Sample records for soft elastic substrates

  1. Viscoelastic Thin Polymer Films under Transient Residual Stresses: Two-Stage Dewetting on Soft Substrates

    NASA Astrophysics Data System (ADS)

    Al Akhrass, S.; Reiter, G.; Hou, S. Y.; Yang, M. H.; Chang, Y. L.; Chang, F. C.; Wang, C. F.; Yang, A. C.-M.

    2008-05-01

    A nonmonotonic, two-stage dewetting behavior was observed for spin coated thin viscoelastic polymer films on soft elastic substrates. At times shorter than the relaxation time of the polymer (t<τrep), dewetting generated deep trenches in the soft rubbery substrate which, in turn, almost stopped dewetting. At later stages (t≫τrep), dewetting accelerated, accompanied by an unstable rim. However, holes nucleated at t<τrep showed only this second-stage behavior. Our observations are attributed to large elastic deformations in the substrate caused by transient residual stresses within the film.

  2. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates

    NASA Astrophysics Data System (ADS)

    Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.

    2018-04-01

    In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.

  3. Elasticity modulated Electrowetting of a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.

  4. Soft lubrication

    NASA Astrophysics Data System (ADS)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  5. Time-Dependent Migratory Behaviors in the Long-Term Studies of Fibroblast Durotaxis on a Hydrogel Substrate Fabricated with a Soft Band

    PubMed Central

    2015-01-01

    Durotaxis, biased cell movement up a stiffness gradient on culture substrates, is one of the useful taxis behaviors for manipulating cell migration on engineered biomaterial surfaces. In this study, long-term durotaxis was investigated on gelatinous substrates containing a soft band of 20, 50, and 150 μm in width fabricated using photolithographic elasticity patterning; sharp elasticity boundaries with a gradient strength of 300 kPa/50 μm were achieved. Time-dependent migratory behaviors of 3T3 fibroblast cells were observed during a time period of 3 days. During the first day, most of the cells were strongly repelled by the soft band independent of bandwidth, exhibiting the typical durotaxis behavior. However, the repellency by the soft band diminished, and more cells crossed the soft band or exhibited other mixed migratory behaviors during the course of the observation. It was found that durotaxis strength is weakened on the substrate with the narrowest soft band and that adherent affinity-induced entrapment becomes apparent on the widest soft band with time. Factors, such as changes in surface topography, elasticity, and/or chemistry, likely contributing to the apparent diminishing durotaxis during the extended culture were examined. Immunofluorescence analysis indicated preferential collagen deposition onto the soft band, which is derived from secretion by fibroblast cells, resulting in the increasing contribution of haptotaxis toward the soft band over time. The deposited collagen did not affect surface topography or surface elasticity but did change surface chemistry, especially on the soft band. The observed time-dependent durotaxis behaviors are the result of the mixed mechanical and chemical cues. In the studies and applications of cell migratory behavior under a controlled stimulus, it is important to thoroughly examine other (hidden) compounding stimuli in order to be able to accurately interpret data and to design suitable biomaterials to manipulate cell migration. PMID:24851722

  6. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts

    NASA Astrophysics Data System (ADS)

    Skotheim, J. M.; Mahadevan, L.

    2005-09-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.

  7. Influence of soft ferromagnetic substrate on magneto-elastic behavior in a superconducting coated conductor strip

    NASA Astrophysics Data System (ADS)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2013-11-01

    Ferromagnetic materials will affect not only the electromagnetic response but also the mechanical behaviors of coated conductors. The influence of soft ferromagnetic substrate on magneto-elastic behavior in a superconductor/ferromagnetic (SC/FM) bilayer exposed to a transverse magnetic field is investigated theoretically. The ferromagnetic substrate is regarded as ideal soft magnets with high permeability and small magnetic hysteresis. Due to the composite structure of SC/FM hybrids, magneto-elastic behavior will be subjected to combined effect of equivalent force and flexural moment. Analytical expressions for internal stress and strain components are derived by virtue of a two-dimensional elasticity analysis. It is worth pointing out that the y component of strain has much larger positive value during field ascent, which may result in the delamitation at the interface. Irreversible magnetostrictive behaviors are observed both along x direction and along y direction. For the thickness dependence of magnetostriction, the flexural moment dominates when the SC thickness is small while the equivalent force plays a critical role at higher SC thickness.

  8. Determining the Elastic Modulus of Compliant Thin Films Supported on Substrates from Flat Punch Indentation Measurements

    Treesearch

    M.J. Wald; J.M. Considine; K.T. Turner

    2013-01-01

    Instrumented indentation is a technique that can be used to measure the elastic properties of soft thin films supported on stiffer substrates, including polymer films, cellulosic sheets, and thin layers of biological materials. When measuring thin film properties using indentation, the effect of the substrate must be considered. Most existing models for determining the...

  9. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.

  10. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates

    PubMed Central

    Lackner, Juergen M.; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC. PMID:24688710

  11. Substrate stress relaxation regulates cell spreading

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.

    2015-02-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  12. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ke, E-mail: dk1118@yeah.net; Yang, Zhong; Xu, Jian-zhong, E-mail: xjzspine@163.com

    The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate formore » satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo. - Highlights: • An elastic hydrogel was designed to mimic the pliable muscle tissue microenvironment. • Myoblasts retained their stemness in long-term culture on the elastic hydrogels. • Myoblasts expanded on the elastic hydrogel exhibited enhanced in vivo engraftment.« less

  13. Surface Stresses and a Force Balance at a Contact Line.

    PubMed

    Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V

    2018-06-26

    Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.

  14. In situ elasticity modulation with dynamic substrates to direct cell phenotype

    PubMed Central

    Kloxin, April M.; Benton, Julie A.; Anseth, Kristi S.

    2009-01-01

    Microenvironment elasticity influences critical cell functions such as differentiation, cytoskeletal organization, and process extension. Unfortunately, few materials allow elasticity modulation in real-time to probe its direct effect on these dynamic cellular processes. Here, a new approach is presented for the photochemical modulation of elasticity within the cell's microenvironment at any point in time. A photodegradable hydrogel was irradiated and degraded under cytocompatible conditions to generate a wide range of elastic moduli similar to soft tissues and characterized using rheometry and atomic force microscopy (AFM). The effect of the elastic modulus on valvular interstitial cell (VIC) activation into myofibroblasts was explored. In these studies, gradient samples were used to identify moduli that either promote or suppress VIC myofibroblastic activation. With this knowledge, VICs were cultured on a high modulus, activating hydrogel substrate, and uniquely, results show that decreasing the substrate modulus with irradiation reverses this activation, demonstrating that myofibroblasts can be de-activated solely by changing the modulus of the underlying substrate. This finding is important for the rational design of biomaterials for tissue regeneration and offers insight into fibrotic disease progression. These photodegradable hydrogels demonstrate the capability to both probe and direct cell function through dynamic changes in substrate elasticity. PMID:19788947

  15. Stress concentration in periodically rough Hertzian contact: Hertz to soft-flat-punch transition

    PubMed Central

    Raphaël, E.; Léger, L.; Restagno, F.; Poulard, C.

    2016-01-01

    We report on the elastic contact between a spherical lens and a patterned substrate, composed of a hexagonal lattice of cylindrical pillars. The stress field and the size of the contact area are obtained by means of numerical methods: a superposition method of discrete pressure elements and an iterative bisection-like method. For small indentations, a transition from a Hertzian to a soft-flat-punch behaviour is observed when the surface fraction of the substrate that is covered by the pillars is increased. In particular, we present a master curve defined by two dimensionless parameters, which allows one to predict the stress at the centre of the contact region in terms of the surface fraction occupied by pillars. The transition between the limiting contact regimes, Hertzian and soft-flat-punch, is well described by a rational function. Additionally, a simple model to describe the Boussinesq–Cerruti-like contact between the lens and a single elastic pillar, which takes into account the pillar geometry and the elastic properties of the two bodies, is presented. PMID:27713659

  16. Towards the modeling of nanoindentation of virus shells: Do substrate adhesion and geometry matter?

    NASA Astrophysics Data System (ADS)

    Bousquet, Arthur; Dragnea, Bogdan; Tayachi, Manel; Temam, Roger

    2016-12-01

    Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a consequence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate corrugation on the mechanical response to indentation has not been studied. This is somewhat surprising considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular interactions while relatively strong adhesion forces are required for virus immobilization for nanoindentation. This article presents numerical simulations via finite elements discretization investigating the deformation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion interactions with the substrate. We study the influence of the adhesion forces in the deformation of the virus model under axial compression on a flat substrate by comparing the force-displacement curves for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders with that on a flat surface.

  17. Liquid drops attract or repel by the inverted Cheerios effect.

    PubMed

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  18. Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve

    PubMed Central

    Palchesko, Rachelle N.; Zhang, Ling; Sun, Yan; Feinberg, Adam W.

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation. PMID:23240031

  19. Wetting and phase separation in soft adhesion

    PubMed Central

    Jensen, Katharine E.; Sarfati, Raphael; Style, Robert W.; Boltyanskiy, Rostislav; Chakrabarti, Aditi; Chaudhury, Manoj K.; Dufresne, Eric R.

    2015-01-01

    In the classic theory of solid adhesion, surface energy drives deformation to increase contact area whereas bulk elasticity opposes it. Recently, solid surface stress has been shown also to play an important role in opposing deformation of soft materials. This suggests that the contact line in soft adhesion should mimic that of a liquid droplet, with a contact angle determined by surface tensions. Consistent with this hypothesis, we observe a contact angle of a soft silicone substrate on rigid silica spheres that depends on the surface functionalization but not the sphere size. However, to satisfy this wetting condition without a divergent elastic stress, the gel phase separates from its solvent near the contact line. This creates a four-phase contact zone with two additional contact lines hidden below the surface of the substrate. Whereas the geometries of these contact lines are independent of the size of the sphere, the volume of the phase-separated region is not, but rather depends on the indentation volume. These results indicate that theories of adhesion of soft gels need to account for both the compressibility of the gel network and a nonzero surface stress between the gel and its solvent. PMID:26553989

  20. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  1. Cohesive detachment of an elastic pillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Khaderi, S. N.; McMeeking, R. M.; Arzt, E.

    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of intense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion-strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohesive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value Hc of the corner stress intensity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and substrate.

  2. Capillary fracture of soft gels.

    PubMed

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.

  3. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.

    PubMed

    Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng

    2018-05-30

    Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function.

    PubMed

    Ford, Andrew J; Jain, Gaurav; Rajagopalan, Padmavathy

    2015-09-01

    The deposition of extracellular matrix (ECM) proteins by hepatic cells during fibrosis leads to the stiffening of the organ and perturbed cellular functions. Changes in the elasticity of liver tissue are manifested by altered phenotype in hepatic cells. We have investigated changes in human liver sinusoidal endothelial cells (hLSECs) that occur as the elastic modulus of their matrix transitions from healthy (6kPa) to fibrotic (36kPa) conditions. We have also investigated the role played by Kupffer cells in the dedifferentiation of hLSECs. We report the complete loss of fenestrae and the expression of CD31 at the surface as a result of increasing elastic moduli. LSECs exhibited a greater number of actin stress fibers and vinculin focal adhesion on the stiffer substrate, as well. A novel finding is that these identical trends can be obtained on soft (6kPa) substrates by introducing an inflamed microenvironment through the addition of Kupffer cells. hLSEC monocultures on 6kPa gels exhibited fenestrae that were 140.7±52.6nm in diameter as well as a lack of surface CD31 expression. Co-culturing hLSECs with rat Kupffer cells (rKCs) on 6kPa substrates, resulted in the complete loss of fenestrae, an increase in CD31 expression and in a well-organized cytoskeleton. These results demonstrate that the increasing stiffness of liver matrices does not solely result in changes in hLSEC phenotype. Even on soft substrates, culturing hLSECs in an inflamed microenvironment can result in their dedifferentiation. Our findings demonstrate the interplay between matrix elasticity and inflammation in the progression of hepatic fibrosis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Droplets move over viscoelastic substrates by surfing a ridge

    PubMed Central

    Karpitschka, S.; Das, S.; van Gorcum, M.; Perrin, H.; Andreotti, B.; Snoeijer, J. H.

    2015-01-01

    Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick–slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers. PMID:26238436

  6. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  7. Modeling universal dynamics of cell spreading on elastic substrates.

    PubMed

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  8. Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics

    PubMed Central

    Ma, Yinji; Jang, Kyung-In; Wang, Liang; Jung, Han Na; Kwak, Jean Won; Xue, Yeguang; Chen, Hang; Yang, Yiyuan; Shi, Dawei; Feng, Xue

    2017-01-01

    Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress–strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress–strain relation, with quantitative correspondence to finite element analysis and experiments. PMID:29033714

  9. Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics.

    PubMed

    Ma, Yinji; Jang, Kyung-In; Wang, Liang; Jung, Han Na; Kwak, Jean Won; Xue, Yeguang; Chen, Hang; Yang, Yiyuan; Shi, Dawei; Feng, Xue; Rogers, John A; Huang, Yonggang

    2016-08-02

    Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress-strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress-strain relation, with quantitative correspondence to finite element analysis and experiments.

  10. Wave energy transfer in elastic half-spaces with soft interlayers.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  11. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    NASA Astrophysics Data System (ADS)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-01

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  12. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less

  13. Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells.

    PubMed

    Kocgozlu, Leyla; Lavalle, Philippe; Koenig, Géraldine; Senger, Bernard; Haikel, Youssef; Schaaf, Pierre; Voegel, Jean-Claude; Tenenbaum, Henri; Vautier, Dominique

    2010-01-01

    Actin cytoskeleton forms a physical connection between the extracellular matrix, adhesion complexes and nuclear architecture. Because tissue stiffness plays key roles in adhesion and cytoskeletal organization, an important open question concerns the influence of substrate elasticity on replication and transcription. To answer this major question, polyelectrolyte multilayer films were used as substrate models with apparent elastic moduli ranging from 0 to 500 kPa. The sequential relationship between Rac1, vinculin adhesion assembly, and replication becomes efficient at above 200 kPa because activation of Rac1 leads to vinculin assembly, actin fiber formation and, subsequently, to initiation of replication. An optimal window of elasticity (200 kPa) is required for activation of focal adhesion kinase through auto-phosphorylation of tyrosine 397. Transcription, including nuclear recruitment of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), occurred above 50 kPa. Actin fiber and focal adhesion signaling are not required for transcription. Above 50 kPa, transcription was correlated with alphav-integrin engagement together with histone H3 hyperacetylation and chromatin decondensation, allowing little cell spreading. By contrast, soft substrate (below 50 kPa) promoted morphological changes characteristic of apoptosis, including cell rounding, nucleus condensation, loss of focal adhesions and exposure of phosphatidylserine at the outer cell surface. On the basis of our data, we propose a selective and uncoupled contribution from the substrate elasticity to the regulation of replication and transcription activities for an epithelial cell model.

  14. Deformation of an Elastic Substrate Due to a Resting Sessile Droplet

    NASA Astrophysics Data System (ADS)

    Bardall, Aaron; Daniels, Karen; Shearer, Michael

    2017-11-01

    On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates which deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal force. This talk will present a model for the static deformation of the substrate that includes a non-zero tangential contact line force as well as general interfacial energy conditions governing the angle of a two-dimensional droplet. We discuss extensions of this model to non-symmetric droplets and their effect on the static configuration of the droplet/substrate system. NSF #DMS-1517291.

  15. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.

    PubMed

    Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo

    2016-08-16

    Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.

  17. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott R.; Zuiderwijk, Antal; Souslov, Anton; Coulais, Corentin; van Hecke, Martin

    2017-11-01

    The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids--the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics.

  18. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  19. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    PubMed

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  20. Desorption to Delamination: Dynamics of Detachment in a Colloidal Thin Film

    NASA Astrophysics Data System (ADS)

    Varshney, Atul; Sharma, P.; Sane, A.; Ghosh, S.; Bhattacharya, S.

    2010-10-01

    Colloidal thin films of varying rigidity detaching from a substrate under an electric field induced stress are studied by video microscopy. For soft films, the process of detachment shows single-particle dynamics, analogous to desorption. For rigid films, a collective delamination spanning hundreds of particles occurs. A competition among the rigidity of the film, the interaction with the substrate, and the external stress leads to a correlation length over which the film delaminates at a critical stress. The phenomenon is described as a dynamical transition in a disordered elastic medium.

  1. Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.

    PubMed

    Albert, Philipp J; Schwarz, Ulrich S

    2014-06-03

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Marangos, Orestes; Misra, Anil

    2018-02-01

    Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3-6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.

  3. Inverse finite element methods for extracting elastic-poroviscoelastic properties of cartilage and other soft tissues from indentation

    NASA Astrophysics Data System (ADS)

    Namani, Ravi

    Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted "average" linear elastic modulus was studied. The focus here is on murine tibial cartilage, since recent experiments have shown that the modulus measured by a 15 mum tip is considerably larger than that obtained from a 90 mum tip. It is shown that a depth-dependent modulus could give rise to such a size effect. Lastly, parametric studies were performed within the small strain setting to understand the influence of permeability and viscoelastic properties on the indentation stress-relaxation response. The focus here is on cartilage, and specific test protocols (single-step vs. multi-step stress relaxation) are explored. An inverse algorithm was developed to extract the poroviscoelastic parameters. A sensitivity study using this algorithm shows that the instantaneous elastic modulus (which is a measure of the viscous relaxation) can be extracted with very good accuracy, but the permeability and long-time relaxation constant cannot be extracted with good accuracy. The thesis concludes with implications of these studies. The potential and limitations of indentation tests for studying cartilage and other soft tissues is discussed.

  4. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    PubMed

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Fracture characterization of inhomogeneous wrinkled metallic films deposited on soft substrates

    NASA Astrophysics Data System (ADS)

    Kishida, Hiroshi; Ishizaka, Satoshi; Nagakura, Takumi; Suzuki, Hiroaki; Yonezu, Akio

    2017-12-01

    This study investigated the fracture properties of wrinkled metallic films on a polydimethylsiloxane (PDMS) soft substrate. In particular, the crack density of the wrinkled film during tensile deformation was examined. In order to achieve better deformability of metallic thin films, a method to fabricate a wrinkled thin film on a PDMS soft substrate was first established. The copper (Cu) nano-film fabricated in this study possessed a wrinkled geometry, which plays a critical role in determining the extent of large elastic deformation. To create the wrinkled structure, wet-etching with a polymeric sacrificial layer was used. A sacrificial layer was first deposited onto a silicone rubber sheet. During the curing process of the layer, a compressive strain was applied such that the hardened surface layer buckled, and a wrinkled form was obtained. Subsequently, a PDMS solution was used to cover the layer in order to form a wrinkled PDMS substrate. Finally, the Cu film was deposited onto the wrinkled PDMS, such that the wrinkled Cu film on a soft PDMS substrate was fabricated. The use of uni-axial tensile tests resulted in film crack generation at the stress concentration zone in the wrinkled structure of the films. When the tensile loading was increased, the number of cracks increased. It was found that the increase in crack density was strongly related to the inhomogeneous nature of the wrinkled structure. Such a trend in crack density was investigated using FEM (finite element method) computations, such that this study established a simple mechanical model that may be used to predict the increase in crack density during tensile deformation. This model was verified through several experiments using various wrinkle patterns. The proposed mechanical model may be useful to predict the crack density of a wrinkled metallic film subject to tensile loading.

  6. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    PubMed

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomimicry in biomedical research

    PubMed Central

    Zhang, Ge

    2012-01-01

    Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has directed meschymal stem cell differentiation into specific lineages.1 They have shown that soft substrates mimicking the elastic modulus of brain tissues (0.1~1 kPa) were neurogenic, substrates of intermediate elastic modulus mimicking muscle (8 ~17 kPa) were myogenic, and substrates with bone-like elastic modulus (25~40 kPa) were osteogenic. This work represents a novel way to regulate the fate of stem cells and exerts profound influence on stem cell research. Biomimcry also drives improvements in tissue engineering. Novel scaffolds have been designed to capture extracellular matrix-like structures, binding of ligands, sustained release of cytokines, and mechanical properties intrinsic to specific tissues for tissue engineering applications.2,3 For example, tissue engineering skin grafts have been designed to mimic the cell composition and layered structure of native skin.4 Similarly, in the field of regenerative medicine, researchers aim to create biomimetic scaffolds to mimic the properties of a native stem cell environment (niche) to dynamically interact with the entrapped stem cells and direct their response.5 PMID:23275257

  8. Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

    PubMed Central

    Yin, Feng; Koskinen, Pekka; Kulju, Sampo; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. elastic atomic manipulation, and reflects the ultrasoft properties of the surface under strain. The method may be generally applicable to other soft e.g. molecular or biomolecular systems. PMID:25651973

  9. Designing PolyHEMA Substrates that Mimic the Viscoelastic Response of Soft Tissue

    PubMed Central

    Holt, Brian; Tripathi, Anubhav; Morgan, Jeffrey R.

    2011-01-01

    Matching the mechanical properties of a biomaterial to soft tissue is often overlooked despite the fact that it’s well known that cells respond to and are capable of changing their mechanical environment. In this paper, we used NaCl and alginate beads as porogens to make a series of micro- and macro-porous pHEMA substrates [poly(2-hydroxyethly methacrylate)] and quantified their mechanical behavior under low-magnitude shear loads over physiologically relevant frequencies. Using a stress-controlled rheometer, we performed isothermal (37°C) frequency response experiments between 0.628 and 75.4 rad/s [0.01–12Hz] at 0.1% strain. Both micro- and macro-porous pHEMA substrates were predominately elastic in nature with a narrow range of G′ and G″ values that mimicked the response of human skin. The magnitude of the G′ and G″ values of the macro-porous substrates were designed to closely match human skin. To determine how cell growth might alter their mechanical properties, pHEMA substrates were functionalized and human skin fibroblasts grown on them for fourteen days. As a result of cell growth, the magnitude of G′ and G″ increased at low frequencies while also altering the degree of high frequency dependence, indicating that cellular interactions with the micro-pore infrastructure has a profound effect on the viscoelastic behavior of the substrates. These data could be fit to a mathematical model describing a soft solid. A quantitative understanding of the mechanical behavior of biomaterials in regimes that are physiologically relevant and how these mechanics may change after implantation may aid in the design of new materials. PMID:21496821

  10. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion

    PubMed Central

    Hui, Chung-Yuen; Liu, Tianshu; Salez, Thomas; Raphael, Elie; Jagota, Anand

    2015-01-01

    The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that owing to elasticity. This paper studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω=σ(μR)−2/3((9π/4)Wad)−1/3, where σ and μ are the surface tension and shear modulus of the substrate, R is the sphere radius and Wad is the interfacial work of adhesion. Our theory reduces to the Johnson–Kendall–Roberts (JKR) theory and Young–Dupre equation in the limits of small and large ω, respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by one-third compared with the JKR limit and the pull-off behaviour is completely determined by ω. PMID:25792953

  11. A fluid-structure interaction model of soft robotics using an active strain approach

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Lin, Zhaowu; Gao, Tong

    2017-11-01

    Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.

  12. Localized soft elasticity in liquid crystal elastomers (POSTPRINT)

    DTIC Science & Technology

    2016-02-23

    AFRL-RX-WP-JA-2016-0280 LOCALIZED SOFT ELASTICITY IN LIQUID CRYSTAL ELASTOMER (POSTPRINT) Taylor H. Ware, Andreas F. Shick, and...MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 11 August 2015 Interim 31 January 2014 – 11 July 2015 4. TITLE AND SUBTITLE LOCALIZED SOFT ...2016 Localized soft elasticity in liquid crystal elastomers Taylor H. Ware1,2, John S. Biggins3, Andreas F. Shick1, Mark Warner3 & Timothy J. White1

  13. Self-sustained lift and low friction via soft lubrication

    PubMed Central

    Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Mahadevan, L.

    2016-01-01

    Relative motion between soft wet solids arises in a number of applications in natural and artificial settings, and invariably couples elastic deformation fluid flow. We explore this in a minimal setting by considering a fluid-immersed negatively buoyant cylinder moving along a soft inclined wall. Our experiments show that there is an emergent robust steady-state sliding regime of the cylinder with an effective friction that is significantly reduced relative to that of rigid fluid-lubricated contacts. A simple scaling approach that couples the cylinder-induced flow to substrate deformation allows us to explain the elastohydrodynamic lift that underlies the self-sustained lubricated motion of the cylinder, consistent with recent theoretical predictions. Our results suggest an explanation for a range of effects such as reduced wear in animal joints and long-runout landslides, and can be couched as a design principle for low-friction interfaces. PMID:27162361

  14. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.

    PubMed

    Wang, Shuodao; Huang, Yonggang; Rogers, John A

    2015-09-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems.

  15. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics

    PubMed Central

    Wang, Shuodao; Huang, Yonggang; Rogers, John A.

    2016-01-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems. PMID:27668126

  16. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material.

    PubMed

    Yang, Yang; Chen, Yonghua; Li, Yingtian; Chen, Michael Z Q; Wei, Ying

    2017-06-01

    In this article, we have proposed a novel robotic finger design principle aimed to address two challenges in soft pneumatic grippers-the controllability of the stiffness and the controllability of the bending position. The proposed finger design is composed of a 3D printed multimaterial substrate and a soft pneumatic actuator. The substrate has four polylactic acid (PLA) segments interlocked with three shape memory polymer (SMP) joints, inspired by bones and joints in human fingers. By controlling the thermal energy of an SMP joint, the stiffness of the joints is modulated due to the dramatic change in SMP elastic modulus around its glass transition temperature (T g ). When SMP joints are heated above T g , they exhibit very small stiffness, allowing the finger to easily bend around the SMP joints if the attached soft actuator is actuated. When there is no force from the soft actuator, shape recovery stress in SMP contributes to the finger's shape restoration. Since each joint's rotation can be individually controlled, the position control of the finger is made possible. Experimental analysis has been conducted to show the finger's variable stiffness and the result is compared with the analytical values. It is found that the stiffness ratio can be 24.9 times for a joint at room temperature (20°C) and at an elevated temperature of 60°C when air pressure p of the soft actuator is turned off. Finally, a gripper composed of two fingers is fabricated for demonstration.

  17. Influence of intra-molecular flexibility on the elastic property of double-stranded DNA film on a substrate

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Zheng; Meng, Wei-Lie; Tang, Heng-Song; Zhang, Neng-Hui

    2017-05-01

    DNA film self-assembled or nanografted on a substrate, as a kind of soft matter, consists of fixed DNA chains endowed with negative charges and an aqueous solution full of cations, anions and water molecules. Their thermal/electrical/mechanical properties are closely related to the complex biodetection signals in nano-/micro-scale biosensors and other new genome technologies. This makes it important to properly characterize these properties. In this paper, the effect of flexible micro-scale configurations on the elastic moduli of DNA films is investigated. First, illuminated by Qiu’s sphere model, an alternative bead-chain model in terms of the Yukawa potential is presented for flexible intra-DNA configurations to describe interactions between DNA fragments. The effective charges of coarse-grained DNA beads could be derived, in which the empirical parameters are identified by curve fitting with Qiu’s experimental data. Second, the updated mesoscopic bead-chain model and the thought experiment of a continuum compression bar are used to compare the elastic moduli of double-stranded DNA (dsDNA) films prepared by self-assembling and nanografting techniques. Configurational sampling is achieved via Monte Carlo simulation. Our predictions quantitatively or qualitatively agree well with the relevant experiments on the effective charge of dsDNA from low to moderate monovalent counterion concentration, immobilization deflection of single-stranded DNA (ssDNA) or dsDNA microcantilever with the variation of salt concentration, and elastic modulus of ssDNA film in the air. The results reveal that different solution environment stimulates the diverse mechanical properties of dsDNA film on a substrate, and the end effect (i.e. terminal group effect) makes self-assembling dsDNA film stiffer in the sense of the same average packing density.

  18. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.

    PubMed

    Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P

    2017-01-27

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m -1 . To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  19. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  20. A study of substrate-liquid crystal interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Baoshe

    This thesis concerns the study of substrate-liquid crystal interaction from two different angles. In one approach, we used the IPS (in-plane switching) technique to investigate the liquid crystal alignment by rubbed polyimide films. The IPS mode of liquid crystal cell operation is facilitated through comb electrodes capable of producing planar electric field. We have fabricated comb electrodes with a periodicity of 2 mum in order to confine the planar electric field close to the liquid crystal-substrate interface. Through optical transmittance measurements and comparison with theoretical predictions based on the Ladau-de Gennes formalism, we found the experimental data to be consistent with the physical picture of soft anchoring, in which the liquid crystal director at the substrate interface is rotated azimuthally under the planar electric field. As a result, we were able to obtain the azimuthal anchoring strength as a fitting parameter of the theory. This part of the thesis thus presents evidence(s) for director switching at the liquid crystal-substrate interface, as well as a method for measuring the azimuthal anchoring strength through optical means. In the second approach, we used nano-lithographic technique to fabricate textured two dimensional periodic patterns on silicon wafers, and examined the resulting liquid crystal alignment effect of such textured substrates. It was found that with decreasing periodicity, there exists an orientational transition from a state in which the liquid crystal alignment copies the substrate pattern at larger periodicity, to a state of uniform alignment at smaller periodicity. In our system, this transition occurs at a periodicity between 0.4 mum and 0.8 mum. Through theoretical simulations based on the model of competition between the elastic distortion energy and the interfacial anchoring potential, it was found that there is indeed a first-order abrupt transition when the periodicity is decreased. This is due to the fact that the elastic distortion energy scales as the inverse of the periodicity squared. Hence when the periodicity is decreased, the elastic distortion energy increases rapidly. At the critical periodicity the elastic distortion energy crosses the interfacial anchoring potential, below which the uniform alignment becomes the lower energy state. The uniform-aligned state was confirmed by the excellent theory-experiment agreement on spectral measurements, in conjunction with the optical microscope observations. In the uniform-aligned state, a large pretilt angle (35°) was obtained.

  1. Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers.

    PubMed

    Gross, Wolfgang; Kress, Holger

    2017-02-07

    The behavior of cells and tissue is greatly influenced by the mechanical properties of their environment. For studies on the interactions between cells and soft matrices, especially those applying traction force microscopy the characterization of the mechanical properties of thin substrate layers is essential. Various techniques to measure the elastic modulus are available. Methods to accurately measure the Poisson ratio of such substrates are rare and often imply either a combination of multiple techniques or additional equipment which is not needed for the actual biological studies. Here we describe a novel technique to measure both parameters, the Youngs's modulus and the Poisson ratio in a single experiment. The technique requires only a standard inverted epifluorescence microscope. As a model system, we chose cross-linked polyacrylamide and poly-N-isopropylacrylamide hydrogels which are known to obey Hooke's law. We place millimeter-sized steel spheres on the substrates which indent the surface. The data are evaluated using a previously published model which takes finite thickness effects of the substrate layer into account. We demonstrate experimentally for the first time that the application of the model allows the simultaneous determination of both the Young's modulus and the Poisson ratio. Since the method is easy to adapt and comes without the need of special equipment, we envision the technique to become a standard tool for the characterization of substrates for a wide range of investigations of cell and tissue behavior in various mechanical environments as well as other samples, including biological materials.

  2. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    PubMed

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  3. Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles

    PubMed Central

    Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.

    2015-01-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431

  4. Soft buckling actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Whitesides, George M.

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less

  5. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  6. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  7. Mechanics of hard films on soft substrates

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu

    2009-12-01

    Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the strain they are subject to. Instead of using blanket films that fail at strains less than i%, we have patterned ceramic films into a lattice of periodic, isolated islands. Failure modes such as channel cracking, debonding, and wrinkling have been identified. Island behaviors are controlled by factors such as island size, thickness, and elastic mismatch with the substrate. A very soft interlayer between the islands and the underlying polyimide substrate reduces strains in the islands by orders of magnitude. Using this approach, substrates with arrays of 200 x 200 mum2 large SiNx islands were stretched beyond 20% without cracking or debonding the islands. In summary, highly stretchable thin metal films and ceramic island arrays supported by polymer substrates have been achieved, along with mechanistic understandings of their deformation and failure mechanisms.

  8. Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing.

    PubMed

    Wong, Stephanie; Guo, Wei-hui; Hoffecker, Ian; Wang, Yu-li

    2014-01-01

    Substrate rigidity has been recognized as an important property that affects cellular physiology and functions. While the phenomenon has been well recognized, understanding the underlying mechanism may be greatly facilitated by creating a microenvironment with designed rigidity patterns. This chapter describes in detail an optimized method for preparing substrates with micropatterned rigidity, taking advantage of the ability to dehydrate polyacrylamide gels for micropatterning with photolithography, and subsequently rehydrate the gel to regain the original elastic state. While a wide range of micropatterns may be prepared, typical composite substrates consist of micron-sized islands of rigid photoresist grafted on the surface of polyacrylamide hydrogels of defined rigidity. These islands are displaced by cellular traction forces, for a distance determined by the size of the island, the rigidity of the underlying hydrogel, and the magnitude of traction forces. Domains of rigidity may be created using this composite material to allow systematic investigations of rigidity sensing and durotaxis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. AFM-based micro/nanoscale lithography of poly(dimethylsiloxane): stick-slip on a softpolymer

    NASA Astrophysics Data System (ADS)

    Watson, Jolanta A.; Myhra, Sverre; Brown, Christopher L.; Watson, Gregory S.

    2005-02-01

    Silicone rubbers have steadily gained importance in industry since their introduction in the 1960"s. Poly(dimethylsiloxane) (PDMS) is a relatively soft and optically clear, two-part elastomer with interesting and, more importantly, useful physical and electrical properties. Some of its common applications include protective coatings (e.g., against moisture, environmental attack, mechanical and thermal shock and vibrations), and encapsulation (e.g., amplifiers, inductive coils, connectors and circuit boards). The polymer has attracted recent interest for applications in soft lithography. The polymer is now routinely used as a patterned micro-stamp for chemical modification of surfaces, in particular Au substrates. Prominent stick-slip effects, surface relaxation and elastic recovery were found to be associated with micro/nano manipulation of the polymer by an AFM-based contact mode methodology. Those effects provide the means to explore in detail the meso-scale tip-to-surface interactions between a tip and a soft surface. The dependence of scan speed, loading force, attack angle and number of scan lines have been investigated.

  10. Collective Cell Behavior in Mechanosensing of Substrate Thickness.

    PubMed

    Tusan, Camelia G; Man, Yu-Hin; Zarkoob, Hoda; Johnston, David A; Andriotis, Orestis G; Thurner, Philipp J; Yang, Shoufeng; Sander, Edward A; Gentleman, Eileen; Sengers, Bram G; Evans, Nicholas D

    2018-06-05

    Extracellular matrix stiffness has a profound effect on the behavior of many cell types. Adherent cells apply contractile forces to the material on which they adhere and sense the resistance of the material to deformation-its stiffness. This is dependent on both the elastic modulus and the thickness of the material, with the corollary that single cells are able to sense underlying stiff materials through soft hydrogel materials at low (<10 μm) thicknesses. Here, we hypothesized that cohesive colonies of cells exert more force and create more hydrogel deformation than single cells, therefore enabling them to mechanosense more deeply into underlying materials than single cells. To test this, we modulated the thickness of soft (1 kPa) elastic extracellular-matrix-functionalized polyacrylamide hydrogels adhered to glass substrates and allowed colonies of MG63 cells to form on their surfaces. Cell morphology and deformations of fluorescent fiducial-marker-labeled hydrogels were quantified by time-lapse fluorescence microscopy imaging. Single-cell spreading increased with respect to decreasing hydrogel thickness, with data fitting to an exponential model with half-maximal response at a thickness of 3.2 μm. By quantifying cell area within colonies of defined area, we similarly found that colony-cell spreading increased with decreasing hydrogel thickness but with a greater half-maximal response at 54 μm. Depth-sensing was dependent on Rho-associated protein kinase-mediated cellular contractility. Surface hydrogel deformations were significantly greater on thick hydrogels compared to thin hydrogels. In addition, deformations extended greater distances from the periphery of colonies on thick hydrogels compared to thin hydrogels. Our data suggest that by acting collectively, cells mechanosense rigid materials beneath elastic hydrogels at greater depths than individual cells. This raises the possibility that the collective action of cells in colonies or sheets may allow cells to sense structures of differing material properties at comparatively large distances. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system.

    PubMed

    Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V

    2012-12-15

    We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.

  12. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating

    PubMed Central

    Engler, Adam J.; Carag-Krieger, Christine; Johnson, Colin P.; Raab, Matthew; Tang, Hsin-Yao; Speicher, David W.; Sanger, Joseph W.; Sanger, Jean M.; Discher, Dennis E.

    2009-01-01

    Summary Fibrotic rigidification following a myocardial infarct is known to impair cardiac output, and it is also known that cardiomyocytes on rigid culture substrates show a progressive loss of rhythmic beating. Here, isolated embryonic cardiomyocytes cultured on a series of flexible substrates show that matrices that mimic the elasticity of the developing myocardial microenvironment are optimal for transmitting contractile work to the matrix and for promoting actomyosin striation and 1-Hz beating. On hard matrices that mechanically mimic a post-infarct fibrotic scar, cells overstrain themselves, lack striated myofibrils and stop beating; on very soft matrices, cells preserve contractile beating for days in culture but do very little work. Optimal matrix leads to a strain match between cell and matrix, and suggests dynamic differences in intracellular protein structures. A ‘cysteine shotgun’ method of labeling the in situ proteome reveals differences in assembly or conformation of several abundant cytoskeletal proteins, including vimentin, filamin and myosin. Combined with recent results, which show that stem cell differentiation is also highly sensitive to matrix elasticity, the methods and analyses might be useful in the culture and assessment of cardiogenesis of both embryonic stem cells and induced pluripotent stem cells. The results described here also highlight the need for greater attention to fibrosis and mechanical microenvironments in cell therapy and development. PMID:18957515

  13. Modeling and simulation of viscoelastic biological particles' 3D manipulation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.

    2018-05-01

    Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.

  14. Designing Microstructures/Structures for Desired Functional Material and Local Fields

    DTIC Science & Technology

    2015-12-02

    utilized to engineer multifunctional soft materials for multi-sensing, multi- actuating , human-machine interfaces. [3] Establish a theoretical framework...model for surface elasticity, (ii) derived a new type of Maxwell stress in soft materials due to quantum mechanical-elasticity coupling and...elucidated its ramification in engineering multifunctional soft materials, and (iii) demonstrated the possibility of concurrent magnetoelectricity and

  15. Price elasticity of the demand for soft drinks, other sugar-sweetened beverages and energy dense food in Chile.

    PubMed

    Guerrero-López, Carlos M; Unar-Munguía, Mishel; Colchero, M Arantxa

    2017-02-10

    Chile is the second world's largest per capita consumer of caloric beverages. Caloric beverages are associated with overweight, obesity and other chronic diseases. The objective of this study is to estimate the price elasticity of demand for soft drinks, other sugar-sweetened beverages and high-energy dense foods in urban areas in Chile in order to evaluate the potential response of households' consumption to changes in prices. We used microdata from the VII Family Budget Survey 2012-2013, which collects information on expenditures made by Chilean urban households on items such as beverages and foods. We estimated a Linear Approximation of an Almost Ideal Demand System Model to derive own and cross price elasticities of milk, coffee, tea and other infusions, plain water, soft drinks, other flavored beverages, sweet snacks, sugar and honey, and desserts. We considered the censored nature of the data and included the Inverse Mills Ratio in each equation of the demand system. We estimated a Quadratic Almost Ideal Demand System and a two-part model as sensitivity analysis. We found an own price-elasticity of -1.37 for soft drinks. This implies that a price increase of 10% is associated with a reduction in consumption of 13.7%. We found that the rest of food and beverages included in the demand system behave as substitutes for soft drinks. For instance, plain water showed a cross-price elasticity of 0.63: a 10% increase in price of soft drinks could lead to an increase of 6.3% of plain water. Own and cross price elasticities were similar between models. The demand of soft drinks is price sensitive among Chilean households. An incentive system such as subsidies to non-sweetened beverages and tax to soft drinks could lead to increases in the substitutions for other healthier beverages.

  16. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography

    PubMed Central

    Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.

    2010-01-01

    Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864

  17. A novel method to determine the elastic modulus of extremely soft materials.

    PubMed

    Stirling, Tamás; Zrínyi, Miklós

    2015-06-07

    Determination of the elastic moduli of extremely soft materials that may deform under their own weight is a rather difficult experimental task. A new method has been elaborated by means of which the elastic modulus of such materials can be determined. This method is generally applicable to all soft materials with purely neo-Hookean elastic deformation behaviour with elastic moduli lower than 1 kPa. Our novel method utilises the self-deformation of pendent gel cylinders under gravity. When suspended, the material at the very top bears the weight of the entire gel cylinder, but that at the bottom carries no load at all. Due to the non-uniform stress distribution along the gel sample both the stress and the resulting strain show position dependence. The cross-sectional area of the material is lowest at the top of the sample and gradually increases towards its bottom. The equilibrium geometry of the pendant gel is used to evaluate the elastic modulus. Experimental data obtained by the proposed new method were compared to the results obtained from underwater measurements. The parameters affecting the measurement uncertainty were studied by a Pareto analysis of a series of adaptive Monte Carlo simulations. It has been shown that our method provides an easily achievable method to provide an accurate determination of the elastic modulus of extremely soft matter typically applicable for moduli below 1 kPa.

  18. Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna

    The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.

  19. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring.

    PubMed

    Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R Chad; Lee, Jung Woo; Dawidczyk, Thomas J; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A

    2014-09-03

    Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.

  20. Shear Stress Sensing with Elastic Microfence Structures

    NASA Technical Reports Server (NTRS)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; hide

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  1. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring

    NASA Astrophysics Data System (ADS)

    Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E.; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R. Chad; Lee, Jung Woo; Dawidczyk, Thomas J.; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G.; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.

  2. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-06

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  3. Structure and mechanical properties of Octopus vulgaris suckers

    PubMed Central

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N.; Mazzolai, Barbara

    2014-01-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  4. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  5. Tissue Cells Feel and Respond to the Stiffness of Their Substrate

    NASA Astrophysics Data System (ADS)

    Discher, Dennis E.; Janmey, Paul; Wang, Yu-li

    2005-11-01

    Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells-including fibroblasts, myocytes, neurons, and other cell types-sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actin-myosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

  6. Long-Range Interaction Forces between Polymer-Supported Lipid Bilayer Membranes

    PubMed Central

    Seitz, Markus; Park, Chad K.; Wong, Joyce Y.

    2009-01-01

    Much of the short-range forces and structures of softly supported DMPC bilayers has been described previously. However, one interesting feature of the measured force–distance profile that remained unexplained is the presence of a long-range exponentially decaying repulsive force that is not observed between rigidly supported bilayers on solid mica substrate surfaces. This observation is discussed in detail here based on recent static and dynamic surface force experiments. The repulsive forces in the intermediate distance regime (mica–mica separations from 15 to 40 nm) are shown to be due not to an electrostatic force between the bilayers but to compression (deswelling) of the underlying soft polyelectrolyte layer, which may be thought of as a model cytoskeleton. The experimental data can be fit by simple theoretical models of polymer interactions from which the elastic properties of the polymer layer can be deduced. PMID:21359166

  7. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  8. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  9. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    PubMed

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  10. Drop impact on spherical soft surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Simeng; Bertola, Volfango

    2017-08-01

    The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.

  11. Value of the Strain Ratio on Ultrasonic Elastography for Differentiation of Benign and Malignant Soft Tissue Tumors.

    PubMed

    Hahn, Seok; Lee, Young Han; Lee, Seung Hyun; Suh, Jin-Suck

    2017-01-01

    The purpose of this study was to evaluate whether the strain ratio provides additional value to conventional visual elasticity scores in the differentiation of benign and malignant soft tissue tumors by ultrasonic elastography. The Institutional Review Board approved the protocol of this retrospective review. Seventy-three patients who underwent elastography and had a soft tissue mass pathologically confirmed by ultrasound-guided core biopsy or surgical excision were enrolled from April 2012 through October 2014. On elastography, elasticity scores were determined with a 5-point visual scale, and the strain ratio to adjacent soft tissue at the same depth was calculated. Tumors were divided into benign and malignant groups according to the pathologic diagnoses. Elasticity scores and strain ratios were compared between benign and malignant groups, and diagnostic performance was evaluated by receiver operating characteristic curves. Of the 73 patients, 40 had benign tumors, and 33 had malignant tumors. Strain ratios (P = .003) and elasticity scores (P = .048) were significantly different between pathologic results. The areas under the receiver operating characteristic curves were 0.700 (95% confidence interval, 0.581-0.802) for the strain ratio and 0.623 (95% confidence interval, 0.515-0.746) for elastography. The strain ratios of malignant soft tissue tumors were lower than those of benign tumors and showed better diagnostic performance than did elasticity scores. The strain ratio can be used as a diagnostic indicator to predict the malignant potential of soft tissue tumors. © 2016 by the American Institute of Ultrasound in Medicine.

  12. Rayleigh-Taylor instability in soft elastic layers

    NASA Astrophysics Data System (ADS)

    Riccobelli, D.; Ciarletta, P.

    2017-04-01

    This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  13. Soft actuators and soft actuating devices

    DOEpatents

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  14. Soft Active Materials for Actuation, Sensing, and Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  15. Price elasticity of the demand for sugar sweetened beverages and soft drinks in Mexico.

    PubMed

    Colchero, M A; Salgado, J C; Unar-Munguía, M; Hernández-Ávila, M; Rivera-Dommarco, J A

    2015-12-01

    A large and growing body of scientific evidence demonstrates that sugar drinks are harmful to health. Intake of sugar-sweetened beverages (SSB) is a risk factor for obesity and type 2 diabetes. Mexico has one of the largest per capita consumption of soft drinks worldwide and high rates of obesity and diabetes. Fiscal approaches such as taxation have been recommended as a public health policy to reduce SSB consumption. We estimated an almost ideal demand system with linear approximation for beverages and high-energy food by simultaneous equations and derived the own and cross price elasticities for soft drinks and for all SSB (soft drinks, fruit juices, fruit drinks, flavored water and energy drinks). Models were stratified by income quintile and marginality index at the municipality level. Price elasticity for soft drinks was -1.06 and -1.16 for SSB, i.e., a 10% price increase was associated with a decrease in quantity consumed of soft drinks by 10.6% and 11.6% for SSB. A price increase in soft drinks is associated with larger quantity consumed of water, milk, snacks and sugar and a decrease in the consumption of other SSB, candies and traditional snacks. The same was found for SSB except that an increase in price of SSB was associated with a decrease in snacks. Higher elasticities were found among households living in rural areas (for soft drinks), in more marginalized areas and with lower income. Implementation of a tax to soft drinks or to SSB could decrease consumption particularly among the poor. Substitutions and complementarities with other food and beverages should be evaluated to assess the potential impact on total calories consumed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Elasticity of microscale volumes of viscoelastic soft matter by cavitation rheometry

    NASA Astrophysics Data System (ADS)

    Pavlovsky, Leonid; Ganesan, Mahesh; Younger, John G.; Solomon, Michael J.

    2014-09-01

    Measurement of the elastic modulus of soft, viscoelastic liquids with cavitation rheometry is demonstrated for specimens as small as 1 μl by application of elasticity theory and experiments on semi-dilute polymer solutions. Cavitation rheometry is the extraction of the elastic modulus of a material, E, by measuring the pressure necessary to create a cavity within it [J. A. Zimberlin, N. Sanabria-DeLong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763-767 (2007)]. This paper extends cavitation rheometry in three ways. First, we show that viscoelastic samples can be approximated with the neo-Hookean model provided that the time scale of the cavity formation is measured. Second, we extend the cavitation rheometry method to accommodate cases in which the sample size is no longer large relative to the cavity dimension. Finally, we implement cavitation rheometry to show that the theory accurately measures the elastic modulus of viscoelastic samples with volumes ranging from 4 ml to as low as 1 μl.

  17. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  18. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  19. Superpropulsion of Droplets and Soft Elastic Solids

    NASA Astrophysics Data System (ADS)

    Raufaste, Christophe; Chagas, Gabriela Ramos; Darmanin, Thierry; Claudet, Cyrille; Guittard, Frédéric; Celestini, Franck

    2017-09-01

    We investigate the behavior of droplets and soft elastic objects propelled with a catapult. Experiments show that the ejection velocity depends on both the projectile deformation and the catapult acceleration dynamics. With a subtle matching given by a peculiar value of the projectile/catapult frequency ratio, a 250% kinetic energy gain is obtained as compared to the propulsion of a rigid projectile with the same engine. This superpropulsion has strong potentialities: actuation of droplets, sorting of objects according to their elastic properties, and energy saving for propulsion engines.

  20. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  1. Comparison of formation of visco-elastic masses and their properties between zeins and kafirins.

    PubMed

    Taylor, Janet; Anyango, Joseph O; Muhiwa, Peter J; Oguntoyinbo, Segun I; Taylor, John R N

    2018-04-15

    Zeins of differing sub-class composition much more readily formed visco-elastic masses in water or acetic acid solutions than equivalent kafirin preparations. Visco-elastic masses could be formed from both zein and kafirin preparations by coacervation from glacial acetic acid. Dissolving the prolamins in glacial acetic acid apparently enabled protonation and complete solvation. Stress-relaxation analysis of coacervated zein and kafirin visco-elastic masses showed they were initially soft. With storage, they became much firmer. Zein masses exhibited predominantly viscous flow properties, whereas kafirin masses were more elastic. The γ-sub-class is apparently necessary for the retention of visco-elastic mass softness with kafirin and zein, and for elastic recovery of kafirin. Generally, regardless of water or acetic acid treatment, all the zein preparations had similar FTIR spectra, with greater α-helical conformation, than the kafirin preparations which were also similar to each other. Kafirin visco-elastic masses have a much higher elastic character than zein masses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex.

    PubMed

    Schweitzer, Mary H; Wittmeyer, Jennifer L; Horner, John R; Toporski, Jan K

    2005-03-25

    Soft tissues are preserved within hindlimb elements of Tyrannosaurus rex (Museum of the Rockies specimen 1125). Removal of the mineral phase reveals transparent, flexible, hollow blood vessels containing small round microstructures that can be expressed from the vessels into solution. Some regions of the demineralized bone matrix are highly fibrous, and the matrix possesses elasticity and resilience. Three populations of microstructures have cell-like morphology. Thus, some dinosaurian soft tissues may retain some of their original flexibility, elasticity, and resilience.

  3. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Carbon nanotubes and graphene towards soft electronics

    NASA Astrophysics Data System (ADS)

    Chae, Sang Hoon; Lee, Young Hee

    2014-04-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  5. Carbon nanotubes and graphene towards soft electronics.

    PubMed

    Chae, Sang Hoon; Lee, Young Hee

    2014-01-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  6. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  7. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    PubMed

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  8. Tunable smart digital structure (SDS) to modularly assemble soft actuators with layered adhesive bonding

    NASA Astrophysics Data System (ADS)

    Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie

    2018-01-01

    Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.

  9. Soft electronics for soft robotics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  10. From elasticity to capillarity in soft materials indentation

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan T.; Schellenberger, Frank; Kappl, Michael; Butt, Hans-Jürgen

    2017-06-01

    For soft materials with Young's moduli below 100 kPa, quantifying mechanical and interfacial properties by small scale indentation is challenging because in addition to adhesion and elasticity, surface tension plays a critical role. Until now, microscale contact of very soft materials has only been studied by static experiments under zero external loading. Here we introduce a combination of the colloidal probe technique and confocal microscopy to characterize the force-indentation and force-contact radius relationships during microindentation of soft silicones. We confirm that the widespread Johnson-Kendall-Roberts theory must be extended to predict the mechanical contact for soft materials. Typically a liquid component is found within very soft materials. With a simple analytical model, we illustrate that accounting for this liquid surface tension can capture the contact behavior. Our results highlight the importance of considering liquid that is often associated with soft materials during small scale contact.

  11. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli.

    PubMed

    Versaevel, Marie; Grevesse, Thomas; Riaz, Maryam; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    This protocol describes a simple method to deposit protein micropatterns over a wide range of culture substrate stiffness (three orders of magnitude) by using two complementary polymeric substrates. In the first part, we introduce a novel polyacrylamide hydrogel, called hydroxy-polyacrylamide (PAAm), that permits to surmount the intrinsically nonadhesive properties of polyacrylamide with minimal requirements in cost or expertize. We present a protocol for tuning easily the rigidity of "soft" hydroxy-PAAm hydrogels between ~0.5 and 50 kPa and a micropatterning method to locally deposit protein micropatterns on these hydrogels. In a second part, we describe a protocol for tuning the rigidity of "stiff" silicone elastomers between ~100 and 1000 kPa and printing efficiently proteins from the extracellular matrix. Finally, we investigate the effect of the matrix rigidity on the nucleus of primary endothelial cells by tuning the rigidity of both polymeric substrates. We envision that the complementarity of these two polymeric substrates, combined with an efficient microprinting technique, can be further developed in the future as a powerful mechanobiology platform to investigate in vitro the effect of mechanotransduction cues on cellular functions, gene expression, and stem cell differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Statistical study of biomechanics of living brain cells during growth and maturation on artificial substrates.

    PubMed

    Chen, La; Li, Wenfang; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-11-01

    There is increasing evidence that mechanical issues play a vital role in neuron growth and brain development. The importance of this grows as novel devices, whose material properties differ from cells, are increasingly implanted in the body. In this work, we studied the mechanical properties of rat brain cells over time and on different materials by using a high throughput magnetic tweezers system. It was found that the elastic moduli of both neurite and soma in networked neurons increased with growth. However, neurites at DIV4 exhibited a relatively high stiffness, which could be ascribed to the high outgrowth tension. The power-law exponents (viscoelasticity) of both neurites and somas of neurons decreased with culture time. On the other hand, the stiffness of glial cells also increased with maturity. Furthermore, both neurites and glia become softer when cultured on compliant substrates. Especially, the glial cells cultured on a soft substrate obviously showed a less dense and more porous actin and GFAP mesh. In addition, the viscoelasticity of both neurites and glia did not show a significant dependence on the substrates' stiffness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Adhesive contact of a rigid circular cylinder to a soft elastic substrate--the role of surface tension.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2015-05-21

    This article studies the effects of surface tension on the adhesive contact mechanics of a long rigid cylinder on an infinite half space comprising an incompressible elastic material. We present an exact solution based on small strain theory. The relationship between the indentation force and contact width was found to depend on a single dimensionless parameter ω = σ/[4(μR)(2/3)(W(ad)/2π)(1/3'), where R is the cylinder radius, Wad is the interfacial work of adhesion, and σ and μ are the surface tension and shear modulus of the half space, respectively. For small ω the solution reduces to the classical Johnson-Kendall-Roberts (JKR) theory, whereas for large ω the solution reduces to the small slope version of the Young-Dupre equation. The pull-off phenomenon was carefully examined and it was found that the contact width at pull-off reduces to zero when surface tension is larger than a critical value.

  14. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons.

    PubMed

    Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C

    2011-03-09

    The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.

  15. Toward soft-tissue elastography using digital holography to monitor surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Li, Shiguang; Mohan, Karan D.; Sanders, William W.; Oldenburg, Amy L.

    2011-11-01

    Measuring the elasticity distribution inside the human body is of great interest because elastic abnormalities can serve as indicators of several diseases. We present a method for mapping elasticity inside soft tissues by imaging surface acoustic waves (SAWs) with digital holographic interferometry. With this method, we show that SAWs are consistent with Rayleigh waves, with velocities proportional to the square root of the elastic modulus greater than 2-40 kPa in homogeneous tissue phantoms. In two-layer phantoms, the SAW velocity transitions approximately from that of the lower layer to that of the upper layer as frequency is increased in agreement with the theoretical relationship between SAW dispersion and the depth-dependent stiffness profile. We also observed deformation in the propagation direction of SAWs above a stiff inclusion placed 8 mm below the surface. These findings demonstrate the potential for quantitative digital holography-based elastography of soft tissues as a noninvasive method for disease detection.

  16. Effect of long-time immersion of soft denture liners in water on viscoelastic properties.

    PubMed

    Iwasaki, Naohiko; Yamaki, Chisato; Takahashi, Hidekazu; Oki, Meiko; Suzuki, Tetsuya

    2017-09-26

    Aim of this study was to investigate the effect of long-time immersion of soft denture liners in 37°C water on viscoelastic properties. Six silicone-based and two acrylic resin-based soft denture liners were selected. Cylindrical specimens were stored in distilled water at 37°C for 6 months. Viscoelastic properties, which were instantaneous and delayed elastic displacements, viscous flow, and residual displacement, were determined using a creep meter, and analyzed with 2-way analysis of variance and Tukey's comparison (α=0.05). Viscoelastic properties and their time-dependent changes were varied among materials examined. The observed viscoelastic properties of three from six silicone-based liners did not significantly change after 6-month immersion, but those of two acrylic resin-based liners significantly changed with the increase of immersion time. However, the sum of initial instantaneous elastic displacement and delayed elastic displacement of two acrylic resin-based liners during 6-month immersion changed less than 10%, which might indicate clinically sufficient elastic performance.

  17. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    PubMed

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  18. Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert

    2013-03-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute

  19. Substrate-dependent cell elasticity measured by optical tweezers indentation

    NASA Astrophysics Data System (ADS)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  20. Asymptotic self-restabilization of a continuous elastic structure

    NASA Astrophysics Data System (ADS)

    Bosi, F.; Misseroni, D.; Dal Corso, F.; Neukirch, S.; Bigoni, D.

    2016-12-01

    A challenge in soft robotics and soft actuation is the determination of an elastic system that spontaneously recovers its trivial path during postcritical deformation after a bifurcation. The interest in this behavior is that a displacement component spontaneously cycles around a null value, thus producing a cyclic soft mechanism. An example of such a system is theoretically proven through the solution of the elastica and a stability analysis based on dynamic perturbations. It is shown that the asymptotic self-restabilization is driven by the development of a configurational force, of similar nature to the Peach-Koehler interaction between dislocations in crystals, which is derived from the principle of least action. A proof-of-concept prototype of the discovered elastic system is designed, realized, and tested, showing that this innovative behavior can be obtained in a real mechanical apparatus.

  1. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOEpatents

    Telschow, K.L.; Siu, B.K.

    1996-07-09

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.

  2. Method and system for evaluating integrity of adherence of a conductor bond to a mating surface of a substrate

    DOEpatents

    Telschow, Kenneth L.; Siu, Bernard K.

    1996-01-01

    A method of evaluating integrity of adherence of a conductor bond to a substrate includes: a) impinging a plurality of light sources onto a substrate; b) detecting optical reflective signatures emanating from the substrate from the impinged light; c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; d) determining a target site on the selected conductor bond from the detected reflective signatures; e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method.

  3. A mechano-acoustic indentor system for in vivo measurement of nonlinear elastic properties of soft tissue.

    PubMed

    Koo, Terry K; Cohen, Jeffrey H; Zheng, Yongping

    2011-11-01

    Soft tissue exhibits nonlinear stress-strain behavior under compression. Characterizing its nonlinear elasticity may aid detection, diagnosis, and treatment of soft tissue abnormality. The purposes of this study were to develop a rate-controlled Mechano-Acoustic Indentor System and a corresponding finite element optimization method to extract nonlinear elastic parameters of soft tissue and evaluate its test-retest reliability. An indentor system using a linear actuator to drive a force-sensitive probe with a tip-mounted ultrasound transducer was developed. Twenty independent sites at the upper lateral quadrant of the buttock from 11 asymptomatic subjects (7 men and 4 women from a chiropractic college) were indented at 6% per second for 3 sessions, each consisting of 5 trials. Tissue thickness, force at 25% deformation, and area under the load-deformation curve from 0% to 25% deformation were calculated. Optimized hyperelastic parameters of the soft tissue were calculated with a finite element model using a first-order Ogden material model. Load-deformation response on a standardized block was then simulated, and the corresponding area and force parameters were calculated. Between-trials repeatability and test-retest reliability of each parameter were evaluated using coefficients of variation and intraclass correlation coefficients, respectively. Load-deformation responses were highly reproducible under repeated measurements. Coefficients of variation of tissue thickness, area under the load-deformation curve from 0% to 25% deformation, and force at 25% deformation averaged 0.51%, 2.31%, and 2.23%, respectively. Intraclass correlation coefficients ranged between 0.959 and 0.999, indicating excellent test-retest reliability. The automated Mechano-Acoustic Indentor System and its corresponding optimization technique offers a viable technology to make in vivo measurement of the nonlinear elastic properties of soft tissue. This technology showed excellent between-trials repeatability and test-retest reliability with potential to quantify the effects of a wide variety of manual therapy techniques on the soft tissue elastic properties. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  4. Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.

    2014-12-01

    Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.

  5. Cigarette ignition of soft furnishings: A literature review with commentary

    NASA Astrophysics Data System (ADS)

    Krasny, John F.

    1987-04-01

    Literature pertinent to the ignition by smoldering cigarettes of upholstered furniture and mattresses (soft furnishings) was searched through early 1986. This included literature on the smoldering behavior of cigarettes in air; their behavior on a variety of substrates simulating soft furnishings; mechanism of smoldering in substrates; relative cigarette ignition resistance of substrates; and relative propensity of commercial cigarette packings to ignite substrates. According to the reviewed literature, the smoldering behavior of cigarettes on substrates differs from that of cigarettes burning in air: on substrates, cigarette temperatures tend to be lower, and burning rates slower. These differences seem to be larger for substrates which ignite than for those which self-extinguish after the cigarette burns out. The characteristics of soft furnishings which insure resistance to cigarette ignition have been established, but those of cigarettes with low propensity to ignite furnishings have not. No mathematical model has been reported for the interaction of cigarette and substrate, but some empirical data do exist.

  6. Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface

    DOE PAGES

    Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...

    2017-10-23

    Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less

  7. Consequences of elastic anisotropy in patterned substrate heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2018-06-13

    The role of elastic anisotropy on quantum dot formation and evolution on a pre-patterned substrate is evaluated within the framework of a continuum model. We first extend the formulation for surface evolution to take elastic anisotropy into account. Using a small slope approximation, we derive the evolution equation and show how it can be numerically implemented up to linear and second order for stripe and egg-carton patterned substrates using an accurate and efficient procedure. The semi--infinite nature of the substrate is used to solve the elasticity problem subject to other boundary conditions at the free surface and at the film--substrate interface. The positioning of the quantum dots with respect to the peaks and valleys of the pattern is explained by a competition between the length scale of the pattern and the wavelength of the Asaro--Tiller--Grinfeld instability, which is also affected by the elastic anisotropy. The alignment of dots is affected by a competition between the elastic anisotropy of the film and the pattern orientation. A domain of pattern inversion, wherein the quantum dots form exclusively in the valleys of the patterns is identified as a function of the average film thickness and the elastic anisotropy, and the time--scale for this inversion as function of height is analyzed. © 2018 IOP Publishing Ltd.

  8. Improving Mechanical Properties of Molded Silicone Rubber for Soft Robotics Through Fabric Compositing.

    PubMed

    Wang, Yue; Gregory, Cherry; Minor, Mark A

    2018-06-01

    Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.

  9. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  10. Hydrogel-coated microfluidic channels for cardiomyocyte culture

    PubMed Central

    Annabi, Nasim; Selimović, Šeila; Cox, Juan Pablo Acevedo; Ribas, João; Bakooshli, Mohsen Afshar; Heintze, Déborah; Weiss, Anthony S.; Cropek, Donald; Khademhosseini, Ali

    2013-01-01

    The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5 % (w/v) hydrogel-coated devices than on 10 % (w/v) gel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches. PMID:23728018

  11. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    NASA Astrophysics Data System (ADS)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  12. Model of a Soft Robotic Actuator with Embedded Fluidic Network

    NASA Astrophysics Data System (ADS)

    Gamus, Benny; Or, Yizhar; Gat, Amir

    2017-11-01

    Soft robotics is an emerging bio-inspired concept of actuation, with promising applications for robotic locomotion and manipulation. Focusing on actuation by pressurized embedded fluidic networks, we present analytic formulation and closed-form solutions of an elastic actuator with pressurized fluidic networks. In this work we account for the effects of solid inertia and elasticity, as well as fluid viscosity, which allows modelling the system's step-response and frequency response as well as suggesting mode elimination and isolation techniques. We also present and model the application of viscous-peeling as an actuation mechanism, simplifying the fabrication process by eliminating the need for internal cavities. The theoretical results describing the viscous-elastic-inertial dynamics of the actuator are illustrated by experiments. The approach presented in this work may pave the way for the design and implementation of soft robotic legged locomotion that exploits dynamic effects.

  13. Sonoelastographic Features of the Patellar Ligament in Clinically Normal Dogs.

    PubMed

    Piccionello, Angela P; Serrani, Daniele; Busoni, Valeria; Salvaggio, Alberto; Bonazzi, Mattia; Bergamino, Chiara; Volta, Antonella

    2018-06-11

     This article describes the sonoelastographic features of the patellar ligament of sound dogs and tests feasibility, reproducibility and repeatability.  Clinically healthy medium-to-large breed dogs were enrolled. Sonoelastographic images of the patellar ligaments were obtained in lateral recumbency with the stifle flexed by an experienced operator and by a senior veterinary student. The elasticity colour map included red (soft), green (intermediate) and blue (hard). Tissue elasticity was measured by calculating the percentage of softness with dedicated software. Categorical, qualitative data analysis was performed using a weighted kappa statistic for repeatability and reproducibility. A categorical qualitative assessment was performed based on a grading scale of 1 to 5 (soft, mostly soft, intermediate, mostly hard and hard).  Fourteen clinically normal dogs were considered. A total of 28 patellar ligaments were examined. Overall, 25 of the patellar ligaments were graded as soft or mostly soft and the remaining 3 as intermediate. Repeatability was 86.2%, with a weighted kappa of 0.64 (good), for the well-trained sonographer and 83.3%, with a weighted kappa of 0.53 (moderate), for the senior student. Reproducibility was 86.2%, with a weighed kappa of 0.65 (good).  Sonoelastography of the canine patellar ligament is a feasible and reproducible technique. Patellar ligaments in clinically normal dogs showed highly elastic biomechanical properties. Schattauer GmbH Stuttgart.

  14. Effect of deposition temperature on morphological, magnetic and elastic properties of ultrathin Co49Pt51 films

    NASA Astrophysics Data System (ADS)

    Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.

    2018-03-01

    Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.

  15. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.

    PubMed

    Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui

    2017-01-01

    Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.

  16. Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chyasnavichyus, Marius; Young, Seth L.; Tsukruk, Vladimir V.

    2015-08-01

    Probing of micro- and nanoscale mechanical properties of soft materials with atomic force microscopy (AFM) gives essential information about the performance of the nanostructured polymer systems, natural nanocomposites, ultrathin coatings, and cell functioning. AFM provides efficient and is some cases the exclusive way to study these properties nondestructively in controlled environment. Precise force control in AFM methods allows its application to variety of soft materials and can be used to go beyond elastic properties and examine temperature and rate dependent materials response. In this review, we discuss experimental AFM methods currently used in the field of soft nanostructured composites and biomaterials. We discuss advantages and disadvantages of common AFM probing techniques, which allow for both qualitative and quantitative mappings of the elastic modulus of soft materials with nanosacle resolution. We also discuss several advanced techniques for more elaborate measurements of viscoelastic properties of soft materials and experiments on single cells.

  17. Multiscale biomechanics of brain tumours favours cancer invasion by cell softening and tissue stiffening

    NASA Astrophysics Data System (ADS)

    Kas, Josef; Fritsch, Anatol; Grosser, Steffen; Friebe, Sabrina; Reiss-Zimmermann, Martin; Müller, Wolf; Hoffmann, Karl-Titus; Sack, Ingolf

    Cancer progression needs two contradictory mechanical prerequisites. For metastasis individual cancer cells or small clusters have to flow through the microenvironment by overcoming the yield stress exerted by the surrounding. On the other hand a tumour has to behave as a solid to permit cell proliferation and spreading of the tumour mass against its surrounding. We determine that the high mechanical adaptability of cancer cells and the scale controlled viscoelastic properties of tissues reconcile both conflicting properties, fluid and solid, simultaneously in brain tumours. We resolve why different techniques that assess cell and tissue mechanics have produced apparently conflicting results by our finding that tumours generate different viscoelastic behaviours on different length scales, which are in concert optimal for tumour spreading and metastasis. Single cancer cells become very soft in their elastic behavior which promotes cell unjamming. On the level of direct cell-to-cell interactions cells feel their micro-environment as rigid elastic substrate that stimulates cancer on the molecular level. All over a tumour has predominately a stiff elastic character in terms of viscoelastic behaviour caused by a solid backbone. Simultaneously, the tumour mass is characterized by a large local variability in the storage and loss modulus that is caused by areas of a more fluid nature.

  18. Chemically defined, ultrasoft PDMS elastomers with selectable elasticity for mechanobiology

    PubMed Central

    Heinrichs, Viktor; Dieluweit, Sabine; Stellbrink, Jörg; Pyckhout-Hintzen, Wim; Hersch, Nils; Richter, Dieter

    2018-01-01

    Living animal cells are strongly influenced by the mechanical properties of their environment. To model physiological conditions ultrasoft cell culture substrates, in some instances with elasticity (Young's modulus) of only 1 kPa, are mandatory. Due to their long shelf life PDMS-based elastomers are a popular choice. However, uncertainty about additives in commercial formulations and difficulties to reach very soft materials limit their use. Here, we produced silicone elastomers from few, chemically defined and commercially available substances. Elastomers exhibited elasticities in the range from 1 kPa to 55 kPa. In detail, a high molecular weight (155 kg/mol), vinyl-terminated linear silicone was crosslinked with a multifunctional (f = 51) crosslinker (a copolymer of dimethyl siloxane and hydrosilane) by a platinum catalyst. The following different strategies towards ultrasoft materials were explored: sparse crosslinking, swelling with inert silicone polymers, and, finally, deliberate introduction of dangling ends into the network (inhibition). Rheological experiments with very low frequencies led to precise viscoelastic characterizations. All strategies enabled tuning of stiffness with the lowest stiffness of ~1 kPa reached by inhibition. This system was also most practical to use. Biocompatibility of materials was tested using primary cortical neurons from rats. Even after several days of cultivation no adverse effects were found. PMID:29624610

  19. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  20. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method

    PubMed Central

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-01-01

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom. PMID:29758968

  1. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.

    PubMed

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-04-27

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom.

  2. Printed stretchable circuit on soft elastic substrate for wearable application

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Wu, Xinzhou; Gu, Weibing; Lin, Jian; Cui, Zheng

    2018-01-01

    In this paper, a flexible and stretchable circuit has been fabricated by the printing method based on Ag NWs/PDMS composite. The randomly oriented Ag NWs were buried in PDMS to form a conductive and stretchable electrode. Stable conductivity was achieved with a large range of tensile strain (0-50%) after the initial stretching/releasing cycle. The stable electrical response is due to the buckling of the Ag NWs/PDMS composite layer. Furthermore, printed stretchable circuits integrated with commercial ICs have been demonstrated for wearable applications. Project supported by the National Program on Key Basic Research Project (No. 2015CB351901), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09020201), and the National Science Foundation of China (Nos. 51603227, 51603228).

  3. 2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels.

    PubMed

    Kuboki, Thasaneeya; Kantawong, Fahsai; Burchmore, Richard; Dalby, Matthew J; Kidoaki, Satoru

    2012-01-01

    The present study focuses on mechanotransduction in mesenchymal stem cells (MSCs) in response to matrix elasticity. By using photocurable gelatinous gels with tunable stiffness, proteomic profiles of MSCs cultured on tissue culture plastic, soft (3 kPa) and stiff (52 kPa) matrices were deciphered using 2-dimensional differential in-gel analysis (2D-DIGE). The DIGE data, tied to immunofluorescence, indicated abundance and organization changes in the cytoskeletonal proteins as well as differential regulation of important signaling-related proteins, stress-responsing proteins and also proteins involved in collagen synthesis. The major CSK proteins including actin, tubulin and vimentin of the cells cultured on the gels were remarkably changed their expressions. Significant down-regulation of α-tubulin and β-actin can be observed on gel samples in comparison to the rigid tissue culture plates. The expression abundance of vimentin appeared to be highest in the MSCs cultured on hard gels. These results suggested that the substrate stiffness significantly affects expression balances in cytoskeletal proteins of MSCs with some implications to cellular tensegrity.

  4. Hybrid stretchable circuits on silicone substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk; Liu, Q.

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  5. Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Chen, Youlong; Liu, Yilun; Yan, Yuan; Zhu, Yong; Chen, Xi

    2016-10-01

    When a stiff nanowire is deposited on a compliant soft substrate, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a polydimethylsiloxane (PDMS) substrate is studied. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed. Due to the helical buckling, the bending strain in SiNW is significantly reduced and the maximum local strain is almost uniformly distributed along SiNW. Based on the theoretical model, the energy landscape for different buckling modes of SiNW on PDMS substrate is given, which shows that both the in-plane and out-of-plane buckling modes have the local minimum potential energy, whereas the helical buckling model has the global minimum potential energy. Furthermore, the helical buckling spacing and amplitudes are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. As the effective compressive strain in elastomeric substrate increases, the buckling profile evolves from a vertical ellipse to a lateral ellipse, and then approaches to a circle when the effective compressive strain is larger than 30%. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nano-structures.

  6. The Impact of Food Prices on Consumption: A Systematic Review of Research on the Price Elasticity of Demand for Food

    PubMed Central

    Long, Michael W.; Brownell, Kelly D.

    2010-01-01

    In light of proposals to improve diets by shifting food prices, it is important to understand how price changes affect demand for various foods. We reviewed 160 studies on the price elasticity of demand for major food categories to assess mean elasticities by food category and variations in estimates by study design. Price elasticities for foods and nonalcoholic beverages ranged from 0.27 to 0.81 (absolute values), with food away from home, soft drinks, juice, and meats being most responsive to price changes (0.7–0.8). As an example, a 10% increase in soft drink prices should reduce consumption by 8% to 10%. Studies estimating price effects on substitutions from unhealthy to healthy food and price responsiveness among at-risk populations are particularly needed. PMID:20019319

  7. The impact of food prices on consumption: a systematic review of research on the price elasticity of demand for food.

    PubMed

    Andreyeva, Tatiana; Long, Michael W; Brownell, Kelly D

    2010-02-01

    In light of proposals to improve diets by shifting food prices, it is important to understand how price changes affect demand for various foods. We reviewed 160 studies on the price elasticity of demand for major food categories to assess mean elasticities by food category and variations in estimates by study design. Price elasticities for foods and nonalcoholic beverages ranged from 0.27 to 0.81 (absolute values), with food away from home, soft drinks, juice, and meats being most responsive to price changes (0.7-0.8). As an example, a 10% increase in soft drink prices should reduce consumption by 8% to 10%. Studies estimating price effects on substitutions from unhealthy to healthy food and price responsiveness among at-risk populations are particularly needed.

  8. Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids

    NASA Astrophysics Data System (ADS)

    Rénier, Mathieu; Gennisson, Jean-Luc; Barrière, Christophe; Catheline, Stefan; Tanter, Mickaël; Royer, Daniel; Fink, Mathias

    2008-06-01

    Recently a nonlinear equation describing the plane shear wave propagation in isotropic quasi-incompressible media has been developed using a new expression of the strain energy density, as a function of the second, third and fourth order shear elastic constants (respectively μ, A, D) [1]. In such a case, the shear nonlinearity parameter βs depends only from these last coefficients. To date, no measurement of the parameter D have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids are measured. Firstly, this theoretical background is applied to the acoustoelasticity theory, giving the variations of the shear wave speed as a function of the stress applied to the medium. From such variations, both linear (μ) and third order shear modulus (A) are deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a focused ultrasound beam is used to generate quasi-plane linear shear waves within the medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force generation technique is replaced by a vibrating plate applied at the surface of the phantoms. The propagation is also imaged using the same ultrafast scanner. From the assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. Finally, combining these results with the acoustoelasticity experiment, the fourth order modulus (D) is deduced. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. Measurements of the A moduli reveal that while the behaviors of both soft solids are close from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30±10 kPa.

  9. It's Harder to Splash on Soft Solids.

    PubMed

    Howland, Christopher J; Antkowiak, Arnaud; Castrejón-Pita, J Rafael; Howison, Sam D; Oliver, James M; Style, Robert W; Castrejón-Pita, Alfonso A

    2016-10-28

    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity, and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses, we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli ≲100  kPa reduce splashing, in agreement with simple scaling arguments. Thus, materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.

  10. It's Harder to Splash on Soft Solids

    NASA Astrophysics Data System (ADS)

    Howland, Christopher J.; Antkowiak, Arnaud; Castrejón-Pita, J. Rafael; Howison, Sam D.; Oliver, James M.; Style, Robert W.; Castrejón-Pita, Alfonso A.

    2016-10-01

    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity, and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses, we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli ≲100 kPa reduce splashing, in agreement with simple scaling arguments. Thus, materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.

  11. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  12. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.

    PubMed

    Wang, Zhengmu; Zhang, Hongbin; Chu, Axel J; Jackson, John; Lin, Karen; Lim, Chinten James; Lange, Dirk; Chiao, Mu

    2018-04-01

    Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.

    PubMed

    Zilonova, E; Solovchuk, M; Sheu, T W H

    2018-01-01

    The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU's continuous harmonic pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity, viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms (corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the proposed model to examine the cavitation significance during the treatment process. Their maximum values both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain amount of deposited heat for both cavitation terms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  15. Rotation of an immersed cylinder sliding near a thin elastic coating

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.

    2017-07-01

    It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.

  16. Development of dopant-free conductive bioelastomers

    PubMed Central

    Xu, Cancan; Huang, Yihui; Yepez, Gerardo; Wei, Zi; Liu, Fuqiang; Bugarin, Alejandro; Tang, Liping; Hong, Yi

    2016-01-01

    Conductive biodegradable materials are of great interest for various biomedical applications, such as tissue repair and bioelectronics. They generally consist of multiple components, including biodegradable polymer/non-degradable conductive polymer/dopant, biodegradable conductive polymer/dopant or biodegradable polymer/non-degradable inorganic additives. The dopants or additives induce material instability that can be complex and possibly toxic. Material softness and elasticity are also highly expected for soft tissue repair and soft electronics. To address these concerns, we designed a unicomponent dopant-free conductive polyurethane elastomer (DCPU) by chemically linking biodegradable segments, conductive segments, and dopant molecules into one polymer chain. The DCPU films which had robust mechanical properties with high elasticity and conductivity can be degraded enzymatically and by hydrolysis. It exhibited great electrical stability in physiological environment with charge. Mouse 3T3 fibroblasts survived and proliferated on these films exhibiting good cytocompatibility. Polymer degradation products were non-toxic. DCPU could also be processed into a porous scaffold and in an in vivo subcutaneous implantation model, exhibited good tissue compatibility with extensive cell infiltration over 2 weeks. Such biodegradable DCPU with good flexibility and elasticity, processability, and electrical stability may find broad applications for tissue repair and soft/stretchable/wearable bioelectronics. PMID:27686216

  17. Peeling without precursors

    NASA Astrophysics Data System (ADS)

    Lister, John; Skinner, Dominic; Large, Tim

    2017-11-01

    The peeling by fluid injection of an elastic sheet away from a substrate is often regularised by invoking a thin prewetting film or a low-viscosity phase in the tip. Here we analyse fluid-driven peeling without such precursors, and consider an elastic sheet either bonded to, or simply laid on, an elastic substrate. To resolve the `elastic contact-line problem' that arises from viscous flow and beam theory, we determine the near-tip behaviour from lubrication theory coupled to the full equations of elasticity and fracture. The result is a law for the tip propagation speed in terms of the remote loading and the toughness of the sheet-substrate bonding (which might be zero). There are distinct modes of failure, according to whether there is slip ahead of the fluid front. The propagation-speed law gives rise to new similarity solutions for the spread of a fluid-filled blister in different regimes.

  18. Multiscale model for microstructure evolution in multiphase materials: Application to the growth of isolated inclusions in presence of elasticity.

    PubMed

    Perez, Danny; Lewis, Laurent J

    2006-09-01

    We present a multiscale model based on the classical lattice time-dependent density-functional theory to study microstructure evolution in multiphase systems. As a first test of the method, we study the static and dynamic properties of isolated inclusions. Three cases are explored: elastically homogeneous systems, elastically inhomogeneous systems with soft inclusions, and elastically inhomogeneous systems with hard inclusions. The equilibrium properties of inclusions are shown to be consistent with previous results: both homogeneous and hard inclusions adopt a circular shape independent of their size, whereas soft inclusions are circular below a critical radius and elliptic above. In all cases, the Gibbs-Thomson relation is obeyed, except for a change in the prefactor at the critical radius in soft inclusions. Under growth conditions, homogeneous inclusions exhibit a Mullins-Sekerka shape instability [W. Mullins and R. Sekerka, J. Appl. Phys. 34, 323 (1963)], whereas in inhomogeneous systems, the growth of perturbations follows the Leo-Sekerka model [P. Leo and R. Sekerka, Acta Metall. 37, 3139 (1989)]. For soft inclusions, the mode instability regime is gradually replaced by a tip-growing mechanism, which leads to stable, strongly out-of-equilibrium shapes even at very low supersaturation. This mechanism is shown to significantly affect the growth dynamics of soft inclusions, whereas dynamical corrections to the growth rates are negligible in homogeneous and hard inclusions. Finally, due to its microscopic formulation, the model is shown to automatically take into account phenomena caused by the presence of the underlying discrete lattice: anisotropy of the interfacial energy, anisotropy of the kinetics, and preferential excitation of shape perturbations commensurate with the rotational symmetry of the lattice.

  19. Crack blunting and the strength of soft elastic solids

    NASA Astrophysics Data System (ADS)

    Hui, C.-Y.; Jagota, A.; Bennison, S. J.; Londono, J. D.

    2003-06-01

    When a material is so soft that the cohesive strength (or adhesive strength, in the case of interfacial fracture) exceeds the elastic modulus of the material, we show that a crack will blunt instead of propagating. Large-deformation finite-element model (FEM) simulations of crack initiation, in which the debonding processes are quantified using a cohesive zone model, are used to support this hypothesis. An approximate analytic solution, which agrees well with the FEM simulation, gives additional insight into the blunting process. The consequence of this result on the strength of soft, rubbery materials is the main topic of this paper. We propose two mechanisms by which crack growth can occur in such blunted regions. We have also performed experiments on two different elastomers to demonstrate elastic blunting. In one system, we present some details on a void growth mechanism for ultimate failure, post-blunting. Finally, we demonstrate how crack blunting can shed light on some long-standing problems in the area of adhesion and fracture of elastomers.

  20. Elastodynamic cloaking and field enhancement for soft spheres

    NASA Astrophysics Data System (ADS)

    Diatta, Andre; Guenneau, Sebastien

    2016-11-01

    We propose a spherical cloak described by a non-singular asymmetric elasticity tensor {C} depending upon a small parameter η, that defines the softness of a region one would like to conceal from elastodynamic waves. By varying η, we generate a class of soft spheres dressed by elastodynamic cloaks, which are shown to considerably reduce the scattering of the soft spheres. Importantly, such cloaks also provide some wave protection except for a countable set of frequencies, for which some large elastic field enhancement can be observed within the soft spheres. Through an investigation of trapped modes in elasticity, we supply a good approximation of such Mie-type resonances by some transcendental equation. Our results, unlike previous studies that focused merely on the invisibility aspects, shed light on potential pitfalls of elastodynamic cloaks for earthquake protection designed via geometric transforms: a seismic cloak needs to be designed in such a way that its inner resonances differ from eigenfrequencies of the building one wishes to protect. In order to circumvent this downfall of field enhancement inside the cloaked area, we introduce a novel generation of cloaks, named here, mixed cloaks. Such mixed cloaks consist of a shell that detours incoming waves, hence creating an invisibility region, and of a perfectly matched layer (PML, located at the inner boundary of the cloaks) that absorbs residual wave energy in such a way that aforementioned resonances in the soft sphere are strongly attenuated. The designs of mixed cloaks with a non-singular elasticity tensor combined with an inner PML and non-vanishing density bring seismic cloaks one step closer to a practical implementation. Note in passing that the concept of mixed cloaks also applies in the case of singular cloaks and can be translated in other wave areas for a similar purpose (i.e. to smear down inner resonances within the invisibility region).

  1. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  2. Theoretical studies on leaky-SAW properties influenced by layers on anisotropic piezoelectric crystals.

    PubMed

    Wallner, P; Ruile, W; Weigel, R

    2000-01-01

    Theoretical studies on the behavior of leaky-SAW (LSAW) properties in layered structures were performed. For these calculations rotYX LiTaO (3) and rotYX LiNbO(3) LSAW crystal cuts were used, assuming different layer materials. For LSAWs both the velocity and the inherent loss due to bulk wave emission into the substrate are strongly influenced by distinct layer parameters. As a result, these layer properties like elastic constants or thickness have shown a strong influence on the crystal cut angle of minimum LSAW loss. Moreover, for soft and stiff layer materials, a different shift of the LSAW loss minimum can occur. Therefore, using double-layer structures, the shift of the LSAW loss minimum can be influenced by appropriate chosen layers and ratios.

  3. Optimizing Double-Network Hydrogel for Biomedical Soft Robots.

    PubMed

    Banerjee, Hritwick; Ren, Hongliang

    2017-09-01

    Double-network hydrogel with standardized chemical parameters demonstrates a reasonable and viable alternative to silicone in soft robotic fabrication due to its biocompatibility, comparable mechanical properties, and customizability through the alterations of key variables. The most viable hydrogel sample in our article shows tensile strain of 851% and maximum tensile strength of 0.273 MPa. The elasticity and strength range of this hydrogel can be customized according to application requirements by simple alterations in the recipe. Furthermore, we incorporated Agar/PAM hydrogel into our highly constrained soft pneumatic actuator (SPA) design and eventually produced SPAs with escalated capabilities, such as larger range of motion, higher force output, and power efficiency. Incorporating SPAs made of Agar/PAM hydrogel resulted in low viscosity, thermos-reversibility, and ultralow elasticity, which we believe can help to combine with the other functions of hydrogel, tailoring a better solution for fabricating biocompatible soft robots.

  4. Experimental soft-matter science

    NASA Astrophysics Data System (ADS)

    Nagel, Sidney R.

    2017-04-01

    Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label "soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far from equilibrium, nonlinear, thermal and entropic, slow, observable, gravity affected, patterned, nonlocal, interfacially elastic, memory forming, and active. This is only a partial list of how matter created from large component particles is distinct from "hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium behavior is confronted in biology, chemistry, geophysics, astrophysics, and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on 30-31 January 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research.

  5. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  6. Calcium oscillations in wounded fibroblast monolayers are spatially regulated through substrate mechanics

    NASA Astrophysics Data System (ADS)

    Lembong, Josephine; Sabass, Benedikt; Stone, Howard A.

    2017-08-01

    The maintenance of tissue integrity is essential for the life of multicellular organisms. Healing of a skin wound is a paradigm for how various cell types localize and repair tissue perturbations in an orchestrated fashion. To investigate biophysical mechanisms associated with wound localization, we focus on a model system consisting of a fibroblast monolayer on an elastic substrate. We find that the creation of an edge in the monolayer causes cytosolic calcium oscillations throughout the monolayer. The oscillation frequency increases with cell density, which shows that wound-induced calcium oscillations occur collectively. Inhibition of myosin II reduces the number of oscillating cells, demonstrating a coupling between actomyosin activity and calcium response. The spatial distribution of oscillating cells depends on the stiffness of the substrate. For soft substrates with a Young’s modulus E ~ 360 Pa, oscillations occur on average within 0.2 mm distance from the wound edge. Increasing substrate stiffness leads to an average localization of oscillations away from the edge (up to ~0.6 mm). In addition, we use traction force microscopy to determine stresses between cells and substrate. We find that an increase of substrate rigidity leads to a higher traction magnitude. For E  <  ~2 kPa, the traction magnitude is strongly concentrated at the monolayer edge, while for E  >  ~8 kPa, traction magnitude is on average almost uniform beneath the monolayer. Thus, the spatial occurrence of calcium oscillations correlates with the cell-substrate traction. Overall, the experiments with fibroblasts demonstrate a collective, chemomechanical localization mechanism at the edge of a wound with a potential physiological role.

  7. It's harder to splash on soft solids

    NASA Astrophysics Data System (ADS)

    Howison, Sam; Howland, Christopher; Antkowiak, Arnaud; Castrejon-Pita, Rafael; Oliver, James; Style, Robert; Castrejon-Pita, Alfonso

    2016-11-01

    Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses we show that substrate stiffness also affects the splashing thresh- old. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli < 100kPa reduce splashing, in agreement with simple scaling arguments. Thus materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets. EPSRC (CJH), John Fell Oxford University Press (OUP) Research Fund (AACP and RWS), The Royal Society (AAC-P).

  8. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  9. Buckling of a stiff thin film on an elastic graded compliant substrate.

    PubMed

    Chen, Zhou; Chen, Weiqiu; Song, Jizhou

    2017-12-01

    The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.

  10. Buckling of a stiff thin film on an elastic graded compliant substrate

    NASA Astrophysics Data System (ADS)

    Chen, Zhou; Chen, Weiqiu; Song, Jizhou

    2017-12-01

    The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.

  11. Striated Acto-Myosin Fibers Can Reorganize and Register in Response to Elastic Interactions with the Matrix

    PubMed Central

    Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.

    2011-01-01

    The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316

  12. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    PubMed

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  13. Buckling Structured Stretchable Pseudocapacitor Yarn.

    PubMed

    Lee, Duck Weon; Lee, Jung Han; Min, Nam Ki; Jin, Joon-Hyung

    2017-09-20

    Cable-type stretchable electrochemical pseudocapacitors based on multi-walled carbon nanotube (MWCNT) sheets and two different metal oxide nanopowders (NP), i.e., MnO 2 and RuO 2 are developed using a newly-devised dry painting method to mechanically fix the NP to the elastic rubber-based MWCNT electrode substrate, resulting in a porous buckling structured pseudocapacitor yarn. Highly stretchable stylene-ethylene/butylene-stylene (SEBS) is used as the supporting elastomeric core for wrapping with the MWCNT sheets and the electroactive NP. The dry painting can successfully deposit NP on the soft SEBS surface, which is normally an unfavorable substrate for coating alien materials. The resulting yarn-type pseudocapacitor, composed of eight-layered MWCNT sheets, three-layered RuO 2 , and two-layered MnO 2 , showing a diameter of approximately 400 μm with a porous buckling structure, records a specific capacitance of 25 F g -1 . After being stretched by 200% in strain with no sacrifice of the porous buckling structure, the cable-type stretchable electrochemical pseudocapacitor yarn retains its electrical capacity, and is potentially applicable to energy storage devices for wearable electronics.

  14. Film thickness for different regimes of fluid-film lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Film thickness equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic lubrication of low-elastic-modulus materials (soft EHL), or isoviscous-elastic; and elastohydrodynamic lubrication of high-elastic-modulus materials (hard EHL), or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The results are presented as a map of the lubrication regimes, with film thickness contours on a log-log grid of the viscosity and elasticity for three values of the ellipticity parameter.

  15. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  16. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.

    PubMed

    Weickenmeier, J; Jabareen, M

    2014-11-01

    The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Probing flexible thermoplastic thin films on a substrate using ultrasonic waves to retrieve mechanical moduli and density: Inverse problem

    NASA Astrophysics Data System (ADS)

    Lazri, H.; Ogam, E.; Amar, B.; Fellah, Z. E. A.; Sayoud, N.; Boumaiza, Y.

    2018-05-01

    Flexible, supple thermoplastic thin films (PVB and PET) placed on elastic substrates were probed using ultrasonic waves to identify their mechanical moduli and density. The composite medium immersed in a fluid host medium (water) was excited using a 50 Mhz transducer operating at normal incidence in reflection mode. Elastic wave propagation data from the stratified medium was captured in the host medium as scattered field. These data were used along with theoretical fluid-solid interaction forward models for stratified-media developed using elasticity theory, to solve an inverse problem for the recovery of the model parameters of the thin films. Two configurations were modeled, one considering the substrate as a semi-infinite elastic medium and the second the substrate having a finite thickness and flanked by a semi-infinite host medium. Transverse slip for the sliding interface between the films and substrate was chosen. This was found to agree with the experiments whereby the thin films were just placed on the substrate without bonding. The inverse problems for the recovery of the mechanical parameters were successful in retrieving the thin films’ parameters under the slip boundary condition. The possible improvements to the new method for the characterization of thin films are discussed.

  18. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe

    PubMed Central

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-01-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42–1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue. PMID:29675327

  19. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe.

    PubMed

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-04-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42-1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.

  20. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids

    PubMed Central

    Yan, Le; Düring, Gustavo; Wyart, Matthieu

    2013-01-01

    Supercooled liquids are characterized by their fragility: The slowing down of the dynamics under cooling is more sudden and the jump of specific heat at the glass transition is generally larger in fragile liquids than in strong ones. Despite the importance of this quantity in classifying liquids, explaining what aspects of the microscopic structure controls fragility remains a challenge. Surprisingly, experiments indicate that the linear elasticity of the glass—a purely local property of the free energy landscape—is a good predictor of fragility. In particular, materials presenting a large excess of soft elastic modes, the so-called boson peak, are strong. This is also the case for network liquids near the rigidity percolation, known to affect elasticity. Here we introduce a model of the glass transition based on the assumption that particles can organize locally into distinct configurations that are coupled spatially via elasticity. The model captures the mentioned observations connecting elasticity and fragility. We find that materials presenting an abundance of soft elastic modes have little elastic frustration: Energy is insensitive to most directions in phase space, leading to a small jump of specific heat. In this framework strong liquids turn out to lie the closest to a critical point associated with a rigidity or jamming transition, and their thermodynamic properties are related to the problem of number partitioning and to Hopfield nets in the limit of small memory. PMID:23576746

  1. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.

    PubMed

    Yan, Le; Düring, Gustavo; Wyart, Matthieu

    2013-04-16

    Supercooled liquids are characterized by their fragility: The slowing down of the dynamics under cooling is more sudden and the jump of specific heat at the glass transition is generally larger in fragile liquids than in strong ones. Despite the importance of this quantity in classifying liquids, explaining what aspects of the microscopic structure controls fragility remains a challenge. Surprisingly, experiments indicate that the linear elasticity of the glass--a purely local property of the free energy landscape--is a good predictor of fragility. In particular, materials presenting a large excess of soft elastic modes, the so-called boson peak, are strong. This is also the case for network liquids near the rigidity percolation, known to affect elasticity. Here we introduce a model of the glass transition based on the assumption that particles can organize locally into distinct configurations that are coupled spatially via elasticity. The model captures the mentioned observations connecting elasticity and fragility. We find that materials presenting an abundance of soft elastic modes have little elastic frustration: Energy is insensitive to most directions in phase space, leading to a small jump of specific heat. In this framework strong liquids turn out to lie the closest to a critical point associated with a rigidity or jamming transition, and their thermodynamic properties are related to the problem of number partitioning and to Hopfield nets in the limit of small memory.

  2. Cell Elasticity Determines Macrophage Function

    PubMed Central

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  3. Soft-matter composites with electrically tunable elastic rigidity

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-08-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.

  4. [Water parameters of desert xeric shrubs in west Erdos region].

    PubMed

    Li, Xiao; Wang, Ying-chun; Zheng, Rong

    2007-05-01

    By using PV technique, this paper studied the turgor pressure (psi P), cell elastic modulus (epsilon), and relative cell volume (RCV) of super xerophytes Potaninia mongolica, Reaumuria soongorica, Tetraena mongolica and Zygophyllum xanthoxylon in west Alashan, with the relationships among the parameters analyzed. The results showed that R. soongorica had the strongest ability to maintain maximum turgor pressure (a = 2.4593). The four plants maintained their turgor pressure by different ways, i.e., P. mongolica maintained it by elastic adjustment (epsilon max = 8.4005 MPa), R. soongorica by osmotic adjustment (psi pi100 = -3.1302 MPa; psi0 = -3.5074 MPa), T. mongolica by both osmotic and elastic adjustment, and Z. xanthoxylon by osmotic adjustment, which had weak adjustment ability. The cell wall of P. mongolica was soft and highly elastic, benefiting to the water absorption by root and stem and to the fast water transmission. T. mongolica also had relatively soft and high elastic cell wall, and its psi P, and epsilon changed slowly with decreasing RCV, suggesting that this plant had strong ability of holding water and resisting dehydration.

  5. Patterns of Carbon Nanotubes by Flow-Directed Deposition on Substrates with Architectured Topographies.

    PubMed

    K Jawed, M; Hadjiconstantinou, N G; Parks, D M; Reis, P M

    2018-03-14

    We develop and perform continuum mechanics simulations of carbon nanotube (CNT) deployment directed by a combination of surface topography and rarefied gas flow. We employ the discrete elastic rods method to model the deposition of CNT as a slender elastic rod that evolves in time under two external forces, namely, van der Waals (vdW) and aerodynamic drag. Our results confirm that this self-assembly process is analogous to a previously studied macroscopic system, the "elastic sewing machine", where an elastic rod deployed onto a moving substrate forms nonlinear patterns. In the case of CNTs, the complex patterns observed on the substrate, such as coils and serpentines, result from an intricate interplay between van der Waals attraction, rarefied aerodynamics, and elastic bending. We systematically sweep through the multidimensional parameter space to quantify the pattern morphology as a function of the relevant material, flow, and geometric parameters. Our findings are in good agreement with available experimental data. Scaling analysis involving the relevant forces helps rationalize our observations.

  6. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential elastic waves for the ultrasonic non-destructive online SHM to detect interior structural defects or fatigue cracks and for the self-sensing of the actual state of the soft EA tube actuator.

  7. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    PubMed

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-06-01

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  9. Tissue Elasticity Regulated Tumor Gene Expression: Implication for Diagnostic Biomarkers of Primitive Neuroectodermal Tumor

    PubMed Central

    Vu, Long T.; Keschrumrus, Vic; Zhang, Xi; Zhong, Jiang F.; Su, Qingning; Kabeer, Mustafa H.; Loudon, William G.; Li, Shengwen Calvin

    2015-01-01

    Background The tumor microenvironment consists of both physical and chemical factors. Tissue elasticity is one physical factor contributing to the microenvironment of tumor cells. To test the importance of tissue elasticity in cell culture, primitive neuroectodermal tumor (PNET) stem cells were cultured on soft polyacrylamide (PAA) hydrogel plates that mimics the elasticity of brain tissue compared with PNET on standard polystyrene (PS) plates. We report the molecular profiles of PNET grown on either PAA or PS. Methodology/Principal Findings A whole-genome microarray profile of transcriptional expression between the two culture conditions was performed as a way to probe effects of substrate on cell behavior in culture. The results showed more genes downregulated on PAA compared to PS. This led us to propose microRNA (miRNA) silencing as a potential mechanism for downregulation. Bioinformatic analysis predicted a greater number of miRNA binding sites from the 3' UTR of downregulated genes and identified as specific miRNA binding sites that were enriched when cells were grown on PAA—this supports the hypothesis that tissue elasticity plays a role in influencing miRNA expression. Thus, Dicer was examined to determine if miRNA processing was affected by tissue elasticity. Dicer genes were downregulated on PAA and had multiple predicted miRNA binding sites in its 3' UTR that matched the miRNA binding sites found enriched on PAA. Many differentially regulated genes were found to be present on PS but downregulated on PAA were mapped onto intron sequences. This suggests expression of alternative polyadenylation sites within intron regions that provide alternative 3' UTRs and alternative miRNA binding sites. This results in tissue specific transcriptional downregulation of mRNA in humans by miRNA. We propose a mechanism, driven by the physical characteristics of the microenvironment by which downregulation of genes occur. We found that tissue elasticity-mediated cytokines (TGFβ2 and TNFα) signaling affect expression of ECM proteins. Conclusions Our results suggest that tissue elasticity plays important roles in miRNA expression, which, in turn, regulate tumor growth or tumorigenicity. PMID:25774514

  10. Mechanosensitivity in axon growth and guidance

    NASA Astrophysics Data System (ADS)

    Urbach, Jeff

    2013-03-01

    In the developing nervous system, axons respond to a diverse array of cues to generate the intricate connection network required for proper function. The growth cone, a highly motile structure at the tip of a growing axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth cone behavior. We have investigated axon outgrowth and force generation on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that force generation and stiffness-dependent outgrowth are strongly dependent on cell type. We also observe very different internal dynamics and substrate coupling in the two populations, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate engagement in the peripheral nervous system neurons. We will discuss the biological origins of these differences, and recent analyses of the dynamic aspects of growth cone force generation and the implications for the role of mechanosensitivity in axon guidance. In collaboration with D. Koch, W. Rosoff, and H. M. Geller. Supported by NINDS grant 1R01NS064250-01 (J.S.U.) and the NHLBI Intramural Research Program (H.M.G.).

  11. Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers

    PubMed Central

    Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino

    2014-01-01

    Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials. PMID:25153326

  12. Deformation of a soft helical filament in an axial flow at low Reynolds number.

    PubMed

    Jawed, Mohammad K; Reis, Pedro M

    2016-02-14

    We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria.

  13. Elastic Cherenkov effects in transversely isotropic soft materials-II: Ex vivo and in vivo experiments

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; He, Qiong; Qian, Lin-Xue; Geng, Huiying; Liu, Yanlin; Yang, Xue-Yi; Luo, Jianwen; Cao, Yanping

    2016-09-01

    In part I of this study, we investigated the elastic Cherenkov effect (ECE) in an incompressible transversely isotropic (TI) soft solid using a combined theoretical and computational approach, based on which an inverse method has been proposed to measure both the anisotropic and hyperelastic parameters of TI soft tissues. In this part, experiments were carried out to validate the inverse method and demonstrate its usefulness in practical measurements. We first performed ex vivo experiments on bovine skeletal muscles. Not only the shear moduli along and perpendicular to the direction of muscle fibers but also the elastic modulus EL and hyperelastic parameter c2 were determined. We next carried out tensile tests to determine EL, which was compared with the value obtained using the shear wave elastography method. Furthermore, we conducted in vivo experiments on the biceps brachii and gastrocnemius muscles of ten healthy volunteers. To the best of our knowledge, this study represents the first attempt to determine EL of human muscles using the dynamic elastography method and inverse analysis. The significance of our method and its potential for clinical use are discussed.

  14. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  15. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    PubMed Central

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  16. Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping

    2016-11-01

    A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.

  17. Myxococcus xanthus Gliding Motors Are Elastically Coupled to the Substrate as Predicted by the Focal Adhesion Model of Gliding Motility

    PubMed Central

    Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.

    2014-01-01

    Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164

  18. 78 FR 2956 - Marine Mammals; File No. 17005

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Peter Rogers, Ph.D., Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta...-invasively determining the low frequency elastic properties of cetacean head tissues. The ultrasound system... researchers to: (1) Determine any short term changes in soft tissue elasticity if an animal dies during the...

  19. Elastic scattering and soft diffraction with ALFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzo, P.

    The ALFA detector in ATLAS aims at measuring the absolute luminosity and the total cross-section with 2-3% accuracy. Its uses elastically scattered protons whose impact position on a fiber detector, located 240 m away from the interaction point, allow a measurement of the scattering angle.

  20. Effect of kinesiotaping, non-elastic taping and bracing on segmental foot kinematics during drop landing in healthy subjects and subjects with chronic ankle instability.

    PubMed

    Kuni, B; Mussler, J; Kalkum, E; Schmitt, H; Wolf, S I

    2016-09-01

    To evaluate the effects of kinesiotape, non-elastic tape, and soft brace on segmental foot kinematics during drop landing in subjects with chronic ankle instability and healthy subjects. Controlled study with repeated measurements. Three-dimensional motion analysis laboratory. Twenty participants with chronic ankle instability and 20 healthy subjects. The subjects performed drop landings with 17 retroreflective markers on the foot and lower leg in four conditions: barefoot, with kinesiotape, with non-elastic tape and with a soft brace. Ranges of motion of foot segments using a foot measurement method. In participants with chronic ankle instability, midfoot movement in the frontal plane (inclination of the medial arch) was reduced significantly by non-elastic taping, but kinesiotaping and bracing had no effect. In healthy subjects, both non-elastic taping and bracing reduced that movement. In both groups, non-elastic taping and bracing reduced rearfoot excursion in inversion/eversion significantly, which indicates a stabilisation effect. No such effect was found with kinesiotaping. All three methods reduced maximum plantar flexion significantly. Non-elastic taping stabilised the midfoot best in patients with chronic ankle instability, while kinesiotaping did not influence foot kinematics other than to stabilise the rearfoot in the sagittal plane. ClinicalTrials.gov NCT01810471. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  1. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate

    NASA Astrophysics Data System (ADS)

    Worthy, Anna; Grosjean, Arnaud; Pfrunder, Michael C.; Xu, Yanan; Yan, Cheng; Edwards, Grant; Clegg, Jack K.; McMurtrie, John C.

    2018-01-01

    Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

  2. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    NASA Astrophysics Data System (ADS)

    Frank, Viktoria; Kaufmann, Stefan; Wright, Rebecca; Horn, Patrick; Yoshikawa, Hiroshi Y.; Wuchter, Patrick; Madsen, Jeppe; Lewis, Andrew L.; Armes, Steven P.; Ho, Anthony D.; Tanaka, Motomu

    2016-04-01

    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage.

  3. The effect of dissipation on the resistive admittance of an elastic medium.

    PubMed

    Photiadis, Douglas M

    2012-03-01

    The effect of dissipation on the real part of the admittance of an elastic half-space is typically thought to be unimportant if the loss factor ζ of the elastic medium is small. However, dissipation induces losses in the near field of the source and, provided the size of the source is small enough, this phenomenon can be more important than elastic wave radiation. Such losses give rise to a fundamental limit in the quality factor of an oscillator attached to a substrate. Near field losses associated with strains in the elastic substrate can actually be larger than intrinsic losses in the oscillator itself if the internal friction of the substrate is larger than the internal friction of the oscillator. For a uniform stress applied to a disk of radius a, a monopole source, such phenomena become significant for k(L)a<ζ, while for higher order multipole sources of order l, near field losses are important for (k(L)a)(l+1)<ζ, a far less restrictive constraint. © 2012 Acoustical Society of America

  4. A non-differential elastomer curvature sensor for softer-than-skin electronics

    NASA Astrophysics Data System (ADS)

    Majidi, C.; Kramer, R.; Wood, R. J.

    2011-10-01

    We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.

  5. Effect of Substrate Compliance on Measuring Delamination Properties of Elastic Thin Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.

    Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis done also suggests a way for measuring the so-called foundation modulus, whichmore » characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.« less

  6. Effect of Substrate Compliance on Measuring Delamination Properties of Elastic Thin Foil

    DOE PAGES

    Liu, C.

    2018-03-20

    Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis done also suggests a way for measuring the so-called foundation modulus, whichmore » characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.« less

  7. Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives.

    PubMed

    Villey, Richard; Creton, Costantino; Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Jet, Thomas; Saintyves, Baudouin; Santucci, Stéphane; Vanel, Loïc; Yarusso, David J; Ciccotti, Matteo

    2015-05-07

    The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950's, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.

  8. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  9. Rolling motion of an elastic cylinder induced by elastic strain gradients

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Shaohua

    2014-10-01

    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  10. 78 FR 29117 - Marine Mammals; File No. 17005

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Mechanical Engineering, Atlanta, GA 30332 to conduct research on cetacean species not listed under the... elastic properties of cetacean head tissues. The work also would allow researchers to: (1) Determine any short term changes in soft tissue elasticity if an animal dies during the stranding response, and (2...

  11. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  12. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    NASA Astrophysics Data System (ADS)

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-01

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  13. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    PubMed

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-07

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  14. Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption.

    PubMed

    Griffiths, Stéphane; Nennig, Benoit; Job, Stéphane

    2017-01-01

    A theoretical and experimental study of the acoustic absorption of granular porous media made of non-cohesive piles of spherical shells is presented. These shells are either rigid or elastic, possibly drilled with a neck (Helmholtz resonators), and either porous or impervious. A description is given of acoustic propagation through these media using the effective medium models proposed by Johnson (rigid particles) and Boutin (rigid Helmholtz resonators), which are extended to the configurations studied in this work. A solution is given for the local equation of elasticity of a shell coupled to the viscous flow of air through the neck and the micropores. The models and the simulations are compared to absorption spectra measured in reflection in an impedance tube. The effective medium models and the measurements show excellent agreement for configurations made of rigid particles and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by the experiments for elastic shells made of soft elastomer and is well reproduced by the simulations. It is shown that microporous shells enhance and broaden acoustic absorption compared to stiff or elastic resonators.

  15. Effectiveness of surface enhanced Raman spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Endo, T.; Imai, H.; Kido, M.; Jeong, H.; Ohno, Y.

    2016-03-01

    We have developed the point-of-care therapeutic drug monitoring kit based on Raman Spectroscopy of tear fluid. In this study, we were examined a soft substrate for an optimal lattice based on nanoimprint lithography using cyclo-olefin polymer to improve the sensitivity for measuring drug concentration in tear fluid. This is photonics crystal which is one of the nano-photonics based device was fabricated. Target is Sodium Phenobarbital which is an anticonvulsant agent. We show the effectiveness of Surface Enhanced Raman Spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring.

  16. Soft mobile robots driven by foldable dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achievedmore » between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.« less

  17. Effect of large deformation and surface stiffening on the transmission of a line load on a neo-Hookean half space.

    PubMed

    Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen

    2018-03-07

    A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.

  18. Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Austin D.; Elhadj, S.

    2016-06-24

    The purpose of this experiment was to determine the modulus of elasticity (E) and thermal expansion coefficient (α) of RF sputtered Indium Tin Oxide (ITO) as a function of temperature (T), and to collect ITO film stress data. In order to accomplish that goal, the Toho FLX-2320-S thin film stress measurement machine was used to collect both single stress and stress-temperature data for ITO coated fused silica and sapphire substrates. The stress measurement function of the FLX-2320-S cannot be used to calculate the elastic modulus of the film because the Stoney formula incorporates the elastic modulus of the substrate, rathermore » than of the film itself.« less

  19. Local deformation for soft tissue simulation

    PubMed Central

    Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-01-01

    ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482

  20. On the theory of hysteretic magnetostriction of soft ferrogels

    NASA Astrophysics Data System (ADS)

    Zubarev, Andrey; Chirikov, Dmitry; Stepanov, Gennady; Borin, Dmitry; Lopez-Lopez, M. T.

    2018-05-01

    The paper deals with theoretical study of hysteretic magnetostriction of soft ferrogels - composite materials, consisting of the micron-sized magnetizable particles embedded into gel matrices. It is supposed that initially, before application of an external magnetic field, the particles are homogeneously and isotropically distributed in an elastic matrix. The theoretical explanation of the hysteresis phenomena is based on the conception that, under the field action, the particles rearrange into the linear chain-like aggregates. The typical length of the chains is determined by the competition between the force of magnetic attraction of the particles and the force of elastic deformation of the matrix.

  1. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity

    PubMed Central

    García-Arribas, Alfredo; Gutiérrez, Jon; Kurlyandskaya, Galina V.; Barandiarán, José M.; Svalov, Andrey; Fernández, Eduardo; Lasheras, Andoni; de Cos, David; Bravo-Imaz, Iñaki

    2014-01-01

    The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT. PMID:24776934

  2. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.

    PubMed

    Aggarwal, Ankush

    2017-08-01

    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.

  3. A sequence of physical processes quantified in LAOS by continuous local measures

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Wei; Rogers, Simon A.

    2017-11-01

    The response to large amplitude oscillatory shear of a soft colloidal glass formed by a suspension of multiarm star polymers is investigated by means of well-defined continuous local measures. The local measures provide information regarding the transient elastic and viscous response of the material, as well as elastic extension via a shifting equilibrium position. It is shown that even when the amplitude of the strain is very large, cages reform and break twice per period and exhibit maximum elasticity around the point of zero stress. It is also shown that around the point of zero stress, the cages are extended by a nearly constant amount of approximately 5% at 1 rad/s and 7% at 10 rad/s, even when the total strain is as large as 420%. The results of this study provide a blueprint for a generic approach to elucidating the complex dynamics exhibited by soft materials under flow.

  4. Elastically driven intermittent microscopic dynamics in soft solids

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela

    2017-06-01

    Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.

  5. Elastic Cheerios effect: Self-assembly of cylinders on a soft solid

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Aditi; Ryan, Louis; Chaudhury, Manoj K.; Mahadevan, L.

    2015-12-01

    A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders are placed on the surface, they interact with each other via the topography of the deformed gel which serves as an energy landscape; as they move, the landscape changes which in turn changes their interaction. We use a combination of experiments, simple scaling estimates and numerical simulations to study the self-assembly of cylinders in this elastic analog of the "Cheerios Effect", which describes capillary interactions on a fluid interface. Our results show that the effective two-body interaction can be well described by an exponential attraction potential as a result of which the dynamics also show an exponential behavior with respect to the separation distance. When many cylinders are placed on the gel, the cylinders cluster together if they are not too far apart; otherwise their motion gets elastically arrested.

  6. Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking

    NASA Astrophysics Data System (ADS)

    Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.

    2016-10-01

    We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.

  7. Surface instability of an imperfectly bonded thin elastic film under surface van der Waals forces

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Jing, Rong

    2017-02-01

    This paper studies surface instability of a thin elastic film imperfectly bonded to a rigid substrate interacting with a rigid contactor through van der Waals forces under plane strain conditions. The film-substrate interface is modeled as a linear spring with vanishing thickness described in terms of the normal and tangential interface parameters. Depending on the ratio of the two imperfect interface parameters, the critical value of the Poisson's ratio for the occurrence of surface wrinkling in the absence of surface energy can be greater than, equal to, or smaller than 0.25, which is the critical Poisson's ratio for a perfect film-substrate interface. The critical surface energy for the inhibition of the surface wrinkling is also obtained. Finally, we propose a very simple and effective method to study the surface instability of a multilayered elastic film with imperfect interfaces interacting with a rigid contactor or with another multilayered elastic film (or a multilayered simply supported plate) with imperfect interfaces.

  8. Large poroelastic deformation of a soft material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  9. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissuesmore » in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.« less

  10. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.; Hwang, Sukwon; Moss, Joshua D.; Won, Sang-Min; Huang, Younggang; Litt, Brian; Rogers, John A.

    2011-04-01

    Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such ‘instrumented’ balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.

  11. Capillary assisted deposition of carbon nanotube film for strain sensing

    NASA Astrophysics Data System (ADS)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  12. Elastic versus acoustic inversion for marine surveys

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wu, Zedong

    2018-04-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  13. Elastic versus acoustic inversion for marine surveys

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wu, Zedong

    2018-07-01

    Full wavefield inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume that acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory—at least for a hard waterbottom case—it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We, therefore, conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and notable artefacts for layer reflection data. Based on these results, it would appear that at least the inversions of large offset marine data should be fully elastic rather than acoustic, unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), an acoustic-only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  14. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  15. Stretchable electronics based on Ag-PDMS composites

    PubMed Central

    Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos

    2014-01-01

    Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843

  16. 77 FR 32573 - Takes of Marine Mammals Incidental to Specified Activities; Construction and Race Event...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... operations, support space, media operations, hospitality services, sponsored commercial space, and...). Intertidal habitats in the Central Bay, or those that lie between low and high tides, include sandy beaches... sediment and hard substrate habitat. Soft bottom substrate ranges between soft mud with high silt and clay...

  17. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends not on the amount of ligand for adhesion receptors, but on its spatial distribution [1]. New protocols for the preparation of soft elastic substrates were essential to show that adhesion structures and cytoskeleton of adherent cells strongly adapt to substrate stiffness [2], with dramatic effects for cellular decision making. For example, it has been shown recently that differentiation of mesenchymal stem cells is strongly influenced by substrate stiffness [3]. Thus, physical factors appear to be equally important as biochemical ones in determining the cellular response to its substrate [4]. The introduction of novel physical techniques not only opened up completely new perspectives regarding biological function, it also introduced a new quantitative element into this field. For example, the availability of soft elastic substrates with controlled stiffness allows us to reconstruct cellular traction forces and to correlate them with other cellular features. This development enables modeling approaches to work in close contact with experimental data, thus opening up the perspective that the field of cell-substrate interactions will become a quantitative and predictive science in the future. Because physical research into cell-substrate interactions has become one of the fastest growing research areas in cellular biophysics and materials science, we believe that it is very timely that this special issue gathers some of the on-going research effort in this field. In contrast to the non-living world, cellular systems usually interact with their environment through specific adhesion, mainly based on adhesion receptors from the integrin family. During recent years, force spectroscopy has emerged as one of the main methods to study the physics of specific adhesion. In this special issue, single cell force spectroscopy is used by Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion and how it is modulated by the glycocalyx [5], while Chirasatitsin and Engler use force spectroscopy mapping to characterize the spatial distribution of adhesive sites on the substrate [6]. Scrimgeour et al describe a new method to adhesively pattern self-assembled monolayers for cell adhesion by a simple photobleaching setup [7] and Stricker et al demonstrate how elastic substrates can be combined with microcontact printing to improve the reconstruction of traction forces [8]. The work by Metzner et al shows that meaningful results on the cell-substrate interactions can be extracted also from experiments in which cells interact with biofunctionalized beads [9]. If cells start to adhere to a substrate, the main rate-limiting step is establishment of close contact between the plasma membrane and the substrate. This process can be followed with high spatial and temporal resolution with reflection interference microscopy, as demonstrated by Ryzhkov et al for mouse embryonic fibroblasts [10] and by Cretel et al for T lymphocytes [11]. Once mature adhesion has been achieved, the integrin-based focal adhesions providing anchorage to the substrate are strongly connected to the actin cytoskeleton, the main determinant of cell shape and structure. Heil and Spatz use microfabricated pillars to perturb the mechanical balance and quantitatively characterize the fast response of the focal adhesions [12]. A similar approach is used by Kirchenbüchler et al, who use deformation of an elastic substrate to demonstrate that the weak link in the mechanical system of substrate, adhesions and actin cytoskeleton is most likely located at the adhesion-cytoskeleton interface [13]. Rather than using external perturbations, Zemel et al quantify and model how cells spontaneously polarize their cytoskeleton in response to the physical properties of the substrate [14]. Quantitative analysis of cellular data has become standard in the field of cell-substrate interactions. Moreover, theoretical models for cell-substrate interactions help us to identify and understand the mechanisms underlying the observed phenomena in these complex systems. Recently, a large effort has been invested into understanding how force transmitted by the actin cytoskeleton changes the state of focal adhesions. In the contribution by Biton and Safran, this issue is addressed for the case that force arises from shear flow over an adhering cell [15]. Another important source for force on focal adhesions is actin retrograde flow, which has been demonstrated before to show variable coupling to the underlying layer of adhesion receptors. Two contributions discuss how stochastic bond dynamics at the cell-substrate interface is modulated by physical factors. The model by Sabass and Schwarz suggests that dissipation in the actin cytoskeleton stabilizes bond dynamics [16] and the model by Li et al suggests that catch bonding and multiple layers are important elements of the way focal adhesions function [17]. If interacting with an elastic environment, the combined system of focal adhesions and actin cytoskeleton can be used by cells to sense its rigidity and to make decisions on its response. Moshayedi et al show that great care has to be taken when preparing soft elastic substrates for cell culture studies and then use their protocols to quantitatively evaluate the mechanosensitive response of astrocytes from the brain [18]. The cellular system used by Lee et al is pericytes from the microvasculature, for which the authors show that they exert sufficient forces to stimulate vascular endothelial cells [19]. Buxboim et al use the technology of soft elastic substrates to measure how far mesenchymal stem cells can mechanically sense into their substrate [20]. The mechanical activity of cells observed in two-dimensional cell culture has significant consequences for both physiological and disease-related situations, including cell migration, tissue maintenance and tumor growth. Jannat et al show that chemotaxis of neutrophils, that is the first line of the immune system, is strongly modulated by mechanosensing on substrates of varying stiffness [21]. Mogilner and Rubinstein present a theoretical systems analysis for the shape of rapidly migrating keratocytes [22]. Saez et al show, with microfabricated pillar assays, how force is distributed within a layer of epithelial cells [23]. For three-dimensional tissue models, new techniques have to be developed to characterize the complex mechanics of hydrogels. Levental et al [24] and Kotlarchyk et al [25] approach this challenge with mechanical and optical methods, respectively. Narayanan et al combine experiments and continuum models to explore how chemo-mechanical interactions influence tumor growth [26]. References [1] Chen C S, Mrksich M, Huang S, Whitesides G M and Ingber D E 1997 Geometric control of cell life and death Science 276 1425 [2] Pelham R J Jr and Wang Y-L 1997 Cell locomotion and focal adhesions are regulated by substrate flexibility Proc. Natl. Acad. Sci. USA 94 13661 [3] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89 [4] Geiger B, Spatz J P and Bershadsky A D 2009 Environmental sensing through focal adhesions Nat. Rev. Mol. Cell Biol. 10 21 [5] Boettiger D and Wehrle-Haller B 2010 Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy J. Phys.: Condens. Matter 22 194101 [6] Chirasatitsin S and Engler A J 2010 Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping J. Phys.: Condens. Matter 22 194102 [7] Scrimgeour J, Kodali V K, Kovari D T and Curtis J E 2010 Photobleaching-activated micropatterning on self-assembled monolayers J. Phys.: Condens. Matter 22 194103 [8] Stricker J, Sabass B, Schwarz U S and Gardel M L 2010 Optimization of traction force microscopy for micron-sized focal adhesions J. Phys.: Condens. Matter 22 194104 [9] Metzner C, Raupach C, Mierke C T and Fabry B 2010 Fluctuations of cytoskeleton-bound microbeads—the effect of bead-receptor binding dynamics J. Phys.: Condens. Matter 22 194105 [10] Ryzhkov P, Prass M, Gummich M, Kühn J-S, Oettmeier C and Döbereiner H-G 2010 Adhesion patterns in early cell spreading J. Phys.: Condens. Matter 22 194106 [11] Cretel E, Touchard D, Benoliel A M, Bongrand P and Pierres A 2010 Early contacts between T lymphocytes and activating surfaces J. Phys.: Condens. Matter 22 194107 [12] Heil P and Spatz J P 2010 Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics J. Phys.: Condens. Matter 22 194108 [13] Kirchenbüchler D, Born S, Kirchgeßner N, Houben S, Hoffmann B and Merkel R 2010 Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins J. Phys.: Condens. Matter 22 194109 [14] Zemel A, Rehfeldt F, Brown A E X, Discher D E and Safran S A 2010 Cell shape, spreading symmetry, and the polarization of stress-fibers in cells J. Phys.: Condens. Matter 22 194110 [15] Biton Y Y and Safran S A 2010 Theory of the mechanical response of focal adhesions to shear flow J. Phys.: Condens. Matter 22 194111 [16] Sabass B and Schwarz U S 2010 Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation J. Phys.: Condens. Matter 22 194112 [17] Li Y, Bhimalapuram P and Dinner A R 2010 Model for how retrograde actin flow regulates adhesion traction stresses J. Phys.: Condens. Matter 22 194113 [18] Moshayedi P, da F Costa L, Christ A, Lacour S P, Fawcett J, Guck J and Franze K 2010 Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry J. Phys.: Condens. Matter 22 194114 [19] Lee S, Zeiger A, Maloney J M, Kotecki M, Van Vliet K J and Herman I M 2010 Pericyte contraction at the cell-material interface can modulate the microvascular niche J. Phys.: Condens. Matter 22 194115 [20] Buxboim A, Rajagopal K, Brown A E X and Discher D E 2010 How deeply cells feel: methods for thin gels J. Phys.: Condens. Matter 22 194116 [21] Jannat R A, Robbins G P, Ricart B G, Dembo M and Hammer D A 2010 Neutrophil adhesion and chemotaxis depend on substrate mechanics J. Phys.: Condens. Matter 22 194117 [22] Mogilner A and Rubinstein B 2010 Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical method J. Phys.: Condens. Matter 22 194118 [23] Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio J-M, Hersen P, Silberzan P, Buguin A, Ladoux B 2010 Traction forces exerted by epithelial cell sheets J. Phys.: Condens. Matter 22 194119 [24] Levental I, Levental K R, Klein E A, Assoian R, Miller R T, Wells R G and Janmey P A 2010 A simple indentation device for measuring micrometer-scale tissue stiffness J. Phys.: Condens. Matter 22 194120 [25] Kotlarchyk M A, Botvinick E L and Putnam A J 2010 Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging J. Phys.: Condens. Matter 22 194121 [26] Narayanan H, Verner S N, Mills K L, Kemkemer R and Garikipati K 2010 In silico estimates of the free energy rates in growing tumor spheroids J. Phys.: Condens. Matter 22 194122

  18. Large-scale fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by soft UV-nanoimprint lithography

    PubMed Central

    2013-01-01

    Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718

  19. Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering

    NASA Astrophysics Data System (ADS)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore

    2013-03-01

    We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.

  20. Emergent propagation modes of ferromagnetic swimmers in constrained geometries

    NASA Astrophysics Data System (ADS)

    Bryan, M. T.; Shelley, S. R.; Parish, M. J.; Petrov, P. G.; Winlove, C. P.; Gilbert, A. D.; Ogrin, F. Y.

    2017-02-01

    Magnetic microswimmers, composed of hard and soft ferromagnets connected by an elastic spring, are modelled under low Reynolds number conditions in the presence of geometrical boundaries. Approaching a surface, the magneto-elastic swimmer's velocity increases and its trajectory bends parallel to the surface contour. Further confinement to form a planar channel generates new propagation modes as the channel width narrows, altering the magneto-elastic swimmer's speed, orientation, and direction of travel. Our results demonstrate that constricted geometric environments, such as occuring in microfluidic channels or blood vessels, may influence the functionality of magneto-elastic microswimmers for applications such as drug delivery.

  1. Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis

    PubMed Central

    Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo R.; Jeffery, Erin D.; Fox, Jay W.; Blackman, Brett R.; Tschumperlin, Daniel J.; Papin, Jason A.; Parsons, J. Thomas

    2012-01-01

    Background Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites. PMID:22623999

  2. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    PubMed

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  3. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.

    PubMed

    Bartlett, Michael D; Kazem, Navid; Powell-Palm, Matthew J; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A; Majidi, Carmel

    2017-02-28

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity ( k ) to decrease monotonically with decreasing elastic modulus ( E ). This thermal-mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young's modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m -1 ⋅K -1 ) over the base polymer (0.20 ± 0.01 W⋅m -1 ·K -1 ) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m -1 ·K -1 ) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal-mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.

  4. Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata

    PubMed Central

    Mayer, Matthias; Rabindranath, Raman; Börner, Juliane; Hörner, Eva; Bentz, Alexander; Salgado, Josefina; Han, Hong; Böse, Holger; Probst, Jörn; Shamonin, Mikhail; Monkman, Gareth J.; Schlunck, Günther

    2013-01-01

    Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young’s modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices. PMID:24204603

  5. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    NASA Astrophysics Data System (ADS)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  6. Thermo-elastic behaviour of liquid crystal elastomer

    NASA Astrophysics Data System (ADS)

    J, Jessy P.; Mani, Santosh A.; Amare, Jyoti R.; Gharde, Rita A.

    2015-06-01

    The effect of temperature on Liquid Crystal Elastomer was studied to understand thermo-elastic behaviour of these fantastic soft materials. The investigations were performed using Polarizing Microscopy Studies (PMS) and Differential Thermal Analysis (DTA). The relative length shows hysteresis as function of temperature. As temperature increases, the length shrinks, while it returns to original shape on cooling.

  7. Material for "Substrate temperature controls molecular orientation in two-component vapor- deposited glasses." Soft Matter, 2016, 12, 3265.

    DOE Data Explorer

    Jiang, Jing [Nanjing University; Walters, Diane M [University of Wisconsin-Madison; Zhou, Dongshan [Nanjing University; Ediger, Mark D [University of Wisconsin-Madison

    2016-08-18

    Data set for work presented in Jiang, J.; Walters, D. M.; Zhou, D.; Ediger, M. D. “Substrate Temperature Controls Molecular Orientation in Two -Component Vapor-deposited Glasses.” Soft Matt. 2016, 12, 3265. Includes all data presented in the manuscript as well as example raw data and analysis.

  8. Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min

    2009-03-01

    We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.

  9. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  10. Congruence of Imaging Estimators and Mechanical Measurements of Viscoelastic Properties of Soft Tissues

    PubMed Central

    Zhang, Man; Castaneda, Benjamin; Wu, Zhe; Nigwekar, Priya; Joseph, Jean V.; Rubens, Deborah J.; Parker, Kevin J.

    2007-01-01

    Biomechanical properties of soft tissues are important for a wide range of medical applications, such as surgical simulation and planning and detection of lesions by elasticity imaging modalities. Currently, the data in the literature is limited and conflicting. Furthermore, to assess the biomechanical properties of living tissue in vivo, reliable imaging-based estimators must be developed and verified. For these reasons we developed and compared two independent quantitative methods – crawling wave estimator (CRE) and mechanical measurement (MM) for soft tissue characterization. The CRE method images shear wave interference patterns from which the shear wave velocity can be determined and hence the Young’s modulus can be obtained. The MM method provides the complex Young’s modulus of the soft tissue from which both elastic and viscous behavior can be extracted. This article presents the systematic comparison between these two techniques on the measurement of gelatin phantom, veal liver, thermal-treated veal liver, and human prostate. It was observed that the Young’s moduli of liver and prostate tissues slightly increase with frequency. The experimental results of the two methods are highly congruent, suggesting CRE and MM methods can be reliably used to investigate viscoelastic properties of other soft tissues, with CRE having the advantages of operating in nearly real time and in situ. PMID:17604902

  11. Deformed soft matter under constraints

    NASA Astrophysics Data System (ADS)

    Bertrand, Martin

    In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.

  12. Adhesive Properties of Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Flanigan, Cynthia; Shull, Kenneth

    1998-03-01

    Soft, low-modulus gels provide an interesting opportunity to examine small adhesive interactions between two bodies in contact. As shown through dynamic rheological studies, our materials undergo a rapid gelation as they are cooled from a viscous liquid at elevated temperatures to a soft, elastic solid at room temperature. At low temperatures, the gels exhibit a linearly elastic response and display moduli close to 100Pa, thereby forming materials with great potential for quantifying weak adhesive interactions with a variety of bodies ranging from polymer surfaces to biological entities. Our current studies focus on investigating interfacial effects by performing axisymmetric adhesion tests with a model polyacrylate gel formed by diluting the copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) to a 5-15 percent solution in 2-ethyl hexanol, a selective solvent for the midblock. We have explored two different experimental geometries including a hemispherical rigid indenter of glass pressed into a gel layer of varying thicknesses, and a soft, gel cap in contact with a rigid polymer surface. By simultaneously measuring the applied load, displacement between the two bodies, and contact area during loading cycles, we are able to employ a linearly elastic fracture mechanics analysis to obtain estimates of the gel's modulus over a range of polymer concentrations, and G, the energy release rate.

  13. Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers.

    PubMed

    Alici, Gursel; Canty, Taylor; Mutlu, Rahim; Hu, Weiping; Sencadas, Vitor

    2018-02-01

    In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262 kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48 kPa-both experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.

  14. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.

    PubMed

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2016-01-01

    The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Design, fabrication and control of soft robots.

    PubMed

    Rus, Daniela; Tolley, Michael T

    2015-05-28

    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

  16. Exploiting short-term memory in soft body dynamics as a computational resource

    PubMed Central

    Nakajima, K.; Li, T.; Hauser, H.; Pfeifer, R.

    2014-01-01

    Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. PMID:25185579

  17. Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Petersen, Dennis S.; Tölle, Lisa; Wolff, Jonas O.; Gorb, Stanislav N.

    2017-01-01

    Many insects possess adhesive foot pads, which enable reliable attachment to diverse and unpredictable substrates. The function of these adhesive organs was shown to be affected by environmental conditions such as substrate roughness, chemistry, and ambient humidity. So far, the attachment ability of insects and also that of spiders and geckos has been tested on rigid substrates only. However, the natural habitats of climbing animals may provide a variety of substrate stiffness ranging from rigid rock surfaces to soft, biofilm covered substrates. In order to test the effect of different substrate stiffness on the attachment ability of insects, we have performed friction experiments with female and male ladybird beetles Coccinella septempunctata on smooth silicone elastomer substrates of different stiffness, using a centrifugal force tester. Whereas in females, the attachment ability was not affected by the substrate stiffness within the range of tested stiffness, males showed decreasing attachment ability with decreasing substrate stiffness. This sexual dimorphism in attachment ability is explained by the presence of a specialized, discoidal seta type in males, which is not present in females. It is argued that discoidal setae, when softer if compared to the substrate, may show an advantageous peak-free interfacial stress distribution when being pulled off the substrate. For such setae being stiffer if compared the substrate, they potentially show increased edge stress concentration. In this case, lower pull-off forces are expected, in agreement with the experimentally obtained results. With the present study, we demonstrate for the first time that the substrate stiffness may have an effect on the attachment ability of climbing animals, which may also be of relevance for technical and medical applications involving adhesion to soft substrates.

  18. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    PubMed

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  19. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    PubMed

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  20. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  1. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  2. Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.

    PubMed

    Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E

    2017-01-31

    The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.

  3. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-01

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  4. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography.

    PubMed

    Song, Jingfeng; Lu, Haidong; Li, Shumin; Tan, Li; Gruverman, Alexei; Ducharme, Stephen

    2016-01-08

    Conventional nanoimprint lithography with expensive rigid molds is used to pattern ferroelectric polymer nanostructures on hard substrate for use in, e.g., organic electronics. The main innovation here is the use of inexpensive soft polycarbonate molds derived from recordable DVDs and reverse nanoimprint lithography at low pressure, which is compatible with flexible substrates. This approach was implemented to produce regular stripe arrays with a spacing of 700 nm from vinylidene fluoride co trifluoroethylene ferroelectric copolymer on flexible polyethylene terephthalate substrates. The nanostructures have very stable and switchable piezoelectric response and good crystallinity, and are highly promising for use in organic electronics enhanced or complemented by the unique properties of the ferroelectric polymer, such as bistable polarization, piezoelectric response, pyroelectric response, or electrocaloric function. The soft-mold reverse nanoimprint lithography also leaves little or no residual layer, affording good isolation of the nanostructures. This approach reduces the cost and facilitates large-area, high-throughput production of isolated functional polymer nanostructures on flexible substrates for the increasing application of ferroelectric polymers in flexible electronics.

  5. Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array.

    PubMed

    Koh, Juntae; Yi, Mihye; Yang Lee, Byung; Kim, Tae Hyun; Lee, Joohyung; Jhon, Young Min; Hong, Seunghun

    2008-12-17

    We have developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for use as flexible biosensors. In this strategy, a thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and a linker-free assembly process was applied on the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited a typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neurotransmitting material, and monosodium glutamate, a food additive.

  6. A methodology for modeling surface effects on stiff and soft solids

    NASA Astrophysics Data System (ADS)

    He, Jin; Park, Harold S.

    2017-09-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  7. A methodology for modeling surface effects on stiff and soft solids

    NASA Astrophysics Data System (ADS)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  8. Compaction of granular materials composed of deformable particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.

  9. Interaction of angiogenically stimulated intermediate CD163+ monocytes/macrophages with soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli matched to that of human arteries.

    PubMed

    Mayer, Anke; Kratz, Karl; Hiebl, Bernhard; Lendlein, Andreas; Jung, Friedrich

    2012-03-01

    The cell population of peripheral blood monocytes/macrophages (MO) is heterogeneous: The majority of the MO are CD14++ CD16- and named "classical" (= MO1). Furthermore, two other subpopulations were described: CD14++ CD16+ ("intermediate" = MO2) and CD14+ CD16++ ("non-classical" = MO3). It is reported that MO2 possess anti-inflammatory properties and express the MO lineage marker CD163. On a hydrophilic neutrally charged acrylamide-based hydrogel human intermediate (CD14++ CD16+ ), angiogenically stimulated CD163++ monocytes/macrophages (aMO2) maintained a proangiogenic and noninflammatory status for at least 14 days. Here, we explored whether this aMO2 subset adhered to hydrophobic poly(n-butyl acrylate) networks (cPnBA) and also remained in its proangiogenic and noninflammatory status. Because substrate elasticity can impact adherence, morphology, and function of cells, cPnBAs with different Young's modulus (250 and 1100 kPa) were investigated, whereby their elasticity was tailored by variation of the cross-linker content and matched to the elasticity of human arteries. The cPnBAs exhibited similar surface properties (e.g., surface roughness), which were maintained after ethylene oxide sterilization and exposure in serum-free cell culture medium for 18 h at 37°C. aMO2 were seeded on cPnBA samples (1.7 × 10(5) cells/1.33 cm(2) ) in Dulbecco's modified Eagle medium (DMEM high glucose) supplemented with vascular endothelial growth factor 165 (VEGF-A(165) , 10 ng/mL) and fetal calf serum (10 vol%) for 3 and 72 h. On both polymeric samples (n = 3 each), the numbers of adherent cells per unit area were significantly higher (P < 0.01; cPnBA0250: 3 h 13 ± 5 cells/mm(2) , 72 h 234 ± 106 cells/mm(2) ; cPnBA1100: 3 h 14 ± 3 cells/mm(2) , 72 h 198 ± 113 cells/mm(2) ) compared to control cultures (glass, 3 h: 6 ± 3 cells/mm(2) , 72 h: 130 ± 83 cells/mm(2) ) and showed a typically spread morphology. The mRNA expression profile of the aMO2 was not influenced by the substrate elasticity. In the supernatant of aMO2 on cPnBA0250, significantly less VEGF-A(165) product was found than expected based on the mRNA level measured (P < 0.01). Tests with recombinant VEGF-A(165) then demonstrated that significantly more VEGF-A(165) was adhered on cPnBA0250 than on cPnBA1100 (P < 0.01). Seeded on cPnBA, aMO2-unaffected by the elastic moduli of both substrates-seemed to remain in their subset status and secreted VEGF-A(165) without release of proinflammatory cytokines. These in vitro results might indicate that this MO subset can be used as cellular delivery system for proangiogenic and noninflammatory mediators to support the endothelialization of cPnBA. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Origins of phase contrast in the atomic force microscope in liquids

    PubMed Central

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560

  11. Origins of phase contrast in the atomic force microscope in liquids.

    PubMed

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  12. Soft phononic crystals with deformation-independent band gaps

    PubMed Central

    2017-01-01

    Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be that one wishes to deform the medium while retaining the band gap structure. A special class of soft phononic crystals is described here with band gaps that are independent or almost-independent of the imposed mechanical deformation, which enables the design of phononic crystals with robust performance. This remarkable behaviour originates from transformation elasticity theory, which leaves the wave equation and the eigenfrequencies invariant after deformation. The necessary condition to achieve such a property is that the Lagrangian elasticity tensor of the hyperelastic material should be constant, i.e. independent of deformation. It is demonstrated that incompressible neo-Hookean materials exhibit such a unique property. Semilinear materials also possess this property under special loading conditions. Phononic crystals composed of these two materials are studied theoretically and the predictions of invariance, or the manner in which the response deviates from invariance, are confirmed via numerical simulation. PMID:28484331

  13. Friction on a granular-continuum interface: Effects of granular media

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew

    We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.

  14. High thermal conductivity in soft elastomers with elongated liquid metal inclusions

    PubMed Central

    Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    2017-01-01

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m−1⋅K−1) over the base polymer (0.20 ± 0.01 W⋅m−1·K−1) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m−1·K−1) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal−mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot. PMID:28193902

  15. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.

    NASA Astrophysics Data System (ADS)

    Kazem, Navid; Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrains thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E) . This is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with a dielectric composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (E <100kPa), and extreme deformations capability (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a 25x increase in thermal conductivity (4.7 +/-0.2 W/mK) over the base polymer (0.20 +/-0.01 W/mK) under stress-free conditions and a 50x increase (9.8 +/-0.8 W/mK) when strained. This exceptional combination of thermal and mechanical properties is through the deformation of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer new possibilities for passive heat exchange in stretchable electronics and bio-inspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high power LED lamp and a swimming soft robot. AFOSR Young Investigator Program (Mechanics of Multifunctional Materials and Microsystems; Dr. Les Lee; FA9550-13-1-0123), NASA Early Career Faculty Award (NNX14AO49G), Army Research Office Grant W911NF-14-0350.

  16. Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate

    NASA Astrophysics Data System (ADS)

    Young, Y.-N.; Stone, H. A.

    2017-06-01

    The dynamics of an elastic sheet lubricated by a thin liquid film on a wetting solid substrate is examined using both numerical simulations of a long-wave lubrication equation and a quasistatic model. Interactions between the liquid and the wetting substrate are modeled by a disjoining pressure that gives rise to an ultrathin (precursor) film. For a fluid interface without elastic bending stiffness, a flat precursor film may be linearly unstable and evolve towards an equilibrium of a single "drop" connected to a flat ultrathin film. Similar behavior is found when the thin film is covered by an elastic sheet: The sheet deforms, rearranging the thin liquid film, and contributes regulating surface forces such as a bending resistance and/or a tensile force, which may arise from interactions between the sheet and liquid or inextensibility of the sheet. Glasner's quasistatic model [Phys. Fluids 15, 1837 (2003), 10.1063/1.1578076], developed for a liquid film, is adopted to investigate the combined effects of elastic and tensile forces in the sheet on the thin film dynamics. The equilibrium height of the drop is found to vary inversely with the bending rigidity. When the elastic sheet is inextensible (such as a lipid bilayer membrane), a compressive tensile force may occur and the equilibrium film height is dependent less on the bending rigidity and more on the excess area of the membrane. Analyses of the lubrication equation also show that the precursor film transitions monotonically to the core film for tension-dominated dynamics. In contrast, for elasticity-dominated dynamics, a spatial oscillation of film height in the contact line region is found. In addition, elasticity in the sheet causes a sliding motion of the thin film: the contact angle is rendered zero by elasticity, and the contact line moves at a finite speed.

  17. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity.

    PubMed

    Higuchi, Akon; Kao, Shih-Hsuan; Ling, Qing-Dong; Chen, Yen-Ming; Li, Hsing-Fen; Alarfaj, Abdullah A; Munusamy, Murugan A; Murugan, Kadarkarai; Chang, Shih-Chang; Lee, Hsin-Chung; Hsu, Shih-Tien; Kumar, S Suresh; Umezawa, Akihiro

    2015-12-14

    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.

  18. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    PubMed

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.

  19. New Soft Tissue Implants Using Organic Elastomers

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.

  20. Modeling elastic anisotropy in strained heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.

  1. Modeling elastic anisotropy in strained heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  2. A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System

    PubMed Central

    Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum

    2017-01-01

    In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414

  3. Cardiomyocytes from late embryos and neonates do optimal work and striate best on substrates with tissue-level elasticity: metrics and mathematics.

    PubMed

    Majkut, Stephanie F; Discher, Dennis E

    2012-11-01

    In this review, we discuss recent studies on the mechanosensitive morphology and function of cardiomyocytes derived from embryos and neonates. For early cardiomyocytes cultured on substrates of various stiffnesses, contractile function as measured by force production, work output and calcium handling is optimized when the culture substrate stiffness mimics that of the tissue from which the cells were obtained. This optimal contractile function corresponds to changes in sarcomeric protein conformation and organization that promote contractile ability. In light of current models for myofibillogenesis, a recent mathematical model of striation and alignment on elastic substrates helps to illuminate how substrate stiffness modulates early myofibril formation and organization. During embryonic heart formation and maturation, cardiac tissue mechanics change dynamically. Experiments and models highlighted here have important implications for understanding cardiomyocyte differentiation and function in development and perhaps in regeneration processes.

  4. Dissecting the Impact of Matrix Anchorage and Elasticity in Cell Adhesion

    PubMed Central

    Pompe, Tilo; Glorius, Stefan; Bischoff, Thomas; Uhlmann, Ina; Kaufmann, Martin; Brenner, Sebastian; Werner, Carsten

    2009-01-01

    Abstract Extracellular matrices determine cellular fate decisions through the regulation of intracellular force and stress. Previous studies suggest that matrix stiffness and ligand anchorage cause distinct signaling effects. We show herein how defined noncovalent anchorage of adhesion ligands to elastic substrates allows for dissection of intracellular adhesion signaling pathways related to matrix stiffness and receptor forces. Quantitative analysis of the mechanical balance in cell adhesion using traction force microscopy revealed distinct scalings of the strain energy imparted by the cells on the substrates dependent either on matrix stiffness or on receptor force. Those scalings suggested the applicability of a linear elastic theoretical framework for the description of cell adhesion in a certain parameter range, which is cell-type-dependent. Besides the deconvolution of biophysical adhesion signaling, site-specific phosphorylation of focal adhesion kinase, dependent either on matrix stiffness or on receptor force, also demonstrated the dissection of biochemical signaling events in our approach. Moreover, the net contractile moment of the adherent cells and their strain energy exerted on the elastic substrate was found to be a robust measure of cell adhesion with a unifying power-law scaling exponent of 1.5 independent of matrix stiffness. PMID:19843448

  5. How to keep your pants on: historic metamaterials and elasticity before the invention of elastic

    NASA Astrophysics Data System (ADS)

    Matsumoto, Elisabetta A.; Mahadevan, L.

    2015-03-01

    How do you create stretching from an inextensible material? Remarkably, the centuries-old embroidery technique known as smocking accomplishes just this. With the recent explosion of origami-based engineering, the search is on for a set of design principles to generate materials with prescribed mechanical properties. This quickly becomes a complex mathematical question due to the strict constraints of rigid origami imposed by the inextensibility of paper. Softening these constraints by considering woven fabrics, which have two orthogonal inextensible directions and a skewed soft shear mode, opens up a zoo of possible configurations. We explore the emergence of elastic properties in smocked fabrics as functions of both fabric elasticity and smocking pattern.

  6. Substrate strain induced interaction of adatoms on W (110)

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1980-09-01

    The interaction of adatoms due to elastic strains created in an elastically isotropic substrate is investigated. For cases where the adatoms occupy sites with low symmetry, an angular dependent interaction results which falls off as s-3 at large distances. An exact expression is given for the long range interaction in terms of an anisotropy parameter of the force dipole tensor. The short range interaction is calculated by introducing a smooth cutoff. Interactions of adatoms on near neighbour sites on W (110) are given.

  7. Treatment & Coping

    MedlinePlus

    ... kinds of braces: plastic (rigid) braces and soft (dynamic) elastic braces. A rigid brace is like a ... treat and manage my back problems? Most yoga systems are intended to improve muscles through stretching, holding ...

  8. A family of hyperelastic models for human brain tissue

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  9. Spatially localized structure-function relations in the elastic properties of sheared articular cartilage

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai

    2013-03-01

    Contemporary developments in therapeutic tissue engineering have been enabled by basic research efforts in the field of biomechanics. Further integration of technology in medicine requires a deeper understanding of the mechanical properties of soft biological materials and the structural origins of their response under extreme stresses and strains. Drawing on the science generated by the ``Extreme Mechanics'' community, we present experimental results on the mechanical properties of articular cartilage, a hierarchically structured soft biomaterial found in the joints of mammalian long bones. Measurements of the spatially localized structure and mechanical properties will be compared with theoretical descriptions based on networks of deformed rods, poro-visco-elasticity, and standard continuum models. Discrepancies between experiment and theory will be highlighted, and suggestions for how models can be improved will be given.

  10. Measuring shear force transmission across a biomimetic glycocalyx

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  11. Exploiting short-term memory in soft body dynamics as a computational resource.

    PubMed

    Nakajima, K; Li, T; Hauser, H; Pfeifer, R

    2014-11-06

    Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young's modulus.

    PubMed

    Sarrazin, Baptiste; Brossard, Rémy; Guenoun, Patrick; Malloggi, Florent

    2016-02-21

    As the need of new methods for the investigation of thin films on various kinds of substrates becomes greater, a novel approach based on AFM nanoindentation is explored. Substrates of polydimethylsiloxane (PDMS) coated by a layer of hard material are probed with an AFM tip in order to obtain the force profile as a function of the indentation. The equivalent elasticity of those composite systems is interpreted using a new numerical approach, the Coated Half-Space Indentation Model of Elastic Response (CHIMER), in order to extract the thicknesses of the upper layer. Two kinds of coating are investigated. First, chitosan films of known thicknesses between 30 and 200 nm were probed in order to test the model. A second type of samples is produced by oxygen plasma oxidation of the PDMS substrate, which results in the growth of a relatively homogeneous oxide layer. The local nature of this protocol enables measurements at long oxidation time, where the apparition of cracks prevents other kinds of measurements.

  13. Sheet on a deformable sphere: Wrinkle patterns suppress curvature-induced delamination

    NASA Astrophysics Data System (ADS)

    Hohlfeld, Evan; Davidovitch, Benny

    2015-01-01

    The adhesion of a stiff film onto a curved substrate often generates elastic stresses in the film that eventually give rise to its delamination. Here we predict that delamination of very thin films can be dramatically suppressed through tiny, smooth deformations of the substrate, dubbed here "wrinklogami," that barely affect the macro-scale topography. This "prolamination" effect reflects a surprising capability of smooth wrinkles to suppress compression in elastic films even when spherical or other doubly curved topography is imposed, in a similar fashion to origami folds that enable construction of curved structures from an unstretchable paper. We show that the emergence of a wrinklogami pattern signals a nontrivial isometry of the sheet to its planar, undeformed state, in the doubly asymptotic limit of small thickness and weak tensile load exerted by the adhesive substrate. We explain how such an "asymptotic isometry" concept broadens the standard usage of isometries for describing the response of elastic sheets to geometric constraints and mechanical loads.

  14. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    NASA Astrophysics Data System (ADS)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  15. Gaseous Viscous Peeling of Linearly Elastic Substrates

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2017-11-01

    We study pressure-driven propagation of gas into a micron-scale gap between two linearly elastic substrates. Applying the lubrication approximation, the governing nonlinear evolution equation describes the interaction between elasticity and viscosity, as well as weak rarefaction and low-Mach-number compressibility, characteristic to gaseous microflows. Several physical limits allow simplification of the evolution equation and enable solution by self-similarity. During the peeling process the flow-field transitions between the different limits and the respective approximate solutions. The sequence of limits occurring during the propagation dynamics can be related to the thickness of the prewetting layer of the configuration at rest, yielding an approximate description of the entire peeling dynamics. The results are validated by numerical solutions of the evolution equation. Israel Science Foundation 818/13.

  16. Strain effects on the work function of an organic semiconductor

    PubMed Central

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-01-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362

  17. Strain effects on the work function of an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  18. Strain effects on the work function of an organic semiconductor.

    PubMed

    Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  19. Strain effects on the work function of an organic semiconductor

    DOE PAGES

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less

  20. Coating flow of non-Newtonian anti-HIV microbicide vehicles

    NASA Astrophysics Data System (ADS)

    Park, Su Chan; Szeri, Andrew; Verguet, Stéphane; Katz, David; Weiss, Aaron

    2008-11-01

    Elastohydrodynamic lubrication over soft substrates is of importance for the drug delivery functions of vehicles for anti-HIV topical microbicides. These are intended to inhibit transmission into vulnerable mucosa, e.g. in the vagina. First generation prototype microbicides have gel vehicles, which spread after insertion and coat luminal surfaces. Effectiveness derives from potency of the active ingredients and completeness and durability of coating. Delivery vehicle rheology, luminal biomechanical properties and the force due to gravity influence the coating mechanics. We develop a framework for understanding the relative importance of boundary squeezing and body forces on the extent and speed of the coating that results. In the case of a shear-thinning fluid, the Carreau number also plays a role. Numerical solutions are developed for a range of conditions and materials. Results are interpreted with respect to tradeoffs between wall elasticity, longitudinal forces, bolus viscosity and bolus volume. These provide initial insights of practical value for formulators of non-Newtonian gel delivery vehicles for anti-HIV microbicidal formulations.

  1. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    PubMed Central

    Aoki, Michio

    2018-01-01

    Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894

  2. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    NASA Astrophysics Data System (ADS)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  3. The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials.

    PubMed

    Boothe, Sean D; Myers, Jackson D; Pok, Seokwon; Sun, Junping; Xi, Yutao; Nieto, Raymond M; Cheng, Jie; Jacot, Jeffrey G

    2016-12-01

    The stiffness of myocardial tissue changes significantly at birth and during neonatal development, concurrent with significant changes in contractile and electrical maturation of cardiomyocytes. Previous studies by our group have shown that cardiomyocytes generate maximum contractile force when cultured on a substrate with a stiffness approximating native cardiac tissue. However, effects of substrate stiffness on the electrophysiology and ion currents in cardiomyocytes have not been fully characterized. In this study, neonatal rat ventricular myocytes were cultured on the surface of flat polyacrylamide hydrogels with elastic moduli ranging from 1 to 25 kPa. Using whole-cell patch clamping, action potentials and L-type calcium currents were recorded. Cardiomyocytes cultured on hydrogels with a 9 kPa elastic modulus, similar to that of native myocardium, had the longest action potential duration. Additionally, the voltage at maximum calcium flux significantly decreased in cardiomyocytes on hydrogels with an elastic modulus higher than 9 kPa, and the mean inactivation voltage decreased with increasing stiffness. Interestingly, the expression of the L-type calcium channel subunit α gene and channel localization did not change with stiffness. Substrate stiffness significantly affects action potential length and calcium flux in cultured neonatal rat cardiomyocytes in a manner that may be unrelated to calcium channel expression. These results may explain functional differences in cardiomyocytes resulting from changes in the elastic modulus of the extracellular matrix, as observed during embryonic development, in ischemic regions of the heart after myocardial infarction, and during dilated cardiomyopathy.

  4. Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design

    PubMed Central

    Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.

    2015-01-01

    We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975

  5. Buckling of Elastomeric Beams Enables Actuation of Soft Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Mosadegh, Bobak; Ainla, Alar

    2015-09-21

    Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.

  6. Experimental and theoretical study of the buckling of narrow thin plates on an elastic foundation under compression

    NASA Astrophysics Data System (ADS)

    Kurguzov, V. D.; Demeshkin, A. G.

    2016-05-01

    The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate-substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.

  7. Instant tough bonding of hydrogels for soft machines and electronics

    PubMed Central

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M.; Schausberger, Stefan E.; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-01-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials—from soft to hard—allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m2. Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking. PMID:28691092

  8. Instant tough bonding of hydrogels for soft machines and electronics.

    PubMed

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M; Schausberger, Stefan E; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-06-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials-from soft to hard-allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m 2 . Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking.

  9. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time

    PubMed Central

    Lu, Yuhua; Liu, Qian

    2018-01-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870

  10. Soft Robotic Actuators

    NASA Astrophysics Data System (ADS)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  11. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    PubMed

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  12. A rate insensitive linear viscoelastic model for soft tissues

    PubMed Central

    Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.

    2012-01-01

    It is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: μ0, τ, m, ρ and β, where μ0 is the relaxed elastic modulus, τ the characteristic relaxation time, m the number of Maxwell elements, ρ the gap between characteristic frequencies, and β = μ1/μ0 with μ1 being the elastic modulus of the Maxwell body that has relaxation time τ. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters. PMID:17512585

  13. Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators.

    PubMed

    Matia, Yoav; Elimelech, Tsah; Gat, Amir D

    2017-06-01

    Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam. Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-varying deformation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.

  14. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all of these effects when estimating the shear elasticity. This new approach simulates shear wave particle velocities using a Green's function-based approach for the Voigt model, where the shear elasticity and viscosity values are estimated using an optimization-based approach that compares measured shear wave particle velocities with simulated shear wave particle velocities in the time-domain. The results are evaluated on a point-by-point basis to generate images. There is good agreement between the simulated and measured shear wave particle velocities, where the new approach yields much better images of the shear elasticity and shear viscosity than the TOF method. The new estimation approach is accelerated with an approximate viscoelastic Green's function model that is evaluated with shear wave data obtained from in vivo human livers. Instead of calculating shear waves with combinations of different shear elasticities and shear viscosities, shear waves are calculated with different shear elasticities on the GPU and then convolved with a viscous loss model, which accelerates the calculation dramatically. The shear elasticity and shear viscosity values are then estimated using an optimization-based approach by minimizing the difference between measured and simulated shear wave particle velocities. Shear elasticity and shear viscosity images are generated at every spatial point in a two-dimensional (2D) field-of-view (FOV). The new approach is applied to measured shear wave data obtained from in vivo human livers, and the results show that this new approach successfully generates shear elasticity and shear viscosity images from this data. The results also indicate that the shear elasticity values estimated with this approach are significantly smaller than the values estimated with the conventional TOF method and that the new approach demonstrates more consistent values for these estimates compared with the TOF method. This experience suggests that the new method is an effective approach for estimating the shear elasticity and the shear viscosity in liver and in other soft tissue.

  15. Rheology of attractive emulsions

    NASA Astrophysics Data System (ADS)

    Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φRCP, can form soft gel-like elastic solids. However, above φRCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φRCP, also undergo droplet configurational rearrangements.

  16. Rheology of attractive emulsions.

    PubMed

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  17. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts.

    PubMed

    Balsly, Colleen R; Cotter, Andrew T; Williams, Lisa A; Gaskins, Barton D; Moore, Mark A; Wolfinbarger, Lloyd

    2008-12-01

    The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3-21.8 kGy) and a moderate absorbed dose (24.0-28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.

  18. Energy Bounds for a Compressed Elastic Film on a Substrate

    NASA Astrophysics Data System (ADS)

    Bourne, David P.; Conti, Sergio; Müller, Stefan

    2017-04-01

    We study pattern formation in a compressed elastic film which delaminates from a substrate. Our key tool is the determination of rigorous upper and lower bounds on the minimum value of a suitable energy functional. The energy consists of two parts, describing the two main physical effects. The first part represents the elastic energy of the film, which is approximated using the von Kármán plate theory. The second part represents the fracture or delamination energy, which is approximated using the Griffith model of fracture. A simpler model containing the first term alone was previously studied with similar methods by several authors, assuming that the delaminated region is fixed. We include the fracture term, transforming the elastic minimisation into a free boundary problem, and opening the way for patterns which result from the interplay of elasticity and delamination. After rescaling, the energy depends on only two parameters: the rescaled film thickness, {σ }, and a measure of the bonding strength between the film and substrate, {γ }. We prove upper bounds on the minimum energy of the form {σ }^a {γ }^b and find that there are four different parameter regimes corresponding to different values of a and b and to different folding patterns of the film. In some cases, the upper bounds are attained by self-similar folding patterns as observed in experiments. Moreover, for two of the four parameter regimes we prove matching, optimal lower bounds.

  19. Measurements of Elastic Moduli of Silicone Gel Substrates with a Microfluidic Device

    PubMed Central

    Gutierrez, Edgar; Groisman, Alex

    2011-01-01

    Thin layers of gels with mechanical properties mimicking animal tissues are widely used to study the rigidity sensing of adherent animal cells and to measure forces applied by cells to their substrate with traction force microscopy. The gels are usually based on polyacrylamide and their elastic modulus is measured with an atomic force microscope (AFM). Here we present a simple microfluidic device that generates high shear stresses in a laminar flow above a gel-coated substrate and apply the device to gels with elastic moduli in a range from 0.4 to 300 kPa that are all prepared by mixing two components of a transparent commercial silicone Sylgard 184. The elastic modulus is measured by tracking beads on the gel surface under a wide-field fluorescence microscope without any other specialized equipment. The measurements have small and simple to estimate errors and their results are confirmed by conventional tensile tests. A master curve is obtained relating the mixing ratios of the two components of Sylgard 184 with the resulting elastic moduli of the gels. The rigidity of the silicone gels is less susceptible to effects from drying, swelling, and aging than polyacrylamide gels and can be easily coated with fluorescent tracer particles and with molecules promoting cellular adhesion. This work can lead to broader use of silicone gels in the cell biology laboratory and to improved repeatability and accuracy of cell traction force microscopy and rigidity sensing experiments. PMID:21980487

  20. Sensing surface mechanical deformation using active probes driven by motor proteins

    PubMed Central

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  1. Soft silicone rubber in phononic structures: Correct elastic moduli

    NASA Astrophysics Data System (ADS)

    Still, Tim; Oudich, M.; Auerhammer, G. K.; Vlassopoulos, D.; Djafari-Rouhani, B.; Fytas, G.; Sheng, P.

    2013-09-01

    We report on a combination of experiments to determine the elastic moduli of a soft poly (dimethylsiloxane) rubber that was utilized in a smart experiment on resonant phononic modes [Liu , ScienceSCIEAS0036-807510.1126/science.289.5485.1734 289, 1734 (2000)] and whose reported moduli became widely used as a model system in theoretical calculations of phononic materials. We found that the most peculiar hallmark of these values, an extremely low longitudinal sound velocity, is not supported by our experiments. Anyhow, performing theoretical band structure calculations, we can reproduce the surprising experimental findings of Liu even utilizing the correct mechanical parameters. Thus, the physical conclusions derived in the theoretical works do not require the use of an extremely low longitudinal velocity, but can be reproduced assuming only a low value of the shear modulus, in agreement with our experiments.

  2. Cyclic stretching of soft substrates induces spreading and growth

    PubMed Central

    Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael

    2015-01-01

    In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457

  3. Influence of elastic parameters on the evolution of elasticity modulus of thin films

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.

    2012-09-01

    In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.

  4. Air and ground resonance of helicopters with elastically tailored composite rotor blades

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1993-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  5. Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures

    NASA Astrophysics Data System (ADS)

    Sookchoo, Pornsatit

    For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this dissertation, strain-engineering of such NMs can provide the enabling basis for improved Group IV optoelectronic devices.

  6. Probing Mechanoregulation of Neuronal Differentiation by Plasma Lithography Patterned Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Jamilpour, Nima; Mfoumou, Etienne; Wang, Fei-Yue; Zhang, Donna D.; Wong, Pak Kin

    2014-11-01

    Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.

  7. Soft particles at fluid interfaces: wetting, structure, and rheology

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    Most of our current knowledge concerning the behavior of colloidal particles at fluid interfaces is limited to model spherical, hard and uniform objects. Introducing additional complexity, in terms of shape, composition or surface chemistry or by introducing particle softness, opens up a vast range of possibilities to address new fundamental and applied questions in soft matter systems at fluid interfaces. In this talk I will focus on the role of particle softness, taking the case of core-shell microgels as a paradigmatic example. Microgels are highly swollen and cross-linked hydrogel particles that, in parallel with their practical applications, e.g. for emulsion stabilization and surface patterning, are increasingly used as model systems to capture fundamental properties of bulk materials. Most microgel particles develop a core-shell morphology during synthesis, with a more cross-linked core surrounded by a corona of loosely linked and dangling polymer chains. I will first discuss the difference between the wetting of a hard spherical colloid and a core-shell microgel at an oil-water interface, pinpointing the interplay between adsorption at the interface and particle deformation. I will then move on to discuss the interplay between particle morphology and the microstructure and rheological properties of the interface. In particular, I will demonstrate that synchronizing the compression of a core-shell microgel-laden fluid interface with the deposition of the interfacial monolayer makes it possible to transfer the 2D phase diagram of the particles onto a solid substrate, where different positions correspond to different values of the surface pressure and the specific area. Using atomic force microscopy, we analyzed the microstructure of the monolayer and discovered a phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases correspond to shell-shell or core-core inter-particle contacts, respectively, where with increasing surface pressure the former mechanically fail enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore extended our analysis to measure the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer; the interfaces always show a strong elastic response, with a dip in the elastic modulus in correspondence of the melting of the shell-shell phase, followed by a steep increase upon formation of a percolating network of the core-core contacts. The presented results highlight the complex interplay between the wetting and deformation of individual soft particles at fluid interfaces and the overall interface microstructure and mechanics. They show strong connections to fundamental studies on phase transitions in two-dimensional systems and pave the way for novel nanoscale surface patterning routes. The author acknowledges financial support from the Swiss National Science Foundation Grant PP00P2-144646/1.

  8. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  9. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  10. Electrically Driven Microengineered Bioinspired Soft Robots.

    PubMed

    Shin, Su Ryon; Migliori, Bianca; Miccoli, Beatrice; Li, Yi-Chen; Mostafalu, Pooria; Seo, Jungmok; Mandla, Serena; Enrico, Alessandro; Antona, Silvia; Sabarish, Ram; Zheng, Ting; Pirrami, Lorenzo; Zhang, Kaizhen; Zhang, Yu Shrike; Wan, Kai-Tak; Demarchi, Danilo; Dokmeci, Mehmet R; Khademhosseini, Ali

    2018-03-01

    To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evidence of rayleigh-hertz surface waves and shear stiffness anomaly in granular media.

    PubMed

    Bonneau, L; Andreotti, B; Clément, E

    2008-09-12

    Using the nonlinear dependence of sound propagation speed with pressure, we evidence the anomalous elastic softness of a granular packing in the vicinity of the jamming transition. Under gravity and close to a free surface, the acoustic propagation is only possible through surface modes guided by the stiffness gradient. These Rayleigh-Hertz modes are evidenced in a controlled laboratory experiment. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of nonlinear elasticity including finite size effects. These results allow one to access the elastic properties of the packing under vanishing confining pressure.

  12. Elastic nailing of tibia shaft fractures in young children up to 10 years of age.

    PubMed

    Heo, Jeong; Oh, Chang-Wug; Park, Kyeong-Hyeon; Kim, Joon-Woo; Kim, Hee-June; Lee, Jong-Chul; Park, Il-Hyung

    2016-04-01

    Although tibia shaft fractures in children usually have satisfactory results after closed reduction and casting, there are several surgical indications, including associated fractures and soft tissue injuries such as open fractures. Titanium elastic nails (TENs) are often used for pediatric tibia fractures, and have the advantage of preserving the open physis. However, complications such as delayed union or nonunion are not uncommon in older children or open fractures. In the present study, we evaluated children up to 10 years of age with closed or open tibial shaft fractures treated with elastic nailing technique. A total of 16 tibia shaft fractures treated by elastic nailing from 2001 to 2013 were reviewed. The mean patient age at operation was 7 years (range: 5-10 years). Thirteen of 16 cases were open fractures (grade I: 4, grade II: 6, grade IIIA: 3 cases); the other cases had associated fractures that necessitated operative treatments. Closed, antegrade intramedullary nailing was used to insert two nails through the proximal tibial metaphysis. All patients were followed up for at least one year after the injury. Outcomes were evaluated using modified Flynn's criteria, including union, alignment, leg length discrepancies, and complications. All fractures achieved union a mean of 16.1 weeks after surgery (range: 11-26 weeks). No patient reported knee pain or experienced any loss of knee or ankle motion. There was a case of superficial infection in a patient with grade III open fracture. Three patients reported soft tissue discomfort due to prominent TEN tips at the proximal insertion site, which required cutting the tip before union or removing the nail after union. At the last follow-up, there were no angular or rotational deformities over 10° in either the sagittal or coronal planes. With the exception of one case with an overgrowth of 15 mm, no patient showed shortening or overgrowth exceeding 10mm. Among final outcomes, 15 were excellent and 1 was satisfactory. Even with open fractures or soft tissue injuries, elastic nailing can achieve satisfactory results in young children, with minimal complications of delayed bone healing, or infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.

    PubMed

    Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-12-30

    It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

  14. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  15. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  16. Liquid Metals: Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions (Adv. Mater. 19/2016).

    PubMed

    Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel

    2016-05-01

    An all-soft-matter composite consisting of liquid metal microdroplets embedded in a soft elastomer matrix is presented by C. Majidi and co-workers on page 3726. This composite exhibits a high dielectric constant while maintaining exceptional elasticity and compliance. The image shows the composite's microstructure captured by 3D X-ray imaging using a nano-computed tomographic scanner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering.

    PubMed

    Shamirzaei Jeshvaghani, Elham; Ghasemi-Mobarakeh, Laleh; Mansurnezhad, Reza; Ajalloueian, Fatemeh; Kharaziha, Mahshid; Dinari, Mohammad; Sami Jokandan, Maryam; Chronakis, Ioannis S

    2017-11-23

    With regard to flexibility and strength properties requirements of soft biological tissue, elastomeric materials could be more beneficial in soft tissue engineering applications. The present work investigates the use of an elastic polymer, (polycaprolactone fumarate [PCLF]), for fabricating an electrospun scaffold. PCLF with number-average molecular weight of 13,284 g/mol was synthetized, electrospun PCLF:polycaprolactone (PCL) (70:30) nanofibrous scaffolds were fabricated and a novel strategy (in situ photo-crosslinking along with wet electrospinning) was applied for crosslinking of PCLF in the structure of PCLF:PCL nanofibers was presented. Sol fraction results, Fourier-transform infrared spectroscopy, and mechanical tests confirmed occurrence of crosslinking reaction. Strain at break and Young's modulus of crosslinked PCLF:PCL nanofibers fabricated was found to be 114.5 ± 3.9% and 0.6 ± 0.1 MPa, respectively, and dynamic mechanical analysis results revealed elasticity of nanofibers. MTS assay showed biocompatibility of PCLF:PCL (70:30) nanofibrous scaffolds. Our overall results showed that electrospun PCLF:PCL nanofibrous scaffold could be considered as a candidate for further in vitro and in vivo experiments and its application for engineering of soft tissues subjected to in vivo cyclic mechanical stresses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  18. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less

  19. Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Qingyang; Xiao, Jianliang

    2018-02-01

    Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.

  20. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Li, Chen Xi; Talele, Nilesh P.; Boo, Stellar; Koehler, Anne; Knee-Walden, Ericka; Balestrini, Jenna L.; Speight, Pam; Kapus, Andras; Hinz, Boris

    2017-03-01

    Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.

  1. Ultrasmooth, Polydopamine Modified Surfaces for Block Copolymer Nanopatterning on Inert and Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Katsumata, Reika; Cho, Joon Hee; Zhou, Sunshine; Kim, Chae Bin; Dulaney, Austin; Janes, Dustin; Ellison, Christopher

    Nature has engineered universal, catechol-containing adhesives that can be synthetically mimicked in the form of polydopamine (PDA). We exploited PDA to enable block copolymer (BCP) nanopatterning on a variety of soft material surfaces in a way that can potentially be applied to flexible electrical devices. Applying BCP nanopatterning to soft substrates is challenging because soft substrates are often chemically inert and possess incompatible low surface energies. In this study, we exploited PDA to enable the formation of BCP nanopatterns on a variety of surfaces such as Teflon, poly(ethylene terephthalate) (PET), and Kapton. While previous studies produced a PDA coating layer too rough for BCP nanopatterning, we succeeded in fabricating conformal and ultra-smooth surfaces of PDA by engineering the PDA coating process and post-sonication procedure. This chemically functionalized, biomimetic thin film (3 nm thick) served as a reactive platform for subsequently grafting a surface treatment to perpendicularly orient a lamellae-forming BCP layer. Furthermore, we demonstrated that a perfectly nanopatterned PDA-PET substrate can be bent without distorting or damaging the nanopattern in conditions that far exceeds typical bending curvatures in roll-to-roll manufacturing.

  2. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fassler, A.; Majidi, C.

    2013-05-01

    We introduce a family of soft-matter capacitors and inductors composed of microchannels of liquid-phase gallium-indium-tin alloy (galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). In contrast to conventional (rigid) electronics, these circuit elements remain electronically functional even when stretched to several times their natural length. As the surrounding elastomer stretches, the capacitance and inductance of the embedded liquid channels change monotonically. Using a custom-built loading apparatus, we experimentally measure relative changes in capacitance and inductance as a function of stretch in three directions. These experimental relationships are consistent with theoretical predictions that we derive with finite elasticity kinematics.

  3. Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea)

    PubMed Central

    Zheden, Vanessa; Klepal, Waltraud; Gorb, Stanislav N.; Kovalev, Alexander

    2015-01-01

    The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that D. fascicularis cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles. PMID:25657833

  4. Ionic supramolecular networks fully based on chemicals coming from renewable sources.

    PubMed

    Aboudzadeh, Ali; Fernandez, Mercedes; Muñoz, Maria Eugenia; Santamaría, Antxon; Mecerreyes, David

    2014-02-01

    New supramolecular ionic networks are synthesized by proton transfer reaction between a bio-based fatty diamine molecule (Priamine 1074) and a series of naturally occurring carboxylic acids such as malonic acid, citric acid, tartaric acid, and 2,5-furandicarboxylic acid. The resulting solid soft material exhibits a thermoreversible transition becoming a viscoelastic liquid at high temperatures. All the networks show an elastic behavior at low temperatures/high frequencies, with elastic modulus values ranging from 4.5 × 10(6) to 4.5 × 10(7) Pa and soft network to liquid transitions T(nl) between -10 and 60 °C. The supramolecular ionic network based on cationic Priamine 1074 and anionic citrate shows promising self-healing properties at room temperature as well as relatively high ionic conductivity values close to 10(-6) S cm(-1). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Soft particles at a fluid interface

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hadi; Harting, Jens; Snoeijer, Jacco H.

    2015-11-01

    Particles added to a fluid interface can be used as a surface stabilizer in the food, oil and cosmetic industries. As an alternative to rigid particles, it is promising to consider highly deformable particles that can adapt their conformation at the interface. In this study, we compute the shapes of soft elastic particles using molecular dynamics simulations of a cross-linked polymer gel, complemented by continuum calculations based on the linear elasticity. It is shown that the particle shape is not only affected by the Young's modulus of the particle, but also strongly depends on whether the gel is partially or completely wetting the fluid interface. We find that the molecular simulations for the partially wetting case are very accurately described by the continuum theory. By contrast, when the gel is completely wetting the fluid interface the linear theory breaks down and we reveal that molecular details have a strong influence on the equilibrium shape.

  6. Aeromechanical stability of helicopters with composite rotor blades in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  7. Propagation of measurement accuracy to biomass soft-sensor estimation and control quality.

    PubMed

    Steinwandter, Valentin; Zahel, Thomas; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased.

  8. Nonlinear reflection of shock shear waves in soft elastic media.

    PubMed

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  9. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  10. Effect of off-fault low-velocity elastic inclusions on supershear rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Elbanna, A. E.

    2015-10-01

    Heterogeneous velocity structures are expected to affect fault rupture dynamics. To quantitatively evaluate some of these effects, we examine a model of dynamic rupture on a frictional fault embedded in an elastic full space, governed by plane strain elasticity, with a pair of off-fault inclusions that have a lower rigidity than the background medium. We solve the elastodynamic problem using the Finite Element software Pylith. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We primarily consider embedded soft inclusions with 20 per cent reduction in both the pressure wave and shear wave speeds. The embedded inclusions are placed at different distances from the fault surface and have different sizes. We show that the existence of a soft inclusion may significantly shorten the transition length to supershear propagation through the Burridge-Andrews mechanism. We also observe that supershear rupture is generated at pre-stress values that are lower than what is theoretically predicted for a homogeneous medium. We discuss the implications of our results for dynamic rupture propagation in complex velocity structures as well as supershear propagation on understressed faults.

  11. Wrinkling and Folding on Patched Elastic Surfaces: Modulation of the Chemistry and Pattern Size of Microwrinkled Surfaces.

    PubMed

    Nogales, Aurora; Del Campo, Adolfo; Ezquerra, Tiberio A; Rodriguez-Hernández, Juan

    2017-06-14

    An unconventional strategy is proposed that takes advantage of localized high-deformation areas, referred to as folded wrinkles, to produce microstructured elastic surfaces with precisely controlled pattern dimensions and chemical distribution. For that purpose, elastic PDMS substrates were prestretched to a different extent and oxidized in particular areas using a mask. When the stretching was removed, the PDMS substrate exhibited out-of-plane deformations that largely depend on the applied prestretching. Prestretchings below 100% lead to affine deformations in which the treated areas are buckled. On the contrary, prestretchings above ε >100% prior to surface treatment induce the formation of folded wrinkles on those micrometer-size ultraviolet-ozone (UVO) treated areas upon relaxation. As a result, dual periodic wrinkles were formed due to the alternation of highly deformed (folded) and low deformed (buckled) areas. Our strategy is based on the surface treatment at precise positions upon prestretching of the elastic substrate (PDMS). Additionally, this approach can be used to template the formation of wrinkled surfaces by alternating lines of folded wrinkles (valleys) and low-deformed areas (hills). This effect allowed us to precisely tune the shape and distribution of the UVO exposed areas by varying the prestretching direction. Moreover, the wrinkle characteristics, including period and amplitude, exhibit a direct relation to the dimensions of the patterns present in the mask.

  12. Structure and function of the elastic organ in the tibia of a tenebrionid beetle

    NASA Astrophysics Data System (ADS)

    Ichikawa, Toshio; Toh, Yoshihiro; Sakamoto, Hirofumi

    2016-06-01

    Many insects have a pair of claws on the tip of each foot (tarsus and pretarsus). The movement of the pretarsal claws is mediated by a long apodeme that originates from the claw retractor muscles in the femur. It is generally accepted that the pulling of the apodeme by the muscles flexes the claws to engage with a rough surface of a substrate, and the flexed claws return to their initial position by passive elastic forces within the tarso-pretarsal joint. We found that each tibia of the tenebrionid beetle Zophobas atratus had a chordal elastic organ that tied the apodeme to the distal end of the tibia and assisted the pulled apodeme to return smoothly. The elastic body of the elastic organ consists of a bundle of more than 1000 thin fibrils (0.3-1.5 μm in diameter) with a hairy yarn-shaped structure made by assemblies of intricately interwoven microfibers. Both ends of the fibrillar elastic body were supported by clusters of columnar cells. Ablation of the elastic organ often disturbed the rapid and smooth return of claws from a flexed position when the tarsal segments were forced to curve in order to increase the friction between the apodeme and surrounding tissues in the segments. The result suggests that rapid claw disengagement is an important step in each cycle of leg movements, and the elastic organ may have evolved to assist the reliable detachment of claws that engage tightly with the substrate when climbing or traversing inverted surfaces.

  13. Observation of shock transverse waves in elastic media.

    PubMed

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  14. Deformation profiles of elastic cylindrical tubes filled with granular media under an overload

    NASA Astrophysics Data System (ADS)

    Álvarez Salazar, V. Salomón; Medina, Abraham; Klapp, Jaime

    2017-06-01

    The deformation of a thin-walled vertical tube, filled with a liquid or a cohesionless granular material is investigated theoretically and experimentally. Experiments with an overload and without it were made with latex tubes filled with water or spherical glass beads and the results were compared with the theoretical profile derived from the Janssen model. The results suggest that the soft elastic tubes could provide a simple and convenient means to investigate the forces that arise in different materials.

  15. Elastic Response of Crimped Collagen Fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils have a three-dimensional structure at the micrometer scale that we approximate as a helical spring. The symmetry of this waveform allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendineae

  16. A technique for correction of equinus contracture using a wire fixator and elastic tension.

    PubMed

    Melvin, J Stuart; Dahners, Laurence E

    2006-02-01

    Equinus contracture often is a complication of trauma, burns, or neurologic deficit. Many patients with contractures secondary to trauma or burns have poor soft tissue, which makes invasive correction a less appealing option. The Ilizarov external fixator has been used as a less invasive attempt to correct equinus contracture. We describe our "dynamic" technique and present a clinical patient series using a variation of the unconstrained Ilizarov technique, which uses elastic bands rather than threaded rods to supply the corrective force.

  17. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  18. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  19. Stiffness Customization and Patterning for Property Modulation of Silicone-Based Soft Pneumatic Actuators.

    PubMed

    Sun, Yi; Yap, Hong Kai; Liang, Xinquan; Guo, Jin; Qi, Peng; Ang, Marcelo H; Yeow, Chen-Hua

    2017-09-01

    Soft pneumatic actuators (SPAs), as novel types of motion drivers for robotic devices, excel in many applications, such as rehabilitation and biomimicry, which demand compliance and softness. To further expand their scope of utilization, the SPAs should be customizable to meet the distinctive requirements of different applications. This article proposes a novel perspective on the SPA working mechanism based on stiffness distribution and then presents a versatile method called stiffness customization and patterning (SCP) for SPA body stiffness layout as a novel attempt to customize SPAs with distinctive properties. We fabricated a hybrid type of material combining unstretchable material and silicone with customizable aggregated elasticity. The tensile results showed that embedding unstretchable material directly increases the stiffness of the hybrid material sample, and our stress-strain model for SCP is able to adequately predict the elasticity of hybrid samples with specific material ratios. By applying this approach to bending-type SPAs, we are able to mitigate SPA buckling, a main failure mode of SPAs, and improve the SPA tip force by using hybrid material with globally increased stiffness. We also diversify bending modalities with different stiffness configurations in the hybrid material. SCP offers numerous ways to engineer SPAs for more applications.

  20. Probing softness of the parietal pleural surface at the micron scale

    PubMed Central

    Kim, Jae Hun; Butler, James P.; Loring, Stephen H.

    2011-01-01

    The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 µm and 5 µm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38–0.95 kPa, lower than the values measured using flat-ended cylinders > 100 µm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345–2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 µm vs. 5 µm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure. PMID:21820660

  1. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  2. Soft tissue strain measurement using an optical method

    NASA Astrophysics Data System (ADS)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  3. Geometric charges in theories of elasticity and plasticity

    NASA Astrophysics Data System (ADS)

    Moshe, Michael

    The mechanics of many natural systems is governed by localized sources of stresses. Examples include ''plastic events'' that occur in amorphous solids under external stress, defects formation in crystalline material, and force-dipoles applied by cells adhered to an elastic substrate. Recent developments in a geometric formulation of elasticity theory paved the way for a unifying mathematical description of such singular sources of stress, as ''elastic charges''. In this talk I will review basic results in this emerging field, focusing on the geometry and mechanics of elastic charges in two-dimensional solid bodies. I will demonstrate the applicability of this new approach in three different problems: failure of an amorphous solid under load, mechanics of Kirigami, and wrinkle patterns in geometrically-incompatible elastic sheets.

  4. Poly(ethylene glycol)-Mediated Collagen Gel Mechanics Regulates Cellular Phenotypes in a Microchanneled Matrix.

    PubMed

    Rich, Max H; Lee, Min Kyung; Ballance, William C; Boppart, Marni; Kong, Hyunjoon

    2017-08-14

    For the past few decades, efforts have been extensively made to reproduce tissue of interests for various uses including fundamental bioscience studies, clinical treatments, and even soft robotic systems. In these studies, cells are often cultured in micropores introduced in a provisional matrix despite that bulk rigidity may negatively affect cellular differentiation involved in tissue formation. To this end, we hypothesized that suspending cells within a soft fibrous matrix that is encapsulated within the microchannels of a provisional matrix would allow us to mediate effects of the matrix rigidity on cells and, in turn, to increase the cell differentiation level. We examined this hypothesis by filling microchannels interpenetrating alginate matrices with collagen gels of controlled elastic moduli (i.e., 125 to 1 Pa). Myoblasts used as a model predifferentiated cell were suspended within the collagen gels. The elastic modulus of the collagen gels was decreased through the addition of poly(ethylene glycol) during the gel preparation. Myoblasts loaded in the collagen gel exhibited a higher myogenic differentiation level than those adhered to the collagen-coated microchannel wall. Furthermore, the collagen gel softened by poly(ethylene glycol) further increased the volume of the multinucleated myofibers. The role of collagen gel softness on cell differentiation became more significant when the bulk elastic modulus of the alginate matrix was tuned to be close to that of muscle tissue (i.e., 11 kPa). We believe that the results of this study would be useful to understanding phenotypic activities of a wide array of cells involved in tissue development and regeneration.

  5. Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.

    PubMed

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  6. Stable propagation of mechanical signals in soft media using stored elastic energy.

    PubMed

    Raney, Jordan R; Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M; Lewis, Jennifer A; Bertoldi, Katia

    2016-08-30

    Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.

  7. Stable propagation of mechanical signals in soft media using stored elastic energy

    PubMed Central

    Raney, Jordan R.; Nadkarni, Neel; Daraio, Chiara; Lewis, Jennifer A.; Bertoldi, Katia

    2016-01-01

    Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates. PMID:27519797

  8. Thin film flow along a periodically-stretched elastic beam

    NASA Astrophysics Data System (ADS)

    Boamah Mensah, Chris; Chini, Greg; Jensen, Oliver

    2017-11-01

    Motivated by an application to pulmonary alveolar micro-mechanics, a system of partial differential equations is derived that governs the motion of a thin liquid film lining both sides of an inertia-less elastic substrate. The evolution of the film mass distribution is described by invoking the usual lubrication approximation while the displacement of the substrate is determined by employing a kinematically nonlinear Euler-Bernoulli beam formulation. In the parameter regime of interest, the axial strain can be readily shown to be a linear function of arc-length specified completely by the motion of ends of the substrate. In contrast, the normal force balance on the beam yields an equation for the substrate curvature that is fully coupled to the time-dependent lubrication equation. Linear analyses of both a stationary and periodically-stretched flat substrate confirm the potential for buckling instabilities and reveal an upper bound on the dimensionless axial stiffness for which the coupled thin-film/inertial-less-beam model is well-posed. Numerical simulations of the coupled system are used to explore the nonlinear development of the buckling instabilities.

  9. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics.

    PubMed

    Markvicka, Eric J; Bartlett, Michael D; Huang, Xiaonan; Majidi, Carmel

    2018-07-01

    Large-area stretchable electronics are critical for progress in wearable computing, soft robotics and inflatable structures. Recent efforts have focused on engineering electronics from soft materials-elastomers, polyelectrolyte gels and liquid metal. While these materials enable elastic compliance and deformability, they are vulnerable to tearing, puncture and other mechanical damage modes that cause electrical failure. Here, we introduce a material architecture for soft and highly deformable circuit interconnects that are electromechanically stable under typical loading conditions, while exhibiting uncompromising resilience to mechanical damage. The material is composed of liquid metal droplets suspended in a soft elastomer; when damaged, the droplets rupture to form new connections with neighbours and re-route electrical signals without interruption. Since self-healing occurs spontaneously, these materials do not require manual repair or external heat. We demonstrate this unprecedented electronic robustness in a self-repairing digital counter and self-healing soft robotic quadruped that continue to function after significant damage.

  10. Shear thinning in soft particle suspensions

    NASA Astrophysics Data System (ADS)

    Voudouris, Panayiotis; van der Zanden, Berco; Florea, Daniel; Fahimi, Zahra; Wyss, Hans

    2012-02-01

    Suspensions of soft deformable particles are encountered in a wide range of food and biological materials. Examples are biological cells, micelles, vesicles or microgel particles. While the behavior of suspenions of hard spheres - the classical model system of colloid science - is reasonably well understood, a full understanding of these soft particle suspensions remains elusive. The relation between single particle properties and macroscopic mechanical behavior still remains poorly understood in these materials. Here we examine the surprising shear thinning behavior that is observed in soft particle suspensions as a function of particle softness. We use poly-N-isopropylacrylamide (p-NIPAM) microgel particles as a model system to study this effect in detail. These soft spheres show significant shear thinning even at very large Peclet numbers, where this would not be observed for hard particles. The degree of shear thinning is directly related to the single particle elastic properties, which we characterize by the recently developed Capillary Micromechanics technique. We present a simple model that qualitatively accounts for the observed behavior.

  11. Extracellular enzyme kinetics scale with resource availability

    USGS Publications Warehouse

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  12. Elastic K-means using posterior probability.

    PubMed

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.

  13. Estimating demand for alternatives to cigarettes with online purchase tasks.

    PubMed

    O'Connor, Richard J; June, Kristie M; Bansal-Travers, Maansi; Rousu, Matthew C; Thrasher, James F; Hyland, Andrew; Cummings, K Michael

    2014-01-01

    To explore how advertising affects demand for cigarettes and potential substitutes, including snus, dissolvable tobacco, and medicinal nicotine. A Web-based experiment randomized 1062 smokers to see advertisements for alternative nicotine products or soft drinks, then complete a series of purchase tasks, which were used to estimate demand elasticity, peak consumption, and cross-price elasticity (CPE) for tobacco products. Lower demand elasticity and greater peak consumption were seen for cigarettes compared to all alternative products (p < .05). CPE did not differ across the alternative products (p ≤ .03). Seeing relevant advertisements was not significantly related to demand. These findings suggest significantly lower demand for alternative nicotine sources among smokers than previously revealed.

  14. Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

    NASA Astrophysics Data System (ADS)

    Ma, Teng

    In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ˜100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.

  15. Wrinkling instability in graphene supported on nanoparticle-patterned SiO2

    NASA Astrophysics Data System (ADS)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Einstein, Theodore; Fuhrer, Michael

    2012-02-01

    Atomically-thin graphene is arguably the thinnest possible mechanical membrane: graphene's effective thickness (the thickness of an isotropic continuum slab which would have the same elastic and bending stiffness) is significantly less than 1 å, indicating that graphene can distort out-of-plane to conform to sub-nanometer features. Here we study the elastic response of graphene supported on a SiO2 substrate covered with SiO2 nanoparticles. At a low density of nanoparticles, graphene is largely pinned to the substrate due to adhesive interaction. However, with increasing nanoparticle density, graphene's elasticity dominates adhesion and strain is relieved by the formation of wrinkles which connect peaks introduced by the supporting nanoparticles. At a critical density, the wrinkles percolate, resulting in a wrinkle network. We develop a simple elastic model allowing for adhesion which accurately predicts the critical spacing between nanoparticles for wrinkle formation. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.

  16. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    PubMed

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  17. Composite Pillars with a Tunable Interface for Adhesion to Rough Substrates

    PubMed Central

    2016-01-01

    The benefits of synthetic fibrillar dry adhesives for temporary and reversible attachment to hard objects with smooth surfaces have been successfully demonstrated in previous studies. However, surface roughness induces a dramatic reduction in pull-off stresses and necessarily requires revised design concepts. Toward this aim, we introduce cylindrical two-phase single pillars, which are composed of a mechanically stiff stalk and a soft tip layer. Adhesion to smooth and rough substrates is shown to exceed that of conventional pillar structures. The adhesion characteristics can be tuned by varying the thickness of the soft tip layer, the ratio of the Young’s moduli and the curvature of the interface between the two phases. For rough substrates, adhesion values similar to those obtained on smooth substrates were achieved. Our concept of composite pillars overcomes current practical limitations caused by surface roughness and opens up fields of application where roughness is omnipresent. PMID:27997118

  18. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  19. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  20. Analysis of a Compressed Thin Film Bonded to a Compliant Substrate: The Energy Scaling Law

    NASA Astrophysics Data System (ADS)

    Kohn, Robert V.; Nguyen, Hoai-Minh

    2013-06-01

    We consider the deformation of a thin elastic film bonded to a thick compliant substrate, when the (compressive) misfit is far beyond critical. We take a variational viewpoint—focusing on the total elastic energy, i.e. the membrane and bending energy of the film plus the elastic energy of the substrate—viewing the buckling of the film as a problem of energy-driven pattern formation. We identify the scaling law of the minimum energy with respect to the physical parameters of the problem, and we prove that a herringbone pattern achieves the optimal scaling. These results complement previous numerical studies, which have shown that an optimized herringbone pattern has lower energy than a number of other patterns. Our results are different, because (i) we make the scaling law achieved by the herringbone pattern explicit, and (ii) we give an elementary, ansatz-free proof that no pattern can achieve a better law.

  1. Indentation size effect of cortical bones submitted to different soft tissue removals.

    PubMed

    Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D

    2013-04-01

    Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. SVAS3: Strain Vector Aided Sensorization of Soft Structures.

    PubMed

    Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya

    2014-07-17

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.

  3. Polarization of cells and soft objects driven by mechanical interactions: consequences for migration and chemotaxis.

    PubMed

    Leoni, M; Sens, P

    2015-02-01

    We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.

  4. Effect of parylene C coating on the antibiocorrosive and mechanical properties of different magnesium alloys

    NASA Astrophysics Data System (ADS)

    Surmeneva, M. A.; Vladescu, A.; Cotrut, C. M.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Elkin, B.; Oehr, C.; Surmenev, R. A.

    2018-01-01

    In this paper, parylene C coating with the thickness of 2 μm was deposited on different magnesium alloy substrates (AZ31, WE43 and AZ91). The structure and phase composition of parylene C coating was analysed by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffraction (XRD). In addition, extensive surface characterization was done using atomic force microscopy. The corrosion performance of polymer-coated magnesium alloys was investigated by electrochemical measurements in Hanks' balanced salts solution that simulates bodily fluids at 37 ± 0.5 °C. The depth-dependent mechanical properties including Young's modulus and nanohardness of parylene C films were investigated using nanoindentation technique. The effect of the penetration depth on the properties on nano- and microscale level have been described in detail. The percentage of elastic recovery was used to characterize the elastic properties of the polymeric coatings. The results of XRD showed (020) preferred orientation of the monoclinic unit cell of the alpha phase of parylene C. The parylene C revealed a semicrystalline structure with nanocrystalline blocks of 4.9 nm. The parylene C film shows a uniform surface morphology with a higher roughness level at micro and nanoscales compared to magnesium alloy surfaces. All of the uncoated substrates exhibited a low corrosion resistance compared to the coated samples, indicating that the corrosion resistance of the magnesium alloys could be improved by parylene C coating. The resulting average nanohardness and Young's modulus of the parylene C coatings deposited onto different substrates were in the range of 0.18-0.25 GPa and 4.19-5.14 GPa, respectively. Furthermore, a higher percentage of elastic recovery of the polymer coating indicated a higher elasticity as compared to the magnesium alloy surface. The polymer coating has revealed the ability to recover elastically. Therefore, parylene C coating can not only improve corrosion resistance, but also provide the ability to recover elastically, expanding the potential applications of this material to include various biointerface platforms.

  5. Complementary use of ion beam elastic backscattering and recoil detection analysis for the precise determination of the composition of thin films made of light elements

    NASA Astrophysics Data System (ADS)

    Climent-Font, A.; Cervera, M.; Hernández, M. J.; Muñoz-Martín, A.; Piqueras, J.

    2008-04-01

    Rutherford backscattering spectrometry (RBS) is a well known powerful technique to obtain depth profiles of the constituent elements in a thin film deposited on a substrate made of lighter elements. In its standard use the probing beam is typically 2 MeV He. Its capabilities to obtain precise composition profiles are severely diminished when the overlaying film is made of elements lighter than the substrate. In this situation the analysis of the energy of the recoiled element from the sample in the elastic scattering event, the ERDA technique may be advantageous. For the detection of light elements it is also possible to use beams at specific energies producing elastic resonances with these light elements to be analyzed, with a much higher scattering cross sections than the Rutherford values. This technique may be called non-RBS. In this work we report on the complementary use of ERDA with a 30 MeV Cl beam and non-RBS with 1756 keV H ions to characterize thin films made of boron, carbon and nitrogen (BCN) deposited on Si substrates.

  6. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.

    PubMed

    Yuan, Tao; Li, Chaodong; Fan, Pingqing

    2018-03-22

    Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses-elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason's model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably.

  7. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses

    PubMed Central

    Yuan, Tao; Li, Chaodong; Fan, Pingqing

    2018-01-01

    Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses—elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason’s model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably. PMID:29565825

  8. Stretchable interconnections for flexible electronic systems.

    PubMed

    Jianhui, Lin; Bing, Yan; Xiaoming, Wu; Tianling, Ren; Litian, Liu

    2009-01-01

    Sensors, actuators and integrated circuits (IC) can be encapsulated together on an elastic substrate, which makes a flexible electronic system. In this system, electrical interconnections that can sustain large and reversible stretching are in great need. This paper is devoted to the fabrication of highly stretchable metal interconnections. Transfer printing technology is utilized, which mainly involves the transfer of 100-nm-thick gold ribbons from silicon wafers to pre-stretched elastic substrates. After the elastic substrates relax from the pre-strain, the gold ribbons buckle and form wavy geometries. These wavy geometries change in shapes to accommodate the applied strain and can be reversely stretched without cracks or fractures occurring, which will greatly raise the stretchability of the gold ribbons. As an application example, some of these wavy ribbons can accommodate high levels of stretching (up to 100%) and bending (with curvature radius down to 1.20 mm). Moreover, the efficiency and reliability of the transfer, especially for slender ribbons, have been increased due to the improvement of the technology. All the characteristics above will permit making stretchable gold conductors as interconnections for flexible electronic systems such as implantable medical systems and smart clothes.

  9. A case of hemangiopericytoma of the soft palate with articulate disorder and dysphagia

    PubMed Central

    Michi, Yasuyuki; Suzuki, Miho; Kurohara, Kazuto; Harada, Kiyoshi

    2013-01-01

    We report a case of hemangiopericytoma of the soft palate of 60-year-old patient, who noticed a mass of the soft palate and experienced difficulty in speaking. We found a pediculate, hard, elastic mass measuring 38 mm (cross-sectional diameter). Computed tomography (CT) scans and dynamic magnetic resonance imaging (MRI) confirmed irregularly shaped mass and revealed a heterogeneous internal composition, consistent with vascular tumors. We excised the tumor under general anesthesia. Histopathological diagnosis was based on positive immunoreactivity of CD99 and vimentin and weak, positive staining of CD34. Three and half years following tumor excision, there is no recurrence or metastasis. PMID:23703709

  10. Highly Deformable Liquid Embedded Soft-Matter Capacitors and Inductors for Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Fassler, Andrew; Majidi, Carmel

    2013-03-01

    We have developed a family of soft-matter capacitors and inductors that can be stretched to several times their natural length. These circuit elements are composed of microchannels of a liquid-phase Gallium-Indium-Tin alloy (Galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). As the elastomer stretches, the embedded liquid channels deform, causing the capacitance and inductance to change monotonically. The relative changes in capacitance and inductance are experimentally measured as a function of stretch in three directions. The relationships found show potential for these devices to be used as strain sensors and tunable electronic filters. Additionally, theoretical predictions derived using finite elasticity kinematics are consistent with these experimentally found relationships.

  11. Tailoring superelasticity of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.

    2015-10-01

    Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simulations. This behavior results from a combination of two stress-induced mechanisms: a detachment mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.

  12. Recent Advances in Liquid Metal Manipulation toward Soft Robotics and Biotechnologies.

    PubMed

    Yu, Yue; Miyako, Eijiro

    2018-04-06

    Interest has grown significantly in the field of soft robotics, which seeks to develop machinery capable of duplicating the elastic and rheological properties of typically polymeric or elastomeric biological tissues and organs. As a result of a number of unique properties, gallium-based liquid metals (LMs) are emerging as materials used in the forefront of soft robotics research. Finding methods to enable the sophisticated manipulation of LMs will be essential for further progress in the field. This review provides a critical discussion of the manipulation of LMs and on important biotechnological applications of LMs including microfluidics, healthcare devices, biomaterials, and nanomedicines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anomalous Elasticity of 4He Films at the Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shirahama, Keiya; Takahashi, Daisuke; Kogure, Takayuki; Yoshimura, Hitomi; Higashino, Rama

    4 He films on solid substrates exhibit a quantum phase transition between localized (nonsuperfluid) and superfluid states by changing coverage n. We have made torsional oscillator (TO) studies for 4He films adsorbed on nanoporous glasses. A TO with localized films showed an apparent ''supersolid'' behavior, an increase in TO frequency f with broad peak in Q-1. Combining with FEM analyses for TO's with different designs, we conclude that the behavior results from the softening of adsorbed 4He films at high temperatures. The features in f and Q-1 are fitted well to a Debye-like activation with a distributed energy gap Δ, so the elasticity is accounted by thermal excitation of localized atoms to an ''extended'' state. As the critical coverage nc approaches the gap decreases to zero with a powerlaw Δ ~(n -nc) 1 . 2 . Assuming that the 4He chemical potential μ (n) is located in the middle of the gap, we can estimate the elastic constant κ-1 =n2 ∂μ / ∂n . The elasticity agrees with shear moduli of 4He films obtained from the FEM analysis within factor of three. The energetics proposed from the elastic behavior naturally explains other properties of He films adsorbed on disordered substrates.

  14. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics

    NASA Astrophysics Data System (ADS)

    Mucci, Domenico; Nicolodi, Lorenzo

    2017-12-01

    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product < Q, P > = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by exploiting the it{SO}(3)-invariance of the elastic energy (frame-indifference), the existence of the section Σ _ρ for S^4_ρ , and the geometry of the model, which allow us to reduce to a suitable invariant problem on (an arc of) Σ _ρ . Our approach can ultimately be seen as an application of the general method of reduction of variables, or cohomogeneity method.

  15. Computational dynamics of soft machines

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Tian, Qiang; Liu, Cheng

    2017-06-01

    Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

  16. Creeping gaseous flows through elastic tube and annulus micro-configurations

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  17. Real-time 1-D/2-D transient elastography on a standard ultrasound scanner using mechanically induced vibration.

    PubMed

    Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent

    2012-10-01

    Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.

  18. Heterogeneous shear elasticity of glasses: the origin of the boson peak.

    PubMed

    Marruzzo, Alessia; Schirmacher, Walter; Fratalocchi, Andrea; Ruocco, Giancarlo

    2013-01-01

    The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye's elasticity theory: The density of states deviates from Debye's law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

  19. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  20. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.

    PubMed

    Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J

    2012-10-02

    We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.

  1. Anisotropic elastic moduli reconstruction in transversely isotropic model using MRE

    NASA Astrophysics Data System (ADS)

    Song, Jiah; In Kwon, Oh; Seo, Jin Keun

    2012-11-01

    Magnetic resonance elastography (MRE) is an elastic tissue property imaging modality in which the phase-contrast based MRI imaging technique is used to measure internal displacement induced by a harmonically oscillating mechanical vibration. MRE has made rapid technological progress in the past decade and has now reached the stage of clinical use. Most of the research outcomes are based on the assumption of isotropy. Since soft tissues like skeletal muscles show anisotropic behavior, the MRE technique should be extended to anisotropic elastic property imaging. This paper considers reconstruction in a transversely isotropic model, which is the simplest case of anisotropy, and develops a new non-iterative reconstruction method for visualizing the elastic moduli distribution. This new method is based on an explicit representation formula using the Newtonian potential of measured displacement. Hence, the proposed method does not require iterations since it directly recovers the anisotropic elastic moduli. We perform numerical simulations in order to demonstrate the feasibility of the proposed method in recovering a two-dimensional anisotropic tensor.

  2. Assembly, Elasticity, and Structure of Lyotropic Chromonic Liquid Crystals and Disordered Colloids

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.

    This dissertation describes experiments which explore the structure and dynamics in two classes of soft materials: lyotropic chromonic liquid crystals and colloidal glasses and super-cooled liquids. The first experiments found that the achiral LCLCs, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG) both exhibit spontaneous mirror symmetry breaking in the nematic phase driven by a giant elastic anisotropy of their twist modulus compared to their splay and bend moduli. Resulting structures of the confined LCLCs display interesting director configurations due to interplay of topologically required defects and twisted director fields. At higher concentrations, the LCLC compounds form columnar phases. We studied the columnar phase confined within spherical drops and discovered and understood configurations of the LC that sometimes led to non-spherical droplet shapes. The second experiments with SSY LCLCs confined in hollow cylinders uncovered director configurations which were driven in large measure by an exotic elastic modulus known as saddle-splay. We measured this saddle-splay modulus in a LCLC for the first time and found it to be more than 50 times greater than the twist elastic modulus. This large relative value of the saddle-splay modulus violates a theoretical result/assumption known as the Ericksen inequality. A third group of experiments on LCLCs explored the drying process of sessile drops containing SSY solutions, including evaporation dynamics, morphology, and deposition patterns. These drops differ from typical, well-studied evaporating colloidal drops primarily due to the LCLC's concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, creating surface tension gradients and significant density and viscosity variation within the droplet. Thus, the drying multiphase drops exhibit new convective currents, drop morphologies, deposition patterns, as well as a novel ordered crystalline phase. Finally, experiments in colloidal glasses and super-cooled liquids were initiated to probe the relationship between structure and dynamics in their constituent particles. The displacements of individual particles in the colloids can be decomposed into small cage fluctuations and large rearrangements into new cages. We found a correlation between the rate of rearrangement and the local cage structure associated with each particle. Particle trajectories of a two-dimensional binary mixture of soft colloids are captured by video microscopy. We use a machine learning method to calculate particle "softness'', which indicates the likelihood of rearrangement based on many radial structural features for each particle. We measured the residence time between consecutive rearrangements and related probability distribution functions (PDFs). The softness-dependent conditional PDF is well fit by an exponential with decay time decreasing monotonically with increasing softness. Using these data and a simple thermal activation model, we determined activation energies for rearrangements.

  3. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    NASA Astrophysics Data System (ADS)

    Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie

    2015-07-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.

  4. Mogul-Patterned Elastomeric Substrate for Stretchable Electronics.

    PubMed

    Lee, Han-Byeol; Bae, Chan-Wool; Duy, Le Thai; Sohn, Il-Yung; Kim, Do-Il; Song, You-Joon; Kim, Youn-Jea; Lee, Nae-Eung

    2016-04-01

    A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.

    PubMed

    Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo

    2017-08-02

    Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.

  6. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    PubMed

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α < .05). Both solutions contained 5% NaOCl. One milliliter of the standard and the stabilized solution consumed 4.0 mL and 13.7 mL of a 0.1-mol/L HCl solution before they reached a pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum

    PubMed Central

    Brampton, Christopher; Yamaguchi, Yukiko; Vanakker, Olivier; Laer, Lut Van; Chen, Li-Hsieh; Thakore, Manoj; De Paepe, Anne; Pomozi, Viola; Szabó, Pál T; Martin, Ludovic; Váradi, András

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disease characterized by calcified elastic fibers in cutaneous, ocular and vascular tissues. PXE is caused by mutations in ABCC6, which encodes a protein of the ATP-driven organic anion transporter family. The inability of this transporter to secrete its substrate into the circulation is the likely cause of PXE. Vitamin K plays a role in the regulation of mineralization processes as a co-factor in the carboxylation of calcification inhibitors such as Matrix Gla Protein (MGP). Vitamin K precursor or a conjugated form has been proposed as potential substrate(s) for ABCC6. We investigated whether an enriched diet of vitamin K1 or vitamin K2 (MK4) could stop or slow the disease progression in Abcc6-/- mice. Abcc6-/- mice were placed on a diet of either vitamin K1 or MK4 at 5 or 100 mg/kg at prenatal, 3 weeks or 3 months of age. Disease progression was quantified by measuring the calcium content of one side of the mouse muzzle skin and histological staining for calcium of the opposing side. Raising the vitamin K1 or MK4 content of the diet increased the concentration of circulating MK4 in the serum. However, this increase did not significantly affect the MGP carboxylation status or reduce its abnormal abundance, the total calcium content or the pathologic calcification in the whiskers of the 3 treatment groups compared to controls. Our findings showed that raising the dietary intake of vitamin K1 or MK4 was not beneficial in the treatment of PXE and suggested that the availability of vitamin K may not be a limiting factor in this pathology. PMID:21597330

  8. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  9. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01169a

  10. Functional helicoidal model of DNA molecule with elastic nonlinearity

    NASA Astrophysics Data System (ADS)

    Tseytlin, Y. M.

    2013-06-01

    We constructed a functional DNA molecule model on the basis of a flexible helicoidal sensor, specifically, a pretwisted hollow nano-strip. We study in this article the helicoidal nano- sensor model with a pretwisted strip axial extension corresponding to the overstretching transition of DNA from dsDNA to ssDNA. Our model and the DNA molecule have similar geometrical and nonlinear mechanical features unlike models based on an elastic rod, accordion bellows, or an imaginary combination of "multiple soft and hard linear springs", presented in some recent publications.

  11. Radiative corrections to elastic proton-electron scattering measured in coincidence

    NASA Astrophysics Data System (ADS)

    Gakh, G. I.; Konchatnij, M. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.

    2017-05-01

    The differential cross section for elastic scattering of protons on electrons at rest is calculated, taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization. We analyze an experimental setup when both the final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.

  12. Elastic model for crimped collagen fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.

  13. Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2018-02-26

    A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less

  14. Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilka, J. A.; Park, J.; Ahn, Y.

    A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less

  15. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.

    PubMed

    Renda, F; Giorgio-Serchi, F; Boyer, F; Laschi, C

    2015-09-28

    Cephalopods (i.e., octopuses and squids) are being looked upon as a source of inspiration for the development of unmanned underwater vehicles. One kind of cephalopod-inspired soft-bodied vehicle developed by the authors entails a hollow, elastic shell capable of performing a routine of recursive ingestion and expulsion of discrete slugs of fluids which enable the vehicle to propel itself in water. The vehicle performances were found to depend largely on the elastic response of the shell to the actuation cycle, thus motivating the development of a coupled propulsion-elastodynamics model of such vehicles. The model is developed and validated against a set of experimental results performed with the existing cephalopod-inspired prototypes. A metric of the efficiency of the propulsion routine which accounts for the elastic energy contribution during the ingestion/expulsion phases of the actuation is formulated. Demonstration on the use of this model to estimate the efficiency of the propulsion routine for various pulsation frequencies and for different morphologies of the vehicles are provided. This metric of efficiency, employed in association with the present elastodynamics model, provides a useful tool for performing a priori energetic analysis which encompass both the design specifications and the actuation pattern of this new kind of underwater vehicle.

  16. Anomalously soft non-Euclidean spring

    NASA Astrophysics Data System (ADS)

    Levin, Ido; Sharon, Eran

    In this work we study the mechanical properties of a frustrated elastic ribbon spring - the non-Euclidean minimal spring. This spring belongs to the family of non-Euclidean plates: it has no spontaneous curvature, but its lateral intrinsic geometry is described by a non-Euclidean reference metric. The reference metric of the minimal spring is hyperbolic, and can be embedded as a minimal surface. We argue that the existence of a continuous set of such isometric minimal surfaces with different extensions leads to a complete degeneracy of the bulk elastic energy of the minimal spring under elongation. This degeneracy is removed only by boundary layer effects. As a result, the mechanical properties of the minimal spring are unusual: the spring is ultra-soft with rigidity that depends on the thickness, t , as t raise 0 . 7 ex 7 7 2 lower 0 . 7 ex 2, and does not explicitly depend on the ribbon's width. These predictions are confirmed by a numerical study of a constrained spring. This work is the first to address the unusual mechanical properties of constrained non-Euclidean elastic objects. We also present a novel experimental system that is capable of constructing such objects, along with many other non-Euclidean plates.

  17. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.

    PubMed

    Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind

    2017-05-08

    Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.

  18. Carbon buffer layers for smoothing superpolished glass surfaces as substrates for molybdenum /silicon multilayer soft-x-ray mirrors.

    PubMed

    Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U

    1997-03-01

    Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.

  19. A K-BKZ Formulation for Soft-Tissue Viscoelasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Diethelm, Kai

    2005-01-01

    A viscoelastic model of the K-BKZ (Kaye 1962; Bernstein et al. 1963) type is developed for isotropic biological tissues, and applied to the fat pad of the human heel. To facilitate this pursuit, a class of elastic solids is introduced through a novel strain-energy function whose elements possess strong ellipticity, and therefore lead to stable material models. The standard fractional-order viscoelastic (FOV) solid is used to arrive at the overall elastic/viscoelastic structure of the model, while the elastic potential via the K-BKZ hypothesis is used to arrive at the tensorial structure of the model. Candidate sets of functions are proposed for the elastic and viscoelastic material functions present in the model, including a regularized fractional derivative that was determined to be the best. The Akaike information criterion (AIC) is advocated for performing multi-model inference, enabling an objective selection of the best material function from within a candidate set.

  20. Analysis of Rayleigh-Lamb Modes in Soft-solids with Application to Surface Wave Elastography

    NASA Astrophysics Data System (ADS)

    Benech, Nicolás; Grinspan, Gustavo; Aguiar, Sofía; Brum, Javier; Negreira, Carlos; tanter, Mickäel; Gennisson, Jean-Luc

    The goal of Surface Wave Elastography (SE) techniques is to estimate the shear elasticity of the sample by measuring the surface wave speed. In SE the thickness of the sample is often assumed to be infinite, in this way, the surface wave speed is directly linked to the sample's shear elasticity. However for many applications this assumption is not true. In this work, we study experimentally the Rayleigh-Lamb modes in soft solids of finite thickness to explore the optimal conditions for SWE. Experiments were carried out in three tissue mimicking phantoms of different thicknesses (10 mm, 20 mm and 60 mm) and same shear elasticity. The surface waves were generated at the surface of the phantom using piston attached to a mechanical vibrator. The central frequency of the excitation was varied between 60 Hz to 160 Hz. One component of the displacement field generated by the piston was measured at the surface and in the bulk of the sample trough a standard speckle tracking technique using a 256 element, 7.5 MHz central frequency linear array and an ultrasound ultrafast electronics. Finally, by measuring the phase velocity at each excitation frequency, velocity dispersion curves were obtained for each phantom. The results show that instead of a Rayleigh wave, zero order symmetric (S0) and antisymmetric (A0) Lamb modes are excited with this type of source. Moreover, in this study we show that due to the near field effects of the source, which are appreciable only in soft solids at low frequencies, both Lamb modes are separable in time and space. We show that while the Ao mode dominates close the source, the S0 mode dominates far away.

  1. Estimating Demand for Alternatives to Cigarettes With Online Purchase Tasks

    PubMed Central

    O’Connor, Richard J.; June, Kristie M.; Bansal-Travers, Maansi; Rousu, Matthew C.; Thrasher, James F.; Hyland, Andrew; Cummings, K. Michael

    2013-01-01

    Objectives This study explored how advertising affects demand for cigarettes and potential substitutes, including snus, dissolvable tobacco, and medicinal nicotine. Methods A web-based experiment randomized 1062 smokers to see advertisements for alternative nicotine products or soft drinks, then complete a series of purchase tasks, which were used to estimate demand elasticity, peak consumption, and cross-price elasticity (CPE) for tobacco products. Results Lower demand elasticity and greater peak consumption were seen for cigarettes compared to all alternative products (p < .05). CPE did not differ across the alternative products (p ≤ .03). Seeing relevant advertisements was not significantly related to demand. Conclusions These findings suggest significantly lower demand for alternative nicotine sources among smokers than previously revealed. PMID:24034685

  2. Elastic K-means using posterior probability

    PubMed Central

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756

  3. Proteolytic enzymes from Bromelia antiacantha as tools for controlled tissue hydrolysis in entomology.

    PubMed

    Macció, Laura; Vallés, Diego; Cantera, Ana Maria

    2013-12-01

    A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.

  4. Combining Dynamic Stretch and Tunable Stiffness to Probe Cell Mechanobiology In Vitro

    PubMed Central

    Throm Quinlan, Angela M.; Sierad, Leslie N.; Capulli, Andrew K.; Firstenberg, Laura E.; Billiar, Kristen L.

    2011-01-01

    Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G′ = 0.3 kPa) to stiff (G′ = 50 kPa) by altering the ratio of acrylamide to bis-acrylamide, and the silicone membranes were stretched over circular loading posts by applying vacuum pressure to impart near-uniform stretch, as confirmed by strain field analysis. As a demonstration of the system, porcine aortic valve interstitial cells (VIC) and human mesenchymal stem cells (hMSC) were plated on soft and stiff substrates either statically cultured or exposed to 10% equibiaxial or pure uniaxial stretch at 1Hz for 6 hours. In all cases, cell attachment and cell viability were high. On soft substrates, VICs cultured statically exhibit a small rounded morphology, significantly smaller than on stiff substrates (p<0.05). Following equibiaxial cyclic stretch, VICs spread to the extent of cells cultured on stiff substrates, but did not reorient in response to uniaxial stretch to the extent of cells stretched on stiff substrates. hMSCs exhibited a less pronounced response than VICs, likely due to a lower stiffness threshold for spreading on static gels. These preliminary data demonstrate that inhibition of spreading due to a lack of matrix stiffness surrounding a cell may be overcome by externally applied stretch suggesting similar mechanotransduction mechanisms for sensing stiffness and stretch. PMID:21858051

  5. Processing soft materials for integrated photonic and macroelectronic components and devices

    NASA Astrophysics Data System (ADS)

    Tsay, Candice Ruth

    Incorporating soft materials into micro-fabrication processes opens up new functionalities for fabricated devices, but requires unique processing routes. This thesis presents our development of integrated photonic and macroelectronic structures through processing innovations that unite disparate inorganic/organic, and soft/rigid materials systems. For the integrated photonic system, we focus our efforts on chalcogenide glasses, dielectric materials that exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these relatively fragile materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of several additive methods for patterning chalcogenide glass waveguides from solution. In particular, we focus on two complementary soft lithography methods. The first, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S 3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (muTM), to produce arrays of single mode rib waveguides over large areas while maintaining low surface and edge roughness. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR photonic structures ranging from less than 5 to 10's of mum in cross-sectional dimension. Optical characterization, including measurement of waveguide loss by cut-back, is carried out in the mid-IR using QCLs. In addition, materials characterization of the chalcogenide glass structures is carried out to determine loss mechanisms and optimize processing. While we use soft polymeric materials as molds to pattern chalcogenide glasses, we also employ them as substrate material for stretchable electronic systems, which comprise a new class of flexible macroelectronics. These devices must undergo elastic deformation to large strain (>10%), for applications in which electronics are conformally shaped around surfaces of arbitrary shape, like many biological surfaces. We develop strategies for processing stretchable metallic electrodes and study the mechanism of their stretchability via careful observation of thin film micro-structures. Our macroelectronic work culminates in fabrication of stretchable microelectrode arrays that interface with brain tissue, laying the groundwork for future development of advanced bio-electronic interfaces.

  6. Engineered unique elastic modes at a BaTiO 3/2x1-Ge(001) interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumah, D. P.; Dogan, M.; Ngai, J. H.

    Here, the strong interaction at an interface between a substrate and thin film leads to epitaxy and provides a means of inducing structural changes in the epitaxial film. These induced material phases often exhibit technologically relevant electronic, magnetic, and functional properties. The 2×1 surface of a Ge(001) substrate applies a unique type of epitaxial constraint on thin films of the perovskite oxide BaTiO 3 where a change in bonding and symmetry at the interface leads to a non-bulk-like crystal structure of the BaTiO 3. While the complex crystal structure is predicted using first-principles theory, it is further shown that themore » details of the structure are a consequence of hidden phases found in the bulk elastic response of the BaTiO 3 induced by the symmetry of forces exerted by the germanium substrate.« less

  7. Engineered Unique Elastic Modes at a BaTiO 3 / ( 2 × 1 ) - Ge ( 001 ) Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumah, D. P.; Dogan, M.; Ngai, J. H.

    The strong interaction at an interface between a substrate and thin film leads to epitaxy and provides a means of inducing structural changes in the epitaxial film. These induced material phases often exhibit technologically relevant electronic, magnetic, and functional properties. The 2×1 surface of a Ge(001) substrate applies a unique type of epitaxial constraint on thin films of the perovskite oxide BaTiO3 where a change in bonding and symmetry at the interface leads to a non-bulk-like crystal structure of the BaTiO3. While the complex crystal structure is predicted using first-principles theory, it is further shown that the details of themore » structure are a consequence of hidden phases found in the bulk elastic response of the BaTiO3 induced by the symmetry of forces exerted by the germanium substrate.« less

  8. Engineered unique elastic modes at a BaTiO 3/2x1-Ge(001) interface

    DOE PAGES

    Kumah, D. P.; Dogan, M.; Ngai, J. H.; ...

    2016-03-07

    Here, the strong interaction at an interface between a substrate and thin film leads to epitaxy and provides a means of inducing structural changes in the epitaxial film. These induced material phases often exhibit technologically relevant electronic, magnetic, and functional properties. The 2×1 surface of a Ge(001) substrate applies a unique type of epitaxial constraint on thin films of the perovskite oxide BaTiO 3 where a change in bonding and symmetry at the interface leads to a non-bulk-like crystal structure of the BaTiO 3. While the complex crystal structure is predicted using first-principles theory, it is further shown that themore » details of the structure are a consequence of hidden phases found in the bulk elastic response of the BaTiO 3 induced by the symmetry of forces exerted by the germanium substrate.« less

  9. Water-Based Peeling of Thin Hydrophobic Films

    NASA Astrophysics Data System (ADS)

    Khodaparast, Sepideh; Boulogne, François; Poulard, Christophe; Stone, Howard A.

    2017-10-01

    Inks of permanent markers and waterproof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows for complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface.

  10. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  11. The Mechanical Properties of Hydrated Intermediate Filaments: Insights from Hagfish Slime Threads

    PubMed Central

    Fudge, Douglas S.; Gardner, Kenn H.; Forsyth, V. Trevor; Riekel, Christian; Gosline, John M.

    2003-01-01

    Intermediate filaments (IFs) impart mechanical integrity to cells, yet IF mechanics are poorly understood. It is assumed that IFs in cells are as stiff as hard α-keratin, F-actin, and microtubules, but the high bending flexibility of IFs and the low stiffness of soft α-keratins suggest that hydrated IFs may be quite soft. To test this hypothesis, we measured the tensile mechanics of the keratin-like threads from hagfish slime, which are an ideal model for exploring the mechanics of IF bundles and IFs because they consist of tightly packed and aligned IFs. Tensile tests suggest that hydrated IF bundles possess low initial stiffness (Ei = 6.4 MPa) and remarkable elasticity (up to strains of 0.34), which we attribute to soft elastomeric IF protein terminal domains in series with stiffer coiled coils. The high tensile strength (180 MPa) and toughness (130 MJ/m3) of IF bundles support the notion that IFs lend mechanical integrity to cells. Their long-range elasticity suggests that IFs may also allow cells to recover from large deformations. X-ray diffraction and congo-red staining indicate that post-yield deformation leads to an irreversible α→β conformational transition in IFs, which leads to plastic deformation, and may be used by cells as a mechanosensory cue. PMID:12944314

  12. Phase behavior and dynamics of a micelle-forming triblock copolymer system

    NASA Astrophysics Data System (ADS)

    Mohan, P. Harsha; Bandyopadhyay, Ranjini

    2008-04-01

    Synperonic F-108 (generic name, “pluronic”) is a micelle forming triblock copolymer of type ABA , where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluronic molecules, when dissolved in an aqueous medium, self-associate into spherical micelles with dense PPO cores and hydrated PEO coronas. At appropriately high concentrations, these micelles arrange in a face centered cubic lattice to show inverse crystallization, with the samples exhibiting high-temperature crystalline and low-temperature fluidlike phases. By studying the evolution of the elastic and viscous moduli as temperature is increased at a fixed rate, we construct the concentration-temperature phase diagram of Synperonic F-108. For a certain range of temperatures and at appropriate sample concentrations, we observe a predominantly elastic response. Oscillatory strain amplitude sweep measurements on these samples show pronounced peaks in the loss moduli, a typical feature of soft solids. The soft solidlike nature of these materials is further demonstrated by measuring their frequency-dependent mechanical moduli. The storage moduli are significantly larger than the loss moduli and are almost independent of the applied angular frequency. Finally, we perform strain rate frequency superposition experiments to measure the slow relaxation dynamics of this soft solid.

  13. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Measuring information transfer in a soft robotic arm.

    PubMed

    Nakajima, K; Schmidt, N; Pfeifer, R

    2015-05-13

    Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.

  15. An asymptotic Reissner-Mindlin plate model

    NASA Astrophysics Data System (ADS)

    Licht, Christian; Weller, Thibaut

    2018-06-01

    A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner-Mindlin plate model.

  16. Rheological properties of aging thermosensitive suspensions.

    PubMed

    Purnomo, Eko H; van den Ende, Dirk; Mellema, Jorrit; Mugele, Frieder

    2007-08-01

    Aging observed in soft glassy materials inherently affects the rheological properties of these systems and has been described by the soft glassy rheology (SGR) model [S. M. Fielding, J. Rheol. 44, 323 (2000)]. In this paper, we report the measured linear rheological behavior of thermosensitive microgel suspensions and compare it quantitatively with the predictions of the SGR model. The dynamic moduli [G'(omega,t) and G''(omega,t)] obtained from oscillatory measurements are in good agreement with the model. The model also predicts quantitatively the creep compliance J(t - t(w),t(w)), obtained from step stress experiments, for the short time regime [(t - t(w)) < t(w)]. The relative effective temperature X/X(g) obtained from both the oscillatory and the step stress experiments is indeed less than 1 (XX(g) < 1) in agreement with the definition of aging. Moreover, the elasticity of the compressed particles (G(p)) increases with increased compression, i.e., the degree of hindrance and consequently also the bulk elasticity (G' and 1/J) increases with the degree of compression.

  17. Rheological properties of aging thermosensitive suspensions

    NASA Astrophysics Data System (ADS)

    Purnomo, Eko H.; van den Ende, Dirk; Mellema, Jorrit; Mugele, Frieder

    2007-08-01

    Aging observed in soft glassy materials inherently affects the rheological properties of these systems and has been described by the soft glassy rheology (SGR) model [S. M. Fielding , J. Rheol. 44, 323 (2000)]. In this paper, we report the measured linear rheological behavior of thermosensitive microgel suspensions and compare it quantitatively with the predictions of the SGR model. The dynamic moduli [ G'(ω,t) and G″(ω,t) ] obtained from oscillatory measurements are in good agreement with the model. The model also predicts quantitatively the creep compliance J(t-tw,tw) , obtained from step stress experiments, for the short time regime [(t-tw)

  18. Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials.

    PubMed

    Rinaldi, Antonio

    2011-04-01

    Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).

  19. Dynamics of Solid-Liquid Composite Beams

    NASA Astrophysics Data System (ADS)

    Matia, Yoav; Gat, Amir

    2017-11-01

    Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.

  20. Dropwise Condensation on Soft Hydrophobic Coatings.

    PubMed

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-10-31

    Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.

  1. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans

    PubMed Central

    Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia; David, Nathaniel; Mori, Susumu; Taube, Janis M.; Elisseeff, Jennifer H.

    2015-01-01

    Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal light exposure. Modulating the ratio of synthetic to biological polymer allowed us to tune implant elasticity and volume persistence. In a small-animal model, implanted photocrosslinked PEG-HA showed a dose-dependent relationship between increasing PEG concentration and enhanced implant volume persistence. In direct comparison with commercial HA injections, the PEG-HA implants maintained significantly greater average volumes and heights. Reversibility of the implant volume was achieved with hyaluronidase injection. Pilot clinical testing in human patients confirmed the feasibility of the transdermal photocrosslinking approach for implantation in abdomen soft tissue, although an inflammatory response was observed surrounding some of the materials. PMID:21795587

  2. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  3. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  4. Marginal Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  5. A model of transluminal flow of an anti-HIV microbicide vehicle: Combined elastic squeezing and gravitational sliding

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.; Park, Su Chan; Verguet, Stéphane; Weiss, Aaron; Katz, David F.

    2008-08-01

    Elastohydrodynamic lubrication over soft substrates is of importance in a number of biomedical problems: From lubrication of the eye surface by the tear film, to lubrication of joints by synovial fluid, to lubrication between the pleural surfaces that protect the lungs and other organs. Such flows are also important for the drug delivery functions of vehicles for anti-HIV topical microbicides. These are intended to inhibit transmission into vulnerable mucosa, e.g., in the vagina. First generation prototype microbicides have gel vehicles, which spread after insertion and coat luminal surfaces. Effectiveness derives from potency of the active ingredients and completeness and durability of coating. Delivery vehicle rheology, luminal biomechanical properties, and the force due to gravity influence the coating mechanics. We develop a framework for understanding the relative importance of boundary squeezing and body forces on the extent and speed of the coating that results. A single dimensionless number, independent of viscosity, characterizes the relative influences of squeezing and gravitational acceleration on the shape of spreading in the Newtonian case. A second scale, involving viscosity, determines the spreading rate. In the case of a shear-thinning fluid, the Carreau number also plays a role. Numerical solutions were developed for a range of the dimensionless parameter and compared well with asymptotic theory in the limited case where such results can be obtained. Results were interpreted with respect to trade-offs between wall elasticity, longitudinal forces, bolus viscosity, and bolus volume. These provide initial insights of practical value for formulators of gel delivery vehicles for anti-HIV microbicidal formulations.

  6. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

    PubMed

    Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-09-09

    Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.

  7. Investigation of contact pressure and influence function model for soft wheel polishing.

    PubMed

    Rao, Zhimin; Guo, Bing; Zhao, Qingliang

    2015-09-20

    The tool influence function (TIF) is critical for calculating the dwell-time map to improve form accuracy. We present the TIF for the process of computer-controlled polishing with a soft polishing wheel. In this paper, the static TIF was developed based on the Preston equation. The pressure distribution was verified by the real removal spot section profiles. According to the experiment measurements, the pressure distribution simulated by Hertz contact theory was much larger than the real contact pressure. The simulated pressure distribution, which was modeled by the Winkler elastic foundation for a soft polishing wheel, matched the real contact pressure. A series of experiments was conducted to obtain the removal spot statistical properties for validating the relationship between material removal and processing time and contact pressure and relative velocity, along with calculating the fitted parameters to establish the TIF. The developed TIF predicted the removal character for the studied soft wheel polishing.

  8. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  9. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  10. SVAS3: Strain Vector Aided Sensorization of Soft Structures

    PubMed Central

    Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya

    2014-01-01

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332

  11. Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.

    PubMed

    Uto, K; Aoyagi, T; DeForest, C A; Ebara, M

    2018-05-01

    Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.

  12. Time to stop mucking around? Impacts of underwater photography on cryptobenthic fauna found in soft sediment habitats.

    PubMed

    De Brauwer, Maarten; Saunders, Benjamin J; Ambo-Rappe, Rohani; Jompa, Jamaluddin; McIlwain, Jennifer L; Harvey, Euan S

    2018-07-15

    Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate.

    PubMed

    Zhang, Sijia; Gu, Bin; Zhang, Hongbin; Feng, Xi-Qiao; Pan, Rongying; Alamusi; Hu, Ning

    2016-03-01

    The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated in the present paper with the consideration of surface effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the interface between the film and the substrate. This work focuses on the new features in the dispersion relations of different modes due to surface effects. It is found that with the existence of surface effects, the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion modes increase with the decrease of the film thickness and the increase of the surface constants. However, surface effects play different functions in the frequency dispersions of different modes, especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first mode dispersion, depending on the presence of the surface effects on the surface and the interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs

    PubMed Central

    Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang

    2017-01-01

    A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338

  15. Estimation of elasticity map of soft biological tissue mimicking phantom using laser speckle contrast analysis

    NASA Astrophysics Data System (ADS)

    Suheshkumar Singh, M.; Rajan, K.; Vasu, R. M.

    2011-05-01

    Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6mm in diameter, separated by 8mm between them. Three samples are made. One inclusion has Young's modulus E of 40kPa. The second inclusion has either a Young's modulus E of 20kPa, or scattering coefficient of μs'=3.00mm-1 or absorption coefficient of μa=0.03mm-1. The optical absorption (μa), reduced scattering (μs') coefficient, and the Young's modulus of the background are μa=0.01mm-1, μs'=1.00mm-1 and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of μa=0.03mm-1, E =40kPa and μs'=3.00mm-1. The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of μa, μs', and Young's modulus of the tissue mimicking medium are also carried out.

  16. Determining resistance to soft-rot fungi

    Treesearch

    C. G. Duncan

    1965-01-01

    A laboratory procedure is outlined that incorporates techniques found to promote soft rot by several fungi. This procedure employs either an agar or a soil substrate. Also presented are the principal findings of experiments underlying the procedure. Results of tests conducted according to the suggested procedure are illustrated. The overall decay resistance of the...

  17. Studies on high-moment soft magnetic FeCo/Co thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Yang, Zheng; Matsumoto, Mitsunori; Liu, Xiao-Xi; Morisako, Akimitsu

    2006-06-01

    The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=Fe65Co35) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and target-substrate spacing dT-S are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.

  18. Soft bio-integrated systems for continuous health monitoring

    NASA Astrophysics Data System (ADS)

    Raj, M.; Wei, P. H.; Morey, B.; Wang, X.; Keen, B.; DePetrillo, P.; Hsu, Y. Y.; Ghaffari, R.

    2014-06-01

    Electronically-enabled wearable systems that monitor physiological activity and electrophysiological activity hold the key to truly personalized medical care outside of the hospital setting. However, fundamental technical challenges exist in achieving medical systems that are comfortable, unobtrusive and fully integrated without external connections to bench top instruments. In particular, there is a fundamental mismatch in mechanical coupling between existing classes of rigid electronics and soft biological substrates, like the skin. Here we describe new mechanical and electrical design strategies for wearable devices with mechanical properties that approach that of biological tissue. These systems exploit stretchable networks of conformal sensors (i.e. electrodes, temperature sensors, and accelerometers) and associated circuitry (i.e. microcontroller, memory, voltage regulators, rechargeable battery, wireless communication modules) embedded in ultrathin, elastomeric substrates. Quantitative analyses of sensor performance and mechanics under tensile and torsional stresses illustrate the ability to mechanically couple with soft tissues in a way that is mechanically invisible to the user. Representative examples of these soft biointegrated systems can be applied for continuous sensing of muscle and movement activity in the home and ambulatory settings.

  19. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—I. Microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung

    Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less

  20. Improved Rubin-Bodner Model for the Prediction of Soft Tissue Deformations

    PubMed Central

    Zhang, Guangming; Xia, James J.; Liebschner, Michael; Zhang, Xiaoyan; Kim, Daeseung; Zhou, Xiaobo

    2016-01-01

    In craniomaxillofacial (CMF) surgery, a reliable way of simulating the soft tissue deformation resulted from skeletal reconstruction is vitally important for preventing the risks of facial distortion postoperatively. However, it is difficult to simulate the soft tissue behaviors affected by different types of CMF surgery. This study presents an integrated bio-mechanical and statistical learning model to improve accuracy and reliability of predictions on soft facial tissue behavior. The Rubin-Bodner (RB) model is initially used to describe the biomechanical behavior of the soft facial tissue. Subsequently, a finite element model (FEM) computers the stress of each node in soft facial tissue mesh data resulted from bone displacement. Next, the Generalized Regression Neural Network (GRNN) method is implemented to obtain the relationship between the facial soft tissue deformation and the stress distribution corresponding to different CMF surgical types and to improve evaluation of elastic parameters included in the RB model. Therefore, the soft facial tissue deformation can be predicted by biomechanical properties and statistical model. Leave-one-out cross-validation is used on eleven patients. As a result, the average prediction error of our model (0.7035mm) is lower than those resulting from other approaches. It also demonstrates that the more accurate bio-mechanical information the model has, the better prediction performance it could achieve. PMID:27717593

  1. Localizing softness and stress along loops in 3D topological metamaterials

    NASA Astrophysics Data System (ADS)

    Baardink, Guido; Souslov, Anton; Paulose, Jayson; Vitelli, Vincenzo

    2018-01-01

    Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating surface. However, in all 3D mechanical metamaterials proposed to date, the topological modes are mixed with bulk soft modes, which organize themselves in Weyl loops. Here, we report the design of a 3D topological metamaterial without Weyl lines and with a uniform polarization that leads to an asymmetry between the number of soft modes on opposing surfaces. We then use this construction to localize topological soft modes in interior regions of the material by including defect lines—dislocation loops—that are unique to three dimensions. We derive a general formula that relates the difference in the number of soft modes and states of self-stress localized along the dislocation loop to the handedness of the vector triad formed by the lattice polarization, Burgers vector, and dislocation-line direction. Our findings suggest a strategy for preprogramming failure and softness localized along lines in 3D, while avoiding extended soft Weyl modes.

  2. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  3. Large area nanoimprint by substrate conformal imprint lithography (SCIL)

    NASA Astrophysics Data System (ADS)

    Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert

    2017-06-01

    Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.

  4. An experimental investigation of microstrip properties on soft substrates from 2 to 40 GHz

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Ponchak, G. E.; Downey, A. N.; Connolly, D. J.

    1985-01-01

    Dispersion and loss characteristics of microstrip lines on 10 mil and 31 mil electrodeposited and electroless copper clad-Teflon substrates were experimentally obtained from 2 to 40 GHz. The roles of surface roughness and radiation in total loss were examined.

  5. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity

    PubMed Central

    2017-01-01

    The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507

  6. Giant elastic tunability in strained BiFeO 3 near an electrically induced phase transition

    DOE PAGES

    Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; ...

    2015-11-24

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO 3 (rhombohedral) ferroelectric thin films from ~10 3 nm 3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) onmore » the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO 3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less

  7. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping

    2017-05-01

    Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.

  8. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition

    PubMed Central

    Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.

    2015-01-01

    Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483

  9. Throwing Injuries of the Shoulder.

    ERIC Educational Resources Information Center

    McCue, Frank C., III; and Others

    The majority of shoulder injuries occurring in throwing sports involve the soft tissue structures. Injuries often occur when the unit is overstretched to a point near its greatest length, involving the elastic tissues. The other injury mechanism involves the contractural unit of the muscle, which occurs near the midpoint of contractions, involving…

  10. Interaction between a crack and a soft inclusion

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1985-01-01

    With the application to weld defects in mind, the interaction problem between a planar-crack and a flat inclusion in an elastic solid is considered. The elastic inclusion is assumed to be sufficiently thin so that the thickness distribution of the stresses in the inclusion may be neglected. The problem is reduced to a system of four integral equations having Cauchy-type dominant kernels. The stress intensity factors are calculated and tabulated for various crack-inclusion geometries and the inclusion to matrix modulus ratios, and for general homogeneous loadiong conditions away from the crack-inclusion region.

  11. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  12. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1982-03-01

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  13. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  14. Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Esteban, Lionel; Delle Piane, Claudio; Maney, Bruce; Dewhurst, David N.

    2014-09-01

    A novel experimental method is introduced to estimate the Thomsen's elastic anisotropy parameters ɛ and δ of a transversely isotropic shale under variable stress and saturation conditions. The method consists in recording P-wave velocities along numerous paths on a cylindrical specimen using miniature ultrasonic transducers. Such an overdetermined set of measurements is specifically designed to reduce the uncertainty associated with the determination of Thomsen's δ parameter compared to the classical method for which a single off-axis measurement is used (usually at 45° to the specimen's axis). This method is applied to a specimen of Opalinus Clay recovered from the Mont-Terri Underground Research Laboratory in Switzerland. The specimen is first saturated with brine at low effective pressure and then subjected to an effective pressure cycle up to 40 MPa, followed by a triaxial loading up to failure. During saturation and deformation, the evolution of P-wave velocities along a maximum of 240 ray paths is monitored and Thomsen's parameters α, ɛ and δ are computed by fitting Thomsen's weak anisotropy model to the data. The values of ɛ and δ obtained at the highest confining pressures reached during the experiment are comparable with those predicted from X-ray diffraction texture analysis and modelling for Opalinus Clay reported in the literature. These models neglect the effect of soft-porosity on elastic properties, but become relevant when soft porosity is closed at high effective pressure.

  15. Using the sessile drop geometry to measure fluid and elastic block copolymer interfaces.

    PubMed

    Rozairo, Damith P; Croll, Andrew B

    2015-02-03

    There is considerable interest in the fabrication and mechanics of soft spheres and capsules because of their use in a large number of applications ranging from targeted drug delivery to cosmetically active agents. Many systems, such as lipid and block copolymer vesicles, are already finding considerable industrial use where the performance of soft spheres depends intimately on their mechanics. New advanced features such as fast cargo delivery can be realized only if they fit into the existing mechanical niche of the system in question. Here we present a model system to demonstrate how a capsule structure can be fundamentally changed while maintaining its overall mechanical response as well as a simple, universal method to measure the resulting capsule material properties. Specifically, we use confocal microscopy to adapt the sessile drop geometry to a measurement of the static properties of an ensemble of polystyrene-b-poly(ethylene oxide) (PS-PEO)-stabilized oil droplets. We then synthesize a polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS) elastic-shell-coated emulsion drop that shows an identical deformation to the fluidlike PS-PEO droplets. Both systems, in sessile geometry, can be related to their basic material properties through appropriate modeling. We find that the elastic shell is dominated by its surface tension, easily enabling it to match the static response of a purely fluid drop.

  16. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Meng; Zhao, Jian; Li, Zhenjiang, E-mail: zhenjiangli@qust.edu.cn

    Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm andmore » 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED). - Graphical abstract: Based on the synergistic growth mechanism from homogeneous substrate and elastic energy, bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. The blue-violet light emission properties of the bamboo-like nanowires have also been investigated for exploring their peculiar optical application. - Highlights: • Bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. • A synergistic growth mechanism from homogeneous substrate and elastic energy has been proposed firstly. • The blue-violet light emission properties of the products displayed peculiar optical application.« less

  17. Self-similar and fractal design for stretchable electronics

    DOEpatents

    Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui

    2017-04-04

    The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.

  18. Vibrational spectroscopy in the ophthalmological field

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Monti, P.; Simoni, R.

    1991-05-01

    Some applications of vibrational (Raman and FT/IR) spectroscopy to the study of biocompatibility in the ophthalmological field are described. The structure arid elastic properties of a new hydrophobic fluorocarbon copolymer (FCC) are presented. Bacterial adhesion on its surface is also considered. The structure arid properties of soft contact lenses based on poly2--hydroxyethylmethacrylate (PHEMA) and polyvinylpyrrolidone (PVP) are discussed in relation to their recent use as intrastromal implants. The preliminary results dealing with a study on protein deposits on soft contact lenses in presence of a collyrium limiting the formation of such deposits are also reported. 1.

  19. Equilibrium softening of an enzyme explored with the DNA spring

    NASA Astrophysics Data System (ADS)

    Tseng, Chiao-Yu; Zocchi, Giovanni

    2014-04-01

    We explore enzyme mechanics using a system of two mechanically coupled biomolecules. Measurements of the mechanical modulation of enzymatic activity in a Luciferase—DNA chimera are presented. These are molecules where the enzyme is deformed by the action of a DNA spring. The response of the enzyme for different states of stress is examined. It is found that small changes in the stress cause large changes in activity. This nonlinear behavior is qualitatively interpreted as arising from a soft regime of the enzyme beyond linear elasticity. This soft regime may enable large conformational motion in enzymes.

  20. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.

    PubMed

    Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H

    2017-08-01

    We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Validation of Ultrasound Elastography Imaging for Nondestructive Characterization of Stiffer Biomaterials.

    PubMed

    Zhou, Haoyan; Goss, Monika; Hernandez, Christopher; Mansour, Joseph M; Exner, Agata

    2016-05-01

    Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.

  2. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  3. Elastic constants from microscopic strain fluctuations

    PubMed

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  4. Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction

    NASA Astrophysics Data System (ADS)

    Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.

    2003-06-01

    The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.

  5. Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.

    2009-12-01

    Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.

  6. Finite element analysis for transverse carpal ligament tensile strain and carpal arch area.

    PubMed

    Yao, Yifei; Erdemir, Ahmet; Li, Zong-Ming

    2018-05-17

    Mechanics of carpal tunnel soft tissue, such as fat, muscle and transverse carpal ligament (TCL), around the median nerve may render the median nerve vulnerable to compression neuropathy. The purpose of this study was to understand the roles of carpal tunnel soft tissue mechanical properties and intratunnel pressure on the TCL tensile strain and carpal arch area (CAA) using finite element analysis (FEA). Manual segmentation of the thenar muscles, skin, fat, TCL, hamate bone, and trapezium bone in the transverse plane at distal carpal tunnel were obtained from B-mode ultrasound images of one cadaveric hand. Sensitivity analyses were conducted to examine the dependence of TCL tensile strain and CAA on TCL elastic modulus (0.125-10 MPa volar-dorsally; 1.375-110 MPa transversely), skin-fat and thenar muscle initial shear modulus (1.6-160 kPa for skin-fat; 0.425-42.5 kPa for muscle), and intratunnel pressure (60-480 mmHg). Predictions of TCL tensile strain under different intratunnel pressures were validated with the experimental data obtained on the same cadaveric hand. Results showed that skin, fat and muscles had little effect on the TCL tensile strain and CAA changes. However, TCL tensile strain and CAA increased with decreased elastic modulus of TCL and increased intratunnel pressure. The TCL tensile strain and CAA increased linearly with increased pressure while increased exponentially with decreased elastic modulus of TCL. Softening the TCL by decreasing the elastic modulus may be an alternative clinical approach to carpal tunnel expansion to accommodate elevated intratunnel pressure and alleviate median nerve compression neuropathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth.

    PubMed

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-21

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.

  8. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    PubMed Central

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  9. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers.

    PubMed

    Lauridsen, Holly M; Gonzalez, Anjelica L

    2017-01-01

    The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.

  10. Automatic design of fiber-reinforced soft actuators for trajectory matching

    NASA Astrophysics Data System (ADS)

    Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia

    2017-01-01

    Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.

  11. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  12. Automatic design of fiber-reinforced soft actuators for trajectory matching

    PubMed Central

    Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia

    2017-01-01

    Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb. PMID:27994133

  13. An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization.

    PubMed

    Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J

    2017-09-01

    Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.

  14. Automatic design of fiber-reinforced soft actuators for trajectory matching.

    PubMed

    Connolly, Fionnuala; Walsh, Conor J; Bertoldi, Katia

    2017-01-03

    Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.

  15. Visualizing the shape of soft solid and fluid contacts between two surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Schellenberger, Frank; Kappl, Michael; Vollmer, Doris; Butt, Hans-Jürgen

    The soft contact between two surfaces is fundamentally interesting for soft materials and fluid mechanics and relevant for friction and wear. The deformation of soft solid interfaces has received much interest because it interestingly reveals similarities to fluid wetting. We present an experimental route towards visualizing the three-dimensional contact geometry of either liquid-solid (i.e., oil and glass) or solid-solid (i.e., elastomer and glass) interfaces using a home-built combination of confocal microscopy and atomic force microscopy. We monitor the shape of a fluid capillary bridge and the depth of indentation in 3D while simultaneously measuring the force. In agreement with theoretical predictions, the height of the capillary bridge depends on the interfacial tensions. By using a slowly evaporating solvent, we quantify the temporal evolution of the capillary bridge and visualized the influence of pinning points on its shape. The position dependence of the advancing and receding contact angle along the three-phase contact line, particle-liquid-air, is resolved. Extending our system, we explore the contact deformation of soft solids where elasticity, in addition to surface tension, becomes an important factor.

  16. Development of a new noninvasive method to determine the integrity of bone in vivo

    NASA Technical Reports Server (NTRS)

    Saha, S.

    1980-01-01

    An electromagnetic sensor for monitoring elastic waves in bone was developed. It does not require the use of traction pins and the output is not affected by soft tissue properties, a difficulty commonly encountered when using ultrasonic and vibration methods to determine in vivo properties of bone.

  17. Continuum limit of the vibrational properties of amorphous solids.

    PubMed

    Mizuno, Hideyuki; Shiba, Hayato; Ikeda, Atsushi

    2017-11-14

    The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.

  18. Continuum limit of the vibrational properties of amorphous solids

    PubMed Central

    Mizuno, Hideyuki; Ikeda, Atsushi

    2017-01-01

    The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law. PMID:29087941

  19. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    NASA Astrophysics Data System (ADS)

    Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof

    2015-09-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  20. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate.

    PubMed

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-09

    We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

Top