NASA Astrophysics Data System (ADS)
Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.
2016-07-01
Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.
DOT National Transportation Integrated Search
2009-01-01
The objective of this project was to develop an improved correlation between Texas Cone Penetrometer (TCP) : blow count and undrained shear strength for soft, clay soils in the upper approximately 30 feet of the ground. Subsurface : explorations were...
NASA Astrophysics Data System (ADS)
Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.
2018-04-01
The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.
Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint
NASA Astrophysics Data System (ADS)
Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.
2016-07-01
This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.
NASA Astrophysics Data System (ADS)
Al-Bared, Mohammed Ali Mohammed; Marto, Aminaton; Sati Hamonangan Harahap, Indra; Kasim, Fauziah
2018-03-01
Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.
NASA Astrophysics Data System (ADS)
Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.
2018-04-01
Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements decreased by increasing the lengths (longer than 4 m) and, the sectional areas of the RC cores in the SDCM piles. The results of the numerical simulations closely agreed with the observed data and successfully verified the parameters affecting the performances and behavior of both SDCM and DCM piles.
Admixing dredged marine clay with cement-bentonite for reduction of compressibility
NASA Astrophysics Data System (ADS)
Rahilman, Nur Nazihah Nur; Chan, Chee-Ming
2017-11-01
Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.
NASA Astrophysics Data System (ADS)
Widada, Sugeng; Saputra, Sidhi; Hariadi
2018-02-01
Semarang City is located in the northern coastal plain of Java which is geologically composed of alluvial deposits. The process of the sediment diagenesis has caused a land subsidence. On the other hand, the development of the industrial, service, education and housing sectors has increased the number of building significantly. The number of building makes the pressure of land surface increased, and finally, this also increased the rate of land subsidence. The drilling data indicates that not all layers of lithology are soft layers supporting the land subsidence. However, vertical distribution of the soft layer is still unclear. This study used Resistivity method to map out the soft zone layers of lithology. Schlumberger electrode configuration with sounding system method was selected to find a good vertical resolution and maximum depth. The results showed that the lithology layer with resistivity less than 3 ohm is a layer of clay and sandy clay that has the low bearing capacity so easily compressed by pressure load. A high land subsidence is happening in the thick soft layer. The thickness of that layer is smaller toward the direction of avoiding the beach. The improvement of the bearing capacity of this layer is expected to be a solution to the problem of land subsidence.
Molecular dynamics studies of polyurethane nanocomposite hydrogels
NASA Astrophysics Data System (ADS)
Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.
2013-10-01
Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.
Quantifying structural states of soft mudrocks
NASA Astrophysics Data System (ADS)
Li, B.; Wong, R. C. K.
2016-05-01
In this paper, a cm model is proposed to quantify structural states of soft mudrocks, which are dependent on clay fractions and porosities. Physical properties of natural and reconstituted soft mudrock samples are used to derive two parameters in the cm model. With the cm model, a simplified homogenization approach is proposed to estimate geomechanical properties and fabric orientation distributions of soft mudrocks based on the mixture theory. Soft mudrocks are treated as a mixture of nonclay minerals and clay-water composites. Nonclay minerals have a high stiffness and serve as a structural framework of mudrocks when they have a high volume fraction. Clay-water composites occupy the void space among nonclay minerals and serve as an in-fill matrix. With the increase of volume fraction of clay-water composites, there is a transition in the structural state from the state of framework supported to the state of matrix supported. The decreases in shear strength and pore size as well as increases in compressibility and anisotropy in fabric are quantitatively related to such transition. The new homogenization approach based on the proposed cm model yields better performance evaluation than common effective medium modeling approaches because the interactions among nonclay minerals and clay-water composites are considered. With wireline logging data, the cm model is applied to quantify the structural states of Colorado shale formations at different depths in the Cold Lake area, Alberta, Canada. Key geomechancial parameters are estimated based on the proposed homogenization approach and the critical intervals with low strength shale formations are identified.
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Jefferson, I.; Madun, A.; Abidin, M. H. Z.; Rogers, C. D. F.
2018-04-01
Electrokinetic stabilisation (EKS) method has the ability to solve the problems of soft highly compressibility soil. This study will present the results from an experimental study of EKS on soft soils using inactive kaolinite clay, inert electrode and distilled water (DW) as a pure system mechanism before any chemical stabilisers being used in this research. Therefore, this will provide a baseline study to improve the efficiency of EKS approach. The test model was using inert electrode of Electrokinetic Geosythentic (EKG) developed at the Newcastle University to apply a constant voltage gradient of 50 V/m across a soil sample approximately 400 mm. Distilled water was used at the pore electrolyte fluid compartments supplied under zero hydraulic gradient conditions for the periods of 3, 7 and 14 days. Throughout the monitoring, physical and chemical characteristics were measured. Results from the monitoring data, physical and chemical properties of the pure system showed the development of pH gradient, the changes of electrical conductivity and chemical concentrations with regards to the distance from anode and treatment periods due to the electrochemical effects even though there was no chemical stabilisers were introduced or released from the degradation of electrodes.
NASA Astrophysics Data System (ADS)
Selamat, Mohamad R.; Rosli, Ros N.; Ramli, Muhd H.; Azmi, Mastura; Kumaravelu, Prakash; Govindasamy, Darvintharen
2017-10-01
A site investigation by wash boring method was carried out in the compound of the Engineering Campus, Universiti Sains Malaysia, in Northwest Peninsular Malaysia. The subsurface soils of the region are known to be comprised of quaternary deposits including the prominent marine clays of the Gula formation. The conventional Standard Penetration Test, or SPT, was carried out for every 1.5m depth. The 18 disturbed samples collected were tested for grain size distribution, Atterberg limits, and specific gravity; and categorized according to the unified soil classification system. The results indicate low SPT numbers, or SPTN, i.e. SPTN<4 for depths lesser than 10m, slightly high SPTN, i.e. 4≤SPTN≤8 for depths between 10 and 12m, and very high SPTN, i.e. SPTN>8 for depths deeper than 12m. Samples from shallower than 12m were mostly classified as low plasticity clay, or CL, which represents the soft marine clay while the underlying materials were mostly sands, namely poorly graded sand, or SP, silty sand, or SM, clayey sand, or SC, and well graded sand, or SW. Another site investigation by the CPTU method was also carried out 5m from the wash boring position, penetrating the entire soft clay stratum, thus giving another marine clay characterization in addition to the one given by the first method. The CPTU results generally gave SPTN≤2 for depths lesser than 8m, 2≤;SPTN≤4 for depths between 8 and 12m, and SPTN=23 at 12.5m, where the CPTU test terminated. The CPTU method classified the soft materials as sensitive fine grains, clays, and clayey silts to silty clays. Thus the CPTU results did not agree very well with the conventional wash boring SPT results in terms of the SPTN obtained. Nevertheless both methods equally identified the prominent presence of the soft marine clay stratum in the top 12.5m and the underlying strong sandy bed with higher bearing capacity values.
Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground
NASA Astrophysics Data System (ADS)
Yu, Chuang; Liu, Songyu
2008-11-01
Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.
The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.
Settlement of the USS Arizona, Pearl Harbor, Hawaii
Carkin, Brad A.; Kayen, Robert E.
2013-01-01
The U.S. Geological Survey, in collaboration with the National Park Service Submerged Resources Center, undertook investigations at the USS Arizona Memorial at Pearl Harbor, Hawaii, in 2002, 2003, and 2005 to characterize geological factors affecting the deterioration and movement of the hull of the USS Arizona. Since sinking on the morning of December 7, 1941, the hull of the USS Arizona has been slowly but steadily disappearing below the surface of Pearl Harbor. Continuous sediment coring at three of four locations around the hull of the Arizona was only partially successful, but it was sufficient to identify a varied sedimentary substrate beneath the hull. A boring near the stern reveals a thick, continuous sequence of soft, gray clay to the bottom of the boring. In contrast, borings near the bow and starboard side, below about 5 meters subbottom depth, indicate the presence of very stiff, brown clay and coral debris and an absence of soft clay. Multisensor core logger scanning of the recovered cores distinguishes the lower density of the soft, gray clay at the stern from the higher density of the stiff, brown clays and coral debris at the bow and starboard side. Uniaxial consolidation testing of the soft gray clay indicates a normally consolidated sequence, whereas the stiff, brown clay and coral debris are overconsolidated. Profiles of shear wave velocity vs. depth obtained through spectral analysis of interface wave testing around the perimeter of the hull in 2005 identified areas of higher velocity, stiffer sediment at the bow and starboard side, which correspond to the dense, stiff clay recovered near the bow and starboard borings. Low shear-wave velocities at the port midship and quarter of the hull correlate with the lower density, softer sediment recovered from the boring at the stern. Cross sections of the subbottom of the Memorial combine results from the sediment borings and geophysical surveys and depict a wedge of soft clay unconformably overlying the stiff clays and coral debris beneath the aft half of the USS Arizona and thickening toward the stern. The 2008 position of the hull has been documented using both tide-based and differential Global Positioning System (GPS) measuring systems. Analysis of historical and recent photographs was done to create a record of settlement from the time of sinking in 1941 to the present. By examining shadows in suitable photos, the sun azimuth, local time of day, and tide levels were determined to derive tide-adjusted and sea-level-rise-corrected elevations for structures on the hull and from these elevations to obtain settlement and tilt trends. The settlement trends, most complete for barbette 3, have two components. An early, nonlinear component ends on December 9, 1941, and represents the initial penetration and displacement of the bottom sediment by the hull. A linear, long-term trend of normal consolidation continues to the present day. Long-term settlement rates are greatest at the stern and decrease linearly to the midship, showing that the aft half of the hull is moving as an intact, rigid body. The recent rate of settlement at the stern is about 3.5 mm/year; rates at the starboard midship and forward part of the hull are less than one-third of the stern rate. The aft half of the USS Arizona hull presently tilts about 2 degrees to port, an increase of at least 1.5 degrees since the initial sinking of the ship. The results of this study identify differential settlement of the Arizona hull, due to the wedge of soft clay underlying the aft half of the hull, as the cause of the movement of the hull beneath the surface of Pearl Harbor. Calculation of sediment consolidation using lab-determined properties of the soft clay demonstrates that the observed settlements can be reproduced by projecting appropriate clay thicknesses beneath the hull. Several of the high-quality photographs analyzed for the historical settlement analysis highlight some of the limitations of this retrospective technique for determining tide-based elevations. In these cases, calculated structure elevations do not conform to the settlement trend, indicating that there can be complicating factors affecting the interpretation of the photos. Conflicting dates for events during the salvage operations were also encountered.
Stabilization of soft clay subgrades in Virginia : phase I laboratory study.
DOT National Transportation Integrated Search
2005-01-01
Many pavement subgrades in Virginia consist of wet, highly plastic clay or other troublesome soils. Such soils can be treated with traditional lime and cement stabilization methods. Alternatives, including lignosulfonates and polymers, are available,...
NASA Astrophysics Data System (ADS)
Apriyono, Arwan; Sumiyanto, Gusmawan, Dadan Deri
2017-03-01
This study presents the application of woven waste tires as soft clay subgrade reinforcement for preventing highway structural failure, reducing construction cost and minimizing environmental hazards associated with the increasingly large amount of waste tires in Indonesia. To his end, we performed experiments using five stripe distance variations of woven tires - i.e. 2, 2.5, 3, 3.5 and 4 cm. Five soft clay samples were made and each was reinforced using each of these woven tires. The California Bearing Ratio (CBR) test was conducted on each softclay sample and the CBR value was determined from the stress on the displacement of 0.10 and 0.20 inch. The correlation between CBR value and strip distance was used to infer the optimum woven tires strip distance, indicated by the largest CBR value. The result suggests that the strip distance of 3 cm is optimum with corresponding CBR value of ˜20%, which is 115% increase compared to softclay without reinforcement.
Roberts, Jack C; Ward, Emily E; Merkle, Andrew C; O'Connor, James V
2007-05-01
To assess the possibility of injury as a result of behind armor blunt trauma (BABT), a study was undertaken to determine the conditions necessary to produce the 44-mm clay deformation as set forth in the National Institute of Justice (NIJ) Standard 0101.04. These energy levels were then applied to a three-dimensional Human Torso Finite Element Model (HTFEM) with soft armor vest. An examination will be made of tissue stresses to determine the effects of the increased kinetic energy levels on the probability of injury. A clay finite element model (CFEM) was created with a material model that required nonlinear properties for clay. To determine these properties empirically, the results from the CFEM were matched with experimental drop tests. A soft armor vest was modeled over the clay to create a vest over clay block finite element model (VCFEM) and empirical methods were again used to obtain material properties for the vest from experimental ballistic testing. Once the properties for the vest and clay had been obtained, the kinetic energy required to produce a 44-mm deformation in the VCFEM was determined through ballistic testing. The resulting kinetic energy was then used in the HTFEM to evaluate the probability of BABT. The VCFEM, with determined clay and vest material properties, was exercised with the equivalent of a 9-mm (8-gm) projectile at various impact velocities. The 44-mm clay deformation was produced with a velocity of 785 m/s. This impact condition (9-mm projectile at 785 m/s) was used in ballistic exercises of the HTFEM, which was modeled with high-strain rate human tissue properties for the organs. The impact zones were over the sternum anterior to T6 and over the liver. The principal stresses in both soft and hard tissue at both locations exceeded the tissue tensile strength. This study indicates that although NIJ standard 0101.04 may be a good guide to soft armor failure, it may not be as good a guide in BABT, especially at large projectile kinetic energies. Further studies, both numerical and experimental, are needed to assist in predicting injury using the NIJ standard.
USDA-ARS?s Scientific Manuscript database
Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than most synthetic fabrics. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-clay nan...
Field testing of stiffened deep cement mixing piles under lateral cyclic loading
NASA Astrophysics Data System (ADS)
Raongjant, Werasak; Jing, Meng
2013-06-01
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
Xiphinema americanum as Affected by Soil Organic Matter and Porosity.
Ponchillia, P E
1972-07-01
The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... operations, support space, media operations, hospitality services, sponsored commercial space, and...). Intertidal habitats in the Central Bay, or those that lie between low and high tides, include sandy beaches... sediment and hard substrate habitat. Soft bottom substrate ranges between soft mud with high silt and clay...
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay
NASA Astrophysics Data System (ADS)
Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun
2015-06-01
In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.
Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen
2017-04-05
Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.
Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang
2013-01-01
Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed.
Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang
2013-01-01
Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed. PMID:23878521
NASA Astrophysics Data System (ADS)
Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah
2018-02-01
The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.
Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L
2014-06-17
There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.
Archaeological Survey at Fort Hood, Texas. Fiscal Year 1990: The Northeastern Perimeter Area
1994-01-01
sands, silty clays, conglomerates, and saline or gypsiferous sediments; (2) neuritic marls, clays, shales, and lknestones; and (3) reef (zoogenic...sense in this area; however, those terms might be used to designate the shelly marl, the soft nodular limestone, and the rudistid reef facies, for in...features such as cisterns, wells, or corrals . Once a quadrant has been covered by the six surveyors. tentative site boundaries are drawn for the sites
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.
Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, T.; Ecker, L.; Gill, S.
2010-11-01
To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid;more » thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.« less
Integral abutment bridge for Louisiana's soft and stiff soils : tech summary.
DOT National Transportation Integrated Search
2016-03-01
In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...
Integral abutment bridge for Louisiana's soft and stiff soils : Tech summary.
DOT National Transportation Integrated Search
2016-03-01
In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...
Characterization of undrained shear strength profiles for soft clays at six sites in Texas.
DOT National Transportation Integrated Search
2009-01-01
TxDOT frequently uses Texas Cone Penetrometer (TCP) blow counts to estimate undrained shear strength. : However, the current correlations between TCP resistance and undrained shear strength have been developed primarily for : significantly stronger s...
Osman, Azlin F; M Fitri, Tuty Fareyhynn; Rakibuddin, Md; Hashim, Fatimah; Tuan Johari, Syed Ahmad Tajudin; Ananthakrishnan, Rajakumar; Ramli, Rafiza
2017-05-01
Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.
2017-12-01
The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.
Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress
NASA Astrophysics Data System (ADS)
Sarout, Joel; Esteban, Lionel; Delle Piane, Claudio; Maney, Bruce; Dewhurst, David N.
2014-09-01
A novel experimental method is introduced to estimate the Thomsen's elastic anisotropy parameters ɛ and δ of a transversely isotropic shale under variable stress and saturation conditions. The method consists in recording P-wave velocities along numerous paths on a cylindrical specimen using miniature ultrasonic transducers. Such an overdetermined set of measurements is specifically designed to reduce the uncertainty associated with the determination of Thomsen's δ parameter compared to the classical method for which a single off-axis measurement is used (usually at 45° to the specimen's axis). This method is applied to a specimen of Opalinus Clay recovered from the Mont-Terri Underground Research Laboratory in Switzerland. The specimen is first saturated with brine at low effective pressure and then subjected to an effective pressure cycle up to 40 MPa, followed by a triaxial loading up to failure. During saturation and deformation, the evolution of P-wave velocities along a maximum of 240 ray paths is monitored and Thomsen's parameters α, ɛ and δ are computed by fitting Thomsen's weak anisotropy model to the data. The values of ɛ and δ obtained at the highest confining pressures reached during the experiment are comparable with those predicted from X-ray diffraction texture analysis and modelling for Opalinus Clay reported in the literature. These models neglect the effect of soft-porosity on elastic properties, but become relevant when soft porosity is closed at high effective pressure.
DOT National Transportation Integrated Search
1985-07-01
Subsurface soil in the New Orleans area is generally composed of peat and clay. The low bearing capacity of the soft natural soil has caused early deterioration of asphaltic concrete pavements which typically fail prior to carrying their designed loa...
DOT National Transportation Integrated Search
2006-06-01
Five contracts from the Central Artery/Tunnel (CA/T) project in Boston, MA, were reviewed to document issues related to design and construction of driven pile foundations. Given the soft and compressible marine clays in the Boston area, driven pile f...
Reinforcement of natural rubber latex by nanosize montmorillonite clay
NASA Astrophysics Data System (ADS)
Tantatherdtam, Rattana
Based on the unique character of montmorillonite namely its layer structure and the ability of silicate particles to separate into nanometer-size platelets, natural rubber (polyisoprene)/clay composites were obtained by mixing rubber latex with clay-water dispersion and coagulating the mixture. The resulting film had greatly improved mechanical properties compared with films using micron-sized fillers. Further, both modulus and toughness were improved; in many composite system an improvement in modulus leads to a loss of toughness. X-ray diffraction results indicated that clay platelets dispersed in the rubber matrix on the nanoscale level with some macromolecules intercalated into the clay gallery. The observed considerable improvement in mechanical properties, coupled with a theoretical model of composite modulus suggests a dispersed structure of clay in the composite. While not all clay particles are exfoliated, data suggest that a reasonable fraction of exfoliated materials is required to explain the experimental results.
[Mechanisms of removing red tide organisms by organo-clays].
Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui
2006-08-01
We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.
NASA Astrophysics Data System (ADS)
Knight, Jasper
1999-10-01
Glacial outwash, deposited during deglaciation of the late Devensian ice sheet, is present as a flat-topped valley fill in the Tempo Valley on the southern flanks of the Fintona Hills, Northern Ireland. Sedimentologically, the outwash comprises well-sorted and interbedded rippled to massive sands which record distal deposition within a proglacial water body. Beds of ripple-drift cross-laminated sands contain deformed (folded and contorted) soft-sediment clasts which are composed mainly of silt and clay. The soft-sediment clasts were deformed prior to final deposition because clast a- b planes lie conformable to sand laminae which are undeformed. Morphological characteristics of the soft-sediment clasts, and their facies context, provide evidence for transport mechanisms, depositional environment, and processes of clast deformation. The soft-sediment clasts were transported into a proglacial water body by unidirectional water currents (˜1.5-2.5 m s -1). Sediment transport processes include sediment bypassing within the water column, a low bedload component, and grain flow activity during waning flow stages. The overall morphology of soft-sediment clasts records between 1 and 3 distinct phases of hydroplastic deformation prior to emplacement. The deformation phases are recognised on the basis of morphologically `unrolling' the superimposed folds of the soft-sediment clasts. Deformation structures (i.e. fold style) and direction of the principal stress axis relative to clast axes suggest that clasts were reoriented with respect to water flow direction following each deformation phase. Processes of deformation include folding-over of the clast along its b axis into two or more components, crumpling and abrasion of the outer margins of the b plane, and squashing of the clast c axis (some of which may be post-depositional deformation). The presence of silt- and clay-rich soft-sediment clasts within the outwash succession suggests that they were ripped-up from shallow and irregular pools on the glacier forefield, into which fine sediments accumulated after flood or meltwater events, and transported distally into a proglacial water body. These inferences based on facies evidence and styles of hydroplastic deformation impact on reconstructions of local palaeogeography, and the wider interpretation of similar soft-sediment clasts in the geological record.
Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation
NASA Astrophysics Data System (ADS)
Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li
2017-11-01
In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.
Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay
NASA Astrophysics Data System (ADS)
Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.
2009-11-01
Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.
Hagen, David A; Saucier, Lauren; Grunlan, Jaime C
2014-12-24
Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.
Synchrotron X-ray Scattering from Self-organized Soft Nanostructures in Clays
NASA Astrophysics Data System (ADS)
Fossum, J. O.
2009-04-01
In the general context of self-organization of nanoparticles (in our case clay particles), and transitions in such structures, we study interconnected universal complex physical phenomena such as: (i) spontaneous gravitationally induced phase separation and nematic self-organization in systems of anisotropic clay nanoparticles in aqueous suspension, including studies of isotropic to nematic transitions [1,2] (ii) transitions from biaxial to uniaxial nematics by application of external magnetic field to self-organized systems of the same anisotropic (diamagnetic) clay nanoparticle systems [3,4] (iii) guided self-organization into chainlike structures of the same anisotropic clay nanoparticles in oil suspension when subjected to external electrical fields (electrorheological structures of polarized nanoparticles), and the stability of, and transitions of, such structures, when subjected to external mechanical stress [5,6] The experimental techniques used by us include synchrotron X-ray scattering, neutron scattering, rheometry. microscopy and magnetic resonance. We have demonstrated that clays may be used as good model systems for studies of universal physical phenomena and transitions in self-organized nanostructured soft and complex matter. Self-organization and related transitions in clay systems in particular, may have practical relevance for nano-patterning, properties of nanocomposites, and macroscopically anisotropic gels, among many other applications [7]. The synchrotron experiments have been performed at LNLS-Brazil, PLS- Korea, BNL-USA and ESRF-France. Acknowledgments: Collaborators, postdocs and students at NTNU-Norway, UiO-Norway, IFE-Norway, BNL-USA, LNLS-Brazil, UFPE-Brazil, UnB-Brazil, Univ. Amsterdam-Netherlands, Univ.Paris 7-France and other places. This research has been supported by the Research Council of Norway (RCN), through the NANOMAT, SUP and FRINAT Programs. References 1. J.O. Fossum, E. Gudding, D.d.M. Fonseca, Y. Meheust, E. DiMasi, T. Gog, C. Venkataraman, Observations of orientational ordering in aqueous suspensions of a nano-layered silicate, ENERGY The International Journal 30, 873 (2005). 2. D. M. Fonseca, Y. Méheust, J. O. Fossum, K. D. Knudsen, K. J. Måløy and K. P. S. Parmar, Phase behavior of platelet-shaped nanosilicate colloids in saline solutions: A small-angle X-ray scattering study J. Appl. Cryst. 40 292 (2007) 3. E. N. de Azevedo, M. Engelsberg, J. O. Fossum, R. E. de Souza, Anisotropic water diffusion in nematic self-assemblies of clay nano-platelets suspended in water, Langmuir 23, 5100 (2007) 4. Nils Ivar Ringdal, Master thesis, Department of Physics, NTNU (2008) 5. J.O. Fossum, Y. Meheust, K.P.S. Parmar, K.D. Knudsen, K.J. Maloy, D.d.M. Fonseca, Intercalation-enhanced electric polarization and chain formation of nano-layered particles, Europhys. Lett., 74, 438 (2006), and in the Scientific Highlights 2006 of the European Synchrotron Radiation Facility - ESRF (2007) 6. K.P.S. Parmar, Y. Meheust, B. Schelderupsen and J.O. Fossum, Electrorheological suspensions of laponite in oil: rheometry studies, Langmuir 24,1814 (2008) 7. F. Bergaya, B. K. G. Theng, and G. Lagaly, editors. Handbook of Clay Science. Elsevier (2006)
NASA Astrophysics Data System (ADS)
Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.
2017-05-01
The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.
Sedimentation and near-bottom currents in the South-Western Atlantic
NASA Astrophysics Data System (ADS)
Emelyanov, Emelyan M.
2008-01-01
The aims of the paper are: 1) to study the bottom relief and Late Quaternary bottom sediments of the South-Western Atlantic from the Amazon cone to the Vema Channel and Rio Grande Rise, and 2) to reconstruct recent and palaeo-Antarctic near-bottom currents (AABW). For this purpose, we used three main Parasound seismic profiles: 30 cores (up to 500 cm in length), the nanoplankton stratigraphy of 9 cores from the Brazilian lithological profile (along 24 °W), and literature sources. No soft sedimentes were found in the Vema channel; the bottom of the channel is acoustically "hard". Our geological data confirm that AABW flows mainly through this channel. The velocity of this flow should be higher than 100 cm.s-1. Only this strong current is able to rewash not only soft Holocene sediments, but also consolidated Quaternary deposits. Soft layered sediments occur at a depth less than 4200 m in the Hunter channel. Consequently, the AABW is able to flow from the Argentine Basin to the Brazil Basin only at a depth of more than 4200 m in this channel. Brown red clay or yellowish gray miopelagic clay prevail in the Brazil Deep. The age of red clay in the cores is different: Early or Late Pleistocene, or Holocene. Clay was rewashed and re-deposited in many areas of the deep. This means that the hydrodynamics sometimes was very active at a depth of 4000-5000 m in the Brazil Deep. The presence of conturite and turbidite interlayers in the red clay of the S. America continental base confirms the occurrence of a strong jet of the AABW (Deep Western Boundary current - DWBC) here. Antarctic and other diatoms were brought by AABW from Antarctica up to 10-5 °S. An unusual Pleistocene Ethmodiscus rex ooze was discovered at the latitude of 20 °S. Our data confirm the occurrence in the area between 10-5 °S of two mid-oceanic channels, one of them (EMOC) being located on a large sedimentary swell. The AABW in the cross-section from the Amazon River to the MAR flows through the Nara (depth 4640-4660 m) plain. This flow was confirmed by hydrochemical data. The AABW started to appear in the Rio Grande Rise region, about 50-30 mill. years. Cyclic events of glaciation and interglacial transitions throughout the Miocene-Pleistocene is a mechanism that caused the AABW currents to become more intensive or passive, with the result that the intensity of the influx of these waters from the Brazilian Basin into the Guiana Basin also changed from strong to weak.
NASA Astrophysics Data System (ADS)
Wacharawichanant, S.; Ounyai, C.; Rassamee, P.
2017-07-01
The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.
NASA Astrophysics Data System (ADS)
Olabode, Solomon Ojo
2014-01-01
Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.
Reitzel, Kasper; Balslev, Kristiane Astrid; Jensen, Henning S
2017-11-15
A 12 days laboratory study on potential desorption of Lanthanum (La) from a commercial La modified clay (Phoslock) was conducted using lake water from 17 Danish lakes with alkalinities between 0.02 and 3.7 meq L -1 and varying concentrations of DOC and humic acids (HA's). A similar study was conducted in artificial lake water with alkalinities from 0 to 2.5 meq L -1 in order to exclude interference from dissolved HA's. To test if La in solution (FLa) was associated with fine particles, the water samples were filtered sequentially through three filter sizes (1.2 μm, 0.45 μm and 0.2 μm), and finally, ultracentrifugation was used in an attempt to separate colloidal La from dissolved La. The study showed that higher FLa (up to 2.5 mg L -1 or 14% of the total La in the Phoslock) concentrations were found in soft water lakes compared to hard water lakes, probably due to dispersion of the clay at low alkalinities. In addition, this study showed that HA's seem to increase the FLa concentrations in soft water lakes, most likely through complexation of La retained in the Phoslock matrix. In summary, we conclude that elevated La concentrations in lake water after a Phoslock treatment should only be expected in soft water lakes rich in DOC and HA's. Copyright © 2017 Elsevier Ltd. All rights reserved.
Merkle, Andrew C; Ward, Emily E; O'Connor, James V; Roberts, Jack C
2008-06-01
Although soft armor vests serve to prevent penetrating wounds and dissipate impact energy, the potential of nonpenetrating injury to the thorax, termed behind armor blunt trauma, does exist. Currently, the ballistic resistance of personal body armor is determined by impacting a soft armor vest over a clay backing and measuring the resulting clay deformation as specified in National Institute of Justice (NIJ) Standard-0101.04. This research effort evaluated the efficacy of a physical Human Surrogate Torso Model (HSTM) as a device for determining thoracic response when exposed to impact conditions specified in the NIJ Standard. The HSTM was subjected to a series of ballistic impacts over the sternum and stomach. The pressure waves propagating through the torso were measured with sensors installed in the organs. A previously developed Human Torso Finite Element Model (HTFEM) was used to analyze the amount of tissue displacement during impact and compared with the amount of clay deformation predicted by a validated finite element model. All experiments and simulations were conducted at NIJ Standard test conditions. When normalized by the response at the lowest threat level (Level I), the clay deformations for the higher levels are relatively constant and range from 2.3 to 2.7 times that of the base threat level. However, the pressures in the HSTM increase with each test level and range from three to seven times greater than Level I depending on the organ. The results demonstrate the abilities of the HSTM to discriminate between threat levels, impact conditions, and impact locations. The HTFEM and HSTM are capable of realizing pressure and displacement differences because of the level of protection, surrounding tissue, and proximity to the impact point. The results of this research provide insight into the transfer of energy and pressure wave propagation during ballistic impacts using a physical surrogate and computational model of the human torso.
Novel doorways and resonances in large-scale classical systems
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Flores, J.; Mateos, J. L.; Méndez-Sánchez, R. A.; Novaro, O.; Seligman, T. H.
2011-05-01
We show how the concept of doorway states carries beyond its typical applications and usual concepts. The scale on which it may occur is increased to large classical wave systems. Specifically we analyze the seismic response of sedimentary basins covered by water-logged clays, a rather common situation for urban sites. A model is introduced in which the doorway state is a plane wave propagating in the interface between the sediments and the clay. This wave is produced by the coupling of a Rayleigh and an evanescent SP-wave. This in turn leads to a strong resonant response in the soft clays near the surface of the basin. Our model calculations are compared with measurements during Mexico City earthquakes, showing quite good agreement. This not only provides a transparent explanation of catastrophic resonant seismic response in certain basins but at the same time constitutes up to this date the largest-scale example of the doorway state mechanism in wave scattering. Furthermore the doorway state itself has interesting and rather unusual characteristics.
NASA Astrophysics Data System (ADS)
Urakov, A.; Urakova, N.; Reshetnikov, A.; Kopylov, M.; Kasatkin, A.; Baymurzin, D.; Gabdrafikov, R.
2017-02-01
It was found that pharmaceutical companies produce drugs in tablet form, physical or physical-chemical properties that are radically different from those of the properties of natural food lumps, in that adult converts food in our mouth before swallowing. It was shown that the conventional shape, color, size, volume, specific gravity, hardness, osmotic and acid activity of modern tablets impair the physical and physicochemical properties of the liquid contents of the stomach is much stronger than such “building” materials, such as chalk, clay, sand, river pebbles and gravel. The results showed, that the value of the specific hardness, deforming tablets, can distinguish modern tablets from each other by more than 5000 times. Therefore, introduction tablets inside without information of ability injuring their action leads to the fact that soft and “unsalted” tablets almost nothing damage, and too “salty” and solid tablets damage the gums, lips, tongue, teeth and dental structures. To reduce the traumatic action tablets offered standardize osmoticity, corrosion and hardness within the range of safe values for soft and hard tissues of the oral cavity and improve standard introduction of tablets in the mouth.
Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite
NASA Technical Reports Server (NTRS)
Miller, Sandi G (Inventor)
2013-01-01
A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.
The surface modification of clay particles by RF plasma technique
NASA Astrophysics Data System (ADS)
Lee, Sang-Keol
In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.
Catalogs of micro-seismicity recorded at the Pechgraben landslide (Upper Austria)
NASA Astrophysics Data System (ADS)
Provost, Floriane; Hibert, Clément; Vouillamoz, Naomi; Malet, Jean-Philippe; Ottowitz, David; Jochum, Birgit
2017-04-01
The microseismicity activity of soft-rock landslides (i.e. developed in clays and clay-shales) present various types of seismic event associated with the slope deformation. They are assumed to be linked to the slip at the interface with the bedrock or at the boundaries of the landslide, to material failures, to fissure openings or to fluid transfers within the medium. It is currently necessary to document the microseismicity generated by soft-rock landslides on a larger amount of instrumented slopes in order to validate the current seismic typology and understand the source mechanisms in relation with the deformation. Previous studies have shown the interest of the Pechgraben (Upper Austria) clay-shale landslide for such documentation. This landslide was reactivated in summer 2013 after heavy rainfalls and is characterized by a shallow bedrock (<10m) and varying displacement rates in space and time (from mm.day-1 to cm.day-1). A short pilot seismic campaign (<9 days) was carried out in 2015 and micro-earthquakes as well as episodic tremor-like signals were recorded. A new passive seismic campaign was conducted during one month in November-December 2016. Two broadband three-component seismometers were installed facing each other on the two stable borders of the slope with one tripartite seismic array deployed in the center, on top of the most active area of the landslide. The deformation pattern of the slope was monitored remotely with a ground-based InSAR at a high frequency (10 min). This study aims to present the variety of seismic sources generated by the landslide, using supervised machine learning algorithms for event detection and classification, and to correlate the resulting micro-seismic catalog with the changes in time of the slope deformation.
Adsorption of dyes using different types of clay: a review
NASA Astrophysics Data System (ADS)
Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon
2017-05-01
Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.
Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields
2006-12-01
quicklime or calcium carbide, could possibly crosslink the polymers of sodium or potassium polyacrylic acid together to form a harder material. Very...LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/polyacrylamide copolymers in granular form that also gel in the presence...communication, 2006), soil could possibly be stabilized with calcium and super absorbent polymers, such as sodium or potassium polyacrylic acids. This
NASA Astrophysics Data System (ADS)
Wang, Yuebo; Su, Xiaoli; Xu, Zhen; Wen, Ke; Zhang, Ping; Zhu, Jianxi; He, Hongping
2016-02-01
A new type of surface-functionalized porous clay heterostructures (SF-PCH) was synthesized via carbonization of the template agents with sulfuric acid. The converted carbons deposited on the porous surface of the SF-PCH samples and changed their surface chemical properties. The composites possessed a maximum carbon content of 5.35%, a large specific surface area of 428 m2/g and micropore volume of approximately 0.2 cm3/g. The layered and porous structure of SF-PCH was retained after carbonization and calcination when sulfuric acid solution with a mild concentration was used. Analysis by XPS confirmed that the carbonaceous matter in the pore channels was functionalized with various organic groups, including carbonaceous, nitrogenous, and sulfated groups. Both the surface chemical property and structural characteristic of adsorbents have effects on the adsorption properties of SF-PCH for toluene. The SF-PCH samples exhibited a stronger adsorption affinity to toluene compared with untreated PCH in the low pressure region, which is more valuable in the practical applications. These results demonstrate that carbonization of soft-template is a feasible process for the surface modification of PCH, enabling the resulting composites to become promising candidates for application in toluene emission control.
Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite
NASA Astrophysics Data System (ADS)
Shelley, J. Stebbins
2000-10-01
Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets. Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual tensile and stress cracking experiments. CaCl 2 solution degraded the mechanical responses of the nanocomposite materials in proportion to the amount of water absorbed. NOx exposure degraded the mechanical performance regardless of the constraining effect of clay lamellae and the reduced diffusion rate in the nanocomposites. The stress cracking response of the nanocomposite in NOx (apparently not diffusion driven) resulted in a 650% increase in the time to failure of 5 wt% clay nanocomposites over unmodified nylon-6 for the same normalized stress intensity factor.
Land subsidence of clay deposits after the Tohoku-Pacific Ocean Earthquake
NASA Astrophysics Data System (ADS)
Yasuhara, K.; Kazama, M.
2015-11-01
Extensive infrastructure collapse resulted from the cataclysmic earthquake that struck off the eastern coast of Japan on 11 March 2011 and from its consequent gigantic tsunami, affecting not only the Tohoku region but also the Kanto region. Among the geological and geotechnical processes observed, land subsidence occurring in both coastal and inland areas and from Tohoku to Kanto is an extremely important issue that must be examined carefully. This land subsidence is classifiable into three categories: (i) land sinking along the coastal areas because of tectonic movements, (ii) settlement of sandy deposits followed by liquefaction, and (iii) long-term post-earthquake recompression settlement in soft clay caused by dissipation of excess pore pressure. This paper describes two case histories of post-earthquake settlement of clay deposits from among the three categories of ground sinking and land subsidence because such settlement has been frequently overlooked in numerous earlier earthquakes. Particularly, an attempt is made to propose a methodology for predicting such settlement and for formulating remedial or responsive measures to mitigate damage from such settlement.
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.
Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems
NASA Technical Reports Server (NTRS)
Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.
2007-01-01
Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.
Breakdown Voltage of Thermoplastics with Clay Nanometer-Sized Fillers (Postprint)
2008-12-01
of clay nanofillers. Low density polyethylene ( LDPE ) is a mechanically tough, inexpensive polymer used heavily in industry. Numerous studies have...A blend of LDPE grafted with maleic anhydride ( LDPE -g- MA) is tested in this work for improved electrical properties with clay addition. The...LLDPE) copolymer with octene. LLDPE improves over regular LDPE in a number of mechanical properties, though it has a higher production cost. A
Ono, Kenta; Nakamura, Takashi; Ebina, Takeo; Ishizaki, Manabu; Kurihara, Masato
2018-06-04
Prussian blue (PB) is limited in its application by its breakdown at elevated temperatures. To improve the heat resistance of PB, we prepared a composite film comprising PB nanoparticles (NPs), smectite clay, and an organic compound. The composite film had a microstructure in which PB NPs were intercalated between smectite/organic compound layers. The predominant oxidation temperature of the PB NPs in the composite film was around 500 °C in air, higher than the oxidation temperature of bulk PB in air (250 °C). This improvement in the oxidation temperature may be due to the composite film acting as a barrier to oxygen gas. These results indicate the effectiveness of clay materials for the improvement of heat resistance for low-temperature decomposition compounds, not only PB but also other porous coordination polymers.
Improvement of barrier properties of rotomolded PE containers with nanoclay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca
Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylenemore » (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.« less
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951
Rheological and thermal properties of polylactide/silicate nanocomposites films.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal
2010-03-01
Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications.
Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur
Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacingsmore » are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.« less
NASA Astrophysics Data System (ADS)
Niknezhad, Setareh
The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.
Hydration Phase Diagram of Clay Particles from Molecular Simulations.
Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu
2017-11-07
Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.
Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites
NASA Astrophysics Data System (ADS)
Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.
Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, David J.; Leyva, Argentina A.
The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.
Laboratory Determination of Horizontal Stress in Cohesionless Soil.
1983-01-01
in soft silty clay. The sheet piles were used for excavation support for the Oslo subway construction and the measurements of the lateral stresses 4...5.2. By sandwiching the stress cell between two butyl rubber diaphragms in the chamber, a uniform uniaxial stress could be applied to the 4 stress...October 1944, pp. 355-358. .4 162 Johannessen, I. J., "Test Section and Installation of Test Equipment, Oslo Subway ," Pro Brussels Confer- ence on
NASA Astrophysics Data System (ADS)
Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.
2018-04-01
The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.
Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites
Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen
2010-01-01
Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.
Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites.
Shaikh, Sohel; Birdi, Anil; Qutubuddin, Syed; Lakatosh, Eric; Baskaran, Harihara
2007-12-01
Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction and atomic force microscopy. Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200% improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation.
Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock
2002-07-01
In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.
NASA Astrophysics Data System (ADS)
Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.
2017-12-01
The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.
NASA Astrophysics Data System (ADS)
Lakshmi, B. V., ,, Dr.; Gawali, Mr. Praveen B.; Deenadayalan, K., ,, Dr.; Ramesh, D. S., ,, Prof.
2017-04-01
Rock magnetic and anisotropy of magnetic susceptibility (AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India. B.V.Lakshmi, Praveen B.Gawali, K.Deenadayalan and D.S.Ramesh Indian Institute of Geomagnetism, plot 5, sector 18, Near Kalamboli Highway, New Panvel(W), Navi Mumbai 410218 Combined rock magnetism and anisotropy of magnetic susceptibility (AMS) studies on earthquake induced soft and non-soft sediments from Shillong and Latur, India have thrown up interesting results. The morphology of hysteresis loops, the pattern of isothermal remanent magnetization (IRM) acquisition, and temperature dependence of susceptibility indicate that titano-magnetite/magnetite is the main magnetic carrier in these sediments. We also analyzed the anisotropy of magnetic susceptibility (AMS) of liquefaction features within the seismically active Dauki fault, Shillong Plateau. We discovered that host sediments (non-liquefied), are characterized by an oblate AMS ellipsoid and liquefied sediment are characterized by a triaxial AMS ellipsoid, well grouped maximum susceptibility axis K1 (NNW-SSE trend). Field evidence and AMS analysis indicate that most of these features were emplaced by injection inferred to be due to seismically triggered fluidization. Anisotropy of magnetic susceptibility (AMS) of deformed and undeformed unconsolidated clay samples of Deccan Trap terrain from the 2000-year-old paleoearthquake site of Ther village, Maharashtra, India, was also studied. Such deposits are rare in the compact basaltic terrain because of which the results acquired are very important. The undeformed clay samples exhibit typical sedimentary fabric with an oblate AMS ellipsoid, whereas the deformed samples are tightly grouped in the inferred compression direction, probably effected by an earthquake, exhibiting prolate as well as oblate AMS ellipsoids. Rock magnetic and AMS methodology can help understand the behavior of different sediments to the regional deformational processes active in the Himalayan region, and possibly local deformational activities in the compact Deccan trap region. The accumulating stress and strain direction can be delineated to infer strike of the forces accumulating stresses. These studies can be used to build the chronology of past earthquakes.
Khvan, Svetlana; Kim, Junkyung; Lee, Sang-Soo
2007-02-01
Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.
Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels
NASA Astrophysics Data System (ADS)
Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam
2015-03-01
The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.
NASA Astrophysics Data System (ADS)
Briguglio, Antonino; Goeting, Sulia; Kusli, Rosnani; Roslim, Amajida; Polgar, Gianluca; Kocsis, Laszlo
2016-04-01
For this study, 11 samples have been collected by scuba diving from 5 to 35 meters water depth off shore Brunei Darussalam. The locations sampled are known as: Pelong Rock (5 samples, shallow reef with soft and stony corals and larger foraminifera, 5 to 8 meters water depth), Abana Rock (1 sample, shallow reef with mainly soft corals and larger foraminifera, 13 to 18 meters water depth), Oil Rig wreck (1 sample, very sandy bottom with larger foraminifera, 18 meters water depth), Dolphin wreck (1 sample, muddy sand with many small rotaliids, 24 meters water depth), US wreck, (1 sample, sand with small clay fraction, 28 meters water depth), Australian wreck (1 sample, mainly medium to coarse sand with larger foraminifera, 34 meters water depth) and Blue water wreck (1 sample, mainly coarse sand, coral rubble and larger foraminifera, 35 meters water depth). Those samples closer to the river inputs are normally richer in clay, while the most distant samples are purely sandy. Some additional samples have been collected next to reef environments which, even if very shallow, are mainly sandy with almost no clay fraction. The deepest sample, which is 30 km offshore, contains some planktonic foraminifera and is characterized by a large range of preservations concerning foraminifera, thus testifying the presence or relict sediments at the sea bottom. The presence of relict sediments was already pointed out by older oil-related field studies offshore Brunei Darussalam, and now it is possible to draw the depth limit of these deposits. The diversity of the benthic foraminiferal fauna is relatively high but not as higher as neighboring regions as some studies have highlighted. The species collected and identified are more than 50: in reef environment the most abundant are Calcarina defrancii, Neorotalia calcar and the amphisteginidae; deeper in the muddy sediments the most abundant is Pararotalia schroeteriana and in the deepest sandy sample the most abundant are Calcarina hispida, followed by Operculina ammonoides.
Heliport Noise Model (HNM). Version 1. (User’s Guide)
1988-02-01
Examples of acoustically hard surfaces include concrete or asphalt paving, water or baked clay surfaces. Mote that if the site does not meet the...neighbor should be characterized as either Hard (H) or Soft (S). From an acoustic point of view, "hard" ground is either pavement or water . All other...GROUND DISraNCE 10 - MAP - SEIUP 11 - HELIPADS 3 - HELIPADS 12- rAKEOI tRACKS 4 - HELICOPrERS 13 - APPROACH IRACKS 5 - IAKt-OFFS 14- rAxx fRACKS C6
Engineering Characteristics of Chemically Treated Water-Repellent Kaolin
Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin
2016-01-01
Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098
NASA Astrophysics Data System (ADS)
Abedi, S.; Mashhadian, M.; Noshadravan, A.
2015-12-01
Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.
Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin.
Huang, Xiaosong; Netravali, Anil N
2006-10-01
Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.
Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong
2011-08-01
A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-12-05
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.
NASA Astrophysics Data System (ADS)
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-12-01
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-01-01
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901
Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.
Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan
2016-12-01
Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soltani, Iman
Means for improving barrier properties of polymers against gases, particularly for promoting their applications as packaging materials, are divided into surface coating and embedding nanoparticles in the bulk of the polymeric membranes. In this research, we mainly investigated improvement in barrier properties of polymers against oxygen and carbon dioxide, through layer-by-layer (LBL) coating and bulk nanocomposite methods. Initially, we studied the morphology of layer-by-layer assemblies comprising alternating layers of polyelectrolyte (PE) and natural montmorillonite (MMT) platelets, where polyethyleneterephthalate ionomer was used as our proposed alternative PE, to be compared with already examined polyethyleneimine. For both investigated PEs, while microscopic images showed the formation of tortuous networks of galleries between subsequent layers of oriented clay platelets parallel to the substrate surface, x-ray diffractometry (XRD) traces pointed to the intercalation of PE layers between clay platelets. As a confirmation of forming tortuous networks between oriented and high aspect ratio clay platelets to increase the path length of diffusing gas species dramatically, LBL-coated polystyrene-based membranes demonstrated pronounced decreases in permeability of oxygen and carbon dioxide (e.g. about the scale of 500 times decrease in permeability, with only five cycles of bilayer deposition). Before LBL deposition, the surface of the hydrophobic polymeric substrate was pretreated with oxygen plasma to improve its interaction with the coating. In the next study, previously LBL-coated samples were melt pressed in a cyclic manner to embed and to crush the coating inside the polystyrene-based matrix, aiming the exfoliated polymer-clay nanocomposites. The morphological investigations by transmission electron microscopy (TEM) revealed the tortuous internal structure of crushed LBL assemblies' portions, mainly comprising swollen intercalated stacks of clay, as well as flocculated exfoliated tactoids of a few clay platelets, down to about 2nm thickness. Moreover, XRD traces confirmed this increase in intercalation and exfoliation of clay platelets. Following ahead, dynamic mechanical thermal analysis (DMA) revealed significant increases in the storage and loss moduli values for our PNCs over those of pristine polystyrenebased matrix, hypothesizing the occurrence of substantial interactions between clay and the polymeric matrix, induced by intervening effect of PE interlayers. Also, permeation experiments showed noticeable improvement in gas barrier properties of processed PNCs. Considering the low content of clay particles and their limited level of global dispersions throughout the matrix, it may theorize the significant efficiency of high aspect ratio and tortuous LBL assemblies portions, oriented (induced by cycling pressing into thin films) perpendicular to the permeants' path routes. Thus, it might act almost as scavenging hubs against transport of diffusing gases. Finally, using PVAc, as the matrix, with this novel two-step approach of preparing PNCs, showed relatively higher clay content, when prepared with similar coating conditions. Also, DMA and permeation experiments pointed to significant improvements in mechanical and gas barrier properties of the PNCs, prepared by only 25 times melt pressing steps. Additionally, XRD traces postulated occurrence of noticeable irregularities in the interdistance of clay platelets. So, it is conjectured that semi-hydrophilic PVAc matrix promotes stronger interactions with clay particles, compared with those of polystyrene-based PNCs. However, moderate global dispersion of clay throughout the matrix points to the insufficient efficiency of repetitive melt pressing procedure to apply intensive enough stresses on samples, in order to overcome internal cohesion in LBL assemblies, which established initial intercalation and exfoliation in the otherwise aggregately clustered natural clay platelets. In addition, it is postulated that possibly occurring slight thermal degradations induce adverse results on the dispersion level and aforementioned properties of PNCs, processed over extended times.
February 2011 sensitive clay landslides in eastern Turkey
NASA Astrophysics Data System (ADS)
Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Fredin, O.; Schlunegger, F.
2016-12-01
The Çöllolar open pit mine is situated in the northwestern sector of the Elbistan basin, which is an intramontane basin located at a mean elevation of about 1200 m in the eastern Turkey. The basement rock in the basin is karstic limestone, which is overlain by a thick layer of clay (>100 m), followed by 20-50 m thick lignite series that is overlain by the 20-50 m thick gyttja sequence. These deposits are overlain by Quaternary deposits, comprising the top surfaces of the terraces of the Hurman River, which drains the surface and ground water from the surrounding hills to the northeast towards the center of the Elbistan basin. The lignite series in the basin has been excavated since early 1970's. In February 2011, two landslides in which 10 workers were killed, occurred in the Çöllolar mine. Of the two landslides, the 2nd and largest which covers an area of ca. 2.3 km2, was caused by the collapse of the northeastern wall of the open-pit mine. The failure was made of successive rearward collapses with the debris flowing into the open-pit. In this study, we focus on the sensitivity of the clays within the Quaternary deposits that seems led to instability and the trigger of the landslides based on the flow style of the movement and nature of the failure. To reveal these factors, we employed six boreholes and collected 64 undisturbed, 41 disturbed and 10 surface samples for the sedimentological and geotechnical analysis. Our results from this study show that Quaternary deposits are heterogeneous and have variable clay content. Mineralogically, most of these clays belong to the smectite group with high swelling potential. They are high plastic clays with high consolidation ratio. They have high shear and remolded shear strengths, thus low to medium sensitivity. Their sensitivity increases dramatically with increasing water content. During our analysis, we encountered a soft clay layer, which showed an over consolidation ratio of 10 and a strain softening response. This response is typical for quick clays. This indicates that the landslide was caused by the liquefaction of this layer within the thick sequence of this part of the Elbistan basin. In brief, we conclude that massive failures at the Çöllolar coalfield are unique examples of sensitive clay landslides occurred in a subtropical arid region beyond the extent of Quaternary glaciations.
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne; Schöpfer, Martin P. J.
2018-05-01
We investigate episodic soft-sediment deformation structures cross-cut by normal faults preserved in unlithified finely laminated calcite rich sediments in the Hirlatz cave in the Northern Calcareous Alps (Austria). These sediments comprise varve-like alternations of brighter carbonate/quartz rich layers, and darker clay mineral rich layers. The deformed sediments contain abundant millimeter to centimeter-scale soft-sediment structures (load casts, ball-and-pillow structures), sheet slumps (thrust faults and folds), erosive channels filled with slides and chaotic slumps. After deposition and soft-sediment deformation normal faults developed within the entire sedimentary succession, an event that probably correlates with an offset of c. 10 cm of the passage wall above the outcrop. Our major conclusions are: (i) The sediments have a glacial origin and were deposited in the Hirlatz cave under phreatic fluvio-lacustrine conditions. The deposition and the soft-sediment deformation occurred most likely during the last glaciation (i.e. around 25 ka ago); (ii) The liquefaction and formation of the soft-sediment structures in water-saturated stratified layers was triggered by episodic seismic events; (iii) The internally deformed sediments were later displaced by normal faults; (iv) A possible source for the seismic events is the active sinistral Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault which is located about 10 km south of the outcrop and plays a major role in accommodating the extrusion of the Eastern Alps towards the Pannonian Basin. To our knowledge, the described structures are the first report of liquefaction and seismically induced soft-sediment deformations in Quaternary sediments in the Eastern Alps.
Controlled Release in Transdermal Pressure Sensitive Adhesives using Organosilicate Nanocomposites
Shaikh, Sohel; Birdi, Anil; Qutubuddin, Syed; Lakatosh, Eric; Baskaran, Harihara
2010-01-01
Polydimethyl siloxane (PDMS) based pressure sensitive adhesives (PSA) incorporating organo-clays at different loadings were fabricated via solution casting. Partially exfoliated nanocomposites were obtained for the hydroxyl terminated PDMS in ethyl acetate solvent as determined by X-ray diffraction (XRD) and atomic force microscopy (AFM). Drug release studies showed that the initial burst release was substantially reduced and the drug release could be controlled by the addition of organo-clay. Shear strength and shear adhesion failure temperature (SAFT) measurements indicated substantial improvement in adhesive properties of the PSA nanocomposite adhesives. Shear strength showed more than 200 % improvement at the lower clay loadings and the SAFT increased by about 21% due to the reinforcement provided by the nano-dispersed clay platelets. It was found that by optimizing the level of the organosilicate additive to the polymer matrix, superior control over drug release kinetics and simultaneous improvements in adhesive properties could be attained for a transdermal PSA formulation. PMID:17786555
NASA Astrophysics Data System (ADS)
Rastiello, Giuseppe; Federico, Francesco; Screpanti, Silvio
2015-09-01
Many abandoned room and pillar mines have been excavated not far from the surface of large areas of important European cities. In Rome, these excavations took place at shallow depths (3-15 m below the ground surface) in weak pyroclastic soft rocks. Many of these cavities have collapsed; others appear to be in a stable condition, although an appreciable percentage of their structural components (pillars, roofs, etc.) have shown increasing signs of distress from both the morphological and mechanical points of view. In this study, the stress-strain behaviour of soft rock pillars sustaining systems of cavities under vertical loads was numerically simulated, starting from the in situ initial conditions due to excavation of the cavities. The mechanical behaviour of the constituent material of the pillar was modelled according to the Modified Cam-Clay constitutive law (elasto-plastic with strain hardening). The influence of the pillar geometry (cross-section area, shape, and height) and mechanical parameters of the soft rock on the ultimate compressive strength of the pillar as a whole was parametrically investigated first. Based on the numerical results, an original relationship for pillar strength assessment was developed. Finally, the estimated pillar strengths according to the proposed formula and well-known formulations in the literature were compared.
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay
NASA Astrophysics Data System (ADS)
Cui, D.; Xiang, W.
2011-12-01
The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film
Soft-water zone in the Chicot Aquifer, Bayou Teche area, Louisiana
Hosman, R.L.
1974-01-01
Test drilling in the vicinity of Bayou Teche in St. Martin Parish in southern Louisiana has disclosed a zone of soft water in the basal unit of the Chicot aquifer; the Chicot aquifer system blankets all southwestern Louisiana. Fresh water, which is defined as containing 250 milligrams per liter chloride or less, in the Chicot aquifer is characteristically hard and high in iron concentration; in this area the hardness is generally 200-300 milligrams per liter. The soft-water zone, containing water with a hardness of less than 60 milligrams per liter, is anomalous and occurs in an area where the basal part of the aquifer is separated from the main body of the aquifer by a thick clay layer. The zone has been mapped in parts of St. Martin and adjoining Lafayette Parishes. Although the exact areal extent of the zone cannot be determined with available data, it appears to be sufficiently large that the soft water should prove to be an important asset to the area. The water could be used by itself or mixed with either hard or slightly salty water (more than 250 milligrams per liter chloride) to provide a blend that would require little or no treatment for most purposes. Because of the proximity of salty water in much of the area, careful planning and monitoring will be necessary to maintain the soft-water zone as a dependable supply of usable water. The soft water appears to be an exhaustible supply; however, its useful life as a resource can be maximized by proper management.
NASA Astrophysics Data System (ADS)
Neuwerth, Ralph; Suter, Fiore; Guzman, Carlos A.; Gorin, Georges E.
2006-04-01
The Plio-Pleistocene Zarzal Formation corresponds to fluvio-lacustrine sediments deposited in an intramontane depression within the Colombian Andes, associated with the Cauca-Romeral Fault System. It crops out mainly in the Cauca Valley where numerous field sections have permitted the mapping of the vertical and lateral lithological variations. Lacustrine deposits of sands, silts, clays and diatomites are interbedded with fluvial sand and gravel beds and fluvio-volcanic mass flows derived from the volcanic Central Cordillera. Numerous soft-sediment deformation structures are encountered in this formation, particularly in fine- to medium-grained sands, silts and clays: load structures (load casts, flame structures, pseudonodules), water escape structures (water escape cusps, dish-and-pillar and pocket-and-pillar structures), soft-sediment intrusions (clastic sills and dykes), disturbed laminites, convolute laminations, slumps and synsedimentary faulting. Deformation mechanisms and driving forces are related essentially to gravitational instabilities, dewatering, liquidization and brittle deformations. Field and regional geological data show that most of these deformations are related to seismicity and can be interpreted as seismites. This area has a geological and recent seismic history and outcrops show both syn- and post-depositional faulting related to the transpressional regime of this part of the Colombian Andes, which generates strike-slip faults and associated local normal faults. The drainage pattern within the Zarzal Formation shows the signature of neotectonics. Moreover, the fine to coarse-grained sands of the Zarzal Formation are lithologies prone to liquefaction when affected by seismic waves. The intercalation of the deformed intervals within undisturbed strata confirms the catastrophic nature of the events. Finally, the large areal extent of the deformations and the type of structures are compatible with seismites. Consequently, the existence of seismites in the Zarzal Formation represents corroboration of tectonic activity in this area during the Pleistocene. Earthquakes with a magnitude higher than 5 can be postulated, based upon the proximity of active faults and the types of deformations.
Song, Fei; Zhang, Li-Ming; Shi, Jun-Feng; Li, Nan-Nan
2010-12-01
The supramolecular hydrogels derived from low-molecular-mass gelators represent a unique class of soft matters and have important potential applications in biomedical fields, separation technology and cosmetic science. However, they suffer usually from weak mechanical and viscoelastic properties. In this work, we carry out the in situ hybridization of clay nanoparticles (Laponite RD) into the supramolecular hydrogel formed from a low-molecular-mass hydrogelator, 2,6-di[N-(carboxyethyl carbonyl)amino]pyridine (DAP), and investigate the viscoelastic and structural characteristics of resultant hybrid hydrogel. It was found that a small concentration of Laponite RD could lead to a significant increase in the storage modulus, loss modulus or complex viscosity. Compared with neat DAP hydrogel, the hybrid hydrogel has a greater hydrogel strength and a lower relaxation exponent. In particular, the enhancement of the clay nanoparticles to the viscoelastic properties of the DAP hydrogel is more effective in the case of higher DAP concentration. By relating its macroscopic elastic properties to a scaling fractal model, such a hybrid hydrogel was confirmed to be in the strong-link regime and to have a more complex network structure with a higher fractal dimension when compared with neat DAP hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.
Shi, Kun; Liu, Zhuang; Yang, Chao; Li, Xiao-Ying; Sun, Yi-Min; Deng, Yi; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin
2017-07-05
Poly(N-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly(N-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain N-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by N,N'-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography.
Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.
2014-01-01
Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199
Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.
Adazabra, A N; Viruthagiri, G; Shanmugam, N
2017-04-15
The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.
Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen
2015-10-28
Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.
Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E
2018-01-01
Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites toxicity of released nano-clay particles to A594 adenocarcinomic human alveolar basal epithelial cells was observed, which will help with future risk based-formulations of exposure.
1988-12-01
called soapstone . The third member of the Niagaran Series, the Laurel Dolomite, is thinly bedded, bluish-gray in color, and approximately 5 to 9 feet...slopes of hills. This m formation has a total thickness of 250 feet, and includes beds of limestone, soft shale, clay, or soapstone . The shales...INTERBEDDED. IRON [mineral] - A heavy, magnetic , malleable and ductile, and chemically active mineral, the native metallic element Fe. JP-4 - A type
Dysaerobic trace fossils and ichnofabrics in the upper Jurassic Kimmeridge Clay of southern England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wignall, P.B.
The trace fossil suite from the Kimmeridge Clay is calibrated against an oxygen gradient derived from previous geochemical, lithological and shelly macrofaunal studies. Several soft-bodied trace markers appear to have tolerated lower oxygen tensions than even the hardiest shelly benthic macrofauna-a common occurrence in both recent and ancient dysaerobic settings. Lowest diversity trace fossil assemblages consist of Astacimorphichnus etchesi (new ichnotaxon), a small endostratal pascichnial trace attributed to pioneering polychaete populations. Ekdale and Masons' (1988) contention that fodinichnia dominate the lowest diversity and lowest oxygen settings is not substantiated as the only example of this feeding strategy, Rhizocorallium irregulare, ismore » encountered in moderately diverse trace fossil assemblages associated with a low diversity shelly macrofauna. Upper dysaerobic conditions are characterized by the development of a surface mixed layer and the consequent destruction of fine lamination. Tiering is only developed under normal oxygen conditions with Chondrites as the deepest trace. In contrast to many previous studies, Chondrites is never found in dysaerobic facies.« less
Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture
NASA Astrophysics Data System (ADS)
Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor
2016-11-01
Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.
Clay Improvement with Burned Olive Waste Ash
Mutman, Utkan
2013-01-01
Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671
NASA Technical Reports Server (NTRS)
Liang, Maggie
2004-01-01
Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.
Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes
Higgins, Thomas M.; Warren, Holly; Panhuis, Marc in het
2011-01-01
The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases. PMID:28348277
Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin
2009-01-01
Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334
Organic/Inorganic Hybrid Polymer/Clay Nanocomposites
NASA Technical Reports Server (NTRS)
Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.
2003-01-01
A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.
NASA Astrophysics Data System (ADS)
Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati
2017-11-01
Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.
NASA Astrophysics Data System (ADS)
Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.
2017-04-01
Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.
Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.
Wang, Meichen; Maki, Cody R; Deng, Youjun; Tian, Yanan; Phillips, Timothy D
2017-09-18
Previously, a calcium montmorillonite clay (NovaSil) included in the diet of animals has been shown to bind aflatoxin B1 (AfB1) and reduce the symptoms of aflatoxicosis. To investigate and improve the capacity and efficacy of clay-based materials as aflatoxin sorbents, we developed and tested calcium and sodium montmorillonite clays amended with nutrients including l-carnitine and choline. Also, we determined the sorption of AfB1 by isothermal analysis and tested the ability of these amended sorbents to protect adult hydra from AfB1 toxicity. The results showed that exchanging montmorillonite clays with l-carnitine and choline inhibited swelling of the clays and increased the sorption capacity and efficacy of clay surfaces for AfB1. Results from dehydroxylated and heat-collapsed clays suggested that AfB1 was primarily adsorbed in the clay interlayer, as predicted from thermodynamic calculations and computational modeling. The hydra bioassay further indicated that the modified clays can significantly protect adult hydra from AfB1 with as low as 0.005% clay inclusion. This enterosorbent therapy may also be applied to screen hazardous chemicals such as pesticides and PAHs based on similar sorption mechanisms. Taken together, enterosorbent therapy could be delivered in nutritional supplements, foods that are vulnerable to aflatoxin contamination, flavored liquids and animal feeds during emergencies and outbreaks of acute aflatoxicosis, and as a screening model for hazardous environmental chemicals.
Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.
Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong
2018-05-01
Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7 cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.
NASA Astrophysics Data System (ADS)
Salehiyan, Reza; Song, Hyeong Yong; Hyun, Kyu
2015-05-01
Dynamic oscillatory measurement, i.e., small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test was used to investigate linear and non-linear viscoelastic properties of Polypropylene (PP)/Polystyrene (PS) blends with and without 5 wt.% clay (C20A). Fourier transform (FT-Rheology), Lissajous curves and stress decomposition methods were used to analyze non-linear responses under LAOS flow. Composition effects of blends were investigated prior to compatibilization effects. Elevated concentrations of dispersed phase (PS) increased the moduli G'(ω) from SAOS test and G*( γ 0) from LAOS test of the blends as well as strain thinning behavior. Interestingly, addition of 5 wt.% clay (C20A) boosted moduli of the blends as well as led to similar strain thinning behaviors among the PP/PS/C20A blends, except for the (90/10) PP/PS blend. The latter did not show improved rheological properties despite morphological improvements, as shown by SEM. Results from SEM and improved rheological properties of PP/PS/C20A blends revealed the compatibilization effects of clay (C20A) particles regardless of size reduction mechanisms. Third relative intensities ( I 3/1) from FT-rheology were found to be sensitive to clay (C20A) additions for the (70/30) and (30/70) PP/PS blends. Similarly, Lissajous curves could detect changes upon clay (C20A) addition, specifically at lower strain amplitudes whereupon addition of 5 wt.% clay resulted in the closed loops of Lissajous curves showing a more ellipsoidal shape due to increased elasticity in the blends. However, detection of these changes at larger strain amplitudes was more challenging. Therefore, stress decomposition (SD) method was applied for more precise characterization as it decomposes the total stress (σ) into elastic stress (σ') and viscous stress (σ″). Using SD method, elastic stress was more distorted, especially, strain hardening, while the total stress response remained almost unchanged at larger strain amplitudes.
Effects of clay dispersion on aquifer storage and recovery in coastal aquifers
Konikow, Leonard F.; August, L.L.; Voss, C.I.
2001-01-01
Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.
Improved synthesis of isostearic acid using zeolite catalysts
USDA-ARS?s Scientific Manuscript database
Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...
Dynamic properties of composite cemented clay.
Cai, Yuan-Qiang; Liang, Xu
2004-03-01
In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.
Reconstruction of a digital core containing clay minerals based on a clustering algorithm.
He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling
2017-10-01
It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.
"Soft-shelled" monothalamid foraminifers as a modern analogue of early life
NASA Astrophysics Data System (ADS)
Kitazato, Hiroshi; Ohkawara, Nina; Gooday, Andrew
2017-04-01
According to the fossil record, the earliest undoubted foraminifers are found in the Early Cambrian, where they are represented by tubular agglutinated forms, thought to be the most primitive foraminiferal morphotypes. The numerous foraminifers with single-chambered, organic-walled tests (i.e. 'soft-shelled' monothalamids) exist in the deep sea and are difficult to preserve as fossils. Molecular phylogenetic data tell us that these 'primitive' taxa include the deepest foraminiferal clades, originating around 600 - 900 Ma. We found many soft-shelled monothalamids in sediment samples from deep trenches, including the Challenger Deep (Marianas Trench) and the Horizon Deep (Tonga Trench). Both deeps exceed 10,000 m water depth, well below the carbonate compensation depth, which represents an environmental barrier for calcareous foraminifera. The foraminifera at these extreme hadal sites include tubular and globular forms with organic walls, among which species of the genera Nodellum and Resigella are particularly abundant. Some forms selectively agglutinate minute flakes of clay minerals on the surface of the organic test. Many soft-shelled monothalamids, including most of those in deep tranches, contain stercomata, the function of which is currently unknown. Gromiids (a rhizarian group related to foraminifera) also accumulate stercomata in their sack-shaped tests. This suggests the possibility that the function of these waste particles is to add bulk, like the filling of soft bags or pillows. We suggest that the monothalamid foraminifera that dominate small-sized eukaryotes in extreme hadal settings may provide clues to understanding the biology and ecology of early life in Neoproterozoic sedimented habitats.
Frindy, Sana; Primo, Ana; Ennajih, Hamid; El Kacem Qaiss, Abou; Bouhfid, Rachid; Lahcini, Mohamed; Essassi, El Mokhtar; Garcia, Hermenegildo; El Kadib, Abdelkrim
2017-07-01
The intimate interplay of chitosan (CS) and graphene oxide (GO) in aqueous acidic solution has been explored to design upon casting, nanostructured "brick-and-mortar" films (CS-GO-f) and by acidic-to-basic pH inversion, porous CO 2 -dried aerogel microspheres (CS-GO-m). Owing to the presence of oxygenated functional groups in GO, good-quality crack-free hybrid films were obtained. Mechanical properties were improved independently of the GO content and it was found that a 20wt% loading affords hybrid film characterized with a Young modulus three times superior to that reached with the same loading of layered clay. The presence of graphene oxide was found to be detrimental for the thermal stability of the polysaccharide at T <350°C, a fact attributed to the well-established decomposition of the oxygenated functional groups of the graphene sheets. Irrespective to the graphene oxide loading, chitosan-graphene oxide mixture preserves the gelation memory of the polysaccharide. Supercritical drying of the resulting soft hydrogels provides macroporous network with surface areas ranging from 226m 2 g -1 to 554m 2 g -1 . XPS and RAMAN analyses evidenced the selective reduction of GO sheets inside of these microspheres, affording the hitherto unknown macroporous chitosan-entangled-reduced graphene oxide (CS-rGO-m) aerogels. Improvement in both hydrothermal stability (under water reflux) and chemical stability (under acidic conditions) have been noticed for chitosan-graphene oxide microspheres with respect to non-modified chitosan and chitosan-clay bio-hybrids, a result rooted in the substantial hydrophobic character imparted by the addition of graphenic material to the polysaccharide skeleton. In essence, this contribution demonstrates that graphene oxide loading do not disturb neither the filmogenicity of chitosan nor its gelation ability and constitutes a promising route for novel chitosan-based functional hybrid materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong
2014-08-01
The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.
Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers
NASA Astrophysics Data System (ADS)
Elhamdouni, Y.; Khabbazi, A.; Benayad, C.; Mounir, S.; Dadi, A.
2017-03-01
This work is part of the valuation of local materials such as clay (earth), alfa fiber and straw fiber. The goal is to use these materials as bricks in rural construction. These materials are abundant, natural, and renewable. The objective of this work is to study the thermal and mechanical behavior of a new material by mixing clay (chosen as the binder) with different mass percentages of alfa fiber (0.5%, 1%, 2%, 3%, 4%), and to compare these results with those of materials often used in the construction of individual houses in rural Morocco (clay + straw). The results obtained prove to us that using straw fibers can reduce the thermal conductivity compared to alfa fiber, which allows to have energy savings of 2% to 7%. By against, alfa fibers can improve the mechanical behavior of clay-based materials when compared to the clay + straw material (an increase of 8% to 17% in the tractive resistance by bending and 6% to 18% for compression resistance). These results also specify the optimal usage conditions of these fibers (alfa and straw) in the clay bricks.
The Impact of Soft Factors on Quality Improvement in Manufacturing Industry
NASA Astrophysics Data System (ADS)
Chan, Shiau Wei; Fauzi Ahmad, Md; Kong, Mei Wan
2017-08-01
Nowadays, soft factors have become the key factors of success in quality improvement of an organisation. Many organisations have neglected the importance of soft factors, this may influence the organisational performance. Hence, the purpose of this research is to examine the impact of soft factors on quality improvement in manufacturing industries. Six hypotheses were examined while considering six dimensions of soft factors including management commitment, customer focus, supplier relationship, employee involvement, training and education, and reward and recognition that have a positive impact on quality improvement. In this study, eighty one managers from the quality department were randomly selected in the manufacturing industry in Batu Pahat, Johor. The questionnaires were distributed to them. The researcher analysed the quantitatively collected data using descriptive analysis and correlation analysis. The findings of this study revealed that all soft factors are correlated to the quality improvement in an organisation with a high significant value but the regression analysis shows that the supplier relationship and employee involvement has more significant impact on quality improvement as compared to other soft factors which contributes of this study.
Viscoelastic and Mechanical Properties of Thermoset PMR-type Polyimide-Clay Nanocomposites
NASA Technical Reports Server (NTRS)
Abdalla, Mohamed O.; Dean, Derrick; Campbell, Sandi
2002-01-01
High temperature thermoset polyimide-clay nanocomposites were prepared by blending 2.5 and 5 wt% of an unmodified Na(+-) montmorillonite (PGV) and two organically modified FGV (PGVCl0COOH, PGVC12) with a methanol solution of PMR-15 precursor. The methanol facilitated the dispersal of the unmodified clay. Dynamic mechanical analysis results showed a significant increase in the thermomechanical properties (E' and E") of 2.5 wt% clay loaded nanocomposites in comparison with the neat polyimide. Higher glass transition temperatures were observed for 2.5 wt% nanocomposites compared to the neat polyimide. Flexural properties measurements for the 2.5 wt% nanocomposites showed a significant improvement in the modulus and strength, with no loss in elongation. This trend was not observed for the 5 wt% nanocomposites. An improvement in the CTE was observed for the PGV/PMR-15 nanocomposites, while a decrease was observed for the organically modified samples. This was attributed to potential variations in the interface caused by modifier degradation.
Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
Bories, Cecile; Borredon, Marie-Elisabeth; Vedrenne, Emeline; Vilarem, Gerard
2014-10-01
Today, clay bricks are facing technological challenges and are uncompetitive compared to materials such as concrete. Their performance must be improved if they are to stand up to the competition. Increasing environmental concerns over the accumulation of unmanaged wastes from agricultural or industrial productions have made these good candidates for incorporation into building materials to improve their performance. This process leads to the formation of pores in the bricks, producing lightweight and sustainable building materials. This paper reviews the different pore-forming agents from renewable or mineral resources as described in the literature. It also presents the impact of pore-forming agents on the physical, mechanical and thermal properties of clay bricks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Sun-Il; Wu, Yuanzheng; Kim, Ka-Lyun; Kim, Geun-Joong; Shin, Hyun-Jae
2013-06-01
An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.
Yang, Liang; Choi, Soo-Kyung; Shin, Hyun-Jae; Han, Hyo-Kyung
2013-01-01
This study aimed to develop an oral delivery system using clay-based organic-inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay) was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB) was incorporated into AMP clay (FB-AMP) at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3), dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3) after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2), FB-AMP(3) also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3) to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic-inorganic hybrid material might be useful to improve the bioavailability of FB.
Yang, Liang; Choi, Soo-Kyung; Shin, Hyun-Jae; Han, Hyo-Kyung
2013-01-01
This study aimed to develop an oral delivery system using clay-based organic–inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay) was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB) was incorporated into AMP clay (FB-AMP) at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3), dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3) after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2), FB-AMP(3) also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3) to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic–inorganic hybrid material might be useful to improve the bioavailability of FB. PMID:24204143
NASA Astrophysics Data System (ADS)
Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi
2013-03-01
In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.
Interpretation of the lime column penetration test
NASA Astrophysics Data System (ADS)
Liyanapathirana, D. S.; Kelly, R. B.
2010-06-01
Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.
NASA Astrophysics Data System (ADS)
Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.
2002-12-01
A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.
Clay modeling versus written modules as effective interventions in understanding human anatomy.
Bareither, Mary Lou; Arbel, Vered; Growe, Meghan; Muszczynski, Emily; Rudd, Adam; Marone, Jane R
2013-01-01
The effectiveness of clay modeling to written modules is examined to determine the degree of improvement in learning and retention of anatomical 3D relationships among students with different learning preferences. Thirty-nine undergraduate students enrolled in a cadaver dissection course completed a pre-assessment examination and the VARK questionnaire, classifying learning preference as visual, auditory, read/write, or kinesthetic. Students were divided into clay, module, and control groups with preference for learning style distributed among groups. The clay and module groups participated in weekly one-hour classes using either clay models or answering written questions (modules) about anatomical relationships, respectively. The control group received no intervention. Post-assessment and retention examinations were administered at the end of the semester, and three months later, respectively. Two variables (Δ1, Δ2) represented examination score differences between pre- and post-assessment and between post-assessment and retention examinations, respectively. The Δ1 for clay and module groups were each significantly higher than controls (21.46 ± 8.2 vs. 15.70 ± 7.5, P ≤ 0.05; and 21.31 ± 6.9 vs. 15.70 ± 7.5, P ≤0.05, respectively). The Δ2 for clay and module groups approached but did not achieve significance over controls (-6.09 ± 5.07 vs. -8.80 ± 4.60, P = 0.16 and -5.73 ± 4.47 vs. -8.80 ± 4.60, P = 0.12, respectively). No significant differences were seen between interventions or learning preferences in any group. However, students of some learning styles tended to perform better when engaging in certain modalities. Multiple teaching modalities may accommodate learning preferences and improve understanding of anatomy. Copyright © 2012 American Association of Anatomists.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.
Wang, Yue; Gregory, Cherry; Minor, Mark A
2018-06-01
Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.
Influence of Compositional Variations on Floc Size and Strength
NASA Astrophysics Data System (ADS)
Yin, H.; Tan, X.; Reed, A. H.; Furukawa, Y.; Zhang, G.
2010-12-01
Clay-biopolymer micro aggregates or flocs are abundant in waters, including rivers, lakes, and oceans. Owing to their small size and charged surfaces, fine-grained inorganic sediment particles, mainly clays, interact actively with organic substances, such as organic matter and biogenic polymers, to form aggregates or flocs, typically in the size of 10-1000 μm. The flocs in ocean waters are also termed “marine snow”. These flocs are typically porous, tenuous, and soft in nature. During transport in suspension, they may breakdown and decrease in size if the turbulent shear stress exceeds their strength. They may also collide and form larger ones if the shear stress is relatively small. Since flocs of different size and structure settle at different velocities, understanding their strength is also of essential importance for sediment hydrodynamics, transport, and management. Our study focuses on investigating the influence of compositional variations on floc size and strength so that a better understanding of floc dynamics can be achieved. A laser diffraction-based Cilas® particle size and shape analyzer with controllable fluid circulation velocity was employed to conduct floc size measurements and shape imaging, the latter achieved by a high resolution inverted optical microscope, which is also installed with the size analyzer. Totally two clay minerals, kaolinite and illite, were tested as the model inorganic solid skeleton minerals for floc formation, and two biopolymers, anionic xanthan gum and neutral guar gum, were chosen as analogs of naturally occurring organic matter or biopolymers to simulate clay-biopolymer floc formation. Moreover, the concentration of both organic and inorganic phases was varied. The floc breakage or tensile strength was indirectly estimated by the varied fluid flow velocity in the particle size analyzer’s circulation system. For each individual composition, stable flocs were formed by three different fluid circulating velocities, resulting in different shearing stress in the fluid. Experimental results show that organic biopolymers can have profound influences on clay flocculation process and the resultant floc size and strength. Anionic xanthan gum tends to form smaller and weaker clay-biopolymer flocs than neutral guar gum, because the Coulombic repulsion forces develop between the two negatively charged constituents. Illite results in stronger clay-guar flocs than kaolinite, probably due to the relatively higher negative charges on illite surface. Generally, a bimodal distribution of floc size frequency was observed for all types of flocs. The maxim floc sizes range from 10-30 μm for kaolinite-xanthan flocs to 250-300 μm for kaolinite-guar flocs at a weight ratio of 1:1.
Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution
NASA Astrophysics Data System (ADS)
Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz
2016-09-01
The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.
NASA Astrophysics Data System (ADS)
Shokuhi Rad, A.; Ebrahimi, D.
2017-07-01
The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.
NASA Astrophysics Data System (ADS)
Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.
2017-06-01
Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.
Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim
2016-08-01
Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS
Activation of a Ca-bentonite as buffer material
NASA Astrophysics Data System (ADS)
Huang, Wei-Hsing; Chen, Wen-Chuan
2016-04-01
Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid-shaped time-swell curves of typical bentonites. That is, a greater part of swelling strain develops after the completion of primary swelling strain. At an optimal amount of 1% Na2CO3 in weight, the maximum swelling strain was found to be 3 times as much as that of untreated Zhisin clay. Furthermore, the Na2CO3-activated Zhisin clay exhibited improved resistance to thermal environments and behaved similar to Na-type bentonites under various hydrothermal temperatures.
Romanos, Georgios E
2013-01-01
Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafael; Hwang, Sung W
2010-10-01
The melt rheology and thermal properties of polylactide (PLA)-based nanocomposite films that were prepared by solvent casting method with L-PLA, polyethylene glycol (PEG), and montmorillonite clay were studied. The neat PLA showed predominantly solid-like behavior (G' > G″) and the complex viscosity (η*) decreased systematically as the temperature increased from 184 to 196 °C. The elastic modulus (G') of PLA/clay blend showed a significant improvement in the magnitude in the melt, while clay concentration was at 6% wt or higher. At similar condition, PEG dramatically reduced dynamic modulii and complex viscosity of PLA/PEG blend as function of concentration. A nanocomposite blend of PLA/PEG/clay (74/20/6) when compared to the neat polymer and PLA/PEG blend exhibited intermediate values of elastic modulus (G') and complex viscosity (η*) with excellent flexibility. Thermal analysis of different clay loading blends indicated that the melting temperature (T(m)) and glass transition temperature (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) and the T(m) of the blends (PLA/PEG and PLA/PEG/clay) significantly, however, crystallinity increased in the similar condition. The transmission electron microscopy (TEM) image of nanocomposite films indicated good compatibility between PLA and PEG, whereas clay was not thoroughly distributed in the PLA matrix and remained as clusters. The percent crystallinity obtained by X-ray was significantly higher than that of differential scanning calorimeter (DSC) data for PLA.
Clay Modeling versus Written Modules as Effective Interventions in Understanding Human Anatomy
ERIC Educational Resources Information Center
Bareither, Mary Lou; Arbel, Vered; Growe, Meghan; Muszczynski, Emily; Rudd, Adam; Marone, Jane R.
2013-01-01
The effectiveness of clay modeling to written modules is examined to determine the degree of improvement in learning and retention of anatomical 3D relationships among students with different learning preferences. Thirty-nine undergraduate students enrolled in a cadaver dissection course completed a pre-assessment examination and the VARK…
Simulating reflectance at interfaces coated with household paints
NASA Astrophysics Data System (ADS)
Prisland, Zachary
The paint and coatings industry is constantly working to improve their product, making a more efficient product at a cheaper cost. This requires some research and learning on the part of the companies, particularly in optical studies. For example, Burgess Pigment Company has developed a method, using a flash calciner, to quickly dehydrate clay, essentially popping it like popcorn, in order to add air pockets to the individual particles of clay. Clay that has undergone this process can improve the reflective properties of paint. The human eye, as a sensory organ, relies on reflected light in order to provide vision. As the major goal of paint is to be seen, it is easy to infer that it would be of utmost importance for the paint to reflect large amounts of light to appear more visible to the human eye and so using clay that has air pockets would be more desirable. The primary goal of this thesis will be to explore optical theory in an attempt to explain why the addition of air pockets could produce a more effective product.
Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites
2009-01-01
The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546
Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.
Deka, Harekrishna; Karak, Niranjan
2009-04-25
The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.
Beyond clay: Towards an improved set of variables for predicting soil organic matter content
Rasmussen, Craig; Heckman, Katherine; Wieder, William R.; Keiluweit, Marco; Lawrence, Corey R.; Berhe, Asmeret Asefaw; Blankinship, Joseph C.; Crow, Susan E.; Druhan, Jennifer; Hicks Pries, Caitlin E.; Marin-Spiotta, Erika; Plante, Alain F.; Schadel, Christina; Schmiel, Joshua P.; Sierra, Carlos A.; Thompson, Aaron; Wagai, Rota
2018-01-01
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.
Adazabra, A N; Viruthagiri, G; Shanmugam, N
2017-06-01
This work studies the reuse of spent shea waste as an economic construction material in improving fired clay bricks manufacture aside providing a novel approach to ecofriendly managing its excessive generated from the shea agroindustry. For this purpose, the influence of spent shea waste addition on the chemical, mineralogical, molecular bonding and technological properties (i.e. compressive strength and water absorption) of the fired clay bricks were extensively investigated. The results indicated that the chemical, mineralogical, phase transformations, molecular bonding and thermal behavior of the produced bricks were practically unaffected by the addition of spent shea waste. However, spent shea waste addition increased the compressive strengths and water absorptions of the brick products. Potential performance benefits of reusing spent shea waste was improved fluxing agents, energy-contribution reaction, excellent porosifying effect, reduced thermal conductivity and enhanced compressive strengths of the brick products. This research has therefore provided compelling evidence that could create newfound route for the synergistic ecofriendly reuse of spent shea waste to enhance clay brick construction aside being a potential mainstream disposal option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization of factors to obtain cassava starch films with improved mechanical properties
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.
Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe
2006-02-01
High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.
Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H
2002-04-15
This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.
Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair
Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A.D.T.G.
2012-01-01
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented. PMID:22697475
Strategies to improve regeneration of the soft palate muscles after cleft palate repair.
Carvajal Monroy, Paola L; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A D T G; Von den Hoff, Johannes W
2012-12-01
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented.
Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn
2016-04-01
This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.
Intercalated layered clay composites and their applications
NASA Astrophysics Data System (ADS)
Phukan, Anjali
Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...
Anaya, Roberto; Braun, Christopher L.; Kuniansky, Eve L.
2000-01-01
A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction log data collected during 1997 from 162 wells were integrated with existing lithologic and cone-penetrometer test log data to improve characterization of the subsurface alluvium at the site. The alluvium, consisting of mostly fine-grained, low-permeability sediments, was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. Low clay-content sediments were interpreted as being relatively permeable, whereas high clay-content sediments were interpreted as being relatively impermeable. Gamma-ray logs, cone-penetrometer test logs, and electromagnetic-induction logs were used to develop a series of intersecting sections to delineate the spatial distribution of low, intermediate, and high clay-content sediments and to delineate zones of potentially contaminated sediments. The sections indicate three major sedimentary units in the shallow alluvial aquifer at NWIRP. The lower unit consists of relatively permeable, low clay-content sediments and is absent over the southeastern and northwestern part of the site. Permeable zones in the complex, discontinuous middle unit are present mostly in the western part of the site. In the eastern and southeastern part of the site, the upper unit has been eroded away and replaced by fill material. Zones of potentially contaminated sediments are generally within the uppermost clay layer or fill material. In addition, the zones tend to be local occurrences.
Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi
2015-11-01
Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.
Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate
2017-09-05
Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.
NASA Astrophysics Data System (ADS)
Kareem Salih, Watheq
2018-05-01
Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.
Degradation of Nylon-6/Clay Nanocomposites in NO(x)
NASA Astrophysics Data System (ADS)
Shelley, J. S.; Devries, K. L.
2000-04-01
Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the 1993 Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NOx. Nylon-6 fibers are severely degraded by interaction with NOx and other pollutants, showing a strong synergism between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to non-diffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/day nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellar surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NOx. The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume will be discussed along with fracture toughness of the materials.
NASA Astrophysics Data System (ADS)
Van Damme, H.
2014-12-01
We report the results of simple laboratory experiments aimed at mimicking the generation, migration, and expulsion process of oil or gas from soft clayey sediments, triggered by thermal decomposition of organic matter. In previously published work, we showed that the injection of fluids into a soft sediment layer confined within a quasi-2D Hele-Shaw cell led to the transition from a viscous fingering invasion regime to a viscoelastic fracturing regime. The transition is controlled by the ratio of the characteristic times for the invasion process and for the structural relaxation in the sediment, respectively (Deborah number). Here we show that expulsion is a discontinuous quasi-periodic process, driven by the elastic energy stored in the embedding layers. We report also about two sets of experiments aimed at understanding the conditions in which fluid generation from multiple sources can generate a highly connected network of fractures for expulsion. In a first set of experiments, a Hele-Shaw cell with multiple injection points and multiple outlets was used. It is shown that, due to attractive elastic interactions between cracks, a network spontaneously forms as soon as invasion proceeds in the viscoelastic regime. On the contrary, no network of migration paths is forming in the viscous fingering regime, due to the effective repulsion of the fluid channels. In the second set of analog experiments, we used a thermostated mini-Hele-Shaw cell, the gap of which was filled with a strong clay mud in which microcrystals of reactive organic matter (azoisobutyronitrile, AIBN) are dispersed, or with a mud prepared with clay particles on which the organic matter was pre-impregnated. AIBN decomposes around 70°C, releasing nitrogen gas. It was again observed that, depending on the viscoelastic properties of the clay matrix, gas evolution occurs either by formation and coalescence of bubbles, or by formation of a percolating network of fractures. The length of the fracture network is initially linearly related to the Total (reactive) Organic Matter content. The expulsion process is remarkably effective in the fracturing regime (close to 100 percent), even at vey low TOC (below 0.5 percent). The relevance of these experiments for oil and gas migration in natural conditions will be discussed.
Preparation of hybrid nano biocomposite κ-carrageenan/cellulose nanocrystal/nanoclay
NASA Astrophysics Data System (ADS)
Zakuwan, Siti Zarina; Ahmad, Ishak; Ramli, Nazaruddin
2013-11-01
Biodegradable composites film based on κ-carrageenan and nano particles as filler was prepared to study the mechanical strength of carrageenan composites. Solution casting technique was used to prepare_this biocomposite. Preparation of composite film and nano filler involve two stages, preparation of cellulose nanocrystals (CNC) from kenaf with alkali treatment, bleaching, and hydrolysis followed by the preparation of two types of nano composite. Tensile test was carried on the composite film based on κ-carrageenan with the variation percentage of CNC and nano clay to obtain the optimum CNC and nano clay loading. After that hybrid nano-biocomposite film based on κ-carrageenan with the variation percentage of CNC/nano clay (OMMT) according to optimum value of composite carrageenan/CNC and composite carrageenan/nano clay film was prepared. The effect of nano filler on the mechanical properties of carrageenan films was examined. κ-carrageenan biocomposite increased with the optimum at 4% CNC and nano clay composition. Additional improvement of tensile strength with hybridization of CNC and nanoclay indicated better mechanical properties.
NASA Astrophysics Data System (ADS)
Zaid, Adnan I. O.; Qandil, A.; Qattous, M. A. A.
2016-08-01
It was repeatedly reported that the clay bricks industry in Jordan is facing both weak mechanical strength and poor quality which caused marketing problems where it is expected to serve the increasing demand of housing in the country especially after the political crises in the neighboring countries Iraq and Syria. It is therefore anticipated that improvement of the mechanical strength and quality of the produced clay evaluation of the brick industry in Jordan is worth investigating. In this paper, theoretical and experimental investigation obtained from field visits to the factories producing clay bricks were carried out. Furthermore, the effect of using some additives from locally available materials namely: Battn El-Ghoul Clay, Suweileh sand and Olive extracts on the mechanical strength, thermal conductivity and surface quality of the produced bricks is investigated and discussed. The experimental results indicated that thermal conductivity, color and durability were all enhanced and the ultimate compressive strength was reduced but remained higher than the acceptable value for brickwork.
Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids
NASA Astrophysics Data System (ADS)
Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti
2017-03-01
Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10-200 mg l-1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution.
Results of Laboratory Tests of the Filtration Characteristics of Clay-Cement Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sol’skii, S. V., E-mail: solskiysv@vniig.ru; Lopatina, M. G., E-mail: LoptainaMG@vniig.ru; Legina, E. E.
Laboratory studies of the filtration characteristics of clay-cement concrete materials for constructing filtering diaphragms of earth dams by the method of secant piles are reported. Areas for further study aimed at improving the quality of construction, increasing operational safety, and developing a standards base for the design, construction, and operation of these systems are discussed.
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.
Toxicological evaluation of clay minerals and derived nanocomposites: a review.
Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles
2015-04-01
Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on wildlife, with laboratory trials showing contradictory outcomes. Clay minerals have different applications in the environment, thus with a strict control of the concentrations used, they can provide beneficial uses. Despite the extensive number of reports available, there is also a need of systematic in vitro-in vivo extrapolation studies, with still scarce information on toxicity biomarkers such as inmunomodulatory effects or alteration of the genetic expression. In conclusion, a case by case toxicological evaluation is required taking into account that different clays have their own toxicological profiles, their modification can change this profile, and the potential increase of the human/environmental exposure to clay minerals due to their novel applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?
Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Valverde, José Ramón; Blázquez, Jesús
2015-01-01
The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.
Local deformation for soft tissue simulation
Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-01-01
ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482
A CT-scan database for the facial soft tissue thickness of Taiwan adults.
Chung, Ju-Hui; Chen, Hsiao-Ting; Hsu, Wan-Yi; Huang, Guo-Shu; Shaw, Kai-Ping
2015-08-01
Facial reconstruction is a branch of forensic anthropology used to assist in the identification of skeletal remains. The majority of facial reconstruction techniques use facial soft tissue depth chart data to recreate facial tissue on a skull or a model of a skull through the use of modeling clay. This study relied on 193 subjects selected from the Taiwanese population on the basis of age and gender to determine the average values of 32 landmarks, include midline and bilateral measures, by means of CT scans. The mean age of the subjects was 46.9±16.4 years, with a mean age of 43.8±16.6 for males and 49.9±15.8 for females respectively. There were 16 landmarks with statistically significant differences between male and female subjects, namely S, G, N, Na, Ph, Sd and Id in the midline portion, FE, LO, ZA and Sub M2 in the bilateral-right and left portion, and IM point in the bilateral-left portion (abbreviations adapted from Karen T. Taylor's work). The mean soft tissue depth was greater in males than in females, and there was significant difference between the right and left sides of the face in Za point. This study's findings were compared with those of Bulut et al. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Antonelo, D S; Lancaster, N A; Melnichenko, S; Muegge, C R; Schoonmaker, J P
2017-10-01
Three experiments were conducted to determine the effect of increasing concentrations of a smectite clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of feedlot cattle. In Exp. 1, 72 Angus × Simmental steers were blocked by BW (395 ± 9.9 kg) and randomly allotted to 3 treatments (4 pens/treatment and 6 steers/pen) to determine the effects of increasing amounts of clay (0, 1, or 2%) on performance. The clay was top-dressed on an 80% concentrate diet at a rate of 0, 113, or 226 g/steer daily to achieve the 0, 1, and 2% treatments, respectively. Steers were slaughtered at a target BW of 606 kg. In Exp. 2, 6 steers (596 ± 22.2 kg initial BW) were randomly allotted to the same 3 treatments in a replicated 3 × 3 Latin square design (21-d periods) to determine the effects of increasing amounts of clay on ruminal pH, VFA, and nutrient digestibility. In Exp. 3, 150 mg of clay was incubated in 10 mL of rumen fluid with 3 incremental concentrations (6 replicates per concentration) of aflatoxin B (AFB) or ergotamine tartate (ET) to determine binding capacity. During the first 33-d period, there was a quadratic effect of clay on ADG ( < 0.01) and G:F ( < 0.01), increasing from 0 to 1% clay and then decreasing from 1 to 2% clay. However, during the second 30-d period, clay linearly decreased ADG and G:F ( ≤ 0.03) and overall ADG, DMI, and G:F were not impacted ( ≥ 0.46). Clay linearly decreased marbling score ( = 0.05). Hepatic enzyme activity did not differ among treatments on d 0 or at slaughter ( ≥ 0.15). Clay linearly decreased ruminal lactate and propionate, linearly increased formate and the acetate:propionate ratio ( ≤ 0.04), and tended ( = 0.07) to linearly increase butyrate. Clay tended to linearly increase ( = 0.06) OM and CP apparent digestibility. Ruminal pH, urine pH, and other digestibility measures did not differ among treatments ( ≥ 0.15). Clay was able to effectively bind AFB and ET at concentrations above the normal physiological range (52 and 520 μg/mL), but proportional adsorption was decreased to 35.5 and 91.1% at 5,200 μg/mL ( < 0.01) for AFB and ET, respectively. In conclusion, clay effectively binds ruminal toxins, decreases ruminal lactate, and improves performance only during adaptation to a high-concentrate feedlot diet.
A Thermoplasticity Model for Oil Shale
White, Joshua A.; Burnham, Alan K.; Camp, David W.
2016-03-31
Several regions of the world have abundant oil shale resources, but accessing this energy supply poses a number of challenges. One particular difficulty is the thermomechanical behavior of the material. When heated to sufficient temperatures, thermal conversion of kerogen to oil, gas, and other products takes place. This alteration of microstructure leads to a complex geomechanical response. In this work, we develop a thermoplasticity model for oil shale. The model is based on critical state plasticity, a framework often used for modeling clays and soft rocks. The model described here allows for both hardening due to mechanical deformation and softeningmore » due to thermal processes. In particular, the preconsolidation pressure—defining the onset of plastic volumetric compaction—is controlled by a state variable representing the kerogen content of the material. As kerogen is converted to other phases, the material weakens and plastic compaction begins. We calibrate and compare the proposed model to a suite of high-temperature uniaxial and triaxial experiments on core samples from a pilot in situ processing operation in the Green River Formation. In conclusion, we also describe avenues for future work to improve understanding and prediction of the geomechanical behavior of oil shale operations.« less
Biomimetic nanoclay scaffolds for bone tissue engineering
NASA Astrophysics Data System (ADS)
Ambre, Avinash Harishchandra
Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was used for preparing composites (films and scaffolds) containing in situ HAPclay. Composite films showed significantly improved nanomechanical properties. Human MSCs formed mineralized ECM on films in absence of osteogenic supplements and were able to infiltrate the scaffolds. Atomic force microscopy imaging of mineralized ECM formed on composite films showed similarities in dimensions, arrangement of collagen and apatite with their natural bone counterparts. This work indicates the potential of in situ HAPclay to impart polymeric scaffolds with osteoinductive, osteoconductive abilities and improve their mechanical properties besides emphasizing nanoclays as cell-instructive materials.
Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berge, P A; Bonner, B P
2002-01-03
Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and amore » second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.« less
Development and characterization of clay facial mask containing turmeric extract solid dispersion.
Pan-On, Suchiwa; Rujivipat, Soravoot; Ounaroon, Anan; Tiyaboonchai, Waree
2018-04-01
To develop clay facial mask containing turmeric extract solid dispersion (TESD) for enhancing curcumin water solubility and permeability and to determine suitable clay based facial mask. The TESD were prepared by solvent and melting solvent method with various TE to polyvinylpyrrolidone (PVP) K30 mass ratios. The physicochemical properties, water solubility, and permeability were examined. The effects of clay types on physical stability of TESD, water adsorption, and curcumin adsorption capacity were evaluated. The TESD prepared by solvent method with a TE to PVP K30 mass ratio of 1:2 showed physically stable, dry powders, when mixed with clay. When TESD was dissolved in water, the obtained TESD micelles showed spherical shape with mean size of ∼100 nm resulting in a substantial enhancement of curcumin water solubility, ∼5 mg/ml. Bentonite (Bent) and mica (M) showed the highest water adsorption capacity. The TESD's color was altered when mixed with Bent, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) indicating curcumin instability. Talcum (Talc) showed the greatest curcumin adsorption followed by M and kaolin (K), respectively. Consequently, in vitro permeation studies of the TESD mixed with Talc showed lowest curcumin permeation, while TESD mixed with M or K showed similar permeation profile as free TESD solutions. The developed TESD-based clay facial mask showed lower curcumin permeation as compared to those formulations with Tween 80. The water solubility and permeability of curcumin in clay based facial mask could be improved using solid dispersion technique and suitable clay base composed of K, M, and Talc.
Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Meng, Xiaoguang; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang
2017-02-01
In this study, a novel nanoscale zero-valent iron (nZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2 # clay" (HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange (MO) in aqueous solution by nZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported nZVI (HJ/nZVI) mass ratio (HJ-nZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe 0 dosage, the HJ-nZVI1 and HJ-nZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and nZVIs, or the sum of HJ clay and nZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the nZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-nZVI dosage, higher temperature and under N 2 atmosphere, while the MO initial concentration and pH were negatively correlated to the efficiency. HJ clay not only works as a carrier for nZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-nZVI for decontamination gives it great potential for use in a variety of remediation applications. Copyright © 2016. Published by Elsevier B.V.
Thamkunanon, Verasak
2011-08-01
Single Event Multilevel soft tissue surgery in spastic diplegic children also was effective for improving ambulatory function obviously as multilevel bone and soft tissue surgery. Just muscle and tendon surgery seem to be enough for better lever arm dysfunction of the lower extremity. It has safe, simple and rapid recovery. Gross Motor Functional Classification System (GMFCS) improvement after single event multilevel soft tissue surgery had been observed in these study groups of patients. Retrospective review in 93 spastic diplegic children who were more than 3 years old, had ability to understand communication, at least leaned sitting and one-hand gross function ability had been operated on by single event multilevel soft tissue surgery. GMFCS was assessed at the time of pre-operation and 6-12 months after operation. Analyzing GMFCS change was performed by statistics. Average 7 site surgery per one patient, 84% GMFCS level improvement and 16% GMFCS level non-improvement were reported. Nine cases (9.7%) were improved 2 level of GMFCS and 74% improved 1 level. GMFCS level compared between pre- and post surgery had changed by the significant statistic (p < 0.001). The average GMFCS level improvement for all groups was 0.93 level. The average age in the improved group (75 months old) was less than the non-improved group (92 month old), was a trend difference in statistic (p = 0.032). Single Event Multilevel Soft tissue surgery was effective in improving the GMFCS level average 1 level. It changed ambulatory function of spastic diplegic CP children obviously, immediately and safely. Younger age might get more benefit than older children.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M. S.; Chithirai Pon Selvan, M.; Sampath, P. S.; Raja, K.; Balasundaram, K.
2018-04-01
Multilayer glass fiber reinforced polymer (GFRP) laminates filled with nanoclay was manufactured with compression moulding machine. In the present work, five kinds of nanoclay (Cloisite 25A) loadings viz. 2, 4, 6, 8 and 10% on weight basis of epoxy resin were employed to modify the interlaminar shear strength (ILSS), critical energy release rate (GIc) and impact energy properties of GFRP laminates. Experimental results obtained from ILSS test on clay filled GFRP confirm that the superior strength was attained at low clay content of 155.10 MPa. Furthermore, the mode I interlaminar fracture toughness test conducted on DCB specimens revealed that the commanding improvement of GIc was obtained at 2 wt.% clay content level. On the other hand, both ILSS and fracture toughness was getting reduced at higher clay loadings. At last, the impact strength of the test samples was investigated by using Izod impact test apparatus and observed that the impact energy was increased by 44.39% for 2 wt.% and followed by 24.87% for 4 wt.% clay loadings.
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.
2017-06-01
Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.
NASA Astrophysics Data System (ADS)
Ortiz, A. V.; Teixeira, J. G.; Gomes, M. G.; Oliveira, R. R.; Díaz, F. R. V.; Moura, E. A. B.
2014-08-01
This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol-gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.
Inyang, Hilary I; Bae, Sunyoung
2005-01-01
Physico-chemical interactions among polymer molecules in aqueous solution and clay mineralogical/textural characteristics influence the sorption of polymer molecules on clay barrier minerals. Amendment of potentially unstable barrier clays with aqueous polymers can improve barrier material resistance to environmental stresses during service. In this research, the ability of molecular coils of polyacrylamide (PAM) to overlap in solution and to enter interlayer space in Na-montmorillonite (specific surface=31.82+/-0.22 m2 g(-1)) and kaolinite (specific surface=18+/-2 m2 g(-1)) were analyzed theoretically and experimentally, using solution viscosity measurements, and X-ray diffractometry. Experimental data on two theoretical indices: relative size ratio (RSR); and molecular availability (Ma) that are formulated to scale polymer molecular sorption on clay interlayer, indicate that the sorption of PAM A (Mw=4000000) and PAM B (Mw=7000000) does not produce any significant change in the d-spacing of both clay minerals. Although the negative Ma values of -3.51 g l(-1) for PAM A and -3.88 g l(-1) for PAM B indicate high levels of entanglement of polymer molecular coils in solution, sorption data confirm that the entangled coils are still able to sorb onto Na-montmorillonite highly and kaolinite to a lesser extent.
Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion
Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross
2016-01-01
The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192
In vitro toxicological assessment of clays for their use in food packaging applications.
Maisanaba, Sara; Puerto, María; Pichardo, Silvia; Jordá, María; Moreno, F Javier; Aucejo, Susana; Jos, Ángeles
2013-07-01
Montmorillonite based clays have a wide range of applications that are going to contribute to increase human exposure to these materials. One of the most promising uses of clays is the development of reinforced food contact materials that results in nanocomposites with improved barrier properties. Different organoclays have been developed introducing modifiers in the natural clay which is commercially available. However, the toxicological aspects of these materials have been scarcely studied so far. In the present study, the cytotoxic effects of a non-modified clay (Cloisite Na+) and an organoclay (Cloisite 30B) have been investigated in the hepatic cell line HepG2. Only Cloisite 30B showed cytotoxicity. In order to elucidate the toxic mechanisms underlying these effects, apoptosis, inflammation, oxidative stress and genotoxicity biomarkers were assayed. Moreover, a morphology study with light and electron microscopy was performed. Results showed genotoxic effects and glutathione decrease. The most relevant ultraestructural alterations observed were mitochondrial degeneration, dilated endomembrane systems, heterophagosomes formation, fat droplets appearance and presence of nuclear lipid inclusions. Cloisite 30B, therefore, induces toxic effects in HepG2 cells. Further research is needed to assess the risk of this clay on the human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing
2015-01-01
A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.
From Airborne EM to Geology, some examples
NASA Astrophysics Data System (ADS)
Gunnink, Jan
2014-05-01
Introduction Airborne Electro Magnetics (AEM) provide a model of the 3-dimensional distribution of resistivity of the subsurface. These resistivity models were used for delineating geological structures (e.g. Buried Valleys and salt domes) and for geohydrological modeling of aquifers (sandy sediments) and aquitards (clayey sediments). Most of the interpretation of the AEM has been carried out manually, by interpretation of 2 and 3-dimensional resistivity models into geological units by a skilled geologists / geophysicist. The manual interpretation is tiresome, takes a long time and is prone to subjective choices of the interpreter. Therefore, semi-automatic interpretation of AEM resistivity models into geological units is a recent research topic. Two examples are presented that show how resistivity, as obtained from AEM, can be "converted" to useful geological / geohydrolocal models. Statistical relation between borehole data and resistivity In the northeastern part of the Netherlands, the 3D distribution of clay deposits - formed in a glacio-lacustrine environment with buried glacial valleys - was modelled. Boreholes with description of lithology, were linked to AEM resistivity. First, 1D AEM resistivity models from each individual sounding were interpolated to cover the entire study area, resulting in a 3-dimensional model of resistivity. For each interval of clay and sand in the boreholes, the corresponding resistivity was extracted from the 3D resistivity model. Linear regression was used to link the clay and non-clay proportion in each borehole interval to the Ln(resistivity). This regression is then used to "convert" the 3D resistivity model into proportion of clay for the entire study area. This so-called "soft information" is combined with the "hard data" (boreholes) to model the proportion of clay for the entire study area using geostatistical simulation techniques (Sequential Indicator Simulation with collocated co-kriging). 100 realizations of the 3-dimensional distribution of clay and sand were calculated giving an appreciation of the variability of the 3-dimensional distribution of clay and sand. Each realization was input into a groundwatermodel to assess the protection the of the clay against pollution from the surface. Artificial Neural Networks AEM resistivity models in an area in Northern part of the Netherlands were interpreted by Artificial Neural Networks (ANN) to obtain a 3-dimensional model of a glacial till deposit that is important in geohydrological modeling. The groundwater in the study area was brackish to saline, causing the AEM resistivity model to be dominated by the low resistivity of the groundwater. After conducting Electrical Cone Penetration Tests (ECPTs) it became clear that the glacial till showed a distinct, non-linear, pattern of resistivity, that was discriminating it from the surrounding sediments. The patterns, found in the ECPTs were used to train an ANN and was consequently applied to the resistivity model that was derived from the AEM. The result was a 3-dimensional model of the probability of having the glacial till, which was checked against boreholes and proved to be quite reasonable. Conclusion Resistivity derived from AEM can be linked to geological features in a number of ways. Besides manual interpretation, statistical techniques are used, either in the form of regression or by means of Neural Networks, to extract geological and geohydrological meaningful interpretations from the resistivity model.
Rafiq, Muhammad Khalid; Joseph, Stephen D; Li, Fei; Bai, Yanfu; Shang, Zhanhuan; Rawal, Aditya; Hook, James M; Munroe, Paul R; Donne, Scott; Taherymoosavi, Sara; Mitchell, David R G; Pace, Ben; Mohammed, Mohanad; Horvat, Joseph; Marjo, Christopher E; Wagner, Avital; Wang, Yanlong; Ye, Jun; Long, Rui-Jun
2017-12-31
Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved Rubin-Bodner Model for the Prediction of Soft Tissue Deformations
Zhang, Guangming; Xia, James J.; Liebschner, Michael; Zhang, Xiaoyan; Kim, Daeseung; Zhou, Xiaobo
2016-01-01
In craniomaxillofacial (CMF) surgery, a reliable way of simulating the soft tissue deformation resulted from skeletal reconstruction is vitally important for preventing the risks of facial distortion postoperatively. However, it is difficult to simulate the soft tissue behaviors affected by different types of CMF surgery. This study presents an integrated bio-mechanical and statistical learning model to improve accuracy and reliability of predictions on soft facial tissue behavior. The Rubin-Bodner (RB) model is initially used to describe the biomechanical behavior of the soft facial tissue. Subsequently, a finite element model (FEM) computers the stress of each node in soft facial tissue mesh data resulted from bone displacement. Next, the Generalized Regression Neural Network (GRNN) method is implemented to obtain the relationship between the facial soft tissue deformation and the stress distribution corresponding to different CMF surgical types and to improve evaluation of elastic parameters included in the RB model. Therefore, the soft facial tissue deformation can be predicted by biomechanical properties and statistical model. Leave-one-out cross-validation is used on eleven patients. As a result, the average prediction error of our model (0.7035mm) is lower than those resulting from other approaches. It also demonstrates that the more accurate bio-mechanical information the model has, the better prediction performance it could achieve. PMID:27717593
Mohamed, Wael S.; Nasr, Hanaa E.; El-Lakkany, Naglaa M.; Seif el-Din, Sayed H.; Botros, Sanaa S.
2015-01-01
Consideration of existing compounds always simplifies and shortens the long and difficult process of discovering new drugs specifically for diseases of developing countries, an approach that may add to the significant potential cost savings. This study focused on improving the biological characteristics of the already-existing antischistosomal praziquantel (PZQ) by incorporating it into montmorillonite (MMT) clay as a delivery carrier to overcome its known bioavailability drawbacks. The oral bioavailability of a PZQ-MMT clay nanoformulation and its in vivo efficacy against Schistosoma mansoni were investigated. The PZQ-MMT clay nanoformulation provided a preparation with a controlled release rate, a decrease in crystallinity, and an appreciable reduction in particle size. Uninfected and infected mice treated with PZQ-MMT clay showed 3.61- and 1.96-fold and 2.16- and 1.94-fold increases, respectively, in area under the concentration-time curve from 0 to 8 h (AUC0–8) and maximum concentration of drug in serum (Cmax), with a decrease in elimination rate constant (kel) by 2.84- and 1.35-fold and increases in the absorption rate constant (ka) and half-life (t1/2e) by 2.11- and 1.51-fold and 2.86- and 1.34-fold, respectively, versus the corresponding conventional PZQ-treated groups. This improved bioavailability has been expressed in higher efficacy of the drug, where the dose necessary to kill 50% of the worms was reduced by >3-fold (PZQ 50% effective dose [ED50] was 20.25 mg/kg of body weight for PZQ-MMT clay compared to 74.07 mg/kg for conventional PZQ), with significant reduction in total tissue egg load and increase in total immature, mature, and dead eggs in most of the drug-treated groups. This formulation showed better bioavailability, enhanced antischistosomal efficacy, and a safer profile despite the longer period of residence in the systemic circulation. Although the conventional drug's toxicity was not examined, animal mortality rates were not different between groups receiving the test PZQ-clay nanoformulation and conventional PZQ. PMID:25845870
Lala, A O; Ajayi, O L; Oso, A O; Ajao, M O; Oni, O O; Okwelum, N; Idowu, O M O
2016-12-01
This study was carried out to investigate the effect of dietary supplementation with molecular or nano-clay binders on biochemical and histopathological examination of organs of turkeys fed diets contaminated with aflatoxin B 1. Two hundred and sixteen unsexed 1-day-old British United Turkeys were randomly allotted to nine diets in a 3 × 3 factorial arrangement of diets supplemented with no toxin binder, molecular toxin binder (MTB) and nano-clay toxin binder, each contaminated with 0, 60 and 110 ppb aflatoxin B 1 respectively. There were three replicates per treatment with eight turkeys per replicate. Biochemical analyses, organ weights and histopathological changes of some organs were examined at the end of the study which lasted for 84 days. Turkeys fed diets supplemented with molecular and nano-binders showed higher (p < 0.001) total serum protein, reduced (p < 0.001) serum uric acid and GGT concentration values when compared with those fed aflatoxin-contaminated diets supplemented with no binder. Turkeys fed aflatoxin-contaminated diets supplemented with no binder had increased (p < 0.001) AST and ALT concentration when compared with other treatments. The heaviest (p < 0.001) liver and intestinal weight was noticed with turkeys fed diets supplemented with no binder and contaminated with 110 ppb aflatoxin B 1 . Pathologically, there was no visible morphological alteration noticed in all turkeys fed uncontaminated diets and nano-clay-supplemented group. Hepatic paleness, hepatomegaly and yellowish discolouration of the liver were observed with turkeys fed diets containing no binder but contaminated with 60 and 110 ppb aflatoxin B1. Intestinal histopathological changes such as goblet cell hyperplasia, villous atrophy and diffuse lymphocytic enteritis were more prominent in turkeys fed diets containing no toxin binder and MTB. In conclusion, there were improved biochemical parameters and reduced deleterious effects of aflatoxin B 1 in turkeys fed diet supplemented with clay binders. However, the improvement was more conspicuous in the nano-clay-supplemented group than molecular clay group. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
An experimental study on stabilization of Pekan clay using polyethylene and polypropylene
NASA Astrophysics Data System (ADS)
Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah
2017-10-01
Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.
Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System
NASA Astrophysics Data System (ADS)
Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.
2013-12-01
Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the Tween-coated silver nanoparticles showed high stability in both single and binary systems. There were no significant differences in early stage aggregation kinetics observed inthe Na-clay-nanoparticle or Ca-clay-nanoparticle systems, which suggested that the CCC values of the single Na- or Ca-clay suspensions depend only on the electrolyte concentration, not the original cations on the clay surface. These results provide a basic idea for understanding the heteroaggregation of different silver nanoparticles and clays, which can be utilized in further study of fate and transport of engineered nanoparticles in natural aqueous system.
Shales and geological waste repositories: from microstructure description to macro-scale properties
NASA Astrophysics Data System (ADS)
Tournassat, C.; Steefel, C. I.; Gaboreau, S.
2017-12-01
The mineralogical and chemical properties of clays have been the subject of longstanding study for the long-term disposal of nuclear wastes in geological repositories. The low permeability of clay materials, including shales, provides at least part of the safety functions for radionuclide contaminants confinement. From a geochemical and mineralogical point of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic conductivities by greatly increasing the retardation of radionuclides and other contaminants, making clays ideal where isolation from the biosphere is desired. While their low permeability and high adsorption capacity are widely acknowledged, it is clear nonetheless that there is a need for an improved understanding of how the chemical and mineralogical properties of shales impact their macroscopic properties. It is at the pore-scale that the chemical properties of clay minerals become important since their electrostatic properties can play a large role. The negative electrostatic potential field at the clay mineral surfaces results in the presence of porosity domains where electroneutrality is not achieved: cations are attracted by the surfaces while anions are repulsed from them, resulting in the presence of a diffuse ion swarm - or diffuse layer. Numerical methods for modeling macroscopic properties of clay media with the consideration of the presence of a diffuse ion swarm have met a growing interest in diverse communities in the past years. In this presentation we will highlight the complex interplays of mineralogical, chemical and microstructural characteristics of clay materials that are ultimately responsible for a remarkable array of macro-scale properties such as specific adsorption, high swelling pressure, semi-permeable membrane properties, and non-Fickian diffusional behavior.
Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite
NASA Astrophysics Data System (ADS)
Kohno, Yoshiumi; Asai, Saeko; Shibata, Masashi; Fukuhara, Choji; Maeda, Yasuhisa; Tomita, Yasumasa; Kobayashi, Kenkichiro
2014-08-01
β-carotene and annatto extract are typical carotenoids used as safe colorants for foods. However, the instability against irradiation limits their wide use. The improvement of stability was investigated by the intercalation of dye into the interlayer space of the anion-exchangeable clay, hydrotalcite. A hydrophobic environment was constructed in the interlayer space of the hydrotalcite by its modification with anionic surfactants (dodecyl sulfate and dodecylbenzene sulfonate). The lipophilic β-carotene and annatto dye were successfully incorporated into the organo-modified hydrotalcite, and the incorporated dyes exhibited improved photostability under visible irradiation from a 100 W halogen lamp (190 klux) in the air. The effect of the stabilization on the anionic annatto dye was higher by the incorporation in the modified hydrotalcite than that in the modified cation exchangeable clay, suggesting that the polarity of the clay sheet had some influence on the stabilization of the incorporated dye. The stabilization effect of β-carotene was not so significant as that of the annatto dye, because sufficient intercalation of non-polar β-carotene might require stronger hydrophobic environment. The π-π interaction between the β-carotene and the benzene ring of dodecylbenzene sulfonate was found to contribute to the stability enhancement.
Subsidence Serves as an Indicator of Groundwater Arsenic Risk in the San Joaquin Valley, California
NASA Astrophysics Data System (ADS)
Smith, R.; Knight, R. J.; Fendorf, S. E.
2016-12-01
Groundwater arsenic concentrations dominantly result from anaerobic conditions. Within aquifers, clays are typically the major hosts of solid-phase arsenic, and clay layers often have restricted oxygen supply, resulting in anaerobic conditions and the concomitant relase of arsenic to groundwater. But it is not until water is drawn from the clay layers, through over-pumping of aquifers, that arsenic enters the water supply. Due to the mechanical properties of clays, the volume of groundwater withdrawn is effectively approximated by their vertical deformation, the sum of which is expressed at the surface as subsidence. As a result, subsidence can serve as an indicator, or "early warning system", of the presence of arsenic in the pumped groundwater. In the San Joaquin Valley of California, there has been significant subsidence due to groundwater extraction from clays for nearly a century. Historical subsidence in this area has been measured with leveling surveys, GPS and extensometers, and has been reproduced in groundwater models. More recent subsidence can be measured directly using Interferometric Synthetic Aperture Radar (InSAR). We use recent (post-2007) arsenic level data from the southern portion of the San Joaquin Valley to train a random forest model. Predictors in the model include historical (pre-2002) estimates of subsidence, more recent (2007-2011) InSAR estimates of subsidence, and other predictors representing additional mechanisms that could affect arsenic levels in groundwater, such as groundwater flow, redox potential and position in the basin. We find that recent subsidence is a strong predictor of arsenic levels; historical subsidence could have some impact but is less significant. These results indicate that avoiding over-pumping of the aquifer may improve water quality over a time period on the order of 10 years. Incorporating subsidence into arsenic prediction maps can improve our ability to identify and manage areas that have a higher risk of arsenic contamination due to removal of groundwater from clays.
NASA Astrophysics Data System (ADS)
Kim, Soon Ki
Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol-acrylate systems. However, nonreactive clays do not reduce the stress substantially and even decreases the polymerization rate in air. Additionally, the clay morphology and polymerization behavior are closely related with evolution of ultimate nanocomposite performance. Use of polymerizable organoclay significantly improves overall toughness of nanocomposites by increasing either modulus or elongation at break based on the type of polymerizable organoclay, which demonstrates the promise of this technology as a modulation and/or optimization tool for nanocomposite properties.
NASA Astrophysics Data System (ADS)
Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria
2016-03-01
This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.
Neoadjuvant chemotherapy in soft tissue sarcomas: latest evidence and clinical implications
Pasquali, Sandro; Gronchi, Alessandro
2017-01-01
Soft tissue sarcomas are a rare and multifaceted group of solid tumours. Neoadjuvant chemotherapy is increasingly used to limit loss of function after wide surgical excision with the ultimate aim of improving patient survival. Recently, advances in the identification of effective treatment strategies and improvements in patient risk stratification have been reached. A randomized trial demonstrated that neoadjuvant epirubicin and ifosfamide improves survival of patients affected by five high-risk soft tissue sarcoma histologies of trunk and extremities, including undifferentiated pleomorphic sarcoma, myxoid liposarcoma, synovial sarcoma, malignant peripheral nerve sheath tumours, and leiomyosarcoma. Selection of patients for these treatments is expected to be improved by the eighth edition of the American Joint Committee on Cancer (AJCC) TNM staging system, as it tailors T-stage categories on primary tumour site and considers a prognostic nomogram for retroperitoneal sarcoma, which also includes soft tissue sarcoma histology and other patient and tumour features not directly included in the TNM staging. Within this framework, this article will present neoadjuvant treatment strategies for high-risk soft tissue sarcoma, emphasizing the most recent advances and discussing the need for further research to improve the effectiveness of neoadjuvant treatments. PMID:28607580
NASA Astrophysics Data System (ADS)
Lewis, C. F. M.; Anderson, T. W.
2017-10-01
South Bay on the southern coast of Manitoulin Island is a fjord-like embayment connected to Lake Huron by a natural narrow gap in the bay's outer sill 6.5-14 m above the lake. A seismic profile, pollen, plant macrofossil, grain size analyses, and other sediment properties of two piston cores from a shallow outer basin of the bay document a 9 m-thick sediment section comprising rhythmically laminated clay under silty clay containing zones with small molluscan shells and marsh detritus. A sandy pebbly layer under soft silty clay mud overlies these sediments. This stratigraphy represents inundation by deep glacial Lake Algonquin followed by the shallowing Post Algonquin series of lakes, and exposure in the early Holocene by 5 Lake Stanley lowstands in the Lake Huron basin separated by 4 Lake Mattawa highstands. Overflow from South Bay in the first lowstand is thought to have eroded the outer sill gap. Marsh environments are inferred to have formed in the bay during subsequent lowstands. The Lake Mattawa highstands are attributed to outburst floods mainly from glacial Lake Agassiz. Palynological evidence of increased spruce occurrence, an apparent regional climate reversal, during the dry pine period is attributed to cold northwest winds from the Lake Superior basin and a lake effect from the Mattawa highstands in the Lake Huron basin. Lake waters transgressed South Bay following the pine period to form the Nipissing shore on Manitoulin Island. Transfer of Lake Huron basin drainage to southern outlets and continued glacioisostatic uplift of the region led to the present configuration of South Bay and Lake Huron.
NASA Astrophysics Data System (ADS)
Farrugia, D.; Galea, P. M.; D'Amico, S.
2016-12-01
The Maltese archipelago is characterised by a four layer sequence of limestones and clays. The Lower Coralline Limestone is the oldest exposed layer, overlain by the Globigerina Limestone. Some parts of the islands are characterised by Upper Coralline Limestone plateaus and hillcaps covering a soft Blue Clay layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, and makes the Vs30 parameter not always suitable for seismic microzonation purposes. Such a layer may still produce amplification effects, however would not contribute to the numerical mean of Vs in the upper 30m. In this study, site response analysis for the Maltese islands is conducted, with particular attention being given to sites described above. Array and single-station measurements of ambient noise were first carried out at numerous sites in Malta. Surface wave dispersion and H/V curves were jointly inverted using a genetic algorithm, so that the Vs profiles were obtained. The stochastic extended-fault algorithm EXSIM was used to simulate historical and recent earthquakes at the bedrock. These were used in conjunction with the equivalent-linear programme SHAKE2000 to carry out the site-specific response analysis, using the derived geophysical models. Maps of ground motion parameters, such as peak ground acceleration and spectral accelerations, confirm that the clay, even when buried under a hard outcropping layer can still produce significant amplifications at frequencies which are of engineering interest when considering the recent urbanisation patterns. The results of this project will give important, and previously unavailable information and predictions about the behaviour of local lithotypes in response to earthquake ground shaking while also contributing knowledge about the issue of buried low velocity layers.
NASA Astrophysics Data System (ADS)
Harunsyah; Sariadi; Raudah
2018-01-01
Plastics have been used widely for packaging material since long time ago. However, environmentally friendly plastics or plastics whose raw materials come from natural polymers are still very low in development. Efforts have been conducted to develop environmental friendly plastic from renewable resources such as biopolymer. The aim of this paper is to study the influence of clay nanoparticles as reinforcment on the mechanical properties of bioplastic were prepared by solution-casting method. The content of clay nanoparticles in the bioplastic was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Structural characterization was done by Fourier Transform Infrared Spectroscopy. Surface morphologies of the plastic film were examined by scanning electron microscope.The result showed that the Tensile strength was improved significantly with the addition of clay nanoparticles. The maximum tensile strength obtained was 24.18 M.Pa on the additional of clay nanoparticles by 0.6% and plasticizer by 25%. Based on data of FTIR, the produced bioplastic did not change the group function and it can be concluded that the interaction in bioplastic produced was only a physical interaction. The bioplastic based on cassava starch-clay nanoparticles and plasticizer glycerin showed that interesting mechanical properties being transparent, clear, homogeneous, flexible and easy to be handled.
Review: nanocomposites in food packaging.
Arora, Amit; Padua, G W
2010-01-01
The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging.
Sornkarn, Nantachai; Nanayakkara, Thrishantha
2017-01-01
When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.
Low Velocity Earth-Penetration Test and Analysis
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris
2001-01-01
Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.
Stability of Low Embankments on Soft Clay. Part 3. Centrifuge Tests and Numerical Analysis.
1984-11-01
radiographs taken after the test. . Miniature pore pressure transducers used were the PDCR81 transducers manufactured by Druck Ltd. They are 6.35 mm...transducers at any time. The pressure was applied by a remote air/water interface and recorded in a Druck DPI 100 digital pressure meter. For the...I.. " 7 .P 1.. - l wil (dJ ) 3WS3 1 ’ X (dJ41 3NS3 ci ’ IN. 7V~ AUN I7 cu V N z V N Ncu N L coN IX ( 4 ’Hr^ 3d IX e d] f9p X W~]~lSd* X 3 L L J 0 0 00
Shiravand, Fatemeh; Hutchinson, John M.; Calventus, Yolanda; Ferrando, Francesc
2014-01-01
Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para-amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF3·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF3·MEA into the clay galleries of nanocomposites containing 2 wt% MMT. PMID:28788672
Implementation of DSC model and application for analysis of field pile tests under cyclic loading
NASA Astrophysics Data System (ADS)
Shao, Changming; Desai, Chandra S.
2000-05-01
The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay-steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay-steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response.
Shiravand, Fatemeh; Hutchinson, John M; Calventus, Yolanda; Ferrando, Francesc
2014-05-30
Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para -amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF₃·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF₃·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.
Stratigraphic test well, Nantucket Island, Massachusetts
Folger, David W.; Hathaway, J.C.; Christopher, R.A.; Valentine, P.C.; Poag, C.W.
1978-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Water Resources Commission and the Nantucket Conservation Foundation, continuously cored 514 m of sediment and volcanic rock in a stratigraphic and water-quality test near the geographic center of Nantucket Island. Stratified sediments were divided texturally into three zones: the upper zone (0-128 m) contains mostly coarse sand and gravel; the middle zone (128-349 m) contains mostly silty clay and a few beds of sand and silt; and the lower zone (349-457 m) contains soft, unconsolidated, clayey sand. Below the lower zone, a saprolite, composed mostly of clay, grades abruptly downward at 470 m into partially altered basalt that extends to the bottom of the hole at 514 m. Calculations based on the Ghyben-Herzberg principle predicted a zone of freshwater 120-150 m thick. This principle is the theory of hydrostatic equilibrium between freshwater and more dense seawater in a coastal aquifer; it states that for each meter of ground-water elevation above sea level, the freshwater lens will depress the saltwater interface about 40 m below sea level. Freshwater or low-salinity brackish water was found in sediments far below the depth predicted by the Ghyben-Herzberg principle. These interstitial waters are probably relict ground water emplaced during times of low sea level during the Pleistocene. (Woodard-USGS)
On sorption and swelling of CO 2 in clays
Busch, A.; Bertier, P.; Gensterblum, Y.; ...
2016-03-23
One well-studied technology is the geological storage of carbon dioxide (CO 2), and a number of demonstration projects around the world have proven its feasibility and challenges. Storage conformance and seal integrity are among the most important aspects, as they determine risk of leakage as well as limits for storage capacity and injectivity. By providing evidence for safe storage is critical for improving public acceptance. Most caprocks are composed of clays as dominant mineral type which can typically be illite, kaolinite, chlorite or smectite. A number of recent studies addressed the interaction between CO 2 and these different clays andmore » it was shown that clay minerals adsorb considerable quantities of CO 2. For smectite this uptake can lead to volumetric expansion followed by the generation of swelling pressures. On the one hand CO 2 adsorption traps CO 2, on the other hand swelling pressures can potentially change local stress regimes and in unfavourable situations shear-type failure is assumed to occur. Moreover, for storage in a reservoir having high clay contents the CO 2 uptake can add to storage capacity which is widely underestimated so far. Smectite-rich seals in direct contact with a dry CO 2 plume at the interface to the reservoir might dehydrate leading to dehydration cracks. Such dehydration cracks can provide pathways for CO 2 ingress and further accelerate dewatering and penetration of the seal by supercritical CO 2. At the same time, swelling may also lead to the closure of fractures or the reduction of fracture apertures, thereby improving seal integrity. Finally, the goal of this communication is to theoretically evaluate and discuss these scenarios in greater detail in terms of phenomenological mechanisms, but also in terms of potential risks or benefits for carbon storage.« less
NASA Astrophysics Data System (ADS)
Roesyanto; Iskandar, R.; Hastuty, IP; Lubis, AIU
2018-02-01
Soil stabilization is an effort to improve engineering properties of soil. The conventional soil stabilization is by adding additives to the soil such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and volcanic ash. The research purposes were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% volcanic ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT values of original soil and original soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2 respectively. The CBR soaked and unsoaked values of original soil were 4.44% and 6.28% correspondingly. Meanwhile, CBR soaked and CBR unsoaked values of original soil plus 2% gypsum were 6.74% and 8.02% respectively. The research results showed that the additives materials of gypsum and volcanic ash improved the engineering properties of clay. The UCT result from the stabilized soil by 2% gypsum and 10% volcanic ash gave value of 2.79 kg/cm2 (increased 99.28% from original soil). For CBR test, the most effective mixture were in variation of 2% gypsum and 9% volcanic ash which gave value of 9.07% (104.27% increase from original soil) for CBR soaked and 10.29% (63.85% increase from original soil) for CBR unsoaked. The stabilized soil with 2% gypsum and 9% volcanic ash was classified as CL based on USCS and was classified as A-6 (4) based on AASHTO classification system.
Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
Deep Shear Wave Velocity of Southern Bangkok and Vicinity
NASA Astrophysics Data System (ADS)
Wongpanit, T.; Hayashi, K.; Pananont, P.
2017-09-01
Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.
Modification of hydraulic conductivity in granular soils using waste materials.
Akbulut, S; Saglamer, A
2004-01-01
This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.
Development of soft scaffolding strategy to improve student’s creative thinking ability in physics
NASA Astrophysics Data System (ADS)
Nurulsari, Novinta; Abdurrahman; Suyatna, Agus
2017-11-01
Student’s creative thinking ability in physics learning can be developed through a learning experience. However, many students fail to gain a learning experience because of the lack of teacher roles in providing assistance to students when they face learning difficulties. In this study, a soft scaffolding strategy developed to improve student’s creative thinking ability in physics, especially in optical instruments. The methods used were qualitative and quantitative. The soft scaffolding strategy developed was called the 6E Soft Scaffolding Strategy where 6E stands for Explore real-life problems, Engage students with web technology, Enable experiment using analogies, Elaborate data through multiple representations, Encourage questioning, and Ensure the feedback. The strategy was applied to 60 students in secondary school through cooperative learning. As a comparison, conventional strategies were also applied to 60 students in the same school and grade. The result of the study showed that the soft scaffolding strategy was effective in improving student’s creative thinking ability.
A New Framework for Universiti Kebangsaan Malaysia Soft Skills Course: Implementation and Challenges
ERIC Educational Resources Information Center
Che-Ani, Adi-Irfan; Ismail, Khaidzir; Ahmad, Azizan; Ariffin, Kadir; Razak, Mohd Zulhanif Abd
2014-01-01
The importance of soft skills to the graduates to compete in the working world is undeniable. Soft skills are complementary to the academic qualifications held by students. Recognizing this, the University Kebangsaan Malaysia (UKM) has established a new framework for Soft Skills courses to improve the existing framework of the course. The…
Wu, Ping-xiao; Liao, Zong-wen
2005-01-01
Three types of new high-efficiency phosphate fertilizers were made when pillared clays at certain proportions were added into ground phosphate rock. Chemical analyses showed that their soluble phosphorus content decreased more than that of superphosphate. Pot experiment showed that, under equal weights, the new fertilizers increased their efficiency by a large margin over that of superphosphate. Researches on their structures by means of XRD, IR and EPR spectrum revealed that their crystal structures changed considerably, improving their activity and preventing the fixation of available phosphorus in the soil, and consequently, greatly improved the bioavailability and became the main cause of the increase of biomass. PMID:15682504
England, Matt W; Sato, Tomoya; Urata, Chihiro; Wang, Liming; Hozumi, Atsushi
2017-11-01
Transparent gel-based composite films with multiple functionalities, showing long-lasting anti-fogging properties, underwater superoleophobicity, and anti-bacterial activity were successfully prepared from polyvinylpyrrolidone (PVP) and aminopropyl-functionalized clay (AMP-clay). Due to the addition of glutaraldehyde (GA, cross-linker) into the PVP matrices, and AMP-functionalities to the substrate surfaces, both the adhesion properties in water and durability of the anti-fogging properties were significantly improved. In addition, this durability was also found to be markedly improved by increasing the film thickness via deposition of several PVP/AMP/GA layers, while still retaining excellent transparency. Copyright © 2017 Elsevier Inc. All rights reserved.
Soft context clustering for F0 modeling in HMM-based speech synthesis
NASA Astrophysics Data System (ADS)
Khorram, Soheil; Sameti, Hossein; King, Simon
2015-12-01
This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.
Applicability of recycled aggregates in concrete piles for soft soil improvement.
Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G
2017-01-01
The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.
Mikkor, Mati
1981-01-01
This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.
NASA Astrophysics Data System (ADS)
Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru
2016-02-01
Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.
Weaver, Alexandra C; See, M Todd; Hansen, Jeff A; Kim, Yong B; De Souza, Anna L P; Middleton, Teena F; Kim, Sung Woo
2013-07-17
Three feed additives were tested to improve the growth and health of pigs chronically challenged with aflatoxin (AF) and deoxynivalenol (DON). Gilts (n = 225, 8.8 ± 0.4 kg) were allotted to five treatments: CON (uncontaminated control); MT (contaminated with 150 µg/kg AF and 1100 µg/kg DON); A (MT + a clay additive); B (MT + a clay and dried yeast additive); and C (MT + a clay and yeast culture additive). Average daily gain (ADG) and feed intake (ADFI) were recorded for 42 days, blood collected for immune analysis and tissue samples to measure damage. Feeding mycotoxins tended to decrease ADG and altered the immune system through a tendency to increase monocytes and immunoglobulins. Mycotoxins caused tissue damage in the form of liver bile ductule hyperplasia and karyomegaly. The additives in diets A and B reduced mycotoxin effects on the immune system and the liver and showed some ability to improve growth. The diet C additive played a role in reducing liver damage. Collectively, we conclude that AF and DON can be harmful to the growth and health of pigs consuming mycotoxins chronically. The selected feed additives improved pig health and may play a role in pig growth.
Weaver, Alexandra C.; See, M. Todd; Hansen, Jeff A.; Kim, Yong B.; De Souza, Anna L. P.; Middleton, Tina F.; Kim, Sung Woo
2013-01-01
Three feed additives were tested to improve the growth and health of pigs chronically challenged with aflatoxin (AF) and deoxynivalenol (DON). Gilts (n = 225, 8.8 ± 0.4 kg) were allotted to five treatments: CON (uncontaminated control); MT (contaminated with 150 µg/kg AF and 1100 µg/kg DON); A (MT + a clay additive); B (MT + a clay and dried yeast additive); and C (MT + a clay and yeast culture additive). Average daily gain (ADG) and feed intake (ADFI) were recorded for 42 days, blood collected for immune analysis and tissue samples to measure damage. Feeding mycotoxins tended to decrease ADG and altered the immune system through a tendency to increase monocytes and immunoglobulins. Mycotoxins caused tissue damage in the form of liver bile ductule hyperplasia and karyomegaly. The additives in diets A and B reduced mycotoxin effects on the immune system and the liver and showed some ability to improve growth. The diet C additive played a role in reducing liver damage. Collectively, we conclude that AF and DON can be harmful to the growth and health of pigs consuming mycotoxins chronically. The selected feed additives improved pig health and may play a role in pig growth. PMID:23867763
2014-07-01
into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of
The effect of soil type on the bioremediation of petroleum contaminated soils.
Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin
2016-09-15
In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effects Of Physical And Biological Cohesion On Bedforms
NASA Astrophysics Data System (ADS)
Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.
2014-12-01
Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield improved predictions of morphological and habitat adjustment.
Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun; ...
2014-07-14
Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun
Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less
Characterization of fly ash ceramic pellet for phosphorus removal.
Li, Shiyang; Cooke, Richard A; Wang, Li; Ma, Fang; Bhattarai, Rabin
2017-03-15
Phosphorus has been recognized as a leading pollutant for surface water quality deterioration. In the Midwestern USA, subsurface drainage not only provides a pathway for excess water to leave the field but it also drains out nutrients like nitrogen (N) and phosphorus (P). Fly ash has been identified as one of the viable materials for phosphorus removal from contaminated waters. In this study, a ceramic pellet was manufactured using fly ash for P absorption. Three types of pellet with varying lime and clay proportions by weight (type 1: 10% lime + 30% clay, type 2: 20% lime + 20% clay, and type 3: 30% lime + 10% clay) were characterized and evaluated for absorption efficiency. The result showed that type 3 pellet (60% fly ash with 30% lime and 10% clay) had the highest porosity (14%) and absorption efficiency and saturated absorption capacity (1.98 mg P/g pellet) compared to type 1 and 2 pellets. The heavy metal leaching was the least (30 μg/L of chromium after 5 h) for type 3 pellet compared to other two. The microcosmic structure of pellet from scanning electron microscope showed the type 3 pellet had the better distribution of aluminum and iron oxide on the surface compared other two pellets. This result indicates that addition of lime and clay can improve P absorption capacity of fly ash while reducing the potential to reduce chromium leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Levitation properties of maglev systems using soft ferromagnets
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Zhou, You-He
2015-03-01
Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.
2008-01-01
Sulfonated styrene-(ethylene-butylene)-styrene triblock copolymer (SSEBS) was synthesized by reaction of acetyl sulfate with SEBS. SSESB-clay nanocomposites were then prepared from hydrophilic Na-montmorillonite (MT) and organically (quaternary amine) modified hydrophobic nanoclay (OMT) at very low loading. SEBS did not show improvement in properties with MT-based nanocomposites. On sulfonation (3 and 6 weight%) of SEBS, hydrophilic MT clay-based nanocomposites exhibited better mechanical, dynamic mechanical, and thermal properties, and also controlled water–methanol mixture uptake and permeation and AC resistance. Microstructure determined by X-ray diffraction, atomic force microscopy, and transmission electron microscopy due to better dispersion of MT nanoclay particles and interaction of MT with SSEBS matrix was responsible for this effect. The resulting nanocomposites have potential as proton transfer membranes for Fuel Cell applications.
Small-scale seismogenic soft sediment deformation (Hirlatzhöhle, Upper Austria)
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne
2014-05-01
The Hirlatz Cave lies in the Dachstein Massif about 2 km SW of Hallstatt, in the Upper Austrian Salzkammergut. With a length of 101 km, this karst cave, located in the Dachstein nappe (Northern Calcareous Alps), is the second largest known cave system in Austria. Within the cave, in the so-called Lehmklamm, located 2.8 km southeast of the cave entrance, laminated (mm-scale) Quaternary clay-sized sediments with interbedded fine-grained sandy layers are preserved. In these layers, numerous soft sediment deformation structures are preserved in many layers. The unconsolidated sediments show rhythmic layering of brighter, carbonate and quartz rich, and darker, more clay mineral rich horizontal varve-like layers, that are assumed to be fluvio-lacustrine deposits. The present study focuses on a very detailed documentation of an approximately 6.8 x 3 m vertical outcrop that was cut by a small brook. Centimeter to millimeter sized water escape structures (intruded cusps and flame structures), folds (detachment folds, fault bend folds) and faults (normal faults, fault propagation folds, bookshelf faults) are described. Because of the geometric analogy to seismogenic structures which have been described at two orders of magnitude larger scales from areas close to the Dead Sea Fault, we suggest that the formation of the investigated soft-sediment structures was also triggered by seismic events. The structures were mainly formed by three different mechanism: (i) North directed gravitational gliding near the sediment surface; (ii) Liquefaction resulting in a density discontinuity and decreasing in shear strength within in the stratified layers; (iii) Extensional faulting that cut through the stratified layers. Observations of coarsening upwards into sandy layers on the top of the outcrop and current ripple indicate a north-directed flow under phreatic conditions, which is opposite to the present flow direction of the vadose water in the cave. The fact that deformation and erosion mostly occur in the uppermost meter of the outcrop wall suggests a higher seismic activity and at least periodically higher flow rates during sedimentation of the younger deposits. Since several extremely deformed layers occur between undeformed ones, we suggest that deformation of the layers occurred only in the uppermost highly water saturated sediments and that several seismic events lead to the formation of the observed structures. A possible source responsible for the seismic event is the Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault, which accommodates the active extrusion of the Eastern Alps towards the Pannonian Basin.
Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás
2013-01-01
A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and slow release of target molecules of interest. PMID:23527087
Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke
Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terrimore » URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository.« less
Use of geological mapping tools to improve the hydraulic performance of SuDS.
Bockhorn, Britta; Klint, Knud Erik Strøyberg; Jensen, Marina Bergen; Møller, Ingelise
2015-01-01
Most cities in Denmark are situated on low permeable clay rich deposits. These sediments are of glacial origin and range among the most heterogeneous, with hydraulic conductivities spanning several orders of magnitude. This heterogeneity has obvious consequences for the sizing of sustainable urban drainage systems (SuDS). We have tested methods to reveal geological heterogeneity at field scale to identify the most suitable sites for the placement of infiltration elements and to minimize their required size. We assessed the geological heterogeneity of a clay till plain in Eastern Jutland, Denmark measuring the shallow subsurface resistivity with a geoelectrical multi-electrode system. To confirm the resistivity data we conducted a spear auger mapping. The exposed sediments ranged from clay tills over sandy clay tills to sandy tills and correspond well to the geoelectrical data. To verify the value of geological information for placement of infiltration elements we carried out a number of infiltration tests on geologically different areas across the field, and we observed infiltration rates two times higher in the sandy till area than in the clay till area, thus demonstrating that the hydraulic performance of SuDS can be increased considerably and oversizing avoided if field geological heterogeneity is revealed before placing SuDS.
Goure-Doubi, Herve; Martias, Céline; Lecomte-Nana, Gisèle Laure; Nait-Ali, Benoît; Smith, Agnès; Thune, Elsa; Villandier, Nicolas; Gloaguen, Vincent; Soubrand, Marilyne; Konan, Léon koffi
2014-11-15
The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic clays and its involvement in the strengthening process of materials. Copyright © 2014 Elsevier Inc. All rights reserved.
Sedimentology of cores recovered from the Canada Basin of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Edwards, B. D.; Saint-Ange, F.; Pohlman, J.; Higgins, J.; Mosher, D. C.; Lorenson, T. D.; Hart, P.
2011-12-01
Researchers from the United States and Canada are collaborating to understand the tectonic and sedimentary history of the Arctic Ocean between Canada and Alaska. As part of this on-going study, a joint US-Canadian ice breaker expedition operated in parts of the Canada Basin during August 2010. Occasional interruptions of the seismic data acquisition provided the ship time to collect gravity and piston cores at five sites-of-opportunity throughout the basin. High-resolution multibeam bathymetry and chirp sub-bottom profiler data collected immediately prior to coring reveal the fine-scale morphology of each site. Core photographs, X-ray radiographs, and physical property data support the following descriptions. Two piston cores were collected from the Beaufort Sea continental margin in a region of known bottom simulating reflectors (BSRs). Site 1 (2538 m water depth): This core recovered 5.72 m of gas-charged, gray sticky clay and silty-clay from an approximately 1100 m diameter, 130 m high conical mound overlying the crest of a buried anticline. Gas hydrate recovered in the core catcher combined with cracks and voids, methane and other hydrocarbon gasses, pyrite concretions, chemosynthetic clams, carbonate nodules, and soft carbonate masses indicate the likely upward migration of deep-seated fluids. Site 2 (1157 m water depth): This core, positioned 40 km upslope from the gas hydrate core, recovered 3 m of gray sticky silty clay and clayey silt near the base of an erosional scarp. Some voids and fracturing are apparent but carbonate masses and pyrite concretions are absent. Site 3 (3070 m water depth): This core from the top of a seamount discovered in 2009 in the north-central part of the Canada Basin recovered 4.94 m of sediment. More than 3 m of dark brown to yellowish brown, massive interbedded silty clays with sands and matrix-supported gravels (ice rafted debris [IRD]) occur in abrupt contact with underlying reddish yellow to brownish yellow silty clay and gravelly sandy clay interpreted to be altered hydrothermally. Successions of IRD layers create a thinly- to medium-bedded sequence throughout the lower section. Site 4 (3700 m water depth; central Canada Basin): This core recovered 3.4 m of sediment typified by decimeter-thick sequences of stacked graded beds with erosional basal contacts (Bouma sequences) characteristic of turbidite deposition. Site 5 (2081 m water depth; continental slope west of the Canadian archipelago): This core recovered 4.96 m of sediment of which the upper 2 m is silty clay to clayey silt with dispersed sand and granules. This upper section has an irregular, sharp basal contact with an underlying 16-cm-thick clast-supported massive gravel. The gravel has a scoured basal contact and overlies a monotonous gray clayey silt containing dispersed granules of IRD. Sparse and poorly preserved fauna throughout all the cores make age determination difficult; however, given the paucity of sediment cores in the Arctic Ocean, these samples provide vital geophysical groundtruth and sedimentological information about the basin.
Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs
NASA Astrophysics Data System (ADS)
Liqing, TONG; Kefu, LIU; Yonggang, WANG
2018-02-01
For an all solid-state Marx modulator applied in dielectric barrier discharges (DBDs), hard switching results in a very low efficiency. In this paper, a series resonant soft switching circuit, which series an inductance with DBD capacitor, is proposed to reduce the power loss. The power loss of the all circuit status with hard switching was analyzed, and the maximum power loss occurred during discharging at the rising and falling edges. The power loss of the series resonant soft switching circuit was also presented. A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss. The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times.
Design and development of a bio-inspired, under-actuated soft gripper.
Hassan, Taimoor; Manti, Mariangela; Passetti, Giovanni; d'Elia, Nicolò; Cianchetti, Matteo; Laschi, Cecilia
2015-08-01
The development of robotic devices able to perform manipulation tasks mimicking the human hand has been assessed on large scale. This work stands in the challenging scenario where soft materials are combined with bio-inspired design in order to develop soft grippers with improved grasping and holding capabilities. We are going to show a low-cost, under-actuated and adaptable soft gripper, highlighting the design and the manufacturing process. In particular, a critical analysis is made among three versions of the gripper with same design and actuation mechanism, but based on different materials. A novel actuation principle has been implemented in both cases, in order to reduce the encumbrance of the entire system and improve its aesthetics. Grasping and holding capabilities have been tested for each device, with target objects varying in shape, size and material. Results highlight synergy between the geometry and the intrinsic properties of the soft material, showing the way to novel design principles for soft grippers.
Optical dating of late Holocene storm surges from Schokland (Noordoostpolder, the Netherlands)
NASA Astrophysics Data System (ADS)
van den Biggelaar, Don; Kluiving, Sjoerd; van Balen, Roland; Kasse, Cronelils; Troelstra, Simon; Prins, Maarten; Wallinga, Jakob; Versendaal, Alice
2015-04-01
Storm surges have a major impact on land use and human habitation in coastal regions. Our understanding of this impact can be improved by correlating long-term historical storm records with sedimentary evidence of storm surges, but so far few studies use such an approach. Here we present detailed geological and historical data on late Holocene storm surges from the former island Schokland, located in the northern part of Flevoland (central Netherlands). During the late Holocene, Schokland transformed from a peat area that gradually inundated (~1200 yr ago) via an island in a marine environment (~400 yr ago) to a land-locked island in the reclaimed Province of Flevoland (~70 yr ago). Deposits formed between 1200 and 70 year ago on lower parts of the island, consist of a stacked sequence of clay and sand layers, with the latter being deposited during storm surges. We dated the sandy laminae of late Holocene storm surges in the clay deposit on Schokland to improve the age model of the island's flooding history during the last 1200 years. Samples for dating were obtained from a mechanical core at Schokland. The top of the peat underlying the clay and sand deposits was dated using 14C accelerator mass spectrometry (AMS) of terrestrial plant and seed material. Sandy intervals of the flood deposits were dated using a series of ten quartz OSL ages, which were obtained using state-of-the-art methods to deal with incomplete resetting of the OSL signal. These new dates, together with laboratory analyses on the clay deposit (thermogravimetric analysis, grain-size analyses, foraminifera, bivalves and ostracods) and a literature study show that storm surges had a major impact on both the sedimentary and the anthropogenic history of Schokland. The results show that the stacked clay sequence is younger than expected, indicating either an increasing sedimentation rate or reworking of the clay by storm surges. Furthermore, the results indicate that a correlation can be made between the sedimentary remains of late Holocene storm surges and several major storm surges mentioned in the historical sources that eroded parts of Schokland.
Liaki, Christina; Rogers, Christopher D F; Boardman, David I
2008-07-01
To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.
Soft tissue modelling with conical springs.
Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan
2015-01-01
This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.
Xue, Jian Jie; Hou, Jin Gang; Zhang, Yong An; Wang, Chun Yan; Wang, Zhen; Yu, Jiao Jiao; Wang, Yun Bo; Wang, Yu Zhu; Wang, Qing Hua; Sung, Chang Keun
2014-11-01
The fungus, Esteya vermicola has been proposed as biocontrol agent against pine wilting disease caused by Bursaphelenchus xylophilus. In this study, we reported the effects of temperature and different additives on the viability and biocontrol efficacy of E. vermicola formulated by alginate-clay. The viability of the E. vermicola formulation was determined for six consecutive months at temperature ranged from -70 to 25 °C. The fresh conidia without any treatment were used as control. Under the optimal storage conditions with E. vermicola alginate-clay formulation, the results suggested that E. vermicola alginate-clay formulation with a long shelf life could be a non-vacuum-packed formulation that contains 2 % sodium alginate and 5 % clay at 4 °C. Three conidial formulations prepared with additives of 15 % glycerol, 0.5 % yeast extract and 0.5 % herbal extraction, respectively significantly improved the shelf life. In addition, these tested formulations retained the same biocontrol efficacy as the fresh conidial against pinewood nematode. This study provided a tractable and low-cost method to preserve the shelf life of E. vermicola.
Bio-Based Nano Composites from Plant Oil and Nano Clay
NASA Astrophysics Data System (ADS)
Lu, Jue; Hong, Chang K.; Wool, Richard P.
2003-03-01
We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE
Use of Reinforced Lightweight Clay Aggregates for Landslide Stabilisation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herle, Vitezslav
2008-07-08
In spring 2006 a large landslide combined with rock fall closed a highway tunnel near Svitavy in NE part of Czech Republic and cut the main highway connecting Bohemia with Moravia regions. Stabilisation work was complicated by steep mountainous terrain and large inflow of surface and underground water. The solution was based on formation of a stabilisation fill made of reinforced free draining aggregates at the toe of the slope with overlying lightweight fill up to 10 m high reinforced with PET geogrid and steel mesh protecting soft easily degrading sandstone against weathering. Extensive monitoring made possible to compare themore » FEM analysis with real values. The finished work fits very well in the environment and was awarded a special prize in the 2007 transport structures contest.« less
Accelerated recession of a desert cliff due to sewage water disposal, Sede Boqer, Israel
NASA Astrophysics Data System (ADS)
Arkin, Yaacov; Karnieli, Arnon; Issar, Arie; Mtz.-Esparza, Javier Diaz
1986-12-01
Accelerated erosion of a desert cliff due to uncontrolled sewage water disposal was investigated at the Sede Boqer Campus in the Negev, Israel An erosional cirque formed by this water was studied as a model simulating natural processes. The cliffs consist of loess and conglomerate underlain by soft marl, clay, and chalk. The rate of erosion is of the order of 5% 8% of the volume of water discharged. The rate of incision ranges from 10 2 to 13.3 m/yr and is several orders higher than that expected under normal rainfall conditions The introduction of this new hydrological factor resulted in a severe disturbance of the morphological balance in the vicinity of the cliffs, accelerated erosion, and generated circular slides
Color measurement of methylene blue dye/clay mixtures and its application using economical methods
NASA Astrophysics Data System (ADS)
Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil
2016-04-01
Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay minerals can be distinguished by application of at least three concentrations of the methylene blue dye on the same sample and observing the color change in comparison with standardized color chips that can be easily obtained and free of charge. If the color tests are properly used in conjunction with other more complex analytical procedures, they can be helpful addition in identification of different clay minerals, especially montmorillonite and kaolinite minerals. - Faust G. T., 1940, Staining of clay minerals as a rapid means of identification in natural and beneficiated products, U. S. Bur. Mines, Investigation Report. N0.3522 - Munsell Color, Munsell Book of Color, 1942. Macbeth Division of Kollmorgen Corporation, Maryland, U.S.A. - https://color.adobe.com/create/color-wheel/ - http://www.colorhexa.com/
A pilot study on the improvement of the lying area of finishing pigs by a soft lying mat.
Savary, Pascal; Gygax, Lorenz; Jungbluth, Thomas; Wechsler, Beat; Hauser, Rudolf
2011-01-01
In this pilot study, we tested whether a soft mat (foam covered with a heat-sealed thermoplastic) reduces alterations and injuries at the skin and the leg joints.The soft mat in the lying area of partly slatted pens was compared to a lying area consisting of either bare or slightly littered (100 g straw per pig and day) concrete flooring. In this study we focused on skin lesions on the legs of finishing pigs as indicators of impaired welfare. Pigs were kept in 19 groups of 8-10 individuals and were examined for skin lesions around the carpal and tarsal joints either at a weight of <35 kg, or at close to 100 kg. The likelihood of hairless patches and wounds at the tarsal joints was significantly lower in pens with the soft lying mat than in pens with a bare concrete floor. Pens with a littered concrete floor did not differ compared to pens with a bare concrete floor. The soft lying mat thus improved floor quality in the lying area in terms of preventing skin lesions compared to bare and slightly littered concrete flooring. Such soft lying mats have thus the potential to improve lying comfort and welfare of finishing pigs.
Literacy and Informational Interviews
ERIC Educational Resources Information Center
Decarie, Christina
2010-01-01
Informational interviews are valuable tools for improving writing, editing, and interviewing skills, and they are also extremely valuable in improving the soft skills that are valued by employers, such as confidence, adaptability, the ability to set and keep deadlines, the ability to manage risk, and so on. These soft skills, this article argues,…
Improvement of baking quality traits through a diverse soft winter wheat population
USDA-ARS?s Scientific Manuscript database
Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...
Multifunctional Composites for Improved Polyimide Thermal Stability
NASA Technical Reports Server (NTRS)
Miller, Sandi G.
2007-01-01
The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.
OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter L. Dakuras; Larry Stieber; Dick Young
2003-02-01
This is the first technical progress report of the remediation of two wells and a water injection well in Clay County, Illinois. The location is identified as the Routt lease and the wells will be identified as the Routt No.3 and Routt No.4 respectively throughout this report. The Clay County portion of this project has met all legal, financial, and environmental requirements to drill and /or pump oil at this lease. We have also obtained all available information about this site and have taken the necessary steps to improve access roads, dig the necessary pits and build the necessary firewalls.more » Both wells have been drilled to the Salem formation. Gas gun technology was used to stimulate the reservoir of the Routt No.3. This report will address the technical aspects of the remediation.« less
B, Ayana; Suin, Supratim; Khatua, B B
2014-09-22
Highly exfoliated, biodegradable thermoplastic starch (TPS)/polylactic acid (PLA)/sodium montmorillonite (NaMMT) nanocomposites were prepared by an eco-friendly approach, involving in-situ gelatinization of potato starch in presence of dispersed nanoclay followed by melt mixing with PLA. The morphological analysis revealed that the NaMMT was selectively dispersed into the TPS in a highly delaminated manner. An increase in mechanical as well as thermomechanical properties was evident in the presence of PLA and more influenced in the presence of clay. The water absorption was significantly decreased in the presence of PLA (∼8%) itself and both PLA and clay (∼8-12%) in the nanocomposites. The improved mechanical properties along with its biodegradability might lead to a new green material in the area of packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Luo, Huan-Lin; Lin, Deng-Fong; Chen, Shih-Chieh
2017-07-01
In this study, geopolymer specimens based on calcined oil-contaminated clays (OCCs), metakaolin replacements of OCCs, and blast furnace slag were manufactured by the addition of nano-SiO 2 to improve their properties. The effects of adding 0, 1, 2, or 3% nano-SiO 2 on the properties and microstructures of the geopolymer specimens were determined using compressive strength tests, flow tests, setting time tests, scanning electron microscopy (SEM), and silicon nuclear magnetic resonance spectroscopy (Si-NMR). The results showed that the setting time and flowability of the geopolymer specimens decreased and the compressive strength increased as the amount of nano-SiO 2 increased. These results were supported by the SEM and Si-NMR assays. This study suggests that the addition of nano-SiO 2 was beneficial and improved the properties of the geopolymer specimens containing calcined OCC.
Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei
2016-09-26
High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.
Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.
Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César
2013-09-10
This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water. Copyright © 2013 Elsevier B.V. All rights reserved.
Short, Laura J; Khambay, Balvinder; Ayoub, Ashraf; Erolin, Caroline; Rynn, Chris; Wilkinson, Caroline
2014-04-01
Human forensic facial soft tissue reconstructions are used when post-mortem deterioration makes identification difficult by usual means. The aim is to trigger recognition of the in vivo countenance of the individual by a friend or family member. A further use is in the field of archaeology. There are a number of different methods that can be applied to complete the facial reconstruction, ranging from two dimensional drawings, three dimensional clay models and now, with the advances of three dimensional technology, three dimensional computerised modelling. Studies carried out to assess the accuracy of facial reconstructions have produced variable results over the years. Advances in three dimensional imaging techniques in the field of oral and maxillofacial surgery, particularly cone beam computed tomography (CBCT), now provides an opportunity to utilise the data of live subjects and assess the accuracy of the three dimensional computerised facial reconstruction technique. The aim of this study was to assess the accuracy of a computer modelled facial reconstruction technique using CBCT data from live subjects. This retrospective pilot study was carried out at the Glasgow Dental Hospital Orthodontic Department and the Centre of Anatomy and Human Identification, Dundee University School of Life Sciences. Ten patients (5 male and 5 female; mean age 23 years) with mild skeletal discrepancies with pre-surgical cone beam CT data (CBCT) were included in this study. The actual and forensic reconstruction soft tissues were analysed using 3D software to look at differences between landmarks, linear and angular measurements and surface meshes. There were no statistical differences for 18 out of the 23 linear and 7 out of 8 angular measurements between the reconstruction and the target (p<0.05). The use of Procrustes superimposition has highlighted potential problems with soft tissue depth and anatomical landmarks' position. Surface mesh analysis showed that this virtual sculpture technique can be objectively assessed using the distance between the meshes. This study found that the percentage of faces with less than ±2.5mm error ranged from 56% to 90%. This may be improved if Procrustes superimposition could be applied to all the mesh points rather than specific landmarks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Campbell, B.G.; Petkewich, M.D.; Landmeyer, J.E.; Chapelle, F.H.
1996-01-01
A long history of industrial and commercial use of the National Park Service property and adjacent properties located in downtown Charleston, South Carolina, has caused extensive contamination of the shallow subsurface soils and water-table aquifer. The National Park Service property is located adjacent to a former manufactured-gas plant site, which is the major source of the contamination. Contamination of this shallow water-table aquifer is of concern because shallow ground water discharges to the Cooper River and contains contaminants, which may affect adjacent wildlife or human populations. The geology of the National Park Service property above the Ashley Formation of the Cooper Group consists of two Quaternary lithostratigraphic marine units, the Wando Formation and Holocene deposits, overlain by artificial fill. The Wando Formation overlies the Ashley Formation, a sandy calcareous clay, and consists of soft, organic clay overlain by gray sand. The Holocene deposits are composed of clayey to silty sand and soft organic-rich clay. The artificial fill, which was placed at the site to create dry land where salt marsh existed previously, is composed of sand, silt, and various scrap materials. The shallow hydrogeology of the National Park Service property overlying the Ashley Formation can be subdivided into two sandy aquifers separated by a leaky, black, organic-rich clay. The unconfined upper surficial aquifer is primarily artificial fill. The lower surficial aquifer consists of the Wando sand unit and is confined by the leaky organic-rich clay. Aquifer tests performed on the wells screened in these aquifers resulted in hydraulic conductivities from 0.1 to 10 feet per day for the upper surficial aquifer, and 16 feet per day for the lower surficial aquifer. Vertical hydraulic gradients at the site are typically low. A downward gradient from the upper surficial aquifer to the lower surficial aquifer occurs throughout most of the year. A brick-lined storm-water-drainage archway located in the study area is a conduit for the overflow of seawater into the surficial aquifer during exceptionally high tides. The efficiency of intrinsic bioremediation to reduce contaminant migration in the upper surficial aquifer at the National Park Service site was assessed to determine if, and at what concentrations, contaminants are being transported to the Cooper River. This assessment required incorporating hydrologic, geochemical, microbiologic, and demographic information into a predictive solute-transport model to determine rates of contaminant transport to the Cooper River. The transport of toluene and naphthalene was modeled as a surrogate for the transport of aromatic and other hydrocarbon compounds at the study area. Laboratory estimates of the adsorption coefficients for sediments of the upper surficial aquifer suggest preferential adsorption of naphthalene over toluene. The adsorption coefficient of naphthalene is at least two orders of magnitude greater than that determined for toluene. Laboratory microbial-biodegradation experiments indicate that microorganisms present in the shallow aquifer have the potential to degrade toluene under anaerobic and aerobic conditions, and naphthalene primarily under aerobic conditions. Rates of microbial biodegradation are similar for both compounds under aerobic conditions. Flow-model calibration to the January 1994 water-table surface of the upper surficial aquifer was achieved by specifying appropriate hydrogeologic boundary conditions and using hydraulic conductivity values determined in the field. The brick-lined storm-water drainage archway located in the study area was modeled to account for ground-water discharge through this drain. An exploratory modeling approach was used to evaluate the range of possible solutions that approximate the transport of contaminants to the observed distributions. Approximate toluene solute-transport conditions for January 1994 were estimated using velocity dist
PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)
2002-01-01
Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.
Can Soft Drink Taxes Reduce Population Weight?
Fletcher, Jason M; Frisvold, David; Tefft, Nathan
2010-01-01
Soft drink consumption has been hypothesized as one of the major factors in the growing rates of obesity in the US. Nearly two-thirds of all states currently tax soft drinks using excise taxes, sales taxes, or special exemptions to food exemptions from sales taxes to reduce consumption of this product, raise revenue, and improve public health. In this paper, we evaluate the impact of changes in state soft drink taxes on body mass index (BMI), obesity, and overweight. Our results suggest that soft drink taxes influence BMI, but that the impact is small in magnitude.
Hydrogeologic conditions in the town of Shelter Island, Suffolk County, Long Island, New York
Soren, Julian
1978-01-01
Shelter Island, an area of about 11 square miles, in Suffolk County, N.Y., is situated between the north and south forks of eastern Long Island. The upper glacial aquifer is the sole source of freshwater supply for Shelter Island 's population, which currently ranges seasonally from 2,000 to 8,000. Fresh ground water seems to be limited to sand and gravel deposits in the aquifer, which is thin and can be readily infiltrated by surrounding saline ground water. The aquifer is underlain by confining clay formations that contain saline water, and the geologic formations below the clay probably contain saline water also. The fresh ground water is mostly soft and has low dissolved-solids concentrations; however, several wells near shorelines have yielded excessive amounts of chloride. Man-induced contamination of the aquifer is evident but not severe, as shown by somewhat elevated concentrations of nitrate nitrogen and methylene blue active substances (MBAS). Increased pumping will cause deterioration of the fresh ground-water supply by inducing saline-water infiltration and by adding greater volumes of septic-tank and cesspool effluents to the aquifer. Test drilling could help in water-supply management by determining the extent of the aquifer and of fresh ground-water storage, and observation wells could provide early detection of saline-water infiltration. (Woodard-USGS)
Tensile and burning properties of clay/phenolic/GF composite and its application
NASA Astrophysics Data System (ADS)
Diharjo, Kuncoro; Armunanto, V. Bram; Kristiawan, S. Adi
2016-03-01
Composite material has been widely used in automotive due to its properties can be improved by combining with reinforcement, like fiber and particle to enhance mechanical properties and burning resistance. This study aims to investigate the tensile and burning properties of hybrid composite combining glass fiber and clay in phenolic resin. The clay was produced from roof tile rejected by tile industries in Sokka, Kebumen, Indonesia. The composite was made using a press mold method for different number of laminates and orientation of woven-roving-glass-fiber/ WRGF (0/90 and ±45), and the total volume fraction of fiber and clay is constant 40%. The specimens were tested using universal testing machine for tensile properties and burning tests apparatus for burning resistance (time to ignite/ TTI and burning rate/ BR). The enhancing of the Clay/Penolic/GF composite can be performed by the increasing of GF laminates, and the composite with 0/90 orientation of WRGF has higher tensile strength and modulus compared to that with ±45 orientation of WRGF. Both composite with 0/90 and ±45 orientation of WRGF have similar burning resistance (TTI and BR) and the composite containing 13 laminates of WR-GF shows the best burning resistance. According to these properties, this composite has good opportunity to be applied as car body panels or other structure in industries due to save weight and high burning resistance.
Geophysical monitoring of organic contaminants in sediments
NASA Astrophysics Data System (ADS)
Zhang, C.; Jennings, J.
2016-12-01
Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.
Experimental study and modelling of selenite sorption onto illite and smectite clays.
Missana, T; Alonso, U; García-Gutiérrez, M
2009-06-15
This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.
[Adsorptive Stabilization of Soil Cr (VI) Using HDTMA Modified Montmorillonite].
2016-03-15
A series of organo-montomorillonites were prepared using Na-montomorillonite and hexadecyl trimethyl ammonium bromide (HDTMA). The organo-montomorillonites were then investigated for the remediation of Cr(VI) contaminated soils. FT-IR, XRD, SEM and N2 -BET, CEC, Zeta potential measurement were conducted to understand the structural changes of montmorillonites as different amounts of HDTMAs were added as modifier. The characterization results indicated that the clay interlayer spacing distance increased from 1. 25 nm to 2. 13 nm, the clay surface roughness decreased, the clay surface area reduced from 38.91 m² · g⁻¹ to 0.42 m² · g⁻¹, the clay exchangeable cation amount reduced from 62 cmol · kg⁻¹ to 9.9 cmol · kg⁻¹ and the clay surface charge changed from -29.1 mV to 5.59 mV as the dosage of HDTMA in montmorillonite was increased. The TCLP (toxicity characteristic leaching procedure) was used to evaluate the leachate toxicity of Cr(VI). The effects of the initial soil Cr(VI) concentration, montmorillonites dosage, reaction time and HDTMA modification amount were investigated, respectively. The results revealed that modification of montmorillonites would manifest an attenuated physical adsorptive effect and an enhanced electrostatic adsorptive effect on Cr(VI), suggesting electrostatic effect was the major force that resulted in improved Cr(VI) adsorption onto HDTMA modified montmorillonites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyartanti, Endah R., E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id; Department of Chemical Engineering, Diponegoro University, Semarang; Purwanto, Agus
2016-02-08
Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is alsomore » investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.« less
Ulén, Barbro; Etana, Ararso; Lindström, Bodil
2012-01-01
Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.
McCormack, Joshua R.; Underwood, Frank B.; Slaven, Emily J.; Cappaert, Thomas A.
2016-01-01
Background: Eccentric exercise is commonly used in the management of Achilles tendinopathy (AT) but its effectiveness for insertional AT has been questioned. Soft tissue treatment (Astym) combined with eccentric exercise could result in better outcomes than eccentric exercise alone. Hypothesis: Soft tissue treatment (Astym) plus eccentric exercise will be more effective than eccentric exercise alone for subjects with insertional AT. Study Design: Prospective randomized controlled trial. Level of Evidence: Level 2. Methods: Sixteen subjects were randomly assigned to either a soft tissue treatment (Astym) and eccentric exercise group or an eccentric exercise–only group. Intervention was completed over a 12-week period, with outcomes assessed at baseline, 4, 8, 12, 26, and 52 weeks. Outcomes included the Victorian Institute of Sport Assessment Achilles-Specific Questionnaire (VISA-A), the numeric pain rating scale (NPRS), and the global rating of change (GROC). Results: Significantly greater improvements on the VISA-A were noted in the soft tissue treatment (Astym) group over the 12-week intervention period, and these differences were maintained at the 26- and 52-week follow-ups. Both groups experienced a similar statistically significant improvement in pain over the short and long term. A significantly greater number of subjects in the soft tissue treatment (Astym) group achieved a successful outcome at 12 weeks. Conclusion: Soft tissue treatment (Astym) plus eccentric exercise was more effective than eccentric exercise only at improving function during both short- and long-term follow-up periods. Clinical Relevance: Soft tissue treatment (Astym) plus eccentric exercise appears to be a beneficial treatment program that clinicians should consider incorporating into the management of their patients with insertional AT. PMID:26893309
Soft Thermal Sensor with Mechanical Adaptability.
Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong
2016-11-01
A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Tutorial Guide about How to Manage a Client-Financed Project
ERIC Educational Resources Information Center
Clark, Gary L.; King, Michael E.; Jurn, Iksu
2012-01-01
Today's marketing instructors are faced with the challenge of improving their students' soft skills to prepare them for today's business environment. Numerous authors have noted that client-based/-sponsored projects help students improve the soft skills they need to succeed in the business community. This article provides detailed guidelines on…
NASA Astrophysics Data System (ADS)
Ghotbi, Abdoul R.
2014-09-01
The seismic behavior of skewed bridges has not been well studied compared to straight bridges. Skewed bridges have shown extensive damage, especially due to deck rotation, shear keys failure, abutment unseating and column-bent drift. This research, therefore, aims to study the behavior of skewed and straight highway overpass bridges both with and without taking into account the effects of Soil-Structure Interaction (SSI) due to near-fault ground motions. Due to several sources of uncertainty associated with the ground motions, soil and structure, a probabilistic approach is needed. Thus, a probabilistic methodology similar to the one developed by the Pacific Earthquake Engineering Research Center (PEER) has been utilized to assess the probability of damage due to various levels of shaking using appropriate intensity measures with minimum dispersions. The probabilistic analyses were performed for various bridge configurations and site conditions, including sand ranging from loose to dense and clay ranging from soft to stiff, in order to evaluate the effects. The results proved a considerable susceptibility of skewed bridges to deck rotation and shear keys displacement. It was also found that SSI had a decreasing effect on the damage probability for various demands compared to the fixed-base model without including SSI. However, deck rotation for all types of the soil and also abutment unseating for very loose sand and soft clay showed an increase in damage probability compared to the fixed-base model. The damage probability for various demands has also been found to decrease with an increase of soil strength for both sandy and clayey sites. With respect to the variations in the skew angle, an increase in skew angle has had an increasing effect on the amplitude of the seismic response for various demands. Deck rotation has been very sensitive to the increase in the skew angle; therefore, as the skew angle increased, the deck rotation responded accordingly. Furthermore, abutment unseating showed an increasing trend due to an increase in skew angle for both fixed-base and SSI models.
In situ consolidation of offshore petroleum well structural casings by electrokinetic methods
NASA Astrophysics Data System (ADS)
Wrixon, Robert Christopher
Offshore drilling operations encounter cement wash-out problems while setting the initial structural casing (0--200 ft depth) due to the soft, unconsolidated nature of the sea-bed. Structural casings set by alternative methods have failed in up to 50% of cases due to insufficient frictional bearing capacity. This dissertation presents a method of increasing the bearing capacity of a jet-drilled or slick-drilled casing in-situ by applying a potential difference such that the casing is anodic compared to a remote cathode. It has been shown experimentally that clayey formations will swell and stick to a simulated anodic casing by the combined electrokinetic processes of electroosmosis and electrophoresis. Any cavities around the "casing" are eliminated and the formation is flush against the metal surface, increasing bearing capacity. The formation around the "casing" dries out due to electroosmotic migration of water away from the anode, increasing the shear strength of the surrounding soil. Corrosion products at the anode can further increase the soil shear strength by a process known as electrochemical hardening. This investigation has shown that the bearing capacity of anodic casings can potentially be increased by a factor of up to 1,000% in soft clays and silty clays. The existence of an optimal level of electrokinetic consolidation, beyond which the soil shear strength begins to degrade, has been demonstrated. The difficulties of applying electrokinetic methods to saline soil environments have been addressed and the process has been shown to be successful, as long as the requisite electric field strength is maintained. The efficiency of the electrokinetic consolidation technique has been shown to be affected by the soil water content, soil mineralogy, power supplied, time of treatment and the choice of anode material. Experiments in marine sediment show that increases in bearing capacities of about 300% can be achieved at optimal treatment conditions. With likely current and power restrictions, increases of 50% to 100% are realistic. This level of increase still makes offshore electrokinetic casing consolidation a viable process, given that it is attainable quickly and at a modest power requirement and given the enormous cost of a structural casing collapse.
ERIC Educational Resources Information Center
Chamorro-Premuzic, Tomas; Arteche, Adriane; Bremner, Andrew J.; Greven, Corina; Furnham, Adrian
2010-01-01
Three UK studies on the relationship between a purpose-built instrument to assess the importance and development of 15 "soft skills" are reported. "Study 1" (N = 444) identified strong latent components underlying these soft skills, such that differences "between-skills" were over-shadowed by differences…
The role of radiology in paediatric soft tissue sarcomas
van Rijn, R.; McHugh, K.
2008-01-01
Abstract Paediatric soft tissue sarcomas (STS) are a group of malignant tumours that originate from primitive mesenchymal tissue and account for 7% of all childhood tumours. Rhabdomyosarcomas (RMS) and undifferentiated sarcomas account for approximately 50% of soft tissue sarcomas in children and non-rhabdomyomatous soft tissue sarcomas (NRSTS) the remainder. The prognosis and biology of STS tumours vary greatly depending on the age of the patient, the primary site, tumour size, tumour invasiveness, histologic grade, depth of invasion, and extent of disease at diagnosis. Over recent years, there has been a marked improvement in survival rates in children and adolescents with soft tissue sarcoma and ongoing international studies continue to aim to improve these survival rates whilst attempting to reduce the morbidity associated with treatment. Radiology plays a crucial role in the initial diagnosis and staging of STS, in the long term follow-up and in the assessment of many treatment related complications. We review the epidemiology, histology, clinical presentation, staging and prognosis of soft tissue sarcomas and discuss the role of radiology in their management. PMID:18442956
Lancellotti, D A; Stotz, W B
2004-02-01
This study evaluates the magnitude and extension of the impact produced by the discharge of inert allochthonous materials, including clays and particulate iron, on macrobenthic soft-bottom assemblages in the subtidal zone of a coastal bay in north-central Chile. An average of 118 Ton h(-1) of finely divided solids were discharged into the rocky intertidal zone of the bay for a period of over 16 years, producing continuous turbidity in the water column and sedimentation in the subtidal zone. Data obtained four months before cessation of the discharge showed that the macrofauna present at 20 and 50 m depth in the bay suffered an important decrease in abundance and species richness, low diversity/high dominance, and deep changes in community structure related to the discharge. The faunal assemblages present at 110 m depth did not show effects from the discharge, suggesting that the impact was limited to the inner part of the bay. The impoverished faunal aggregates at 20 and 50 m depth showed exclusive domination by the Lumbrineris bifilaris (polychaete)-Diastylis tongoyensis (cumacean) association, representing a simple trophic guild of deposit feeders. The complete absence of opportunistic species such as capitellid, spionid, and/or cirratulid polychaetes may be associated with the turbidity and sedimentation levels in the bay.
Gene expression and metabolism preceding soft scald, a chilling injury of 'Honeycrisp' apple fruit.
Leisso, Rachel S; Gapper, Nigel E; Mattheis, James P; Sullivan, Nathanael L; Watkins, Christopher B; Giovannoni, James J; Schaffer, Robert J; Johnston, Jason W; Hanrahan, Ines; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R
2016-10-12
'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to key stress related and mediating pathways.
Abou-Kassem, D E; Mahrose, Kh M; Alagawany, M
2016-03-01
This study was conducted to verify whether vitamin (Vit) E or natural clay as feed additives has the potential to modulate the deleterious effects resulting from exposure to cadmium (Cd) in growing Japanese quail. 648 Japanese quail chicks (1 week old) were used to evaluate the effects of dietary Cd (0, 40, 80 and 120 mg/kg diet) and two levels of Vit E (0, 250 mg/kg diet) or two levels of natural clay (0 and 100 mg/kg diet) to study the influences of Cd, Vit E, clay or their different combinations on growth performance, carcass traits, some blood biochemical components and Cd residues in muscles and liver. Live BW and weight gain of quails were linearly decreased with increasing dietary Cd levels. Moreover, feed conversion was significantly worsened with increasing Cd level. Mortality percentage was linearly increased as dietary Cd level increased up to 120 mg/kg diet. Carcass percentage was linearly decreased as dietary Cd level increased. While, giblets percentage were linearly and quadratically differed as dietary Cd level increased. Cd caused significant changes in total plasma protein, albumin, globulin, A/G ratio, creatinine, urea-N and uric acid concentrations as well as ALT, AST and ALP activities. Increasing dietary Cd level was associated with its increase in the muscles and liver. Dietary supplementation with 250 mg of Vit E/kg diet or 100 mg clay/kg improved live BW, BW gain and feed conversion when compared with the un-supplemented diet. Quails fed diet contained 250 mg Vit E/kg and those fed 100 mg clay/kg had the highest percentages of carcass and dressing than those fed the un-supplemented diet. Blood plasma biochemical components studied were better when birds received 250 mg of Vit E/kg diet and those received 100 mg clay/kg. Cd residues in the muscles and liver were significantly less in the birds had 250 mg of Vit E/kg or those received 100 mg clay/kg diet than those un-supplemented with Vit E. Growth performance traits and blood plasma biochemical components studied were significantly affected linearly by the interactions among Cd and each of Vit E and clay levels. In conclusion, the present results indicate that the deleterious effects induced by Cd plays a role in decreasing the performance of Japanese quail and that dietary supplementation with natural clay or Vit E may be useful in partly alleviating the adverse effects of Cd.
Aggarwal, Ankush
2017-08-01
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.
Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen
2017-01-01
We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.
NASA Astrophysics Data System (ADS)
Christensen, N. K.; Minsley, B. J.; Christensen, S.
2017-02-01
We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.
Kashiri, Mahboobeh; Maghsoudlo, Yahya; Khomeiri, Morteza
2017-10-01
Active zein films with different levels of Zataria multiflora Boiss. essential oil were produced successfully. To enhance properties of this biopolymer for food packaging applications, sodium bentonite clay was used at two levels (2 and 4%). The results indicated that the addition of Z. multiflora Boiss. essential oil caused a reduction in tensile strength and Young's modulus and slight increase in the percent of elongation at break of the films. Maximum solubility in water and water vapor permeability was observed by incorporation of 10% Z. multiflora Boiss. essential oil in the zein matrix. Transmission electron microscopy micrographs of zein film were verified by the exfoliation of the layers of sodium bentonite clay in the zein matrix. Stronger films with lower water vapor permeability and water solubility were evident of good distribution of sodium bentonite clay in the zein matrix. According to the results, 2% sodium bentonite clay was selected for evaluation of nano active film properties. Water vapor permeability, UV light barrier, tensile strength, and Young's modulus values of active films were improved by incorporation of 2% sodium bentonite clay. The antibacterial activity of different contents of Z. multiflora Boiss. essential oil in vapor phase demonstrated that use of Z. multiflora Boiss. essential oil in the liquid phase was more effective than in vapor phase. The antibacterial zein-based films showed that active zein film with 5 and 10% Z. multiflora Boiss. essential oil had reductions of 1.68 log and 2.99 log, respectively, against Listeria monocytogenes and 1.39 and 3.07 log against Escherichia coli. Nano active zein film containing 10% Z. multiflora Boiss. essential oil and 2% sodium bentonite clay showed better antibacterial properties against L. monocytogenes (3.23 log) and E. coli (3.17 log).
Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber
NASA Astrophysics Data System (ADS)
Mekhermeche, A.; Kriker, A.; Dahmani, S.
2016-07-01
The Saharan regions of Algeria are characterized by a hot and dry climate. The most used cement materials such as theconcrete or the mortar blocks have bad thermal characteristic. However, these regions have several local materials: clay, dune sand and some natural fibers, which are formerly proved their thermal efficiency. The price of construction material used therefore depends on the international market constantly destabilized by theeconomic crisis coupled with the energy crisis in recent times. To produce a framework of life at a lower cost, it is important, therefore, to circumvent the influence of the cost of energy by upgrading the local materials of construction. In order to improve thermal performances in Saharan building materials this study was lanced. The aim of this research isthen to fabricate some bricks using three local materials: namely the clay, sand dune and the fibers of date palm. The percentage of sand and fibers varies from 0% to 40% and 0% to 3% by mass respectively. A sand dune of Ain El Beida of Ouargla of Algeria was used. Clay was extracted from Beldet Amer of Touggourt Ouargla Algérie. The fibers used in this study were vegetable fibers from date palm of Ouargla Algeria. The results showed that increasing in the mass fraction of sand and of fiber were beneficial for improving thermal properties. As function of increasing the percentage of sand dune and fibers there were: A decrease in: thermal conductivity, specific heat, heat capacity, thermal effusivity and thermal diffusivity and there were an increase in the thermal resistance.
NASA Astrophysics Data System (ADS)
Nawar, Said; Buddenbaum, Henning; Hill, Joachim
2014-05-01
A rapid and inexpensive soil analytical technique is needed for soil quality assessment and accurate mapping. This study investigated a method for improved estimation of soil clay (SC) and organic matter (OM) using reflectance spectroscopy. Seventy soil samples were collected from Sinai peninsula in Egypt to estimate the soil clay and organic matter relative to the soil spectra. Soil samples were scanned with an Analytical Spectral Devices (ASD) spectrometer (350-2500 nm). Three spectral formats were used in the calibration models derived from the spectra and the soil properties: (1) original reflectance spectra (OR), (2) first-derivative spectra smoothened using the Savitzky-Golay technique (FD-SG) and (3) continuum-removed reflectance (CR). Partial least-squares regression (PLSR) models using the CR of the 400-2500 nm spectral region resulted in R2 = 0.76 and 0.57, and RPD = 2.1 and 1.5 for estimating SC and OM, respectively, indicating better performance than that obtained using OR and SG. The multivariate adaptive regression splines (MARS) calibration model with the CR spectra resulted in an improved performance (R2 = 0.89 and 0.83, RPD = 3.1 and 2.4) for estimating SC and OM, respectively. The results show that the MARS models have a great potential for estimating SC and OM compared with PLSR models. The results obtained in this study have potential value in the field of soil spectroscopy because they can be applied directly to the mapping of soil properties using remote sensing imagery in arid environment conditions. Key Words: soil clay, organic matter, PLSR, MARS, reflectance spectroscopy.
Hydrogeologische Untersuchungen im oberflächennahen Opalinuston (Bohrloch Lausen, Schweiz)
NASA Astrophysics Data System (ADS)
Vogt, Tobias; Hekel, Uwe; Ebert, Andreas; Becker, Jens K.; Traber, Daniel; Giger, Silvio; Brod, Monika; Häring, Christian
2017-09-01
In Switzerland, the Opalinus Clay is being investigated in detail as a host rock for disposal of radioactive waste. To complement and improve existing data on near-surface decompaction effects, hydraulic-hydrochemical characterization of the Opalinus Clay from the weathering zone into the unweathered rock below was performed. For these investigations, one borehole of a borehole heat-exchanger field in Lausen (Canton Basel-Landschaft, Switzerland), which penetrates the near-surface Opalinus Clay, was completely cored. The hydraulic conductivity was determined by means of hydraulic tests in different depths and shows an decrease from 10-4 m/s at the very shallow weathered zone to 10-13 m/s starting at a depth of 28 m below the decompaction zone. In addition, different groundwater types could be identified. Moreover, the structural investigations indicate the end of the weathering zone at a depth of 18 m and that decompaction has no influence on hydraulic conductivity from 28 m onwards.
Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery.
Diodato, Alessandro; Brancadoro, Margherita; De Rossi, Giacomo; Abidi, Haider; Dall'Alba, Diego; Muradore, Riccardo; Ciuti, Gastone; Fiorini, Paolo; Menciassi, Arianna; Cianchetti, Matteo
2018-02-01
Combining the strengths of surgical robotics and minimally invasive surgery (MIS) holds the potential to revolutionize surgical interventions. The MIS advantages for the patients are obvious, but the use of instrumentation suitable for MIS often translates in limiting the surgeon capabilities (eg, reduction of dexterity and maneuverability and demanding navigation around organs). To overcome these shortcomings, the application of soft robotics technologies and approaches can be beneficial. The use of devices based on soft materials is already demonstrating several advantages in all the exploitation areas where dexterity and safe interaction are needed. In this article, the authors demonstrate that soft robotics can be synergistically used with traditional rigid tools to improve the robotic system capabilities and without affecting the usability of the robotic platform. A bioinspired soft manipulator equipped with a miniaturized camera has been integrated with the Endoscopic Camera Manipulator arm of the da Vinci Research Kit both from hardware and software viewpoints. Usability of the integrated system has been evaluated with nonexpert users through a standard protocol to highlight difficulties in controlling the soft manipulator. This is the first time that an endoscopic tool based on soft materials has been integrated into a surgical robot. The soft endoscopic camera can be easily operated through the da Vinci Research Kit master console, thus increasing the workspace and the dexterity, and without limiting intuitive and friendly use.
NASA Astrophysics Data System (ADS)
Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun
2018-01-01
Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).
NASA Astrophysics Data System (ADS)
Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George
2016-03-01
The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.
Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Watkins, J.; Ehlmann, B. L.; Yin, A.
2014-12-01
Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals, generated by water-rock interactions in the Noachian and Hesperian (4.1- 3.3 Ga), exert a long-lasting influence on geomorphic processes that shape the surface of the planet.
An Interesting Review on Soft Skills and Dental Practice
Ishaquddin, Syed; Ghadage, Mahesh; Hatte, Geeta
2015-01-01
In today’s world of education, we concentrate on teaching activities and academic knowledge. We are taught to improve our clinical skills. Soft skills refer to the cluster of personality traits, social graces, and personal habits, facility with language, friendliness and personal habits that mark people to varying degrees. Soft Skills are interpersonal, psychological, self-promoted and non-technical qualities for every practitioner and academician, whereas hard skills are new tools or equipment and professional knowledge. Hence, more and more clinicians now days consider soft skills as important job criteria. An increase in service industry and competitive practices emphasizes the need for soft skills. Soft Skills are very important and useful in personal and professional life. PMID:25954720
An interesting review on soft skills and dental practice.
Dalaya, Maya; Ishaquddin, Syed; Ghadage, Mahesh; Hatte, Geeta
2015-03-01
In today's world of education, we concentrate on teaching activities and academic knowledge. We are taught to improve our clinical skills. Soft skills refer to the cluster of personality traits, social graces, and personal habits, facility with language, friendliness and personal habits that mark people to varying degrees. Soft Skills are interpersonal, psychological, self-promoted and non-technical qualities for every practitioner and academician, whereas hard skills are new tools or equipment and professional knowledge. Hence, more and more clinicians now days consider soft skills as important job criteria. An increase in service industry and competitive practices emphasizes the need for soft skills. Soft Skills are very important and useful in personal and professional life.
Qu, Ji-Li; Zhao, Dong-Xue
2016-10-15
To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (p<0.05) improved the consistency limits, with the most preferred effects in the silt soil. The liquid limits were increased by 53.9%, 27.3%, and 14.7%, in the silt, silt loam and silty-clay loam soils, respectively, when the volumetric ratio was 30%. While diatomite lowered the maximum dry bulk density (MBD) of the classified soils, the optimum moisture content (OMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Can Soft Drink Taxes Reduce Population Weight?
Fletcher, Jason M.; Frisvold, David
2009-01-01
Soft drink consumption has been hypothesized as one of the major factors in the growing rates of obesity in the US. Nearly two-thirds of all states currently tax soft drinks using excise taxes, sales taxes, or special exemptions to food exemptions from sales taxes to reduce consumption of this product, raise revenue, and improve public health. In this paper, we evaluate the impact of changes in state soft drink taxes on body mass index (BMI), obesity, and overweight. Our results suggest that soft drink taxes influence BMI, but that the impact is small in magnitude. PMID:20657817
Beyond clay - using selective extractions to improve predictions of soil carbon content
NASA Astrophysics Data System (ADS)
Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.
2016-12-01
A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP < 1). In contrast, the correlation of soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.
NASA Astrophysics Data System (ADS)
Ujianto, O.; Jollands, M.; Kao, N.
2018-03-01
A comparative study on effect of internal mixer on high density Polyethylene (HDPE)/clay nanocomposites preparation was done. Effect of temperature, rotor rotation (rpm), and mixing time, as well as rotor type (Roller and Banbury) on mechanical properties and morphology of HDPE/clay nanocomposites were studied using Box-Behnken experimental design. The model was developed according to secant modulus and confirmed to morphology analysis using Transmission Electron Microscopy (TEM). The finding suggests that there is different mechanisms occurred in each rotor to improve the mechanical properties. The mechanism in Roller is medium shear and medium diffusion, while Banbury is high shear and low diffusion. The difference in mechanism to disperse the clay particles attribute to the different optimum processing conditions in each rotor. The settings for roller samples are predicted around mid temperature, mid speed, and mid mixing time. There is no optimum setting for Banbury within the processing boundaries. The best settings for Banbury are at low, high, low settings. The morphology results showed a hybrid composite structure, with some exfoliations and some intercalations. There was a correlation between better mechanical properties and morphology with more exfoliation and thinner intercalated particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa
2014-02-12
Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up tomore » 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.« less
Development of New Elastomers and Elastic Nanocomposites from Plant Oils
NASA Astrophysics Data System (ADS)
Zhu, Lin; Wool, Richard
2006-03-01
Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.
Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite
NASA Astrophysics Data System (ADS)
Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.
2016-02-01
This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.
Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer?
Naemi, R; Chatzistergos, P; Suresh, S; Sundar, L; Chockalingam, N; Ramachandran, A
2017-04-01
To investigate if the assessment of the mechanical properties of plantar soft tissue can increase the accuracy of predicting Diabetic Foot Ulceration (DFU). 40 patients with diabetic neuropathy and no DFU were recruited. Commonly assessed clinical parameters along with plantar soft tissue stiffness and thickness were measured at baseline using ultrasound elastography technique. 7 patients developed foot ulceration during a 12months follow-up. Logistic regression was used to identify parameters that contribute to predicting the DFU incidence. The effect of using parameters related to the mechanical behaviour of plantar soft tissue on the specificity, sensitivity, prediction strength and accuracy of the predicting models for DFU was assessed. Patients with higher plantar soft tissue thickness and lower stiffness at the 1st Metatarsal head area showed an increased risk of DFU. Adding plantar soft tissue stiffness and thickness to the model improved its specificity (by 3%), sensitivity (by 14%), prediction accuracy (by 5%) and prognosis strength (by 1%). The model containing all predictors was able to effectively (χ 2 (8, N=40)=17.55, P<0.05) distinguish between the patients with and without DFU incidence. The mechanical properties of plantar soft tissue can be used to improve the predictability of DFU in moderate/high risk patients. Copyright © 2017 Elsevier B.V. All rights reserved.
The interaction between a solid body and viscous fluid by marker-and-cell method
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1976-01-01
A computational method for solving nonlinear problems relating to impact and penetration of a rigid body into a fluid type medium is presented. The numerical techniques, based on the Marker-and-Cell method, gives the pressure and velocity of the flow field. An important feature in this method is that the force and displacement of the rigid body interacting with the fluid during the impact and sinking phases are evaluated from the boundary stresses imposed by the fluid on the rigid body. A sample problem of low velocity penetration of a rigid block into still water is solved by this method. The computed time histories of the acceleration, pressure, and displacement of the block show food agreement with experimental measurements. A sample problem of high velocity impact of a rigid block into soft clay is also presented.
Polymer based nanocomposites with nanofibers and exfoliated clay
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Reneker, Darrell H.
2005-01-01
Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.
Signal-to-noise ratios in coherent soft limiters
NASA Technical Reports Server (NTRS)
Lesh, J. R.
1973-01-01
Expressions for the output signal-to-noise power ratio of a bandpass soft limiter followed by a coherent detection device are presented and discussed. It is found that a significant improvement in the output signal-to-noise ratio at low input SNRs can be achieved by such soft limiters as compared to hard limiters. This indicates that the soft limiter may be of some use in the area of threshold extension. Approximation methods for determining output signal-to-noise spectral densities are also presented.
A Quatro-Based 65-nm Flip-Flop Circuit for Soft-Error Resilience
NASA Astrophysics Data System (ADS)
Li, Y.-Q.; Wang, H.-B.; Liu, R.; Chen, L.; Nofal, I.; Shi, S.-T.; He, A.-L.; Guo, G.; Baeg, S. H.; Wen, S.-J.; Wong, R.; Chen, M.; Wu, Q.
2017-06-01
A flip-flop circuit hardened against soft errors is presented in this paper. This design is an improved version of Quatro for further enhanced soft-error resilience by integrating the guard-gate technique. The proposed design, as well as reference Quatro and regular flip-flops, was implemented and manufactured in a 65-nm CMOS bulk technology. Experimental characterization results of their alpha and heavy ions soft-error rates verified the superior hardening performance of the proposed design over the other two circuits.
ERIC Educational Resources Information Center
Koster, Joan Bouza
1999-01-01
Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... and/or copolymer products. Brick and Structural Clay Products...... 327121 Brick and structural clay tile manufacturing facilities. Brick and Structural Clay Products; Clay 327122 Ceramic wall and floor... Structural Clay Products...... 327123 Other structural clay products manufacturing facilities. Clay Ceramics...
Deformation of ``Villafranchian'' lacustrine sediments in the Chisone Valley (Western Alps, Italy)
NASA Astrophysics Data System (ADS)
Collo, Giovanni; Giardino, Marco
1997-09-01
The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.
Quantitative characterization of non-classic polarization of cations on clay aggregate stability.
Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui
2015-01-01
Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.
Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability
Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui
2015-01-01
Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864
ERIC Educational Resources Information Center
Ani, Adi Irfan Che; Tawil, Norngainy Mohd; Johar, Suhana; Ismail, Khaidzir; Razak, Mohd Zulhanif Abd
2014-01-01
Research from different parts of the world recognizes the effectiveness of a learning contract course in improving the personal skills of students. Therefore, UKM has chosen this approach to improve the personal soft skills of its students. The university has carried out this approach by making HHHC9118-Soft Skills as a compulsory course for all…
Is ice right? Does cryotherapy improve outcome for acute soft tissue injury?
Collins, N C
2008-02-01
The use of ice or cryotherapy in the management of acute soft tissue injuries is widely accepted and widely practised. This review was conducted to examine the medical literature to investigate if there is evidence to support an improvement in clinical outcome following the use of ice or cryotherapy. A comprehensive literature search was performed and all human and animal trials or systematic reviews pertaining to soft tissue trauma, ice or cryotherapy were assessed. The clinically relevant outcome measures were (1) a reduction in pain; (2) a reduction in swelling or oedema; (3) improved function; or (4) return to participation in normal activity. Six relevant trials in humans were identified, four of which lacked randomisation and blinding. There were two well conducted randomised controlled trials, one showing supportive evidence for the use of a cooling gel and the other not reaching statistical significance. Four animal studies showed that modest cooling reduced oedema but excessive or prolonged cooling is damaging. There were two systematic reviews, one of which was inconclusive and the other suggested that ice may hasten return to participation. There is insufficient evidence to suggest that cryotherapy improves clinical outcome in the management of soft tissue injuries.
Lau, Ying; Wang, Wenru
2014-01-01
The objectives were to develop a learner-centered educational camp program for nursing students and to evaluate 4 areas of soft skills, communication ability, clinical interaction, interpersonal relationships, and social problem solving, before and after the program. The results showed that the summer camp program was effective in improving nursing students' soft skills.
Systemic Operational Design: Improving Operational Planning for the Netherlands Armed Forces
2006-05-25
This methodology is called Soft Systems Methodology . His methodology is a structured way of thinking in which not only a perceived problematic...Many similarities exist between Systemic Operational Design and Soft Systems Methodology , their epistemology is related. Furthermore, they both have...Systems Thinking: Managing Chaos and Complexity. Boston: Butterworth Heinemann, 1999. Checkland, Peter, and Jim Scholes. Soft Systems Methodology in
Gemperline, Paul J; Cash, Eric
2003-08-15
A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.
NASA Astrophysics Data System (ADS)
Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.
2017-12-01
Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.
Shampoo-clay heals diaper rash faster than calendula officinalis.
Adib-Hajbaghery, Mohsen; Mahmoudi, Mansoreh; Mashaiekhi, Mahdi
2014-06-01
Diaper rash is one of the most common skin disorders of infancy and childhood. Some studies have shown that Shampoo-clay was effective to treat chronic dermatitis. Then, it is supposed that it may be effective in diaper rash; however, no published studies were found in this regard. This study aimed to compare the effects of Shampoo-clay (S.C) and Calendula officinalis (C.O) to improve infantile diaper rash. A randomized, double blind, parallel controlled, non-inferiority trial was conducted on 60 outpatient infants referred to health care centers or pediatric clinics in Khomein city and diagnosed with diaper rash. Patients were randomly assigned into two treatment groups including S.C group (n = 30) and C.O group (n = 30) by using one to one allocation ratio. The rate of complete recovery in three days was the primary outcome. Data was collected using a checklist and analyzed using t-test, Chi-square and Fisher's exact tests and risk ratio. Totally, 93.3% of lesions in the S.C group healed in the first 6 hours, while this rate was 40% in C.O group (P < 0.001). The healing ratio for improvement in the first 6 hours was 7 times more in the S.C group. In addition, 90% of infants in the SC group and 36.7% in the C.O group were improved completely in the first 3 days (P < 0.001). S.C was effective to heal diaper rash, and also had faster effects compared to C.O.
Dhayalan, R; Satya Narayana Murthy, V; Krishnamurthy, C V; Balasubramaniam, Krishnan
2011-08-01
This paper presents a new method of improving the ultrasonic signal amplitude from a meander line EMAT by using soft magnetic alloy ribbon (Fe₆₀Ni₁₀V₁₀B₂₀) as a magnetic flux concentrator (MFC). The flux concentrator is a thin soft amorphous magnetic material (Fe₆₀Ni₁₀V₁₀B₂₀) which is very sensitive to a small flux change. The MFC is used with the EMAT to improve the signal amplitude and it was observed that the peak signal amplitude increases by a factor of two compared to the signal without MFC. Two dimensional numerical models have been developed for the EMAT with MFC to quantify the improvement of the received signal amplitudes. Model calculations and experiments have been carried out for a wide range of ultrasonic frequencies (500 kHz-1 MHz) in different materials. Copyright © 2011 Elsevier B.V. All rights reserved.
Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)
NASA Astrophysics Data System (ADS)
Shepherd, Robert
2014-03-01
Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.
King, Christian
2017-02-01
To examine whether the association between soft drinks consumption and child behaviour problems differs by food security status and sleep patterns in young children. Cross-sectional observational data from the Fragile Families and Child Wellbeing Study (FFCWS), which collected information on food insecurity, soft drinks consumption, sleep patterns and child behaviour problems. Bivariate and multivariate ordinary least-squares regression analyses predicting child behaviour problems and accounting for socio-economic factors and household characteristics were performed. Twenty urban cities in the USA with a population of 200 000 or more. Parental interviews of 2829 children who were about 5 years old. Soft drinks consumption was associated with aggressive behaviours, withdrawn and attention problems for children aged 5 years. However, the association differed by food security status. The association was mostly statistically insignificant among food-secure children after accounting for socio-economic and demographic characteristics. On the other hand, soft drinks consumption was associated with behaviour problems for food-insecure children even after accounting for these factors. However, after accounting for child sleep patterns, the association between soft drinks consumption and child behaviour problems became statistically insignificant for food-insecure children. The negative association between soft drinks consumption and child behaviour problems could be explained by sleep problems for food-insecure children. Since about 21 % of households with children are food insecure, targeted efforts to reduce food insecurity would help improve dietary (reduce soft drinks consumption) and health behaviours (improve sleep) and reduce child behaviour problems.
Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results
NASA Astrophysics Data System (ADS)
Nussbaum, C. O.; Bossart, P. J.
2012-12-01
Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal scenarios and v) Evaluation of diffusion and retention parameters for long-lived radionuclides. Experiments related to repository-induced perturbations are focused on: i) Influence of rock liner on the disposal system and the buffering potential of the host rock; ii) Self-sealing processes in the excavation damaged zone; iii) Hydro-mechanical coupled processes (e.g. stress redistributions and pore pressure evolution during excavation); iv) Thermo-hydro-mechanical-chemical coupled processes (e.g. heating of bentonite and host rock) and v) Gas-induced transport of radionuclides in porewater and along interfaces in the engineered barrier system. A third research direction is to demonstrate the feasibility of repository construction and long-term safety after repository closure. Demonstration experiments can contribute to improving the reliability of the scientific basis for the safety assessment of future geological repositories, particularly if they are performed on a large scale and with a long duration. These experiments include the construction and installation of engineered barriers on a 1:1 scale: i) Horizontal emplacement of canisters; ii) Evaluation of the corrosion of container materials; repository re-saturation; iii) Sealing of boreholes and repository access tunnels and iv) Long-term monitoring of the repository. References Bossart, P. & Thury, M. (2008): Mont Terri Rock Laboratory. Project, Programme 1996 to 2007 and Results. - Rep. Swiss Geol. Surv. 3.
Cook, D A; Moses, P A; Mackie, J T
2015-12-01
To investigate whether soft palate resection and tonsillectomy with a bipolar vessel sealing device (BVSD) improves clinical respiratory score. To document histopathological changes to tonsillar tissue following removal with a BVSD. Case series of 22 dogs with clinical signs of upper respiratory obstruction related to brachycephalic airway syndrome. Soft palate and tonsils were removed using a BVSD. Alarplasty and saccullectomy were also performed if indicated. A clinical respiratory score was assigned preoperatively, 24-h postoperatively and 5 weeks postoperatively. Excised tonsillar samples were measured and then assessed histologically for depth of tissue damage deemed to be caused by the device. Depth of tissue damage was compared between two power settings of the device. Soft palate resection and tonsillectomy with a BVSD lead to a significant improvement in respiratory scores following surgery. Depth of tissue damage was significantly less for power setting 1 compared with power setting 2. Using power setting 1, median calculated depth of tonsillar tissue damage was 3.4 mm (range 1.2-8.0). One dog experienced major complications. Soft palate resection and tonsillectomy with a BVSD led to significant improvement in clinical respiratory score. © 2015 Australian Veterinary Association.
Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.
Kim, Jaehwan; Bae, Seok-Hu; Kotal, Moumita; Stalbaum, Tyler; Kim, Kwang J; Oh, Il-Kwon
2017-08-01
Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m -1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry
NASA Astrophysics Data System (ADS)
Anil, Asha; Misra, S. N.; Misra, N. M.
2018-05-01
Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.
NASA Astrophysics Data System (ADS)
Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp
2016-08-01
Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.
Virta, R.L.
1998-01-01
Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.
NASA Astrophysics Data System (ADS)
Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe
2017-04-01
Diagenetic transformations occurring in clayey and arenaceous sediments is investigated in a number of hydrocarbon reservoirs with an integrated approach that combines mineralogical analysis, crystalchemistry, estimation of thermochemical parameters of clay minerals, and geochemical modelling. Because of the extremely variable crystalchemistry of clays, especially in the smectite - illite compositional range, the estimation of thermochemical parameters of site-specific clay-rich rocks is crucial to investigate water-rock equilibria and to predict mineralogical evolutionary patterns at the clay-sandstone interface. The task of estimating the thermochemical properties of clay minerals and predicting diagenetic reactions in natural reservoirs is accomplished through the implementation of an informatized, procedure (IP) that consists of: (i) laboratory analysis of smectite, illite and mixed layers (I/S) for the determination of their textural characteristics and chemical composition; (ii) estimation of the thermodynamic and structural parameters (enthalpy, entropy, and free energy of formation, thermal capacity, molar volume, molar weight) with a MS Excel tool (XLS) specifically developed at the French Bureau of Geological and Mining Researches (BRGM); (iii) usage of the SUPCRT (Johnson et al., 1992) software package (thereinafter, SSP) to derive log K values to be incorporated in thermodynamic databases of the standard geochemical codes; (iv) check of the consistency of the stability domains calculated with these log K values with relevant predominance diagrams; (v) final application of geochemical and reactive transport models to investigate the reactive mechanisms under different thermal conditions (40-150°C). All the simulations consider pore waters having roughly the same chemical composition of reservoir pore waters, and are performed with The Geochemist Workbench (Bethke and Yeakel, 2015), PHREEQC (Parkhurst, 1999) and TOUGHREACT (Xu, 2006). The overall procedure benefits from: (i) (minor) improvements of the I/O structure of the SSP; (ii) the development of a suite of python scripts to automate the steps needed to augment the thermodynamic database by integrating the external information provided by potential users with the XLS tool and the SSP; (iii) the creation of specific outputs to allow for more convenient handling and inspection of computed parameters of the thermodynamic database. A case study focused on non-isothermal smectite-illite transformation is presented to show the capability of our numerical models to account for clay compaction under 1D geometry conditions. This model considers fluid flow driven by the compaction of a clay layer, and chemistry-fluid flow mutual feedback with the underlying sandstone during the advancement of the diagenesis. Due to this complex interaction, as a result of the smectite-illite transformation in the clays, significant quartz cementation affects the sandstone adjacent to the compacting clay.
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples
NASA Astrophysics Data System (ADS)
Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.
2016-12-01
Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.
NASA Astrophysics Data System (ADS)
Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume
2017-06-01
In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.
Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L
2013-08-01
Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption.
Seim, Gretchen L.; Ahn, Cedric I.; Bodis, Mary S.; Luwedde, Flavia; Miller, Dennis D.; Hillier, Stephen; Tako, Elad; Glahn, Raymond P.; Young, Sera L.
2014-01-01
Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1:16 ratio, sample:WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14571) μg/g and mean Fe concentration in the clay minerals was 2791 (± 1782) μg/g. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg/g). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption. PMID:23787405
Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G
2017-06-01
A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite
NASA Astrophysics Data System (ADS)
Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna
2018-06-01
Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.
Earthquakes Promote Bacterial Genetic Exchange in Serpentinite Crevices
NASA Astrophysics Data System (ADS)
Naoto, Yoshida; Fujiura, Nori
2009-04-01
We report the results of our efforts to study the effects of seismic shaking on simulated biofilms within serpentinite fissures. A colloidal solution consisting of recipient bacterial cells (Pseudomonas sp. or Bacillus subtilis), donor plasmid DNA encoded for antibiotic resistance, and chrysotile (an acicular clay mineral that forms in crevices of serpentinite layers) were placed onto an elastic body made from gellan gum, which acted as the biofilm matrix. Silica beads, as rock analogues (i.e., chemically inert mechanical serpentinite), were placed on the gellan surface, which was coated with the colloidal solution. A rolling vibration similar to vibrations generated by earthquakes was applied, and the silica beads moved randomly across the surface of the gellan. This resulted in the recipient cells' acquiring plasmid DNA and thus becoming genetically transformed to demonstrate marked antibiotic resistance. Neither Pseudomonas sp. nor B. subtilis were transformed by plasmid DNA when chrysotile was substituted for by kaolinite or bentonite in the colloidal solution. Tough gellan (1.0%) promoted the introduction of plasmid DNA into Pseudomonas sp., but soft gellan (0.3%) had no such effect. Genetic transformation of bacteria on the surface of gellan by exposure to exogenous plasmid DNA required seismic shaking and exposure to the acicular clay mineral chrysotile. These experimental results suggest that bacterial genetic exchange readily occurs when biofilms that form in crevices of serpentinite are exposed to seismic shaking. Seismic activity may be a key factor in bacterial evolution along with the formation of biofilms within crevices of serpentinite.
NASA Astrophysics Data System (ADS)
Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela
2016-07-01
The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.
TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques
NASA Astrophysics Data System (ADS)
Theodorakou, C.; Farquharson, M. J.
2008-06-01
This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.
Osawa, Hitoshi; Ohkochi, Takuo; Fujisawa, Masami; Kimura, Shigeru; Kinoshita, Toyohiko
2017-01-01
Two types of optical choppers for time-resolved measurements at synchrotron radiation soft X-ray beamlines have been developed. One type uses an air-spindle-type rotation mechanism with a two-stage differential pumping system to maintain the ultra-high vacuum of the X-ray beamline, and the other uses a magnetic bearing. Both can be installed at the soft X-ray beamlines at SPring-8, greatly improving the accessibility of pump-and-probe spectroscopy. The combination of X-ray chopper and pump-and-probe photoemission electron microscope at SPring-8 provides drastic improvements in signal-to-noise ratio and resolution compared with techniques using high-voltage gating of channel plate detectors. The choppers have the capability to be used not only at synchrotron radiation facilities but also at other types of soft X-ray and VUV beamlines. PMID:28452746
Soft skill appraisal for dentistry: a tool for positive practice management.
Jawale, Bhushan Arun; Bendgude, Vikas; Husain, Nadeem; Thosar, Nilima; Tandon, Piyush
2011-11-01
Soft skills adoption is a learning experience for every practitioner and every academician. Author has expressed his opinion for success through educational and real values of soft skill. Soft skills behavior of individual and institution help in achieving desirable goals in general and specialty practices. Author also focused on some realistic soft skill methods for improvisation of practices for all doctor. These skills indulge positive energy in human relationship for working in symbiosis and explore infinite capabilities at institutional and doctoral level. Here, some optimistic suggestions are given for improving dental practices and academic fulfillments. These soft skills help to organize, plan and manage, and track changes during the course of the growing dental practices. However, understanding of the soft skills in practice management, its simplicity and complexity and also, its contributing factors, helps practitioners to understand the dynamic, social and complex contexts of practices. It is really helpful to all practitioners to grow their practices using soft skills.
Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J
2017-09-01
Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.
A Comparative Study of T1 and T2 Relaxation in Shale
NASA Astrophysics Data System (ADS)
Keating, K.; Obasi, C. C.; Pashin, J. C.
2015-12-01
Nuclear magnetic resonance (NMR) relaxation measurement have been used extensively in petroleum and, more recently, in groundwater resource evaluation to estimate the porosity, pore-size distributions, permeability, fluid saturation, and fluid mobility. In shale, the transverse decay rate of NMR signal is sensitive to the microporosity, but is also affected by the paramagnetic contributions of clay and other iron-bearing minerals. Furthermore, contrasts in the magnetic susceptibility of the mineral matrix and pore fluids that result in an inhomogeneous magnetic field within the pore space results in an extra term in transverse relaxation. These issues can cause errors in NMR-based estimates of pore-size distribution and permeability. In this study we compare T1 and T2 relaxation time distributions in order to study the molecular mechanism of relaxation in brine-saturated mixtures of clay and other common minerals. We collected measurements on a range of mixtures of clay minerals common in shale (illite, glauconite, celadonite, chamosite, montmorillonite and kaolinite) and pyrite. To constrain the interpretation of the NMR data, we measured the magnetic susceptibility and surface area of all samples. We are confident that by accounting for the presence and variations of clay and pyrite in shale, we can substantially improve both the NMR estimate of pore-size distribution and permeability.
Arsenic mobilization in shallow aquifers due to CO 2 intrusion from storage reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ting; Dai, Zhenxue; Viswanathan, Hari S.
We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO 2 interactions and arsenic (As) mobilization responses to CO 2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO 2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay mineralsmore » could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.« less
Memiş, Saliha; Tornuk, Fatih; Bozkurt, Fatih; Durak, M Zeki
2017-10-01
In the present work, fenugreek seed gum (FSG)/clay nanocomposite films were prepared with nanoclays (Na + montmorillonite [MMT], halloysite [HNT] and Nanomer ® I.44 P [NM]) at different amounts (0, 2.5, 5.0 and 7.5g clay/100g FSG) by solution casting method and characterized. Increasing amount of nanoclay significantly (P<0.05) improved oxygen barrier and thermal properties of the biodegradable films. Agar diffusion tests revealed that FSG based nanocomposite films exhibited strong antimicrobial properties against foodborne pathogens namely Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus and Bacillus cereus independently of clay type and concentration. In the case of mechanical properties, nanoclay incorporation up to 5% provided higher (P<0.05) tensile strength (TS) properties while elongation at break (EB) values of the films significantly (P<0.05) decreased in the presence of clay in the film matrix. SEM micrographs showed that especially lower levels (up to 5%) of nanoclay reinforcements provided a homogeneous and smooth film structure. In conclusion, FSG based nanocomposite films reinforced with nanoclays up to 5% showed a precious potential to be used in antimicrobial food packaging applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Arsenic mobilization in shallow aquifers due to CO 2 intrusion from storage reservoirs
Xiao, Ting; Dai, Zhenxue; Viswanathan, Hari S.; ...
2017-06-05
We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO 2 interactions and arsenic (As) mobilization responses to CO 2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO 2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay mineralsmore » could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.« less
Soil geohazard mapping for improved asset management of UK local roads
NASA Astrophysics Data System (ADS)
Pritchard, O. G.; Hallett, S. H.; Farewell, T. S.
2015-09-01
Unclassified roads comprise 60 % of the road network in the United Kingdom (UK). The resilience of this locally important network is declining. It is considered by the Institution of Civil Engineers to be "at risk" and is ranked 26th in the world. Many factors contribute to the degradation and ultimate failure of particular road sections. However, several UK local authorities have identified that in drought conditions, road sections founded upon shrink-swell susceptible clay soils undergo significant deterioration compared with sections on non-susceptible soils. This arises from the local road network having little, if any, structural foundations. Consequently, droughts in East Anglia have resulted in millions of pounds of damage, leading authorities to seek emergency governmental funding. This paper assesses the use of soil-related geohazard assessments in providing soil-informed maintenance strategies for the asset management of the locally important road network of the UK. A case study draws upon the UK administrative county of Lincolnshire, where road assessment data have been analysed against mapped clay-subsidence risk. This reveals a statistically significant relationship between road condition and susceptible clay soils. Furthermore, incorporation of UKCP09 future climate projections within the geohazard models has highlighted roads likely to be at future risk of clay-related subsidence.
Soil geohazard mapping for improved asset management of UK local roads
NASA Astrophysics Data System (ADS)
Pritchard, O. G.; Hallett, S. H.; Farewell, T. S.
2015-05-01
Unclassified roads comprise 60% of the road network in the United Kingdom (UK). The resilience of this locally important network is declining. It is considered by the Institution of Civil Engineers to be "at risk" and is ranked 26th in the world. Many factors contribute to the degradation and ultimate failure of particular road sections. However, several UK local authorities have identified that in drought conditions, road sections founded upon shrink/swell susceptible clay soils undergo significant deterioration compared with sections on non-susceptible soils. This arises from the local road network having little, if any structural foundations. Consequently, droughts in East Anglia have resulted in millions of pounds of damage, leading authorities to seek emergency governmental funding. This paper assesses the use of soil-related geohazard assessments in providing soil-informed maintenance strategies for the asset management of the locally important road network of the UK. A case study draws upon the UK administrative county of Lincolnshire, where road assessment data have been analysed against mapped clay-subsidence risk. This reveals a statistically significant relationship between road condition and susceptible clay soils. Furthermore, incorporation of UKCP09 future climate projections within the geohazard models has highlighted roads likely to be at future risk of clay-related subsidence.
Virta, Robert L.
2010-01-01
The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.
77 FR 8004 - Fall 2011 Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
.... Title Identifier No. 438 SAN No. 5367 NESHAP: Brick 2060-AP69 and Structural Clay Products and Clay...-Term Actions 438. NESHAP: Brick and Structural Clay Products and Clay Products Legal Authority: Not Yet... metals) emitted from brick and clay ceramics kilns and glazing operations at clay ceramics production...
Mineral Acquisition from Clay by Budongo Forest Chimpanzees.
Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany
2015-01-01
Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.
Mineral Acquisition from Clay by Budongo Forest Chimpanzees
Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany
2015-01-01
Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593
NASA Astrophysics Data System (ADS)
Yu, Li; Weetjens, Eef; Sillen, Xavier; Vietor, Tim; Li, Xiangling; Delage, Pierre; Labiouse, Vincent; Charlier, Robert
2014-01-01
A proper evaluation of the perturbations of the host rock induced by the excavation and the emplacement of exothermic wastes is essential for the assessment of the long-term safety of high-level radioactive waste disposals in clay formations. The impact of the thermal transient on the evolution of the damaged zone (DZ) has been explored in the European Commission project TIMODAZ (thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks, 2006-2010). This paper integrates the scientific results of the TIMODAZ project from a performance assessment (PA) point of view, showing how these results support and justify key PA assumptions and the values of PA model parameters. This paper also contextualises the significance of the thermal impact on the DZ from a safety case perspective, highlighting how the project outcomes result into an improved understanding of the thermo-hydro-mechanical behaviour of the clay host rocks. The results obtained in the TIMODAZ project strengthen the assessment basis of the safety evaluation of the current repository designs. There was no evidence throughout the TIMODAZ experimental observations of a temperature-induced additional opening of fractures nor of a significant permeability increase of the DZ. Instead, thermally induced plasticity, swelling and creep seem to be beneficial to the sealing of fractures and to the recovery of a very low permeability in the DZ, close to that of an undisturbed clay host rock. Results from the TIMODAZ project indicate that the favourable properties of the clay host rock, which guarantee the effectiveness of the safety functions of the repository system, are expected to be maintained after the heating-cooling cycle. Hence, the basic assumptions usually made in PA calculations so far are expected to remain valid, and the performance of the system should not be affected in a negative way by the thermal evolution of the DZ around a radioactive waste repository in clay host rock.
NASA Astrophysics Data System (ADS)
Bristow, Thomas F.; Kennedy, Martin J.; Morrison, Keith D.; Mrofka, David D.
2012-08-01
The mineralogical, compositional and stable isotopic variability of lacustrine carbonates are frequently used as proxies for ancient paleoenvironmental change in continental settings, under the assumption that precipitated carbonates reflect conditions and chemistry of ancient lake waters. In some saline and alkaline lake systems, however, authigenic clay minerals, forming at or near the sediment water interface, are a major sedimentary component. Often these clays are rich in Mg, influencing the geochemical budget of lake waters, and are therefore expected to influence the properties of contemporaneous authigenic carbonate precipitates (which may also contain Mg). This paper documents evidence for a systematic feedback between clay mineral and carbonate authigenesis through multiple precessionally driven, m-scale sedimentary cycles in lacustrine oil-shale deposits of the Eocene Green River Formation from the Uinta Basin (NE Utah). In the studied section, authigenic, Mg-rich, trioctahedral smectite content varies cyclically between 9 and 39 wt.%. The highest concentrations occur in oil-shales and calcareous mudstones deposited during high lake level intervals that favored sedimentary condensation, lengthening the time available for clay diagenesis and reducing dilution by other siliciclastic phases. An inverse relation between dolomite percentage of carbonate and trioctahedral smectite abundance suggests the Mg uptake during clay authigenesis provides a first order control on carbonate mineralogy that better explains carbonate mineralogical trends than the possible alternative controls of (1) variable Mg/Ca ratios in lake water and (2) degree of microbial activity in sediments. We also observe that cyclical change in carbonate mineralogy, believed to be induced by clay authigenesis, also causes isotopic covariation between δ13CPDB and δ18OPDB of bulk sediments because of differences in the equilibrium fractionation factors of dolomite and calcite (˜2‰ and ˜2.6%, respectively). This provides an alternative mechanism for the common pattern of isotopic covariation, which is typically attributed to the effect of simultaneous changes in water balance and biological activity on the carbon and oxygen isotopic composition of lake waters. These findings may help improve paleoenvironmental reconstructions based on lacustrine carbonate records by adding to the factors known to influence the mineralogical, compositional and stable isotopic signals recorded by lacustrine carbonates.
Paolone, Maria Giacinta; Kaitsas, Roberto
2018-06-01
Orthodontics is a periodontal treatment. "Guided orthodontic regeneration" (GOR) procedures use orthodontic movements in perio-restorative patients. The GOR technique includes a guided orthodontic "soft tissue" regeneration (GOTR) and a guided orthodontic "bone" regeneration (GOBR) with a plastic soft tissue approach and a regenerating reality. The increased amount of soft tissue gained with orthodontic movement can be used for subsequent periodontal regenerative techniques. The increased amount of bone can as well improve primary implant stability and, eventually, simplify a GTR technique to regenerate soft tissues, to restore tooth with external resorption in aesthetic zone or to extract a tooth to create new hard-soft tissue for adjacent teeth. Copyright © 2018. Published by Elsevier Masson SAS.
Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.
1987-01-01
The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.
Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.
Jin, J; Yusoh, K; Zhang, H X; Song, M
2016-03-01
A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.
Method for the regeneration of spent molten zinc chloride
Zielke, Clyde W.; Rosenhoover, William A.
1981-01-01
In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.
New polyurethane nanocomposites based on soya oil.
Mohammed, Issam Ahmed; Abd Khadir, Nurul Khizrien; Jaffar Al-Mulla, Emad Abbas
2014-01-01
New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.
Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)
NASA Astrophysics Data System (ADS)
Shekhawat, M. S.
The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.
Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K
2012-12-07
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Otto, Caitlin C.; Kilbourne, Jacquelyn
2016-01-01
Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of in vivo efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for in vitro antibacterial activity, we evaluated the in vivo antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant Staphylococcus aureus (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the in vivo antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit in vitro antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections. PMID:26508716
Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.
Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H
2007-03-06
Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Drop Height and Volume Control the Mobility of Long-Runout Landslides on the Earth and Mars
NASA Astrophysics Data System (ADS)
Johnson, Brandon C.; Campbell, Charles S.
2017-12-01
Long-runout landslides are landslides with volumes of 105 m3 or more, which move much farther from their source than expected. The observation that Martian landslides are generally less mobile than terrestrial landslides offers important evidence regarding the mechanism responsible for the high mobility of long-runout landslides. Here we simulate landslides as granular flow using a soft-particle discrete element model. We show that while surface gravity plays a negligible role, observed differences in fall height naturally reproduce the observed differences in mobility of Martian and terrestrial landslides. We also demonstrate that landslides on Iapetus may fit this trend. Our simulations do not include any fluid and indicate that a mechanism similar to acoustic fluidization can explain the high mobility of long-runout landslides. This implies that long-runout landslides on Mars should not be considered as evidence for ice, saturated clays, or liquid water.
NASA Astrophysics Data System (ADS)
Li, Zai-Feng; Wu, Yuan; Zhang, Fu-Tao; Cao, Yu-Yang; Wu, Shou-Peng; Wang, Ting
2012-12-01
With ultrasonic assistant mixing way, an intercalated mixture of polyol/organo reactive montmorillonite (ORMMT) was pretreated. The prepolymer composed MMT clay was prepared by reaction of polyol/ORMMT mixture with toluene diisocyanate (TDI). The resultant prepolymer reacted with extender (DMTDA) and then the polyurethane-urea/organo reactive montmorillonite (PUU/ORMMT) nanocomposites were obtained. The structure, morphology and properties of PUU/ORMMT nanocomposites were characterized by FT-IR, TEM, AFM, strain-stress machine, TGA, and dynamic mechanical analysis (DMA). The results showed that when the OMMT content is 3%, the PUU/ORMMT nanocomposities performed super mechanical properties. Because of the presence of ORMMT, both T g of the soft segment and tan δ of the PUU increased, and the decomposition temperature for the first step and the second step increased respectively. TEM images showed that the organophilic MMT particles in the PUU composite exhibit a high degree of intercalation and exfoliation.
Prediction of embankment settlement over soft soils.
DOT National Transportation Integrated Search
2009-06-01
The objective of this project was to review and verify the current design procedures used by TxDOT : to estimate the total and rate of consolidation settlement in embankments constructed on soft soils. Methods : to improve the settlement predictions ...
Shintake, Jun; Cacucciolo, Vito; Floreano, Dario; Shea, Herbert
2018-05-07
Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-08-06
This study assessed personal and environmental correlates of Belgian university students' soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students' beverage choices.
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-01-01
This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790
Soft-information flipping approach in multi-head multi-track BPMR systems
NASA Astrophysics Data System (ADS)
Warisarn, C.; Busyatras, W.; Myint, L. M. M.
2018-05-01
Inter-track interference is one of the most severe impairments in bit-patterned media recording system. This impairment can be effectively handled by a modulation code and a multi-head array jointly processing multiple tracks; however, such a modulation constraint has never been utilized to improve the soft-information. Therefore, this paper proposes the utilization of modulation codes with an encoded constraint defined by the criteria for soft-information flipping during a three-track data detection process. Moreover, we also investigate the optimal offset position of readheads to provide the most improvement in system performance. The simulation results indicate that the proposed systems with and without position jitter are significantly superior to uncoded systems.
Postoperative Therapy for Chronic Thumb Carpometacarpal (CMC) Joint Dislocation.
Wollstein, Ronit; Michael, Dafna; Harel, Hani
2016-01-01
Surgical arthroplasty of thumb carpometacarpal (CMC) joint osteoarthritis is commonly performed. Postoperative therapeutic protocols aim to improve range of motion and function of the revised thumb. We describe a case in which the thumb CMC joint had been chronically dislocated before surgery, with shortening of the soft-tissue dynamic and static stabilizers of the joint. The postoperative protocol addressed the soft tissues using splinting and exercises aimed at lengthening and strengthening these structures, with good results. It may be beneficial to evaluate soft-tissue tension and the pattern of thumb use after surgery for thumb CMC joint osteoarthritis to improve postoperative functional results. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Breast imaging with the SoftVue imaging system: first results
NASA Astrophysics Data System (ADS)
Duric, Neb; Littrup, Peter; Schmidt, Steven; Li, Cuiping; Roy, Olivier; Bey-Knight, Lisa; Janer, Roman; Kunz, Dave; Chen, Xiaoyang; Goll, Jeffrey; Wallen, Andrea; Zafar, Fouzaan; Allada, Veerendra; West, Erik; Jovanovic, Ivana; Li, Kuo; Greenway, William
2013-03-01
For women with dense breast tissue, who are at much higher risk for developing breast cancer, the performance of mammography is at its worst. Consequently, many early cancers go undetected when they are the most treatable. Improved cancer detection for women with dense breasts would decrease the proportion of breast cancers diagnosed at later stages, which would significantly lower the mortality rate. The emergence of whole breast ultrasound provides good performance for women with dense breast tissue, and may eliminate the current trade-off between the cost effectiveness of mammography and the imaging performance of more expensive systems such as magnetic resonance imaging. We report on the performance of SoftVue, a whole breast ultrasound imaging system, based on the principles of ultrasound tomography. SoftVue was developed by Delphinus Medical Technologies and builds on an early prototype developed at the Karmanos Cancer Institute. We present results from preliminary testing of the SoftVue system, performed both in the lab and in the clinic. These tests aimed to validate the expected improvements in image performance. Initial qualitative analyses showed major improvements in image quality, thereby validating the new imaging system design. Specifically, SoftVue's imaging performance was consistent across all breast density categories and had much better resolution and contrast. The implications of these results for clinical breast imaging are discussed and future work is described.
Luo, Ming; Skorina, Erik H; Tao, Weijia; Chen, Fuchen; Ozel, Selim; Sun, Yinan; Onal, Cagdas D
2017-06-01
Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture that offers proprioceptive sensing of pressure-operated bending actuation modules. We present integrated custom magnetic curvature sensors embedded in the neutral axis of bidirectional bending actuators. We describe our recent advances in the design and fabrication of these modules to improve the reliability of proprioceptive curvature feedback over our prior work. In particular, we study the effect of dimensional parameters on improving the linearity of curvature measurements. In addition, we present a sliding-mode controller formulation that drives the binary solenoid valve states directly, giving the control system the ability to hold the actuator steady without continuous pressurization and depressurization. In comparison to other methods, this control approach does not rely on pulse width modulation and hence offers superior dynamic performance (i.e., faster response rates). Our experimental results indicate that the proposed soft robotic modules offer a large range of bending angles with monotonic and more linear embedded curvature measurements, and that the direct sliding-mode control system exhibits improved bandwidth and a notable reduction in binary valve actuation operations compared to our earlier iterative sliding-mode controller.
Virta, R.L.
2013-01-01
Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.
Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago
2011-11-01
The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.
Shampoo-Clay Heals Diaper Rash Faster Than Calendula Officinalis
Adib-Hajbaghery, Mohsen; Mahmoudi, Mansoreh; Mashaiekhi, Mahdi
2014-01-01
Background: Diaper rash is one of the most common skin disorders of infancy and childhood. Some studies have shown that Shampoo-clay was effective to treat chronic dermatitis. Then, it is supposed that it may be effective in diaper rash; however, no published studies were found in this regard. Objectives: This study aimed to compare the effects of Shampoo-clay (S.C) and Calendula officinalis (C.O) to improve infantile diaper rash. Patients and Methods: A randomized, double blind, parallel controlled, non-inferiority trial was conducted on 60 outpatient infants referred to health care centers or pediatric clinics in Khomein city and diagnosed with diaper rash. Patients were randomly assigned into two treatment groups including S.C group (n = 30) and C.O group (n = 30) by using one to one allocation ratio. The rate of complete recovery in three days was the primary outcome. Data was collected using a checklist and analyzed using t-test, Chi-square and Fisher’s exact tests and risk ratio. Results: Totally, 93.3% of lesions in the S.C group healed in the first 6 hours, while this rate was 40% in C.O group (P < 0.001). The healing ratio for improvement in the first 6 hours was 7 times more in the S.C group. In addition, 90% of infants in the SC group and 36.7% in the C.O group were improved completely in the first 3 days (P < 0.001). Conclusions: S.C was effective to heal diaper rash, and also had faster effects compared to C.O. PMID:25414900
The acid-base titration of montmorillonite
NASA Astrophysics Data System (ADS)
Bourg, I. C.; Sposito, G.; Bourg, A. C.
2003-12-01
Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.
Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W
2012-05-01
There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.
Removal of clay by stingless bees: load size and moisture selection.
Costa-Pereira, Raul
2014-09-01
Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.
Developing a multimodal biometric authentication system using soft computing methods.
Malcangi, Mario
2015-01-01
Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.
Electrotherapy and hyperbaric oxygen: Promising treatments for postradiation complications
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, G.E.; Scheetz, J.; Jacob, R.F.
1989-09-01
Electrotherapy and hyperbaric oxygen therapy have been added to physical therapy to treat patients with postsurgery and radiation sequelae. Problems of reduced oral opening and range of head movement, soft tissue necrosis, osteoradionecrosis, and delayed wound healing were addressed in 37 patients over a 3-year period. Of this group, 16 irradiated maxillary resection patients were specifically followed up to determine the effectiveness of the new modalities on improving reduced oral opening. Although healing and the quality of the soft tissues showed marked improvement there was no significant improvement in oral opening.
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Bastani, Mehrdad; Donohue, Shane; Persson, Lena; Aspmo Pfaffhuber, Andreas; Reiser, Fabienne; Ren, Zhengyong
2013-05-01
In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures. For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.
Virta, R.L.
2011-01-01
The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.
Clays in prebiological chemistry
NASA Technical Reports Server (NTRS)
Rao, M.; Oro, J.; Odom, D. G.
1980-01-01
The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.
The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California
Daviess, Steven Norman; Bramlette, M.N.
1953-01-01
Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.
Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong
2016-11-08
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.
Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.
Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin
2003-10-15
Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.
Evaluation of the medicinal use of clay minerals as antibacterial agents.
Williams, Lynda B; Haydel, Shelley E
2010-07-01
Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis ('flesh-eating' infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between 'healing clays' and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall.
NASA Astrophysics Data System (ADS)
Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle
2017-05-01
Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.
78 FR 44315 - Spring 2013 Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... Structural Clay Products Manufacturing and Clay Ceramics Manufacturing. 238 Standards of Performance 2060... (NESHAP): Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Legal Authority... pollutants (HF, HCl, and metals) emitted from brick and clay ceramics kilns, as well as dryers and glazing...
Numerical analysis for the efficacy of nasal surgery in obstructive sleep apnea hypopnea syndrome
NASA Astrophysics Data System (ADS)
Yu, Shen; Liu, Ying-Xi; Sun, Xiu-Zhen; Su, Ying-Feng; Wang, Ying; Gai, Yin-Zhe
2014-04-01
In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea—hypopnea syndrome (OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft palate before and after surgery were described by a numerical simulation method. The curative effect of nasal surgery was evaluated for the three patients with OSAHS. The degree of nasal obstruction in the 3 patients was improved after surgery. For 2 patients with mild OSAHS, the upper airway resistance and soft palate displacement were reduced after surgery. These changes contributed to the mitigation of respiratory airflow limitation. For the patient with severe OSAHS, the upper airway resistance and soft palate displacement increased after surgery, which aggravated the airway obstruction. The efficacy of nasal surgery for patients with OSAHS is determined by the degree of improvement in nasal obstruction and whether the effects on the pharynx are beneficial. Numerical simulation results are consistent with the polysomnogram (PSG) test results, chief complaints, and clinical findings, and can indirectly reflect the degree of nasal patency and improvement of snoring symptoms, and further, provide a theoretical basis to solve relevant clinical problems. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Liange; Li, Lianchong; Rutqvist, Jonny
Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratorymore » scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.« less
Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier
NASA Astrophysics Data System (ADS)
Huang, W. H.; Chuang, Y. F.
2014-12-01
Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.
A versatile model for soft patchy particles with various patch arrangements.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-01-21
We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.
[Interaction of clay minerals with microorganisms: a review of experimental data].
Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I
2009-01-01
A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.
NASA Astrophysics Data System (ADS)
Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio
2017-04-01
In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.
Zope, Indraneel S.; Yu, Zhong-Zhen
2017-01-01
Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition. PMID:28800095
Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen
2017-08-11
Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.
Sprayable lightweight ablative coating
NASA Technical Reports Server (NTRS)
Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)
1991-01-01
An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.
Examination and Manipulation of Clay Aggregates - Initial Inquiry
2011-06-06
and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared
1980-07-17
31 Clay/hydrochloric acid, gas - induced crystallization 32 Clay/nitric acid evaporative crystallization 32 Clay/hydrochloric acid, evapora- tive...ALUMINA AND ALUMINUM TECHNOLOGIES 53 Evaluation of nonbauxitic alumina production processes 54 Clay/carbo-chlorination 54 Clay/hydrochloric acid, gas ...reports that the miniplant program is centered on a single process-- clay/hydrochloric acid- gas precipitation. The Bureau of Mines has not retreated
Virta, R.L.
2007-01-01
The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.
Sediment management and renewability of floodplain clay for structural ceramics
NASA Astrophysics Data System (ADS)
van der Meulen, M. J.; Wiersma, A. P.; Middelkoop, H.; van der Perk, M.; Bakker, M.; Maljers, D.; Hobo, N.; Makaske, B.
2009-04-01
The Netherlands have vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. The extraction of clay creates land surface lowerings of about 1.5 m, of which the majority are located in the embanked floodplains of the rivers Rhine and Meuse. At these surface lowerings, clay is replenished within several decades. This study explores to which extent the clay can be regarded as a renewable resource, with potential for sustainable use. For this purpose, first the current and past clay consumption is calculated. Subsequently, clay deposition in the floodplains is estimated from literature data on clay accumulation using sediment traps, heavy metal and radionuclide distribution in soil profiles, and from morphological modelling studies. These estimates of clay-deposition and consumption are then compared following three approaches that consider various temporal and spatial scales of clay deposition. This allows us to establish the extent to which man determines sedimentary processes in the Dutch floodplains. Consequently, using the sediment response to the land surface lowering resulting from clay extraction, we explore sediment management options for the Dutch Rhine and Meuse. Altogether we argue that clay has been, probably is, and certainly can be managed as a renewable mineral resource.
Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads.
Chen, Huawei; Zhang, Liwen; Zhang, Deyuan; Zhang, Pengfei; Han, Zhiwu
2015-07-01
Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.
Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella
2009-11-11
Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.
Clays causing adhesion with tool surfaces during mechanical tunnel driving
NASA Astrophysics Data System (ADS)
Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.
2009-04-01
During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the frame of the programme GEOTECHNOLOGIEN.
Retention and loss of water extractable carbon in soils: effect of clay properties.
Nguyen, Trung-Ta; Marschner, Petra
2014-02-01
Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.
Evaluation of the medicinal use of clay minerals as antibacterial agents
Williams, Lynda B.; Haydel, Shelley E.
2010-01-01
Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources. Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s). The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation. Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226
2011-04-01
tissue and polymer: mineralized tissue stained dark green, osteoid and collagen bright red, soft tissue pink to light green, and erythrocytes bright...of bone, soft tissue , and polymer, high-resolution digital images were acquired at 1.25 · or 20 · . The area of interest comprising the bone defect...bone, soft tissue , and polymer (when present) within the defect were quantified using Metamorph software (Molecular Devices, Inc.) and were calculated
Can soft biometric traits assist user recognition?
NASA Astrophysics Data System (ADS)
Jain, Anil K.; Dass, Sarat C.; Nandakumar, Karthik
2004-08-01
Biometrics is rapidly gaining acceptance as the technology that can meet the ever increasing need for security in critical applications. Biometric systems automatically recognize individuals based on their physiological and behavioral characteristics. Hence, the fundamental requirement of any biometric recognition system is a human trait having several desirable properties like universality, distinctiveness, permanence, collectability, acceptability, and resistance to circumvention. However, a human characteristic that possesses all these properties has not yet been identified. As a result, none of the existing biometric systems provide perfect recognition and there is a scope for improving the performance of these systems. Although characteristics like gender, ethnicity, age, height, weight and eye color are not unique and reliable, they provide some information about the user. We refer to these characteristics as "soft" biometric traits and argue that these traits can complement the identity information provided by the primary biometric identifiers like fingerprint and face. This paper presents the motivation for utilizing soft biometric information and analyzes how the soft biometric traits can be automatically extracted and incorporated in the decision making process of the primary biometric system. Preliminary experiments were conducted on a fingerprint database of 160 users by synthetically generating soft biometric traits like gender, ethnicity, and height based on known statistics. The results show that the use of additional soft biometric user information significantly improves (approximately 6%) the recognition performance of the fingerprint biometric system.
Soft versus hard occlusal splint therapy in the management of temporomandibular disorders (TMDs)
Seifeldin, Sameh A; Elhayes, Khaled A.
2015-01-01
Aim To compare between soft and hard occlusal splint therapy for the management of myofacial pain dysfunction (MPD) or internal derangement (ID) of the temporomandibular joint (TMJ) with reciprocal clicking. Patients and methods This study included 50 patients (age range: 24–47 years) who had been diagnosed with MPD or ID of the TMJ in the form of reciprocal clicking. Patients were divided into two groups. They were treated for 4 months with either a vacuum-formed soft occlusal splint constructed from 2-mm-thick elastic rubber sheets (soft splint group) or a hard flat occlusal splint fabricated from transparent acrylic resin (hard splint group). Monthly follow-up visits were performed during the treatment period. Before treatment and 1, 2, 3 and 4 months after treatment, the dentist measured all parameters of TMJ function (pain visual analog scores, tenderness of masticatory muscles, clicking and tenderness of the TMJ, and range of mouth opening). Results All parameters of TMJ function showed significant improvement in both groups during the follow-up period, with a statistically significant difference between the two groups at the 4-month follow-up visit. Conclusions Both forms of occlusal splints (soft and hard) improved TMJ symptoms in patients with MPD or ID of the TMJ. However, the soft occlusal splints exhibited superior results after 4 months of use. PMID:26644756
NASA Astrophysics Data System (ADS)
Ginil Mon, S.; Jaya Vinse Ruban, Y.; Vetha Roy, D.
2011-09-01
In the large field of nanotechnology, polymer matrix-based nanocomposites have become a prominent area of current research and development. Exfoliated clay-based nanocomposites have dominated the polymer world with excellent characteristics. EPDM rubber composites have been synthesized by solution-intercalation using the easily available kaolinite as filler. The composite structure has been elucidated by X-ray diffraction (XRD), Fourier transform IR, and scanning electron microscope studies. The molecular level dispersion of clay layers has been verified by the disappearance of basal XRD peak of kaolinite in the EPDM/kaolinite composites. The mechanical properties showed significant improvement of EPDM/kaolinite composites with respect to neat EPDM.
Farías, Romina D; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam
2017-05-15
This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.
Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam
2017-01-01
This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892
Wang, Jie-sheng; Han, Shuang; Shen, Na-na
2014-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935
Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash.
Singh, I B; Chaturvedi, K; Yegneswaran, A H
2007-07-01
In the present investigation thermal treatment of galvanizing waste with clay and fly ash has been carried out to immobilize Cr, Zn, Cu and other metals of the waste at temperature range 850 degrees C to 950 degrees C. Leaching of the metals from the waste and solidified product was analyzed using toxic characteristic leaching procedure (TCLP). Results indicated that the composition of waste and clay treatment temperature are the key factors in determining the stability of solidified product. After heating at 950 degrees C, the solidified specimens of 10% waste with clay have shown comparatively a high compressive strength and less water absorption. However, a decrease in compressive strength and increase in water absorption were noticed after addition of 15% of waste with clay. The leachability of all the metals present in the waste was found to reduce considerably with the increase of treatment temperature. In the case of Cr and Zn, their leachabilty was found at unacceptable levels from the treated product obtained after heating at 850 degrees C However, their leachability was reduced significantly within an acceptable level after treatment at 950 degrees C. The thermal treatment has shown an increase of re-oxidation trend of Cr (III) to Cr (VI) up to 900 degrees C of heating and this trend became almost zero after heating at 950 degrees C. Addition of fly ash did not show any improvement in strength, durability and leachability of metals from the thermally treated product. X-ray diffraction (XRD) analysis of the product confirmed the presence of mixed phases of oxides of toxic metals.
Rodríguez-Cruz, M S; Sánchez-Martín, M J; Andrades, M S; Sánchez-Camazano, M
2007-01-10
In this work, the efficiency of reactive clay barriers in the immobilisation of organic pesticides in a sandy soil was studied. Reactive barriers were prepared by modification of montmorillonite, kaolinite and palygorskite clay minerals, and of a clayey soil with the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Percolation curves of the pesticides linuron, atrazine and metalaxyl of different hydrophobic character, were obtained in columns packed with a natural sandy soil with these barriers intercalated under saturated flow conditions. The cumulative curves in the unmodified soil indicated a leaching of pesticides greater than 85% of the total amount of compound added. After barrier intercalation, the breakthrough curves (BTC) indicated a dramatic decrease in the amounts of linuron leached in all columns and a significant modification of the leaching kinetics of atrazine and metalaxyl. Retardation factors, R, of the pesticides in the columns were significantly correlated with the organic matter content (OM) derived from the ODTMA of the organo clay/soil barriers (r2>or=0.78). Significant correlations were also found between these R factors and the pore volume values corresponding to the maximum peaks of the BTCs (r2=0.83; p<0.01) or the total volumes leached (r2=0.44; p<0.05) for the pesticides atrazine and metalaxyl. The results obtained point to the interest in the use of reactive clay barriers for almost complete immobilisation of hydrophobic pesticides or for decreasing the leaching of moderately hydrophobic pesticides coming from point-like sources of pollution. These barriers would avoid the generation of elevated concentrations of these compounds in the soils due to their rapid washing.
Toward Accurate Adsorption Energetics on Clay Surfaces
2016-01-01
Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem. PMID:27917256
NASA Astrophysics Data System (ADS)
Boldt-Burisch, Katja; Naeth, M. Anne
2017-04-01
On many post mining sites in the Lusatian Mining District (East Germany) soil heterogeneity consists of sandy soil with embedded clay-silt fragments. Those clays silt fragments might act as nutrient hotspots. Arbuscular mycorrhizal fungi in an infertile ecosystem could enhance a plant's ability to selectively forage for those nutrients and thus to improve plants nutrient supply. In our study we investigated whether silt-clay fragments within a sandy soil matrix induced preferential root growth of Lotus corniculatus and Calamagrostis epigeios, whether arbuscular mycorrhizae influenced root foraging patterns, and to what extent selective rooting in clay silt fragments influenced plant growth were addressed in this research. Soil types were sterile and non-sterile sandy soil and clay-silt fragments. Treatments were with and without arbuscular mycorrhizae, with and without soil solution, and soil solution and mycorrhizal inoculum combined. Root biomass, root density and intraradical fungal alkaline phosphatase activity and frequency were determined in fragments relative to sandy soil. Furthermore, temporal relationship of number of roots in fragments and plant height was assessed. Lotus corniculatus showed strong selective rooting into fragments especially with those plants treated with commercial cultivated arbuscular mycorrhizae; Calamagrostis epigeios did not. Without arbuscular mycorrhizae, L. corniculatus growth was significantly reduced and selective rooting did not occur. Selective rooting induced significant growth spurts of L. corniculatus. Roots in fragments had higher fungal alkaline phosphatase activity suggesting that mycorrhizal efficiency and related plants phosphorus supply is enhanced in roots in fragments. The application of cultivated arbuscular mycorrhizal fungi significantly and quickly influenced root foraging patterns, especially those of L. corniculatus, suggesting mycorrhizae may also enhance the ability of other plants to selectively forage for nutrients and could therefore play an important role in early plant establishment on infertile reclamation sites.
Bouxsein, Mary L; Szulc, Pawel; Munoz, Fracoise; Thrall, Erica; Sornay-Rendu, Elizabeth; Delmas, Pierre D
2007-06-01
We compared trochanteric soft tissue thickness, femoral aBMD, and the ratio of fall force to femoral strength (i.e., factor of risk) in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Reduced trochanteric soft tissue thickness, low femoral aBMD, and increased ratio of fall force to femoral strength (i.e., factor of risk) were associated with increased risk of hip fracture. The contribution of trochanteric soft tissue thickness to hip fracture risk is incompletely understood. A biomechanical approach to assessing hip fracture risk that compares forces applied to the hip during a sideways fall to femoral strength may by improved by incorporating the force-attenuating effects of trochanteric soft tissues. We determined the relationship between femoral areal BMD (aBMD) and femoral failure load in 49 human cadaveric specimens, 53-99 yr of age. We compared femoral aBMD, trochanteric soft tissue thickness, and the ratio of fall forces to bone strength (i.e., the factor of risk for hip fracture, phi), before and after accounting for the force-attenuating properties of trochanteric soft tissue in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Femoral aBMD correlated strongly with femoral failure load (r2 = 0.73-0.83). Age, height, and weight did not differ; however, women with hip fracture had lower total femur aBMD (OR = 2.06; 95% CI, 1.19-3.56) and trochanteric soft tissue thickness (OR = 1.82; 95% CI, 1.01, 3.31). Incorporation of trochanteric soft tissue thickness measurements reduced the estimates of fall forces by approximately 50%. After accounting for force-attenuating properties of trochanteric soft tissue, the ratio of fall forces to femoral strength was 50% higher in cases than controls (0.92 +/- 0.44 versus 0.65 +/- 0.50, respectively; p = 0.04). It is possible to compute a biomechanically based estimate of hip fracture risk by combining estimates of femoral strength based on an empirical relationship between femoral aBMD and bone strength in cadaveric femora, along with estimates of loads applied to the hip during a sideways fall that account for thickness of trochanteric soft tissues. Our findings suggest that trochanteric soft tissue thickness may influence hip fracture risk by attenuating forces applied to the femur during a sideways fall and provide rationale for developing improved measurements of trochanteric soft tissue and for studying a larger cohort to determine whether trochanteric soft tissue thickness contributes to hip fracture risk independently of aBMD.
Clay Nanocomposite/Aerogel Sandwich Structures for Cryotanks
NASA Technical Reports Server (NTRS)
Miller, Sandi; Leventis, Nicholas; Johnston, J. Chris; Meador, Michael
2006-01-01
GRC research has led to the development of epoxy-clay nanocomposites with 60-70% lower gas permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. More recent work has produced new composites with more than a 100-fold reduction in helium permeability. Use of these advanced, high barrier composites would eliminate the need for a liner in composite cryotanks, thereby simplifying construction and reducing propellant leakage. Aerogels are attractive materials for use as cryotank insulation because of their low density and low thermal conductivity. However, aerogels are fragile and have poor environmental stability, which have limited their use to certain applications in specialized environments (e.g., in certain types of nuclear reactors as Cerenkov radiation detectors, and as thermal insulators aboard space rovers on Mars). New GRC developed polymer crosslinked aerogels (X-Aerogels) retain the low density of conventional aerogels, but they demonstrate a 300-fold increase in their mechanical strength. Currently, our strongest materials combine a density of approx. 0.45 g/cc, a thermal conductivity of approx. 0.04 W/mK and a compressive strength of 185 MPa. Use of these novel aerogels as insulation materials/structural components in combination with the low permeability of epoxy-clay nanocomposites could significantly reduce cryotank weight and improve durability.
NASA Astrophysics Data System (ADS)
Maulida; Kartika, T.; Harahap, M. B.; Ginting, M. H. S.
2018-02-01
Bioplastics are plastics that can be used just like conventional plastics but will disintegrate by the activity of microorganisms into water and carbon dioxide. Starch is a natural polymer material that can used for bioplastic production. The addition of reinforcing particles has been shown to improve the mechanical properties of bioplastics. The aim of this research is to know the potency of mango seed starch and microparticle clay as filler and glycerol concentration as plasticizer on tensile strength and elongation at break, functional group (FTIR) and surface morphology (SEM). In this study used mango seed starch size of 5 grams, with the variation of clay filler mass of 0; 3; 6 and nine wt%, while the mass of glycerol with a variation of 0; 20; 25; 30; And 35% wt. The heating temperature of the bioplastics solution used was 80.53 °C. The resulting bioplastics was analyzed for their physical and chemical properties, including FTIR, SEM, tensile strength, elongation at break. The FTIR analysis shows that no new functional groups was formed. From the analysis of mango starch content obtained 62.82%, 44.0% amylopectin content, amylose content 14.82%, and water content 12.65%. In this study obtained bioplastics with the best conditions on the use of 6% clay and 25% glycerol, with a tensile strength of 5.657MPa, percent elongation at breakup 43.431%.
Preparation and properties of recycled HDPE/clay hybrids
Yong Lei; Qinglin Wu; Craig M. Clemons
2007-01-01
Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...
Virta, R.L.
2011-01-01
The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.
Clay deposits of the Tierra Colorado district, southern Orange County, California
Daviess, Steven Norman; Bramlette, M.N.
1953-01-01
The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.
NASA Technical Reports Server (NTRS)
Burt, D. M.
1989-01-01
Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.
Pore space analysis of NAPL distribution in sand-clay media
Matmon, D.; Hayden, N.J.
2003-01-01
This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-07-14
Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.
[Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].
Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming
2004-09-01
Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.
Chemical and mineralogical characteristics of French green clays used for healing
Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.
2008-01-01
The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafaei, F; Nie, L
Purpose: Improvement in an in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium (Gd) in bone has been investigated. Series of improvements to the method is described. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging and the potential toxicity of Gd exposure. Methods: A set of seven bone equivalent phantoms with different amount of Gd concentrations (from 0–100 ppm) has been developed. Soft tissue equivalent plastic plates were used to simulate the soft tissue overlaying the tibia bone in an in vivo measurement. A new 5more » GBq 109Cd source was used to improve the source activity in comparison to the previous study (0.17 GBq). An improved spectral fitting program was utilized for data analysis. Results: The previous published minimum detection limit (MDL) for Gd doped phantom measurements using KXRF system was 3.3 ppm. In this study the MDL for bare bone phantoms was found to be 0.8 ppm. Our previous study used only three layers of plastic (0.32, 0.64 and 0.96 mm) as soft tissue equivalent materials and obtained the MDL of 4–4.8 ppm. In this study the plastic plates with more realistic thicknesses to simulate the soft tissue covering tibia bone (nine thicknesses ranging from 0.61–6.13 mm) were used. The MDLs for phantoms were determined to be 1.8–3.5 ppm. Conclusion: With the improvements made to the technology (stronger source, improved data analysis algorithm, realistic soft tissue thicknesses), the MDL of the KXRF system to measure Gd in bare bone was improved by a factor of 4.1. The MDL is at the level of the bone Gd concentration reported in literature. Hence, the system is ready to be tested on human subjects to investigate the use of bone Gd as a biomarker for Gd toxicity.« less
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Rosser, N. J.; Murphy, W.; Lawrence, J. A.
2010-08-01
Coastal monitoring is routinely undertaken to provide an archival record of cliff-line movement that can be used in the development and validation of predictive coast retreat and evolution models. However, coastal monitoring is often purely quantitative in nature, and financial necessity requires deployment over extensive coastal sections. As a result, for local site conditions in particular, only limited geomorphological data are available or included during the development of such predictive models. This has resulted in many current models incorporating a simplistic or generalised representation of cliff behaviour, an approach that progressively loses local credibility when deployed over extensive heterogeneous coastlines. This study addresses this situation at a site of extreme coastline retreat, Holderness, UK, through the application of intensive monitoring of six representative cliff sections nested within a general geomorphological appraisal of the wider coastline as a whole. The data from these surveys have been used to validate a finite difference-based geotechnical modelling assessment of clay cliff stability. Once validated, the geotechnical model was used to simulate a range of scenarios that were sufficient to represent the range of topographic, hydrogeological, geological, and littoral conditions exhibited throughout the region. Our assessment identified that the cliff retreat occurs through the combined influence of direct marine erosion of the cliff, with shallow, structurally controlled failures or substantial mass failures. Critically, the predisposition to any one of these failure mechanisms arises principally as a result of initial cliff height. The results of the numerical modelling have been combined into an empirical slope model that derives the rate of landslide-induced retreat that would arise from mass failures under various future scenarios. Results of this study can be used in the selection and development of retreat models at coastlines of similar physiographic setting to that found at Holderness. The results represent a key step in linking material deformation properties to the processes of cliff change and the subsequent range of landforms found on clay cliffs. As such, the results could also be used more generally to illustrate the likely cliff behaviour of other soft rock coastlines.
Qiu, Chenchen; Li, Yande
2017-01-01
China is a country with vast territory, but economic development and population growth have reduced the usable land resources in recent years. Therefore, reclamation by pumping and filling is carried out in eastern coastal regions of China in order to meet the needs of urbanization. However, large areas of reclaimed land need rapid drainage consolidation treatment. Based on past researches on how to improve the treatment efficiency of soft clay using vacuum preloading combined with electro-osmosis, a two-dimensional drainage plane model was proposed according to the Terzaghi and Esrig consolidation theory. However, the analytical solution using two-dimensional plane model was never involved. Current analytical solutions can’t have a thorough theoretical analysis of practical engineering and give relevant guidance. Considering the smearing effect and the rectangle arrangement pattern, an analytical solution is derived to describe the behavior of pore-water and the consolidation process by using EKG (electro-kinetic geo synthetics) materials. The functions of EKG materials include drainage, electric conduction and corrosion resistance. Comparison with test results is carried out to verify the analytical solution. It is found that the measured value is larger than the applied vacuum degree because of the stacking effect of the vacuum preloading and electro-osmosis. The trends of the mean measured value and the mean analytical value processes are comparable. Therefore, the consolidation model can accurately assess the change in pore-water pressure and the consolidation process during vacuum preloading combined with electro-osmosis. PMID:28771496
Numerous nanopores developed in organo-clay complexes during the shale formations
NASA Astrophysics Data System (ADS)
Wang, Q.; Wang, T.; Lu, H.; Liao, J.
2017-12-01
Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.
Alin, Jonas; Rubino, Maria; Auras, Rafael
2015-10-15
UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.
Killer clays! Natural antibacterial clay minerals
Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.
2004-01-01
The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.
ERIC Educational Resources Information Center
Lohr, Tresa Rae
2006-01-01
The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…
ERIC Educational Resources Information Center
Rogers, Liz; Steffan, Dana
2009-01-01
This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…
Wang, Cai; Henderson, Gregg
2014-12-01
Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Termites utilise clay to build structural supports and so increase foraging resources.
Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A
2016-02-08
Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.
Identification of milling and baking quality QTL in multiple soft wheat mapping populations
USDA-ARS?s Scientific Manuscript database
Wheat derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wh...
NASA Astrophysics Data System (ADS)
Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.
2017-11-01
Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.
Release of Escherichia coli under raindrop impact: The role of clay
NASA Astrophysics Data System (ADS)
Wang, C.; Parlange, J.-Y.; Schneider, R. L.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Truhlar, A. M.; Walter, M. T.
2018-01-01
A recent paper by Wang et al. (2017) showed that the release of Escherichia coli (E. coli) from soil into overland flow under raindrop impact and the release of clay follow identical temporal patterns. This raised the question: what is the role of clay, if any, in E. coli transfer from soil to overland flow, e.g., does clay facilitate E. coli transfer? Using simulated rainfall experiments over soil columns with and without clay in the matrix, we found there was significantly more E. coli released from the non-clay soil because raindrops penetrated more deeply than into the soil with clay.
Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.
Londono, Sandra Carolina; Williams, Lynda B
2016-04-01
Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venteris, Erik R.; May, Cassandra
2014-04-23
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less
Venteris, Erik R.; May, Cassandra J.
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834
Venteris, Erik R; May, Cassandra J
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.
Pyramiding tumuli waste disposal site and method of construction thereof
Golden, Martin P.
1989-01-01
An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.
Borehole geophysical logs at Naval Weapons Industrial Reserve Plant, Dallas, Texas
Braun, Christopher L.; Anaya, Roberto; Kuniansky, Eve L.
2000-01-01
A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction borehole geophysical logs were obtained from 162 poly vinyl-chloride-cased wells at the plant and were integrated with existing lithologic data to improve site characterization of the subsurface alluvium. Software was developed for filtering and classifying the log data and for processing, analyzing, and creating graphical output of the digital data. The alluvium consists of mostly fine-grained low-permeability sediments; however for this study, the alluvium was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. The low clay-content sediments were interpreted as being relatively permeable, whereas the high clay-content sediments were interpreted as being relatively impermeable. Simple statistics were used to identify zones of potentially contaminated sediments on the basis of the gamma-ray log classifications and the electromagnetic-induction log conductivity data.
Valorisation of wastewater from two-phase olive oil extraction in fired clay brick production.
de la Casa, José A; Lorite, Miguel; Jiménez, Juan; Castro, Eulogio
2009-09-30
Wastewater issued from oil-washing stage (OWW) in the two-phase olive oil extraction method was used to replace fresh water in clay brick manufacture. The extrusion trials were performed with one of the ceramic bodies currently being used in a local brick factory for red facing bricks (RB) production. Fresh water or OWW was added to a final consistency of 2.4 kg/cm(2), the same value as used at industrial scale for this kind of clay mixture. Comparative results of technological properties of facing bricks are presented. Results show that the products obtained with olive oil wastewater are comparable to traditional ones in terms of extrusion performance and technological properties of end products. Even dry-bending strength of the body formed by wastewater improves by 33% compared to fresh water body. In addition, heating requirements can be reduced in the range 2.4-7.3% depending on the final product. This application can alleviate environmental impacts from the olive oil extraction industry and, at the same time, result in economic savings for the brick manufacturing industry.
He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian
2014-07-30
Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.
Effect of red clay on diesel bioremediation and soil bacterial community.
Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun
2014-08-01
Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.
Clay-catalyzed reactions of coagulant polymers during water chlorination
Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.
2004-01-01
The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.
Geosynthetic clay liners shrinkage under simulated daily thermal cycles.
Sarabadani, Hamid; Rayhani, Mohammad T
2014-06-01
Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.
Removal of waterborne microorganisms by filtration using clay-polymer complexes.
Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda
2014-08-30
Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB
Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin
2012-01-01
The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515
Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.
Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid
2015-10-01
Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.
Virta, R.L.
2001-01-01
Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.
Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer
1993-08-01
Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements
NASA Astrophysics Data System (ADS)
Suparno, Sudomo, Rahardjo, Boedi
2017-09-01
Experts and practitioners agree that the quality of vocational high schools needs to be greatly improved. Many construction services have voiced their dissatisfaction with today's low-quality vocational high school graduates. The low quality of graduates is closely related to the quality of the teaching and learning process, particularly teaching materials. In their efforts to improve the quality of vocational high school education, the government have implemented Curriculum 2013 (K13) and supplied teaching materials. However, the results of monitoring and evaluation done by the Directorate of Vocational High School, Directorate General of Secondary Education (2014), the provision of tasks for students in the teaching materials was totally inadequate. Therefore, to enhance the quality and the result of the instructional process, there should be provided students' worksheets that can stimulate and improve students' problem-solving skills and soft skills. In order to develop worksheets that can meet the academic requirements, the development needs to be in accordance with an innovative learning approach, which is the soft skill-based scientific approach.
ERIC Educational Resources Information Center
Martin, Doris Marie
1995-01-01
Discusses the tactile and kinesthetic areas of learning children experience when using clay. Includes practical tips for using and storing clay for preschool use and notes the differences between potters' clay and play dough. (HTH)
Liu, Weiping; Gan, Jianying; Yates, Scott R
2002-07-03
Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.
Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.
Kim, Donghyun; Lee, Hoik; Sohn, Daewon
2014-08-01
A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.
Pourmohammadbagher, Amin; Shaw, John M
2015-09-15
Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.
The use of fortified soil-clay as on-site system for domestic wastewater purification.
Oladoja, N A; Ademoroti, C M A
2006-02-01
The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.
Impact-Induced Clay Mineral Formation and Distribution on Mars
NASA Technical Reports Server (NTRS)
Rivera-Valentin, E. G.; Craig, P. I.
2015-01-01
Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.
Effects of biochar on hydraulic conductivity of compacted kaolin clay.
Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung
2018-03-01
Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Soft Palate Friendly Speech Bulb for Velopharyngeal Insufficiency.
Kahlon, Sukhdeep Singh; Kahlon, Monaliza; Gupta, Shilpa; Dhingra, Parvinder Singh
2016-09-01
Velopharyngeal insufficiency is an anatomic defect of the soft palate making palatopharyngeal sphincter incomplete. It is an important concern to address in patients with bilateral cleft lip and palate. Speech aid prosthesis or speech bulbs are best choice in cases where surgically repaired soft palate is too short to contact pharyngeal walls during function but these prosthesis have been associated with inadequate marginal closure, ulcerations and patient discomfort. Here is a case report of untreated bilateral cleft lip and palate associated with palatal insufficiency treated by means of palate friendly innovative speech bulb. This modified speech bulb is a combination of hard acrylic and soft lining material. The hard self-curing acrylic resin covers only the hard palate area and a permanent soft silicone lining material covering the soft palate area. A claw-shaped wire component was extended backwards from acrylic and was embedded in soft silicone to aid in retention and approximation of two materials. The advantage of adding the soft lining material in posterior area helped in covering the adequate superior extension and margins for maximal pharyngeal activity. This also improved the hypernasality, speech, comfort and overall patient acceptance.
Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data
NASA Astrophysics Data System (ADS)
Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.
2009-04-01
We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and <2 μm (clay associated SOC). Other authors had shown that the RPM pool of the model corresponds well to SOC measured in the soil size fraction > 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction < 50 μm. Default model applications show that the model underestimates the fast drop in forest C stocks in the first 20 years after land-use change and overestimates the C accumulation of maize C. Several hypotheses were tested to evaluate the simulations. Input data and internal model parameter uncertainties had minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and repeated cultivation of the soil. The underestimation of SOC loss by the model can be mainly attributed to the slow turnover of the humus pool. This pool was shown to represent mainly the SOC associated with the silt and clay soil fraction. Here, the clay associated SOC shows as similar turnover time as the humus pool in the model. We split the humus pool into a clay and a silt associated pool. The clay pool now corresponds to the clay associated SOC with the turnover time of the humus pool. The silt pool now corresponds to the silt associated SOC. From the measurements, the latter has a turnover time similar to the turnover time of the particulate organic matter. We therefore use the turnover time of the RPM pool for the silt pool. These modifications improve the simulations of the forest derived C significantly and improve the simulations of the maize derived C. Future work will further evaluate and refine this approach to eventually capture the SOC dynamics associated with physical protection, including the effect of tillage/no-tillage, in a simple approach.
Vignoletti, Fabio; Nunez, Javier; Sanz, Mariano
2014-04-01
To review the biological processes of wound healing following periodontal and periimplant plastic surgery when different technologies are used in a) the coverage of root and implant dehiscences, b) the augmentation of keratinized tissue (KT) and c) the augmentation of soft tissue volume. An electronic search from The National Library of Medicine (MEDLINE-PubMed) was performed: English articles with research focus in oral soft tissue regeneration, providing histological outcomes, either from animal experimental studies or human biopsy material were included. Barrier membranes, enamel matrix derivatives, growth factors, allogeneic and xenogeneic soft tissue substitutes have been used in soft tissue regeneration demonstrating different degrees of regeneration. In root coverage, these technologies were able to improve new attachment, although none has shown complete regeneration. In KT augmentation, tissue-engineered allogenic products and xenogeneic collagen matrixes demonstrated integration within the host connective tissue and promotion of keratinization. In soft tissue augmentation and peri-implant plastic surgery there are no histological data currently available. Soft tissue substitutes, growth differentiation factors demonstrated promising histological results in terms of soft tissue regeneration and keratinization, whereas there is a need for further studies to prove their added value in soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gas breakthrough and emission through unsaturated compacted clay in landfill final cover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.W.W.; Chen, Z.K.; Coo, J.L.
Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6 m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6 m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions)« less
Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to...
Effects of waste glass additions on quality of textile sludge-based bricks.
Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji
2015-01-01
This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.
Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge
2016-05-04
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.
Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge
2016-01-01
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect. PMID:28773460
Fogler, H. Scott; Srinivasan, Keeran R.
1990-01-01
A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.
Craft, Randall O; Smith, Anthony A; Coakley, Brandon; Casey, William J; Rebecca, Alanna M; Duncan, Scott F M
2011-11-01
Checkrein ligament release for treatment of proximal interphalangeal joint Dupuytren contractures does not address the shortened arteries or deficient skin. The Digit Widget uses soft-tissue distraction to overcome these issues. This study compares checkrein ligament release after fasciectomy versus preliminary soft-tissue distraction, followed by operative release, for treatment of proximal interphalangeal joint Dupuytren contractures. The authors compared operative and postoperative characteristics of patients treated with either fasciectomy plus checkrein ligament release or Digit Widget distraction between 2001 and 2008. Seventeen patients (20 digits) underwent ligament release (mean contracture, 55.9 degrees); six of these 20 were reoperations. Thirteen patients (17 digits) underwent distraction (mean contracture, 67.6 degrees); 10 of 17 were reoperations. The 20 digits treated with fasciectomy plus ligament release had an average extension improvement of 31.4 degrees (range, -4 to 70 degrees). Digits treated with distraction had an average extension improvement of 53.4 degrees (range, 30 to 75 degrees) (p<0.001 versus ligament release). Three digits treated with distraction improved to full proximal interphalangeal extension. Initial contractures of 60 degrees or less treated by ligament release (n=12) or distraction (n=7) improved by means of 28.8 degrees and 47.7 degrees, respectively (p=0.048). Contractures greater than 60 degrees treated by ligament release (n=8) or distraction (n=10) improved by means of 35.3 degrees and 57.3 degrees, respectively (p=0.02). Soft-tissue distraction followed by operative release showed greater correction than Dupuytren fasciectomy plus checkrein ligament release. Therapeutic, III.
Virta, R.L.
1998-01-01
Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.
Termites utilise clay to build structural supports and so increase foraging resources
Oberst, Sebastian; Lai, Joseph C. S.; Evans, Theodore A.
2016-01-01
Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites. PMID:26854187
NASA Astrophysics Data System (ADS)
Curry, Kenneth J.; Bennett, Richard H.; Mayer, Lawrence M.; Curry, Ann; Abril, Maritza; Biesiot, Patricia M.; Hulbert, Matthew H.
2007-04-01
We employed direct visualization of organic matter (OM) sequestered by microfabric signatures in organo-clay systems to study mechanisms of OM protection. We studied polysaccharides, an abundant class of OM in marine sediments, associated with the nano- and microfabric of clay sediment using a novel application of transmission electron microscopy, histochemical staining (periodic acid-thiosemicarbazide-silver proteinate), and enzymatic digestion techniques. We used two experimental organo-clay sediment environments. First, laboratory-consolidated sediment with 10% chitin (w/w) added was probed for chitin before and after digestion with chitinase. Second, fecal pellets from the polychaete Heteromastus filiformis were used as a natural environment rich in clay and polysaccharides. Sections of this material were probed with silver proteinate for polysaccharides before and after digestion with a mixture of enzymes (amylase, cellulase, chitinase, dextranase, and pectinase). In both environments, chitin or other polysaccharides were found within pores, bridging clay domains, and attached to clay surfaces in undigested samples. Digested samples showed chitin or polysaccharides more closely associated with clay surfaces and in small pores. Our results imply protective roles for both sorption to clay surfaces and encapsulation within clay microfabric signatures.
NASA Astrophysics Data System (ADS)
Armwood, Catherine K.
In this project, 26 fiber-reinforced mortar (FRM) mixtures are evaluated for their workability and strength characteristics. The specimens tested include two control mixtures and 24 FRMs. The mixtures were made of two types of binders; Type N Portland cement lime (Type N-PCL) and Natural Hydrated Lime 5 (NHL5); and 6 fiber types (5 synthetic fibers and one organic). When tested in flexure, the results indicate that majority of the synthetic fiber mixtures enhanced the performance of the mortar and the nano-nylon and horse hair fibers were the least effective in improving the mortar's modulus of rupture, ductility, and energy absorption. Four FRMs that improved the mortar's mechanical properties most during the flexural strength test were then used to conduct additional experiments. The FRM's compressive strength, as well as flexural and shear bond strength with clay and concrete masonry units were determined. Those four mixtures included Type N-PCL as the binder and 4 synthetic fibers. They were evaluated at a standard laboratory flow rate of 110% +/- 5% and a practical field flow rate of 130% +/- 5%. Results indicate that the use of fibers decreases the compressive strength of the mortar most of the time. However, the bond strength test results were promising: 81% of the FRM mixtures increased the flexural bond strength of the prism. The mixtures at 110 +/- 5% flow rate bonded better with concrete bricks and those ate 130+/-5% flow rate bonded better with clay bricks. The results of the shear bond strength show 50% of the FRM mixtures improved the shear bond strength. The FRM mixtures at 110+/-5% flow rate bonded with clay units provided the most improvement in shear bond strength compared to control specimen results. Along with detailed discussions and derived conclusions of these experiments, this dissertation includes recommendations for the most feasible FRM for different applications.
The use of soft robotics in cardiovascular therapy.
Wamala, Isaac; Roche, Ellen T; Pigula, Frank A
2017-10-01
Robots have been employed in cardiovascular therapy as surgical tools and for automation of hospital systems. Soft robots are a new kind of robot made of soft deformable materials, that are uniquely suited for biomedical applications because they are inherently less likely to injure body tissues and more likely to adapt to biological environments. Awareness of the soft robotic systems under development will help promote clinician involvement in their successful clinical translation. Areas covered: The most advanced soft robotic systems, across the size scale from nano to macro, that have shown the most promise for clinical application in cardiovascular therapy because they offer solutions where a clear therapeutic need still exists. We discuss nano and micro scale technology that could help improve targeted therapy for cardiac regeneration in ischemic heart disease, and soft robots for mechanical circulatory support. Additionally, we suggest where the gaps in the technology currently lie. Expert commentary: Soft robotic technology has now matured from the proof-of-concept phase to successful animal testing. With further refinement in materials and clinician guided application, they will be a useful complement for cardiovascular therapy.
Optimization of a superconducting linear levitation system using a soft ferromagnet
NASA Astrophysics Data System (ADS)
Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro
2013-04-01
The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.
Jung, Hun Jae; Yoon, Ji Yeon; Oh, Min Kyung; Kim, Young Chang; Kim, Jae Hyun; Eom, Tae Woong; Park, Kun Bo
2016-06-01
There are several different opinions regarding the improvements seen on the transverse plane after soft tissue surgery alone in independently ambulant patients with cerebral palsy. We performed a meta-analysis using data from previous studies to identify the effects of soft tissue surgery alone on pelvic and hip rotation in children with spastic diplegia. We conducted a pilot study to evaluate the improvement in pelvic and hip rotation after muscle-tendon lengthening surgery in children with spastic diplegia. We also searched EMBASE and PubMed and selected 2 previous studies using the same test conditions with kinematic data on the pelvis and hip joints. A meta-analysis of the results of these 3 studies, including this pilot study, was then performed. The meta-analysis results showed an external rotation decrease (p = 0.005) in the mean difference of pelvic rotation of -3.61 (95% confidence interval [CI], -6.13 to -1.09) and a mean difference in hip rotation of 6.60 (95% CI, 3.34 to 9.86), indicating a significant increase in the hip external rotation after surgery (p < 0.001). In independently community-ambulant pediatric patients with spastic diplegia, pelvic retraction and hip internal rotation could be improved after soft tissue surgery.
Taxing soft drinks in the Pacific: implementation lessons for improving health.
Thow, Anne Marie; Quested, Christine; Juventin, Lisa; Kun, Russ; Khan, A Nisha; Swinburn, Boyd
2011-03-01
A tax on soft drinks is often proposed as a health promotion strategy for reducing their consumption and improving health outcomes. However, little is known about the processes and politics of implementing such taxes. We analysed four different soft drink taxes in Pacific countries and documented the lessons learnt regarding the process of policy agenda-setting and implementation. While local social and political context is critically important in determining policy uptake, these case studies suggest strategies for health promotion practitioners that can help to improve policy uptake and implementation. The case studies reveal interaction between the Ministries of Health, Finance and Revenue at every stage of the policy making process. In regard to agenda-setting, relevance to government fiscal priorities was important in gaining support for soft drink taxes. The active involvement of health policy makers was also important in initiating the policies, and the use of existing taxation mechanisms enabled successful policy implementation. While the earmarking of taxes for health has been widely recommended, the revenue may be redirected as government priorities change. Health promotion practitioners must strategically plan for agenda-setting, development and implementation of intersectoral health-promoting policies by engaging with stakeholders in finance at an early stage to identify priorities and synergies, developing cross-sectoral advocacy coalitions, and basing proposals on existing legislative mechanisms where possible.
Mineral resource of the Month: Clay
Virta, Robert L.
2010-01-01
Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.
Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A
2008-11-14
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.
Field trip guidebook on environmental impact of clays along the upper Texas coast
NASA Technical Reports Server (NTRS)
Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay
1991-01-01
The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.
Virta, R.L.
2013-01-01
Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.
The Adjunctive Soft-Tissue Diode Laser in Orthodontics.
Borzabadi-Farahani, Ali
2017-04-01
Lasers are a relatively new addition to the orthodontist's armamentarium. This article reviews the fundamental basic science of available soft-tissue lasers, with an emphasis on diode lasers, and discusses various adjunct applications of the diode laser for soft-tissue orthodontic procedures. Diode lasers function by cutting with an initiated hot tip and produce minimal to no interaction with healthy dental hard tissue, making them suitable for soft-tissue procedures. The contact cutting mode provides enhanced bloodless site visibility and facility to perform delicate soft tissue procedures, which is important in areas with difficult access. Such adjunctive uses include laser gingivectomy to improve oral hygiene or bracket positioning, esthetic laser gingival recontouring, and laser exposure of superficially impacted teeth. Selected cases treated with a 940-nm indium-gallium-arsenide-phosphide (InGaAsP) diode laser will be presented.
Factors influencing the frequency of children's consumption of soft drinks.
Pettigrew, Simone; Jongenelis, Michelle; Chapman, Kathy; Miller, Caroline
2015-08-01
Among other focus areas, interventions designed to improve children's diets need to address key factors contributing to children's consumption of sugar-sweetened beverages. The present study employed structural equation modelling to investigate the relationship between a broad range of predictor variables and the frequency with which Australian children consume soft drinks. In total, 1302 parents of children aged 8 to 14 years responded to an online survey about their children's food consumption behaviours. Soft drink consumption frequency was primarily influenced by parents' attitudes to soft drinks, children's pestering behaviours, and perceived social norms relating to children's consumption of these products. Importantly, pestering and social norms had significant direct effects on consumption frequency in addition to indirect effects via their impact on parents' attitudes to soft drink. Copyright © 2015 Elsevier Ltd. All rights reserved.
Factors associated with high consumption of soft drinks among Australian secondary-school students.
Scully, Maree; Morley, Belinda; Niven, Philippa; Crawford, David; Pratt, Iain S; Wakefield, Melanie
2017-09-01
To examine demographic and behavioural correlates of high consumption of soft drinks (non-alcoholic sugar-sweetened carbonated drinks excluding energy drinks) among Australian adolescents and to explore the associations between high consumption and soft drink perceptions and accessibility. Cross-sectional self-completion survey and height and weight measurements. Australian secondary schools. Students aged 12-17 years participating in the 2012-13 National Secondary Students' Diet and Activity (NaSSDA) survey (n 7835). Overall, 14 % of students reported consuming four or more cups (≥1 litres) of soft drinks each week ('high soft drink consumers'). Demographic factors associated with high soft drink consumption were being male and having at least $AU 40 in weekly spending money. Behavioural factors associated with high soft drink consumption were low fruit intake, consuming energy drinks on a weekly basis, eating fast foods at least once weekly, eating snack foods ≥14 times/week, watching television for >2 h/d and sleeping for <8 h/school night. Students who perceived soft drinks to be usually available in their home, convenient to buy and good value for money were more likely to be high soft drink consumers, as were students who reported usually buying these drinks when making a beverage purchase from the school canteen/vending machine. High soft drink consumption clusters with other unhealthy lifestyle behaviours among Australian secondary-school students. Interventions focused on reducing the availability of soft drinks (e.g. increased taxes, restricting their sale in schools) as well as improved education on their harms are needed to lower adolescents' soft drink intake.
Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed to produce similar run-out distances and maximum head velocities. Strongly cohesive bentonite flows were able to create a stronger network of particle bonds than weakly cohesive kaolinite flows of a similar concentration, thus producing the lower maximum head velocities and run-out distances observed. The lack of cohesion in the silica-flour laden flows meant that extremely high suspended sediment concentrations, i.e. close to the cubic packing density, were required to produce a high enough frictional strength to reduce the forward momentum of these flows. These experimental results can be used to improve our understanding of the deposit geometry and run-out distance of fine-grained SGFs in the natural environment. We suggest that natural SGFs that carry weakly cohesive clays (e.g. kaolinite) reach a greater distance from their origin than flows that contain strongly cohesive clays (e.g. bentonite) at similar suspended sediment concentrations, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. In addition, weakly cohesive SGFs may cover a larger surface area and have thinner deposits, with important ramifications for the architecture of stacked event beds.
Black, Jennifer O; Coffin, Cheryl M; Parham, David M; Hawkins, Douglas S; Speights, Rose A; Spunt, Sheri L
2016-09-01
Treatment of soft tissue tumors in young patients relies on the diagnostic information conveyed in the pathology report. We examined pathology reports from Children's Oncology Group ARST0332 for inclusion of data elements required in published guidelines. Pathology reports for 551 eligible patients were examined for required data elements defined by the College of American Pathologists, including tissue type, procedure, tumor site, tumor maximum diameter, macroscopic extent of tumor, histologic type, mitotic rate, extent of necrosis, tumor grade, margin status, use of ancillary studies, and pathologic stage. Only 65 (12%) of 551 reports included all required data elements. Of reports containing synoptic templates, 57% were complete. This study reveals significant opportunity to improve the quality of pathology reports in young patients with soft tissue tumors. Use of templates or checklists improves completeness of reports. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.