butyric acid and propionic acid in the caeca. Inclusion of SDPP to the starter diets of broiler chicks had positive effects on broiler performance, immunity and gut health during exposure to highly pathogenic conditions. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  20. Stochasticity of bacterial attachment and its predictability by the extended derjaguin-landau-verwey-overbeek theory.

    PubMed

    Chia, Teck Wah R; Nguyen, Vu Tuan; McMeekin, Thomas; Fegan, Narelle; Dykes, Gary A

    2011-06-01

    Bacterial attachment onto materials has been suggested to be stochastic by some authors but nonstochastic and based on surface properties by others. We investigated this by attaching pairwise combinations of two Salmonella enterica serovar Sofia (S. Sofia) strains (with different physicochemical and attachment properties) with one strain each of S. enterica serovar Typhimurium, S. enterica serovar Infantis, or S. enterica serovar Virchow (all with similar physicochemical and attachment abilities) in ratios of 0.428, 1, and 2.333 onto glass, stainless steel, Teflon, and polysulfone. Attached bacterial cells were recovered and counted. If the ratio of attached cells of each Salmonella serovar pair recovered was the same as the initial inoculum ratio, the attachment process was deemed stochastic. Experimental outcomes from the study were compared to those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. Significant differences (P < 0.05) between the initial and the attached ratios for serovar pairs containing S. Sofia S1296a for all different ratios were apparent for all materials. For S. Sofia S1635-containing pairs, 7 out of 12 combinations of serovar pairs and materials had attachment ratios not significantly different (P > 0.05) from the initial ratio of 0.428. Five out of 12 and 10 out of 12 samples had attachment ratios not significantly different (P > 0.05) from the initial ratios of 1 and 2.333, respectively. These results demonstrate that bacterial attachment to different materials is likely to be nonstochastic only when the key physicochemical properties of the bacteria were significantly different (P < 0.05) from each other. XDLVO theory could successfully predict the attachment of some individual isolates to particular materials but could not be used to predict the likelihood of stochasticity in pairwise attachment experiments.

  1. The Invisible Universe Online for Teachers - A SOFIA and SIRTF EPO Project

    NASA Astrophysics Data System (ADS)

    Gauthier, A.; Bennett, M.; Buxner, S.; Devore, E.; Keller, J.; Slater, T.; Thaller, M.; Conceptual Astronomy; Physics Education Research CAPER Team

    2003-12-01

    The SOFIA and SIRTF EPO Programs have partnered with the Conceptual Astronomy and Physics Education Research (CAPER) Team in designing, evaluating, and facilitating an online program for K-12 teachers to experience multiwavelength astronomy. An aggressive approach to online course design and delivery has resulted in a highly successful learning experience for teacher-participants. Important aspects of the Invisible Universe Online will eventually be used as a part of SOFIA's Airborne Ambassadors Program for pre-flight training of educators. The Invisible Universe Online is delivered via WebCT through the Montana State University National Teacher Enhancement Network (http://btc.montana.edu/). Currently in its fourth semester, the course has served 115 K-12 teachers. This distance learning online class presents our search for astronomical origins and provides an enhanced understanding of how astronomers use all energies of light to unfold the secrets of the universe. We cover the long chain of events from the birth of the universe through the formation of galaxies, stars, and planets by focusing on the scientific questions, technological challenges, and space missions pursuing this search for origins. Through textbook and internet readings, inquiry exploration with interactive java applets, and asynchronous discussions, we help our students achieve the following course goals: develop scientific background knowledge of astronomical objects and phenomena at multiple wavelengths; understand contemporary scientific research questions related to how galaxies formed in the early universe and how stars and planetary systems form and evolve; describe strategies and technologies for using non-visible wavelengths of EM radiation to study various phenomena; and integrate related issues of astronomical science and technology into K-12 classrooms. This course is being developed, evaluated, and offered through the support of SOFIA and SIRTF EPO Programs, two NASA infrared missions associated with the Origins program.

  2. Evaluation of antimicrobial resistance among Salmonella and Shigella isolates in the University Hospital "St. George," Plovdiv, Bulgaria.

    PubMed

    Petrov, Michael M; Petrova, Atanaska; Stanimirova, Irina; Mircheva-Topalova, Marina; Koycheva, Lalka; Velcheva, Rayna; Stoycheva-Vartigova, Mariana; Raycheva, Ralitsa; Asseva, Galina; Petrov, Petar; Kardjeva, Velichka; Murdjeva, Marianna

    2017-03-01

    The aim of this work is to study the epidemiology and antimicrobial resistance to the most commonly used antibiotics for the treatment of acute gastroenteritis caused by Salmonella and Shigella at the largest Bulgarian hospital-University Hospital "St. George," Plovdiv-for the period 2009-2013. Two hundred ninety strains were in vitro tested for resistance to 15 antimicrobial agents. The presence of extended-spectrum beta-lactamases (ESBLs) was demonstrated by a variety of specialized tests. For comparison, a collection of 28 strains submitted by the National Reference Laboratory (NRL) "Enteric Infections" at the National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, was also tested for the production of ESBLs. In isolates, phenotypically demonstrated as ESBL producers, polymerase chain reaction (PCR) detection of the genes bla-CTX-M, bla-SHV, and bla-TEM was performed. Among the 290 tested isolates, only two- Salmonella serotype Livingstone and Shigella flexneri-were phenotypically proven to be ESBL producers. Only 4 strains from the collection of 28, submitted from the NRL "Intestinal Infections" in NCIPD, Sofia, were phenotypically confirmed as ESBL producers. The presence of the bla-CTX-M gene was detected in all of the tested strains (4 from NRL, NCIPD, Sofia, and 2 from the University Hospital St. George, Plovdiv), the bla-SHV gene only in strain S. Livingstone from Plovdiv, and the bla-TEM gene in two from Sofia and one (again S. Livingstone) from Plovdiv. In conclusion, Salmonella and Shigella isolates from patients hospitalized at the University Hospital St. George, Plovdiv, with acute gastroenteritis demonstrate good susceptibility to the most commonly used antibiotic agents, including azithromycin.

  3. SOFIA Science Imagery

    NASA Image and Video Library

    2017-09-14

    SCI2016_0006: Map of Cepheus E emphasizing the jets of material flowing to the upper left and lower right from the protostar. The protostar itself is the central yellow-red 'blob" in the colored background map of hydrogen emission made at a wavelength of 4.5 microns by the Spitzer infrared space telescope. The contour curves show the strength of emission from cool carbon monoxide gas measured by the Plateau de Bure radio telescope located in the French Alps. Lefloch et al. used GREAT on SOFIA to measure the amount and velocity of hot carbon monoxide gas at multiple positions along both "wings" of the outflow jet. Credit: Lefloch et al. 2015 Figure 1

  4. Flow velocity, water temperature, and conductivity in Shark River Slough, Everglades National Park, Florida: June 2002-July 2003

    USGS Publications Warehouse

    Riscassi, Ami L.; Schaffranek, Raymond W.

    2004-01-01

    The data described in this report were collected in the U. S. Geological Survey (USGS) Priority Ecosystems Science project investigating Forcing Effects on Flow Structure in Vegetated Wetlands of the Everglades. Data collected at five locations in Shark River Slough, Everglades National Park, during the 2002-2003 wet season are documented in the report. Methods used to process the data are described. Daily mean flow velocities, water temperatures, and specific conductance values are presented in the appendices. The quality-checked and edited data have been compiled and stored on the USGS South Florida Information Access (SOFIA) website http://sofia.usgs.gov.

  5. LDR: A submillimeter great observatory

    NASA Astrophysics Data System (ADS)

    Wilson, Robert

    1990-12-01

    The Large Deployable Reflector (LDR), a high Earth orbit free flying 10 to 20 m diameter deployable telescope, is described. The LDR is intended for use throughout the submillimeter band, using imaging receivers with unprecedented sensitivity and angular resolution. Its mission is to produce pictures of line emission regions in the solar neighborhood, in nearby galaxies and in objects at the edge of the known galaxy distribution. It is predicted to be an ideal instrument for exploring the first galaxies and protogalaxies as the submillimeter cooling lines should light up as soon as metals form.

  6. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer touches down at the Skid Strip at Cape Canaveral Air Force Station in Florida. The aircraft carried a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, for launch. With the aircraft flying off shore, the Pegasus rocket was released at 8:37 a.m. EST. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  7. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is being readied for takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  8. Pegasus XL CYGNSS Launch Attempt - Prepared for Takeoff - Scrubb

    NASA Image and Video Library

    2016-12-12

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is ready for takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  9. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is ready for takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  10. Pegasus XL CYGNSS Launch Attempt; Scrubbed - Take Off

    NASA Image and Video Library

    2016-12-12

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  11. Low-noise and wideband hot-electron superconductive mixer for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Karasik, Boris S.; Skalare, Anders; McGrath, William R.; Bumble, Bruce; Leduc, Henry G.; Barner, J. B.; Kleinsasser, Alan W.; Burke, P. J.; Schoelkopf, Robert J.; Prober, Daniel E.

    1998-11-01

    Superconductive hot-electron bolometer (HEB) mixers have been built and tested in the frequency range from 1.1 THz to 2.5 THz. The mixer device is a 0.15 - 0.3 micrometer microbridge made from a 10 nm thick Nb film. This device employs diffusion as a cooling mechanism for hot electrons. The double sideband noise temperature was measured to be less than or equal to 3000 K at 2.5 THz and the mixer IF bandwidth is expected to be at least 10 GHz for a 0.1 micrometer long device. The local oscillator (LO) power dissipated in the HEB microbridge was 20 - 100 nW. Further improvement of the mixer characteristics can be potentially achieved by using Al microbridges. The advantages and parameters of such devices are evaluated. The HEB mixer is a primary candidate for ground based, airborne and spaceborne heterodyne instruments at THz frequencies. HEB receivers are planned for use on the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the ESA Far Infrared and Submillimeter Space Telescope (FIRST). The prospects of a submicron-size YBa2Cu3O7-(delta ) (YBCO) HEB are discussed. The expected LO power of 1 - 10 (mu) W and SSB noise temperature of approximately equals 2000 K may make this mixer attractive for various remote sensing applications.

  12. Harnessing the Efficiency of 0(1D) Insertion Reactions for Prebiotic Astrochemistry

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna

    We propose a THz spectroscopic study of the small prebiotic molecules aminomethanol, methanediol, and methoxymethanol. These target molecules are predicted as the dominant products of photo-driven grain surface chemistry in interstellar environments, and are precursors to important prebiotic molecules like sugars and amino acids. These molecules are also expected to be major contributors to the spectral line density in the submillimeter spectral surveys from the Herschel and SOFIA observatories. We will use our custom mixing source to produce these molecules through O(1D) insertion reactions with the precursor molecules methyl amine, methanol, and dimethyl ether, respectively. We will then record their rotational spectra across the THz frequency range using our existing submillimeter spectrometer. This research will increase the science return from NASA missions because the target molecules serve as tracers of the simplest organic chemistry that can occur in starforming regions. This chemistry begins with methanol, which is the predominant organic molecule observed in interstellar ices. Methanol photodissociation leads to small organic radicals such as CH3O, CH2OH, and CH3. These radicals can undergo combination reactions on interstellar ices to form many of the complex organic molecules that are routinely observed in star-forming regions. Our target molecules aminomethanol, methanediol, and methoxymethanol are some of the simplest molecules that can form from this type of chemistry, and serve as tracers of ice mantle liberation in star-forming regions. These molecules also participate in gas-phase reactions that lead to amino acids and sugars, and as such are fundamentally important prebiotic molecules in interstellar environments. These types of small organic molecules also have high spectral line density, and are major contributors to line confusion in observational spectral surveys such as those conducted by Herschel and SOFIA. Therefore, the proposed research will aid in full data interpretation from Herschel and SOFIA observations. Currently there is no spectral information available for these molecules to guide observational studies, despite their importance in astrochemistry. This is because these molecules are difficult to study in laboratory settings due to their instability and reactivity. We are using highly exothermic O(1D) insertion reactions to produce these molecules in a supersonic expansion, and investigating the products using THz spectroscopy. This work builds on the work involved in our previous APRA award (Grant NNX11AI07G) "New THz Tools to Support Herschel Observations: Integrative Studies in Laboratory Spectroscopy, Observational Astronomy, and Chemical Modeling". In this previous award, we laid the groundwork for these experiments by constructing and benchmarking the spectrometer, designing and testing the molecular source used for the O(1D) reactions, and studying the proposed formation reactions for the laboratory work through computational studies. We have confirmed production of methanol from O(1D) insertion into methane, and then applied this chemistry to produce vinyl alcohol from ethylene. We have now also obtained preliminary spectra of aminomethanol. Here we propose to extend this work by finishing the aminomethanol characterization as well as examining methanediol and methoxymethanol during the next proposal period.

  13. Flow Velocity, Water Temperature, and Conductivity in Shark River Slough, Everglades National Park, Florida: August 2001-June 2002

    USGS Publications Warehouse

    Riscassi, Ami L.; Schaffranek, Raymond W.

    2003-01-01

    The data-collection effort described in this report is in support of the U.S. Geological Survey (USGS) Place-Based Studies project investigating 'Forcing Effects on Flow Structure in Vegetated Wetlands of the Everglades.' Data collected at four locations in Shark River Slough, Everglades National Park, during the 2001-2002 wet season are documented in the report and methods used to process the data are described. Daily mean flow velocities, water temperatures, and specific conductance values are presented in the appendices of the report. The quality-checked and edited data have been compiled and stored on the USGS South Florida Information Access (SOFIA) website http://sofia.usgs.gov.

  14. Recent developments for Astronomy at SAGEM

    NASA Astrophysics Data System (ADS)

    Geyl, Roland

    2003-02-01

    SAGEM, through its REOSC product line, is offering a high skill of optics design fabrication and assembly to the astronomical community. Beside large projects like ESO VLT, SOFIA or the Spain GTC, SAGEM is continuously active with smaller projects. In this paper, we will present our recent work in the field of thin films with mirror broadband and durable coating and large area filters for multimegapixel camera. Latest results of Sofia primary mirror integration will be presented. Work on large prime focus correctors like the one of CFHT MegaPrime and the SALT Spherical Aberration Corrector. For space astronomy it is our new activity of mold smoothing for large telecom antenna or submillimeter reflectors that will be presented.

  15. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail

    2015-01-01

    The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.

  16. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-10-01

    ISS041-E-057060 (1 Oct. 2014) --- One of the Expedition 41 crew members aboard the International Space Station, flying at an altitude of 220 nautical miles, photographed this night panorama of parts of Europe on Oct. 1, 2014. Kiev, Ukraine is seen near the right edge of the photo in the vertical center. Lights of Constanta, Romania can be seen just below the Russian Progress 56 cargo vehicle docked to the orbital outpost at the top of the frame. The Black Sea is to the left of the Soyuz TMA-13M docked to the station on the left side of the scene. The Sea of Azov is at the right of the bottom portion the Soyuz. Mariupol is near bottom center; and Donetsk, although it appears as a (bottom-most) tiny smudge on the right side of the image, has a population of just under five million. Krasnodar, Russia is in the bottom left corner. Part of Greece is in the top of the image near the solar panel of the Progress, with Thessaloniki and Sofia among the many bright lights. Part of Turkey is in upper left of the land mass visible. Pre-dawn light coming through the atmosphere gives the station hardware a bluish color.

  17. LIDAR detection of forest fire smoke above Sofia

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Deleva, Atanaska; Stoyanov, Dimitar; Kolev, Nikolay; Kolarov, Georgi

    2015-01-01

    The distribution of aerosol load in the atmosphere due to two forest fires near Sofia (the capital city of Bulgaria) was studied using two aerosol lidars which operated at 510.6 nm and 1064 nm. Experimental data is presented as 2D-heatmaps of the evolution of attenuated backscatter coefficient profiles and mean profile of the aerosol backscatter coefficient, calculated for each lidar observation. Backscatter related Angstrom exponent was used as a criterion in particle size estimation of detected smoke layers. Calculated minimal values at altitudes where the aerosol layer was observed corresponded to predominant fraction of coarse aerosol. Dust-transport forecast maps and calculations of backward trajectories were employed to make conclusions about aerosol's origin. They confirmed the local transport of smoke aerosol over the city and lidar station. DREAM forecast maps predicted neither cloud cover, nor Saharan load in the air above Sofia on the days of measurements. The results of lidar observations are discussed in conjunction with meteorological situation, aiming to better explain the reason for the observed aerosol stratification. The data of regular radio sounding of the atmosphere showed a characteristic behavior with small differences of the values between the air temperature and dew-point temperature profiles at aerosol smoke layer altitude. So the resulting stratification revealed the existence of atmospheric layers with aerosol trapping properties.

  18. Examining Energetic Particle Injections and the Effects on the Inner Magnetosphere with Multiple Spacecraft/Missions

    NASA Astrophysics Data System (ADS)

    Leonard, T. W.; Baker, D. N.; Blake, J. B.; Burch, J. L.; Cohen, I. J.; Ergun, R.; Fennell, J. F.; Gershman, D. J.; Giles, B. L.; Jaynes, A. N.; Le Contel, O.; Mauk, B.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Turner, D. L.; Wilder, F. D.

    2017-12-01

    The Magnetospheric Multiscale (MMS) Fly's Eye Energetic Particle Spectrometer (FEEPS) instrument has observed a multitude of particle injection events since its launch in 2014. These injections often lead to enhancements observed by the Van Allen Probes MagEIS instrument, as well as other elements of the modern-day Heliophysics System Observatory. The high spatial resolution and unprecedented time scales of the MMS observations provide a microscope view of the plasma physical properties in Earth's neighborhood while the combination with other missions in the Heliophysics System Observatory provides a telescope view of the larger Sun-Earth system. Past studies have found a relationship between substorm activity, which can be more powerful during high speed solar wind stream events, and enhancements of the outer radiation belt electrons. In this study, we examine several distinct particle injection events with dipolarization front characteristics observed by MMS and multiple complementary missions. In particular, cases involving multiple injection events are compared to singular injection events for their effectiveness of creating radiation belt enhancements.

  19. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  20. Economic and technical aspects of repair, servicing, and retrieval of low earth orbit free flying spacecraft

    NASA Technical Reports Server (NTRS)

    Cepollina, F. J.

    1982-01-01

    The economic and technical aspects of the Solar Maximum Observatory Repair Mission at NASA are presented, in an effort to demonstrate the Space Shuttle capability to rendezvous with and repair on-orbit the Solar Maximum Observatory (SMM). A failure in the Attitude Control Subsystem (ACS) after 10 months of operation caused a loss in precision pointing capability. The Multimission Modular Spacecraft (MMS) used for the mission, was designed with on-orbit repairability, and to correct various instrument anomalies, repiar kits such as an electronics box, a thermal aperture closure, and a high energy particle reflection baffle will be used. In addition, a flight support system will be used to berth, electrically safe, and support all the repair activities. A two year effort is foreseen, and the economic return on SMM will be $176 M, in addition to two to three years of solar observation. The mission will eventually conduct studies on flare as a function of solar cycle.

  1. Jupiter's para-H2 distribution from SOFIA/FORCAST and Voyager/IRIS 17-37 μm spectroscopy

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; de Pater, I.; Reach, W. T.; Wong, M.; Orton, G. S.; Irwin, P. G. J.; Gehrz, R. D.

    2017-04-01

    Spatially resolved maps of Jupiter's far-infrared 17-37 μm hydrogen-helium collision-induced spectrum were acquired by the FORCAST instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA) in May 2014. Spectral scans in two grisms covered the broad S(0) and S(1) absorption lines, in addition to contextual imaging in eight broad-band filters (5-37 μm) with spatial resolutions of 2-4″. The spectra were inverted to map the zonal-mean temperature and para-H2 distribution (fp, the fraction of the para spin isomer with respect to the ortho spin isomer) in Jupiter's upper troposphere (the 100-700 mbar range). We compared these to a reanalysis of Voyager-1 and -2 IRIS spectra covering the same spectral range. Tropospheric temperature contrasts match those identified by Voyager in 1979, within the limits of temporal variability consistent with previous investigations. Para-H2 increases from equator to pole, with low-fp air at the equator representing sub-equilibrium conditions (i.e., less para-H2 than expected from thermal equilibration), and high-fp air and possible super-equilibrium at higher latitudes. In particular, we confirm the continued presence of a region of high-fp air at high northern latitudes discovered by Voyager/IRIS, and an asymmetry with generally higher fp in the north than in the south. Far-IR aerosol opacity is not required to fit the data, but cannot be completely ruled out. We note that existing collision-induced absorption databases lack opacity from (H2)2 dimers, leading to under-prediction of the absorption near the S(0) and S(1) peaks. There appears to be no spatial correlation between para-H2 and tropospheric ammonia, phosphine and cloud opacity derived from Voyager/IRIS at mid-infrared wavelengths (7-15 μm). We note, however, that para-H2 tracks the similar latitudinal distribution of aerosols within Jupiter's upper tropospheric and stratospheric hazes observed in reflected sunlight, suggesting that catalysis of hydrogen equilibration within the hazes (and not the main clouds) may govern the equator-to-pole gradient, with conditions closer to equilibrium at higher latitudes. This gradient is superimposed onto smaller-scale variations associated with regional advection of para-H2 at the equator and poles.

  2. Peering to the Heart of Massive Star Birth - II. A Survey of 8 Protostars

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2012-10-01

    We propose to follow-up our SOFIA FORCAST Basic Science observation of G35.20-0.74 with similar observations of seven other massive protostars, with a total time request of about 5 hours. Our goal is to use mid-infrared (MIR) and far-infrared (FIR) imaging, especially at wavelengths of 31 and 37 microns that are unique to SOFIA, to constrain detailed radiative transfer models of massive star formation. In particular, we show that if massive stars are forming from high mass surface density cores, then the observed MIR and FIR morphologies are strongly influenced by the presence of protostellar outflow cavities. For typical surface densities of ~1 g cm^2, the observed radiation at wavelengths less than about 30 microns escapes preferentially along the near-facing outflow cavity. At longer wavelengths we begin to see emission from the far-facing cavity, and thus the proposed SOFIA FORCAST observations are particularly powerful for constraining the properties of the star-forming core such as the mass surface density in the immediate vicinity of the protostar. Our full analysis will involve comparing these SOFIA FORCAST data with images at other wavelengths, including Spitzer IRAC (3 to 8 microns), ground-based (10 & 20 microns) and Herschel (70 microns), to derive flux profiles and spectral energy distributions as a function of projected distance along the outflow axis. These observations have the potential to: (1) test basic scenarios of massive star formation; (2) begin to provide detailed measurements such as the mass surface density structure of massive star-forming cores and the line-of-sight orientation, opening angle, degree of symmetry and dust content of their outflow cavities. With a sample of eight protostars in total we will begin to be able to search for trends in these properties with core mass surface density and protostellar luminosity.

  3. Hydrogen Maser Clock (HMC) Experiment

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.

    1997-01-01

    The Hydrogen Maser Clock (HMC) project was originally conceived to fly on a reflight of the European Space Agency (ESA) free flying platform, the European Recoverable Carrier (EURECA) that had been launched into space and recovered by NASA's Space Transportation System (STS). A Phase B study for operation of HMC as one of the twelve EURECA payload components was begun in July 1991, and completed a year later. Phase C/D of HMC began in August 1992 and continued into early 1995. At that time ESA decided not to refly EURECA, leaving HMC without access to space. Approximately 80% of the flight support electronics are presently operating the HMC's physics package in a vacuum tank at the Smithsonian Astrophysical Observatory, and are now considered to be well-tested flight electronics. The package will continue to be operated until the end of 1997 or until a flight opportunity becomes avaiable. Appendices: letters and trip report; proceedings of the symposium on frequency standards and metrology; milli-celsius-stability thermal control for an orbiting frequency standard.

  4. A detailed study of the Pernik (Bulgaria) seismic sequence of 2012

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Simeonova, Stela; Dimitrova, Liliya

    2014-05-01

    A detailed study of the Pernik (Bulgaria) seismic sequence of 2012 D.Solakov, S.Simeonova ,I. Georgiev, P.Raykova, L.Dimitrova and V.Protopopova National Institute of Geophysics, Geodesy and Geography-BAS, Sofia, Bulgaria The spatial and temporal clustering of aftershocks is the dominant non-random element of seismicity, so that when aftershocks are removed, the remaining activity can be modelled (as first approximation) as a Poisson process. The properties of aftershock sequences (distinct cluster, for example; even aftershocks can have aftershocks) allow time-dependent prediction of aftershock probabilities. Consideration of recent earthquake sequences suggests that aftershocks to large earthquakes although they are still, by definition, smaller events, can be very damaging and should be addressed in emergence planning scenarios. Because of the factors such as location and radiation pattern and the cumulative nature of building damage, aftershocks can cause more damage than the main shock. An earthquake of moment magnitude 5.6 hit Sofia seismic zone, on May 22nd, 2012. The earthquake occurred in the vicinity of Pernik city, at about 25 km south west of the city of Sofia (the capital of Bulgaria). The event was followed by intensive activity. The active area is situated in the central part of western Bulgaria. That is the most populated (more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria. Seismicity in the zone is related to the marginal neotectonic faults of Sofia graben. The boundaries of the graben are represented by SE-NW fault system with expressive neotectonic activity. This zone is characterized by shallow earthquakes. The strongest known event in the region is the 1858 quake with intensity I0=9-10 MSK. The 1858 earthquake caused heavy destruction in the city of Sofia and the appearance of thermal spring. It is worth mentioning that the seismic sequence of May 2912 occurred in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes has also been registered in the recent past. The manifold purpose of this study is first to study spatial and temporal distribution of aftershocks than to analyze wave forms and to determine individual focal mechanisms of the largest shocks. Additionally, a joint hypocenter determination and composite focal mechanism of a large number of small aftershocks were carried out. Finally, the current state of stress in the considered region, obtained on the base of aftershock focal mechanisms, was compared with horizontal crustal movement inferred from GPS measurement.

  5. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  6. Using XML and Java for Astronomical Instrument Control

    NASA Astrophysics Data System (ADS)

    Koons, L.; Ames, T.; Evans, R.; Warsaw, C.; Sall, K.

    1999-12-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests. Instrument description is too tightly coupled with details of implementation. NASA/Goddard Space Flight Center and AppNet, Inc. are developing a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer (e.g., telescopes, microscopes and printers). A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven by an instrument description. The Astronomical Instrument Markup Language (AIML) is a domain-specific implementation of the more generalized Instrument Markup Language (IML). The software architecture combines the platform-independent processing capabilities of Java with the vendor-independent data description syntax of Extensible Markup Language (XML), a human-readable and machine-understandable way to describe structured data. IML is used to describe command sets (including parameters, datatypes, and constraints) and their associated formats, telemetry, and communication mechanisms. The software uses this description to present graphical user interfaces to control and monitor the instrument. Recent efforts have extended to command procedures (scripting) and representation of data pipeline inputs, outputs, and connections. Near future efforts are likely to include an XML description of data visualizations, as well as the potential use of XSL (Extensible Stylesheet Language) to permit astronomers to customize the user interface on several levels: per user, instrument, subsystem, or observatory-wide. Our initial prototyping effort was targeted for HAWC (High-resolution Airborne Wideband Camera), a first-light instrument of SOFIA (the Stratospheric Observatory for Infrared Astronomy). A production-level application of this technology is for one of the three candidate detectors of SPIRE (Spectral and Photometric Imaging REceiver), a focal plane instrument proposed for the European Space Agency's Far Infrared Space Telescope. The detectors are being developed by the Infrared Astrophysics Branch of NASA/GSFC.

  7. Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    This is the final technical report for NASA grant NAG5-9493. entitled "Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers". The goal of this project was to develop and demonstrate a new generation of superconducting tunnel junction (SIS) receivers with extremely wide instantaneous (intermediate-frequency, or IF) bandwidths. of order 12 GHz. along with the wideband low-noise microwave HEMT (high electron mobility transistor) amplifiers which follow the SIS mixer. These wideband SIS/HEMT receivers would allow rapid submillimeter wavelength spectral line surveys to be carried out, for instance with the NASA airborne observatory SOFIA. and could potentially be useful for future submillimeter space missions such as SAFIR. In addition, there are potential NASA earth science applications. such as the monitoring of the distribution of chemical species in the stratosphere and troposphere using the limb-sounding technique. The overall goals of this project have been achieved: a broadband 200-300 SIS receiver was designed and constructed, and was demonstrated in the field through a test run at the Caltech Submillimeter Observatory on Mauna Kea. HI. The technical details are described in the appendices. which are primarily conference publications. but Appendix A also includes an unpublished summary of the latest results. The work on the SIS mixer design are described in the conference publications (appendices B and C). The "Supermix" software package that was developed at Caltech and used for the SIS design is also described in two conference papers, but has been substantially revised, debugged. and extended as part of the work completed for this grant. The Supermix package is made available to the community at no charge. The electromagnetic design of a radial waveguide probe similar to the one used in this work is described in a journal publication. Details of the novel fabrication procedure used for producing the SIS devices at JPL are also given in an upcoming journal article. Finally, details on the wideband HEMT amplifier design and noise characterization techniques are described in two publications.

  8. SEL2 servicing: increased science return via on-orbit propellant replenishment

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin B.; DeWeese, Keith; Kienlen, Michael; Aranyos, Thomas; Pellegrino, Joseph; Bacon, Charles; Qureshi, Atif

    2016-07-01

    Spacecraft designers are driving observatories to the distant Sun-Earth Lagrange Point 2 (SEL2) to meet ever-increasing science requirements. The mass fraction dedicated to propellant for these observatories to reach and operate at SEL2 will be allocated with the upmost care, as it comes at the expense of optics and instrument masses. As such, these observatories could benefit from on-orbit refueling, allowing greater dry-to-wet mass ratio at launch and/or longer mission life. NASA is developing technologies, capabilities and integrated mission designs for multiple servicing applications in low Earth orbit (LEO), geosynchronous Earth orbit (GEO) and cisluner locations. Restore-L, a mission officially in formulation, will launch a free-flying robotic servicer to refuel a government-owned satellite in LEO by mid 2020. This paper will detail the results of a point design mission study to extend Restore-L servicing technologies from LEO to SEL2. This SEL2 mission would launch an autonomous, robotic servicer spacecraft equipped to extend the life of two space assets through refueling. Two space platforms were chosen to 1) drive the requirements for achieving SEL2 orbit and rendezvous with a spacecraft, and 2) to drive the requirements to translate within SEL2 to conduct a follow-on servicing mission. Two fuels, xenon and hydrazine, were selected to assess a multiple delivery system. This paper will address key mission drivers, such as servicer autonomy (necessitated due to communications latency at L2). Also discussed will be the value of adding cooperative servicing elements to the client observatories to reduce mission risk.

  9. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  10. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft gains altitude after takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  11. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft begins its takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  12. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft touches down at the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane provided photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket was released at 8:37 a.m. EST. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  13. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, soars high after takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. Release of the Pegasus XL rocket is scheduled for 8:40 a.m. EST.

  14. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft takes off from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  15. Pegasus XL CYGNSS Launch Attempt - Prepared for Takeoff - Scrubb

    NASA Image and Video Library

    2016-12-12

    A pathfinder aircraft prepares for takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  16. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft soars high after takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  17. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft descends toward the Skid Strip at Cape Canaveral Air Force Station in Florida. The aircraft carried a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, for launch. With the aircraft flying off shore, the Pegasus rocket was released. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. Release of the Pegasus XL rocket occurred at 8:37 a.m. EST.

  18. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft descends for touchdown at the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane provided photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket was released at 8:37 a.m. EST. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  19. Amateur observations of solar eclipses and derivation of scientific data

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2008-12-01

    This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs "Total solar eclipse 1999 and 2006" (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 - Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133-137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR-Terrestrial Influences, Sofia, November 24-25, pp. 69-72, 2005). Results from teaching and training the students in the procedures, methods and equipment necessary for the observation of a total solar eclipse (TSE) at the Yuri Gagarin Public Astronomical Observatory (PAO) in Stara Zagora, Bulgaria, as well as the selection process used in determining participation in the different observational teams are discussed. The final stages reveal the special methodology used to investigate the level of "pretensions", the levels of ambition displayed by the students in achieving each independent goal, and the setting of goals in context with their problem solving capabilities and information gathering abilities in the scientific observation process. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse and Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that the students benefit from the activities of processing data, observational results and their interpretation, and preparation of summary reports. This exercise is intended to provide the basic training necessary to develop the creativity of the students and amateur astronomers involved. This will enable the students from the Astronomy schools at Public Astronomical Observatories and Planetaria (PAOP) to further develop their creative skills, emotional-volitional personal qualities with an orientation towards scientific analysis, using observations and experiments, to build an effective scientific style of thinking. Students of the Yuri Gagarin Public Astronomical Observatory, whom are already being nurtured in this manner, should be able to participate with great success in Scientific Research Programs devoted to the International Heliophysical Year.

  20. Ionospheric magnetic signals during conjunctions between ground based and Swarm satellite observations

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Olsen, Nils; Finlay, Chris

    2017-04-01

    High-precision magnetic measurements collected by satellites such as Swarm or CHAMP,flying at altitudes between 300 and 800km, allow for improved geomagnetic field modelling. An accurate description of the internal (core and crust) field must account for contributions from other sources, such as the ionosphere and magnetosphere. However, the description of the rapidly changing external field contributions, particularly during the quiet times from which the data are selected, constitutes a major challenge of the construction of such models. Our study attempts to obtain improved knowledge on ionospheric field contributions during quiet times conditions, in particular during night local times. We use two different datasets: ground magnetic observatories time series (obtained below the ionospheric E-layer currents), and Swarm satellites measurements acquired above these currents. First, we remove from the data estimates of the core, lithospheric and large-scale magnetospheric magnetic contributions as given by the CHAOS-6 model, to obtain corrected time series. Then, we focus on the differences of the corrected time series: for a pair of ground magnetic observatories, we determine the time series of the difference, and similarly we determine time series differences at satellite altitude, given by the difference between the Swarm Alpha and Charlie satellites taken in the vicinity of the ground observatory locations. The obtained differences time series are analysed regarding their temporal and spatial scales variations, with emphasis on measurements during night local times.

  1. Global Precipitation Measurement (GPM) launch, commissioning, and early operations

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2014-10-01

    The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). The mission centers on the GPM Core Observatory and consists of an international network, or constellation, of additional satellites that together will provide next-generation global observations of precipitation from space. The GPM constellation will provide measurements of the intensity and variability of precipitation, three-dimensional structure of cloud and storm systems, the microphysics of ice and liquid particles within clouds, and the amount of water falling to Earth's surface. Observations from the GPM constellation, combined with land surface data, will improve weather forecast models; climate models; integrated hydrologic models of watersheds; and forecasts of hurricanes/typhoons/cylcones, landslides, floods and droughts. The GPM Core Observatory carries an advanced radar/radiometer system and serves as a reference standard to unify precipitation measurements from all satellites that fly within the constellation. The GPM Core Observatory improves upon the capabilities of its predecessor, the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM), with advanced science instruments and expanded coverage of Earth's surface. The GPM Core Observatory carries two instruments, the NASA-supplied GPM Microwave Imager (GMI) and the JAXA-supplied Dual-frequency Precipitation Radar (DPR). The GMI measures the amount, size, intensity and type of precipitation, from heavy-tomoderate rain to light rain and snowfall. The DPR provides three-dimensional profiles and intensities of liquid and solid precipitation. The French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Department of Defense are partners with NASA and JAXA. The GPM Core Observatory was launched from JAXA's Tanegashima Space Center on an H-IIA launch vehicle on February 28, 2014 Japan Standard Time (JST). The mission has completed its checkout and commissioning phase and is in Operations Phase. The current status and early results will be discussed.

  2. Phyllosilicate emission from protoplanetary disks: is the indirect detection of extrasolar water possible?

    PubMed

    Morris, Melissa A; Desch, Steven J

    2009-12-01

    Phyllosilicates are hydrous minerals formed by interaction between rock and liquid water, and are commonly found in meteorites that originate in the asteroid belt. Collisions between asteroids contribute to zodiacal dust, which therefore reasonably could include phyllosilicates. Collisions between planetesimals in protoplanetary disks may also produce dust that contains phyllosilicates. These minerals possess characteristic emission features in the mid-infrared and could be detectable in extrasolar protoplanetary disks. We have determined whether phyllosilicates in protoplanetary disks are detectable in the infrared, using instruments such as those on board the Spitzer Space Telescope and the Stratospheric Observatory for Infrared Astronomy (SOFIA). We calculated opacities for the phyllosilicates most common in meteorites and, using a two-layer radiative transfer model, computed the emission of radiation from a protoplanetary disk. We found that phyllosilicates present at the 3% level lead to observationally significant differences in disk spectra and should therefore be detectable with the use of infrared observations and spectral modeling. Detection of phyllosilicates in a protoplanetary disk would be diagnostic of liquid water in planetesimals in that disk and would demonstrate similarity to our own Solar System. We also discuss use of phyllosilicate emission to test the "water worlds" hypothesis, which proposes that liquid water in planetesimals should correlate with the inventory of short-lived radionuclides in planetary systems, especially (26)Al.

  3. Obituary: Robert E. Fried, 1930-2003

    NASA Astrophysics Data System (ADS)

    Mannery, Edward J.; Szkody, Paula

    2004-12-01

    Professionals and friends knew him as Captain Bob; he was the captain of his airplane, Birdie, and of his observatory, Braeside. He was a man of many talents, and he incorporated those talents into his two main passions in life: flying planes and doing astronomical research. Bob was born on December 14, 1930 in St. Paul, Minnesota to parents Dr. Louis and Emily Fried. His interest in astronomy began after he moved to Atlanta in the late 1950's as a pilot for Delta Airlines. It was there he joined the Atlanta Astronomy Club in 1960 and went on to become its President and also the President of the Astronomical League. Wanting a larger and better telescope than the usual department store variety, he took the advice of Patrick Moore, who suggested he build one himself. So he did. He obtained a military blank for a 16-inch Cassegrain and ground and polished the optics while the heavy parts were machined in the Delta Airlines shops after hours. His observatory protruded from the roof of his home and featured a modified silo dome, while the observer's controls were reminiscent of an airplane cockpit. When it became obvious that the Atlanta climate offered little support for serious Astronomy, Bob moved his family and observatory to a higher, clearer site in the Rockies. There he built a new dome on Flagstaff Mountain near Boulder. Subsequent to meeting and conspiring with fellow enthusiast Edward Mannery, who became his lifelong collaborator, Bob upgraded his system for digital photometry and began to obtain magnitudes to a few percent accuracy. After grumbling about the windy and cloudy weather of the Rockies, Bob tried a site near Lowell Observatory and then finally settled on the best home for Braeside in 1976, a short walk through the pines from the US Naval Observatory. He ultimately created a building he dubbed "The Monastery" after Mt. Wilson, that housed a bedroom, darkroom, electronics shop, machine shop, library and telescope control console and upgraded his detectors to a CCD system in 1995. It was with this Observatory that he ultimately realized his dream of a computer automated observation system that would run unattended until sunrise. His web page stated the Mission of Braeside Observatory as "To make available through collaboration, research data requested by members of the astronomical community worldwide." It was Bob's ability to produce long strings of high quality data that led him to become known, mostly by word of mouth, to professional astronomers around the world, first in the variable star community and then in other fields as well. The high quality of his observations and his ability and interest in close binary stars (cataclysmic variables) led him to be one of the first people contacted when observations were needed simultaneous with spacecraft data for multi-wavelength coverage or just for follow-up observations on some peculiar object that had been discovered. His ability to set up his program, let it run and close up automatically meant he could accomplish observations and yet sleep through the night. Captain Bob could be counted on to deliver the data fully reduced the morning after the observations, even though the space data might be months in arriving. ADS lists 117 publications from Bob, on topics that started with eclipsing binaries and expanded to ultimately include RS Cvn, RcrB, RR Lyr, Delta Scuti stars, as well as X-ray transients and his special love, cataclysmic variables. But he also worked on variable extragalactic sources, including Seyferts, BL Lacs, and Blazars. In June 1997, he attended the13th North American Workshop on Cataclysmic Variables in Teton Park, to the delight of members of the community who could finally meet the person who had made so many contributions to their programs. However, this obsession did not go without cost to his family. His dedication to observations and his equipment meant many missed dinners and family gatherings and was a source of much family ribbing. In order to insure Braeside would continue to operate long after he could not be present, Bob and his wife, Marian, donated his observatory and adjacent home to the Arizona Sate University astronomy department for student use. In the last years of his life, he made sure everything worked for the students who used it in the early evening hours and then he continued on with his own research programs in the later half of the night and on weekends. His interest in students was not limited to those using his own telescope, although many visited and used his observatory from as far away as New York. Bob made an effort to work with students in other schools. He helped Flagstaff High School to build their own observatory on their grounds and worked with students from other states. Besides his night observing programs, Bob continued with his love and expertise in flying during the day. He donated his plane and time for volunteer mercy missions with Angel Flight and Flights for Life, flying patients to hospitals and medical supplies where they were needed. It was on one of these missions that Birdie went down about 40 miles north of Phoenix on November 13, 2003. The cause of the plane crash was not clear but the outcome was certain: the world had lost an admired, professional amateur astronomer and humanitarian. He is survived by his wife, Marian, his sister Louise, and his three daughters, Leslie, Sara and Amy, as well as stepchildren, grandchildren and many students he mentored. The stories told, and the pictures shown, at his Memorial at Lowell Observatory summarized a free-spirited and dedicated individual who lived life fully, joyfully and generously. His sense of humor, and spirited camaraderie will be missed as much as his observations.

  4. Measuring CO2 from Space: The NASA Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2010-01-01

    The Orbiting Carbon Observatory (OCO) was the first NASA satellite designed to measure atmospheric carbon dioxide (CO2) from space with the precision, resolution, and coverage needed to detect CO2 surface fluxes. OCO was designed to collect 0.5 to 1 million soundings each day. Typical measurements over land were expected to have precisions of 0.3% within surface footprints smaller less than 3 square km. This project suffered a major setback in February 2009 when the OCO launch vehicle failed to achieve orbit and the satellite was lost. The U.S. Congress has since authorized a restart of the OCO project, and the President's 2010 budget proposal includes funding to develop and fly a replacement for OCO that could be ready for launch no later than February 2013. This mission has been designated OCO-2. While this mission will be a near "carbon copy" of OCO, some changes were needed to replace components that were no longer available. Here, we describe the capabilities, of the OCO-2 mission, highlighting its differences from OCO.

  5. KSC-99pp0292

    NASA Image and Video Library

    1999-03-09

    In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Dr. Haig Keshishian checks fruit fly larvae in a petri dish. The larvae are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. Dr. Keshishian, from Yale University, is the principle investigator for the experiment. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B

  6. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  7. Spitzer observatory operations: increasing efficiency in mission operations

    NASA Astrophysics Data System (ADS)

    Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.

    2006-06-01

    This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.

  8. Getting to L1 the Hard Way: Triana's Launch Options

    NASA Technical Reports Server (NTRS)

    Houghton, Martin B.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Over the past four years, NASA's Goddard Space Flight Center has built and tested the Triana observatory, which will be the first Earth observing science satellite to take advantage of the unique perspective offered by a Lissajous orbit about the first Earth-Sun Lagrange Point (L1). Triana was originally meant to fly on the U.S. Space Transportation System (a.k.a. the Space Shuttle but complications with the shuttle manifest have forced Triana into a 'wait and see' attitude. The observatory is currently being stored at NASA's Goddard Space Flight Center, where it waits for an appropriate launch opportunity to surface. To that end, several possible alternatives have been considered, including variations on the nominal shuttle deployment scenario, a high inclination Delta-type launch from Vandenberg Air Force Base, a Tsyklon class vehicle launched from Baikonur, Kazakhstan, and a ride on a French Ariane vehicle out of French Guiana into a somewhat arbitrary geostationary transfer orbit (GTO). This paper chronicles and outlines the pros and cons of how each of these opportunities could be used to send Triana on its way to L1.

  9. Getting to L1 the Hard Way: Triana's Launch Options

    NASA Technical Reports Server (NTRS)

    Houghton, Martin B.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Over the past four years, NASA's Goddard Space Flight Center has built and tested the Triana observatory, which will be the first Earth observing science satellite to take advantage of the unique perspective offered by a Lissajous orbit about the first Earth-Sun Lagrange Point (L1). Triana was originally meant to fly on the U.S. Space Transportation System (a.k.a. the Space Shuttle), but complications with the shuttle manifest have forced Triana into a "wait and see" attitude. The observatory is currently being stored at NASA's Goddard Space Flight Center, where it waits for an appropriate launch opportunity to materialize. To that end, several possible alternatives have been considered, including variations on the nominal shuttle deployment scenario, a high inclination Delta-type launch from Vandenberg Air Force Base, a Tsyklon class vehicle launched from Baikonur, Kazakhstan, and a ride on a French Ariane vehicle out of French Guiana into a somewhat arbitrary geostationary transfer orbit (GTO). This paper chronicles and outlines the pros and cons of how each of these opportunities could be used to send Triana on its way to L1.

  10. Arcus: Observatory Science

    NASA Astrophysics Data System (ADS)

    Valencic, Lynne; Arcus Team

    2018-01-01

    Arcus is a free-flying MIDEX satellite selected for Phase A and planned to launch in 2023. Its bandpass (~12-50 Å), high resolution (R > 2500 between 22-25 Å), and effective area (450 cm2 between 22-25 Å) make it ideal for studying numerous systems after its baseline mission concludes in 2026. For instance, hot star winds show strong but poorly understood variable spectra, as do cataclysmic variables and super-soft sources that may be the progenitors of Type Ia supernovae, and the nature of the ISM is still not well known. Arcus will also allow observations of small extended sources like supernova remnants and planetary nebulae.

  11. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft, at left, prepares for takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft, in view at right, carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  12. Mission design for an orbiting volcano observatory

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.; Johnston, M. Daniel

    1990-01-01

    The Mission to Planet Earth initiative will require global observation of land, sea, and atmosphere, and all associated phenomena over the coming years; perhaps for decades. A major phenomenon playing a major part in earth's environment is volcanic activity. Orbital observations, including IR, UV, and visible imaging, may be made to monitor many active sites, and eventually increase our understanding of volcanoes and lead to the predictability of eruptions. This paper presents the orbital design and maneuvering capability of a low cost, volcano observing satellite, flying in low earth orbit. Major science requirements include observing as many as 10 to 20 active sites daily, or every two or three days. Given specific geographic locations of these sites, it is necessary to search the trajectory space for those orbits which maximize overflight opportunities. Also, once the satellite is in orbit, it may be desirable to alter the orbit to fly over targets of opportunity. These are active areas which are not being monitored, but which give indications of erupting, or have in fact erupted. Multiple impulse orbital maneuvering methods have been developed to minimize propellant usage for these orbital changes.

  13. KSC-08pd0019

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel gives an autograph to a fan during NASCAR's Preseason Thunder Fan Fest at the Daytona International Speedway. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  14. KSC-08pd0020

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel gives an autograph to a fan during NASCAR's Preseason Thunder Fan Fest at the Daytona International Speedway. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  15. KSC-08pd0021

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel poses with track vehicles during NASCAR's Preseason Thunder Fan Fest at the Daytona International Speedway. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  16. Salmonella Typhimurium and Salmonella Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions

    PubMed Central

    McAuley, Catherine M.; Duffy, Lesley L.; Subasinghe, Nela; Hogg, Geoff; Coventry, John; Fegan, Narelle

    2015-01-01

    Salmonellosis in Australia has been linked to eggs and egg products with specific serotypes associated with outbreaks. We compared attachment to and survival on egg shells and growth in eggs of two Salmonella serotypes, an egg outbreak associated Salmonella Typhimurium and a non-egg-associated Salmonella enterica ssp. II 1,4,12,27:b:[e,n,x] (S. Sofia). Experiments were conducted at combinations of 4, 15, 22, 37 and 42°C. No significant differences occurred between the serotypes in maximum growth rates, which were significantly greater (P < 0.001) in egg yolk (0.427 log10 CFU/mL/h) compared to whole egg (0.312 log10 CFU/mL/h) and egg white (0.029 log10 CFU/mL/h). Attachment to egg shells varied by time (1 or 20 min) and temperature (4, 22 and 42°C), with S. Typhimurium isolates attaching at higher levels (P < 0.05) than S. Sofia after 1 min at 4°C and S. Typhimurium ATCC 14028 attaching at higher (P < 0.05) levels at 22°C. Survival on egg shells was not significantly different across isolates. Salmonella serotypes behaved similarly regarding growth in egg contents, attachment to egg shells and survival on eggs, indicating that other factors more likely contributed to reasons for S. Typhimurium being implicated in multiple egg-associated outbreaks. PMID:26539536

  17. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 μm, 163.1 μm between the 2Π1/2 J = 1/2 states, and 119.2 μm, a ground transition between the 2Π3/2 J = 3/2 states), at angular resolutions of 16.̋3, 16.̋3, and 11.̋9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 μm are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 μm triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that all the observations might be consistently fitted by a J-type shock model with a high pre-shock density (nH> 105 cm-3), a high shock velocity (νs ≳ 25 km s-1), and with a filling factor of the order of unity. Such a high pre-shock density is generally found in shocks associated to high-mass protostars, contrary to low-mass ones.

  18. ARC-20180410-AAV3109-SOFIA-Penrose-NASAWeb

    NASA Image and Video Library

    2018-04-10

    Lecture by Sir Roger Penrose on the New Cosmological View of Dark Matter, which Strangely and Slowly Decays. Sir Penrose shares his latest research and provides insight into the thinking of a modern day theoretical physicist.

  19. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1998-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. Figure 1 is a photograph of the 2 THz double feedhorn structure designed and constructed under the auspices of this grant. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. Figure 2 is the beam pattern obtained from it. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Figure 3 is an illustration of the focal plane array concept we developed lot- SOFIA base upon this work. Un- fortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts. Our work under NAG 2-1057 was very rewarding and we appreciate the opportunity provided by NASA to pursue it. The research led directly to publishing 2 papers (listed below) and the award of an NSF grant to our group to construct a laser micromachining system on the University of Arizona campus.

  20. What makes a mathematician?

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2017-12-01

    Sofia Vasilyevna Kovalevskaia is surely the only person in history who became a mathematician because of a botched redecoration project. She is one of 25 mathematicians profiled in Ian Stewart's book Significant Figures: the Lives and Work of Great Mathematicians.

  1. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.

  2. Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS

    NASA Technical Reports Server (NTRS)

    Yokum, Steve

    2015-01-01

    Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).

  3. Memoriam for David G. Koch, 1945-2012

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2013-01-01

    Dave worked on scientific space instrumentation since the Apollo era in the mid-1960s. He was born and raised in Milwaukee, WI, and attended Milwaukee Lutheran High School where he built a Michelson interferometer that proved to be a stepping-stone for his interest in physics. Dave graduated from the University of Wisconsin-Madison, where he earned a Bachelor of Science in applied mathematics and engineering physics in 1967. As an undergraduate, he worked on balloon-launched sounding rockets and scientific instruments in X-ray and gamma-ray astronomy. At Cornell University, Dave earned a master's degree in 1971, and a doctorate in 1972, both in physics. He built a balloon-borne gamma-ray telescope that detected the first pulsed high-energy gamma rays from the Crab pulsar. In 1972, Dave began his career at American Science and Engineering where he was the project scientist for the Uhuru X-ray satellite. Later, he served as the project scientist for the development of the Einstein Observatory. Dave joined the Smithsonian Center for Astrophysics in 1977 as the project scientist for the Spacelab-2 infrared telescope. There, he served as a co-investigator on the Space Infrared Telescope Facility - IRAC camera proposal, and co-investigator on the Submillimeter Wave Astronomy Satellite, which launched in December 1998. Dave came to NASA Ames Research Center to lead the mission operations for SIRTF and SOFIA (Stratospheric Observatory for Infrared Astronomy) in 1988. He created the Flight Opportunities for Science Teacher EnRichment project. In 1992, Dave began working on what has become the Kepler mission, for which he served as deputy principal investigator until retiring in August 2011. Dave's contributions were many but most notably, he led the development of the Kepler Technology Demonstration used to prove that the transit photometry method would work under on-orbit conditions. Dave loved to build things and was passionate about engaging young hearts and minds with the excitement of science and space exploration. He was particularly fond of educating and empowering teachers with the right tools to connect with the formal and informal classroom.

  4. Infrared Spectroscopy of Disilicon-Carbide Si_2C

    NASA Astrophysics Data System (ADS)

    Witsch, Daniel; Lutter, Volker; Fuchs, Guido W.; Gauss, Jürgen; Giesen, Thomas

    2017-06-01

    Small silicon and carbon containing molecules are thought to be important building blocks of interstellar grains. Some of them have been detected in circumstellar environments of late-type stars by means of rotational spectroscopy e.g., SiC, SiC_2, Si_2C, c-SiC_3, SiC_4, while centro-symmetric species, e.g., C_3, C_4, C_5, Si_2C_2, Si_2C_3, can only be detected by vibrational transitions, mainly in the infrared. In view of a new generation of high resolution infrared telescope instruments, e.g., EXES (Echelon-Cross-Echelle Spectrograph) onboard SOFIA (Observatory for Infrared Astronomy) and TEXES (Texas Echelon Cross Echelle Spectrograph) at the Gemini-North observatory, accurate laboratory data of small silicon-carbides in the infrared region are of high demand. In this talk we present first laboratory data of the Si_2C asymmetric stretching mode at 1200 cm^{-1}. A pulsed Nd:YAG-laser is used to vaporize a solid target of silicon exposed to a dilute sample of methane in helium buffer gas. Si_2C is formed in an adiabatic expansion of a supersonic jet and radiation of a quantum cascade laser is used to record rotationally resolved spectra. To date, 160 ro-vibrational lines and have been assigned to the asymmetric stretching vibration of Si_2C, and derived molecular parameters are in excellent agreement with ab initio calculations. In our global fit analysis recently published microwave laboratory data (McCarthy et al. 2015) and astronomical data (Cernicharo et al. 2015) were taken into account. Our new results allow for the identification of Si_2C by means of high resolution infrared astronomy towards the warm background of carbon-rich stars. McCarthy M.C., Baraban J.H., Changala P.B., Stanton J.F., Martin-Drumel M.A, Thorwirth S., et al., J. Chem. Phys. Lett. 6, 2107-2111 (2015). Cernicharo J., McCarthy M.C., Gottlieb C.A., Agundez M., Velilla Prieto L., Baraban J.H., et al. Astrophys. J. Lett. 806,L3 (2015).

  5. Characterizing the Disk of a Recent Massive Collisional Event

    NASA Astrophysics Data System (ADS)

    Song, Inseok

    2015-10-01

    Debris disks play a key role in the formation and evolution of planetary systems. On rare occasions, circumstellar material appears as strictly warm infrared excess in regions of expected terrestrial planet formation and so present an interesting opportunity for the study of terrestrial planetary regions. There are only a few known cases of extreme, warm, dusty disks which lack any colder outer component including BD+20 307, HD 172555, EF Cha, and HD 23514. We have recently found a new system TYC 8830-410-1 belonging to this rare group. Warm dust grains are extremely short-lived, and the extraordinary amount of warm dust near these stars can only be plausibly explainable by a recent (or on-going) massive transient event such as the Late Heavy Bombardment (LHB) or plantary collisions. LHB-like events are seen generally in a system with a dominant cold disk, however, warm dust only systems show no hint of a massive cold disk. Planetary collisions leave a telltale sign of strange mid-IR spectral feature such as silica and we want to fully characterize the spectral shape of the newly found system with SOFIA/FORCAST. With SOFIA/FORCAST, we propose to obtain two narrow band photometric measurements between 6 and 9 microns. These FORCAST photometric measurements will constrain the amount and temperature of the warm disk in the system. There are less than a handful systems with a strong hint of recent planetary collisions. With the firmly constrained warm disk around TYC 8830-410-1, we will publish the discovery in a leading astronomical journal accompanied with a potential press release through SOFIA.

  6. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.

    2016-12-01

    IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.

  7. Analysis and prospects for curricular reform of medical schools in Southeast Europe.

    PubMed

    Likic, Robert; Dusek, Tina; Horvat, Drago

    2005-08-01

    To analyse the curricula of 16 medical schools in 6 countries in Southeast Europe in order to establish a prevailing standard curriculum against which a prospective curriculum reform could formulate its objectives. Curricular information was gathered from a questionnaire sent via e-mail to the respective medical schools. The data collected ranged from the numbers of enrolled students to a breakdown of courses with distribution of instruction hours for certain teaching formats. For easier comparison the courses were clustered into 5 groups: pre-clinical, clinical, public health, liberal arts and electives. Belgrade has the highest number of undergraduate students, while Mostar has the lowest. Novi Sad, Foca/Srbinje, Zagreb, Split, Sofia, Ljubljana and Mostar have more than 5000 instruction hours, but Sarajevo lags behind with 4005 hours. Anatomy dominates the course load in Year 1, ranging from a share of 18.4% in Sofia to 11.3% in Novi Sad. Physiology dominates Year 2, ranging from 16.8% in Rijeka to 8.9% in Split, whereas in Year 3 the dominating course is pathology, reaching a peak of 13.7% in Sarajevo. Sofia has the highest number of class hours of clinical courses. The predominant public health courses are social medicine, family medicine and medical ecology. Medical English is taught at all medical schools (as electives in Ljubljana and Rijeka). There is considerable potential for curriculum improvement in the region. Teacher training, student participation, the definition of core competencies and the introduction of new methodologies should all be implemented in the process.

  8. 75 FR 65383 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Telemanagement Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ..., CA; Compunet Services, Inc., Stockbridge, GA; Cordys, Putten, THE NETHERLANDS; Cosmo Bulgaria Mobile... Inc. to Cloud.com , Cupertino, CA; Globul to Cosmo Bulgaria Mobile EAD(GloBul), Sofia, BULGARIA; CTBC...

  9. 2007 Research and Engineering Annual Report

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data Rack; Intelligent Data Mining Capabilities as Applied to Integrated Vehicle Health Management; STARS Flight Demonstration No. 2 IP Data Formatter; Space-Based Telemetry and Range Safety (STARS) Flight Demonstration No. 2 Range User Flight Test Results; Aerodynamic Effects of the Quiet Spike(tm) on an F-15B Aircraft; F-15 Intelligent Flight Controls-Increased Destabilization Failure; F-15 Integrated Resilient Aircraft Control (IRAC) Improved Adaptive Controller; Aeroelastic Analysis of the Ikhana/Fire Pod System; Ikhana: Western States Fire Missions Utilizing the Ames Research Center Fire Sensor; Ikhana: Fiber-Optic Wing Shape Sensors; Ikhana: ARTS III; SOFIA Closed-Door Flutter Envelope Flight Testing; F-15B Quiet Spike(TM) Aeroservoelastic Flight Test Data Analysis; and UAVSAR Platform Precision Autopilot Flight Results.

  10. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1996-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Unfortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.

  11. Titan Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nixon, Conor A.; Achterberg, Richard K.; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon L.; Comet, Thomas; Hayes, Alaxander G.; Lellouch, Emmanuel; Lemmon, Mark T.; Lopez-Puertas, Manuel; hide

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a signicantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 microns). In this paper, we examine the potential for scientic investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientic themes are identied: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientic purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectorssufcient to encompass Titan, but with signicantly faster readout times. We nd that JWST has very signicant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a ve- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  12. Titan Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, Richard K.; Ádámkovics, Máté; Bézard, Bruno; Bjoraker, Gordon L.; Cornet, Thomas; Hayes, Alexander G.; Lellouch, Emmanuel; Lemmon, Mark T.; López-Puertas, Manuel; Rodriguez, Sébastien; Sotin, Christophe; Teanby, Nicholas A.; Turtle, Elizabeth P.; West, Robert A.

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μm). In this paper, we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors—sufficient to encompass Titan, but with significantly faster readout times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  13. Proximity operations analysis: Retrieval of the solar maximum mission observatory

    NASA Technical Reports Server (NTRS)

    Yglesias, J. A.

    1980-01-01

    Retrieval of the solar maximum mission (SMM) observatory is feasible in terms of orbiter primary reaction control system (PRCS) plume disturbance of the SMM, orbiter propellant consumed, and flight time required. Man-in-loop simulations will be required to validate these operational techniques before the verification process is complete. Candidate approach and flyaround techniques were developed that allow the orbiter to attain the proper alinement with the SMM for clear access to the grapple fixture (GF) prior grappling. Because the SMM has very little control authority (approximately 14.8 pound-foot-seconds in two axes and rate-damped in the third) it is necessary to inhibit all +Z (upfiring) PRCS jets on the orbiter to avoid tumbling the SMM. A profile involving a V-bar approach and an out-of-plane flyaround appears to be the best choice and is recommended at this time. The flyaround technique consists of alining the +X-axes of the two vehicles parallel with each other and then flying the orbiter around the SMM until the GF is in view. The out-of-plane flyaround technique is applicable to any inertially stabilized payload, and, the entire final approach profile could be considered as standard for most retrieval missions.

  14. The VLA Low-band Ionosphere and Transient Experiment (VLITE)

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy; Peters, Wendy; Brisken, Walter; Giacintucci, Simona; Kassim, Namir; Polisensky, Emil; Helmboldt, Joseph; Richards, Emily E.; Erickson, Alan; Ray, Paul S.; Kerr, Matthew T.; Deneva, Julia; Coburn, William; Huber, Robert; Long, Jeff

    2018-01-01

    The VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ) is a commensal low-frequency observing system that has been operational on the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array (VLA) since late 2014. The separate optical paths of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus 1-50 GHz feeds allow both systems to operate simultaneously with independent correlators. The initial 2.5 years of VLITE operation provided real-time correlation of 10 antennas across the 320-384 MHz band with a total observing time approaching 12,000 hours. During the summer of 2017, VLITE was upgraded to a total of 16 antennas (more than doubling the number of baselines) with enhanced correlator capabilities to enable correlation of the on-the-fly observing mode being used for the new NRAO VLA Sky Survey (VLASS).We present an overview of the VLITE system, including highlights of the complexities of a commensal observing program, sparse-array challenges, and scientific capabilities from our science-ready data pipeline. In the longer term, we seek a path to broadband expansion across all VLA antennas to develop a powerful new LOw Band Observatory (LOBO).

  15. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    NASA Astrophysics Data System (ADS)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  16. City Lights of South America’s Atlantic Coast

    NASA Image and Video Library

    2017-12-08

    This image of part of the Atlantic coast of South America was acquired by the Suomi NPP satellite on the night of July 20, 2012. The image was made possible by the “day-night band” of the Visible Infrared Imaging Radiometer Suite (VIIRS), which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires, and reflected moonlight. “Nothing tells us more about the spread of humans across the Earth than city lights,” says Chris Elvidge, who leads the Earth Observation Group at NOAA’s National Geophysical Data Center. Named for satellite meteorology pioneer Verner Suomi, NPP flies over any given point on Earth's surface twice each day at roughly 1:30 a.m. and p.m. The polar-orbiting satellite flies 824 kilometers (512 miles) above the surface, sending its data once per orbit to a ground station in Svalbard, Norway, and continuously to local direct broadcast users distributed around the world. Suomi NPP is managed by NASA with operational support from NOAA and its Joint Polar Satellite System, which manages the satellite's ground system. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Mike Carlowicz. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. KSC-08pd0022

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel drives an official track vehicle at Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at the speedway and will ride around the track, taking "hot laps" in the car. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  18. KSC-08pd0018

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel watches other cars on the Daytona International Speedway. Feustel had his turn at riding around the track, taking "hot laps" in an official track vehicle. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at the speedway, also meeting with fans and the media. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  19. KSC-08pd0010

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel (right) is ready to participate in NASCAR's Preseason Thunder Fan Fest at Daytona International Speedway. At left is NASCAR driver Kurt Busch. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides meeting with fans and media, Feustel will ride around the track, taking "hot laps," in an official track vehicle. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  20. KSC-08pd0012

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel (right) talks to NASCAR driver Kurt Busch about his pending "hot laps" in an official track vehicle around the Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  1. KSC-08pd0011

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- NASCAR driver Kurt Busch (left) talks to astronaut Andrew Feustel about driving. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at Daytona International Speedway. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides meeting with fans and media, Feustel will ride around the track, taking "hot laps," in an official track vehicle. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  2. KSC-08pd0014

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- NASCAR driver Kurt Busch (left) talks to astronaut Andrew Feustel about driving. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at Daytona International Speedway. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides meeting with fans and media, Feustel will ride around the track, taking "hot laps," in an official track vehicle. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  3. Analysis of Polder Polarization Measurements During Astex and Eucrex Experiments

    NASA Technical Reports Server (NTRS)

    Chen, Hui; Han, Qingyuan; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Polarization is more sensitive than intensity to cloud microstructure such as the particle size and shape, and multiple scattering does not wash out features in polarization as effectively as it does in the intensity. Polarization measurements, particularly in the near IR, are potentially a valuable tool for cloud identification and for studies of the microphysics of clouds. The POLDER instrument is designed to provide wide field of view bidirectional images in polarized light. During the ASTEX-SOFIA campaign on June 12th, 1992, over the Atlantic Ocean (near the Azores Islands), images of homogeneous thick stratocumulus cloud fields were acquired. During the EUCREX'94 (April, 1994) campaign, the POLDER instrument was flying over the region of Brittany (France), taking observations of cirrus clouds. This study involves model studies and data analysis of POLDER observations. Both models and data analysis show that POLDER can be used to detect cloud thermodynamic phases. Model results show that polarized reflection in the Lamda =0.86 micron band is sensitive to cloud droplet sizes but not to cloud optical thickness. Comparison between model and data analysis reveals that cloud droplet sizes during ASTEX are about 5 microns, which agrees very well with the results of in situ measurements (4-5 microns). Knowing the retrieved cloud droplet sizes, the total reflected intensity of the POLDER measurements then can be used to retrieve cloud optical thickness. The close agreement between data analysis and model results during ASTEX also suggests the homogeneity of the cloud layer during that campaign.

  4. JPRS Report, East Europe

    DTIC Science & Technology

    1991-05-06

    1991 POLITICAL INTERNATIONAL AFFAIRS Foreign Ministry Criticizes Loncar Meeting [Sofia Radio... INTERNATIONAL AFFAIRS Norwegian Firm Expands Activity to East Europe [Oslo AFTENPOSTEN 22 Mar] ..................... 33 CZECHOSLOVAKIA Deputy Minister on...1991 POLITICAL INTERNATIONAL AFFAIRS ALBANIA Foreign Ministry Criticizes Loncar Meeting Former Political Prisoner’s Experiences Described A

  5. Christos Patriotis, PhD | Division of Cancer Prevention

    Cancer.gov

    Dr. Christos Patriotis obtained his MSc in Biochemistry from the University of Sofia, Bulgaria in 1985 and his PhD in Molecular Biology from the Bulgarian Academy of Sciences in 1990. Postdoctoral training focused on signal transduction and tumor cell biology. |

  6. Adult Education and Development.

    ERIC Educational Resources Information Center

    Hinzen, Heribert, Ed.

    2002-01-01

    This document contains 19 papers on adult education and development worldwide. The following papers are included: "Editorial" (Heribert Hinzen); "Lifelong Learning in Europe: Moving towards EFA (Dakar Framework for Action on Education for All) Goals and the CONFINTEA V Agenda" (Sofia Conference on Adult Education);…

  7. SOFIA Education/Public Outreach with the Echelon Cross Echelle Spectrograph (EXES)

    NASA Astrophysics Data System (ADS)

    Hemenway, M. K.; Lacy, J. H.; Jaffe, D. T.; Richter, M. J.; Green, K.; Harkrider, J. L.; Lutsinger, C. L.; Noid, E.; Penn, R.; Shepherd, L.; Suder, R.; Tykoski, M. J.; Willis, M. J.

    1998-12-01

    The integration of science and technology is maximized in the development of a new scientific instrument for SOFIA like EXES. Many teachers with good science backgrounds have never had an experience in which they can learn first-hand about instrument development. The goal of this program is to prepare a cadre of teachers who will promote astronomy within their communities and who will be prepared eventually for a flight experience on SOFIA. This program provides grade 7-12 Central Texas (i.e., work within 100 miles of UT-Austin) teachers an opportunity to learn not only the principles of astronomy, but also the technology behind instrument development. By spreading the experience out over several years, the group may observe the development and construction of EXES through many phases. In addition to traditional laboratory exercises [e.g. the celestial sphere, optics, optical telescopes, spectroscopy, use of CCD cameras, and error analysis], there will be practice in using equipment such as an interferometer for optical alignment, drill press, mill, and lathe. Simultaneous with the teachers' growing understanding of astronomy and technology through their hands-on activities, their knowledge of scientific research - particularly in the area of infrared astronomy - will be enhanced through regular interactive talks by the co-investigators. With careful planning, several important secondary goals are achieved with this program: 1. The activities are aligned with the National Science Education Standards 2. Many of the traditional astronomy activities have been modified for use by secondary school students 3. Information on careers is developed through activities which emphasize the team-work necessary to build and operate EXES 4. Professional links are forged between the EXES team and the teachers

  8. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  9. SOFIA EXES Observations of Herschel’s Garnet Star and the two α Red Supergiants

    NASA Astrophysics Data System (ADS)

    Harper, Graham M.; DeWitt, Curtis N.; Richter, Matthew; Guinan, Edward F.; Montiel, Edward; Bennett, Philip D.; EXES Instrument Team

    2018-06-01

    We report EXES Cycle 4 and 5 observations of M supergiants, made at high spectral resolution (R > 50,000), and obtained from NASA-DLR SOFIA.Emission profiles from Herschel’s Garnet Star (μ Cephei: M2 Ia) show distinct structure and asymmetry in the [S I] 25.25 micron and [Fe II] 25.99 micron lines. These profiles are unlike the remarkably symmetric [Fe II] profile observed from Betelgeuse (α Orionis: M2 Iab) at R=65,000. These diagnostics both arise from upper energy levels with Eup ≈ 550 K and they probe the inner circumstellar envelope. The flux ratios of [S I]/[Fe II] are very different for μ Cep, α Ori, and Antares (α Scorpii: M1.5 Iab), suggesting that the intrinsic far ultraviolet photoionization field of μ Cep is weaker than that of α Ori, and that α Sco’s hot companion may contribute to ionizing neutral sulfur. We find that the mid-IR emission from μ Cep is centered close to the optical radial velocity of V(LSR)=33.0 km s-1 [V(Helio)=19.3 km s-1] reported in the General Catalogue of Stellar Radial Velocities (Wilson 1953), and which is substantially different to that inferred from low-J CO radio emission, i.e. V(LSR)=25 km s-1. It appears that Herschel's Garnet Star has undergone discrete events of asymmetric mass loss.Acknowledgements: This work has made extensive use of the SAO/NASA ADS and VizieR search tools, and the ASTRAL and SIMBAD databases. Financial support has been provided by NASA SOFIA Cycle 4 and 5 grants SOF 04-0136 and 05-0073 issued by USRA.

  10. High-precision Pb isotopic measurements of teeth and environmental samples from Sofia (Bulgaria): insights for regional lead sources and possible pathways to the human body

    NASA Astrophysics Data System (ADS)

    Kamenov, George D.

    2008-08-01

    High-precision Pb isotopic measurements on teeth and possible sources in a given area can provide important insights for the lead (Pb) sources and pathways in the human body. Pb isotopic analyses on soils from the area of Sofia, Bulgaria show that Pb is contributed by three end-members represented by two natural sources and leaded gasoline. Sequential leaching experiments reveal that the alumosilicate fraction of the soils is mainly controlled by natural Pb derived from two mountain massifs bordering the city. Around 1/3 to a half of the Pb in the soil leachates, however, can be explained by contamination from leaded gasoline. Contemporary teeth from Sofia residents show very similar Pb isotopic compositions to the soil leachates, also indicating that around 1/3 to a half of the Pb can be explained by derivation from leaded gasoline. The remarkable isotopic similarities between the teeth and the most labile fractions of the local soils suggest that the lead can be derived from the latter. Pb incorporation in the human body via soil-plant-human or soil-plant-animal-human chains is unlikely due to the fact that no significant farming occurs in the city area. The isotopic compositions of the local soil labile fractions can be used as approximation of the bioaccessible lead for humans. Considering all possible scenarios it appears that soil and/or soil-born dust inhalation and/or ingestion is the most probable pathway for incorporation of local soil lead in the local population. The high-precision Pb isotope data presented in this work indicate that apparently the local soil is what plays major role in the human Pb exposure.

  11. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  12. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  13. STS-93 Crew Interview: Michel Tognini

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Johnson Space Center (JSC) video release presents a one-on-one interview with Mission Specialist 3, Michel Tognini (Col., French Air Force and Centre Nacional Etudes Spatiales (CNES) Astronaut). Subjects discussed include early influences that made Michel want to be a pilot and astronaut, his experience as a French military pilot and his flying history. Also discussed were French participation in building the International Space Station (ISS), the STS-93 primary mission objective, X-ray observation using the Advanced X-ray Astrophysics Facility (AXAF), and failure scenarios associated with AXAF deployment. The STS-93 mission objective was to deploy the Advanced X-ray Astrophysics Facility (AXAF), later renamed the Chandra X-Ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar.

  14. Indications of proton-dominated cosmic-ray composition above 1.6 EeV.

    PubMed

    Abbasi, R U; Abu-Zayyad, T; Al-Seady, M; Allen, M; Amman, J F; Anderson, R J; Archbold, G; Belov, K; Belz, J W; Bergman, D R; Blake, S A; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Ivanov, D; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Loh, E C; Liu, J; Lundquist, J P; Maestas, M M; Manago, N; Marek, L J; Martens, K; Matthews, J A J; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Rodriguez, D; Sasaki, N; Schnetzer, S R; Scott, L M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S; Thomas, S B; Thomas, J R; Thomson, G B; Tupa, D; Zech, A; Zhang, X

    2010-04-23

    We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d/d[log(E)] of 47.9+/-6.0(stat)+/-3.2(syst) g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4x10(18) eV.

  15. Suggestopaedia-Canada. 1977-2.

    ERIC Educational Resources Information Center

    Racle, Gabriel

    This issue presents the original English version and a French translation of a text written at the Sofia Institute of Suggestology around April 1971. The document defines suggestology and suggestopedia, and traces the development of the suggestopedic method, from the first collective experiments aimed at attaining suggestive hypermnesia carried…

  16. Multi-wavelength Polarimetry of the GF9-2 YSO

    NASA Astrophysics Data System (ADS)

    Clemens, Dan P.; El-Batal, Adham M.; Montgomery, Jordan; Kressy, Sophia; Schroeder, Genevieve; Pillai, Thushara

    2018-06-01

    Our new SOFIA/HAWC+ 214 μm polarimetry of the cloud core containing the young stellar object GF9-2 (IRAS 20503+6006, aka L1082C) has been combined with deep near-infrared H- and K-band polarimetry of the cloud's core, obtained with the Mimir instrument. Additionally, Planck 870 μm and published optical polarimetry are included to provide context at larger size scales. We follow the direction and structure of the plane-of-sky magnetic field from the smallest physical scales (~10 arcsec or 4,000 AU) traced by SOFIA/HAWC+ to the Mimir field of view (10 arcmin, or 1.3 pc) and compare the B-field orientation with that of a faint reflection nebula seen in WISE and Spitzer images. The importance, or lack thereof, for the B-field in this naescent star-forming region is assessed through estimates of the Mass-to-Flux (M/Φ) ratio.This work has been supported by NSF AST14-12269, NASA NNX15AE51G, and USRA/SOF 04-0014 grants

  17. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goalsmore » of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.« less

  18. A Three Dimensional Picture of Galactic Center Mass Flows From Kiloparsec to Subparsec Scales

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth A.

    2018-06-01

    The centers of galaxies host extreme and energetic phenomena, from the amassing of incredibly dense reservoirs of gas to nuclear starbursts producing tens to hundreds of solar masses per year to accreting supermassive black holes launching jets. All of these are found on compact scales from hundreds of parsecs to less than a microparsec. The nearest laboratory for examining these processes is the center of our own Milky Way Galaxy. Although the black hole is not currently active and the star formation rate is relatively low, it is still our best opportunity for detailed insight into the processes that regulate the growth of the central supermassive black hole. By providing access to mid and far infrared wavelengths, SOFIA plays a unique role in connecting large and small scales in the Galactic center and studying the cycling of gas through this region. In this talk I will highlight several key open questions and outline the role that SOFIA continues to play in answering them.

  19. Black Marble - Americas

    NASA Image and Video Library

    2017-12-08

    NASA image acquired April 18 - October 23, 2012 This image of North and South America at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012. The new data was mapped over existing Blue Marble imagery of Earth to provide a realistic view of the planet. The nighttime view was made possible by the new satellite’s “day-night band” of the Visible Infrared Imaging Radiometer Suite. VIIRS detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires, and reflected moonlight. In this case, auroras, fires, and other stray light have been removed to emphasize the city lights. “Artificial lighting is a excellent remote sensing observable and proxy for human activity,” says Chris Elvidge, who leads the Earth Observation Group at NOAA’s National Geophysical Data Center. Social scientists and demographers have used night lights to model the spatial distribution of economic activity, of constructed surfaces, and of populations. Planners and environmental groups have used maps of lights to select sites for astronomical observatories and to monitor human development around parks and wildlife refuges. Electric power companies, emergency managers, and news media turn to night lights to observe blackouts. Named for satellite meteorology pioneer Verner Suomi, NPP flies over any given point on Earth's surface twice each day at roughly 1:30 a.m. and p.m. The polar-orbiting satellite flies 824 kilometers (512 miles) above the surface, sending its data once per orbit to a ground station in Svalbard, Norway, and continuously to local direct broadcast users distributed around the world. The mission is managed by NASA with operational support from NOAA and its Joint Polar Satellite System, which manages the satellite's ground system. NASA Earth Observatory image by Robert Simmon, using Suomi NPP VIIRS data provided courtesy of Chris Elvidge (NOAA National Geophysical Data Center). Suomi NPP is the result of a partnership between NASA, NOAA, and the Department of Defense. Caption by Mike Carlowicz. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Non-PRASA Drinking Water Research on UV Disinfection in Puerto Rico

    EPA Science Inventory

    The U.S. EPA and InterAmerican University of San German worked with water treatment operators from Patillas, Puerto Rico on the installation, training and testing of pretreatment/UV disinfection systems in the communities of La Sofia and Apeadero. This presentation provides path...

  1. M-Learning Pilot at Sofia University

    ERIC Educational Resources Information Center

    Gourova, Elissaveta; Dulev, Pavlin; Petrova-Antonova, Dessislava; Bontchev, Boyan

    2014-01-01

    Many universities have designed specialized Learning Management Systems in order to facilitate the management of education, the access to knowledge and educational resources, and the communications with all stakeholders involved. With the wide spread of mobile technologies nowadays, new challenges emerge for adapting the available systems to the…

  2. Forest resources of Louisiana, 1991

    Treesearch

    James F. Rosson

    1995-01-01

    The findings of the sixth Louisiana forest survey are summarized in this report. The survey is administered by the U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, headquartered in New Orleans, Louisiana. The Forest Inventory and Analysis (SO-FIA) work unit located in Starkville, Mississippi, is responsible for conducting the surveys...

  3. SOFIA: an R package for enhancing genetic visualization with Circos

    USDA-ARS?s Scientific Manuscript database

    Visualization of data from any stage of genetic and genomic research is one of the most useful approaches for detecting potential errors, ensuring accuracy and reproducibility, and presentation of the resulting data. Currently software such as Circos, ClicO FS, and RCircos, among others, provide too...

  4. An Unsupervised Method for Uncovering Morphological Chains (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2015-03-08

    Consortium. Marco Baroni, Johannes Matiasek, and Harald Trost. 2002. Unsupervised discovery of morphologically re- lated words based on orthographic and...Better word representations with re- cursive neural networks for morphology. In CoNLL, Sofia, Bulgaria. Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim

  5. Assessing timber availability in upland Hardwood Forests

    Treesearch

    Dennis M. May; Chris B. LeDoux

    1992-01-01

    Reported forest inventory statistics gathered by the USDA Forest Service, Southern Forest Experiment Station, Forest Inventory and Analysis (SOFIA) have been criticized because not all of the inventory volume reported is truly available for harvest. In response to this criticism, a procedure has been developed for assessing timber availability from reported inventory...

  6. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover, which prevents cooling. Reina Sofia shows a very different behavior from the other sites, with a frequent stabilization of ground temperatures during all the winters, and last until late-fall. This situation could be related to the structure, and physical and thermal properties of snow cover. The analysis of the Freezing Degree Days (FDDs) and freezing n-factor reveals significant interannual variations. Ohridski shows the highest FDDs values followed by Reina Sofia. Nuevo Incinerador showed the lowest FDDs values. The freezing n-factor shows highest values at Ohridski, followed by Collado Ramos and Reina Sofia with very similar values. Nuevo Incinerador shows the lowest n-factor values. Snow cover doesn't insulate the ground from freezing, but depending on its thickness, density and the amount of heat in the ground, it decreases ground temperatures amplitudes and increases delays relative to air temperature changes. Even where snow cover remains several centimeters thick for several months, slow decrease of bottom temperature is possible, reaching a minimum value at the end of the winter. The results demonstrate that Reina Sofia and Ohridski sites, because of the seasonal behavior, FDDs and freezing n-factor, demonstrate higher winter ground cooling. This research was funded by PERMANTAR-3 (PTDC/AAG-GLO/3908/2012) project (Fundação para a Ciência e a Tecnologia of Portugal)

  7. NASA's Future X-ray Missions: From Constellation-X to Generation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2006-01-01

    Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.

  8. SOFIA's Choice: Automating the Scheduling of Airborne Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Norvig, Peter (Technical Monitor)

    1999-01-01

    This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.

  9. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    PubMed

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  10. KSC-08pd0016

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel gets adjusted to the driver's seat in an official track vehicle at Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at the speedway and will ride around the track, taking "hot laps" in the car. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  11. KSC-08pd0017

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel is ready for his ride in an official track vehicle at Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at the speedway and will ride around the track, taking "hot laps" in the car. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  12. KSC-08pd0015

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel climbs into the driver's seat of an official track vehicle at Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at the speedway and will ride around the track, taking "hot laps" in the car. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  13. KSC-08pd0013

    NASA Image and Video Library

    2008-01-08

    KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel (right) thanks NASCAR driver Kurt Busch (center) for his views about his pending "hot laps" in an official track vehicle around the Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan Fest at. Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media. The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third. Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008. Photo credit: NASA/George Shelton

  14. Thermal and cryogenic design study for space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Urbach, A. R.; Kelly, T.; Poley, R.

    1984-01-01

    A study was conducted to determine the ability of an all superfluid helium design to meet the performance requirements of background limited to 200 micrometer, and a two year lifetime for a one meter class free flying infrared observatory. Both a 98 deg and 28.5 deg inclination orbits were examined, and aperture shade designs were developed for both orbits. A unique forebaffle cooling design significantly reduces the sensitivity to aperture heat loads. With certain restrictions on observing modes, the study determined that an all superfluid helium Dewar will meet the temperature and lifetime requirements. A dual cryogen SFHe/SH2 system was also investigated for the 28.5 deg orbit and found to provide a more constant forebaffle temperature but with only a slight improvement in lifetime.

  15. Forget about data, deliver results

    NASA Astrophysics Data System (ADS)

    Walter, Roland

    2015-12-01

    High-energy astrophysics space missions have pioneered and demonstrated the power of legacy data sets for generating new discoveries, especially when analysed in ways original researchers could not have anticipated. The only way to ensure that the data of present observatories can be effectively used in the future is to allow users to perform on-the-fly data analysis to produce straightforwardly scientific results for any sky position, time and energy intervals without requiring mission specific software or detailed instrumental knowledge. Providing a straightforward interface to complex data and data analysis makes the data and the process of generating science results available to the public and higher education and promotes the visibility of the investment in science to the society. This is a fundamental step to transmit the values of science and to evolve towards a knowledge society.

  16. The mermithid species Isomermis lairdi (Nematoda, Mermithidae), previously only known in Africa, found in Europe

    PubMed Central

    Gradinarov, Denis

    2014-01-01

    Abstract The present work contributs to the knowledge on the aquatic mermithids (Nematoda, Mermithidae) occurring in black flies – an insufficiently studied group of parasitic nematodes. Isomermis lairdi Mondet, Poinar & Bernadou, 1977, described from larvae of Simulium damnosum Theobald, 1903 in Western Africa, is reported to occur in Bulgaria. The species was isolated from larvae of Simulium ornatum Meigen, 1818 in a local population of simuliids in a mountain stream near Jeleznitsa Village, Sofia district. Postparasitic juveniles of mermithids were obtained from the hosts and reared to the adult stage. The species was identified by morphological and morphometrical characters of postparasitic juveniles, and of male and female individuals. In the summer of 2012 a relatively high rate of mermithid infection in a local host population was detected (prevalence up to 44.1%). In August of the next year host abundance had considerably declined and other simuliid species, Simulium variegatum Meigen, 1818 and Simulium reptans (Linnaeus, 1758), predominated in the investigated locality. In West Africa, Isomermis lairdi is considered to be a potential biological agent for reducing the population density of the Simulium damnosum complex – the main vector of human onchocerciasis. In Europe, species of the Simulium ornatum complex are among the vectors of onchocerciasis of cattle and deer. The mermithids presumably play a certain role in the epidemiology of these diseases. A brief discussion on the taxonomy of the genus Isomermis Coman, 1953, and of the feasibility of molecular methods in mermithid taxonomy is provided. The species Isomermis lairdi is reported for the first time from Europe. PMID:25493063

  17. "Teach Your Children Well": Arguing in Favor of Pedagogically Justifiable Hospitality Education

    ERIC Educational Resources Information Center

    Potgieter, Ferdinand J.

    2016-01-01

    This paper is a sequel to the paper which I delivered at last year's BCES conference in Sofia. Making use of hermeneutic phenomenology and constructive interpretivism as methodological apparatus, I challenge the pedagogic justifiability of the fashionable notion of religious tolerance. I suggest that we need, instead, to reflect "de…

  18. The Lozanov Language Class.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    In Sofia, Bulgaria, at the Institute of Suggestology headed by Dr. Georgi Lozanov, yoga relaxation has been combined with the Mauger oral method to produce a unique system of foreign language teaching: Suggestopedia. In a pleasant classroom, 12 students sit in specail chairs in front of a teacher individually trained in the foreign language and in…

  19. Structures of School Systems Worldwide: A Comparative Study

    ERIC Educational Resources Information Center

    Popov, Nikolay

    2012-01-01

    In the past 20 years I have been examining the structures of school systems worldwide. This ongoing research has been enriched by the findings obtained from the lecture course on Comparative Education I have been delivering to students in the Bachelor and Master's Education Programs at Sofia University, Bulgaria. This paper presents some results…

  20. Designing the Internet of Things for Learning Environmentally Responsible Behaviour

    ERIC Educational Resources Information Center

    Hu, Jun; van der Vlist, Bram; Niezen, Gerrit; Willemsen, Willem; Willems, Don; Feijs, Loe

    2013-01-01

    We present two designs in the area of the Internet of Things, utilizing the ontology-driven Smart Objects For Intelligent Applications (SOFIA) Interoperability Platform (IOP). The IOP connects domestic objects in the physical world to the information world, allowing for coaching the behaviour of, or raising awareness in, domestic energy…

  1. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  2. Modeling of shallow and inefficient convection in the outer layers of the Sun using realistic physics

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Cheol; Fox, Peter A.; Sofia, Sabatino; Demarque, Pierre

    1995-01-01

    In an attempt to understand the properties of convective energy transport in the solar convective zone, a numerical model has been constructed for turbulent flows in a compressible, radiation-coupled, nonmagnetic, gravitationally stratified medium using a realistic equation of state and realistic opacities. The time-dependent, three-dimensional hydrodynamic equations are solved with minimal simplifications. The statistical information obtained from the present simulation provides an improved undserstanding of solar photospheric convection. The characteristics of solar convection in shallow regions is parameterized and compared with the results of Chan & Sofia's (1989) simulations of deep and efficient convection. We assess the importance of the zones of partial ionization in the simulation and confirm that the radiative energy transfer is negliglble throughout the region except in the uppermost scale heights of the convection zone, a region of very high superadiabaticity. When the effects of partial ionization are included, the dynamics of flows are altered significantly. However, we confirm the Chan & Sofia result that kinetic energy flux is nonnegligible and can have a negative value in the convection zone.

  3. The quest for infall in star-forming regions

    NASA Astrophysics Data System (ADS)

    Wyrowski, Friedrich

    2018-06-01

    Observation of infall is key to our understanding of the accretion process in star formation. High-resolution spectroscopy allows us to resolve molecular lines originating from the dense molecular envelopes of the forming (proto-) stars to deduce the kinematics of the gas. In this contribution, I'll describe how SOFIA can significantly contribute to the quest for and characterisation of infall by providing unique access to molecular lines at THz frequencies that allow red-shifted absorption studies as direct probe of infall and that provide access to fine structure and high excitation lines that probe outflowing gas as indirect evidence for accretion. In particular, I will report on a recent study using the GREAT high-spectral resolution instrument on-board of SOFIA to observe ammonia at 1.8 THz. Eight out of eleven observed massive clumps have been found with red-shifted absorption that is indicative of infall motions. This fraction of 72% is substantially higher than that found in past searches for the blue-skewed profile signature. The observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages.

  4. The Surprising Complexity of Diffuse and Translucent Clouds Toward SGR B2: Diatomics and COMs from 4 GHz to 1.2 THz

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Corby, Joanna F.; Martin-Drumel, Marie-Aline; Schilke, P.; McCarthy, Michael C.; Remijan, Anthony

    2017-06-01

    Many diffuse and translucent clouds lie along the line of sight between Earth and the Galactic Center that can be probed through molecular absorption at characteristic velocities. We highlight results of a study of diffuse and translucent clouds along the line of sight to Sgr B2, including SOFIA observations of SH near 1.4 THz and GBT PRIMOS observations from 4 to 50 GHz. We find significant variation in the chemical conditions within these clouds, and the abundances do not appear to correlate with the total optical depth. Additionally, from the GBT observations, we report the first detections of multiple complex organic molecules (COMs) in diffuse and translucent clouds, including CH_3CN, HC_3N, CH_3CHO, and NH_2CHO. We compare the GBT results to complementary observations of SH, H_2S, and others at mm, sub-mm, and THz frequencies from the NRAO 12m, Herschel HIFI, and SOFIA facilities, and comment on the insights into interstellar sulfur chemistry which is currently not well constrained.

  5. The total ozone at mid latitudes

    NASA Astrophysics Data System (ADS)

    Mendeva, Bogdana

    The total ozone at mid latitudes B.D.Mendeva 1, D.G. Krastev 1, Ts.N.Gogosheva 2 1 Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences, Stara Zagora De-partment, Bulgaria, bmendeva@abv.bg 2 Institute of Astronomy, Bulgarian Academy of Sciences, Sofia, Bulgaria, This paper presents the total ozone content (TOC) behaviour over Bulgaria from satellite ex-periments (TOMS on the Earth Probe satellite and SCIAMACHY on board ENVISAT (ESA)). The long-term variations of the total ozone monthly means values in the period 1997-2009 are examined. The calculated linear ozone trend for this time interval is shown. An analysis of the total ozone over the Balkan region is also presented. For this purpose data from the SCIA-MACHY are used. The investigation is made for Athens (37o 59'N, 23o46'E), Thessaloniki (40o31'N, 22o58'E), Sofia (42o39'N, 23o23'E) and Bucharest (44o28'N, 26o17'E) in the period 2003-2009. A comparison between the courses of the monthly mean ozone values over these places is shown.

  6. SOFIA/FORCAST Observations of the Arched Filamentary Region in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hankins, Matthew; Lau, Ryan M.; Morris, Mark; Herter, Terry L.

    2016-06-01

    Abstract: We present 19.7, 25.2, 31.5, and 37.1 μm maps of the Thermal Arched Filament region in the Galactic Center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) with an angular resolution of 3.2-3.8". We calculate the integrated infrared luminosity of the Arched Filaments and show that they are consistent with being heated by the nearby Arches cluster. Additionally, using our observations, we infer dust temperatures (75 - 90 K) across the Arched Filaments which are remarkably consistent over large spatial scales (˜ 25 pc). We discuss the possible geometric effects needed to recreate this temperature structure. Additionally, we compare the observed morphology of the Arches in the FORCAST maps with the Paschen-α emission in the region to study what fraction of the infrared emission may be coming from dust in the HII region versus the PDR beneath it. Finally, we use Spitzer/IRAC 8 μm data to look for spatial variations in PAH abundance in the rich UV environment of the young (~2-4 Myr) and massive Arches cluster.

  7. Expanded science and management utllity of SWE and albedo data from the NASA/JPL Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Deems, J. S.; Marks, D. G.; Hedrick, A. R.; Bormann, K.; Skiles, S. M.; Boardman, J. W.; Graham, C. B.; McGurk, B. J.; Gehrke, F.; Berisford, D. F.; Ferraz, A.; Saatchi, S.; Schimel, D.

    2016-12-01

    The NASA Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the fourth year of the ASO program, 2016, and the now four years of data record in the Western United States. Following on the heels of the most intense, sustained drought in California history, 2016 held promise of a large snowfall year due to an intense El Nino anomaly. Ultimately, the year had approximately 85% of average peak SWE. In the Sierra Nevada, ASO measured 10x greater SWE than near peak in the dramatic 2015 drought year, and twice that of the more moderate drought year of 2013. Water managers in the Sierra were using these data regularly and extending the dynamic range of newly established relationships between accumulated runoff (circa April through July runoff) and ASO total basin SWE acquisitions. ASO also participated in the NASA OLYMPEX project by flying the entire snow-covered reghions of the Olympic Peninsula for distributed SWE. These data are now being used to validate snowfall estimates from modeling and accumulation patterns as inferred from the NASA Global Precipitation Measurement mission (GPM). The ASO snow program expanded to acquire data in the McKenzie and Deschutes Rivers of Oregon in participation with university and state/federal agencies; Sagehen and Lee Vining basins in the Sierra Nevada, California; the Reynolds Creek Experimental Watershed in Idaho; and the East River, in the Colorado River Basin. These regions extend the existing program flying the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains.The ASO SWE and albedo data are now being used to constrain various hydrologic models for water cycle science of varying complexity and expanding empirical and physically-based water management models.

  8. Detection of OD towards the low-mass protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Parise, B.; Du, F.; Liu, F.-C.; Belloche, A.; Wiesemeyer, H.; Güsten, R.; Menten, K. M.; Hübers, H.-W.; Klein, B.

    2012-06-01

    Context. Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical network, is a promising way to infer its chemical origin. Aims: We aim at understanding the formation mechanisms of water by investigating the origin of its deuterium fractionation. This can be achieved by observing the abundance of OD towards the low-mass protostar IRAS 16293-2422, where the HDO distribution is already known. Methods: Using the GREAT receiver on board SOFIA, we observed the ground-state OD transition at 1391.5 GHz towards the low-mass protostar IRAS 16293-2422. We also present the detection of the HDO 111-000 line using the APEX telescope. We compare the OD/HDO abundance ratio inferred from these observations with the predictions of chemical models. Results: The OD line is detected in absorption towards the source continuum. This is the first detection of OD outside the solar system. The SOFIA observation, coupled to the observation of the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~ 17-90 in the gas where the absorption takes place. This value is fairly high compared with model predictions. This may be reconciled if reprocessing in the gas by means of the dissociative recombination of H2DO+ further fractionates OH with respect to water. Conclusions: The present observation demonstrates the capability of the SOFIA/GREAT instrument to detect the ground transition of OD towards star-forming regions in a frequency range that was not accessible before. Dissociative recombination of H2DO+ may play an important role in setting a high OD abundance. Measuring the branching ratios of this reaction in the laboratory will be of great value for chemical models. Figure 5 is available in electronic form at http://www.aanda.org

  9. The Role of Magnetic Fields in Star Formation

    NASA Astrophysics Data System (ADS)

    Pipher, Judith

    2018-06-01

    The SOFIA instrument complement makes available the capability to characterize the physical properties (turbulence, dynamics, magnetic field structure and strength, gas density) of the molecular cloud filaments in which stars form.HAWC+, the newest SOFIA instrument, provides a unique opportunity to probe the complex roles that magnetic fields play in the star formation process on spatial scales intermediate to those explored by Planck (5’ scale), to those of ALMA at the smallest spatial scales (<0.6”scale and 2” fields of view). HAWC+ measures the thermal emission from dust grains in molecular cloud star forming regions at wavelengths 53 to 216 mm, as well as the far infrared polarization on diffraction-limited spatial scales of 5” – 20” over fields of view ~2’ – 8’. Complementary near- to mid-IR polarimetry on 8-10m telescopes is available, as is submm polarimetry from both ground-based and balloon-borne telescopes. Currently there is no other far-IR polarimetry facility, and the HAWC+ wavelength ranges allow discrimination among different polarization mechanisms. HAWC+’ angular resolution is particularly well suited to study the magnetic field of entire cloud cores, thus connecting the Planck large scale molecular cloud structure with ALMA’s detailed small-scale structure of the core.SOFIA also offers the advantages of molecular line emission follow-up on regions for which HAWC+ determines magnetic field strength and direction. GREAT and/or FIFI-LS molecular line observations of the region of interest will complement the magnetic field observations: cloud and filament dynamics, the magnitude of the turbulence, and of course the core gas density can be determined through observations of appropriate molecular lines.These observations, as well as synergistic observations with other telescopes, will provide powerful tools to further our understanding of the fundamental physics of both low mass and high mass star formation, including the role that magnetic fields play in each.

  10. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Treesearch

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  11. Phoretic mites associated with spruce bark beetle Ips typographus L. (Curculionidae: Scolytinae) from Bulgaria

    Treesearch

    Danail Takov; Daniela Pilarska; John Moser

    2010-01-01

    A total of 818 specimens of Ips typographus L. were investigated for the presence of phoretic mites. They were collected from 4 localities in Vitosha Mountain, near Sofia. Five phoretic mites were found: Dendrolaelaps quadrisetus, Trichouropoda polytricha, Histiostoma piceae, Uroobovella ipidis and Proctolaelaps jiseri. 11.1 % from all investigated specimens of Ips...

  12. Project-Based Learning in Engineering Design in Bulgaria: Expectations, Experiments and Results

    ERIC Educational Resources Information Center

    Raycheva, Regina Pavlova; Angelova, Desislava Ivanova; Vodenova, Pavlina Minkova

    2017-01-01

    Using a students' workshop as a laboratory, this article summarises the observation of three years' implementation of a new study module for a Bachelor Program in Engineering Design (Interior and Furniture Design) at the University of Forestry, Sofia, Bulgaria. The article offers an analysis of group dynamics and the difficulties and issues…

  13. Quality, Social Justice and Accountability in Education Worldwide. BCES Conference Books, Volume 13, Number 2

    ERIC Educational Resources Information Center

    Chigisheva, Oksana, Ed.; Popov, Nikolay, Ed.

    2015-01-01

    This proceedings is divided into two parts. Volume 13, Number 1 contains papers presented at the thirteenth annual international conference of the Bulgarian Comparative Education Society (BCES) held in Sofia, Bulgaria June 10-13, 2015. Volume 13, Number 2 contains papers presented at the third International Partner Conference, organised by the…

  14. The use of remote sensing for updating extensive forest inventories

    Treesearch

    John F. Kelly

    1990-01-01

    The Forest Inventory and Analysis unit of the USDA Forest Service Southern Forest Experiment Station (SO-FIA) has the research task of devising an inventory updating system that can be used to provide reliable estimates of forest area, volume, growth, and removals at the State level. These updated inventories must be accomplished within current budgetary restraints....

  15. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    ERIC Educational Resources Information Center

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  16. Translations on Eastern Europe. Political, Sociological, and Military Affairs, Number 1471

    DTIC Science & Technology

    1977-11-09

    the People’s Republic of Bulgaria, at dinner party given by him in Sofia on 17 October 1977 in honor of Piotr Jaroszewicz, chairman of the Council of...forces and weakening their pressure. We refer to a statement by Zbigniew Brzezinski , U.S. President Carter’s present adviser on questions of

  17. Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph

    2007-01-01

    The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.

  18. Tangible Things of American Astronomy

    NASA Astrophysics Data System (ADS)

    Schechner, Sara Jane

    2018-01-01

    As a science that studies celestial objects situated at vast distances from us, astronomy deals with few things that can be touched directly. And yet, astronomy has many tangible things—scientific instruments, observatories, and log books, for example—which link the past to the present. There is little question about maintaining things still valuable for scientific research purposes, but why should we care about documenting and preserving the old and obsolete? One answer is that material things, when closely examined, enhance our knowledge of astronomy’s history in ways that written texts alone cannot do. A second answer is that learning about the past helps us live critically in the present. In brief case studies, this talk will find meaning in objects that are extraordinary or commonplace. These will include a sundial, an almanac, telescopes, clocks, a rotating desk, photographic plates, and fly spankers.

  19. Official STS-67 preflight crew portrait

    NASA Image and Video Library

    1994-12-01

    STS067-S-002 (December 1994) --- Five NASA astronauts and two payload specialists from the private sector have been named to fly aboard the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission, scheduled for March 1995. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John M. Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialist's flew aboard the Space Shuttle Columbia for the STS-35/ASTRO-1 mission in December 1990.

  20. Validation of scintillometer measurements over a heterogeneous landscape: The LITFASS-2009 Experiment

    NASA Astrophysics Data System (ADS)

    Beyrich, F.; Bange, J.; Hartogensis, O.; Raasch, S.

    2009-09-01

    The turbulent exchange of heat and water vapour are essential land surface - atmosphere interaction processes in the local, regional and global energy and water cycles. Scintillometry can be considered as the only technique presently available for the quasi-operational experimental determination of area-averaged turbulent fluxes needed to validate the fluxes simulated by regional atmospheric models or derived from satellite images at a horizontal scale of a few kilometres. While scintillometry has found increasing application over the last years, some fundamental issues related to its use still need further investigation. In particular, no studies are known so far to reproduce the path-averaged structure parameters measured by scintillometers by independent measurements or modelling techniques. The LITFASS-2009 field experiment has been performed in the area around the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory in Germany during summer 2009. It was designed to investigate the spatial (horizontal and vertical) and temporal variability of structure parameters (underlying the scintillometer principle) over moderately heterogeneous terrain. The experiment essentially relied on a coupling of eddy-covariance measurements, scintillometry and airborne measurements with an unmanned autonomous aircraft able to strictly fly along the scintillometer path. Data interpretation will be supported by numerical modelling using a large-eddy simulation (LES) model. The paper will describe the design of the experiment. First preliminary results from the measurements will be presented.

Top