NASA Astrophysics Data System (ADS)
Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.
2016-07-01
Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.
NASA Astrophysics Data System (ADS)
Al-Bared, Mohammed Ali Mohammed; Marto, Aminaton; Sati Hamonangan Harahap, Indra; Kasim, Fauziah
2018-03-01
Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.
DOT National Transportation Integrated Search
2009-01-01
The objective of this project was to develop an improved correlation between Texas Cone Penetrometer (TCP) : blow count and undrained shear strength for soft, clay soils in the upper approximately 30 feet of the ground. Subsurface : explorations were...
Quantifying structural states of soft mudrocks
NASA Astrophysics Data System (ADS)
Li, B.; Wong, R. C. K.
2016-05-01
In this paper, a cm model is proposed to quantify structural states of soft mudrocks, which are dependent on clay fractions and porosities. Physical properties of natural and reconstituted soft mudrock samples are used to derive two parameters in the cm model. With the cm model, a simplified homogenization approach is proposed to estimate geomechanical properties and fabric orientation distributions of soft mudrocks based on the mixture theory. Soft mudrocks are treated as a mixture of nonclay minerals and clay-water composites. Nonclay minerals have a high stiffness and serve as a structural framework of mudrocks when they have a high volume fraction. Clay-water composites occupy the void space among nonclay minerals and serve as an in-fill matrix. With the increase of volume fraction of clay-water composites, there is a transition in the structural state from the state of framework supported to the state of matrix supported. The decreases in shear strength and pore size as well as increases in compressibility and anisotropy in fabric are quantitatively related to such transition. The new homogenization approach based on the proposed cm model yields better performance evaluation than common effective medium modeling approaches because the interactions among nonclay minerals and clay-water composites are considered. With wireline logging data, the cm model is applied to quantify the structural states of Colorado shale formations at different depths in the Cold Lake area, Alberta, Canada. Key geomechancial parameters are estimated based on the proposed homogenization approach and the critical intervals with low strength shale formations are identified.
NASA Astrophysics Data System (ADS)
Selamat, Mohamad R.; Rosli, Ros N.; Ramli, Muhd H.; Azmi, Mastura; Kumaravelu, Prakash; Govindasamy, Darvintharen
2017-10-01
A site investigation by wash boring method was carried out in the compound of the Engineering Campus, Universiti Sains Malaysia, in Northwest Peninsular Malaysia. The subsurface soils of the region are known to be comprised of quaternary deposits including the prominent marine clays of the Gula formation. The conventional Standard Penetration Test, or SPT, was carried out for every 1.5m depth. The 18 disturbed samples collected were tested for grain size distribution, Atterberg limits, and specific gravity; and categorized according to the unified soil classification system. The results indicate low SPT numbers, or SPTN, i.e. SPTN<4 for depths lesser than 10m, slightly high SPTN, i.e. 4≤SPTN≤8 for depths between 10 and 12m, and very high SPTN, i.e. SPTN>8 for depths deeper than 12m. Samples from shallower than 12m were mostly classified as low plasticity clay, or CL, which represents the soft marine clay while the underlying materials were mostly sands, namely poorly graded sand, or SP, silty sand, or SM, clayey sand, or SC, and well graded sand, or SW. Another site investigation by the CPTU method was also carried out 5m from the wash boring position, penetrating the entire soft clay stratum, thus giving another marine clay characterization in addition to the one given by the first method. The CPTU results generally gave SPTN≤2 for depths lesser than 8m, 2≤;SPTN≤4 for depths between 8 and 12m, and SPTN=23 at 12.5m, where the CPTU test terminated. The CPTU method classified the soft materials as sensitive fine grains, clays, and clayey silts to silty clays. Thus the CPTU results did not agree very well with the conventional wash boring SPT results in terms of the SPTN obtained. Nevertheless both methods equally identified the prominent presence of the soft marine clay stratum in the top 12.5m and the underlying strong sandy bed with higher bearing capacity values.
Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint
NASA Astrophysics Data System (ADS)
Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.
2016-07-01
This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.
Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground
NASA Astrophysics Data System (ADS)
Yu, Chuang; Liu, Songyu
2008-11-01
Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.
The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.
Settlement of the USS Arizona, Pearl Harbor, Hawaii
Carkin, Brad A.; Kayen, Robert E.
2013-01-01
The U.S. Geological Survey, in collaboration with the National Park Service Submerged Resources Center, undertook investigations at the USS Arizona Memorial at Pearl Harbor, Hawaii, in 2002, 2003, and 2005 to characterize geological factors affecting the deterioration and movement of the hull of the USS Arizona. Since sinking on the morning of December 7, 1941, the hull of the USS Arizona has been slowly but steadily disappearing below the surface of Pearl Harbor. Continuous sediment coring at three of four locations around the hull of the Arizona was only partially successful, but it was sufficient to identify a varied sedimentary substrate beneath the hull. A boring near the stern reveals a thick, continuous sequence of soft, gray clay to the bottom of the boring. In contrast, borings near the bow and starboard side, below about 5 meters subbottom depth, indicate the presence of very stiff, brown clay and coral debris and an absence of soft clay. Multisensor core logger scanning of the recovered cores distinguishes the lower density of the soft, gray clay at the stern from the higher density of the stiff, brown clays and coral debris at the bow and starboard side. Uniaxial consolidation testing of the soft gray clay indicates a normally consolidated sequence, whereas the stiff, brown clay and coral debris are overconsolidated. Profiles of shear wave velocity vs. depth obtained through spectral analysis of interface wave testing around the perimeter of the hull in 2005 identified areas of higher velocity, stiffer sediment at the bow and starboard side, which correspond to the dense, stiff clay recovered near the bow and starboard borings. Low shear-wave velocities at the port midship and quarter of the hull correlate with the lower density, softer sediment recovered from the boring at the stern. Cross sections of the subbottom of the Memorial combine results from the sediment borings and geophysical surveys and depict a wedge of soft clay unconformably overlying the stiff clays and coral debris beneath the aft half of the USS Arizona and thickening toward the stern. The 2008 position of the hull has been documented using both tide-based and differential Global Positioning System (GPS) measuring systems. Analysis of historical and recent photographs was done to create a record of settlement from the time of sinking in 1941 to the present. By examining shadows in suitable photos, the sun azimuth, local time of day, and tide levels were determined to derive tide-adjusted and sea-level-rise-corrected elevations for structures on the hull and from these elevations to obtain settlement and tilt trends. The settlement trends, most complete for barbette 3, have two components. An early, nonlinear component ends on December 9, 1941, and represents the initial penetration and displacement of the bottom sediment by the hull. A linear, long-term trend of normal consolidation continues to the present day. Long-term settlement rates are greatest at the stern and decrease linearly to the midship, showing that the aft half of the hull is moving as an intact, rigid body. The recent rate of settlement at the stern is about 3.5 mm/year; rates at the starboard midship and forward part of the hull are less than one-third of the stern rate. The aft half of the USS Arizona hull presently tilts about 2 degrees to port, an increase of at least 1.5 degrees since the initial sinking of the ship. The results of this study identify differential settlement of the Arizona hull, due to the wedge of soft clay underlying the aft half of the hull, as the cause of the movement of the hull beneath the surface of Pearl Harbor. Calculation of sediment consolidation using lab-determined properties of the soft clay demonstrates that the observed settlements can be reproduced by projecting appropriate clay thicknesses beneath the hull. Several of the high-quality photographs analyzed for the historical settlement analysis highlight some of the limitations of this retrospective technique for determining tide-based elevations. In these cases, calculated structure elevations do not conform to the settlement trend, indicating that there can be complicating factors affecting the interpretation of the photos. Conflicting dates for events during the salvage operations were also encountered.
Stabilization of soft clay subgrades in Virginia : phase I laboratory study.
DOT National Transportation Integrated Search
2005-01-01
Many pavement subgrades in Virginia consist of wet, highly plastic clay or other troublesome soils. Such soils can be treated with traditional lime and cement stabilization methods. Alternatives, including lignosulfonates and polymers, are available,...
NASA Astrophysics Data System (ADS)
Apriyono, Arwan; Sumiyanto, Gusmawan, Dadan Deri
2017-03-01
This study presents the application of woven waste tires as soft clay subgrade reinforcement for preventing highway structural failure, reducing construction cost and minimizing environmental hazards associated with the increasingly large amount of waste tires in Indonesia. To his end, we performed experiments using five stripe distance variations of woven tires - i.e. 2, 2.5, 3, 3.5 and 4 cm. Five soft clay samples were made and each was reinforced using each of these woven tires. The California Bearing Ratio (CBR) test was conducted on each softclay sample and the CBR value was determined from the stress on the displacement of 0.10 and 0.20 inch. The correlation between CBR value and strip distance was used to infer the optimum woven tires strip distance, indicated by the largest CBR value. The result suggests that the strip distance of 3 cm is optimum with corresponding CBR value of ˜20%, which is 115% increase compared to softclay without reinforcement.
Roberts, Jack C; Ward, Emily E; Merkle, Andrew C; O'Connor, James V
2007-05-01
To assess the possibility of injury as a result of behind armor blunt trauma (BABT), a study was undertaken to determine the conditions necessary to produce the 44-mm clay deformation as set forth in the National Institute of Justice (NIJ) Standard 0101.04. These energy levels were then applied to a three-dimensional Human Torso Finite Element Model (HTFEM) with soft armor vest. An examination will be made of tissue stresses to determine the effects of the increased kinetic energy levels on the probability of injury. A clay finite element model (CFEM) was created with a material model that required nonlinear properties for clay. To determine these properties empirically, the results from the CFEM were matched with experimental drop tests. A soft armor vest was modeled over the clay to create a vest over clay block finite element model (VCFEM) and empirical methods were again used to obtain material properties for the vest from experimental ballistic testing. Once the properties for the vest and clay had been obtained, the kinetic energy required to produce a 44-mm deformation in the VCFEM was determined through ballistic testing. The resulting kinetic energy was then used in the HTFEM to evaluate the probability of BABT. The VCFEM, with determined clay and vest material properties, was exercised with the equivalent of a 9-mm (8-gm) projectile at various impact velocities. The 44-mm clay deformation was produced with a velocity of 785 m/s. This impact condition (9-mm projectile at 785 m/s) was used in ballistic exercises of the HTFEM, which was modeled with high-strain rate human tissue properties for the organs. The impact zones were over the sternum anterior to T6 and over the liver. The principal stresses in both soft and hard tissue at both locations exceeded the tissue tensile strength. This study indicates that although NIJ standard 0101.04 may be a good guide to soft armor failure, it may not be as good a guide in BABT, especially at large projectile kinetic energies. Further studies, both numerical and experimental, are needed to assist in predicting injury using the NIJ standard.
USDA-ARS?s Scientific Manuscript database
Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than most synthetic fabrics. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-clay nan...
Xiphinema americanum as Affected by Soil Organic Matter and Porosity.
Ponchillia, P E
1972-07-01
The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... operations, support space, media operations, hospitality services, sponsored commercial space, and...). Intertidal habitats in the Central Bay, or those that lie between low and high tides, include sandy beaches... sediment and hard substrate habitat. Soft bottom substrate ranges between soft mud with high silt and clay...
Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay
NASA Astrophysics Data System (ADS)
Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun
2015-06-01
In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.
NASA Astrophysics Data System (ADS)
Widada, Sugeng; Saputra, Sidhi; Hariadi
2018-02-01
Semarang City is located in the northern coastal plain of Java which is geologically composed of alluvial deposits. The process of the sediment diagenesis has caused a land subsidence. On the other hand, the development of the industrial, service, education and housing sectors has increased the number of building significantly. The number of building makes the pressure of land surface increased, and finally, this also increased the rate of land subsidence. The drilling data indicates that not all layers of lithology are soft layers supporting the land subsidence. However, vertical distribution of the soft layer is still unclear. This study used Resistivity method to map out the soft zone layers of lithology. Schlumberger electrode configuration with sounding system method was selected to find a good vertical resolution and maximum depth. The results showed that the lithology layer with resistivity less than 3 ohm is a layer of clay and sandy clay that has the low bearing capacity so easily compressed by pressure load. A high land subsidence is happening in the thick soft layer. The thickness of that layer is smaller toward the direction of avoiding the beach. The improvement of the bearing capacity of this layer is expected to be a solution to the problem of land subsidence.
Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen
2017-04-05
Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.
NASA Astrophysics Data System (ADS)
Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.
2018-04-01
The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.
Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang
2013-01-01
Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed.
Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang
2013-01-01
Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found in sandy clay, but both positive and negative rebound occurred in the silty clay, and the absolute value of rebound in sandy clay was larger than in silty clay, and the mechanism of SSR was discussed with mechanical sandwich model, and it was found that the load and cohesive force of different soils was the main source of different responses when decompressed. PMID:23878521
Archaeological Survey at Fort Hood, Texas. Fiscal Year 1990: The Northeastern Perimeter Area
1994-01-01
sands, silty clays, conglomerates, and saline or gypsiferous sediments; (2) neuritic marls, clays, shales, and lknestones; and (3) reef (zoogenic...sense in this area; however, those terms might be used to designate the shelly marl, the soft nodular limestone, and the rudistid reef facies, for in...features such as cisterns, wells, or corrals . Once a quadrant has been covered by the six surveyors. tentative site boundaries are drawn for the sites
Molecular dynamics studies of polyurethane nanocomposite hydrogels
NASA Astrophysics Data System (ADS)
Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.
2013-10-01
Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M
2014-01-01
Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.
Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, T.; Ecker, L.; Gill, S.
2010-11-01
To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid;more » thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.« less
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Jefferson, I.; Madun, A.; Abidin, M. H. Z.; Rogers, C. D. F.
2018-04-01
Electrokinetic stabilisation (EKS) method has the ability to solve the problems of soft highly compressibility soil. This study will present the results from an experimental study of EKS on soft soils using inactive kaolinite clay, inert electrode and distilled water (DW) as a pure system mechanism before any chemical stabilisers being used in this research. Therefore, this will provide a baseline study to improve the efficiency of EKS approach. The test model was using inert electrode of Electrokinetic Geosythentic (EKG) developed at the Newcastle University to apply a constant voltage gradient of 50 V/m across a soil sample approximately 400 mm. Distilled water was used at the pore electrolyte fluid compartments supplied under zero hydraulic gradient conditions for the periods of 3, 7 and 14 days. Throughout the monitoring, physical and chemical characteristics were measured. Results from the monitoring data, physical and chemical properties of the pure system showed the development of pH gradient, the changes of electrical conductivity and chemical concentrations with regards to the distance from anode and treatment periods due to the electrochemical effects even though there was no chemical stabilisers were introduced or released from the degradation of electrodes.
Integral abutment bridge for Louisiana's soft and stiff soils : tech summary.
DOT National Transportation Integrated Search
2016-03-01
In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...
Integral abutment bridge for Louisiana's soft and stiff soils : Tech summary.
DOT National Transportation Integrated Search
2016-03-01
In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...
Characterization of undrained shear strength profiles for soft clays at six sites in Texas.
DOT National Transportation Integrated Search
2009-01-01
TxDOT frequently uses Texas Cone Penetrometer (TCP) blow counts to estimate undrained shear strength. : However, the current correlations between TCP resistance and undrained shear strength have been developed primarily for : significantly stronger s...
NASA Astrophysics Data System (ADS)
Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.
2017-12-01
The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.
Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress
NASA Astrophysics Data System (ADS)
Sarout, Joel; Esteban, Lionel; Delle Piane, Claudio; Maney, Bruce; Dewhurst, David N.
2014-09-01
A novel experimental method is introduced to estimate the Thomsen's elastic anisotropy parameters ɛ and δ of a transversely isotropic shale under variable stress and saturation conditions. The method consists in recording P-wave velocities along numerous paths on a cylindrical specimen using miniature ultrasonic transducers. Such an overdetermined set of measurements is specifically designed to reduce the uncertainty associated with the determination of Thomsen's δ parameter compared to the classical method for which a single off-axis measurement is used (usually at 45° to the specimen's axis). This method is applied to a specimen of Opalinus Clay recovered from the Mont-Terri Underground Research Laboratory in Switzerland. The specimen is first saturated with brine at low effective pressure and then subjected to an effective pressure cycle up to 40 MPa, followed by a triaxial loading up to failure. During saturation and deformation, the evolution of P-wave velocities along a maximum of 240 ray paths is monitored and Thomsen's parameters α, ɛ and δ are computed by fitting Thomsen's weak anisotropy model to the data. The values of ɛ and δ obtained at the highest confining pressures reached during the experiment are comparable with those predicted from X-ray diffraction texture analysis and modelling for Opalinus Clay reported in the literature. These models neglect the effect of soft-porosity on elastic properties, but become relevant when soft porosity is closed at high effective pressure.
NASA Astrophysics Data System (ADS)
Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.
2018-04-01
Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements decreased by increasing the lengths (longer than 4 m) and, the sectional areas of the RC cores in the SDCM piles. The results of the numerical simulations closely agreed with the observed data and successfully verified the parameters affecting the performances and behavior of both SDCM and DCM piles.
DOT National Transportation Integrated Search
1985-07-01
Subsurface soil in the New Orleans area is generally composed of peat and clay. The low bearing capacity of the soft natural soil has caused early deterioration of asphaltic concrete pavements which typically fail prior to carrying their designed loa...
DOT National Transportation Integrated Search
2006-06-01
Five contracts from the Central Artery/Tunnel (CA/T) project in Boston, MA, were reviewed to document issues related to design and construction of driven pile foundations. Given the soft and compressible marine clays in the Boston area, driven pile f...
NASA Astrophysics Data System (ADS)
Knight, Jasper
1999-10-01
Glacial outwash, deposited during deglaciation of the late Devensian ice sheet, is present as a flat-topped valley fill in the Tempo Valley on the southern flanks of the Fintona Hills, Northern Ireland. Sedimentologically, the outwash comprises well-sorted and interbedded rippled to massive sands which record distal deposition within a proglacial water body. Beds of ripple-drift cross-laminated sands contain deformed (folded and contorted) soft-sediment clasts which are composed mainly of silt and clay. The soft-sediment clasts were deformed prior to final deposition because clast a- b planes lie conformable to sand laminae which are undeformed. Morphological characteristics of the soft-sediment clasts, and their facies context, provide evidence for transport mechanisms, depositional environment, and processes of clast deformation. The soft-sediment clasts were transported into a proglacial water body by unidirectional water currents (˜1.5-2.5 m s -1). Sediment transport processes include sediment bypassing within the water column, a low bedload component, and grain flow activity during waning flow stages. The overall morphology of soft-sediment clasts records between 1 and 3 distinct phases of hydroplastic deformation prior to emplacement. The deformation phases are recognised on the basis of morphologically `unrolling' the superimposed folds of the soft-sediment clasts. Deformation structures (i.e. fold style) and direction of the principal stress axis relative to clast axes suggest that clasts were reoriented with respect to water flow direction following each deformation phase. Processes of deformation include folding-over of the clast along its b axis into two or more components, crumpling and abrasion of the outer margins of the b plane, and squashing of the clast c axis (some of which may be post-depositional deformation). The presence of silt- and clay-rich soft-sediment clasts within the outwash succession suggests that they were ripped-up from shallow and irregular pools on the glacier forefield, into which fine sediments accumulated after flood or meltwater events, and transported distally into a proglacial water body. These inferences based on facies evidence and styles of hydroplastic deformation impact on reconstructions of local palaeogeography, and the wider interpretation of similar soft-sediment clasts in the geological record.
Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation
NASA Astrophysics Data System (ADS)
Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li
2017-11-01
In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.
Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay
NASA Astrophysics Data System (ADS)
Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.
2009-11-01
Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.
Admixing dredged marine clay with cement-bentonite for reduction of compressibility
NASA Astrophysics Data System (ADS)
Rahilman, Nur Nazihah Nur; Chan, Chee-Ming
2017-11-01
Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.
Synchrotron X-ray Scattering from Self-organized Soft Nanostructures in Clays
NASA Astrophysics Data System (ADS)
Fossum, J. O.
2009-04-01
In the general context of self-organization of nanoparticles (in our case clay particles), and transitions in such structures, we study interconnected universal complex physical phenomena such as: (i) spontaneous gravitationally induced phase separation and nematic self-organization in systems of anisotropic clay nanoparticles in aqueous suspension, including studies of isotropic to nematic transitions [1,2] (ii) transitions from biaxial to uniaxial nematics by application of external magnetic field to self-organized systems of the same anisotropic (diamagnetic) clay nanoparticle systems [3,4] (iii) guided self-organization into chainlike structures of the same anisotropic clay nanoparticles in oil suspension when subjected to external electrical fields (electrorheological structures of polarized nanoparticles), and the stability of, and transitions of, such structures, when subjected to external mechanical stress [5,6] The experimental techniques used by us include synchrotron X-ray scattering, neutron scattering, rheometry. microscopy and magnetic resonance. We have demonstrated that clays may be used as good model systems for studies of universal physical phenomena and transitions in self-organized nanostructured soft and complex matter. Self-organization and related transitions in clay systems in particular, may have practical relevance for nano-patterning, properties of nanocomposites, and macroscopically anisotropic gels, among many other applications [7]. The synchrotron experiments have been performed at LNLS-Brazil, PLS- Korea, BNL-USA and ESRF-France. Acknowledgments: Collaborators, postdocs and students at NTNU-Norway, UiO-Norway, IFE-Norway, BNL-USA, LNLS-Brazil, UFPE-Brazil, UnB-Brazil, Univ. Amsterdam-Netherlands, Univ.Paris 7-France and other places. This research has been supported by the Research Council of Norway (RCN), through the NANOMAT, SUP and FRINAT Programs. References 1. J.O. Fossum, E. Gudding, D.d.M. Fonseca, Y. Meheust, E. DiMasi, T. Gog, C. Venkataraman, Observations of orientational ordering in aqueous suspensions of a nano-layered silicate, ENERGY The International Journal 30, 873 (2005). 2. D. M. Fonseca, Y. Méheust, J. O. Fossum, K. D. Knudsen, K. J. Måløy and K. P. S. Parmar, Phase behavior of platelet-shaped nanosilicate colloids in saline solutions: A small-angle X-ray scattering study J. Appl. Cryst. 40 292 (2007) 3. E. N. de Azevedo, M. Engelsberg, J. O. Fossum, R. E. de Souza, Anisotropic water diffusion in nematic self-assemblies of clay nano-platelets suspended in water, Langmuir 23, 5100 (2007) 4. Nils Ivar Ringdal, Master thesis, Department of Physics, NTNU (2008) 5. J.O. Fossum, Y. Meheust, K.P.S. Parmar, K.D. Knudsen, K.J. Maloy, D.d.M. Fonseca, Intercalation-enhanced electric polarization and chain formation of nano-layered particles, Europhys. Lett., 74, 438 (2006), and in the Scientific Highlights 2006 of the European Synchrotron Radiation Facility - ESRF (2007) 6. K.P.S. Parmar, Y. Meheust, B. Schelderupsen and J.O. Fossum, Electrorheological suspensions of laponite in oil: rheometry studies, Langmuir 24,1814 (2008) 7. F. Bergaya, B. K. G. Theng, and G. Lagaly, editors. Handbook of Clay Science. Elsevier (2006)
Sedimentation and near-bottom currents in the South-Western Atlantic
NASA Astrophysics Data System (ADS)
Emelyanov, Emelyan M.
2008-01-01
The aims of the paper are: 1) to study the bottom relief and Late Quaternary bottom sediments of the South-Western Atlantic from the Amazon cone to the Vema Channel and Rio Grande Rise, and 2) to reconstruct recent and palaeo-Antarctic near-bottom currents (AABW). For this purpose, we used three main Parasound seismic profiles: 30 cores (up to 500 cm in length), the nanoplankton stratigraphy of 9 cores from the Brazilian lithological profile (along 24 °W), and literature sources. No soft sedimentes were found in the Vema channel; the bottom of the channel is acoustically "hard". Our geological data confirm that AABW flows mainly through this channel. The velocity of this flow should be higher than 100 cm.s-1. Only this strong current is able to rewash not only soft Holocene sediments, but also consolidated Quaternary deposits. Soft layered sediments occur at a depth less than 4200 m in the Hunter channel. Consequently, the AABW is able to flow from the Argentine Basin to the Brazil Basin only at a depth of more than 4200 m in this channel. Brown red clay or yellowish gray miopelagic clay prevail in the Brazil Deep. The age of red clay in the cores is different: Early or Late Pleistocene, or Holocene. Clay was rewashed and re-deposited in many areas of the deep. This means that the hydrodynamics sometimes was very active at a depth of 4000-5000 m in the Brazil Deep. The presence of conturite and turbidite interlayers in the red clay of the S. America continental base confirms the occurrence of a strong jet of the AABW (Deep Western Boundary current - DWBC) here. Antarctic and other diatoms were brought by AABW from Antarctica up to 10-5 °S. An unusual Pleistocene Ethmodiscus rex ooze was discovered at the latitude of 20 °S. Our data confirm the occurrence in the area between 10-5 °S of two mid-oceanic channels, one of them (EMOC) being located on a large sedimentary swell. The AABW in the cross-section from the Amazon River to the MAR flows through the Nara (depth 4640-4660 m) plain. This flow was confirmed by hydrochemical data. The AABW started to appear in the Rio Grande Rise region, about 50-30 mill. years. Cyclic events of glaciation and interglacial transitions throughout the Miocene-Pleistocene is a mechanism that caused the AABW currents to become more intensive or passive, with the result that the intensity of the influx of these waters from the Brazilian Basin into the Guiana Basin also changed from strong to weak.
NASA Astrophysics Data System (ADS)
Olabode, Solomon Ojo
2014-01-01
Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.
Reitzel, Kasper; Balslev, Kristiane Astrid; Jensen, Henning S
2017-11-15
A 12 days laboratory study on potential desorption of Lanthanum (La) from a commercial La modified clay (Phoslock) was conducted using lake water from 17 Danish lakes with alkalinities between 0.02 and 3.7 meq L -1 and varying concentrations of DOC and humic acids (HA's). A similar study was conducted in artificial lake water with alkalinities from 0 to 2.5 meq L -1 in order to exclude interference from dissolved HA's. To test if La in solution (FLa) was associated with fine particles, the water samples were filtered sequentially through three filter sizes (1.2 μm, 0.45 μm and 0.2 μm), and finally, ultracentrifugation was used in an attempt to separate colloidal La from dissolved La. The study showed that higher FLa (up to 2.5 mg L -1 or 14% of the total La in the Phoslock) concentrations were found in soft water lakes compared to hard water lakes, probably due to dispersion of the clay at low alkalinities. In addition, this study showed that HA's seem to increase the FLa concentrations in soft water lakes, most likely through complexation of La retained in the Phoslock matrix. In summary, we conclude that elevated La concentrations in lake water after a Phoslock treatment should only be expected in soft water lakes rich in DOC and HA's. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Merkle, Andrew C; Ward, Emily E; O'Connor, James V; Roberts, Jack C
2008-06-01
Although soft armor vests serve to prevent penetrating wounds and dissipate impact energy, the potential of nonpenetrating injury to the thorax, termed behind armor blunt trauma, does exist. Currently, the ballistic resistance of personal body armor is determined by impacting a soft armor vest over a clay backing and measuring the resulting clay deformation as specified in National Institute of Justice (NIJ) Standard-0101.04. This research effort evaluated the efficacy of a physical Human Surrogate Torso Model (HSTM) as a device for determining thoracic response when exposed to impact conditions specified in the NIJ Standard. The HSTM was subjected to a series of ballistic impacts over the sternum and stomach. The pressure waves propagating through the torso were measured with sensors installed in the organs. A previously developed Human Torso Finite Element Model (HTFEM) was used to analyze the amount of tissue displacement during impact and compared with the amount of clay deformation predicted by a validated finite element model. All experiments and simulations were conducted at NIJ Standard test conditions. When normalized by the response at the lowest threat level (Level I), the clay deformations for the higher levels are relatively constant and range from 2.3 to 2.7 times that of the base threat level. However, the pressures in the HSTM increase with each test level and range from three to seven times greater than Level I depending on the organ. The results demonstrate the abilities of the HSTM to discriminate between threat levels, impact conditions, and impact locations. The HTFEM and HSTM are capable of realizing pressure and displacement differences because of the level of protection, surrounding tissue, and proximity to the impact point. The results of this research provide insight into the transfer of energy and pressure wave propagation during ballistic impacts using a physical surrogate and computational model of the human torso.
Novel doorways and resonances in large-scale classical systems
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Flores, J.; Mateos, J. L.; Méndez-Sánchez, R. A.; Novaro, O.; Seligman, T. H.
2011-05-01
We show how the concept of doorway states carries beyond its typical applications and usual concepts. The scale on which it may occur is increased to large classical wave systems. Specifically we analyze the seismic response of sedimentary basins covered by water-logged clays, a rather common situation for urban sites. A model is introduced in which the doorway state is a plane wave propagating in the interface between the sediments and the clay. This wave is produced by the coupling of a Rayleigh and an evanescent SP-wave. This in turn leads to a strong resonant response in the soft clays near the surface of the basin. Our model calculations are compared with measurements during Mexico City earthquakes, showing quite good agreement. This not only provides a transparent explanation of catastrophic resonant seismic response in certain basins but at the same time constitutes up to this date the largest-scale example of the doorway state mechanism in wave scattering. Furthermore the doorway state itself has interesting and rather unusual characteristics.
Catalogs of micro-seismicity recorded at the Pechgraben landslide (Upper Austria)
NASA Astrophysics Data System (ADS)
Provost, Floriane; Hibert, Clément; Vouillamoz, Naomi; Malet, Jean-Philippe; Ottowitz, David; Jochum, Birgit
2017-04-01
The microseismicity activity of soft-rock landslides (i.e. developed in clays and clay-shales) present various types of seismic event associated with the slope deformation. They are assumed to be linked to the slip at the interface with the bedrock or at the boundaries of the landslide, to material failures, to fissure openings or to fluid transfers within the medium. It is currently necessary to document the microseismicity generated by soft-rock landslides on a larger amount of instrumented slopes in order to validate the current seismic typology and understand the source mechanisms in relation with the deformation. Previous studies have shown the interest of the Pechgraben (Upper Austria) clay-shale landslide for such documentation. This landslide was reactivated in summer 2013 after heavy rainfalls and is characterized by a shallow bedrock (<10m) and varying displacement rates in space and time (from mm.day-1 to cm.day-1). A short pilot seismic campaign (<9 days) was carried out in 2015 and micro-earthquakes as well as episodic tremor-like signals were recorded. A new passive seismic campaign was conducted during one month in November-December 2016. Two broadband three-component seismometers were installed facing each other on the two stable borders of the slope with one tripartite seismic array deployed in the center, on top of the most active area of the landslide. The deformation pattern of the slope was monitored remotely with a ground-based InSAR at a high frequency (10 min). This study aims to present the variety of seismic sources generated by the landslide, using supervised machine learning algorithms for event detection and classification, and to correlate the resulting micro-seismic catalog with the changes in time of the slope deformation.
Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields
2006-12-01
quicklime or calcium carbide, could possibly crosslink the polymers of sodium or potassium polyacrylic acid together to form a harder material. Very...LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/polyacrylamide copolymers in granular form that also gel in the presence...communication, 2006), soil could possibly be stabilized with calcium and super absorbent polymers, such as sodium or potassium polyacrylic acids. This
NASA Astrophysics Data System (ADS)
Wang, Yuebo; Su, Xiaoli; Xu, Zhen; Wen, Ke; Zhang, Ping; Zhu, Jianxi; He, Hongping
2016-02-01
A new type of surface-functionalized porous clay heterostructures (SF-PCH) was synthesized via carbonization of the template agents with sulfuric acid. The converted carbons deposited on the porous surface of the SF-PCH samples and changed their surface chemical properties. The composites possessed a maximum carbon content of 5.35%, a large specific surface area of 428 m2/g and micropore volume of approximately 0.2 cm3/g. The layered and porous structure of SF-PCH was retained after carbonization and calcination when sulfuric acid solution with a mild concentration was used. Analysis by XPS confirmed that the carbonaceous matter in the pore channels was functionalized with various organic groups, including carbonaceous, nitrogenous, and sulfated groups. Both the surface chemical property and structural characteristic of adsorbents have effects on the adsorption properties of SF-PCH for toluene. The SF-PCH samples exhibited a stronger adsorption affinity to toluene compared with untreated PCH in the low pressure region, which is more valuable in the practical applications. These results demonstrate that carbonization of soft-template is a feasible process for the surface modification of PCH, enabling the resulting composites to become promising candidates for application in toluene emission control.
Land subsidence of clay deposits after the Tohoku-Pacific Ocean Earthquake
NASA Astrophysics Data System (ADS)
Yasuhara, K.; Kazama, M.
2015-11-01
Extensive infrastructure collapse resulted from the cataclysmic earthquake that struck off the eastern coast of Japan on 11 March 2011 and from its consequent gigantic tsunami, affecting not only the Tohoku region but also the Kanto region. Among the geological and geotechnical processes observed, land subsidence occurring in both coastal and inland areas and from Tohoku to Kanto is an extremely important issue that must be examined carefully. This land subsidence is classifiable into three categories: (i) land sinking along the coastal areas because of tectonic movements, (ii) settlement of sandy deposits followed by liquefaction, and (iii) long-term post-earthquake recompression settlement in soft clay caused by dissipation of excess pore pressure. This paper describes two case histories of post-earthquake settlement of clay deposits from among the three categories of ground sinking and land subsidence because such settlement has been frequently overlooked in numerous earlier earthquakes. Particularly, an attempt is made to propose a methodology for predicting such settlement and for formulating remedial or responsive measures to mitigate damage from such settlement.
Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L
2014-06-17
There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.
Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur
Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacingsmore » are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.« less
Laboratory Determination of Horizontal Stress in Cohesionless Soil.
1983-01-01
in soft silty clay. The sheet piles were used for excavation support for the Oslo subway construction and the measurements of the lateral stresses 4...5.2. By sandwiching the stress cell between two butyl rubber diaphragms in the chamber, a uniform uniaxial stress could be applied to the 4 stress...October 1944, pp. 355-358. .4 162 Johannessen, I. J., "Test Section and Installation of Test Equipment, Oslo Subway ," Pro Brussels Confer- ence on
NASA Astrophysics Data System (ADS)
Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.
2018-04-01
The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.
NASA Astrophysics Data System (ADS)
Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.
2017-12-01
The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.
NASA Astrophysics Data System (ADS)
Lakshmi, B. V., ,, Dr.; Gawali, Mr. Praveen B.; Deenadayalan, K., ,, Dr.; Ramesh, D. S., ,, Prof.
2017-04-01
Rock magnetic and anisotropy of magnetic susceptibility (AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India. B.V.Lakshmi, Praveen B.Gawali, K.Deenadayalan and D.S.Ramesh Indian Institute of Geomagnetism, plot 5, sector 18, Near Kalamboli Highway, New Panvel(W), Navi Mumbai 410218 Combined rock magnetism and anisotropy of magnetic susceptibility (AMS) studies on earthquake induced soft and non-soft sediments from Shillong and Latur, India have thrown up interesting results. The morphology of hysteresis loops, the pattern of isothermal remanent magnetization (IRM) acquisition, and temperature dependence of susceptibility indicate that titano-magnetite/magnetite is the main magnetic carrier in these sediments. We also analyzed the anisotropy of magnetic susceptibility (AMS) of liquefaction features within the seismically active Dauki fault, Shillong Plateau. We discovered that host sediments (non-liquefied), are characterized by an oblate AMS ellipsoid and liquefied sediment are characterized by a triaxial AMS ellipsoid, well grouped maximum susceptibility axis K1 (NNW-SSE trend). Field evidence and AMS analysis indicate that most of these features were emplaced by injection inferred to be due to seismically triggered fluidization. Anisotropy of magnetic susceptibility (AMS) of deformed and undeformed unconsolidated clay samples of Deccan Trap terrain from the 2000-year-old paleoearthquake site of Ther village, Maharashtra, India, was also studied. Such deposits are rare in the compact basaltic terrain because of which the results acquired are very important. The undeformed clay samples exhibit typical sedimentary fabric with an oblate AMS ellipsoid, whereas the deformed samples are tightly grouped in the inferred compression direction, probably effected by an earthquake, exhibiting prolate as well as oblate AMS ellipsoids. Rock magnetic and AMS methodology can help understand the behavior of different sediments to the regional deformational processes active in the Himalayan region, and possibly local deformational activities in the compact Deccan trap region. The accumulating stress and strain direction can be delineated to infer strike of the forces accumulating stresses. These studies can be used to build the chronology of past earthquakes.
NASA Astrophysics Data System (ADS)
Briguglio, Antonino; Goeting, Sulia; Kusli, Rosnani; Roslim, Amajida; Polgar, Gianluca; Kocsis, Laszlo
2016-04-01
For this study, 11 samples have been collected by scuba diving from 5 to 35 meters water depth off shore Brunei Darussalam. The locations sampled are known as: Pelong Rock (5 samples, shallow reef with soft and stony corals and larger foraminifera, 5 to 8 meters water depth), Abana Rock (1 sample, shallow reef with mainly soft corals and larger foraminifera, 13 to 18 meters water depth), Oil Rig wreck (1 sample, very sandy bottom with larger foraminifera, 18 meters water depth), Dolphin wreck (1 sample, muddy sand with many small rotaliids, 24 meters water depth), US wreck, (1 sample, sand with small clay fraction, 28 meters water depth), Australian wreck (1 sample, mainly medium to coarse sand with larger foraminifera, 34 meters water depth) and Blue water wreck (1 sample, mainly coarse sand, coral rubble and larger foraminifera, 35 meters water depth). Those samples closer to the river inputs are normally richer in clay, while the most distant samples are purely sandy. Some additional samples have been collected next to reef environments which, even if very shallow, are mainly sandy with almost no clay fraction. The deepest sample, which is 30 km offshore, contains some planktonic foraminifera and is characterized by a large range of preservations concerning foraminifera, thus testifying the presence or relict sediments at the sea bottom. The presence of relict sediments was already pointed out by older oil-related field studies offshore Brunei Darussalam, and now it is possible to draw the depth limit of these deposits. The diversity of the benthic foraminiferal fauna is relatively high but not as higher as neighboring regions as some studies have highlighted. The species collected and identified are more than 50: in reef environment the most abundant are Calcarina defrancii, Neorotalia calcar and the amphisteginidae; deeper in the muddy sediments the most abundant is Pararotalia schroeteriana and in the deepest sandy sample the most abundant are Calcarina hispida, followed by Operculina ammonoides.
Heliport Noise Model (HNM). Version 1. (User’s Guide)
1988-02-01
Examples of acoustically hard surfaces include concrete or asphalt paving, water or baked clay surfaces. Mote that if the site does not meet the...neighbor should be characterized as either Hard (H) or Soft (S). From an acoustic point of view, "hard" ground is either pavement or water . All other...GROUND DISraNCE 10 - MAP - SEIUP 11 - HELIPADS 3 - HELIPADS 12- rAKEOI tRACKS 4 - HELICOPrERS 13 - APPROACH IRACKS 5 - IAKt-OFFS 14- rAxx fRACKS C6
NASA Astrophysics Data System (ADS)
Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah
2018-02-01
The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.
February 2011 sensitive clay landslides in eastern Turkey
NASA Astrophysics Data System (ADS)
Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Fredin, O.; Schlunegger, F.
2016-12-01
The Çöllolar open pit mine is situated in the northwestern sector of the Elbistan basin, which is an intramontane basin located at a mean elevation of about 1200 m in the eastern Turkey. The basement rock in the basin is karstic limestone, which is overlain by a thick layer of clay (>100 m), followed by 20-50 m thick lignite series that is overlain by the 20-50 m thick gyttja sequence. These deposits are overlain by Quaternary deposits, comprising the top surfaces of the terraces of the Hurman River, which drains the surface and ground water from the surrounding hills to the northeast towards the center of the Elbistan basin. The lignite series in the basin has been excavated since early 1970's. In February 2011, two landslides in which 10 workers were killed, occurred in the Çöllolar mine. Of the two landslides, the 2nd and largest which covers an area of ca. 2.3 km2, was caused by the collapse of the northeastern wall of the open-pit mine. The failure was made of successive rearward collapses with the debris flowing into the open-pit. In this study, we focus on the sensitivity of the clays within the Quaternary deposits that seems led to instability and the trigger of the landslides based on the flow style of the movement and nature of the failure. To reveal these factors, we employed six boreholes and collected 64 undisturbed, 41 disturbed and 10 surface samples for the sedimentological and geotechnical analysis. Our results from this study show that Quaternary deposits are heterogeneous and have variable clay content. Mineralogically, most of these clays belong to the smectite group with high swelling potential. They are high plastic clays with high consolidation ratio. They have high shear and remolded shear strengths, thus low to medium sensitivity. Their sensitivity increases dramatically with increasing water content. During our analysis, we encountered a soft clay layer, which showed an over consolidation ratio of 10 and a strain softening response. This response is typical for quick clays. This indicates that the landslide was caused by the liquefaction of this layer within the thick sequence of this part of the Elbistan basin. In brief, we conclude that massive failures at the Çöllolar coalfield are unique examples of sensitive clay landslides occurred in a subtropical arid region beyond the extent of Quaternary glaciations.
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne; Schöpfer, Martin P. J.
2018-05-01
We investigate episodic soft-sediment deformation structures cross-cut by normal faults preserved in unlithified finely laminated calcite rich sediments in the Hirlatz cave in the Northern Calcareous Alps (Austria). These sediments comprise varve-like alternations of brighter carbonate/quartz rich layers, and darker clay mineral rich layers. The deformed sediments contain abundant millimeter to centimeter-scale soft-sediment structures (load casts, ball-and-pillow structures), sheet slumps (thrust faults and folds), erosive channels filled with slides and chaotic slumps. After deposition and soft-sediment deformation normal faults developed within the entire sedimentary succession, an event that probably correlates with an offset of c. 10 cm of the passage wall above the outcrop. Our major conclusions are: (i) The sediments have a glacial origin and were deposited in the Hirlatz cave under phreatic fluvio-lacustrine conditions. The deposition and the soft-sediment deformation occurred most likely during the last glaciation (i.e. around 25 ka ago); (ii) The liquefaction and formation of the soft-sediment structures in water-saturated stratified layers was triggered by episodic seismic events; (iii) The internally deformed sediments were later displaced by normal faults; (iv) A possible source for the seismic events is the active sinistral Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault which is located about 10 km south of the outcrop and plays a major role in accommodating the extrusion of the Eastern Alps towards the Pannonian Basin. To our knowledge, the described structures are the first report of liquefaction and seismically induced soft-sediment deformations in Quaternary sediments in the Eastern Alps.
NASA Astrophysics Data System (ADS)
Rastiello, Giuseppe; Federico, Francesco; Screpanti, Silvio
2015-09-01
Many abandoned room and pillar mines have been excavated not far from the surface of large areas of important European cities. In Rome, these excavations took place at shallow depths (3-15 m below the ground surface) in weak pyroclastic soft rocks. Many of these cavities have collapsed; others appear to be in a stable condition, although an appreciable percentage of their structural components (pillars, roofs, etc.) have shown increasing signs of distress from both the morphological and mechanical points of view. In this study, the stress-strain behaviour of soft rock pillars sustaining systems of cavities under vertical loads was numerically simulated, starting from the in situ initial conditions due to excavation of the cavities. The mechanical behaviour of the constituent material of the pillar was modelled according to the Modified Cam-Clay constitutive law (elasto-plastic with strain hardening). The influence of the pillar geometry (cross-section area, shape, and height) and mechanical parameters of the soft rock on the ultimate compressive strength of the pillar as a whole was parametrically investigated first. Based on the numerical results, an original relationship for pillar strength assessment was developed. Finally, the estimated pillar strengths according to the proposed formula and well-known formulations in the literature were compared.
Soft-water zone in the Chicot Aquifer, Bayou Teche area, Louisiana
Hosman, R.L.
1974-01-01
Test drilling in the vicinity of Bayou Teche in St. Martin Parish in southern Louisiana has disclosed a zone of soft water in the basal unit of the Chicot aquifer; the Chicot aquifer system blankets all southwestern Louisiana. Fresh water, which is defined as containing 250 milligrams per liter chloride or less, in the Chicot aquifer is characteristically hard and high in iron concentration; in this area the hardness is generally 200-300 milligrams per liter. The soft-water zone, containing water with a hardness of less than 60 milligrams per liter, is anomalous and occurs in an area where the basal part of the aquifer is separated from the main body of the aquifer by a thick clay layer. The zone has been mapped in parts of St. Martin and adjoining Lafayette Parishes. Although the exact areal extent of the zone cannot be determined with available data, it appears to be sufficiently large that the soft water should prove to be an important asset to the area. The water could be used by itself or mixed with either hard or slightly salty water (more than 250 milligrams per liter chloride) to provide a blend that would require little or no treatment for most purposes. Because of the proximity of salty water in much of the area, careful planning and monitoring will be necessary to maintain the soft-water zone as a dependable supply of usable water. The soft water appears to be an exhaustible supply; however, its useful life as a resource can be maximized by proper management.
NASA Astrophysics Data System (ADS)
Neuwerth, Ralph; Suter, Fiore; Guzman, Carlos A.; Gorin, Georges E.
2006-04-01
The Plio-Pleistocene Zarzal Formation corresponds to fluvio-lacustrine sediments deposited in an intramontane depression within the Colombian Andes, associated with the Cauca-Romeral Fault System. It crops out mainly in the Cauca Valley where numerous field sections have permitted the mapping of the vertical and lateral lithological variations. Lacustrine deposits of sands, silts, clays and diatomites are interbedded with fluvial sand and gravel beds and fluvio-volcanic mass flows derived from the volcanic Central Cordillera. Numerous soft-sediment deformation structures are encountered in this formation, particularly in fine- to medium-grained sands, silts and clays: load structures (load casts, flame structures, pseudonodules), water escape structures (water escape cusps, dish-and-pillar and pocket-and-pillar structures), soft-sediment intrusions (clastic sills and dykes), disturbed laminites, convolute laminations, slumps and synsedimentary faulting. Deformation mechanisms and driving forces are related essentially to gravitational instabilities, dewatering, liquidization and brittle deformations. Field and regional geological data show that most of these deformations are related to seismicity and can be interpreted as seismites. This area has a geological and recent seismic history and outcrops show both syn- and post-depositional faulting related to the transpressional regime of this part of the Colombian Andes, which generates strike-slip faults and associated local normal faults. The drainage pattern within the Zarzal Formation shows the signature of neotectonics. Moreover, the fine to coarse-grained sands of the Zarzal Formation are lithologies prone to liquefaction when affected by seismic waves. The intercalation of the deformed intervals within undisturbed strata confirms the catastrophic nature of the events. Finally, the large areal extent of the deformations and the type of structures are compatible with seismites. Consequently, the existence of seismites in the Zarzal Formation represents corroboration of tectonic activity in this area during the Pleistocene. Earthquakes with a magnitude higher than 5 can be postulated, based upon the proximity of active faults and the types of deformations.
Song, Fei; Zhang, Li-Ming; Shi, Jun-Feng; Li, Nan-Nan
2010-12-01
The supramolecular hydrogels derived from low-molecular-mass gelators represent a unique class of soft matters and have important potential applications in biomedical fields, separation technology and cosmetic science. However, they suffer usually from weak mechanical and viscoelastic properties. In this work, we carry out the in situ hybridization of clay nanoparticles (Laponite RD) into the supramolecular hydrogel formed from a low-molecular-mass hydrogelator, 2,6-di[N-(carboxyethyl carbonyl)amino]pyridine (DAP), and investigate the viscoelastic and structural characteristics of resultant hybrid hydrogel. It was found that a small concentration of Laponite RD could lead to a significant increase in the storage modulus, loss modulus or complex viscosity. Compared with neat DAP hydrogel, the hybrid hydrogel has a greater hydrogel strength and a lower relaxation exponent. In particular, the enhancement of the clay nanoparticles to the viscoelastic properties of the DAP hydrogel is more effective in the case of higher DAP concentration. By relating its macroscopic elastic properties to a scaling fractal model, such a hybrid hydrogel was confirmed to be in the strong-link regime and to have a more complex network structure with a higher fractal dimension when compared with neat DAP hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.
Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.
Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen
2015-10-28
Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.
1988-12-01
called soapstone . The third member of the Niagaran Series, the Laurel Dolomite, is thinly bedded, bluish-gray in color, and approximately 5 to 9 feet...slopes of hills. This m formation has a total thickness of 250 feet, and includes beds of limestone, soft shale, clay, or soapstone . The shales...INTERBEDDED. IRON [mineral] - A heavy, magnetic , malleable and ductile, and chemically active mineral, the native metallic element Fe. JP-4 - A type
Dysaerobic trace fossils and ichnofabrics in the upper Jurassic Kimmeridge Clay of southern England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wignall, P.B.
The trace fossil suite from the Kimmeridge Clay is calibrated against an oxygen gradient derived from previous geochemical, lithological and shelly macrofaunal studies. Several soft-bodied trace markers appear to have tolerated lower oxygen tensions than even the hardiest shelly benthic macrofauna-a common occurrence in both recent and ancient dysaerobic settings. Lowest diversity trace fossil assemblages consist of Astacimorphichnus etchesi (new ichnotaxon), a small endostratal pascichnial trace attributed to pioneering polychaete populations. Ekdale and Masons' (1988) contention that fodinichnia dominate the lowest diversity and lowest oxygen settings is not substantiated as the only example of this feeding strategy, Rhizocorallium irregulare, ismore » encountered in moderately diverse trace fossil assemblages associated with a low diversity shelly macrofauna. Upper dysaerobic conditions are characterized by the development of a surface mixed layer and the consequent destruction of fine lamination. Tiering is only developed under normal oxygen conditions with Chondrites as the deepest trace. In contrast to many previous studies, Chondrites is never found in dysaerobic facies.« less
Field testing of stiffened deep cement mixing piles under lateral cyclic loading
NASA Astrophysics Data System (ADS)
Raongjant, Werasak; Jing, Meng
2013-06-01
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
NASA Astrophysics Data System (ADS)
Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.
2017-04-01
Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.
"Soft-shelled" monothalamid foraminifers as a modern analogue of early life
NASA Astrophysics Data System (ADS)
Kitazato, Hiroshi; Ohkawara, Nina; Gooday, Andrew
2017-04-01
According to the fossil record, the earliest undoubted foraminifers are found in the Early Cambrian, where they are represented by tubular agglutinated forms, thought to be the most primitive foraminiferal morphotypes. The numerous foraminifers with single-chambered, organic-walled tests (i.e. 'soft-shelled' monothalamids) exist in the deep sea and are difficult to preserve as fossils. Molecular phylogenetic data tell us that these 'primitive' taxa include the deepest foraminiferal clades, originating around 600 - 900 Ma. We found many soft-shelled monothalamids in sediment samples from deep trenches, including the Challenger Deep (Marianas Trench) and the Horizon Deep (Tonga Trench). Both deeps exceed 10,000 m water depth, well below the carbonate compensation depth, which represents an environmental barrier for calcareous foraminifera. The foraminifera at these extreme hadal sites include tubular and globular forms with organic walls, among which species of the genera Nodellum and Resigella are particularly abundant. Some forms selectively agglutinate minute flakes of clay minerals on the surface of the organic test. Many soft-shelled monothalamids, including most of those in deep tranches, contain stercomata, the function of which is currently unknown. Gromiids (a rhizarian group related to foraminifera) also accumulate stercomata in their sack-shaped tests. This suggests the possibility that the function of these waste particles is to add bulk, like the filling of soft bags or pillows. We suggest that the monothalamid foraminifera that dominate small-sized eukaryotes in extreme hadal settings may provide clues to understanding the biology and ecology of early life in Neoproterozoic sedimented habitats.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.
Influence of Compositional Variations on Floc Size and Strength
NASA Astrophysics Data System (ADS)
Yin, H.; Tan, X.; Reed, A. H.; Furukawa, Y.; Zhang, G.
2010-12-01
Clay-biopolymer micro aggregates or flocs are abundant in waters, including rivers, lakes, and oceans. Owing to their small size and charged surfaces, fine-grained inorganic sediment particles, mainly clays, interact actively with organic substances, such as organic matter and biogenic polymers, to form aggregates or flocs, typically in the size of 10-1000 μm. The flocs in ocean waters are also termed “marine snow”. These flocs are typically porous, tenuous, and soft in nature. During transport in suspension, they may breakdown and decrease in size if the turbulent shear stress exceeds their strength. They may also collide and form larger ones if the shear stress is relatively small. Since flocs of different size and structure settle at different velocities, understanding their strength is also of essential importance for sediment hydrodynamics, transport, and management. Our study focuses on investigating the influence of compositional variations on floc size and strength so that a better understanding of floc dynamics can be achieved. A laser diffraction-based Cilas® particle size and shape analyzer with controllable fluid circulation velocity was employed to conduct floc size measurements and shape imaging, the latter achieved by a high resolution inverted optical microscope, which is also installed with the size analyzer. Totally two clay minerals, kaolinite and illite, were tested as the model inorganic solid skeleton minerals for floc formation, and two biopolymers, anionic xanthan gum and neutral guar gum, were chosen as analogs of naturally occurring organic matter or biopolymers to simulate clay-biopolymer floc formation. Moreover, the concentration of both organic and inorganic phases was varied. The floc breakage or tensile strength was indirectly estimated by the varied fluid flow velocity in the particle size analyzer’s circulation system. For each individual composition, stable flocs were formed by three different fluid circulating velocities, resulting in different shearing stress in the fluid. Experimental results show that organic biopolymers can have profound influences on clay flocculation process and the resultant floc size and strength. Anionic xanthan gum tends to form smaller and weaker clay-biopolymer flocs than neutral guar gum, because the Coulombic repulsion forces develop between the two negatively charged constituents. Illite results in stronger clay-guar flocs than kaolinite, probably due to the relatively higher negative charges on illite surface. Generally, a bimodal distribution of floc size frequency was observed for all types of flocs. The maxim floc sizes range from 10-30 μm for kaolinite-xanthan flocs to 250-300 μm for kaolinite-guar flocs at a weight ratio of 1:1.
NASA Astrophysics Data System (ADS)
Van Damme, H.
2014-12-01
We report the results of simple laboratory experiments aimed at mimicking the generation, migration, and expulsion process of oil or gas from soft clayey sediments, triggered by thermal decomposition of organic matter. In previously published work, we showed that the injection of fluids into a soft sediment layer confined within a quasi-2D Hele-Shaw cell led to the transition from a viscous fingering invasion regime to a viscoelastic fracturing regime. The transition is controlled by the ratio of the characteristic times for the invasion process and for the structural relaxation in the sediment, respectively (Deborah number). Here we show that expulsion is a discontinuous quasi-periodic process, driven by the elastic energy stored in the embedding layers. We report also about two sets of experiments aimed at understanding the conditions in which fluid generation from multiple sources can generate a highly connected network of fractures for expulsion. In a first set of experiments, a Hele-Shaw cell with multiple injection points and multiple outlets was used. It is shown that, due to attractive elastic interactions between cracks, a network spontaneously forms as soon as invasion proceeds in the viscoelastic regime. On the contrary, no network of migration paths is forming in the viscous fingering regime, due to the effective repulsion of the fluid channels. In the second set of analog experiments, we used a thermostated mini-Hele-Shaw cell, the gap of which was filled with a strong clay mud in which microcrystals of reactive organic matter (azoisobutyronitrile, AIBN) are dispersed, or with a mud prepared with clay particles on which the organic matter was pre-impregnated. AIBN decomposes around 70°C, releasing nitrogen gas. It was again observed that, depending on the viscoelastic properties of the clay matrix, gas evolution occurs either by formation and coalescence of bubbles, or by formation of a percolating network of fractures. The length of the fracture network is initially linearly related to the Total (reactive) Organic Matter content. The expulsion process is remarkably effective in the fracturing regime (close to 100 percent), even at vey low TOC (below 0.5 percent). The relevance of these experiments for oil and gas migration in natural conditions will be discussed.
A CT-scan database for the facial soft tissue thickness of Taiwan adults.
Chung, Ju-Hui; Chen, Hsiao-Ting; Hsu, Wan-Yi; Huang, Guo-Shu; Shaw, Kai-Ping
2015-08-01
Facial reconstruction is a branch of forensic anthropology used to assist in the identification of skeletal remains. The majority of facial reconstruction techniques use facial soft tissue depth chart data to recreate facial tissue on a skull or a model of a skull through the use of modeling clay. This study relied on 193 subjects selected from the Taiwanese population on the basis of age and gender to determine the average values of 32 landmarks, include midline and bilateral measures, by means of CT scans. The mean age of the subjects was 46.9±16.4 years, with a mean age of 43.8±16.6 for males and 49.9±15.8 for females respectively. There were 16 landmarks with statistically significant differences between male and female subjects, namely S, G, N, Na, Ph, Sd and Id in the midline portion, FE, LO, ZA and Sub M2 in the bilateral-right and left portion, and IM point in the bilateral-left portion (abbreviations adapted from Karen T. Taylor's work). The mean soft tissue depth was greater in males than in females, and there was significant difference between the right and left sides of the face in Za point. This study's findings were compared with those of Bulut et al. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
From Airborne EM to Geology, some examples
NASA Astrophysics Data System (ADS)
Gunnink, Jan
2014-05-01
Introduction Airborne Electro Magnetics (AEM) provide a model of the 3-dimensional distribution of resistivity of the subsurface. These resistivity models were used for delineating geological structures (e.g. Buried Valleys and salt domes) and for geohydrological modeling of aquifers (sandy sediments) and aquitards (clayey sediments). Most of the interpretation of the AEM has been carried out manually, by interpretation of 2 and 3-dimensional resistivity models into geological units by a skilled geologists / geophysicist. The manual interpretation is tiresome, takes a long time and is prone to subjective choices of the interpreter. Therefore, semi-automatic interpretation of AEM resistivity models into geological units is a recent research topic. Two examples are presented that show how resistivity, as obtained from AEM, can be "converted" to useful geological / geohydrolocal models. Statistical relation between borehole data and resistivity In the northeastern part of the Netherlands, the 3D distribution of clay deposits - formed in a glacio-lacustrine environment with buried glacial valleys - was modelled. Boreholes with description of lithology, were linked to AEM resistivity. First, 1D AEM resistivity models from each individual sounding were interpolated to cover the entire study area, resulting in a 3-dimensional model of resistivity. For each interval of clay and sand in the boreholes, the corresponding resistivity was extracted from the 3D resistivity model. Linear regression was used to link the clay and non-clay proportion in each borehole interval to the Ln(resistivity). This regression is then used to "convert" the 3D resistivity model into proportion of clay for the entire study area. This so-called "soft information" is combined with the "hard data" (boreholes) to model the proportion of clay for the entire study area using geostatistical simulation techniques (Sequential Indicator Simulation with collocated co-kriging). 100 realizations of the 3-dimensional distribution of clay and sand were calculated giving an appreciation of the variability of the 3-dimensional distribution of clay and sand. Each realization was input into a groundwatermodel to assess the protection the of the clay against pollution from the surface. Artificial Neural Networks AEM resistivity models in an area in Northern part of the Netherlands were interpreted by Artificial Neural Networks (ANN) to obtain a 3-dimensional model of a glacial till deposit that is important in geohydrological modeling. The groundwater in the study area was brackish to saline, causing the AEM resistivity model to be dominated by the low resistivity of the groundwater. After conducting Electrical Cone Penetration Tests (ECPTs) it became clear that the glacial till showed a distinct, non-linear, pattern of resistivity, that was discriminating it from the surrounding sediments. The patterns, found in the ECPTs were used to train an ANN and was consequently applied to the resistivity model that was derived from the AEM. The result was a 3-dimensional model of the probability of having the glacial till, which was checked against boreholes and proved to be quite reasonable. Conclusion Resistivity derived from AEM can be linked to geological features in a number of ways. Besides manual interpretation, statistical techniques are used, either in the form of regression or by means of Neural Networks, to extract geological and geohydrological meaningful interpretations from the resistivity model.
NASA Astrophysics Data System (ADS)
Lewis, C. F. M.; Anderson, T. W.
2017-10-01
South Bay on the southern coast of Manitoulin Island is a fjord-like embayment connected to Lake Huron by a natural narrow gap in the bay's outer sill 6.5-14 m above the lake. A seismic profile, pollen, plant macrofossil, grain size analyses, and other sediment properties of two piston cores from a shallow outer basin of the bay document a 9 m-thick sediment section comprising rhythmically laminated clay under silty clay containing zones with small molluscan shells and marsh detritus. A sandy pebbly layer under soft silty clay mud overlies these sediments. This stratigraphy represents inundation by deep glacial Lake Algonquin followed by the shallowing Post Algonquin series of lakes, and exposure in the early Holocene by 5 Lake Stanley lowstands in the Lake Huron basin separated by 4 Lake Mattawa highstands. Overflow from South Bay in the first lowstand is thought to have eroded the outer sill gap. Marsh environments are inferred to have formed in the bay during subsequent lowstands. The Lake Mattawa highstands are attributed to outburst floods mainly from glacial Lake Agassiz. Palynological evidence of increased spruce occurrence, an apparent regional climate reversal, during the dry pine period is attributed to cold northwest winds from the Lake Superior basin and a lake effect from the Mattawa highstands in the Lake Huron basin. Lake waters transgressed South Bay following the pine period to form the Nipissing shore on Manitoulin Island. Transfer of Lake Huron basin drainage to southern outlets and continued glacioisostatic uplift of the region led to the present configuration of South Bay and Lake Huron.
NASA Astrophysics Data System (ADS)
Farrugia, D.; Galea, P. M.; D'Amico, S.
2016-12-01
The Maltese archipelago is characterised by a four layer sequence of limestones and clays. The Lower Coralline Limestone is the oldest exposed layer, overlain by the Globigerina Limestone. Some parts of the islands are characterised by Upper Coralline Limestone plateaus and hillcaps covering a soft Blue Clay layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, and makes the Vs30 parameter not always suitable for seismic microzonation purposes. Such a layer may still produce amplification effects, however would not contribute to the numerical mean of Vs in the upper 30m. In this study, site response analysis for the Maltese islands is conducted, with particular attention being given to sites described above. Array and single-station measurements of ambient noise were first carried out at numerous sites in Malta. Surface wave dispersion and H/V curves were jointly inverted using a genetic algorithm, so that the Vs profiles were obtained. The stochastic extended-fault algorithm EXSIM was used to simulate historical and recent earthquakes at the bedrock. These were used in conjunction with the equivalent-linear programme SHAKE2000 to carry out the site-specific response analysis, using the derived geophysical models. Maps of ground motion parameters, such as peak ground acceleration and spectral accelerations, confirm that the clay, even when buried under a hard outcropping layer can still produce significant amplifications at frequencies which are of engineering interest when considering the recent urbanisation patterns. The results of this project will give important, and previously unavailable information and predictions about the behaviour of local lithotypes in response to earthquake ground shaking while also contributing knowledge about the issue of buried low velocity layers.
Low Velocity Earth-Penetration Test and Analysis
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris
2001-01-01
Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.
Stability of Low Embankments on Soft Clay. Part 3. Centrifuge Tests and Numerical Analysis.
1984-11-01
radiographs taken after the test. . Miniature pore pressure transducers used were the PDCR81 transducers manufactured by Druck Ltd. They are 6.35 mm...transducers at any time. The pressure was applied by a remote air/water interface and recorded in a Druck DPI 100 digital pressure meter. For the...I.. " 7 .P 1.. - l wil (dJ ) 3WS3 1 ’ X (dJ41 3NS3 ci ’ IN. 7V~ AUN I7 cu V N z V N Ncu N L coN IX ( 4 ’Hr^ 3d IX e d] f9p X W~]~lSd* X 3 L L J 0 0 00
Stratigraphic test well, Nantucket Island, Massachusetts
Folger, David W.; Hathaway, J.C.; Christopher, R.A.; Valentine, P.C.; Poag, C.W.
1978-01-01
The U.S. Geological Survey, in cooperation with the Massachusetts Water Resources Commission and the Nantucket Conservation Foundation, continuously cored 514 m of sediment and volcanic rock in a stratigraphic and water-quality test near the geographic center of Nantucket Island. Stratified sediments were divided texturally into three zones: the upper zone (0-128 m) contains mostly coarse sand and gravel; the middle zone (128-349 m) contains mostly silty clay and a few beds of sand and silt; and the lower zone (349-457 m) contains soft, unconsolidated, clayey sand. Below the lower zone, a saprolite, composed mostly of clay, grades abruptly downward at 470 m into partially altered basalt that extends to the bottom of the hole at 514 m. Calculations based on the Ghyben-Herzberg principle predicted a zone of freshwater 120-150 m thick. This principle is the theory of hydrostatic equilibrium between freshwater and more dense seawater in a coastal aquifer; it states that for each meter of ground-water elevation above sea level, the freshwater lens will depress the saltwater interface about 40 m below sea level. Freshwater or low-salinity brackish water was found in sediments far below the depth predicted by the Ghyben-Herzberg principle. These interstitial waters are probably relict ground water emplaced during times of low sea level during the Pleistocene. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Urakov, A.; Urakova, N.; Reshetnikov, A.; Kopylov, M.; Kasatkin, A.; Baymurzin, D.; Gabdrafikov, R.
2017-02-01
It was found that pharmaceutical companies produce drugs in tablet form, physical or physical-chemical properties that are radically different from those of the properties of natural food lumps, in that adult converts food in our mouth before swallowing. It was shown that the conventional shape, color, size, volume, specific gravity, hardness, osmotic and acid activity of modern tablets impair the physical and physicochemical properties of the liquid contents of the stomach is much stronger than such “building” materials, such as chalk, clay, sand, river pebbles and gravel. The results showed, that the value of the specific hardness, deforming tablets, can distinguish modern tablets from each other by more than 5000 times. Therefore, introduction tablets inside without information of ability injuring their action leads to the fact that soft and “unsalted” tablets almost nothing damage, and too “salty” and solid tablets damage the gums, lips, tongue, teeth and dental structures. To reduce the traumatic action tablets offered standardize osmoticity, corrosion and hardness within the range of safe values for soft and hard tissues of the oral cavity and improve standard introduction of tablets in the mouth.
Deep Shear Wave Velocity of Southern Bangkok and Vicinity
NASA Astrophysics Data System (ADS)
Wongpanit, T.; Hayashi, K.; Pananont, P.
2017-09-01
Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.
Small-scale seismogenic soft sediment deformation (Hirlatzhöhle, Upper Austria)
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne
2014-05-01
The Hirlatz Cave lies in the Dachstein Massif about 2 km SW of Hallstatt, in the Upper Austrian Salzkammergut. With a length of 101 km, this karst cave, located in the Dachstein nappe (Northern Calcareous Alps), is the second largest known cave system in Austria. Within the cave, in the so-called Lehmklamm, located 2.8 km southeast of the cave entrance, laminated (mm-scale) Quaternary clay-sized sediments with interbedded fine-grained sandy layers are preserved. In these layers, numerous soft sediment deformation structures are preserved in many layers. The unconsolidated sediments show rhythmic layering of brighter, carbonate and quartz rich, and darker, more clay mineral rich horizontal varve-like layers, that are assumed to be fluvio-lacustrine deposits. The present study focuses on a very detailed documentation of an approximately 6.8 x 3 m vertical outcrop that was cut by a small brook. Centimeter to millimeter sized water escape structures (intruded cusps and flame structures), folds (detachment folds, fault bend folds) and faults (normal faults, fault propagation folds, bookshelf faults) are described. Because of the geometric analogy to seismogenic structures which have been described at two orders of magnitude larger scales from areas close to the Dead Sea Fault, we suggest that the formation of the investigated soft-sediment structures was also triggered by seismic events. The structures were mainly formed by three different mechanism: (i) North directed gravitational gliding near the sediment surface; (ii) Liquefaction resulting in a density discontinuity and decreasing in shear strength within in the stratified layers; (iii) Extensional faulting that cut through the stratified layers. Observations of coarsening upwards into sandy layers on the top of the outcrop and current ripple indicate a north-directed flow under phreatic conditions, which is opposite to the present flow direction of the vadose water in the cave. The fact that deformation and erosion mostly occur in the uppermost meter of the outcrop wall suggests a higher seismic activity and at least periodically higher flow rates during sedimentation of the younger deposits. Since several extremely deformed layers occur between undeformed ones, we suggest that deformation of the layers occurred only in the uppermost highly water saturated sediments and that several seismic events lead to the formation of the observed structures. A possible source responsible for the seismic event is the Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault, which accommodates the active extrusion of the Eastern Alps towards the Pannonian Basin.
Sedimentology of cores recovered from the Canada Basin of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Edwards, B. D.; Saint-Ange, F.; Pohlman, J.; Higgins, J.; Mosher, D. C.; Lorenson, T. D.; Hart, P.
2011-12-01
Researchers from the United States and Canada are collaborating to understand the tectonic and sedimentary history of the Arctic Ocean between Canada and Alaska. As part of this on-going study, a joint US-Canadian ice breaker expedition operated in parts of the Canada Basin during August 2010. Occasional interruptions of the seismic data acquisition provided the ship time to collect gravity and piston cores at five sites-of-opportunity throughout the basin. High-resolution multibeam bathymetry and chirp sub-bottom profiler data collected immediately prior to coring reveal the fine-scale morphology of each site. Core photographs, X-ray radiographs, and physical property data support the following descriptions. Two piston cores were collected from the Beaufort Sea continental margin in a region of known bottom simulating reflectors (BSRs). Site 1 (2538 m water depth): This core recovered 5.72 m of gas-charged, gray sticky clay and silty-clay from an approximately 1100 m diameter, 130 m high conical mound overlying the crest of a buried anticline. Gas hydrate recovered in the core catcher combined with cracks and voids, methane and other hydrocarbon gasses, pyrite concretions, chemosynthetic clams, carbonate nodules, and soft carbonate masses indicate the likely upward migration of deep-seated fluids. Site 2 (1157 m water depth): This core, positioned 40 km upslope from the gas hydrate core, recovered 3 m of gray sticky silty clay and clayey silt near the base of an erosional scarp. Some voids and fracturing are apparent but carbonate masses and pyrite concretions are absent. Site 3 (3070 m water depth): This core from the top of a seamount discovered in 2009 in the north-central part of the Canada Basin recovered 4.94 m of sediment. More than 3 m of dark brown to yellowish brown, massive interbedded silty clays with sands and matrix-supported gravels (ice rafted debris [IRD]) occur in abrupt contact with underlying reddish yellow to brownish yellow silty clay and gravelly sandy clay interpreted to be altered hydrothermally. Successions of IRD layers create a thinly- to medium-bedded sequence throughout the lower section. Site 4 (3700 m water depth; central Canada Basin): This core recovered 3.4 m of sediment typified by decimeter-thick sequences of stacked graded beds with erosional basal contacts (Bouma sequences) characteristic of turbidite deposition. Site 5 (2081 m water depth; continental slope west of the Canadian archipelago): This core recovered 4.96 m of sediment of which the upper 2 m is silty clay to clayey silt with dispersed sand and granules. This upper section has an irregular, sharp basal contact with an underlying 16-cm-thick clast-supported massive gravel. The gravel has a scoured basal contact and overlies a monotonous gray clayey silt containing dispersed granules of IRD. Sparse and poorly preserved fauna throughout all the cores make age determination difficult; however, given the paucity of sediment cores in the Arctic Ocean, these samples provide vital geophysical groundtruth and sedimentological information about the basin.
Use of Reinforced Lightweight Clay Aggregates for Landslide Stabilisation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herle, Vitezslav
2008-07-08
In spring 2006 a large landslide combined with rock fall closed a highway tunnel near Svitavy in NE part of Czech Republic and cut the main highway connecting Bohemia with Moravia regions. Stabilisation work was complicated by steep mountainous terrain and large inflow of surface and underground water. The solution was based on formation of a stabilisation fill made of reinforced free draining aggregates at the toe of the slope with overlying lightweight fill up to 10 m high reinforced with PET geogrid and steel mesh protecting soft easily degrading sandstone against weathering. Extensive monitoring made possible to compare themore » FEM analysis with real values. The finished work fits very well in the environment and was awarded a special prize in the 2007 transport structures contest.« less
Accelerated recession of a desert cliff due to sewage water disposal, Sede Boqer, Israel
NASA Astrophysics Data System (ADS)
Arkin, Yaacov; Karnieli, Arnon; Issar, Arie; Mtz.-Esparza, Javier Diaz
1986-12-01
Accelerated erosion of a desert cliff due to uncontrolled sewage water disposal was investigated at the Sede Boqer Campus in the Negev, Israel An erosional cirque formed by this water was studied as a model simulating natural processes. The cliffs consist of loess and conglomerate underlain by soft marl, clay, and chalk. The rate of erosion is of the order of 5% 8% of the volume of water discharged. The rate of incision ranges from 10 2 to 13.3 m/yr and is several orders higher than that expected under normal rainfall conditions The introduction of this new hydrological factor resulted in a severe disturbance of the morphological balance in the vicinity of the cliffs, accelerated erosion, and generated circular slides
Campbell, B.G.; Petkewich, M.D.; Landmeyer, J.E.; Chapelle, F.H.
1996-01-01
A long history of industrial and commercial use of the National Park Service property and adjacent properties located in downtown Charleston, South Carolina, has caused extensive contamination of the shallow subsurface soils and water-table aquifer. The National Park Service property is located adjacent to a former manufactured-gas plant site, which is the major source of the contamination. Contamination of this shallow water-table aquifer is of concern because shallow ground water discharges to the Cooper River and contains contaminants, which may affect adjacent wildlife or human populations. The geology of the National Park Service property above the Ashley Formation of the Cooper Group consists of two Quaternary lithostratigraphic marine units, the Wando Formation and Holocene deposits, overlain by artificial fill. The Wando Formation overlies the Ashley Formation, a sandy calcareous clay, and consists of soft, organic clay overlain by gray sand. The Holocene deposits are composed of clayey to silty sand and soft organic-rich clay. The artificial fill, which was placed at the site to create dry land where salt marsh existed previously, is composed of sand, silt, and various scrap materials. The shallow hydrogeology of the National Park Service property overlying the Ashley Formation can be subdivided into two sandy aquifers separated by a leaky, black, organic-rich clay. The unconfined upper surficial aquifer is primarily artificial fill. The lower surficial aquifer consists of the Wando sand unit and is confined by the leaky organic-rich clay. Aquifer tests performed on the wells screened in these aquifers resulted in hydraulic conductivities from 0.1 to 10 feet per day for the upper surficial aquifer, and 16 feet per day for the lower surficial aquifer. Vertical hydraulic gradients at the site are typically low. A downward gradient from the upper surficial aquifer to the lower surficial aquifer occurs throughout most of the year. A brick-lined storm-water-drainage archway located in the study area is a conduit for the overflow of seawater into the surficial aquifer during exceptionally high tides. The efficiency of intrinsic bioremediation to reduce contaminant migration in the upper surficial aquifer at the National Park Service site was assessed to determine if, and at what concentrations, contaminants are being transported to the Cooper River. This assessment required incorporating hydrologic, geochemical, microbiologic, and demographic information into a predictive solute-transport model to determine rates of contaminant transport to the Cooper River. The transport of toluene and naphthalene was modeled as a surrogate for the transport of aromatic and other hydrocarbon compounds at the study area. Laboratory estimates of the adsorption coefficients for sediments of the upper surficial aquifer suggest preferential adsorption of naphthalene over toluene. The adsorption coefficient of naphthalene is at least two orders of magnitude greater than that determined for toluene. Laboratory microbial-biodegradation experiments indicate that microorganisms present in the shallow aquifer have the potential to degrade toluene under anaerobic and aerobic conditions, and naphthalene primarily under aerobic conditions. Rates of microbial biodegradation are similar for both compounds under aerobic conditions. Flow-model calibration to the January 1994 water-table surface of the upper surficial aquifer was achieved by specifying appropriate hydrogeologic boundary conditions and using hydraulic conductivity values determined in the field. The brick-lined storm-water drainage archway located in the study area was modeled to account for ground-water discharge through this drain. An exploratory modeling approach was used to evaluate the range of possible solutions that approximate the transport of contaminants to the observed distributions. Approximate toluene solute-transport conditions for January 1994 were estimated using velocity dist
Osman, Azlin F; M Fitri, Tuty Fareyhynn; Rakibuddin, Md; Hashim, Fatimah; Tuan Johari, Syed Ahmad Tajudin; Ananthakrishnan, Rajakumar; Ramli, Rafiza
2017-05-01
Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrogeologic conditions in the town of Shelter Island, Suffolk County, Long Island, New York
Soren, Julian
1978-01-01
Shelter Island, an area of about 11 square miles, in Suffolk County, N.Y., is situated between the north and south forks of eastern Long Island. The upper glacial aquifer is the sole source of freshwater supply for Shelter Island 's population, which currently ranges seasonally from 2,000 to 8,000. Fresh ground water seems to be limited to sand and gravel deposits in the aquifer, which is thin and can be readily infiltrated by surrounding saline ground water. The aquifer is underlain by confining clay formations that contain saline water, and the geologic formations below the clay probably contain saline water also. The fresh ground water is mostly soft and has low dissolved-solids concentrations; however, several wells near shorelines have yielded excessive amounts of chloride. Man-induced contamination of the aquifer is evident but not severe, as shown by somewhat elevated concentrations of nitrate nitrogen and methylene blue active substances (MBAS). Increased pumping will cause deterioration of the fresh ground-water supply by inducing saline-water infiltration and by adding greater volumes of septic-tank and cesspool effluents to the aquifer. Test drilling could help in water-supply management by determining the extent of the aquifer and of fresh ground-water storage, and observation wells could provide early detection of saline-water infiltration. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Ghotbi, Abdoul R.
2014-09-01
The seismic behavior of skewed bridges has not been well studied compared to straight bridges. Skewed bridges have shown extensive damage, especially due to deck rotation, shear keys failure, abutment unseating and column-bent drift. This research, therefore, aims to study the behavior of skewed and straight highway overpass bridges both with and without taking into account the effects of Soil-Structure Interaction (SSI) due to near-fault ground motions. Due to several sources of uncertainty associated with the ground motions, soil and structure, a probabilistic approach is needed. Thus, a probabilistic methodology similar to the one developed by the Pacific Earthquake Engineering Research Center (PEER) has been utilized to assess the probability of damage due to various levels of shaking using appropriate intensity measures with minimum dispersions. The probabilistic analyses were performed for various bridge configurations and site conditions, including sand ranging from loose to dense and clay ranging from soft to stiff, in order to evaluate the effects. The results proved a considerable susceptibility of skewed bridges to deck rotation and shear keys displacement. It was also found that SSI had a decreasing effect on the damage probability for various demands compared to the fixed-base model without including SSI. However, deck rotation for all types of the soil and also abutment unseating for very loose sand and soft clay showed an increase in damage probability compared to the fixed-base model. The damage probability for various demands has also been found to decrease with an increase of soil strength for both sandy and clayey sites. With respect to the variations in the skew angle, an increase in skew angle has had an increasing effect on the amplitude of the seismic response for various demands. Deck rotation has been very sensitive to the increase in the skew angle; therefore, as the skew angle increased, the deck rotation responded accordingly. Furthermore, abutment unseating showed an increasing trend due to an increase in skew angle for both fixed-base and SSI models.
In situ consolidation of offshore petroleum well structural casings by electrokinetic methods
NASA Astrophysics Data System (ADS)
Wrixon, Robert Christopher
Offshore drilling operations encounter cement wash-out problems while setting the initial structural casing (0--200 ft depth) due to the soft, unconsolidated nature of the sea-bed. Structural casings set by alternative methods have failed in up to 50% of cases due to insufficient frictional bearing capacity. This dissertation presents a method of increasing the bearing capacity of a jet-drilled or slick-drilled casing in-situ by applying a potential difference such that the casing is anodic compared to a remote cathode. It has been shown experimentally that clayey formations will swell and stick to a simulated anodic casing by the combined electrokinetic processes of electroosmosis and electrophoresis. Any cavities around the "casing" are eliminated and the formation is flush against the metal surface, increasing bearing capacity. The formation around the "casing" dries out due to electroosmotic migration of water away from the anode, increasing the shear strength of the surrounding soil. Corrosion products at the anode can further increase the soil shear strength by a process known as electrochemical hardening. This investigation has shown that the bearing capacity of anodic casings can potentially be increased by a factor of up to 1,000% in soft clays and silty clays. The existence of an optimal level of electrokinetic consolidation, beyond which the soil shear strength begins to degrade, has been demonstrated. The difficulties of applying electrokinetic methods to saline soil environments have been addressed and the process has been shown to be successful, as long as the requisite electric field strength is maintained. The efficiency of the electrokinetic consolidation technique has been shown to be affected by the soil water content, soil mineralogy, power supplied, time of treatment and the choice of anode material. Experiments in marine sediment show that increases in bearing capacities of about 300% can be achieved at optimal treatment conditions. With likely current and power restrictions, increases of 50% to 100% are realistic. This level of increase still makes offshore electrokinetic casing consolidation a viable process, given that it is attainable quickly and at a modest power requirement and given the enormous cost of a structural casing collapse.
Lancellotti, D A; Stotz, W B
2004-02-01
This study evaluates the magnitude and extension of the impact produced by the discharge of inert allochthonous materials, including clays and particulate iron, on macrobenthic soft-bottom assemblages in the subtidal zone of a coastal bay in north-central Chile. An average of 118 Ton h(-1) of finely divided solids were discharged into the rocky intertidal zone of the bay for a period of over 16 years, producing continuous turbidity in the water column and sedimentation in the subtidal zone. Data obtained four months before cessation of the discharge showed that the macrofauna present at 20 and 50 m depth in the bay suffered an important decrease in abundance and species richness, low diversity/high dominance, and deep changes in community structure related to the discharge. The faunal assemblages present at 110 m depth did not show effects from the discharge, suggesting that the impact was limited to the inner part of the bay. The impoverished faunal aggregates at 20 and 50 m depth showed exclusive domination by the Lumbrineris bifilaris (polychaete)-Diastylis tongoyensis (cumacean) association, representing a simple trophic guild of deposit feeders. The complete absence of opportunistic species such as capitellid, spionid, and/or cirratulid polychaetes may be associated with the turbidity and sedimentation levels in the bay.
NASA Astrophysics Data System (ADS)
Abedi, S.; Mashhadian, M.; Noshadravan, A.
2015-12-01
Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.
NASA Astrophysics Data System (ADS)
Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George
2016-03-01
The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.
Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Watkins, J.; Ehlmann, B. L.; Yin, A.
2014-12-01
Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals, generated by water-rock interactions in the Noachian and Hesperian (4.1- 3.3 Ga), exert a long-lasting influence on geomorphic processes that shape the surface of the planet.
The interaction between a solid body and viscous fluid by marker-and-cell method
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1976-01-01
A computational method for solving nonlinear problems relating to impact and penetration of a rigid body into a fluid type medium is presented. The numerical techniques, based on the Marker-and-Cell method, gives the pressure and velocity of the flow field. An important feature in this method is that the force and displacement of the rigid body interacting with the fluid during the impact and sinking phases are evaluated from the boundary stresses imposed by the fluid on the rigid body. A sample problem of low velocity penetration of a rigid block into still water is solved by this method. The computed time histories of the acceleration, pressure, and displacement of the block show food agreement with experimental measurements. A sample problem of high velocity impact of a rigid block into soft clay is also presented.
Polymer based nanocomposites with nanofibers and exfoliated clay
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Reneker, Darrell H.
2005-01-01
Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.
ERIC Educational Resources Information Center
Koster, Joan Bouza
1999-01-01
Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... and/or copolymer products. Brick and Structural Clay Products...... 327121 Brick and structural clay tile manufacturing facilities. Brick and Structural Clay Products; Clay 327122 Ceramic wall and floor... Structural Clay Products...... 327123 Other structural clay products manufacturing facilities. Clay Ceramics...
Deformation of ``Villafranchian'' lacustrine sediments in the Chisone Valley (Western Alps, Italy)
NASA Astrophysics Data System (ADS)
Collo, Giovanni; Giardino, Marco
1997-09-01
The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.
Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry
NASA Astrophysics Data System (ADS)
Anil, Asha; Misra, S. N.; Misra, N. M.
2018-05-01
Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.
Virta, R.L.
1998-01-01
Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.
NASA Astrophysics Data System (ADS)
Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume
2017-06-01
In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.
An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite
NASA Astrophysics Data System (ADS)
Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna
2018-06-01
Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.
Earthquakes Promote Bacterial Genetic Exchange in Serpentinite Crevices
NASA Astrophysics Data System (ADS)
Naoto, Yoshida; Fujiura, Nori
2009-04-01
We report the results of our efforts to study the effects of seismic shaking on simulated biofilms within serpentinite fissures. A colloidal solution consisting of recipient bacterial cells (Pseudomonas sp. or Bacillus subtilis), donor plasmid DNA encoded for antibiotic resistance, and chrysotile (an acicular clay mineral that forms in crevices of serpentinite layers) were placed onto an elastic body made from gellan gum, which acted as the biofilm matrix. Silica beads, as rock analogues (i.e., chemically inert mechanical serpentinite), were placed on the gellan surface, which was coated with the colloidal solution. A rolling vibration similar to vibrations generated by earthquakes was applied, and the silica beads moved randomly across the surface of the gellan. This resulted in the recipient cells' acquiring plasmid DNA and thus becoming genetically transformed to demonstrate marked antibiotic resistance. Neither Pseudomonas sp. nor B. subtilis were transformed by plasmid DNA when chrysotile was substituted for by kaolinite or bentonite in the colloidal solution. Tough gellan (1.0%) promoted the introduction of plasmid DNA into Pseudomonas sp., but soft gellan (0.3%) had no such effect. Genetic transformation of bacteria on the surface of gellan by exposure to exogenous plasmid DNA required seismic shaking and exposure to the acicular clay mineral chrysotile. These experimental results suggest that bacterial genetic exchange readily occurs when biofilms that form in crevices of serpentinite are exposed to seismic shaking. Seismic activity may be a key factor in bacterial evolution along with the formation of biofilms within crevices of serpentinite.
NASA Astrophysics Data System (ADS)
Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela
2016-07-01
The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.
Virta, Robert L.
2010-01-01
The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.
77 FR 8004 - Fall 2011 Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
.... Title Identifier No. 438 SAN No. 5367 NESHAP: Brick 2060-AP69 and Structural Clay Products and Clay...-Term Actions 438. NESHAP: Brick and Structural Clay Products and Clay Products Legal Authority: Not Yet... metals) emitted from brick and clay ceramics kilns and glazing operations at clay ceramics production...
Mineral Acquisition from Clay by Budongo Forest Chimpanzees.
Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany
2015-01-01
Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.
Mineral Acquisition from Clay by Budongo Forest Chimpanzees
Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany
2015-01-01
Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593
Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.
1987-01-01
The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.
Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)
NASA Astrophysics Data System (ADS)
Shekhawat, M. S.
The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.
Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K
2012-12-07
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Otto, Caitlin C.; Kilbourne, Jacquelyn
2016-01-01
Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of in vivo efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for in vitro antibacterial activity, we evaluated the in vivo antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant Staphylococcus aureus (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the in vivo antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit in vitro antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections. PMID:26508716
Drop Height and Volume Control the Mobility of Long-Runout Landslides on the Earth and Mars
NASA Astrophysics Data System (ADS)
Johnson, Brandon C.; Campbell, Charles S.
2017-12-01
Long-runout landslides are landslides with volumes of 105 m3 or more, which move much farther from their source than expected. The observation that Martian landslides are generally less mobile than terrestrial landslides offers important evidence regarding the mechanism responsible for the high mobility of long-runout landslides. Here we simulate landslides as granular flow using a soft-particle discrete element model. We show that while surface gravity plays a negligible role, observed differences in fall height naturally reproduce the observed differences in mobility of Martian and terrestrial landslides. We also demonstrate that landslides on Iapetus may fit this trend. Our simulations do not include any fluid and indicate that a mechanism similar to acoustic fluidization can explain the high mobility of long-runout landslides. This implies that long-runout landslides on Mars should not be considered as evidence for ice, saturated clays, or liquid water.
NASA Astrophysics Data System (ADS)
Li, Zai-Feng; Wu, Yuan; Zhang, Fu-Tao; Cao, Yu-Yang; Wu, Shou-Peng; Wang, Ting
2012-12-01
With ultrasonic assistant mixing way, an intercalated mixture of polyol/organo reactive montmorillonite (ORMMT) was pretreated. The prepolymer composed MMT clay was prepared by reaction of polyol/ORMMT mixture with toluene diisocyanate (TDI). The resultant prepolymer reacted with extender (DMTDA) and then the polyurethane-urea/organo reactive montmorillonite (PUU/ORMMT) nanocomposites were obtained. The structure, morphology and properties of PUU/ORMMT nanocomposites were characterized by FT-IR, TEM, AFM, strain-stress machine, TGA, and dynamic mechanical analysis (DMA). The results showed that when the OMMT content is 3%, the PUU/ORMMT nanocomposities performed super mechanical properties. Because of the presence of ORMMT, both T g of the soft segment and tan δ of the PUU increased, and the decomposition temperature for the first step and the second step increased respectively. TEM images showed that the organophilic MMT particles in the PUU composite exhibit a high degree of intercalation and exfoliation.
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-12-05
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.
NASA Astrophysics Data System (ADS)
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-12-01
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-01-01
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901
Virta, R.L.
2013-01-01
Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.
Removal of clay by stingless bees: load size and moisture selection.
Costa-Pereira, Raul
2014-09-01
Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Bastani, Mehrdad; Donohue, Shane; Persson, Lena; Aspmo Pfaffhuber, Andreas; Reiser, Fabienne; Ren, Zhengyong
2013-05-01
In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures. For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.
Virta, R.L.
2011-01-01
The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.
Clays in prebiological chemistry
NASA Technical Reports Server (NTRS)
Rao, M.; Oro, J.; Odom, D. G.
1980-01-01
The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.
The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California
Daviess, Steven Norman; Bramlette, M.N.
1953-01-01
Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.
[Mechanisms of removing red tide organisms by organo-clays].
Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui
2006-08-01
We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.
Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong
2016-11-08
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.
Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.
Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin
2003-10-15
Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.
Evaluation of the medicinal use of clay minerals as antibacterial agents.
Williams, Lynda B; Haydel, Shelley E
2010-07-01
Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis ('flesh-eating' infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between 'healing clays' and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall.
Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock
2002-07-01
In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.
NASA Astrophysics Data System (ADS)
Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle
2017-05-01
Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.
78 FR 44315 - Spring 2013 Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... Structural Clay Products Manufacturing and Clay Ceramics Manufacturing. 238 Standards of Performance 2060... (NESHAP): Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Legal Authority... pollutants (HF, HCl, and metals) emitted from brick and clay ceramics kilns, as well as dryers and glazing...
Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier
NASA Astrophysics Data System (ADS)
Huang, W. H.; Chuang, Y. F.
2014-12-01
Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.
[Interaction of clay minerals with microorganisms: a review of experimental data].
Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I
2009-01-01
A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.
NASA Astrophysics Data System (ADS)
Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio
2017-04-01
In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.
Zope, Indraneel S.; Yu, Zhong-Zhen
2017-01-01
Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition. PMID:28800095
Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen
2017-08-11
Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.
Examination and Manipulation of Clay Aggregates - Initial Inquiry
2011-06-06
and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared
1980-07-17
31 Clay/hydrochloric acid, gas - induced crystallization 32 Clay/nitric acid evaporative crystallization 32 Clay/hydrochloric acid, evapora- tive...ALUMINA AND ALUMINUM TECHNOLOGIES 53 Evaluation of nonbauxitic alumina production processes 54 Clay/carbo-chlorination 54 Clay/hydrochloric acid, gas ...reports that the miniplant program is centered on a single process-- clay/hydrochloric acid- gas precipitation. The Bureau of Mines has not retreated
Virta, R.L.
2007-01-01
The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.
Sediment management and renewability of floodplain clay for structural ceramics
NASA Astrophysics Data System (ADS)
van der Meulen, M. J.; Wiersma, A. P.; Middelkoop, H.; van der Perk, M.; Bakker, M.; Maljers, D.; Hobo, N.; Makaske, B.
2009-04-01
The Netherlands have vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. The extraction of clay creates land surface lowerings of about 1.5 m, of which the majority are located in the embanked floodplains of the rivers Rhine and Meuse. At these surface lowerings, clay is replenished within several decades. This study explores to which extent the clay can be regarded as a renewable resource, with potential for sustainable use. For this purpose, first the current and past clay consumption is calculated. Subsequently, clay deposition in the floodplains is estimated from literature data on clay accumulation using sediment traps, heavy metal and radionuclide distribution in soil profiles, and from morphological modelling studies. These estimates of clay-deposition and consumption are then compared following three approaches that consider various temporal and spatial scales of clay deposition. This allows us to establish the extent to which man determines sedimentary processes in the Dutch floodplains. Consequently, using the sediment response to the land surface lowering resulting from clay extraction, we explore sediment management options for the Dutch Rhine and Meuse. Altogether we argue that clay has been, probably is, and certainly can be managed as a renewable mineral resource.
NASA Astrophysics Data System (ADS)
Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.
2017-05-01
The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.
Clays causing adhesion with tool surfaces during mechanical tunnel driving
NASA Astrophysics Data System (ADS)
Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.
2009-04-01
During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the frame of the programme GEOTECHNOLOGIEN.
Retention and loss of water extractable carbon in soils: effect of clay properties.
Nguyen, Trung-Ta; Marschner, Petra
2014-02-01
Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.
Evaluation of the medicinal use of clay minerals as antibacterial agents
Williams, Lynda B.; Haydel, Shelley E.
2010-01-01
Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources. Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s). The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation. Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226
Preparation and properties of recycled HDPE/clay hybrids
Yong Lei; Qinglin Wu; Craig M. Clemons
2007-01-01
Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...
Virta, R.L.
2011-01-01
The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.
Clay deposits of the Tierra Colorado district, southern Orange County, California
Daviess, Steven Norman; Bramlette, M.N.
1953-01-01
The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.
Hydration Phase Diagram of Clay Particles from Molecular Simulations.
Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu
2017-11-07
Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.
NASA Technical Reports Server (NTRS)
Burt, D. M.
1989-01-01
Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.
Pore space analysis of NAPL distribution in sand-clay media
Matmon, D.; Hayden, N.J.
2003-01-01
This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.
Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.
Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan
2016-12-01
Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-07-14
Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.
[Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].
Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming
2004-09-01
Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.
Chemical and mineralogical characteristics of French green clays used for healing
Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.
2008-01-01
The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Rosser, N. J.; Murphy, W.; Lawrence, J. A.
2010-08-01
Coastal monitoring is routinely undertaken to provide an archival record of cliff-line movement that can be used in the development and validation of predictive coast retreat and evolution models. However, coastal monitoring is often purely quantitative in nature, and financial necessity requires deployment over extensive coastal sections. As a result, for local site conditions in particular, only limited geomorphological data are available or included during the development of such predictive models. This has resulted in many current models incorporating a simplistic or generalised representation of cliff behaviour, an approach that progressively loses local credibility when deployed over extensive heterogeneous coastlines. This study addresses this situation at a site of extreme coastline retreat, Holderness, UK, through the application of intensive monitoring of six representative cliff sections nested within a general geomorphological appraisal of the wider coastline as a whole. The data from these surveys have been used to validate a finite difference-based geotechnical modelling assessment of clay cliff stability. Once validated, the geotechnical model was used to simulate a range of scenarios that were sufficient to represent the range of topographic, hydrogeological, geological, and littoral conditions exhibited throughout the region. Our assessment identified that the cliff retreat occurs through the combined influence of direct marine erosion of the cliff, with shallow, structurally controlled failures or substantial mass failures. Critically, the predisposition to any one of these failure mechanisms arises principally as a result of initial cliff height. The results of the numerical modelling have been combined into an empirical slope model that derives the rate of landslide-induced retreat that would arise from mass failures under various future scenarios. Results of this study can be used in the selection and development of retreat models at coastlines of similar physiographic setting to that found at Holderness. The results represent a key step in linking material deformation properties to the processes of cliff change and the subsequent range of landforms found on clay cliffs. As such, the results could also be used more generally to illustrate the likely cliff behaviour of other soft rock coastlines.
Numerous nanopores developed in organo-clay complexes during the shale formations
NASA Astrophysics Data System (ADS)
Wang, Q.; Wang, T.; Lu, H.; Liao, J.
2017-12-01
Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.
Alin, Jonas; Rubino, Maria; Auras, Rafael
2015-10-15
UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.
Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.
Adazabra, A N; Viruthagiri, G; Shanmugam, N
2017-04-15
The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Killer clays! Natural antibacterial clay minerals
Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.
2004-01-01
The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.
ERIC Educational Resources Information Center
Lohr, Tresa Rae
2006-01-01
The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…
ERIC Educational Resources Information Center
Rogers, Liz; Steffan, Dana
2009-01-01
This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…
Wang, Cai; Henderson, Gregg
2014-12-01
Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Termites utilise clay to build structural supports and so increase foraging resources.
Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A
2016-02-08
Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.
NASA Astrophysics Data System (ADS)
Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.
2017-11-01
Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.
Release of Escherichia coli under raindrop impact: The role of clay
NASA Astrophysics Data System (ADS)
Wang, C.; Parlange, J.-Y.; Schneider, R. L.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Truhlar, A. M.; Walter, M. T.
2018-01-01
A recent paper by Wang et al. (2017) showed that the release of Escherichia coli (E. coli) from soil into overland flow under raindrop impact and the release of clay follow identical temporal patterns. This raised the question: what is the role of clay, if any, in E. coli transfer from soil to overland flow, e.g., does clay facilitate E. coli transfer? Using simulated rainfall experiments over soil columns with and without clay in the matrix, we found there was significantly more E. coli released from the non-clay soil because raindrops penetrated more deeply than into the soil with clay.
Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.
Londono, Sandra Carolina; Williams, Lynda B
2016-04-01
Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venteris, Erik R.; May, Cassandra
2014-04-23
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less
Venteris, Erik R.; May, Cassandra J.
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834
Venteris, Erik R; May, Cassandra J
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.
Effect of red clay on diesel bioremediation and soil bacterial community.
Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun
2014-08-01
Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.
Clay-catalyzed reactions of coagulant polymers during water chlorination
Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.
2004-01-01
The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.
Geosynthetic clay liners shrinkage under simulated daily thermal cycles.
Sarabadani, Hamid; Rayhani, Mohammad T
2014-06-01
Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.
Removal of waterborne microorganisms by filtration using clay-polymer complexes.
Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda
2014-08-30
Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB
Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin
2012-01-01
The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515
Virta, R.L.
2001-01-01
Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.
Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer
1993-08-01
Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements
ERIC Educational Resources Information Center
Martin, Doris Marie
1995-01-01
Discusses the tactile and kinesthetic areas of learning children experience when using clay. Includes practical tips for using and storing clay for preschool use and notes the differences between potters' clay and play dough. (HTH)
Liu, Weiping; Gan, Jianying; Yates, Scott R
2002-07-03
Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.
Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.
Kim, Donghyun; Lee, Hoik; Sohn, Daewon
2014-08-01
A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.
Pourmohammadbagher, Amin; Shaw, John M
2015-09-15
Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.
The use of fortified soil-clay as on-site system for domestic wastewater purification.
Oladoja, N A; Ademoroti, C M A
2006-02-01
The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.
Impact-Induced Clay Mineral Formation and Distribution on Mars
NASA Technical Reports Server (NTRS)
Rivera-Valentin, E. G.; Craig, P. I.
2015-01-01
Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.
Effects of biochar on hydraulic conductivity of compacted kaolin clay.
Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung
2018-03-01
Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas breakthrough and emission through unsaturated compacted clay in landfill final cover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.W.W.; Chen, Z.K.; Coo, J.L.
Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6 m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6 m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions)« less
Fogler, H. Scott; Srinivasan, Keeran R.
1990-01-01
A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.
Virta, R.L.
1998-01-01
Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.
Termites utilise clay to build structural supports and so increase foraging resources
Oberst, Sebastian; Lai, Joseph C. S.; Evans, Theodore A.
2016-01-01
Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites. PMID:26854187
NASA Astrophysics Data System (ADS)
Curry, Kenneth J.; Bennett, Richard H.; Mayer, Lawrence M.; Curry, Ann; Abril, Maritza; Biesiot, Patricia M.; Hulbert, Matthew H.
2007-04-01
We employed direct visualization of organic matter (OM) sequestered by microfabric signatures in organo-clay systems to study mechanisms of OM protection. We studied polysaccharides, an abundant class of OM in marine sediments, associated with the nano- and microfabric of clay sediment using a novel application of transmission electron microscopy, histochemical staining (periodic acid-thiosemicarbazide-silver proteinate), and enzymatic digestion techniques. We used two experimental organo-clay sediment environments. First, laboratory-consolidated sediment with 10% chitin (w/w) added was probed for chitin before and after digestion with chitinase. Second, fecal pellets from the polychaete Heteromastus filiformis were used as a natural environment rich in clay and polysaccharides. Sections of this material were probed with silver proteinate for polysaccharides before and after digestion with a mixture of enzymes (amylase, cellulase, chitinase, dextranase, and pectinase). In both environments, chitin or other polysaccharides were found within pores, bridging clay domains, and attached to clay surfaces in undigested samples. Digested samples showed chitin or polysaccharides more closely associated with clay surfaces and in small pores. Our results imply protective roles for both sorption to clay surfaces and encapsulation within clay microfabric signatures.
Reconstruction of a digital core containing clay minerals based on a clustering algorithm.
He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling
2017-10-01
It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.
Mineral resource of the Month: Clay
Virta, Robert L.
2010-01-01
Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.
Field trip guidebook on environmental impact of clays along the upper Texas coast
NASA Technical Reports Server (NTRS)
Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay
1991-01-01
The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.
Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems
NASA Technical Reports Server (NTRS)
Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.
2007-01-01
Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.
Virta, R.L.
2013-01-01
Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.
Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.
Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie
2016-06-21
Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.
Sartor, Lucas Resmini; de Azevedo, Antonio Carlos; Andrade, Gabriel Ramatis Pugliese
2015-01-01
In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared by mixing 0.4 mol L(-1) NaOH and 0.2 mol L(-1) AlCl3.6H2O solutions. Intercalated clays were heated to obtain the pillared clay, and X-ray diffractometry (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy and N2 sorption/desorption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from an aqueous solution and to characterize the interaction between adsorbent and adsorbate. The results indicate that the natural clay has a basal spacing of 1.26 nm, whereas the pillared clays reached 1.78 nm (500°C) and 1.80 nm (350°C) after calcination. XRF analysis revealed an increase in the Al3+ in the pillared clay as compared to the natural clay. The surface area and pore volume (micro and mesoporous) were higher for the pillared clays. Experimental data from the adsorption experiment were fit to Langmuir and Freundlich and Temkin adsorption models, and the former one was the best fit (highest r2 value) for all the clays and lower standard deviation (Δg%) for the natural clay. On the other hand, the Temkin model exhibited Δg% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich model revealed that the bond between the metal and the clay are weak, characterizing a physisorption.
Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.
Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V
2018-07-01
In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.
Adsorption of dyes using different types of clay: a review
NASA Astrophysics Data System (ADS)
Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon
2017-05-01
Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.
Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.
Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun
2015-11-01
Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.
Reducing Risk in Horizontal Directional Drilling (HDD) in Soft Sedimentary Environments
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Skonberg, E.
2017-12-01
This is a focus on the applied outcome of geologic reports and the scale of near surface geologic process which affect the success of horizontal directional drilling (HDD) operations. Often there is too little data to fully characterize the subsurface along the drilled hole. Adding uncertainty is the exploration borehole is typically vertical while the drill path orientation of the HDD is not. The stratigraphic principle of original horizontality is heavily relied upon when interpreting the geology of the drill path and for good reason because of the depositional processes involved. However, the scale of secondary sedimentary processes, specifically zones of induration and their potential effects on the HDD can be at a scale or frequency that is not properly sampled during the geotechnical investigation. This lack of direct evidence could lead geologists and designers not to include these low-frequency phenomena in their risk analysis. For HDD planning and design, the industry routinely generalizes the earth materials to be encountered as soft or hard. This use of inexact, colloquial phrasing paints a picture of the a nearly homogeneous drilling site. Even though a majority of the site can be characterized as a low-strength or high-strength material, the diagenesis of sediments can include zones with wide-ranging strengths that can negatively impact the rate of penetration, the ability to steer and bore hole stability. In this generalization, soft is a majority of low strength or unconsolidated material (sands, silts, and clays). This does not preclude concretions and other indurated lenticular features that are widespread in the Gulf Coast states. This investigation reviews several formations commonly encountered during medium to large diameter (>10 inches) HDD operations. The Bashi formation with surface exposures in Mississippi and Alabama; the Wilcox Group in southern Mississippi and central Louisiana; the Cook Mountain Formation; the Hatchetigbee formation and Catahoula Formation of Louisiana and Mississippi were reviewed and potential HDD drilling and pull back complications are discussed.
ERIC Educational Resources Information Center
Lisitano, Larry F.; And Others
1983-01-01
Three student projects using clay are discussed. These include a ceramic wall panel with an eagle motif, clay vessels formed by coiling clay, and clay puppets made with light bulbs as armatures. Instructions on materials, forming techniques, and finishing are given. (IS)
Clay mineral formation and transformation in rocks and soils
Eberl, D.D.
1983-01-01
Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.
Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R
2005-01-01
Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.
Clay mineral type effect on bacterial enteropathogen survival in soil.
Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M
2014-01-15
Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.
Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.
Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I
2018-03-01
Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Virta, R.L.
2011-01-01
The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.
Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim
2016-08-01
Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS
Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites
NASA Astrophysics Data System (ADS)
Garvie, Laurence A. J.; Buseck, Peter R.
Transmission electron microscopic (TEM) and electron energy-loss spectroscopic (EELS) study of the Ivuna and Orgueil (CI), and Tagish Lake (C2 ungrouped) carbonaceous chondrite meteorites shows two types of C-clay assemblages. The first is coarser-grained (to 1 μm) clay flakes that show an intense O K edge from the silicate together with a prominent C K edge, but without discrete C particles. Nitrogen is common in some clay flakes. Individual Orgueil and Tagish Lake meteorite clay flakes contain up to 6 and 8 at% C, respectively. The C K-edge spectra from the clays show fine structure revealing aromatic, aliphatic, carboxylic, and carbonate C. The EELS data shows that this C is intercalated with the clay flakes. The second C-clay association occurs as poorly crystalline to amorphous material occurring as nanometer aggregates of C, clay, and Fe-O-rich material. Some aggregates are dominated by carbonaceous particles that are structurally and chemically similar to the acid insoluble organic matter. The C K-edge shape from this C resembles that of amorphous C, but lacking the distinct peaks corresponding to aliphatic, carboxylic, and carbonate C groups. Nanodiamonds are locally abundant in some carbonaceous particles. The abundance of C in the clays suggest that molecular speciation in the carbonaceous chondrites is partly determined by the effects of aqueous processing on the meteorite parent bodies, and that clays played an important role. This intricate C-clay association lends credence to the proposal that minerals were important in the prebiotic chemical evolution of the early solar system.
Intercalated layered clay composites and their applications
NASA Astrophysics Data System (ADS)
Phukan, Anjali
Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...
The surface modification of clay particles by RF plasma technique
NASA Astrophysics Data System (ADS)
Lee, Sang-Keol
In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.
Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay
NASA Astrophysics Data System (ADS)
Cui, D.; Xiang, W.
2011-12-01
The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film
CEC-normalized clay-water sorption isotherm
NASA Astrophysics Data System (ADS)
Woodruff, W. F.; Revil, A.
2011-11-01
A normalized clay-water isotherm model based on BET theory and describing the sorption and desorption of the bound water in clays, sand-clay mixtures, and shales is presented. Clay-water sorption isotherms (sorption and desorption) of clayey materials are normalized by their cation exchange capacity (CEC) accounting for a correction factor depending on the type of counterion sorbed on the mineral surface in the so-called Stern layer. With such normalizations, all the data collapse into two master curves, one for sorption and one for desorption, independent of the clay mineralogy, crystallographic considerations, and bound cation type; therefore, neglecting the true heterogeneity of water sorption/desorption in smectite. The two master curves show the general hysteretic behavior of the capillary pressure curve at low relative humidity (below 70%). The model is validated against several data sets obtained from the literature comprising a broad range of clay types and clay mineralogies. The CEC values, derived by inverting the sorption/adsorption curves using a Markov chain Monte Carlo approach, are consistent with the CEC associated with the clay mineralogy.
Sorption-desorption behavior of PCP on soil organic matter and clay minerals.
Pu, Xunchi; Cutright, Teresa J
2006-08-01
Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.
Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky
Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield
1962-01-01
The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram mixtures of kaolinite, illite, and mixed-layer clays by leaching in swamps to the deposition of the beds overlying the clay. The refractory properties of the clay vary directly with the purity of the kaolinite, and refractoriness decreases as the proportions of illite and mixed-layer clays increase. Certain nonclay minerals, chiefly siderite, pyrite, and iron oxide-bearing minerals, also act as fiuxes, reducing the refractory properties of the clay. The entire resources of clay in the Olive Hill clay bed are roughly and tentatively estimated to include 105,000,000 tons in the Haldeman quadrangle and 175,000,000 tons in the Wrigley quadrangle. Much of this clay is of poor quality and the amount that is better than the minimum requirements for use in refractories is probably about 30,000,000 tons. Only a fraction of this tonnage is suitable for superheat-duty products. Limestone is the only nonmetallic mineral resource other than refractory clay that has been developed in the two quadrangles, but 1arge amounts of shale suitable for use in making lightweight aggregate and structural clay products may also be present. Most of the limestone, which is quarried. in both quadrangles, is used for road-metal, concrete aggregate, and agriculture stone, but some of the limestone is of the quality that would be suitable for other uses. Virtually all the Mississippian Beech Creek limestone of Malott, 1919 which is as much as 18 feet thick, consists of high-calcium limestone. Shale beds that appear most favoralble for making lightweight aggregate are in the shale facies of the Lee formation of Pennsylvanian age. Shale that is probably suitable for structural clay products is present in the shale flacles of the Lee formation and in the Muldraugh formation of Mississippian age. Several dry holes have been drilled in search for oil and gas within the area of the two quadrangles. Though no commercial production was ever attained, one well furnished a supply of gas f
Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite
NASA Technical Reports Server (NTRS)
Miller, Sandi G (Inventor)
2013-01-01
A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.
1989-10-01
montmorillonite enhanced the growth of smooth brome grass. Topsoil, the clays attapulgite and kaolinite , and the commercial products Agrosoke anj Stawetwere...clays bentonite, attapulgite, kaolinite , and montmorillonite . Trade name and company addresses for the clays are listed in Table 1. Agrosoke and Stawet...desertcoZa, G. etunicatwn, and G. intraradice8. The clays attapulgite, ben- tonite, kaclinite,/and montmorillonite from various commercial sources were
Process for the preparation of organoclays
Chaiko, David J.
2004-11-23
A method for preparing organoclays for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a specific amount of polymeric hydrotrope, ranging from 0.1 to 15 weight percent relative to the weight of the clay, is adsorbed onto the clay surface. Quaternary amine exchange is also performed on the clay to modify the surface hydrophilic/lipophilic balance (HLB) of the clay.
Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".
Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie
2014-01-01
Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.
NASA Astrophysics Data System (ADS)
Suwanich, Parkorn
Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.
Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”
Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie
2014-01-01
Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022
NASA Astrophysics Data System (ADS)
Niknezhad, Setareh
The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.
Impact of clay minerals on sulfate-reducing activity in aquifers
Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.
2004-01-01
Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.
NASA Astrophysics Data System (ADS)
Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua
2012-12-01
This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.
Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.
Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan
2015-06-02
To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.
NASA Astrophysics Data System (ADS)
Londono, S. C.; Williams, L. B.
2013-12-01
The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2. Besides being toxic at high concentrations, these species affect the electrophoretic interactions between clay and bacteria surfaces. Additionally, the cation exchange neutralizes the clay surface charge thus modifying further the behavior of particles in suspension. Therefore, we evaluated the clay and bacteria zeta potential (ζ) as an index for possible electrostatic forces and modeled the total interactions using DLVO theory. We suspended the particles in water equilibrated with clay (leachate). Results show that at pH 4, the ζ of clays is -14 mV while it is -3mV for bacteria. The divalent ions and trivalent Aluminum, present in the AMZ leachate, compress the thickness of the double layer (hydration shell) thus decreasing electrostatic repulsion and allowing particles to come closer. The proximity of particles increases the probability of attractive forces to bind clays and cells. In summary, results indicate that a process other than simple chemical transfer from clay to bacteria is operating. The electrostatic attraction and physical proximity may enhance the toxic action of metals and interfere with the membrane properties or processes.
Clay Mineral Structure Similar to Clays Observed in Mudstone on Mars
2013-12-09
This schematic shows the atomic structure of the smallest units that make up the layers and interlayer region of clay minerals. This structure is similar to the clay mineral in drilled rock powder collected by NASA Curiosity Mars rover.
Bentonite Clay as a Natural Remedy: A Brief Review
2017-01-01
Background: From old times, the human kind has used clays, externally or internally, for maintaining body health or treating some diseases. Meanwhile there are few scientific articles reviewing the beneficial effects of clays on body function. Bentonite clay is one of the available clays in nature, used as traditional habits, and remedies in many cultures. Methods: These articles explored among 2500 scientific articles published in PubMed to sort the scientific works have been done on the effects of this clay on body function (it was about 100 articles). Results: Bentonite has a broad range of action on different parts of body. Conclusion: As traditional remedies seem to have a deep root in maintaining body health, it merits doing more research works on bentonite clay and its impacts on body function. PMID:29026782
CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-09-22
Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation
NASA Astrophysics Data System (ADS)
Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.
2017-09-01
Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.
Mars, clays and the origins of life
NASA Technical Reports Server (NTRS)
Hartman, Hyman
1989-01-01
To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.
Burnt clay magnetic properties and palaeointensity determination
NASA Astrophysics Data System (ADS)
Avramova, Mariya; Lesigyarski, Deyan
2014-05-01
Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The palaeointensity experiments for the samples formed from the ancient baked clays completely failed to give relibable results.
Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V
2008-01-01
Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials. PMID:27877975
Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.
Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi
2015-12-01
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.
Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus
2015-01-01
The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.
The Clay Shoveler's Fracture: A Case Report and Review of the Literature.
Posthuma de Boer, Jantine; van Wulfften Palthe, Alexander F Y; Stadhouder, Agnita; Bloemers, Frank W
2016-09-01
A clay-shoveler's fracture is a very rarely occurring stress-type avulsion fracture of the lower cervical or upper thoracic spinous processes owing its name to the clay shovelers of past times. Currently, this type of injury is mainly encountered in individuals practicing sports involving rotational movements of the upper spine. We present a case of a man sustaining a clay-shoveler's injury during his work in a horse-riding school. Treatment consisted of a period of rest and analgesics, followed by mobilization as was tolerated. We give a brief historical account of clay shoveler's fractures. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Clay-shoveler's fractures are frequently overlooked due to their rareness; however, they have specific clinical features that should alert an attending physician to set the correct diagnosis. This report describes a typical case of a clay-shoveler's fracture, relates to the historical entity of clay-shoveler's fractures, and summarizes existing literature on this topic. Copyright © 2016 Elsevier Inc. All rights reserved.
Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian
2016-03-01
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.
Özkan, İlker; Yayla, Zeliha
2016-03-01
The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.
1981-01-01
Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.
Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis
NASA Astrophysics Data System (ADS)
Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.
2016-07-01
Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.
Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.
Ferrario, Joseph; Byrne, Christian; Schaum, John
2007-04-01
Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.
Pan, Gang; Zhang, Ming-Ming; Chen, Hao; Zou, Hua; Yan, Hai
2006-05-01
Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.
NASA Technical Reports Server (NTRS)
Liang, Maggie
2004-01-01
Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.
Ugochukwu, Uzochukwu C; Fialips, Claire I
2017-07-01
Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kauffman, S.J.; Herman, J.S.; Jones, B.F.
1998-01-01
The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The factors influencing water compositions were determined.
Results from Testing of Two Rotary Percussive Drilling Systems
NASA Technical Reports Server (NTRS)
Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi
2010-01-01
The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.
76 FR 54932 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... neutralized light naphthenic. 64742-36-5 Distillates (petroleum), clay- treated heavy paraffinic. 64742-37-6 Distillates (petroleum), clay- treated light paraffinic. 64742-38-7 Distillates (petroleum), clay- treated... agents (petroleum), spent sodium hydroxide. 64742-41-2 Residual oils (petroleum), clay- treated. 64742-42...
This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing
Toxicological evaluation of clay minerals and derived nanocomposites: a review.
Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles
2015-04-01
Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on wildlife, with laboratory trials showing contradictory outcomes. Clay minerals have different applications in the environment, thus with a strict control of the concentrations used, they can provide beneficial uses. Despite the extensive number of reports available, there is also a need of systematic in vitro-in vivo extrapolation studies, with still scarce information on toxicity biomarkers such as inmunomodulatory effects or alteration of the genetic expression. In conclusion, a case by case toxicological evaluation is required taking into account that different clays have their own toxicological profiles, their modification can change this profile, and the potential increase of the human/environmental exposure to clay minerals due to their novel applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Virta, R.L.
2000-01-01
Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.
Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.
Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P
2014-07-23
Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.
Woody plant roots fail to penetrate a clay-lined landfill: Managment implications
NASA Astrophysics Data System (ADS)
Robinson, George R.; Handel, Steven N.
1995-01-01
In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.
Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.
Wang, Meichen; Maki, Cody R; Deng, Youjun; Tian, Yanan; Phillips, Timothy D
2017-09-18
Previously, a calcium montmorillonite clay (NovaSil) included in the diet of animals has been shown to bind aflatoxin B1 (AfB1) and reduce the symptoms of aflatoxicosis. To investigate and improve the capacity and efficacy of clay-based materials as aflatoxin sorbents, we developed and tested calcium and sodium montmorillonite clays amended with nutrients including l-carnitine and choline. Also, we determined the sorption of AfB1 by isothermal analysis and tested the ability of these amended sorbents to protect adult hydra from AfB1 toxicity. The results showed that exchanging montmorillonite clays with l-carnitine and choline inhibited swelling of the clays and increased the sorption capacity and efficacy of clay surfaces for AfB1. Results from dehydroxylated and heat-collapsed clays suggested that AfB1 was primarily adsorbed in the clay interlayer, as predicted from thermodynamic calculations and computational modeling. The hydra bioassay further indicated that the modified clays can significantly protect adult hydra from AfB1 with as low as 0.005% clay inclusion. This enterosorbent therapy may also be applied to screen hazardous chemicals such as pesticides and PAHs based on similar sorption mechanisms. Taken together, enterosorbent therapy could be delivered in nutritional supplements, foods that are vulnerable to aflatoxin contamination, flavored liquids and animal feeds during emergencies and outbreaks of acute aflatoxicosis, and as a screening model for hazardous environmental chemicals.
The influence of tennis court surfaces on player perceptions and biomechanical response.
Starbuck, Chelsea; Damm, Loïc; Clarke, James; Carré, Matt; Capel-Davis, Jamie; Miller, Stuart; Stiles, Victoria; Dixon, Sharon
2016-09-01
This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.
NASA Astrophysics Data System (ADS)
Kryshchenko, V. S.; Zamulina, I. V.; Rybyanets, T. V.; Kravtsova, N. E.; Biryukova, O. A.; Golozubov, O. M.
2016-06-01
Monitoring of soil dispersivity and humus state has been performed in the stationary profile of ordinary chernozem in the Botanic Garden of the Southern Federal University in 2009-2014. The contents of physical clay and sand are almost stable in time, which indicates a quasi-static (climax) equilibrium in the soil. Another (reversible dynamic) process occurs simultaneously: seasonal and annual variation in the mass fractions of clay and silt in physical clay. Variations of humus content in the whole soil and in its physical clay are also observed on the background of seasonal changes in precipitation and temperature. A procedure has been developed for the analysis of the polydisperse soil system with consideration for the quasi-static and dynamic equilibriums. A two-vector coordinate system has been introduced, which consists of scales for changes in the contents of physical clay and physical sand in 100 g of soil and changes in the fractions of clay and silt in 100 g of physical clay. Co-measurements of two dispersivity series of soil samples—actual dynamic and calculated under quasi-static equilibrium (ideal)—have been performed. Dynamic equilibrium coefficients, which cumulatively reflect the varying proportions of physical clay and physical sand in the soil and the mass fractions of clay and silt in physical clay, have been calculated.
Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.
Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong
2018-05-01
Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7 cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.
Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki
2010-01-01
Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.
NASA Astrophysics Data System (ADS)
Schmitz, Birger; Andersson, Per; Dahl, Jeremy
1988-01-01
Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.
Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle
NASA Astrophysics Data System (ADS)
Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.
2003-03-01
Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.
Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi
2017-06-01
The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.
2010-10-21
Preprints. 14. ABSTRACT Montmorillonite -smectite clay consists of anisotropic clay platelets, generally a nanometer in thickness by hundreds of...Cation Chemistry and Temperature GregO!)’ R. Yandek, Palrick N. RUlh. Joseph M. Mabry Montmorillonite -smedite clay consists 01 anisotropic clay
40 CFR 710.46 - Chemical substances for which information is not required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... neutralized light naphthenic 64742-36-5 Distillates (petroleum), clay-treated heavy paraffinic 64742-37-6 Distillates (petroleum), clay-treated light paraffinic 64742-38-7 Distillates (petroleum), clay-treated middle... (petroleum), spent sodium hydroxide 64742-41-2 Residual oils (petroleum), clay-treated 64742-42-3 Hydrocarbon...
Clay Animals and Their Habitats
ERIC Educational Resources Information Center
Adamson, Kay
2010-01-01
Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…
ERIC Educational Resources Information Center
Pedro, Cathy
2011-01-01
In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.
Bolduc, F.; Afton, A.D.
2005-01-01
Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As predicted, carbon content was higher in IF marsh ponds than in ponds of other impounded marsh types. In contrast to our predictions, C:N ratio and sediment hardness were lowest and silt-clay fraction and O2 depth were highest in IO and IM marsh ponds. Our results indicated that SMM has affected physical properties of sediments in coastal marsh ponds. Moreover, sediments in IF marsh ponds were affected more so than were those in IO and IM marsh ponds. Our results, in conjunction with those of previous studies, indicated that sediments of marsh ponds and emergent plant zones differed greatly. We predict that changes in pond sediments due to SMM will promote greater epifaunal macroinvertebrate biomass, which in turn should attract larger populations of wintering waterbirds. However, waterbirds that filter or probe soft sediments may be negatively affected by SMM because of the expected decrease in infaunal invertebrate biomass. ?? Springer 2005.
Effects of Kaolin Clay on the Mechanical Properties of Asphaltic Concrete AC14
NASA Astrophysics Data System (ADS)
Abdullah, M. E.; Ramadhansyah, P. J.; Rafsanjani, M. H.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Warid, M. N. Mohd; Satar, M. K. I. Mohd; Aziz, Md Maniruzzaman A.; Mashros, N.
2018-04-01
This study investigated the effect of kaolin clay on the mechanical properties of asphaltic concrete AC14 through Marshall Stability, resilient modulus, and dynamic creep tests. Four replacement levels of kaolin clay (2%, 4%, 6%, and 8% by weight of the binder) were considered. Kaolin clay functioned as an effective filler replacement material to increase the mechanical properties of asphalt mixtures. Asphaltic concrete with 2% to 4% kaolin clay replacement level exhibited excellent performance with good stability, resilient modulus, and creep stiffness.
Greb, S.F.; Anderson, W.H.
2006-01-01
Kentucky mines coal, limestone, clay, sand and gravel. Coal mining operations are carried out mainly in the Western Kentucky Coal Field and the Eastern Kentucky Coal field. As to nonfuel minerals, Mississippian limestones are mined in the Mississippian Plateaus Region and along Pine Mountain in southeastern Kentucky. Ordovician and Silurian limestones are mined from the central part of the state. Clay minerals that are mined in the state include common clay, ceramic and ball clays, refractory clay and shale. Just like in 2004, mining activities in the state remain significant.
Virta, R.L.
2000-01-01
Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.
Khvan, Svetlana; Kim, Junkyung; Lee, Sang-Soo
2007-02-01
Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.
Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.
Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang
2010-09-01
The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.
Water-assisted extrusion of bio-based PETG/clay nanocomposites
NASA Astrophysics Data System (ADS)
Lee, Naeun; Lee, Sangmook
2018-02-01
Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.
Clays and other minerals in prebiotic processes
NASA Technical Reports Server (NTRS)
Paecht-Horowitz, M.
1984-01-01
Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.
Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray
2017-01-01
Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.
Clay facial masks: physicochemical stability at different storage temperatures.
Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles
2007-01-01
Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.
Characterisation of the wall-slip during extrusion of heavy-clay products
NASA Astrophysics Data System (ADS)
Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.
2017-01-01
During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
Reinforcement of natural rubber latex by nanosize montmorillonite clay
NASA Astrophysics Data System (ADS)
Tantatherdtam, Rattana
Based on the unique character of montmorillonite namely its layer structure and the ability of silicate particles to separate into nanometer-size platelets, natural rubber (polyisoprene)/clay composites were obtained by mixing rubber latex with clay-water dispersion and coagulating the mixture. The resulting film had greatly improved mechanical properties compared with films using micron-sized fillers. Further, both modulus and toughness were improved; in many composite system an improvement in modulus leads to a loss of toughness. X-ray diffraction results indicated that clay platelets dispersed in the rubber matrix on the nanoscale level with some macromolecules intercalated into the clay gallery. The observed considerable improvement in mechanical properties, coupled with a theoretical model of composite modulus suggests a dispersed structure of clay in the composite. While not all clay particles are exfoliated, data suggest that a reasonable fraction of exfoliated materials is required to explain the experimental results.
The clays of the United States east of the Mississippi River
Ries, Henrich
1903-01-01
Since clays vary mineralogically they vary also chemically, but the plasticity may remain the same through a wide range of chemical composition, and this property is evidently not dependent on the chemical composition alone, but is due rather to some physical cause. The plasticity may be destroyed by heating the clay to a sufficiently high temperature to drive off the chemically combined water. Although varying in their mineral composition, most clays are supposed to contain more or less of the mineral kaolinite (a hydrated silicate of alumina), which is commonly referred to as the clay base or clay substance. The adoption of the latter term has probably arisen from the fact that many have 'considered this mineral to be the cause of plasticity, an idea now known to be somewhat incorrect, because some of the most plastic clays contain but small quantities of kaolinite, and vice versa.
California Bearing Ratio (CBR) test on stabilization of clay with lime addition
NASA Astrophysics Data System (ADS)
Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.
2018-02-01
Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.
Soil clay content underlies prion infection odds
David Walter, W.; Walsh, Daniel P.; Farnsworth, Matthew L.; Winkelman, Dana L.; Miller, Michael W.
2011-01-01
Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. PMID:21326232
Soil clay content underlies prion infection odds.
David Walter, W; Walsh, Daniel P; Farnsworth, Matthew L; Winkelman, Dana L; Miller, Michael W
2011-02-15
Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.
ERIC Educational Resources Information Center
Skophammer, Karen
2010-01-01
Clay is one of the most satisfying mediums for children to work with. It's relatively inexpensive, and the texture and changes that take place with the clay during firing make it irresistible. Molding clay from rolled-out slabs of clay is an easy way to make simple, shallow vessels or display pots. In this article, the author describes how her…
Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams
Siriwardane, Ranjani V.
2016-05-10
Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Clay-Enriched Silk Biomaterials for Bone Formation
Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.
2011-01-01
The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864
Clay energetics in chemical evolution
NASA Technical Reports Server (NTRS)
Coyne, L. M.
1986-01-01
Clays have been implicated in the origin of terrestrial life since the 1950's. Originally they were considered agents which aid in selecting, concentrating and promoting oligomerization of the organic monomeric substituents of cellular life forms. However, more recently, it has been suggested that minerals, with particular emphasis on clays, may have played a yet more fundamental role. It has been suggested that clays are prototypic life forms in themselves and that they served as a template which directed the self-assembly of cellular life. If the clay-life theory is to have other than conceptual credibility, clays must be shown by experiment to execute the operations of cellular life, not only individually, but also in a sufficiently concerted manner as to produce some semblance of the functional attributes of living cells. Current studies are focussed on the ability of clays to absorb, store and transfer energy under plausible prebiotic conditions and to use this energy to drive chemistry of prebiotic relevance. Conclusions of the work are applicable to the role of clays either as substrates for organic chemistry, or in fueling their own life-mimetic processes.
Rees, Andrew R.; Raine, Robert J.; Rothwell, Gar W.; Hollingworth, Neville T.J.
2017-01-01
Most knowledge concerning Mesozoic Era floras has come from compression fossils. This has been augmented in the last 20 years by rarer permineralized material showing cellular preservation. Here, we describe a new genus of anatomically preserved gymnosperm seed from the Callovian–Oxfordian (Jurassic) Oxford Clay Formation (UK), using a combination of traditional sectioning and synchrotron radiation X-ray micro-tomography (SRXMT). Oxfordiana motturii gen. et sp. nov. is large and bilaterally symmetrical. It has prominent external ribs, and has a three-layered integument comprising: a narrow outer layer of thick walled cells; a thick middle parenchymatous layer; and innermost a thin fleshy layer. The integument has a longitudinal interior groove and micropyle, enveloping a nucellus with a small pollen chamber. The large size, bilateral symmetry and integumentary groove demonstrate an affinity for the new species within the cycads. Moreover, the internal groove in extant taxa is an autapomorphy of the genus Cycas, where it facilitates seed germination. Based upon the unique seed germination mechanism shared with living species of the Cycadaceae, we conclude that O. motturii is a member of the stem-group lineage leading to Cycas after the Jurassic divergence of the Cycadaceae from other extant cycads. SRXMT—for the first time successfully applied to fossils already prepared as slides—reveals the distribution of different mineral phases within the fossil, and allows us to evaluate the taphonomy of Oxfordiana. An early pyrite phase replicates the external surfaces of individual cells, a later carbonate component infilling void spaces. The resulting taphonomic model suggests that the relatively small size of the fossils was key to their exceptional preservation, concentrating sulfate-reducing bacteria in a locally closed microenvironment and thus facilitating soft-tissue permineralization. PMID:28875075
NASA Astrophysics Data System (ADS)
Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.
2016-09-01
Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.
Effects of clay dispersion on aquifer storage and recovery in coastal aquifers
Konikow, Leonard F.; August, L.L.; Voss, C.I.
2001-01-01
Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.
Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils
NASA Astrophysics Data System (ADS)
Farahani, Elham; Emami, Hojat; Keller, Thomas
2018-01-01
In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).
Evaluation of the healing activity of therapeutic clay in rat skin wounds.
Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael
2014-10-01
The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Wei-Hsing
2017-04-01
Clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation behavior of clay barrier, with emphasis on the coupling effects of heat and moisture of buffer material in the near-field of a repository during groundwater intrusion processes. A locally available clay named "Zhisin clay" and a standard bentotine material were adopted in the laboratory program. Water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the buffer material. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. The finite element program ABAQUS was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on Zhisin clay. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. It was found that, due to the variation in suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.
Rheological and thermal properties of polylactide/silicate nanocomposites films.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal
2010-03-01
Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications.
Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals
NASA Astrophysics Data System (ADS)
Bourg, I. C.; Gadikota, G.; Dazas, B.
2016-12-01
Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).
NASA Astrophysics Data System (ADS)
Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi
2013-03-01
In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.
Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials
NASA Astrophysics Data System (ADS)
West, L. J.; Handley, K.
High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.
Recent advances in clay mineral-containing nanocomposite hydrogels.
Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao
2015-12-28
Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.
Iodide uptake by negatively charged clay interlayers?
Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng
2015-09-01
Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.
2017-06-01
Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.
Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)
NASA Astrophysics Data System (ADS)
Trabelsi, Wafa; Tlili, Ali
2017-05-01
This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.
Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites
Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen
2010-01-01
Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.
Evaluation of the release of dioxins and PCBs during kiln-firing of ball clay.
Broadwater, Kendra; Meeker, John D; Luksemburg, William; Maier, Martha; Garabrant, David; Demond, Avery; Franzblau, Alfred
2014-01-01
Ball clay is known to be naturally contaminated with high levels of polychlorinated di-benzo-p-dioxins (PCDDs). This study evaluated the potential for PCDD, polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) release during the kiln firing of ball clay in an art studio. Toxic equivalence (TEQ) were calculated using World Health Organization (WHO) 2005 toxic equivalence factors (TEF) and congener concentrations. Ten bags of commercial ball clay were found to have an average TEQ of 1,370 nanograms/kilogram (ng kg(-1)) dry weight (dw), almost exclusively due to PCDDs (99.98% of TEQ). After firing, none of the 29 dioxin-like analytes was measured above the limits of detection (LOD) in the clay samples. Air samples were taken during firings using both low-flow and high-flow air samplers. Few low-flow air samples contained measurable levels of dioxin congeners above the LOD. The mean TEQ in the high volume air samples ranged from 0.07 pg m(-3) to 0.21 pg m(-3) when firing ball clay, and was 0.11 pg m(-3) when no clay was fired. These concentrations are within the range measured in typical residences and well-controlled industrial settings. The congener profiles in the high-flow air samples differed from the unfired clay; the air samples had a considerable contribution to the TEQ from PCDFs and PCBs. Given that the TEQs of all air samples were very low and the profiles differed from the unfired clay, it is likely that the PCDDs in dry ball clay were destroyed during kiln firing. These results suggest that inhalation of volatilized dioxins during kiln firing of dry ball clay is an unlikely source of exposure for vocational and art ceramicists. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane
NASA Astrophysics Data System (ADS)
Darmawan, A.; Widiarsih
2018-04-01
The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.
NASA Astrophysics Data System (ADS)
Adatte, T.; John, C. M.; Flemings, P. B.; Behrmann, J.
2005-12-01
In this paper we present the overview and preliminary results of the analysis of clay minerals in two mini basins drilled during IODP Expedition 308. The goal of our project is to explore the vertical and temporal trends in clay mineralogy in the Ursa Basin and the Brazos-Trinity basin #4. The Brazos-Trinity basin was the sink for sands and clays carried by the Brazos and Trinity Rivers, while the Ursa basin was the sink for sediments carried by the Mississippi river. Reconstructing clay minerals (phyllosilicates <2μm in size) accumulations at these locations could thus potentially yield information on changes in the transport and the source of the siliclastic material transported in the course of the Pleistocene by these three rivers. Moreover, because the type of clay formed in soils through weathering processes largely depend on temperature and amount of precipitation, the dataset generated could provide clues on past climate changes. Some of the mechanisms that are hypothesized to play a major role in controlling clay accumulation in the basins investigated are reworking of clays on the American continent (controlled at the time-scale investigated here by changes in precipitation) and turbidity current deposition (controlled mainly by sea-level changes and thus glacio-eustasy). Finally, a major focusing point of Expedition 308 was sediment physical properties in an overpressured basin. Because each clay mineral specie has a specific average grain sizes, physical properties and cation exchange capacity, the clay mineral composition of the sediment investigated here (dominated by clay-sized particles) may partly control how these sediments react to changes in pressure and temperature. Thus, clay mineral data could contribute to our understanding of the physical properties of the sediments in overpressured basins, and collaborations with geotechnical scientist are planned.
[Mechanism of tritium persistence in porous media like clay minerals].
Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni
2011-03-01
To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.
NASA Astrophysics Data System (ADS)
R, Halimahtussaddiyah; Mashuni; Budiarni
2017-05-01
Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.
Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi
2015-11-01
Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.
NASA Astrophysics Data System (ADS)
Somwangthanaroj, Anongnat
Polymer/clay nanocomposites have the potential usefulness in industrial applications such as automotive and packaging due to their strong, light-weight and inexpensive properties. However, to respond to needs of various applications it is crucial to understand the crystallization and rheological properties of these materials. Our initial hypothesis was that the processing conditions such as shear rate, shear strain and temperature affect the crystallization kinetics of intercalated polypropylene nanocomposites. Another hypothesis was that the compatibilizer, PP-MA, affects the role of the nucleating agent, sodium benzoate. The final hypothesis was that the rheological properties of nanocomposites depend on the degree of clay dispersion. By means of time-resolved small-angle light scattering, we were able to demonstrate that clay enhances the crystallization kinetics in nanocomposites and its result differs significantly from that of pure polypropylene. Characteristic crystallization times are extracted from the time evolution of integral measures of the angularly dependent parallel polarized and cross polarized light scattering intensity. Flow acceleration of crystallization kinetics has been observed for the polymer nanocomposites at applied strain rates for which flow has only modest effect on polypropylene crystallization. Furthermore, we were able to conclude that the addition of the nucleating agent sodium benzoate in the presence of polypropylene grafted maleic anhydride is not effective in accelerating crystallization. The rheological properties of two types of polypropylene/clay nanocomposites, with different degrees of clay dispersion have been measured in both linear and non-linear viscoelastic regime. In the linear viscoelastic regime, the storage and loss modulus of nanocomposites increases when clay loading increases. The storage and loss modulus of unsonicated nanocomposites are higher than the sonicated ones because the ultrasonic processing alters the structure of clay and polymer blend in sonicated nanocomposite. Non-linear rheology addresses the possible structure of particulate domains of clays in polymers. From this research, we demonstrated the possible effect of clay and compatibilizer on the crystallization kinetics and the effect of structure of clay and polymer matrix on rheological properties. To understand how clay enhances the mechanical properties, we still need to investigate where the clay actually resides and how the polymer crystallite forms.
Glowing clay: Real time tracing using a suite of novel clay based fluorescent tracers
NASA Astrophysics Data System (ADS)
Hardy, Robert; Quinton, John; Pates, Jackie; Coogan, Mike
2015-04-01
Clay is one of the most mobile fractions of soil due to its small particle size. It is also known to sorb many chemicals, such as nutrients (notably phosphorus), agrochemicals and heavy metals. The movement of clay is therefore linked with the transport and fate of these substances. A novel fluorescent clay tracing suite has been produced, together with an imaging technique. This suite consists of qualitative clay tracers, using rhodamine based fluorophores, and quantitative clay tracers, using metal based fluorophores. Efforts have also been made to allow integration of commercially available tracers, which are silt and sand sized. The clay tracers exploit the high affinity that montmorillonite has for Rhodamine B and Ru(bpy)3. This allows for an extremely thin layer of the fluorophore to be sorbed onto the clay's surface, in much that same way as materials in the natural environment will bind to clay. The tracer that is produced retains key chemical and physical properties of clay, such as size, shape and density. The retention of these micro-properties results in the retention of macro-properties, such as tendency to aggregate and cracking on drying. Imaging techniques have been developed to analyse these tracers. The imaging system uses diffused laser light to excite the tracer and a modified DSLR camera to image the soil surface. The images have been compiled into a time lapse video showing the movement of clay over the course of a rainfall event. This is the first time that the quantitative movement of clay has been recorded over a soil surface in real time. 4D data can be extracted from the images allowing the spatial location and intensity of tracer to be monitored over time, with mm precision and on the timescale of seconds. As the system can also work with a commercial tracer it is possible to investigate the movement of particles of almost any size and over a range of scales from soil box to hillside. This allows users to access this technique without the need to produce the tracer themselves.
NASA Astrophysics Data System (ADS)
Hallam, D. F.; Maher, B. A.
1994-01-01
Palaeomagnetic measurements were made on samples extracted from a short sequence of early Pleistocene estuarine clays, now exposed in a sea cliff near Sheringham on the north Norfolk coast, UK. On the basis of earlier palynological work, these clays had been ascribed a Pastonian (late Tiglian) age. The clays show marked changes in colour, from reddish-brown at the top of the unit, to blue-grey in the middle, and grey-brown at the base. The palaeomagnetic data vary in close association with these colour changes. The top and basal brown clays show scattered normal directions of low intensity, while the middle blue clays show strongly clustered reversed directions, of much higher intensities. Some samples taken from the boundary between the middle blue clays and upper red clays show upon demagnetisation a normal overprint on a stable reversed polarity. Using high-gradient magnetic extraction, magnetic concentrates have been obtained from the strongly magnetic middle blue clays. The presence of iron sulphide minerals in these concentrates was identified using energy-dispersive X-ray analysis during scanning electron microscopy. More specifically, X-ray diffraction identifies greigite as the only detectable ferrimagnetic mineral in the magnetic concentrates. Rock magnetic measurements show clear qualitative differences in the magnetic mineralogies of the three clay subunits, but absolute identification of the magnetic mineralogy of the weakly magnetic upper and basal brown clays has not yet been possible. We interpret the sequence as a primary reversed polarity record. This record is carried by the iron sulphide greigate as a chemical remanence acquired during `syn'-depositional reduction of iron via the decomposition of organic material in these anoxic tidal clays. Subsequently, the upper and basl subunits of the clay have been oxidised by permeation of groundwater from the adjacent coarse-grained sediments. Most of the griegite in the oxidised margins of the clay has been altered as a result, to a new, less efficient magnetic recording material which thus carries a later, scattered, low-intensity, normal overprint.
NASA Astrophysics Data System (ADS)
Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Alléon, Julien; Chenu, Claire
2016-04-01
Better understanding the mechanisms responsible for the pluri-decadal persistence of carbon in soils requires well constraining the dynamics, the distribution and the chemical nature of both the soil organic carbon (SOC) and the associated mineral phases. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here, benefiting from the unique opportunity offered by an INRA long term bare fallow (LTBF) experiment having started in 1928 in Versailles (France), we report the in-situ characterization of SOC dynamics in four clay fractions of this silty loam soil (total clays [TC, <2μm], coarse clays [CC, 0.2-2μm], intermediate clays [IC, 0.05-0.2μm] and fine clays [FC, 0-0.05μm]). The IC and FC fractions only contain smectite and illite/smectite mixed-layered clay minerals while the CC fraction also contains illite and kaolinite. In the absence of any carbon input, the plant-free LTBF clay fractions from Versailles progressively lost SOC during the first 50 years of the experiment, until they reached a seemingly stable concentration. Of note, the investigated clay fractions did not lose the same amount of SOC and do not exhibit the same final carbon concentrations. The decrease of the organic C:N ratios with LTBF duration corresponds to a progressive enrichment in N-rich SOC for all fractions which can be attributed to microbial material. Even though the speciation of SOC appears to only slightly evolve with LTBF duration, an enrichment in carboxyl and carbonyl groups is revealed by bulk-scale C-NEXAFS data for SOC from all clay fractions. In addition, STXM-based NEXAFS investigations at the submicrometer scale reveal three types of SOC-clay assemblages in addition to clay-free SOC and organic-free clays. While SOC appears mostly adsorbed onto clay surfaces within the IC and FC fractions, other protection mechanisms occur within the CC fraction. Altogether, the present study suggests that smectite have more efficient protection capabilities than those of illite and kaolinite.
Microbe-Clay Mineral Reactions and Characterization Techniques
NASA Astrophysics Data System (ADS)
Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.
2008-12-01
Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides, solvents, explosives, and nitroaromatic and polychlorinated compounds. Inorganic contaminants include Cr(VI), U(VI), and Tc(VII). Despite significant efforts, our understanding of mechanisms of chemical and microbial reduction of ferric iron in clay minerals is still limited. While some studies have presented evidence for a solid-state reduction mechanism, others argue that the clay mineral structure dissolves when the extent of reduction is higher (greater than 30 percent). The electron transfer process is also dependent on the reducing agent. While chemical reduction of ferric iron appears to occur at the basal surfaces, bacteria appear to attack clay minerals at the edges.
Effects of simulated clay gouges on the sliding behavior of Tennessee sandston
NASA Astrophysics Data System (ADS)
Shimamoto, Toshihiko; Logan, John M.
1981-06-01
The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.
Antonelo, D S; Lancaster, N A; Melnichenko, S; Muegge, C R; Schoonmaker, J P
2017-10-01
Three experiments were conducted to determine the effect of increasing concentrations of a smectite clay on toxin binding capacity, ruminal fermentation, diet digestibility, and growth of feedlot cattle. In Exp. 1, 72 Angus × Simmental steers were blocked by BW (395 ± 9.9 kg) and randomly allotted to 3 treatments (4 pens/treatment and 6 steers/pen) to determine the effects of increasing amounts of clay (0, 1, or 2%) on performance. The clay was top-dressed on an 80% concentrate diet at a rate of 0, 113, or 226 g/steer daily to achieve the 0, 1, and 2% treatments, respectively. Steers were slaughtered at a target BW of 606 kg. In Exp. 2, 6 steers (596 ± 22.2 kg initial BW) were randomly allotted to the same 3 treatments in a replicated 3 × 3 Latin square design (21-d periods) to determine the effects of increasing amounts of clay on ruminal pH, VFA, and nutrient digestibility. In Exp. 3, 150 mg of clay was incubated in 10 mL of rumen fluid with 3 incremental concentrations (6 replicates per concentration) of aflatoxin B (AFB) or ergotamine tartate (ET) to determine binding capacity. During the first 33-d period, there was a quadratic effect of clay on ADG ( < 0.01) and G:F ( < 0.01), increasing from 0 to 1% clay and then decreasing from 1 to 2% clay. However, during the second 30-d period, clay linearly decreased ADG and G:F ( ≤ 0.03) and overall ADG, DMI, and G:F were not impacted ( ≥ 0.46). Clay linearly decreased marbling score ( = 0.05). Hepatic enzyme activity did not differ among treatments on d 0 or at slaughter ( ≥ 0.15). Clay linearly decreased ruminal lactate and propionate, linearly increased formate and the acetate:propionate ratio ( ≤ 0.04), and tended ( = 0.07) to linearly increase butyrate. Clay tended to linearly increase ( = 0.06) OM and CP apparent digestibility. Ruminal pH, urine pH, and other digestibility measures did not differ among treatments ( ≥ 0.15). Clay was able to effectively bind AFB and ET at concentrations above the normal physiological range (52 and 520 μg/mL), but proportional adsorption was decreased to 35.5 and 91.1% at 5,200 μg/mL ( < 0.01) for AFB and ET, respectively. In conclusion, clay effectively binds ruminal toxins, decreases ruminal lactate, and improves performance only during adaptation to a high-concentrate feedlot diet.
Spatially resolved nanoscale observations of soil carbon multidecadal persistence
NASA Astrophysics Data System (ADS)
Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.
2015-12-01
Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are decreasing with time, evidencing the dominant presence of microbial SOC. STXM-NEXAFS data shows that, in the fine and intermediate clay fractions, during the first 50 years of BF all mineral particles are associated with SOC. On the contrary, in the coarse clays, SOC displays more diversity: the chemical signature is more diverse and mineral particles not associated with SOC appear more quickly.
Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)
NASA Astrophysics Data System (ADS)
El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie
2017-04-01
Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.
Soil Materials and Health: An new experience for teaching
NASA Astrophysics Data System (ADS)
Del Hoyo Martínez, Carmen
2014-05-01
Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic clays in the field of the health is a source to develop numerous studies of cases in the teaching of different subjects related to the geoscience and a new opportunity to connect the learning with the reality. References -Carretero, MI 2002. Clay Minerals and Their Beneficial Effects upon Human Health. A review. Appl. Clay Sci. 21, pp. 155-163. -Choy, J.H., Choi, S.J., Oh, J.M., Park, T. 2007. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 36 pp. 122-132. -Del Hoyo, C. 2007. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 36, pp. 103-121. -Lopez-Galindo, A., Viseras Iborra, C. & Cerezo Gonzalez, P. 2005. Arcillas y salud. In: Conferencias de la XIX Reunion de la Sociedad Espanola de Arcillas. Rives, Ed., pp. 15-18.
NASA Astrophysics Data System (ADS)
Powars, D. S.; Edwards, L. E.; Kopp, R. E.; Self-Trail, J.; Schultz, A.
2009-12-01
Abrupt sedimentary changes mark the Paleocene-Eocene Thermal Maximum (PETM) in the mid-Atlantic Coastal Plain. Across the tectonic downwarp known as the Salisbury Embayment (southeastern Virginia to central New Jersey), kaolinite-rich clay (the Marlboro Clay) abruptly replaces glauconite-rich quartz sand, silt, and illite-smectite clay of the late Paleocene. Dozens of cored boreholes obtained by the USGS and other Federal and State agencies, together with geophysical logs from more than 100 boreholes, allow us to document the widespread distribution and depositional, biostratigraphic, paleoecologic, taphonomic, and tectonic characteristics of the Marlboro Clay. In Maryland and Virginia, the Marlboro Clay is a silvery-gray to pale-red plastic clay and locally includes thin laminations and thicker beds of silt, concretions, pyrite nodules, and rare shell fragments (in downdip cores). The clay is unconformity bounded with highly burrowed contacts. The lower contact is locally so bioturbated that it has been reported as gradational. The upper contact in Virginia has glauconite-rich, sand-filled burrows from the overlying Nanjemoy Formation (lower Eocene) that penetrate as much as 8.5 m down into the Marlboro Clay (total thickness only 9 m). Biostratigraphically, the Marlboro Clay is placed in calcareous nannofossil Zone NP9 (and NP10 in downdip cores) and includes the PETM marker dinocyst species Apectodinium augustum (in downdip cores). In New Jersey, a similar clay deposit is described from the subsurface; and based on consistency in lithology, biostratigraphy, stratigraphic position, isotopic composition and its magnetic properties, we apply the name Marlboro Clay to this unique clay unit throughout the Salisbury Embayment. Structure-contour and isopach maps of the present configuration of the Marlboro Clay reveal a widespread deposit with localized truncation or thinning. Tectonic folding and faulting along the inner Coastal Plain and along the James River structural zone produced syn- and post-depositional erosional thinning on uplifted sides of faults and thickening in downdropped areas. The Chesapeake Bay Impact Structure (CBIS) removed the Marlboro Clay across a large area of southeastern Virginia. Faults and folds associated with the CBIS appear to deform the clay in an outer-fracture-zone that extends up to 25-km outside the crater’s outer rim. The Marlboro Clay thickens and is slightly finer-grained in the deeper part of the Marlboro basin in where structure contours on the top-of-basement generally mimic the tectonic downwarp. The apparent deepest (>200 m below sea level) and thickest (>14 m) part of the Marlboro depositional basin appears to extend from just south of the mouth of the Potomac River northward to the lower Choptank River valley, Maryland, then turns sharply northeastward to beneath the central part of Delaware Bay. The Marlboro Clay of the mid-Atlantic United States thus provides a widespread deposit that in its regional and tectonic setting records, in its unusual sedimentary properties, the severe regional environmental changes associated with global climate change during the PETM.
Sulzberger, S A; Kalebich, C C; Melnichenko, S; Cardoso, F C
2016-10-01
Oral supplementation of clay has been reported to function as buffer in dairy cows. However, its effects on rumen, blood, and fecal pH have varied among studies. Our objective was to determine the effects of 3 concentrations of dietary clay supplementation after a grain challenge. Ten multiparous rumen-cannulated Holstein cows [body weight (mean ± standard deviation)=648±12kg] with 142±130 (60 to 502) days in milk were assigned to 1 of 5 treatments in a replicated 5×5 Latin square design balanced to measure carryover effects. Periods (21d) were divided into an adaptation phase (d 1 to 18, with regular total mixed ration fed ad libitum) and a measurement phase (d 19 to 21). Feed was restricted on d 18 to 75% of the average of the total mixed ration fed from d 15 to 17 (dry matter basis), and on d 19 cows received a grain challenge. The challenge consisted of 20% finely ground wheat administered into the rumen via a rumen cannula, based on the average dry matter intake obtained on d 15 to 17. Treatments were POS (no clay plus a grain challenge), 3different concentrations of clay (0.5, 1, or 2% of dietary dry matter intake), and control (C; no clay and no grain challenge). Statistical analysis was performed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Contrasts 1 (POS vs. C) and 2 (POS vs. the average of 0.5, 1, or 2%) were compared, along with linear and quadratic treatment effects. Rumen, fecal, and blood pH, along with blood metabolites, were measured at 0, 4, 8, 12, 16, 20, 24, 36, and 48h relative to the grain challenge. Cows fed POS had lower rumen pH [(mean ± standard error) 6.03±0.06] than cows fed C (6.20±0.06). Cow fed POS had lower fecal pH (6.14±0.04) than cows fed C (6.38±0.04). We observed a linear treatment effect for rumen pH and fecal pH. Fecal pH (6.22±0.04) was higher for cows fed clay (contrast 2) then for cows fed POS (6.14±0.04). We also observed a treatment difference (contrast 2) for negative incremental area under the curve, pH below 5.6 × h/d, (0.5% clay=7.93±0.83, 1% clay=8.56±0.83, and 2% clay=7.79±0.83) compared with POS (11.0±0.83). Cows fed clay tended to have higher milk yield (0.5% clay=28.8±3.4kg, 1% clay=30.2±3.4kg, and 2% clay=29.1±3.4kg, contrast 2), and had higher 3.5% fat-corrected milk (0.5% clay=29.9±3.5kg, 1% clay=34.1±3.5kg, and 2% clay=33.1±3.4kg), and higher energy-corrected milk (0.5% clay=29.1±3.3kg, 1% clay=32.8±3.4kg, and 2% clay=31.6±3.3kg) than cows fed POS (27.7±3.4kg, 28.0±3.4kg, 27.7±3.3kg, respectively). In conclusion, cows fed clay had higher rumen pH, energy-corrected milk, fat-corrected milk, and a trend for milk yield than cows fed POS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The strong ground motion in Mexico City: array and borehole data analysis.
NASA Astrophysics Data System (ADS)
Roullé, A.; Chávez-García, F. J.
2003-04-01
Site response at Mexico City has been intensively studied for the last 15 years, since the disastrous 1985 earthquakes. After those events, more than 100 accelerographs were installed, and their data have been extremely useful in quantifying amplification and in the subsequent upgrading of the building code. However, detailed analysis of the wavefield has been hampered by the lack of absolute time in the records and the large spacing between stations in terms of dominant wavelengths. In 2001, thanks to the support of CONACYT, Mexico, a new dense accelerographic network was installed in the lake bed zone of Mexico City. The entire network, including an existing network of 3 surface and 2 borehole stations operated by CENAPRED, consists in 12 surface and 4 borehole stations (at 30, 102 and 50 meters). Each station has a 18 bits recorder and a GPS receiver so that the complete network is a 3D array with absolute time. The main objective of this array is to provide data that can help us to better understand the wavefield that propagates in Mexico City during large earthquakes. Last year, a small event of magnitude 6.0 was partially recorded by 6 of the 12 surface stations and all the borehole stations. We analysed the surface data using different array processing techniques such as f-k methods and MUSIC algorithm and the borehole ones using a cross-correlation method. For periods inferior to the site resonance period, the soft clay layer with very low propagation velocities (less than 500 m/s) and a possible multipathing rule the wavefield pattern. For the large period range, the dominant surface wave comes from the epicentral direction and propagates with a quicker velocity (more than 1500 m/s) that corresponds to the velocity of deep layers. The analysis of borehole data shows the presence of different quick wavetrains in the short period range that could correspond to the first harmonic modes of Rayleigh waves. To complete this study, four others events recorded in 1994 by a temporal dense network installed in the firm rock zone of Mexico City were analysed using the same techniques. The results confirm the presence of a diffracting zone south of the valley. These results confirm the hypothesis of a possible interaction between the soft clay layers resonance and diffracted wavetrains of Rayleigh waves to explain both the amplification and the long duration of strong ground motion in Mexico City.
Clay Cuffman: A Cool, Calm, Relaxed Guy
ERIC Educational Resources Information Center
Booth, Gina
2010-01-01
This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…
Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites
NASA Astrophysics Data System (ADS)
Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.
Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.
Behavior of adsorbed Poly-A onto sodium montmorillonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx
2015-07-23
The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, David J.; Leyva, Argentina A.
The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.
Jawahar, P; Balasubramanian, M
2006-12-01
Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.
Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong
2011-08-01
A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.
Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong
2010-01-01
We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.
Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M
2016-11-01
Adding clay to marine oil pollution represents a promising approach to enhance bacterial hydrocarbon degradation in nutrient poor waters. In this study, three types of regionally available clays (Ca-bentonite, Fuller's Earth and kaolin) were tested to stimulate the biodegradation of source and weathered oil collected from the Deepwater Horizon spill. The weathered oil showed little biodegradation prior to experimentation and was extensively degraded by bacteria in the laboratory in a similar way as the alkane-rich source oil. For both oils, the addition of natural clay-flakes showed minor enhancement of oil biodegradation compared to the non-clay bearing control, but the clay-oil films did limit evaporation. Only alkanes of a molecular weight (MW) > 420 showed significant reduction by enhanced biodegradation following natural clay treatment. In contrast, all fertilized clay flakes showed major bacterial degradation of the oil, with a 6-10 times reduction in alkane content, and an up to 8 fold increase in the rate of O2 consumption. Compared to the control, such treatment showed particular reduction of longer chained alkanes (MW > 226). The application of natural and fertilized clay flakes also showed selective reduction of PAHs, mainly in the MW range of 200-300, but without significant change in the toxicity indices measured. These results imply that a large variety of clays may be used to boost oil biodegradation by aiding attachment of fertilizing nutrients to the oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation
Hussain; Dem&idot;rc&idot;; özbayoğlu
1996-12-25
There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.
Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun
2002-04-01
Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.
Azzam, Eid M S; Eshaq, Gh; Rabie, A M; Bakr, A A; Abd-Elaal, Ali A; El Metwally, A E; Tawfik, Salah M
2016-08-01
In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined. The results showed that benefiting from the surface property of clay, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Cu(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Cu(II) is considerably dependent on pH of milieu, the amount of adsorbent, and contact time. Batch adsorption studies revealed that the adsorption capacity of Cu(II) increased with increase in initial concentration and contact time with optimum pH in the range around neutral. The maximum uptake of Cu(II) ions by (Ch)/AgNPs/clay composite was found to be 181.5mg/g. The adsorption efficiency of Cu(II) ions by prepared (Ch)/AgNPs/clay and (Ch)/AuNPs/clay is bigger than that the individual chitosan (Ch)/clay composite which clarifies the role of metal nanoparticles in enhancement the adsorption characters. The study suggests that the (Ch)/AgNPs/clay hybrid composite is a promising nano-adsorbent for the removal of Cu(II) ions from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai
2018-05-01
Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.
Do scaly clays control seismicity on faulted shale rocks?
NASA Astrophysics Data System (ADS)
Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie
2018-04-01
One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.
Quantifying widespread aqueous surface weathering on Mars: The plateaus south of Coprates Chasma
NASA Astrophysics Data System (ADS)
Loizeau, D.; Quantin-Nataf, C.; Carter, J.; Flahaut, J.; Thollot, P.; Lozac'h, L.; Millot, C.
2018-03-01
Pedogenesis has been previously proposed on the plateaus around Coprates Chasma, Valles Marineris to explain the presence of widespread clay sequences with Al-clays and possible hydrated silica over Fe/Mg-clays on the surface of the plateaus (Le Deit et al., 2012; Carter et al., 2015). We use previous observations together with new MRO targeted observations and DEMs to constrain the extent and thickness of the plateau clay unit: the Al-clay unit is less than 3 m thick, likely ∼1 m, while the Fe/Mg-clays underneath are few tens of meters thick. We also refine the age of alteration by retrieving crater retention ages of the altered plateau and of later deposits: the observed clay sequence was created by surface pedogenesis between model ages of 4.1 Ga and 3.75 Ga. Using a leaching model from Zolotov and Mironenko (2016), we estimate the quantity of atmospheric precipitations needed to create such a clay sequence, that strongly depends on the chemistry of the precipitating fluid. A few hundreds of meters of cumulated precipitations of highly acidic fluids could explain the observed clay sequence, consistent with estimates based on late Noachian valley erosion for example (Rosenberg and Head, 2015). We show finally that the maximum quantity of sulfates potentially formed during this surface weathering event can only contribute minimally to the volume of sulfates deposited in Valles Marineris.
NASA Astrophysics Data System (ADS)
Wacharawichanant, S.; Ounyai, C.; Rassamee, P.
2017-07-01
The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.
Effects of leachate concentration on the integrity of solidified clay liners.
Xue, Qiang; Zhang, Qian
2014-03-01
This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.
Alin, Jonas; Rubino, Maria; Auras, Rafael
2015-06-01
Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.
Growth and Seed Production of Sawtooth Oak (Quercus acutissima) 22 Years After Direct Seeding
J.C.G. Goelz; D.W. Carlson
1997-01-01
Sawtooth oak (Quercus acutissima Carruth.) was direct seeded at two locations, one with a poorly drained clay soil and the other with a well-drained silty clay loam. For comparison, Nuttall oak (Q. nuttallii Palmer) was direct seeded on the poorly drained clay soil. On the well-drained silty clay loam, sawtooth oak was 18 ft...
Compressibility characteristics of Sabak Bernam Marine Clay
NASA Astrophysics Data System (ADS)
Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.
2018-04-01
This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.
Temperature dependence of soil water potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, A.M.O.; Yong, R.N.; Cheung, S.C.H.
1992-12-01
To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed withinmore » the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.« less
Comprehensive review of geosynthetic clay liner and compacted clay liner
NASA Astrophysics Data System (ADS)
Shankar, M. Uma; Muthukumar, M.
2017-11-01
Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.
Thermal Transmittance of Porous Hollow Clay Brick by Guarded Hot Box Method
NASA Astrophysics Data System (ADS)
Kim, Joonsoo
2018-03-01
The thermal property of a porous hollow clay brick was determined by measuring the thermal transmittance of the wall made of porous hollow clay bricks. Prior to the production of porous hollow clay bricks, nonporous and porous tiny clay bricks were prepared to determine the physico-mechanical properties by modifying the amount of wood flour and firing temperature. The bricks were produced by uniaxial pressing and then fired in an electric furnace. Their physico-mechanical properties were measured by water absorption, apparent porosity, bulk density, and compressive strength. The porous tiny clay bricks were produced with three types of wood flour: coarse wood flour (1-0.36 mm), medium-sized wood flour (0.36-0.15 mm), and fine wood flour (< 0.08 mm). The thermal transmittance of porous hollow clay bricks was determined through the guarded hot box method, which measures the wall made of porous hollow clay bricks and nonporous cement bricks. The two walls had a thermal transmittance of 1.42 and 2.72 W\\cdot m^{-2}\\cdot K^{-1}, respectively. The difference in thermal transmittance was due to the pores created with fine wood flour (< 0.08 mm) as a pore-forming agent.
[Study on the kinetics of organo-clay removing red tide organisms].
Wu, Ping; Yu, Zhi-ming
2007-07-01
The kinetics of red tide organisms (Heterosigma akashiwo and Scrippsiella trochoidea) coagulation with clays modified by dialkyl-polyoxyethenyl quaternary ammonium compound (DPQAC) was studied using spectrophotometer and fluorometry, and the effects of different kinds and concentrations of clays, the second component DPQAC added in clays and pH on the coagulation rate were examined. When using spectrophotometer, the coagulation kinetics of red tide organism coagulation with organo-clays is well fit for the bimolecular reaction model; while using fluorometry, it is fit for the hyperbola model much better. Moreover, the results also prove that using fluorometry can avoid the great change of permeance efficiency caused by clays' sedimentation when using spectrophotometer, which has availably avoided the influence of clays' sedimentation and reflected the essential of algal coagulation and sedimentation well and truly. The results of two studying methods show that the coagulation rate is more rapid in the system of kaolin than in that of bentonite; increasing the concentration of clays and DPQAC and increasing pH all can accelerate coagulation, and among those increasing the concentration of DPQAC is the most efficient way of increasing the removal efficiency and coagulation rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle
2016-08-31
During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less
Hagen, David A; Saucier, Lauren; Grunlan, Jaime C
2014-12-24
Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.
NASA Astrophysics Data System (ADS)
Guerra-García, José M.; Navarro-Barranco, Carlos; Corzo, Juan; Cobos-Muñoz, Vanessa; García-Adiego, Emilio M.; Giménez, Francisco Sempere; García-Gómez, J. Carlos
2013-06-01
The soft-bottom caprellids of the Iberian Peninsula are revised. Nineteen species have been reported so far, 42 % being endemic to the Mediterranean Sea. The lateral view of all of them is provided, together with an illustrated key for all the species. An ecological study was also conducted during 2007-2010 along the Andalusian coast to explore the relationships of caprellids with abiotic data. A total of 90 stations (0-40 m deep) were sampled and 40 contained caprellids. Along the Atlantic, caprellids were present in only 20 % of the stations, while along the Mediterranean coast, caprellids were present in the 75 % of the sampling sites. Furthermore, the abundance of caprellids was also higher in the Mediterranean coast. The dominant species was Pseudolirius kroyeri (present in 24 stations and showing the highest abundances with 1,780 ind/m2), followed by Phtisica marina (22 stations) and Pariambus typicus (11 stations). According to CCA and BIO-ENV, sediment type, P, pH and oxygen were the parameters that better explained the distribution of caprellids. Although the three dominant species were found in all types of sediment, the univariate approach showed that P. kroyeri was significantly more abundant in fine sediments (silt-clay and very fine sands) than in gross sediments (coarse and very coarse sands). The majority of studies dealing with caprellids from the Iberian Peninsula have been focused on shallow waters and further efforts are needed to explore biodiversity of deeper areas.
Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn
2013-01-01
The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457
Hosterman, John W.; Loferski, Patricia J.
1978-01-01
The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.
Biodegradation of crude oil saturated fraction supported on clays.
Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I
2014-02-01
The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.
Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin
2009-01-01
Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334
Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer
NASA Astrophysics Data System (ADS)
Cui, D.; Xiang, W.
2009-12-01
The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.
Soil clay content underlies prion infection odds
David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.
2011-01-01
Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.
2017-07-01
Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.
Effects of clay on fat necrosis and carcass characteristics in Japanese Black steers.
Oka, Akio; Iwamoto, Eiji; Tatsuda, Ken
2015-10-01
Twenty 10-month-old Japanese Black steers were used to evaluate the effects of clay on fat necrosis and carcass characteristics. Ten steers (Clay group) were fed the clay (50 g/day) during 10-30 months of age. The other 10 steers (Control group) were not fed it. There was no significant difference in body weight or average daily gain between the two groups (P > 0.05). The occurrence of fat necrotic mass in the Clay group (30%) was lower (P < 0.05) than that in the Control group (90%) at slaughter. The size of necrotic masses in the Clay group was smaller (P < 0.05) than that in the Control group. There was no significant difference in the marbling score, beef color, Longissimus muscle area or subcutaneous fat thickness between the two groups. These results suggest that the clay prevented the occurrence of fat necrosis and did not affect the carcass characteristics in Japanese Black steers. © 2015 Japanese Society of Animal Science.
Ehsan, Asma; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima
2017-02-01
Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe 2 O 4 /clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.
New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.
da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares
2016-08-01
A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interphase vs confinement in starch-clay bionanocomposites.
Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis
2015-03-06
Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.
A quantification model for the structure of clay materials.
Tang, Liansheng; Sang, Haitao; Chen, Haokun; Sun, Yinlei; Zhang, Longjian
2016-07-04
In this paper, the quantification for clay structure is explicitly explained, and the approach and goals of quantification are also discussed. The authors consider that the purpose of the quantification for clay structure is to determine some parameters that can be used to quantitatively characterize the impact of clay structure on the macro-mechanical behaviour. According to the system theory and the law of energy conservation, a quantification model for the structure characteristics of clay materials is established and three quantitative parameters (i.e., deformation structure potential, strength structure potential and comprehensive structure potential) are proposed. And the corresponding tests are conducted. The experimental results show that these quantitative parameters can accurately reflect the influence of clay structure on the deformation behaviour, strength behaviour and the relative magnitude of structural influence on the above two quantitative parameters, respectively. These quantitative parameters have explicit mechanical meanings, and can be used to characterize the structural influences of clay on its mechanical behaviour.
Controlling harmful algae blooms using aluminum-modified clay.
Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia
2016-02-15
The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of Exposure to Pressure of 50 MPa on the Specific Surface Area of Clay
NASA Astrophysics Data System (ADS)
Koszela-Marek, Ewa
2017-12-01
The paper presents results of laboratory tests conducted to determine the impact of pressure of 50 MPa on specific surface area of clay. These tests were carried out in an original, high-pressure test stand. The specific surface area of clay extracted directly from an open pit mine was compared with the specific surface area of the same clay subjected to the pressure of 50 MPa in a high-pressure chamber. The study found that the specific surface area of the clay subjected to the pressure of 50 MPa increased distinctly by over 35 %. The increase in specific surface can be a result of changes in the microstructure of clay particles and microstructural alteration in the soil skeleton, caused by the pressure.
Multifaceted role of clay minerals in pharmaceuticals
Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur
2015-01-01
The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881
Performance of Kaolin Clay on the Concrete Pavement
NASA Astrophysics Data System (ADS)
Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.
2018-05-01
This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.
Single clay sheets inside electrospun polymer nanofibers
NASA Astrophysics Data System (ADS)
Sun, Zhaohui
2005-03-01
Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.
Modification and characterization of montmorillonite clay for the extraction of zearalenone
NASA Astrophysics Data System (ADS)
Hue, Kerri-Ann Alicia
Mycotoxins are secondary metabolites of organisms belonging to the fungus kingdom. The cost associated with mycotoxin contamination in the USA and Canada is approximately US $5 billion. Zearalenone (ZEN), a resorcylic acid lactone, is produced by various members of the genus Fusarium . These fungi often colonize a variety of foods and feedstuffs including, corn, sorghum, wheat, oats, barley, and other cereal grains. This metabolite has estrogenic effects in farm animals with pigs being the most sensitive. ZEN induces hyperestrogenism and can cause infertility, reduced sex drive, fetal mummification, and abortions. Clays have successfully been used in the animal feed industry as an adsorbent and binders for certain small, water soluble mycotoxins. These mycotoxins are attracted to the electrical imbalance between the layers of the clays caused by isomorphic substitution of structural atoms. The mycotoxins are sequestered in the clay layers and pass harmlessly through the animal. However, ZEN is water insoluble and is not extracted easily with aluminosilicate clays. Therefore the modification of hydrated sodium calcium aluminosilicate (HSCAS) clays with organic cations has been proposed to render the clays hydrophobic and increase the ZEN binding capacity. The goal of this study was to develop a safe and cost effective organophilic material able to bind and extract zearalenone, to investigate the factors most important to extraction, and to investigate the fundamental properties between the clay-surfactant-mycotoxin systems that lead to extraction. The clay was modified by cation exchange reactions with tricaprylmethylammonium (TCMA) chloride and generic corn oil. The organophilic clays were then characterized using XRD, FTIR, and TGA analytical techniques. These techniques were used to determine the change in fundamental clay properties that would lead to the extraction of ZEN. Desorption studies were performed to determine any increase in toxicity that might be caused by washing of the clays or exposure to electrolytic solutions. Statistical design of experiments was used to determine the factors most influential during ZEN extraction. Modification by TCMA resulted in an increase in intergallery spacing of ˜0.6nm. TGA and FTIR studies indicated intercalation of organic species within the clay layers. An increase in weight loss proportional to the amount of TCMA added was observed by TGA analysis. In addition to the peaks found in the natural clay, peaks at 2928 cm-1, 2852 cm -1, and 1466 cm-1, which belong to C-H asymmetric stretching, C-H symmetric stretching and -CH2 scissoring respectively characteristic of TCMA were present. The clays developed were able to extract >90% ZEN in vitro at pH 3 and pH7. The factors most important for extraction changed depending on the levels of parameters chosen. Mathematical models were developed that showed the relationship between the factors and the ZEN removal percentage. When exposed to electrolyte solutions ˜1.5pmm of surfactant desorbed from the modified clay.
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Urai, Janos L.; Schuck, Bernhardt; Hoehne, Nadine; Oelker, Anne; Bésuelle, Pierre; Viggiani, Gioacchino; Schmatz, Joyce; Klaver, Jop
2017-04-01
A microphysics-based understanding of mechanical and fluid flow properties in clay-rich geomaterials is required for extrapolating better constitutive equations beyond the laboratory's time scales, so that predictions over the long term can be made less uncertain. In this contribution, we present microstructural investigations of rocks specimens sheared in triaxial compression at low bulk strain, by using the combination of broad-ion-beam (BIB) milling and scanning electron microscopy (SEM) to infer deformation mechanisms based on microstructures imaged at sub-micron resolution. Two end-member clay-rich geomaterials from European Underground Laboratories (URL) were analysed: (i) the poorly cemented Boom Clay sediment (BC from URL at Mol/Dessel, Belgium; confining pressure [CP] = 0.375 & 1.5 MPa) and (ii) the Callovo-Oxfordian claystone (COx from the URL at Bure, France; CP = 2 & 10 MPa). Although as a first approximation the inelastic bahvior of cemented and uncemented clay-rich geomaterials can be described by similar pressure-dependent hardening plasticity models, deformed samples in this contribution show very contrasting micro-scale behaviour: microstructures reveal brittle-ductile transitional behaviour in BC, whereas deformation in COx is dominantly cataclastic. In Boom Clay, at meso-scale, shear bands exhibit characteristics that are typical of uncemented small-grained clay-rich materials deformed at high shear strains, consisting of anastomosing shears interpreted as Y- and B-shears, which bound the passively deformed microlithons. At micro- down to nano-scale, the strong shape preferential orientation of clay aggregates in the anastomosing shears is interpreted to be responsible of the shear weakness. More over, the reworking of clay aggregates during deformation contributes to the collapsing of porosity in the shear band. Ductile deformation mechanisms represented by grain-rotation, grain-sliding, bending and granular flow mechanisms are strongly involved for the development of the shear band. At the same time, evidence for dilatancy at low confining pressure indicates that deformation involves also brittle deformation. Our observations strongly suggest that the deformation mostly localizes in those regions of the specimen, where the original grain sizes are smaller. In COx, microstructures show evidence for dominantly cataclastic deformation involving intergranular - transgranular - and - intragranular micro fracturing, grain rotation and clay particle bending mechanisms, down to nm- scale. Micro fracturing of the original fabric results in fragments at a range of scales, which are reworked into a clay-rich cataclastic gouge during frictional flow. Intergranular and minor intragranular micro fracturing occur in regions of non localized deformation, whereas transgranular micro fracturing occurs at regions of localized deformation. These processes are accompanied by dilatancy, but also by progressive decrease of porosity and pore size in the gouge with the non-clay particles embedded in reworked clay. The mechanism of this compaction during shearing is interpreted to be a combination of cataclasis of the cemented clay matrix, and shear-induced rearrangement of clay particles around the fragments of non-clay particles.
Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels
NASA Astrophysics Data System (ADS)
Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam
2015-03-01
The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.
RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE
Hatch, L.P.
1959-12-29
A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.
NASA Astrophysics Data System (ADS)
Valdés, L.; Hernández, D.; de Ménorval, L. Ch.; Pérez, I.; Altshuler, E.; Fossum, J. O.; Rivera, A.
2016-07-01
During the last years, clays have been increasingly explored as hosts for drugs. In the present paper, we have been able to host the non-steroidal anti-inflammatory drug, Tramadol, into the clay Li-fluorohectorite (Li-Fh). We preliminary evaluate its incorporation by means of UV spectroscopy and X ray diffraction. Our results indicate that the clay hosts the drug molecule in its interlayer space. We suggest a set of parameters to guarantee an efficient incorporation process. Future studies will concentrate on the release of the drug from the clay nanofluid.
Mineralogical control of soil organic carbon persistence at the multidecadal time scale
NASA Astrophysics Data System (ADS)
Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Chenu, Claire
2015-04-01
One of the current challenges in understanding the long term persistence of organic carbon in soils is to assess how mineral surfaces, especially at small scale, can stabilize soil organic carbon (SOC). The question we address in this work is whether different mineral species stabilize different types of SOC. Here we used the unique opportunity offered by long term bare fallows to study in situ C dynamics in several fine fractions of a silty loam soil. Indeed, with no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of bare fallow. To separate mineral phases of the clay size fraction we performed a size fractionation on samples taken from 4 different plots at 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF) and analyzed the SOC in the different fractions thus obtained. First, the clay fraction (< 2 µm) was isolated by wet sieving and centrifugation in water. Then, the clay fraction was further separated into 3 size fractions by centrifugation: fine clay (< 0.05 µm), intermediate clay (0.05 - 0.2 µm), and coarse clay (0.2 - 2 µm). X-ray diffraction was used to determine the mineralogy of the phases and we found that the coarse clay fraction on the one hand and fine and intermediate clay fractions on the other hand exhibited contrasted mineralogies. Fine and intermediate clay fractions contained almost exclusively smectite and mixed-layered illite/smectite minerals whereas coarse clays contained also discrete illite and kaolinite on top of smectite and illite/smectite. We carried out CHN elemental analysis to study the C and nitrogen dynamics with time in the different fractions. And synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) was used to get information on the distribution and the chemical speciation of the SOC in fractions with contrasted mineralogies. Data analysis is still ongoing and full results will be presented at EGU. First results show that the dynamics and quality of the SOC differ in the different clay fractions. SOC decay was greater in coarse clays compared to intermediate clays, SOC in the coarse clay fraction displaying more diversity than in the other fractions. SOC persistence at the multidecadal timescale also seems to be mineral dependent: smectite being more efficient at protecting carbon compared to illite.
Phosphates in some Missouri refractory clays
Halley, Robert B.; Foord, Eugene E.; Keller, David J.; Keller, Walter D.
1997-01-01
This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays.The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River. In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspore, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore (“burley”" clay).The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality.The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite. The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water, nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host. The wavellite and variscite-strengite veinlets are secondary, precipitated from ion complexes in ground water percolating along cracks in the flint clay. The flint clay host of the variscite-strengite veinlet contains strontian crandallite. All of the phosphates contain significant amounts of strontium. The source of P, Ca and Sr was the marine carbonates. Dissolution of these carbonates produced the argillic residue that became the primordial Cheltenham paludal mud, which ultimately altered to fireclay.Preliminary firing tests show that the presence of phosphates lowers fusion temperature. However, it is not clear whether poor refractoriness is due to the presence of phosphates, per se, or to Ca, Sr and other alkaline elements present in the phosphates.
Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture
NASA Astrophysics Data System (ADS)
Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor
2016-11-01
Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.
NASA Astrophysics Data System (ADS)
Decker, Jeremy John
The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay particle lengths and aspect ratios, which was attributed to the growth of skewed aggregates during concentration. The melt induced clay concentration and increased clay particle dimensions caused significant decreases in the permeability of the nanocomposite microlayers and reduced the overall permeability of the multilayered films. Morphology and transport behavior of these microlayered films were compared to a series of bulk nanocomposites using a second LLDPE-g-MA containing M 2(HT)2 with varying clay content.
The effect of clay on the dissolution of nuclear waste glass
NASA Astrophysics Data System (ADS)
Lemmens, K.
2001-09-01
In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher than the silica concentrations in equilibrium with the glass surface ( C ∗Si, saturation) that are found in absence of clay. Nevertheless, the glass dissolution proceeds at relatively high rate. C ∗Si, saturation seems to be increased by the presence of clay. To understand this, more knowledge is necessary concerning the fate of the released silica and the silica speciation in solution.
Virta, R.L.
2006-01-01
In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.
Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey
NASA Astrophysics Data System (ADS)
Bilgin, Oyku
2017-12-01
The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.
NASA Astrophysics Data System (ADS)
Lintz, L.; Werts, S. P.
2014-12-01
The Ninety-Six National Historic Site is located in Greenwood County, SC. Recent geologic mapping of this area has revealed differences in soil properties over short distances within the park. We studied the chemistry of the clay minerals found within the soils to see if there was a correlation between the amounts of soil organic carbon contained in the soil and particle size in individual soil horizons. Three different vegetation areas, including an old field, a deciduous forest, and a pine forest were selected to see what influence vegetation type had on the clay chemistry and carbon levels as well. Four samples containing the O, A, and B horizons were taken from each location and we studied the carbon and nitrogen content using an elemental analyzer, particle size using a Laser Diffraction Particle Size Analyzer, and clay mineralogy with powder X-ray diffraction of each soil sample. Samples from the old field and pine forest gave an overall negative correlation between carbon content and clay percentage, which is against the normal trend for Southern Piedmont Ultisols. The deciduous forest samples gave no correlation at all between its carbon content and clay percentage. Together, all three locations show the same negative relationship, while once separated into vegetation type and A and B horizons it shows even more abnormal relationships of negative while several show no correlation (R2= 0.007403- 0.56268). Using powder XRD, we ran clay samples from each A and B horizon for the clay mineralogy. All three vegetation areas had the same results of containing quartz, kaolinite, and Fe oxides, therefore, clay chemistry is not a reason behind the abnormal trend of a negative correlation between average carbon content and clay percentage. Considering that all three locations have the same climate, topography, and parent material of metagranite, it could be reasonable to assume these results are a factor of environmental and biological influences rather than clay type.
Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V
2015-02-15
Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO potential energy. Copyright © 2014 Elsevier Inc. All rights reserved.
Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi
2016-01-01
Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and removal methods are affordable techniques.
An Evidence-Based Review on Medicinal Value of Clays in Traditional Persian Medicine.
Hosseinkhani, Ayda; Montaseri, Hashem; Hosamo, Ammar; Zarshenas, Mohammad Mehdi
2017-01-01
The use of earths and clays for medical purposes dates back to antiquity. In recent years, there has been an increasing interest in researches on traditional remedies in the hope of discovering new drug. Iran is an ancient country with a medical backbone acquired from the experiences of ancient Persian scholars, who had made a great contribution to the development of the medical sciences. Many medical and pharmaceutical books by early Persian scientists still exist and may have the potential of leading researchers to new drug discoveries. Owing to the emergence of new and antimicrobial-resistant infections, present-day medicine has recently begun focusing on medicinal earths and clays especially as mineral antimicrobials. The current study is, therefore, aimed at gathering information regarding medicinal clays in traditional Persian medicine (TPM). Five main Persian materia medica with the key word 'tin' (clay) and current databases such as PubMed, Scopus, ScienceDirect, and Google Scholar were searched by key words 'white, green, red, maroon, violet, black, grey and pink clays' and 'pharmacological effects'. Twenty three clays were found in Persian manuscripts. Although their mineralogical compositions are unknown, different pharmacological properties have been attributed to these mineral medicaments. Clay's properties were widely used in medieval times for the treatment of infections to poisoning. They were also used in compound formulations, possibly for their pharmaceutical formulation modifying effects. Modern scientific proofs have also been found in many of the medicinal clays reported in Persian manuscripts. Although many of the reported clays are still unknown, their characterization may lead to new medicinal developments. Novel analytical methods available today make it possible to elucidate the chemical compositions of these minerals as parameters responsible for their medicinal effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives
Jaynes, William F.; Zartman, Richard E.
2011-01-01
Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725
NASA Astrophysics Data System (ADS)
Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da
2018-03-01
The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.
Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.
Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba
2015-05-01
Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. Copyright © 2015 Elsevier B.V. All rights reserved.
Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.
Jaynes, William F; Zartman, Richard E
2011-06-01
Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (K(d) = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (K(d) = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (K(d) = 13,800) and carnitine (K(d) = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (K(d) = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (K(d) = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (K(d) = 1340) or the untreated montmorillonite (K(d) = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity.
Zaitan, Hicham; Mohamed, Elham F; Valdés, Héctor; Nawdali, Mostafa; Rafqah, Salah; Manero, Marie Hélène
2016-12-01
A great number of pollution problems come as a result of the emission of Volatile Organic Compounds (VOCs) into the environment and their control becomes a serious challenge for the global chemical industry. Adsorption is a widely used technique for the removal of VOCs due to its high efficiency, low cost, and convenient operation. In this study, the feasibility to use a locally available clay, as adsorbent material to control VOCs emissions is evaluated. Natural clay is characterised by different physical-chemical methods and adsorptive interaction features between VOCs and natural clay are identified. Toluene (T), methanol (M) and benzaldehyde (B) are used here as representatives of three different kinds of VOCs. Adsorption isotherms onto natural clay and faujasite-Y type zeolite (Fau Y) are obtained at room temperature. According to Langmuir model data, maximum adsorption capacities (qm) of Fez natural clay and zeolite toward methanol (M), toluene (T) and benzaldehyde (B) at 300 K are 8, 0.89 and 3.1 mmol g-1, and 15, 1.91 and 13.9 mmol g-1 respectively. In addition, the effect of temperature on the adsorption of toluene onto natural clay is evaluated in the range from 300 to 323K. An increase on temperature reduces the adsorption capacity of natural clay toward toluene, indicating that an exothermic physical adsorption process takes place. The enthalpy of adsorption of toluene onto Fez natural clay was found to be -54 kJ mol-1. A preliminary cost analysis shows that natural clay could be used as an alternative low cost adsorbent in the control of VOCs from contaminated gas streams with a cost of US$ 0.02 kg-1 compared to Fau Y zeolite with US$ 10 kg-1.
Rheological properties of purified illite clays in glycerol/water suspensions
NASA Astrophysics Data System (ADS)
Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.
2015-04-01
There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.
Clay-starch combination for micropollutants removal from wastewater treatment plant effluent.
Mohd Amin, M F; Heijman, S G J; Rietveld, L C
2016-01-01
In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-06-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Hydroxyapatite clay for gap filling and adequate bone ingrowth.
Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E
1995-03-01
In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafael; Hwang, Sung W
2010-10-01
The melt rheology and thermal properties of polylactide (PLA)-based nanocomposite films that were prepared by solvent casting method with L-PLA, polyethylene glycol (PEG), and montmorillonite clay were studied. The neat PLA showed predominantly solid-like behavior (G' > G″) and the complex viscosity (η*) decreased systematically as the temperature increased from 184 to 196 °C. The elastic modulus (G') of PLA/clay blend showed a significant improvement in the magnitude in the melt, while clay concentration was at 6% wt or higher. At similar condition, PEG dramatically reduced dynamic modulii and complex viscosity of PLA/PEG blend as function of concentration. A nanocomposite blend of PLA/PEG/clay (74/20/6) when compared to the neat polymer and PLA/PEG blend exhibited intermediate values of elastic modulus (G') and complex viscosity (η*) with excellent flexibility. Thermal analysis of different clay loading blends indicated that the melting temperature (T(m)) and glass transition temperature (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) and the T(m) of the blends (PLA/PEG and PLA/PEG/clay) significantly, however, crystallinity increased in the similar condition. The transmission electron microscopy (TEM) image of nanocomposite films indicated good compatibility between PLA and PEG, whereas clay was not thoroughly distributed in the PLA matrix and remained as clusters. The percent crystallinity obtained by X-ray was significantly higher than that of differential scanning calorimeter (DSC) data for PLA.
Adsorption coefficients for TNT on soil and clay minerals
NASA Astrophysics Data System (ADS)
Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen
2007-04-01
To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-01-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding
NASA Astrophysics Data System (ADS)
Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.
2016-07-01
Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.
High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Liang, Margaret I.
2005-01-01
The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.
ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pachadzhanov, D.N.
1963-10-01
With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less
NASA Astrophysics Data System (ADS)
Chen, Hao; Ojijo, Vincent; Cele, Hastings; Joubert, Trudi; Suprakas, Sinha Ray; Land, Kevin
2014-06-01
SU-8/Clay nanocomposite is considered as a candidate material for microcantilever sensor fabrication. Organically modified montmorillonite clay nanoparticles are dispersed in the universally used negative photoresist polymer SU-8, for a low cost material, which is also biocompatible. If varying the clay loading of the composite material yields a variation of the Young's modulus, the tailored material stiffness presents an opportunity for fabrication of microcantilevers with tunable sensor sensitivity. With this microcantilever application perspective, mechanical and thermal properties of the material were investigated. SU-8/Clay nanocomposite samples were prepared with clay loadings from 1wt% - 10wt%. Tensile test results show a general trend of increase in composite modulus with an increase in the clay loading up to 7wt%, followed by a small drop at 10wt%. The composite material indeed yields moderate variation of the Young's modulus. It was also found that the thermal degradation peak of the material occurred at 300°C, which is beyond the operating temperature of typical microcantilever sensor applications. The fabrication of a custom designed microcantilever array chip with the SU-8/Clay nanocomposite material was achieved in a class 100 cleanroom, using spin-coating and photolithography microfabrication techniques. The optimization of the process for fabricating microcantilever with the SU-8/Clay nanocomposite material is discussed in this paper. The results of this research are promising for cheaper mass production of low cost disposable, yet sensitive, microcantilever sensor elements, including biosensor applications.
Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo
2016-01-01
In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.
Clays and clay minerals in Bikaner: Sources, environment pollution and management
NASA Astrophysics Data System (ADS)
Gayatri, Sharma; Anu, Sharma
2016-05-01
Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..
Process for the preparation of organoclays
Chaiko, David J.
2003-01-01
A method for preparing organoclays from smectites for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a substantially monomolecular layer of a water soluble polymer is applied to the surfaces of the clay. A surfactant is also applied to the clay to modify the surface hydrophilic/hydrophobic balance of the clay, and the organoclay is separated out for subsequent use.
Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés
2014-01-01
Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520
NASA Astrophysics Data System (ADS)
Singh, Mansi; Mehta, Rajeev; Verma, Sanjeev K.; Biswas, Ipsita
2018-01-01
A comparative study of the rheology of shear thickening suspensions of 20% fumed silica in polyethylene glycol (PEG200) with different nano clays as additives has been done. The nano-clays used are montmorillonite (MMT), Closite15A, Kaolin and Halloysite clay. The objective was to study the effect of relatively cost-effective clays as a partial substitute of silica. Specifically, the effect of type, concentration, temperature and frequency were considered. The results indicate that the shear thickening properties of Closite15A as additive in temperature ranges of 25 °C-45 °C performs the best and Halloysite performs best at higher (55 °C) and lower temperatures (5, 15 °C). The elasticity effects in dynamic experiments were markedly enhanced by Halloysite clay addition. Addition of MMT, however, led to insignificant enhancement in critical viscosity in steady-state as well as dynamic state-rheology. Interestingly, shear thickening fluid (STF) with all clay except MMT was stable after storing for more than a month. These findings indicate that the introduction of nano-clay as additives is a promising and cost effective method for enhancing the STF behavior which can be utilized in high impact resistant (about 3000% strain and 300 rad s-1 frequency) applications.
Kimura, Yuji; Haraguchi, Kazutoshi
2017-05-16
Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.
Primordial clays on Mars formed beneath a steam or supercritical atmosphere.
Cannon, Kevin M; Parman, Stephen W; Mustard, John F
2017-12-06
On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars' primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.
Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.
Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D
2014-07-28
Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.
Removal of diphenhydramine from water by swelling clay minerals.
Li, Zhaohui; Chang, Po-Hsiang; Jiang, Wei-Teh; Jean, Jiin-Shuh; Hong, Hanlie; Liao, Libing
2011-08-01
Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities. Copyright © 2011 Elsevier Inc. All rights reserved.
Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes
Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.
2014-01-01
Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404
Banin, A; Rishpon, J
1979-12-01
Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160 degrees C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low '1st peak' and significant '2nd peak'. The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destaillats, Hugo; Kibanova, D.; Trejo, M.
2008-03-01
We studied the synthesis and photocatalytic activity of small-sized TiO{sub 2} supported on hectorite and kaolinite. Deposition of TiO{sub 2} on the clay mineral surface was conducted by using a sol-gel method with titanium isopropoxide as precursor. Anatase TiO{sub 2} particles formation was achieved by hydrothermal treatment at 180 C. Material characterization was conducted using XRD, SEM, XPS, ICP-OES, BET and porosimetry analysis. Efficiency in synthesizing clay-TiO{sub 2} composites depended strongly on the clay mineral structure. Incorporation of anatase in hectorite, an expandable clay mineral, was found to be very significant (> 36 wt.% Ti) and to be followed bymore » important structural changes at the clay mineral surface. Instead, no major structural modifications of the clay were observed for kaolinite-TiO{sub 2}, as compared with the untreated material. Photocatalytic performance of clay-TiO{sub 2} composites was evaluated with ATR-FTIR following the oxidation of adsorbed toluene and d-limonene, two model air pollutants. In either case, the photocatalytic removal efficiency of these hydrophobic substrates by the synthesized clay-TiO{sub 2} composites was comparable to that observed using pure commercial TiO{sub 2} (Degussa P25).« less
Anatomical knowledge gain through a clay-modeling exercise compared to live and video observations.
Kooloos, Jan G M; Schepens-Franke, Annelieke N; Bergman, Esther M; Donders, Rogier A R T; Vorstenbosch, Marc A T M
2014-01-01
Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments, the learning effects of clay modeling were compared to either live observations (Experiment I) or video observations (Experiment II) of the clay-modeling exercise. The effects of learning were measured with multiple choice questions, extended matching questions, and recognition of structures on illustrations of cross-sections. Analysis of covariance with pretest scores as the covariate was used to elaborate the results. Experiment I showed a significantly higher post-test score for the observers, whereas Experiment II showed a significantly higher post-test score for the clay modelers. This study shows that (1) students who perform clay-modeling exercises show less gain in anatomical knowledge than students who attentively observe the same exercise being carried out and (2) performing a clay-modeling exercise is better in anatomical knowledge gain compared to the study of a video of the recorded exercise. The most important learning effect seems to be the engagement in the exercise, focusing attention and stimulating time on task. © 2014 American Association of Anatomists.
Primordial clays on Mars formed beneath a steam or supercritical atmosphere
NASA Astrophysics Data System (ADS)
Cannon, Kevin M.; Parman, Stephen W.; Mustard, John F.
2017-12-01
On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars’ primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.
Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.
2018-01-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089
In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.
Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui
2018-03-15
Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.
The Effect of Art Therapy with Clay on Hopelessness Levels Among Neurology Patients.
Akhan, Latife Utas; Kurtuncu, Meltem; Celik, Sevim
This study was performed to determine the effect of art therapy with clay on hopelessness levels of patients under treatment in departments of neurology. The study was of one group, pre- and posttest design. This study was performed on patients who were hospitalized in the neurology departments of a university and a state hospital between February and May 2012 in Turkey. The sample for the study comprised 50 neurology patients with diagnoses of epilepsy (17 patients) and stroke (33 patients). The patients in the study were asked to create objects of clay of any shape they desired. Data for the research were collected with a sociodemographic data form and by using the Beck Hopelessness Scale (BHS). While BHS scores of neurology patients before clay therapy were found higher compared to the scores after therapy with clay, there was also a statistically significant difference. After clay therapy, BHS scores were lower in women, in married patients, in patients who suffered from a stroke, people who had chronic disease, people without psychological illness, and in the case of children. The study showed that clay therapy had an impact on the hopelessness levels of neurology patients. Art therapy with clay may be used for rehabilitation purposes in neurology patients, both in the hospital and at home after discharge.
Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.
Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc
2018-01-10
This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.
Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite
NASA Astrophysics Data System (ADS)
Reyes, Larry; Sumera, Florentino
2015-04-01
Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free amino fatty acid, but decreased with increasing surfactant loading. This suggested that the amino fatty acid may be tethered to the clay structure via ionic interaction and/or ion-dipole attraction. Significant changes in the clay morphology, particle size and surface charge were observed after organo-modification. Scanning electron microscopy (SEM) revealed that the organo-clays have a disordered and flaky morphology, while the unmodified MMT appeared to be dispersed spherical grains. The effective (Z) diameter of Na+-MMT was found to be ~520 nm, but increased up to ~937 nm upon intercalation of 12-ALA. The zeta potential (ξ) of the clay materials, on the other hand, ranged from -33 mV for undmodified MMT to -16 mv (200CEC-AMMT clay). The possible occupational hazards of working with nanoclays should also be explored. Presently, the MTT-dye reduction assay was performed to determine cell viability of mouse monocyte-macrophages (J774A.1) after direct exposure to the clays. The cytotoxicity of the clays exhibited a chemistry and dose dependent response, with unmodified Na+-MMT as the most cytotoxic while the organo-clays exhibited low toxicity. These results demonstrated the successful intercalation of the surfactant for the production of organophilic clay materials for a wide range of applications.
Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange
As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.« less
Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers
NASA Astrophysics Data System (ADS)
Elhamdouni, Y.; Khabbazi, A.; Benayad, C.; Mounir, S.; Dadi, A.
2017-03-01
This work is part of the valuation of local materials such as clay (earth), alfa fiber and straw fiber. The goal is to use these materials as bricks in rural construction. These materials are abundant, natural, and renewable. The objective of this work is to study the thermal and mechanical behavior of a new material by mixing clay (chosen as the binder) with different mass percentages of alfa fiber (0.5%, 1%, 2%, 3%, 4%), and to compare these results with those of materials often used in the construction of individual houses in rural Morocco (clay + straw). The results obtained prove to us that using straw fibers can reduce the thermal conductivity compared to alfa fiber, which allows to have energy savings of 2% to 7%. By against, alfa fibers can improve the mechanical behavior of clay-based materials when compared to the clay + straw material (an increase of 8% to 17% in the tractive resistance by bending and 6% to 18% for compression resistance). These results also specify the optimal usage conditions of these fibers (alfa and straw) in the clay bricks.
Ito, Akihiko; Wagai, Rota
2017-01-01
Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435
Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay
Smith, J.A.; Jaffe, P.R.
1991-01-01
The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.
Dasari, Aravind; Yu, Zhong-Zhen; Mai, Yiu-Wing; Yang, Mingshu
2008-04-01
The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed.
Preparation and Characterization of a Superparamagnetic Polymer Nanocomposite
NASA Astrophysics Data System (ADS)
Brenner, N.; Isseroff, R.; Rafailovich, M.; Rudomen, G.; Gambino, R.; Liang, S. S.; Sunil, D.; Si, M.; Collazo, L.; Pernodet, N.; Fang, X.
2006-03-01
Fe(CO)5 decomposition produced ferro- and superparamagnetic polymer nanocomposites. Fe(CO)5 and Cloisite 20A clay were combined in a closed vial for 12 hours, then opened to air for 2 hours. Mössbauer analysis indicated formation of Fe2O3 on clay; mass analysis indicated 12% Fe in clay. A Brabender mixed Fe2O3/clays with PMMA and EVA at ratios by mass of 9:4:36 and 1:1:4 respectively (Fe(CO)5:clay:polymer). TEM displayed Fe2O3 nanoparticles, 3.3 ^+ 0.8 nm in diameter, adsorbed on exfoliated clay platelet surfaces in polymer matrices. VSM data indicated superparamagnetism with moments of 510.3 emu/g(Fe2O3) (PMMA) and 8.46 emu/g(Fe2O3) (EVA). DMA showed 37% decreased dynamic modulus (EVA) and 11% (PMMA) due to Fe2O3. TGA indicated PMMA stability to 400^oC (9.3% mass residual) and EVA to 435^oC (11% mass residual). Cell adhesion tests showed Fe2O3/clay enhanced proliferation, promising applications in bone implants.
Effect of Layer Charge on CO2 and H2O Intercalations in Swelling Clays.
Rao, Qi; Leng, Yongsheng
2016-11-08
The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.
What Makes a Natural Clay Antibacterial?
Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.
2011-01-01
Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758
Moraes, Jemima Daniela Dias; Bertolino, Silvana Raquel Alina; Cuffini, Silvia Lucia; Ducart, Diego Fernando; Bretzke, Pedro Eriberto; Leonardi, Gislaine Ricci
2017-12-20
Clay minerals are layered materials with a number of peculiar properties, which find many relevant applications in various industries. Since they are easily found everywhere, they are particularly attractive due to their economic viability. In the cosmetic industry, clay minerals are often used as excipients to stabilize emulsions or suspensions and to modify the rheological behavior of these systems. They also play an important role as adsorbents or absorbents, not only in cosmetics but also in other industries, such as pharmaceuticals. This reviewer believes that since this manuscript is presented as covering topical applications that include pharmaceuticals, some types of clay minerals should be considered as a potential material to be used as drug delivery systems. We review several applications of clay minerals to dermocosmetic products, relating them to the underlying properties of these materials and exemplifying with a number of clay minerals available in the market. We also discuss the use of clay minerals in topically-applied products for therapeutic purposes, specially for skin treatment and protection. Copyright © 2017 Elsevier B.V. All rights reserved.
Semianalytical solutions for transport in aquifer and fractured clay matrix system
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2015-09-01
A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.
Virta, R.L.
2003-01-01
Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.
Creep and Sliding in Clay Slopes: Mutual Effects of Interlayer Swelling and Ice Jacking.
1983-04-24
calcite and feldspar constituents. Therefore a swelling clay with low diagenetic lithification (matrix forming) e fects. Therefore, the clay shows...were determined quantitatively (Tab. 2). The CEC depends mainly on the montmorillonite content and shows values up to 86 meq/lOOg, which Indicates...high montmorillonite clays. First freezing tests have been performed within a freezer. After freezing, three typical zones within the samples can be
Fracture behavior of polypropylene/clay nanocomposites.
Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin
2006-12-01
Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.
86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN ...
86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN THE POWER HOUSE IN 1910. A PILE OF CLAY USED TO FILL THE WASHED-OUT AREAS BENEATH THE FOUNDATIONS IS SHOWN IN THE CENTER OF THE ILLUSTRATION BESIDE THE FILLER PIPE. THE WEIGHT USED TO FORCE THE CLAY DOWN UNDER THE FOUNDATIONS IS SHOWN PRESSING ON THE PLUNGER PIPE. (542) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Program and Abstracts for Clay Minerals Society 28th Annual Meeting
NASA Technical Reports Server (NTRS)
1991-01-01
This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.
In Situ Immobilization of Heavy-Metal Contaminated Soil
1988-06-01
Scavenging DH 524 Molecules DH 565 DH 566 Natural Materials Clays Slurry BEN 125 Bentonite 325 Bentonite HPM 20 Microfine Bentonite Attasorb LVM Satintone...HPM 20 Microfine Bentonite are sodium- montmorillonite clays of different particle sizes and purities. Na- montmorillonite clay is a three-layered...a powder of 325 Mesh and has a purity of 90 percent. - -PM 20 Microfine Bentonite (Reference 24). This is a microfine clay having a purity of 99.75
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.
Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.
Toulkeridis, T; Goldstein, S L; Clauer, N; Kroner, A; Lowe, D R
1994-03-01
Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.
Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa
NASA Technical Reports Server (NTRS)
Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.
1994-01-01
Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.
Organic/Inorganic Hybrid Polymer/Clay Nanocomposites
NASA Technical Reports Server (NTRS)
Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.
2003-01-01
A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.
NASA Astrophysics Data System (ADS)
Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati
2017-11-01
Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.
Chaiko, David J.
2007-01-02
The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.
Clays as possible catalysts for peptide formation in the prebiotic era
NASA Technical Reports Server (NTRS)
Paecht-Horowitz, M.
1976-01-01
From the point of view of prebiotic synthesis, clays might have performed functions of concentration, catalysis, and protection of molecules. The degrees of polymerization obtained, when amino acid adenylates are added to montmorillonite suspensions in water, are much higher than those obtained by polymerization in the absence of such a clay. In addition, they are of a discrete spectrum, usually multiples of 6 or 7, and reach values of up to 40 mers. In the absence of clay a continuous spectrum of degrees of polymerization is obtained, and usually up to 4-6 mers only. Copolymerization in the absence of clays yields mostly random copolymers, in their presence mostly block copolymers are obtained. Optical density measurements show that after adsorption has taken place on the clay, stacking of its layers occurs. Polymerization starts only after these stacked layers have been formed
NASA Astrophysics Data System (ADS)
Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.
2013-12-01
In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for various periods to a specific humidity (e.g., relative humidity: RH=100%, RH=75%). The humidity is controlled by using saturated aqueous solutions, consisting of specific H2O/D2O mixtures. Our results have shown distinct variations in water adsorption and moisture diffusivity among clays. Our results allow us to obtain on the pore scale porosity changes due to water movement in clays. As emergent transport property, nano- to micro-scale structural characterization is crucial in providing insights into pore-scale transport processes, which are pertinent to upscale continuum model development involving flow and transport at low water content, flow and phase behavior under confinement, and low-permeability media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.
1997-08-01
A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less
Experimental study of Human Adenoviruses interactions with clays
NASA Astrophysics Data System (ADS)
Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos
2014-05-01
Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p
Moran, Anthony R; Hettiarachchi, Hiroshan
2011-07-01
Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.
[Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].
Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong
2014-07-01
The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.
Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.
2017-05-01
We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.
NASA Astrophysics Data System (ADS)
Wang, Shunguo; Malehmir, Alireza; Bastani, Mehrdad
2016-05-01
Landslides attributed to quick clays have not only considerable influences on surface geomorphology, they have caused delays in transportation systems, environmental problems and human fatalities, especially in Scandinavia and North America. If the subsurface distributions of quick clays are known, potential damages can be mitigated and the triggers of landslides can better be studied and understood. For this purpose, new radio-magnetotelluric (RMT) and seismic data were acquired in an area near the Göta River in southwest Sweden that contains quick clays and associated landslides. High-resolution data along 4 new lines, in total 3.8 km long, were acquired and merged with earlier acquired data from the site. Velocity and resistivity models derived from first breaks and RMT data were used to delineate subsurface geology, in particular the bedrock surface and coarse-grained materials that overlay the bedrock. The latter often are found underlying quick clays at the site. Comparably high-resistivity and sometimes high-velocity regions within marine clays are attributed to a combination of leached salt from marine clays or potential quick clays and coarse-grained materials. The resistivity and tomographic velocity models suggest a much larger role of the coarse-grained materials at the site than previously thought, but they also suggest two different scenarios for triggering quick-clay landslides at the site. These scenarios are related to the erosion of the riverbank, increased pore-pressure and surface topography when close to the river and human activity when away from the river and where bowl-shaped bedrock surrounds the sediments.
New research on the origin of mottled clay in Quaternary basins in the coastal area of south China
NASA Astrophysics Data System (ADS)
Wang, Jing; Chen, Zhen; Gao, Quanzhou; Chen, Guoneng
2018-06-01
Last Glacial Maximum (LGM) mottled clay occurs widely in Late Quaternary basins in south China coastal areas. Current research attributes its origin to exposure weathering of Late Pleistocene marine/fluvial deposits during the LGM. However, field data suggest that this is not the case as there is no gradual transition in lithology, grain size, structure and material composition among these layers. Instead, the mottled clay possesses sedimentary characteristics of exotic dust. In this study, three typical drill cores in the Pearl River Delta were studied using grain size analysis, diffuse reflection spectroscopy (DRS) and geochemical analysis to ascertain the clay's sedimentary characteristics and origin. Grain size distribution patterns and parameters of the mottled clay were similar to those of a typical loess, indicating aeolian origin. In DRS curves, the peak height of hematite > goethite, indicating that the mottled clay had not experienced strong hydration and constitutes a continental product. This conforms to a typical loess but differs from the underlying marine/fluvial deposits. The chemical composition of the mottled clay was homogeneous in the vertical and planar directions. Upper continental crust (UCC) normalized curves of major and trace elements of the mottled clay were close to the average UCC and were consistent with typical aeolian deposits. The spatial and temporal distribution characteristics and relationship with the underlying layer suggest that the mottled clay was a loess-like deposit during the LGM and its mottled structure originated from strong modification of oxidation during the postglacial period after homogeneous dust had accumulated.
Moran, Anthony R.; Hettiarachchi, Hiroshan
2011-01-01
Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150
INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS
Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...
Code of Federal Regulations, 2011 CFR
2011-07-01
... County Butte County Campbell County Charles Mix County Clark County Clay County Codington County Corson... County Brule County Buffalo County Butte County Campbell County Charles Mix County Clark County Clay... Charles Mix County Unclassifiable/Attainment Clark County Unclassifiable/Attainment Clay County...
Code of Federal Regulations, 2010 CFR
2010-07-01
... County Butte County Campbell County Charles Mix County Clark County Clay County Codington County Corson... County Brule County Buffalo County Butte County Campbell County Charles Mix County Clark County Clay... Charles Mix County Unclassifiable/Attainment Clark County Unclassifiable/Attainment Clay County...
Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System
NASA Astrophysics Data System (ADS)
Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.
2013-12-01
Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the Tween-coated silver nanoparticles showed high stability in both single and binary systems. There were no significant differences in early stage aggregation kinetics observed inthe Na-clay-nanoparticle or Ca-clay-nanoparticle systems, which suggested that the CCC values of the single Na- or Ca-clay suspensions depend only on the electrolyte concentration, not the original cations on the clay surface. These results provide a basic idea for understanding the heteroaggregation of different silver nanoparticles and clays, which can be utilized in further study of fate and transport of engineered nanoparticles in natural aqueous system.
NASA Astrophysics Data System (ADS)
Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian
2018-01-01
Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the Stuart Range Formation. This is consistent with its particulate fabric, where relatively large, discrete organic particles have limited contact with the mineral matrix and the clay minerals are mainly diagenetic and physically segregated within pores. While heating rate may have a control on mineral matrix effects, this result shows that the extent to which organic matter and clay minerals are physically associated could have a significant effect on the timing of hydrocarbon generation, and is a function of the depositional environment and detrital vs diagenetic origin of clay minerals in source rocks.
Nonlinear Propagation of Sound in Recently Settled Flocculated Sediments
NASA Astrophysics Data System (ADS)
Reed, A. H.; Sanders, W. M.
2016-12-01
Cohesive sediments undergo changes in a whirlwind. Dumped out of the river and into the estuary, they get bathed in salty water and subject to turbulent motion. During this sequence of events, the clay particles form clay aggregates of larger size with higher settling rates than the clay particles. Once the flocs have settled, cohesive sediments may form a sediment deposit of mud. Our interest is in the factors that control the development of soundspeed within these muds. This paper addresses organic matter influences on floc aggregation and settling rates. In laboratory studies, organic matter type differed in mixtures with either bentonite or kaolinite clays. The organic matter types used were guar gum, a net positive biopolymer, and xanthan gum, a net negative biopolymer derived from bacterial exudates, similar to those commonly found in estuaries. These biopolymers were dissolved into low salinity water (0-10 ppt). The biopolymer mixture was degassed and during the degassing process, either bentonite or kaolinite clay was added to the vessel. Surprisingly, different settling rates occurred in the clay-biopolymer mixtures. The settling rates of the clay-guar mixtures was more rapid (1-2 days) than the settling rate for the clay-xanthan mixtures. While clay-guar consolidated further, clay-xanthan maintained consistency for more than 2 weeks with density slowly increasing during that period. Compressional soundspeed (Vp) measurements were made with depth through the vessel using 0.5 mHz piezoelectric transducers. It was found that Vp in water was similar to that of the clay-xanthan. Vp was the same in the upper 6 cm of mud as it was in the overlying water and Vp decreased to become slower with increasing depth. Compressional wave velocity (Vp) also changed slightly with the guar complexes below the sediment water interface to the depth of the vessel. Vp was slightly slower in the mud than in the water column. Vp of the water was 1480-1495 m/s whereas Vp within the clay-biopolymer was below the minimum Vp in the water column. This slight decrease in Vp with depth is consistent for that of naturally occurring surficial mud deposits. This work suggests that organic matter type can play a critical role in the rate of consolidation within a mud deposit, which has implications for mud strength development and transport potential.
NASA Astrophysics Data System (ADS)
Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe
2017-01-01
The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.
NASA Astrophysics Data System (ADS)
Põldsaar, Kairi
2015-04-01
Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.
The effect of soil texture on the degradation of textiles associated with buried bodies.
Lowe, A C; Beresford, D V; Carter, D O; Gaspari, F; O'Brien, R C; Stuart, B H; Forbes, S L
2013-09-10
There are many factors which affect the rate of decomposition in a grave site including; the depth of burial, climatic conditions, physical conditions of the soil (e.g. texture, pH, moisture), and method of burial (e.g. clothing, wrappings). Clothing is often studied as a factor that can slow the rate of soft tissue decomposition. In contrast, the effect of soft tissue decomposition on the rate of textile degradation is usually reported as anecdotal evidence rather than being studied under controlled conditions. The majority of studies in this area have focused on the degradation of textiles buried directly in soil. The purpose of this study was to investigate the effect of soil texture on the degradation and/or preservation of textile materials associated with buried bodies. The study involved the burial of clothed domestic pig carcasses and control clothing in contrasting soil textures (silty clay loam, fine sand and fine sandy loam) at three field sites in southern Ontario, Canada. Graves were exhumed after 2, 12 and 14 months burial to observe the degree of degradation for both natural and synthetic textiles. Recovered textile samples were chemically analyzed using infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the lipid decomposition by-products retained in the textiles. The findings of this study demonstrate that natural textile in contact with a buried decomposing body will be preserved for longer periods of time when compared to the same textile buried directly in soil and not in contact with a body. The soil texture did not visually impact the degree of degradation or preservation. Furthermore, the natural-synthetic textile blend was resistant to degradation, regardless of soil texture, contact with the body or time since deposition. Chemical analysis of the textiles using GC-MS correctly identified a lipid degradation profile consistent with the degree of soft tissue decomposition. Such information may be important for estimating time since deposition in instances where only grave goods and associated materials are recovered from a burial site. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schampera, Birgit; Dultz, Stefan
2013-04-01
The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch experiments with NO3- will support the understanding of sorption behavior of the anions. All hydrophilic samples have a higher retardation capacity, indicated by diffusion coefficients of 2.44 x 10-11 m/s2 for original bentonite and ˜2.1 x 10-11m/s2 for hydrophilic organo-clays. For hydrophobic organo-clays the H2O diffusion can be higher and is increased at high bulk density (1-1.5 g/m3) up to 2.76 x 10-10m2/s. Experiments with NO3- at bulk density of 1.5 g/m3 reveal that the apparent diffusion coefficients of nitrate are with results up to 5.61 x 1012 m2/s distinctively lower than free diffusion of nitrate in pure water (6.46 x 1010 m2/s at experimental conditions) and nitrate diffusion in natural bentonite (2.63 x 1011 m2/s). The measurements allow the interpretation of the different sorption mechanisms, retardation capacity and diffusion behavior of the analyzed clays at different anion concentrations. Ongoing molecular dynamic simulations will contribute understanding of diffusion processes in organo-clays including the conditions at the interface of the clay minerals and in solution. References: [1] Shackelford, C.D., Moore S.M. (2013) Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Engineering Geology, 152, 133-147. [2] Rytwo, G., Nir, S., Shuali, U. (2012) Clay and water treatment. Applied Clay Science, 67-68, 117-118. [3] Lorenzetti, R.L., Bartelt-Hunt, S.L., Burns, S.E., Smith, J.A. (2005) Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23, 385-400. [4] Schampera, B., Dultz, S. (2011) H2O self-diffusion in compacted clays as influenced by surface charge and wettability - obstruction effects of bound H2O layers. Clay and Clay Minerals,59, 42-57.
Scanning electron microscopy of clays and clay minerals
Bohor, B.F.; Hughes, R.E.
1971-01-01
The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.
Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi
2009-02-05
We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.
Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn
2016-04-01
This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.
Hamim, Salah U.; Singh, Raman P.
2014-01-01
Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface. PMID:27379285
Morris, R C; Fraley, L
1989-04-01
We measured 222Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222Rn fluence rate. The most important effect on 222Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate.
Saeedi, Mohsen; Li, Loretta Y; Grace, John R
2018-05-15
The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solum, J.G.; Davatzes, N.C.; Lockner, D.A.
2010-01-01
The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.
Hamim, Salah U; Singh, Raman P
2014-01-01
Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface.
2,3,7,8-DIBENZO-P-DIOXINS IN MINED CLAY PRODUCTS ...
Ball clay was the source of dioxin contamination discovered in selected chickens analyzed as part of a joint U.S. Department of Agriculture/U.S. Environmental Protection Agency national survey of the U.S. poultry supply conducted in 1997. The affected animals, which had been raised in the southern United States, represented approximately 5% of the national poultry production . All of these chickens and other animal food sources (i.e., farm-raised catfish), similarly contaminated, were fed a diet of animal feed containing ball clay as an anti-caking additive. The clay was mined in northwestern Mississippi within a geological formation referred to as the Mississippi Embayment. Individual raw and processed ball clay samples were analyzed for the presence of the 2,3,7,8-PCDDs/PCDFs. The average toxic equivalents (TEQs) for the raw and processed samples were 1513 and 996 ppt dry weight, respectively. Other mined clay-based products used in animal feeds revealed lower TEQs. All of the products exhibited either an absence of detectable concentrations of 2,3,7,8-PCDFs or concentrations 2-3 orders of magnitude lower than the PCDDs. The isomer distribution, specific isomer identification, and congener profile of the PCDDs in the clay were established and compared to known sources of dioxin contamination. Several unique features of this isomer distribution are characteristic of the clays and are distinguishable from those other known sources. These characteristic
Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F
2011-12-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.
Unuabonah, Emmanuel I; Olu-Owolabi, Bamidele I; Fasuyi, Esther I; Adebowale, Kayode O
2010-07-15
Kaolinite clay was treated with polyvinyl alcohol to produce a novel water-stable composite called polymer-clay composite adsorbent. The modified adsorbent was found to have a maximum adsorption capacity of 20,400+/-13 mg/L (1236 mg/g) and a maximum adsorption rate constant of approximately = 7.45x10(-3)+/-0.0002 L/(min mg) at 50% breakthrough. Increase in bed height increased both the breakpoint and exhaustion point of the polymer-clay composite adsorbent. The time for the movement of the Mass Transfer Zone (delta) down the column was found to increase with increasing bed height. The presence of preadsorbed electrolyte and regeneration were found to reduce this time. Increased initial Cd(2+) concentration, presence of preadsorbed electrolyte, and regeneration of polymer-clay composite adsorbent reduced the volume of effluent treated. Premodification of polymer-clay composite adsorbent with Ca- and Na-electrolytes reduced the rate of adsorption of Cd(2+) onto polymer-clay composite and lowered the breakthrough time of the adsorbent. Regeneration and re-adsorption studies on the polymer-clay composite adsorbent presented a decrease in the bed volume treated at both the breakpoint and exhaustion points of the regenerated bed. Experimental data were observed to show stronger fits to the Bed Depth Service Time (BDST) model than the Thomas model. 2010 Elsevier B.V. All rights reserved.
Garai, Ashesh; Nandi, Arun K
2008-04-01
The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (< 6 x 10(-3) s(-1)) and power law variation for the higher shear rate region. The characteristic time (A) increase with increasing clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained from jamming or network formation of clay tactoids under shear. A probable explanation of the two apparently contradictory phenomena of shear thinning versus pseudo-solid behavior of the nanocomposite sols is discussed.
Rafiq, Muhammad Khalid; Joseph, Stephen D; Li, Fei; Bai, Yanfu; Shang, Zhanhuan; Rawal, Aditya; Hook, James M; Munroe, Paul R; Donne, Scott; Taherymoosavi, Sara; Mitchell, David R G; Pace, Ben; Mohammed, Mohanad; Horvat, Joseph; Marjo, Christopher E; Wagner, Avital; Wang, Yanlong; Ye, Jun; Long, Rui-Jun
2017-12-31
Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong
2015-07-01
Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest in both bulk soil and clay-size soil fraction, and it was the most major forms in soil organic nitrogen functional groups. Compared with the FALL treatment, the relative proportion of amide/amine-N was lower whereas that of Pyrrole-N was higher in the CK treatment. In the treatments with combined chemical fertilizers and organic manure, the relative proportion of amide/amine-N decreased with increasing application rates of organic manure, while that of Pyrrole-N had an opposite trend. In bulk soil, the relative proportion of amide/amine-N was the highest for the NPKS treatment than for the other treatments. On the other hand, the relative proportion of nitrile/aromatic-N was the highest for the Fallow treatment than for the other treatments in clay-size soil fraction. It is feasible to use N K-edge XANES spectroscopy for characterizing in situ the changes of organic N functional groups in soil under different fertilization practices.
21 CFR 186.1256 - Clay (kaolin).
Code of Federal Regulations, 2012 CFR
2012-04-01
... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...
21 CFR 186.1256 - Clay (kaolin).
Code of Federal Regulations, 2011 CFR
2011-04-01
... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...
21 CFR 186.1256 - Clay (kaolin).
Code of Federal Regulations, 2013 CFR
2013-04-01
... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...
21 CFR 186.1256 - Clay (kaolin).
Code of Federal Regulations, 2010 CFR
2010-04-01
... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... Industrial Park, Steelway Boulevard, Clay. The grantee's proposed service area under the ASF would be...)--Clay Business Park, NYS Route 31 and Caughdenoy Road, Clay, Onondaga County; and, Proposed Site 3 (35...
Implications of Smectite Subduction at the Costa Rican Convergent Margin
NASA Astrophysics Data System (ADS)
Cardace, D.; Morris, J. D.; Underwood, M. B.; Spinelli, G.
2003-12-01
Legs 205/170 of the Ocean Drilling Program (ODP) drilled a reference section on the incoming plate and sites at the toe of the sedimentary prism at the Costa Rican convergent margin. Complete sediment subduction has been documented, with the prism described by Leg 205/170 shipboard scientists as a paleoslump prism. Despite sediment subduction, Costa Rican arc lava geochemistry shows little sediment signal. Though subduction erosion has been posited as a mechanism for damping the geochemical sediment signal, this abstract addresses whether the clay content and distribution in the subducting pile can (a) play a role in localizing the decollement and (b) impact subduction of sediment to depth. X-ray diffraction (XRD) analyses of bulk sediment, with biogenic silica determinations, have been carried out for samples from the prism, through the decollement, to the underthrust sediments. Clay fractions have been isolated and silica studied for a subset of these samples. XRD peak areas of bulk samples were transformed into relative abundances via matrix singular value decomposition (Fisher and Underwood, 1995, Proc. ODP, Init. Repts., 156: 29-37), and adjusted following silica determination; volcanic ash has been neglected as a sedimentary component. Average relative weight percents of dominant minerals and biogenic silica (bSiO2) for prism toe units (Site 1040) are: P1A (silty clay, 74.8 m thick) 82 wt% clay, 5 wt% quartz, 13 wt% plagioclase, 0 wt% calcite; P1B (silty clay, 296.4 m thick) 82.1 wt% clay, 6.0 wt% quartz, 10.4 wt% plagioclase, 0 wt% calcite, 1.4 wt% bSiO2. Below the decollement, underthrust abundances are: U1A (clayey diatomite, 13.2 m thick) 82.7 wt% clay, 5.2 wt% quartz, 8.9 wt% plagioclase, 0 wt% calcite, 3.2 wt% bSiO2; U1B (clayey diatomite, 38.2 m thick) 80.7 wt% clay, 4.4 wt% quartz, 6.6 wt% plagioclase, 0 wt% calcite, 8.2 wt% bSiO2; U2 (silty claystone, 57.1 m thick) 84.8 wt% clay, 4.5 wt% quartz, 6.8 wt% plagioclase, 0 wt% calcite, 3.9 wt% bSiO2; U3A (siliceous nannofossil chalk, 18.1 m thick) 44.1 wt% clay, 2.0 wt% quartz, 5.6 wt% plagioclase, 31.8 wt% calcite, 16.5 wt% bSiO2; U3B (siliceous nannofossil chalk, 75.55 m thick) 1.9 wt% clay, 0 wt% quartz, 1.1 wt% plagioclase, 92.4 wt% calcite, 4.7 wt% bSiO2; and U3C (siliceous nannofossil chalk, 80.18 m thick) 6.6 wt% clay, 6.1 wt% quartz, 4.6 wt% plagioclase, 74.1 wt% calcite, 8.7 wt% bSiO2. XRD peak areas for clay fractions of prism samples above and in the decollement (Site 1254 ˜Site 1040, 300-370 mbsf) were transformed into relative weight percent data with Biscaye weighting factors. Smectites ranged from 77-93 wt%, illites ranged from 0-4 wt%, and kaolinites/chlorites ranged from 5-20 wt%. The maximum smectite value was obtained in the lower decollement. Bulk mineralogy data for sediments subducting at Costa Rica show that the prism and uppermost underthrust sediments are 80-93 wt% clay sized minerals. Clay mineralogy suggests that the smectite maximum occurs in the lower decollement and decreases dramatically below. Low biogenic silica abundances persist down core, emphasizing the importance of clays to the subducting section at Costa Rica.
Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E
2018-01-01
Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites toxicity of released nano-clay particles to A594 adenocarcinomic human alveolar basal epithelial cells was observed, which will help with future risk based-formulations of exposure.
Adsorption of lead onto smectite from aqueous solution.
Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M
2013-03-01
The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals.
Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf
Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.
2003-01-01
Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does indicate some mixing from sources in adjacent provinces.
Paired measurements of K and Mg isotopes and clay authigenesis in marine sediments
NASA Astrophysics Data System (ADS)
Santiago Ramos, D. P.; Dunlea, A. G.; Higgins, J. A.
2016-12-01
Despite its importance as a major sink for seawater K and Mg, estimates of clay authigenesis in marine sediments remain poorly constrained. Previous work on Mg isotope fractionation during clay formation has revealed a preferential uptake of 26Mg, yielding authigenic clay products with potentially distinct δ26Mg compared to the detrital component. In a similar manner, we aim to quantify the K isotope fractionation during authigenic clay formation and to use paired δ26Mg and δ41K measurements as proxies for the identification and quantification of authigenic clays in shallow and deep marine sedimentary systems. To better understand the behavior of paired Mg and K isotopes during authigenic clay formation in marine sediments, we measured δ26Mg and δ41K values of pore-fluids and sediments from ODP/IODP sites 1052, U1395, U1403 and U1366. We find that while pore-fluid K concentrations at sites 1052, U1395 and U1403 all decline with depth, δ41K profiles differ significantly. These differences might be a result of a complex interplay between clay authigenesis, sedimentation rate, and fractionation of K isotopes during diffusion. Results from 1-D diffusion-advection-reaction models suggest that, in contrast to Mg, diffusion may play an important role in determining the overall K isotope fractionation during clay authigenesis in sites with low-sedimentation rates. Sites with high sedimentation rates may act as close systems where diffusion is negligible. In such cases, K uptake can be modeled as a Rayleigh distillation process and K isotope fractionation can be estimated. Measurements of δ26Mg and δ41K of pore-fluids from site U1395 and bulk sediments from U1366 suggest that paired measurements of these isotopic systems in siliciclastic marine sediments can provide new insights into rates of marine clay authigenesis, a globally important but understudied component of many geochemical cycles.
Starodoubtsev, S G; Lavrentyeva, E K; Khokhlov, A R; Allegra, G; Famulari, A; Meille, S V
2006-01-03
Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.
NASA Astrophysics Data System (ADS)
Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Böttge, V.
The so-called Red Salt Clay (T4) is deposited as clay-rich clastic sediment at the base of the Aller-series forming a persistent lateral layer of up to 20 m thickness above the lower Zechstein-series. The clay layers may act as a protective shield in the hanging wall of gas storages or underground repositories in salt formations, thus resulting in a multi-barrier system. As a proof of its reliability comprehensive hydro-mechanical investigations were performed on clay samples recovered at different sites in Germany. Most important, rock tightness against various fluids was confirmed in the lab and field-scale. Remarkably, only if the fluid pressure equalises the acting minimal stress (i.e. violence of the “minimum stress criterion”) a significant increase of permeability is observed (“pathway dilatation”) but no macro-frac. However, the material properties from different locations showed a significant variability according to different burial depths. Thus the Red Salt Clay may act as natural analogue, representing the material variability of various indurated clays. In addition, the existing knowledge gained from practical mining activities can be used to evaluate extreme in situ loading conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio
2011-01-15
Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less
Arhin, Emmanuel; Zango, Musah S
2017-02-01
Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.
Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.
Aggarwal, Vaneet; Li, Hui; Boyd, Stephen A; Teppen, Brian J
2006-02-01
Trichloroethene (TCE) is one of the most common pollutants in groundwater, and Cs+ can be a cocontaminant at nuclear facilities. Smectite clays have large surface areas, are common in soils, have high affinities for some organic contaminants, and hence can potentially influence the transport of organic pollutants entering soils and sediments. The exchangeable cations present near smectite clay surfaces can radically influence the sorption of organic pollutants by soil clays. This research was undertaken to determine the effect of Cs+, and other common interlayer cations, such as K+ and Ca2+, on the sorption of TCE by a reference smectite clay saponite. Cs-saturated clay sorbed the most TCE, up to 3500 mg/kg, while Ca-saturated smectite sorbed the least. We hypothesize that the stronger sorption of TCE by the Cs-smectite can be attributed to the lower hydration energy and hence smaller hydrated radius of Cs+, which expands the lateral clay surface domains available for sorption. Also, Cs-smectite interlayers are only one or two water layers thick, which may drive capillary condensation of TCE. Our results implicate enhanced retention of TCE in aquifer materials containing smectites accompanied by Cs+ cocontamination.
NASA Astrophysics Data System (ADS)
Dwi Yanti, Evi; Pratiwi, I.
2018-02-01
Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.
Expanded clay hot mix study : final report: part I.
DOT National Transportation Integrated Search
1969-04-01
This is part I of a two part final report on expanded clay hot mix to: (1) evaluate the use of various expanded clay bituminous mixtures under high traffic counts, (2) accumulate through experience testing, suitable information on the physical proper...
77 FR 41973 - Proposed Information Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
...: Corporation for National and Community Service, National Civilian Community Corps; Attention Colleen Clay... to: (202) 606-3459, Attention: Colleen Clay, Assistant Director. (4) Electronically through www... CONTACT: Colleen Clay, (202) 606-7561, or by email at [email protected] . SUPPLEMENTARY INFORMATION: CNCS is...
Investigating the Impacts of Particle Size and Wind Speed on Brownout
2015-03-26
mixture of sand, silt, clay , and organic material, classified based on its size and texture. Sand is the largest of the particle materials, with...smallest soil component is clay , with particle sizes less than 0.002 mm. Ultra-fine in texture, clay feels sticky when wet, is extremely cohesive, and does...not allow air to move through it easily. Clay makes a soil dense and is hard as concrete when dry. Loam is a nearly even mixture of sand and silt
Inter-layered clay stacks in Jurassic shales
NASA Technical Reports Server (NTRS)
Pye, K.; Krinsley, D. H.
1983-01-01
Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.
1993-04-01
Swaziland is a country of 17,363 sq km with 860,000 inhabitants, of whom 64% are literate. Independence was gained on September 6, 1968. The terrain consists of mountains and plateaus, with a climate variously near-temperature, subtropical, and semi-arid. English and SiSwati are spoken by Swazi, Zulu, and non-African ethnic groups, who variously hold Christian and indigenous beliefs. Life expectancy ranges between 53 and 60 years, GDP is $704 million, growing at a rate of 7%. Per capita income is $900. The country's natural resources include asbestos, coal, diamonds, timber, hydroelectric power, and clay. Sugar cane, corn, citrus, fruit, livestock, wood, pineapple, cotton, tobacco, and light manufactured and processed goods are areas of economic production. Motor vehicles, heavy machinery, fuel and lubricants, foodstuffs, and clothing are imported, and sugar, soft drink concentrate, woodpulp and wood products, manufactures, canned fruit, asbestos, and meat products are exported. In-depth information is also given on the people and history, government and principal officials, political conditions, the economy, defense, foreign relations, relations with the US, and names of US officials in the country.
Trembaczowski, A; Swieca, A
2002-12-01
Springs on Roztocze and Lublin Upland have been studied. Isotopic data are compared with data of chemical analyses. The results of studies allow us to distinguish five types of groundwaters. The differentiation is based upon different lithology; opokas, gaizes, sandy-silty-clay deposits, sands with shell sandstones, marly opokas, marly limestones and 'soft limestones of chalk type. A correlation can be observed between delta34S and the concentration of Ca or Mg ions also a correlation between HCO3- ion concentration and delta18O in sulphates. Probably these correlations are the result of some simultaneous processes, which occur in groundwater. The seasonal variations of the isotopic composition and sulphate concentration were observed in four springs feeding the upper Wieprz. The variations were simultaneous and often similar in these springs. Probably, these variations are caused by the admixture of sulphates coming from shallow water layers (or leached from soil); however the variations of the groundwater level may also change chemical and isotopic composition in groundwater.
Leitchenkov, G.L.; Belyatsky, B.V.; Rodionov, N.V.; Sergeev, S.A.
2007-01-01
refrozen from the lake water. This ice layer contains random sediment inclusions, eight of which have been studied using state-of the-art analytical techniques. Six inclusions comprise soft aggregates consisting mainly of clay-mica minerals and micron-sized quartz grains while two others are solid clasts of fine-grained cemented rocks. The largest rock clast consists of poorly-rounded quartz and minor amounts of accessory minerals and is classified as quartzose siltstone. More than twenty grains of zircon and monazite have been identified in this siltstone and dated by SIMS SHRIMP-II. Two age clusters have been recognized for these detrital grains, in the ranges 0.8−1.2 Ga and 1.6−1.8 Ga. The compositions of the rock clasts suggest that the bedrock situated to the west of Lake Vostok is sedimentary. The age data on the detrital accessory minerals suggest that the provenance of these sedimentary rocks − the Gamburtsev Mountains and Vostok Subglacial Highlands, is mainly represented by Paleoproterozoic and MesoproterozoicNeoproterozoic crustal provinces
Interpretation of the lime column penetration test
NASA Astrophysics Data System (ADS)
Liyanapathirana, D. S.; Kelly, R. B.
2010-06-01
Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.
Empirical evidence for acceleration-dependent amplification factors
Borcherdt, R.D.
2002-01-01
Site-specific amplification factors, Fa and Fv, used in current U.S. building codes decrease with increasing base acceleration level as implied by the Loma Prieta earthquake at 0.1g and extrapolated using numerical models and laboratory results. The Northridge earthquake recordings of 17 January 1994 and subsequent geotechnical data permit empirical estimates of amplification at base acceleration levels up to 0.5g. Distance measures and normalization procedures used to infer amplification ratios from soil-rock pairs in predetermined azimuth-distance bins significantly influence the dependence of amplification estimates on base acceleration. Factors inferred using a hypocentral distance norm do not show a statistically significant dependence on base acceleration. Factors inferred using norms implied by the attenuation functions of Abrahamson and Silva show a statistically significant decrease with increasing base acceleration. The decrease is statistically more significant for stiff clay and sandy soil (site class D) sites than for stiffer sites underlain by gravely soils and soft rock (site class C). The decrease in amplification with increasing base acceleration is more pronounced for the short-period amplification factor, Fa, than for the midperiod factor, Fv.
NASA Astrophysics Data System (ADS)
Goh, A. T. C.; Kulhawy, F. H.
2005-05-01
In urban environments, one major concern with deep excavations in soft clay is the potentially large ground deformations in and around the excavation. Excessive movements can damage adjacent buildings and utilities. There are many uncertainties associated with the calculation of the ultimate or serviceability performance of a braced excavation system. These include the variabilities of the loadings, geotechnical soil properties, and engineering and geometrical properties of the wall. A risk-based approach to serviceability performance failure is necessary to incorporate systematically the uncertainties associated with the various design parameters. This paper demonstrates the use of an integrated neural network-reliability method to assess the risk of serviceability failure through the calculation of the reliability index. By first performing a series of parametric studies using the finite element method and then approximating the non-linear limit state surface (the boundary separating the safe and failure domains) through a neural network model, the reliability index can be determined with the aid of a spreadsheet. Two illustrative examples are presented to show how the serviceability performance for braced excavation problems can be assessed using the reliability index.
Clay-Bacteria Systems and Biofilm Production
NASA Astrophysics Data System (ADS)
Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.
2007-12-01
Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.
Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan
2016-06-01
Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Interpreting habits in a new place: Migrants' descriptions of geophagia during pregnancy.
Hunter-Adams, Jo
2016-10-01
Previous studies of soil eating, or geophagia, among pregnant women in sub-Saharan Africa indicate the practice is widespread. Various explanations have been explored to explain the global phenomenon of soil eating, with the most compelling explanation focused on clay's ability to prevent or treat intestinal infection. The urban South African context for clay eating is not well understood. This paper explores clay consumption amongst pregnant migrants who are nationals of countries where clay consumption may be common. I conducted in-depth interviews with a purposively selected group of Somali, Congolese, and Zimbabwean women (n = 23). Interviews included questions broadly related to maternal and infant nutrition. In addition, I conducted nine focus group discussions (n = 48) with adult Somali, Congolese (DRC), and Zimbabwean men (N = 3) and women (N = 6), segregated by country of origin and gender. This paper focuses specifically on responses related to geophagia. While Somali women did not report consuming clay or charcoal, Congolese and Zimbabwean participants self-reported commonly consuming clay during pregnancy, and at times also when not pregnant. Despite having heard public health messaging that discouraged the practice, participants largely did not describe this consumption in terms of health, but rather in terms of craving and habit. Participants described continued consumption of clay in South Africa, and the only reason for ceasing consumption was in cases of severe constipation. The widespread consumption of clay soil by Congolese and Zimbabwean women during pregnancy may be a mechanism through which identity was reasserted and reproduced in a foreign country. Participants' emphasis on clay consumption seemed related to the absence or expense of other craved foods, and perhaps also to feelings of loss in Cape Town. Copyright © 2016 Elsevier Ltd. All rights reserved.