Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.
Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W
2017-06-01
Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stretchable electronics based on Ag-PDMS composites
Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos
2014-01-01
Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843
Banisadr, Seyedali; Chen, Jian
2017-12-13
Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices.
Monolithic microfabricated valves and pumps by multilayer soft lithography.
Unger, M A; Chou, H P; Thorsen, T; Scherer, A; Quake, S R
2000-04-07
Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are retained.
Mogul-Patterned Elastomeric Substrate for Stretchable Electronics.
Lee, Han-Byeol; Bae, Chan-Wool; Duy, Le Thai; Sohn, Il-Yung; Kim, Do-Il; Song, You-Joon; Kim, Youn-Jea; Lee, Nae-Eung
2016-04-01
A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.
Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji
2015-09-09
Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.
Multi-layer robot skin with embedded sensors and muscles
NASA Astrophysics Data System (ADS)
Tomar, Ankit; Tadesse, Yonas
2016-04-01
Soft artificial skin with embedded sensors and actuators is proposed for a crosscutting study of cognitive science on a facial expressive humanoid platform. This paper focuses on artificial muscles suitable for humanoid robots and prosthetic devices for safe human-robot interactions. Novel composite artificial skin consisting of sensors and twisted polymer actuators is proposed. The artificial skin is conformable to intricate geometries and includes protective layers, sensor layers, and actuation layers. Fluidic channels are included in the elastomeric skin to inject fluids in order to control actuator response time. The skin can be used to develop facially expressive humanoid robots or other soft robots. The humanoid robot can be used by computer scientists and other behavioral science personnel to test various algorithms, and to understand and develop more perfect humanoid robots with facial expression capability. The small-scale humanoid robots can also assist ongoing therapeutic treatment research with autistic children. The multilayer skin can be used for many soft robots enabling them to detect both temperature and pressure, while actuating the entire structure.
Enabling Desktop Nanofabrication with the Targeted Use of Soft Materials
NASA Astrophysics Data System (ADS)
Eichelsdoerfer, Daniel James
This thesis focuses on the application of soft materials to scanning probe-based molecular printing techniques, such as dip-pen nanolithography (DPN). The selective incorporation of soft materials in place of hard materials in traditional cantilever-based scanning probe lithography (SPL) systems not only enables the deposition of a broader range of materials, but also dramatically lowers the cost while simultaneously increasing the throughput of SPL. Chapter 1 introduces SPL and DPN, and highlights a few recent advances in using DPN to control surface chemical functionality at the nanoscale. In addition to introducing the material deposition capabilities of DPN, Chapter 1 introduces the development of the cantilever-free architecture, a relatively recent paradigm shift in high-throughput SPL. Furthermore, an in-depth synthetic methodology for making the most widely used cantilever-free tip arrays, consisting of elastomeric nanoscale pens adhered to an elastomeric backing layer on a glass slide, is included as an appendix. Chapter 2 discusses the synthesis of metal and metal oxide nanoparticles at specified locations by using DPN to deposit the precursors dispersed in a polymer matrix; after deposition, the precursors are annealed to form single nanoparticles. This work builds on previous soft material-based advances in DPN by utilizing the polymer as a "nanoreactor" to synthesize the desired nanoparticles, where the precursors can diffuse and coalesce into a single nanoparticle within each spot. The process of precursor aggregation and single nanoparticle formation is studied, and it is found that metal precursors follow one of three pathways based upon their reduction potential. Chapter 3 is the first of three chapters that highlights the power of soft materials in the cantilever-free architecture. In particular, Chapter 3 examines the role of the elastomeric backing layer as a compliant spring whose stiffness (as measured by the spring constant, k) can be tuned with a simple chemical change to the composition of the elastomer. In particular, the extent of cross-linking within the elastomer is found to dictate the k the backing layer, and arrays with spring constants tuned from 7 to 150 N/m are described. Furthermore, a simple geometric model is developed that explains the low variation of k within each cantilever-free array; this stands in contrast to arrays of cantilevers, which typically show large variations of k within an array. Chapter 4 addresses the problem of individual actuation in SPL by embedding resistive heaters directly beneath the elastomeric backing layer. This actuation scheme was chosen because the elastomer used in the cantilever-free tip arrays has extraordinary thermal expansion properties, and thorough exploration of their actuation behavior shows that the heater arrays are fast (> 100 microm/s) and powerful (> 4 microm) enough for actuation. After implementing several corrections for the tip height -- a problem that is intractable without the heaters, and has never been addressed before -- printing of alkanethiols onto Au is demonstrated with a 2D array of individually actuated probes. Chapter 5 examines the hypothesis that elastomeric tips can absorb solvent and be used to transport materials in the absence of environmental solvent. This is evaluated by first using tip arrays soaked in a nonpolar solvent to pattern a hydrophobic block copolymer that cannot be patterned by traditional DPN, and is subsequently explored for the case of water uptake into the pen arrays. Surprisingly, despite their poor water retention ability, the tip arrays can store enough water to pattern hydrophilic polymers in dry environments for over 2 hours. The dynamics of the solvent absorption are captured by a simple calculation that accounts for the dynamical behavior of water retention and the backing layer thickness, thereby allowing these results to be generalized to other solvents. This exploration of the subtle and dynamic role of absorbed solvent in cantilever-free pen arrays shows that proper pre-treatment of the arrays can be used to obviate the need for an environmental chamber in molecular printing. (Abstract shortened by UMI.)
Control of soft machines using actuators operated by a Braille display.
Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M
2014-01-07
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.
Control of Soft Machines using Actuators Operated by a Braille Display
Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.
2013-01-01
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070
Durability assessment of soft elastomeric capacitor skin for SHM of wind turbine blades
NASA Astrophysics Data System (ADS)
Downey, Austin; Pisello, Anna Laura; Fortunati, Elena; Fabiani, Claudia; Luzi, Francesca; Torre, Luigi; Ubertini, Filippo; Laflamme, Simon
2018-03-01
Renewable energy production has become a key research driver during the last decade. Wind energy represents a ready technology for large-scale implementation in locations all around the world. While important research is conducted to optimize wind energy production efficiency, a critical issue consists of monitoring the structural integrity and functionality of these large structures during their operational life cycle. This paper investigates the durability of a soft elastomeric capacitor strain sensing membrane, designed for structural health monitoring of wind turbines, when exposed to aggressive environmental conditions. The sensor is a capacitor made of three thin layers of an SEBS polymer in a sandwich configuration. The inner layer is doped with titania and acts as the dielectric, while the external layers are filled with carbon black and work as the conductive plates. Here, a variety of samples, not limited to the sensor configuration but also including its dielectric layer, were fabricated and tested within an accelerated weathering chamber (QUV) by simulating thermal, humidity, and UV radiation cycles. A variety of other tests were performed in order to characterize their mechanical, thermal, and electrical performance in addition to their solar reflectance. These tests were carried out before and after the QUV exposures of 1, 7, 15, and 30 days. The tests showed that titania inclusions improved the sensor durability against weathering. These findings contribute to better understanding the field behavior of these skin sensors, while future developments will concern the analysis of the sensing properties of the skin after aging.
Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter
NASA Astrophysics Data System (ADS)
Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing
2018-03-01
Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.
Rotary Actuators Based on Pneumatically Driven Elastomeric Structures.
Gong, Xiangyu; Yang, Ke; Xie, Jingjin; Wang, Yanjun; Kulkarni, Parth; Hobbs, Alexander S; Mazzeo, Aaron D
2016-09-01
Unique elastomeric rotary actuators based on pneumatically driven peristaltic motion are demonstrated. Using silicone-based wheels, these motors enable a new class of soft locomotion not found in nature, which is capable of withstanding impact, traversing irregular terrain, and operating in water. For soft robotics, this work marks progress toward providing torque without bending actuators. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elastomeric load sharing device
NASA Technical Reports Server (NTRS)
Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)
1992-01-01
An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.
New Drop Fluidics Enabled by Magnetic-Field-Mediated Elastocapillary Transduction.
Biswas, Saheli; Pomeau, Yves; Chaudhury, Manoj K
2016-07-12
This research introduces a new drop fluidics that uses a deformable and stretchable elastomeric film as the platform instead of the commonly used rigid supports. Such a soft film impregnated with magnetic particles can be modulated with an external electromagnetic field that produces a vast array of topographical landscapes with varying surface curvature, which, in conjunction with capillarity, can direct and control the motion of water droplets efficiently and accurately. When a thin layer of oil is present on this film that is deformed locally, a centrosymmetric wedge is formed. A water droplet placed on this oil-laden film becomes asymmetrically deformed, thus producing a gradient of Laplace pressure within the droplet and setting it in motion. A simple theory is presented that accounts for the droplet speed in terms of such geometric variables as the volume of the droplet and the thickness of the oil film covering the soft elastomeric film as well as material variables such as the viscosity of the oil and the interfacial tension of the oil-water interfaces. Following the verification of the theoretical result using well-controlled model systems, we demonstrate how the electromagnetically controlled elastocapillary force can be used to manipulate the motion of single and/or multiple droplets on the surface of the elastomeric film and how elementary operations such as drop fusion and thermally addressed chemical transformation can be carried out in aqueous droplets. It is expected that the resulting drop fluidics would be suitable for the digital control of drop motion by simply switching on and off the electromagnetic fields applied at different positions underneath the elastomeric film in a Boolean sequence. We anticipate that this method of directing and manipulating water droplets is poised for application in various biochemical reaction engineering situations, an example of which is the polymerase chain reaction (PCR).
Composite Materials for Maxillofacial Prostheses.
1981-08-01
necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules
Stable propagation of mechanical signals in soft media using stored elastic energy.
Raney, Jordan R; Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M; Lewis, Jennifer A; Bertoldi, Katia
2016-08-30
Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.
Stable propagation of mechanical signals in soft media using stored elastic energy
Raney, Jordan R.; Nadkarni, Neel; Daraio, Chiara; Lewis, Jennifer A.; Bertoldi, Katia
2016-01-01
Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates. PMID:27519797
Using "click-e-bricks" to make 3D elastomeric structures.
Morin, Stephen A; Shevchenko, Yanina; Lessing, Joshua; Kwok, Sen Wai; Shepherd, Robert F; Stokes, Adam A; Whitesides, George M
2014-09-10
Soft, 3D elastomeric structures and composite structures are easy to fabricate using click-e-bricks, and the internal architecture of these structures together with the capabilities built into the bricks themselves provide mechanical, optical, electrical, and fluidic functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces.
Song, Hyon Min; Ye, Peide D; Ivanisevic, Albena
2007-08-28
This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.
Soft materials with recoverable shape factors from extreme distortion states
Goff, Jonathan; Sulaiman, Santy; Arkles, Barry; ...
2016-01-20
We present elastomeric polysiloxane nanocomposites with elongations of >5000% (more than 3× greater than any previously reported material) with excellent shape recovery. Highly deformable materials are desirable for the fabrication of stretchable implants and microfluidic devices. No crosslinking or domain formation is observed by a variety of analytical techniques, suggesting that their elastomeric behavior is caused by polymer chain entanglements.
Adhesive, elastomeric gel impregnating composition
Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey
2002-01-01
An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.
Guiraldo, Ricardo D; Berger, Sandrine B; Siqueira, Ronaldo Mt; Grandi, Victor H; Lopes, Murilo B; Gonini-Júnior, Alcides; Caixeta, Rodrigo V; de Carvalho, Rodrigo V; Sinhoreti, Mário Ac
2017-04-01
This study compared the surface detail reproduction and dimensional accuracy of molds after disinfection using 2% sodium hypochlorite, 2% chlorhexidine digluconate or 0.2% peracetic acid to those of molds that were not disinfected, for four elastomeric impression materials: polysulfide (Light Bodied Permlastic), polyether (Impregum Soft), polydimethylsiloxane (Oranwash L) andpolyvinylsiloxane (Aquasil Ultra LV). The molds were prepared on a matrix by applying pressure, using a perforated metal tray. The molds were removed following polymerization and either disinfected (by soaking in one of the solutions for 15 minutes) or not disinfected. The samples were thus divided into 16 groups (n=5). Surface detail reproduction and dimensional accuracy were evaluated using optical microscopy to assess the 20-μm line over its entire 25 mm length. The dimensional accuracy results (%) were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test (a=5%). The 20-μm line was completely reproduced by all elastomeric impression materials, regardless of disinfection procedure. There was no significant difference between the control group and molds disinfected with peracetic acid for the elastomeric materials Impregum Soft (polyether) and Aquasil Ultra LV (polyvinylsiloxane). The high-level disinfectant peracetic acid would be the choice material for disinfection. Sociedad Argentina de Investigación Odontológica.
On-demand drawing of high aspect-ratio, microsphere-tipped elastomeric micropillars
NASA Astrophysics Data System (ADS)
Li, Qiang; Kim, Jaeyoun
2017-08-01
High aspect-ratio elastomeric micropillars are widely used in a plethora of applications, such as functional surfaces, actuators, and sensors. Their fabrication at arbitrary positions on non-planar substrates, however, has rarely been reported. Here we demonstrate a new technique for facile fabrication of high aspect-ratio, microsphere-tipped elastomeric micropillars on structures with uncommon geometries. As a proof-of-concept exemplary application, a fiber optic contact sensor is realized by integrating a micropillar onto the end facet of an optical fiber. Overall, both the fabrication technique and the resulting outcomes of this work will add new tools to the toolbox of soft-MEMS and softrobotics.
NASA Astrophysics Data System (ADS)
Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.
2015-04-01
Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.
Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji; Rogers, John A; Huang, Yonggang
2017-01-26
Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration.
Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji
2017-01-01
Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration. PMID:29046624
Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju
2015-09-01
Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer's instructions. Dimensional changes were measured before and after different disinfection procedures. Dentsply aquasil showed smallest dimensional change (-0.0046%) and impregum penta soft highest linear dimensional changes (-0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method.
3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture.
Kolewe, Martin E; Park, Hyoungshin; Gray, Caprice; Ye, Xiaofeng; Langer, Robert; Freed, Lisa E
2013-08-27
Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yan, Zheng; Han, Mengdi; Shi, Yan; Badea, Adina; Yang, Yiyuan; Kulkarni, Ashish; Hanson, Erik; Kandel, Mikhail E.; Wen, Xiewen; Zhang, Fan; Luo, Yiyue; Lin, Qing; Zhang, Hang; Guo, Xiaogang; Huang, Yuming; Nan, Kewang; Jia, Shuai; Oraham, Aaron W.; Mevis, Molly B.; Lim, Jaeman; Guo, Xuelin; Gao, Mingye; Ryu, Woomi; Yu, Ki Jun; Nicolau, Bruno G.; Petronico, Aaron; Rubakhin, Stanislav S.; Lou, Jun; Ajayan, Pulickel M.; Thornton, Katsuyo; Popescu, Gabriel; Fang, Daining; Sweedler, Jonathan V.; Braun, Paul V.; Zhang, Haixia; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-01-01
Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl–KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives. PMID:29078394
NASA Astrophysics Data System (ADS)
Yan, Zheng; Han, Mengdi; Shi, Yan; Badea, Adina; Yang, Yiyuan; Kulkarni, Ashish; Hanson, Erik; Kandel, Mikhail E.; Wen, Xiewen; Zhang, Fan; Luo, Yiyue; Lin, Qing; Zhang, Hang; Guo, Xiaogang; Huang, Yuming; Nan, Kewang; Jia, Shuai; Oraham, Aaron W.; Mevis, Molly B.; Lim, Jaeman; Guo, Xuelin; Gao, Mingye; Ryu, Woomi; Yu, Ki Jun; Nicolau, Bruno G.; Petronico, Aaron; Rubakhin, Stanislav S.; Lou, Jun; Ajayan, Pulickel M.; Thornton, Katsuyo; Popescu, Gabriel; Fang, Daining; Sweedler, Jonathan V.; Braun, Paul V.; Zhang, Haixia; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-11-01
Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.
Manufacturing Methods and Technology (MANTECH) Program for a YAH-64 Composite Flexbeam Tail Rotor.
1982-10-01
pitch link (feathering) motion to the blade. The laminated elastomeric pitch shear support aligns the pitch case with respect to the flexbeam. The pitch...15 for more details) In addition to these doublers, a longo bundle, consisting of S-2 unidirectional glass!5216 epoxy prepreg , extends from the inside...pitch st-ttings. ,-NUB BE R Th, elastomeric snubber is a laminated metal /elastomr bearing that is stiff with respi,,c to rdiat loading, but soft in
Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju
2015-01-01
Background: Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. Materials and Methods: The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer’s instructions. Dimensional changes were measured before and after different disinfection procedures. Result: Dentsply aquasil showed smallest dimensional change (−0.0046%) and impregum penta soft highest linear dimensional changes (−0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. Conclusion: The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method. PMID:26435611
Yan, Zheng; Han, Mengdi; Shi, Yan; Badea, Adina; Yang, Yiyuan; Kulkarni, Ashish; Hanson, Erik; Kandel, Mikhail E; Wen, Xiewen; Zhang, Fan; Luo, Yiyue; Lin, Qing; Zhang, Hang; Guo, Xiaogang; Huang, Yuming; Nan, Kewang; Jia, Shuai; Oraham, Aaron W; Mevis, Molly B; Lim, Jaeman; Guo, Xuelin; Gao, Mingye; Ryu, Woomi; Yu, Ki Jun; Nicolau, Bruno G; Petronico, Aaron; Rubakhin, Stanislav S; Lou, Jun; Ajayan, Pulickel M; Thornton, Katsuyo; Popescu, Gabriel; Fang, Daining; Sweedler, Jonathan V; Braun, Paul V; Zhang, Haixia; Nuzzo, Ralph G; Huang, Yonggang; Zhang, Yihui; Rogers, John A
2017-11-07
Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe 2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives. Copyright © 2017 the Author(s). Published by PNAS.
Elastomeric Sensing of Pressure with Liquid Metal and Wireless Inductive Coupling
NASA Technical Reports Server (NTRS)
Dick, Jacob; Zou, Xiyue; Hogan, Ben; Tumalle, Jonathan; Etikyala, Sowmith; Fung, Diego; Charles, Watley; Gu, Tianye; Hull, Patrick V.; Mazzeo, Aaron D.
2017-01-01
This project describes resistance-based soft sensors filled with liquid metal, which permit measurements of large strains (0 percent to 110 percent), associated with small forces of less than 30 Newtons. This work also demonstrates a methodology for wireless transfer of these strain measurements without connected electrodes. These sensors allow intermittent detection of pressure on soft membranes with low force. Adapting these sensors for passive wireless pressure sensing will eliminate the need for embedded batteries, and will allow the sensors to transmit pressure data through non-conductive materials including glass and acrylic. The absence of batteries allows us to embed these sensors into materials for long-term use because the sensors only use passive analog circuit elements. We found the oxidation of the liquid metal (eutectic gallium indium) plays a role in the repeatability of the soft sensors. We investigated how the oxidation layer affected the behavior of the sensor by encapsulating materials (silicone, fluorosilicone, and PVC) with varied permeabilities to oxygen. We measured the effects of mechanical loading on the oxidation layer and the effects of wireless inductive coupling on the oxidation layer. We concluded our research by investigating the effects of embedding self-resonant circuits into polydimethylsiloxane (PDMS). Efforts to design engineered systems with soft materials are a growing field with progress in soft robotics, epidermal electronics, and wearable electronics. In the field of soft robotics, PDMS-based grippers are capable of picking up delicate objects because their form-fitting properties allow them to conform to the shape of objects more easily than conventional robotic grippers. Epidermal devices also use PDMS as a substrate to hold electronic components such as radios, sensors, and power supply circuits. Additionally, PDMS-based soft sensors can monitor human motion with liquid metal embedded within micro-channels. Passive wireless sensors have applications in structural health monitoring and medical health monitoring. Doctors can take wireless blood pressure measurements inside arteries to monitor the progression of heart disease. Glaucoma patients can use this technology to monitor the pressure in their eyes to track the progression of the disease.
NASA Astrophysics Data System (ADS)
Wiles, Kenton B.; Wiles, Natasha S.; Herlihy, Kevin P.; Maynor, Benjamin W.; Rolland, Jason P.; DeSimone, Joseph M.
2006-03-01
The fabrication of nanometer size structures and complex devices for microelectronics is of increasing importance so as to meet the challenges of large-scale commercial applications. Soft lithography typically employs elastomeric polydimethylsiloxane (PDMS) molds to replicate micro- and nanoscale features. However, the difficulties of PDMS for nanoscale fabrication include inherent incompatibility with organic liquids and the production of a residual scum or flash layer that link features where the nano-structures meet the substrate. An emerging technologically advanced technique known as Pattern Replication in Non-wetting Templates (PRINT) avoids both of these dilemmas by utilizing photocurable perfluorinated polyether (PFPE) rather than PDMS as the elastomeric molding material. PFPE is a liquid at room temperature that exhibits low modulus and high gas permeability when cured. The highly fluorinated PFPE material allows for resistance to swelling by organic liquids and very low surface energies, thereby preventing flash layer formation and ease of separation of PFPE molds from the substrates. These enhanced characteristics enable easy removal of the stamp from the molded material, thereby minimizing damage to the nanoscale features. Herein we describe that PRINT can be operated in two different modes depending on whether the objects to be molded are to be removed and harvested (i.e. to make shape specific organic particles) or whether scum free objects are desired which are adhered onto the substrate (i.e. for scum free pattern generation using imprint lithography). The former can be achieved using a non-reactive, low surface energy substrate (PRINT: Particle Replication in Non-wetting Templates) and the latter can be achieved using a reactive, low surface energy substrate (PRINT: Pattern Replication in Non-wetting Templates). We show that the PRINT technology can been used to fabricate nano-particle arrays covalently bound to a glass substrate with no scum layer. The nanometer size arrays were fabricated using a PFPE mold and a self-assembled monolayer (SAM) fluorinated glass substrate that was also functionalized with free-radically reactive SAM methacrylate moieties. The molded polymeric materials were covalently bound to the glass substrate through thermal curing with the methacrylate groups to permit three dimensional array fabrication. The low surface energies of the PFPE mold and fluorinated glass substrate allowed for no flash layer formation, permitting well resolved structures.
Kumar, Kiran; Shetty, Sharath; Krithika, M J; Cyriac, Bobby
2014-01-01
Background: The objective was to evaluate and compare the effect of Coca-Cola®, tea, Listerine® mouthwash on the force delivered by elastomeric chain in vitro. Materials and Methods: Four specimen groups (distilled water, Coca-Cola®, tea, Listerine® mouthwash) with a total sample size of 480 specimens. A specimen is described as a four link grey close elastomeric chain. Jigs, each with a series of pins set 25 mm apart, was used to hold stretched elastomeric chains at a constant length. These jigs allowed for complete submersion of the elastomeric chain in a water bath throughout the test period, as well as the dipping of elastomeric chains in respective control and test solutions. For 60 s, twice a day, groups were exposed to the respective solutions, the two daily exposure was separated by 9 h and force measurements were taken at six time points during the experiment, that is, 1 h, 24 h, 7 days, 14 days, 21 days, and 28 days. Force measurements were made by Instron machine by a single blinded examiner with the help of a second examiner. Results: It was found out that there was highly significant difference between groups control, Coca-Cola®, Listerine®, and tea as well as there was highly significant (p < 0.01) between time periods. Group versus time was also highly significant (p < 0.01). For all groups substantial amount of force decay occurred until 7 days. The control group reached plateau between 7 and 14 days and then suddenly decreased from 14 days to 28 days. The Coca-Cola® and the Listerine® group reached a plateau between 7 and 21 days then decrease between 21 and 28 days. The tea group showed plateau phase between 7 and 28 days. After 28 days in the control group, 25% force decay occurred while the test groups force decay of 30-50% occurred. Conclusion: Coca-Cola®, Listerine® mouthwash, and tea cause an increase in force decay of elastomeric chains over time. Tea caused highest force decay followed by Listerine® and Coca-Cola® when compared to control group. How to cite the article: Kumar K, Shetty S, Krithika MJ, Cyriac B. Effect of commonly used beverage, soft drink, and mouthwash on force delivered by elastomeric chain: A comparative in vitro study. J Int Oral Health 2014;6(3):7-10. PMID:25083025
Kumar, Kiran; Shetty, Sharath; Krithika, M J; Cyriac, Bobby
2014-06-01
The objective was to evaluate and compare the effect of Coca-Cola®, tea, Listerine® mouthwash on the force delivered by elastomeric chain in vitro. Four specimen groups (distilled water, Coca-Cola®, tea, Listerine® mouthwash) with a total sample size of 480 specimens. A specimen is described as a four link grey close elastomeric chain. Jigs, each with a series of pins set 25 mm apart, was used to hold stretched elastomeric chains at a constant length. These jigs allowed for complete submersion of the elastomeric chain in a water bath throughout the test period, as well as the dipping of elastomeric chains in respective control and test solutions. For 60 s, twice a day, groups were exposed to the respective solutions, the two daily exposure was separated by 9 h and force measurements were taken at six time points during the experiment, that is, 1 h, 24 h, 7 days, 14 days, 21 days, and 28 days. Force measurements were made by Instron machine by a single blinded examiner with the help of a second examiner. It was found out that there was highly significant difference between groups control, Coca-Cola®, Listerine®, and tea as well as there was highly significant (p < 0.01) between time periods. Group versus time was also highly significant (p < 0.01). For all groups substantial amount of force decay occurred until 7 days. The control group reached plateau between 7 and 14 days and then suddenly decreased from 14 days to 28 days. The Coca-Cola® and the Listerine® group reached a plateau between 7 and 21 days then decrease between 21 and 28 days. The tea group showed plateau phase between 7 and 28 days. After 28 days in the control group, 25% force decay occurred while the test groups force decay of 30-50% occurred. Coca-Cola®, Listerine® mouthwash, and tea cause an increase in force decay of elastomeric chains over time. Tea caused highest force decay followed by Listerine® and Coca-Cola® when compared to control group. How to cite the article: Kumar K, Shetty S, Krithika MJ, Cyriac B. Effect of commonly used beverage, soft drink, and mouthwash on force delivered by elastomeric chain: A comparative in vitro study. J Int Oral Health 2014;6(3):7-10.
On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders
NASA Astrophysics Data System (ADS)
Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng
2018-05-01
Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along with an adjustment of the pre-stretch and pressure difference.
Soft hub for bearingless rotors
NASA Technical Reports Server (NTRS)
Dixon, Peter G. C.
1991-01-01
Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.
Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL
2011-05-17
The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.
Novel dielectric elastomer structure of soft robot
NASA Astrophysics Data System (ADS)
Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Liu, Junjie; Jin, Yongbin; Li, Tiefeng
2015-04-01
Inspired from the natural invertebrates like worms and starfish, we propose a novel elastomeric smart structure. The smart structure can function as a soft robot. The soft robot is made from a flexible elastomer as the body and driven by dielectric elastomer as the muscle. Finite element simulations based on nonlinear field theory are conducted to investigate the working condition of the structure, and guide the design of the smart structure. The effects of the prestretch, structural stiffness and voltage on the performance of the smart structure are investigated. This work can guide the design of soft robot.
Soft hydrogel materials from elastomeric gluten-mimetic proteins
NASA Astrophysics Data System (ADS)
Bagheri, Mehran; Scott, Shane; Wan, Fan; Dick, Scott; Harden, James; Biomolecular Assemblies Team
2014-03-01
Elastomeric proteins are ubiquitous in both animal and plant tissues, where they are responsible for the elastic response and mechanical resilience of tissues. In addition to fundamental interest in the molecular origins of their elastic behaviour, this class of proteins has great potential for use in biomaterial applications. The structural and elastomeric properties of these proteins are thought to be controlled by a subtle balance between hydrophobic interactions and entropic effects, and in many cases their characteristic properties can be recapitulated by multi-block protein polymers formed from repeats of short, characteristic polypeptide motifs. We have developed biomimetic multi-block protein polymers based on variants of several elastomeric gluten consensus sequences. These proteins include constituents designed to maximize their solubility in aqueous solution and minimize the formation of extended secondary structure. Thus, they are examples of elastic intrinsically disordered proteins. In addition, the proteins have distributed tyrosine residues which allow for inter-molecular crosslinking to form hydrogel networks. In this talk, we present experimental and simulation studies of the molecular and materials properties of these proteins and their assemblies.
Buckling of Elastomeric Beams Enables Actuation of Soft Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dian; Mosadegh, Bobak; Ainla, Alar
2015-09-21
Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.
Fabrication Process of Silicone-based Dielectric Elastomer Actuators
Rosset, Samuel; Araromi, Oluwaseun A.; Schlatter, Samuel; Shea, Herbert R.
2016-01-01
This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283
Buckling Structured Stretchable Pseudocapacitor Yarn.
Lee, Duck Weon; Lee, Jung Han; Min, Nam Ki; Jin, Joon-Hyung
2017-09-20
Cable-type stretchable electrochemical pseudocapacitors based on multi-walled carbon nanotube (MWCNT) sheets and two different metal oxide nanopowders (NP), i.e., MnO 2 and RuO 2 are developed using a newly-devised dry painting method to mechanically fix the NP to the elastic rubber-based MWCNT electrode substrate, resulting in a porous buckling structured pseudocapacitor yarn. Highly stretchable stylene-ethylene/butylene-stylene (SEBS) is used as the supporting elastomeric core for wrapping with the MWCNT sheets and the electroactive NP. The dry painting can successfully deposit NP on the soft SEBS surface, which is normally an unfavorable substrate for coating alien materials. The resulting yarn-type pseudocapacitor, composed of eight-layered MWCNT sheets, three-layered RuO 2 , and two-layered MnO 2 , showing a diameter of approximately 400 μm with a porous buckling structure, records a specific capacitance of 25 F g -1 . After being stretched by 200% in strain with no sacrifice of the porous buckling structure, the cable-type stretchable electrochemical pseudocapacitor yarn retains its electrical capacity, and is potentially applicable to energy storage devices for wearable electronics.
Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.
2011-01-01
This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978
Drop casting of stiffness gradients for chip integration into stretchable substrates
NASA Astrophysics Data System (ADS)
Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.
2017-04-01
Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.
Relative hardness measurement of soft objects by a new fiber optic sensor
NASA Astrophysics Data System (ADS)
Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran
2010-06-01
The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.
Micromechanics and constitutive models for soft active materials with phase evolution
NASA Astrophysics Data System (ADS)
Wang, Binglian
Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.
Static characterization of a soft elastomeric capacitor for non destructive evaluation applications
NASA Astrophysics Data System (ADS)
Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna
2014-02-01
A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.
Shamirzaei Jeshvaghani, Elham; Ghasemi-Mobarakeh, Laleh; Mansurnezhad, Reza; Ajalloueian, Fatemeh; Kharaziha, Mahshid; Dinari, Mohammad; Sami Jokandan, Maryam; Chronakis, Ioannis S
2017-11-23
With regard to flexibility and strength properties requirements of soft biological tissue, elastomeric materials could be more beneficial in soft tissue engineering applications. The present work investigates the use of an elastic polymer, (polycaprolactone fumarate [PCLF]), for fabricating an electrospun scaffold. PCLF with number-average molecular weight of 13,284 g/mol was synthetized, electrospun PCLF:polycaprolactone (PCL) (70:30) nanofibrous scaffolds were fabricated and a novel strategy (in situ photo-crosslinking along with wet electrospinning) was applied for crosslinking of PCLF in the structure of PCLF:PCL nanofibers was presented. Sol fraction results, Fourier-transform infrared spectroscopy, and mechanical tests confirmed occurrence of crosslinking reaction. Strain at break and Young's modulus of crosslinked PCLF:PCL nanofibers fabricated was found to be 114.5 ± 3.9% and 0.6 ± 0.1 MPa, respectively, and dynamic mechanical analysis results revealed elasticity of nanofibers. MTS assay showed biocompatibility of PCLF:PCL (70:30) nanofibrous scaffolds. Our overall results showed that electrospun PCLF:PCL nanofibrous scaffold could be considered as a candidate for further in vitro and in vivo experiments and its application for engineering of soft tissues subjected to in vivo cyclic mechanical stresses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
Elastomer mounted rotors - An alternative for smoother running turbomachinery
NASA Technical Reports Server (NTRS)
Tecza, J. A.; Jones, S. W.; Smalley, A. J.; Cunningham, R. E.; Darlow, M. S.
1979-01-01
This paper describes the design of elastomeric bearing supports for a rotor built to simulate the power turbine of an advanced gas turbine engine which traverses two bending critical speeds. The elastomer dampers were constructed so as to minimize rotor dynamic response at the critical speeds. Results are presented of unbalance response tests performed with two different elastomer materials. These results showed that the resonances on the elastomer-mounted rotor were well damped for both elastomer materials and showed linear response to the unbalance weights used for response testing. Additional tests were performed using solid steel supports at either end (hand-mounted), which resulted in drastically increased sensitivity and nonlinear response, and with steel supports in one end of the rotor and the elastomer at the other, which yielded results which were between the soft- and hard-mounted cases. It is concluded that elastomeric supports are a viable alternative to other methods of mounting flexible rotors, that damping was well in excess of predictions and that elastomeric supports are tolerant of small rotor misalignments.
NASA Astrophysics Data System (ADS)
Singh, Gaurav; Krishnan, Girish
2017-06-01
Fiber reinforced elastomeric enclosures (FREEs) are soft and smart pneumatic actuators that deform in a predetermined fashion upon inflation. This paper analyzes the deformation behavior of FREEs by formulating a simple calculus of variations problem that involves constrained maximization of the enclosed volume. The model accurately captures the deformed shape for FREEs with any general fiber angle orientation, and its relation with actuation pressure, material properties and applied load. First, the accuracy of the model is verified with existing literature and experiments for the popular McKibben pneumatic artificial muscle actuator with two equal and opposite families of helically wrapped fibers. Then, the model is used to predict and experimentally validate the deformation behavior of novel rotating-contracting FREEs, for which no prior literature exist. The generality of the model enables conceptualization of novel FREEs whose fiber orientations vary arbitrarily along the geometry. Furthermore, the model is deemed to be useful in the design synthesis of fiber reinforced elastomeric actuators for general axisymmetric desired motion and output force requirement.
Elastomeric and soft conducting microwires for implantable neural interfaces
Kolarcik, Christi L.; Luebben, Silvia D.; Sapp, Shawn A.; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D.Y.; Chang, Emily; Nabity, James A.; Nabity, Shawn T.; Lagenaur, Carl F.; Cui, X. Tracy
2015-01-01
Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young’s modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young’s modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
NASA Astrophysics Data System (ADS)
Xia, Younan; Whitesides, George M.
1998-08-01
Soft lithography represents a non-photolithographic strategy based on selfassembly and replica molding for carrying out micro- and nanofabrication. It provides a convenient, effective, and low-cost method for the formation and manufacturing of micro- and nanostructures. In soft lithography, an elastomeric stamp with patterned relief structures on its surface is used to generate patterns and structures with feature sizes ranging from 30 nm to 100 mum. Five techniques have been demonstrated: microcontact printing (muCP), replica molding (REM), microtransfer molding (muTM), micromolding in capillaries (MIMIC), and solvent-assisted micromolding (SAMIM). In this chapter we discuss the procedures for these techniques and their applications in micro- and nanofabrication, surface chemistry, materials science, optics, MEMS, and microelectronics.
Biocide squirting from an elastomeric tri-layer film.
Sonntag, Philippe; Hoerner, Pierre; Cheymol, André; Argy, Gilles; Riess, Gérard; Reiter, Günter
2004-05-01
Protective layers typically act in a passive way by simply separating two sides. Protection is only efficient as long as the layers are intact. If a high level of protection has to be achieved by thin layers, complementary measures need to be in place to ensure safety, even after breakage of the layer-an important issue in medical applications. Here, we present a novel approach for integrating a biocide liquid into a protective film (about 300-500 microm thick), which guarantees that a sufficient amount of biocide is rapidly released when the film is punctured. The film is composed of a middle layer, containing the liquid in droplet-like compartments, sandwiched between two elastomeric boundary layers. When the film is punctured, the liquid squirts out of the middle layer. A theoretical model was used to determine the size and density of droplets that are necessary to ensure a sufficient quantity of biocide is expelled from an adequately elastic matrix to provide protection at the site of damage. We demonstrate the utility of this approach for the fabrication of surgical gloves.
Composite Materials for Maxillofacial Prostheses.
1983-02-01
the most promise for producing elastomeric-shelled microcapsules containing an inert liquid. While much of the diverse field of microencapsulation is...Processes and Applications, Chicago, 28 August 1973. 11. Gutchko, M. H., Microcapsules and Microencapsulation Techniques. Noyes Data Corporation, Park Ridge...necesaryv and identify by block number) * MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : * SOFT FILLERS; ELASTOMER COMPOSITES 2L
Soft Smart Garments for Lower Limb Joint Position Analysis.
Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia
2017-10-12
Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.
Soft Smart Garments for Lower Limb Joint Position Analysis
Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia
2017-01-01
Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors’ responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case. PMID:29023365
Grasping with a soft glove: intrinsic impedance control in pneumatic actuators
2017-01-01
The interaction of a robotic manipulator with unknown soft objects represents a significant challenge for traditional robotic platforms because of the difficulty in controlling the grasping force between a soft object and a stiff manipulator. Soft robotic actuators inspired by elephant trunks, octopus limbs and muscular hydrostats are suggestive of ways to overcome this fundamental difficulty. In particular, the large intrinsic compliance of soft manipulators such as ‘pneu-nets’—pneumatically actuated elastomeric structures—makes them ideal for applications that require interactions with an uncertain mechanical and geometrical environment. Using a simple theoretical model, we show how the geometric and material nonlinearities inherent in the passive mechanical response of such devices can be used to grasp soft objects using force control, and stiff objects using position control, without any need for active sensing or feedback control. Our study is suggestive of a general principle for designing actuators with autonomous intrinsic impedance control. PMID:28250097
Soft Robots: Manipulation, Mobility, and Fast Actuation
NASA Astrophysics Data System (ADS)
Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George
2012-02-01
Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.
Microstructural Organization of Elastomeric Polyurethanes with Siloxane-Containing Soft Segments
NASA Astrophysics Data System (ADS)
Choi, Taeyi; Weklser, Jadwiga; Padsalgikar, Ajay; Runt, James
2011-03-01
In the present study, we investigate the microstructure of two series of segmented polyurethanes (PUs) containing siloxane-based soft segments and the same hard segments, the latter synthesized from diphenylmethane diisocyanate and butanediol. The first series is synthesized using a hydroxy-terminated polydimethylsiloxane macrodiol and varying hard segment contents. The second series are derived from an oligomeric diol containing both siloxane and aliphatic carbonate species. Hard domain morphologies were characterized using tapping mode atomic force microscopy and quantitative analysis of hard/soft segment demixing was conducted using small-angle X-ray scattering. The phase transitions of all materials were investigated using DSC and dynamic mechanical analysis, and hydrogen bonding by FTIR spectroscopy.
Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials
Ba, Abdoulaye; Kovalenko, Artem; Aristégui, Christophe; Mondain-Monval, Olivier; Brunet, Thomas
2017-01-01
Soft porous silicone rubbers are demonstrated to exhibit extremely low sound speeds of tens of m/s for these dense materials, even for low porosities of the order of a few percent. Our ultrasonic experiments show a sudden drop of the longitudinal sound speed with the porosity, while the transverse sound speed remains constant. For such porous elastomeric materials, we propose simple analytical expressions for these two sound speeds, derived in the framework of Kuster and Toksöz, revealing an excellent agreement between the theoretical predictions and the experimental results for both longitudinal and shear waves. Acoustic attenuation measurements also complete the characterization of these soft porous materials. PMID:28054661
Recent Advances in Liquid Metal Manipulation toward Soft Robotics and Biotechnologies.
Yu, Yue; Miyako, Eijiro
2018-04-06
Interest has grown significantly in the field of soft robotics, which seeks to develop machinery capable of duplicating the elastic and rheological properties of typically polymeric or elastomeric biological tissues and organs. As a result of a number of unique properties, gallium-based liquid metals (LMs) are emerging as materials used in the forefront of soft robotics research. Finding methods to enable the sophisticated manipulation of LMs will be essential for further progress in the field. This review provides a critical discussion of the manipulation of LMs and on important biotechnological applications of LMs including microfluidics, healthcare devices, biomaterials, and nanomedicines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Composite Materials for Maxillofacial Prostheses.
1979-08-01
block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were
Hard-tip, soft-spring lithography.
Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A
2011-01-27
Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.
Impact-Induced Glass Transition in Elastomeric Coatings
NASA Astrophysics Data System (ADS)
Roland, C. M.
2013-03-01
When an elastomer layer is applied to the front surface of steel, the resistance to penetration by hard projectiles increases significantly. It is not obvious why a soft polymer should affect this property of metals, and most rubbers do not. However, we have found that a few are very effective; the requirement is that the polymer undergo a viscoelastic phase transition upon impact. This means that the frequency of its segmental dynamics correspond to the impact frequency. The latter is estimated as the ratio of the projectile velocity to the coating thickness, and is on the order of 105 s-1 for the experiments herein. Our data and a non-linear dynamics finite-element analysis offer support for this resonance condition as a primary mechanism underlying the penetration-resistance of elastomer-coated metal substrates. The impact-induced phase transition causes large energy absorption, decreasing the kinetic energy of the impacting projectile. However, this energy absorption only accounts for about half the enhanced stopping power of the elastomer/steel bilayer. An additional mechanism is lateral spreading of the impact force, resulting from the transient hardening of the elastomeric during its transition to the glassy state - the modulus of the rubber increases 1000-fold over a time period of microseconds. The penetration-resistance is a very nonlinear function of the coating thickness. Moreover, tests on various metals show that hardness is the principal substrate parameter controlling the contribution of the coating. This work was supported by the Office of Naval Research.
A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices
NASA Astrophysics Data System (ADS)
Alvankarian, Jafar; Yeop Majlis, Burhanuddin
2012-03-01
Rapid prototyping in the design cycle of new microfluidic devices is very important for shortening time-to-market. Researchers are facing the challenge to explore new and suitable substrates with simple and efficient microfabrication techniques. In this paper, we introduce and characterize a UV-curing elastomeric polyurethane methacrylate (PUMA) for rapid prototyping of microfluidic devices. The swelling and solubility of PUMA in different chemicals is determined. Time-dependent measurements of water contact angle show that the native PUMA is hydrophilic without surface treatment. The current monitoring method is used for measurement of the electroosmotic flow mobility in the microchannels made from PUMA. The optical, physical, thermal and mechanical properties of PUMA are evaluated. The UV-lithography and molding process is used for making micropillars and deep channel microfluidic structures integrated to the supporting base layer. Spin coating is characterized for producing different layer thicknesses of PUMA resin. A device is fabricated and tested for examining the strength of different bonding techniques such as conformal, corona treating and semi-curing of two PUMA layers in microfluidic application and the results show that the bonding strengths are comparable to that of PDMS. We also report fabrication and testing of a three-layer multi inlet/outlet microfluidic device including a very effective fluidic interconnect for application demonstration of PUMA as a promising new substrate. A simple micro-device is developed and employed for observing the pressure deflection of membrane made from PUMA as a very effective elastomeric valve in microfluidic devices.
3D printing of robotic soft actuators with programmable bioinspired architectures.
Schaffner, Manuel; Faber, Jakob A; Pianegonda, Lucas; Rühs, Patrick A; Coulter, Fergal; Studart, André R
2018-02-28
Soft actuation allows robots to interact safely with humans, other machines, and their surroundings. Full exploitation of the potential of soft actuators has, however, been hindered by the lack of simple manufacturing routes to generate multimaterial parts with intricate shapes and architectures. Here, we report a 3D printing platform for the seamless digital fabrication of pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions. The actuators comprise an elastomeric body whose surface is decorated with reinforcing stripes at a well-defined lead angle. Similar to the fibrous architectures found in muscular hydrostats, the lead angle can be altered to achieve elongation, contraction, or twisting motions. Using a quantitative model based on lamination theory, we establish design principles for the digital fabrication of silicone-based soft actuators whose functional response is programmed within the material's properties and architecture. Exploring such programmability enables 3D printing of a broad range of soft morphing structures.
Self-similar and fractal design for stretchable electronics
Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui
2017-04-04
The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.
Composite Materials for Maxillofacial Prostheses.
1982-11-01
1(AXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES *ASTRAC7 lCofIflU Ir F*vsda Side It neceOaeen anud...composite systems are elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical...sealed, capsules achieved. The diamine bath has been E] improved and an automatic system has been developed for producing the microcapsules . The one
Wang, Liang; Kim, Jeonghyun; Liu, Yuhao; Xue, Yeguang; Ning, Rui; Wang, Xiufeng; Chung, Ha Uk; Feng, Xue; Rogers, John A.; Huang, Yonggang
2017-01-01
Managing the mechanical mismatch between hard semiconductor components and soft biological tissues represents a key challenge in the development of advanced forms of wearable electronic devices. An ultra-low modulus material or a liquid that surrounds the electronics and resides in a thin elastomeric shell provides a strain-isolation effect that not only enhances the wearability but also the range of stretchability in suitably designed devices. The results presented here build on these concepts by (1) replacing traditional liquids explored in the past, which have some non-negligible vapor pressure and finite permeability through the encapsulating elastomers, with ionic liquids to eliminate any possibility for leakage or evaporation, and (2) positioning the liquid between the electronics and the skin, within an enclosed, elastomeric microfluidic space, but not in direct contact with the active elements of the system, to avoid any negative consequences on electronic performance. Combined experimental and theoretical results establish the strain-isolating effects of this system, and the considerations that dictate mechanical collapse of the fluid-filled cavity. Examples in skin-mounted wearable include wireless sensors for measuring temperature and wired systems for recording mechano-acoustic responses. PMID:28026109
Experimental study of thin film sensor networks for wind turbine blade damage detection
NASA Astrophysics Data System (ADS)
Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.
2017-02-01
Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-04-01
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.
Ma, Yinji; Pharr, Matt; Wang, Liang; Kim, Jeonghyun; Liu, Yuhao; Xue, Yeguang; Ning, Rui; Wang, Xiufeng; Chung, Ha Uk; Feng, Xue; Rogers, John A; Huang, Yonggang
2017-03-01
Managing the mechanical mismatch between hard semiconductor components and soft biological tissues represents a key challenge in the development of advanced forms of wearable electronic devices. An ultralow modulus material or a liquid that surrounds the electronics and resides in a thin elastomeric shell provides a strain-isolation effect that enhances not only the wearability but also the range of stretchability in suitably designed devices. The results presented here build on these concepts by (1) replacing traditional liquids explored in the past, which have some nonnegligible vapor pressure and finite permeability through the encapsulating elastomers, with ionic liquids to eliminate any possibility for leakage or evaporation, and (2) positioning the liquid between the electronics and the skin, within an enclosed, elastomeric microfluidic space, but not in direct contact with the active elements of the system, to avoid any negative consequences on electronic performance. Combined experimental and theoretical results establish the strain-isolating effects of this system, and the considerations that dictate mechanical collapse of the fluid-filled cavity. Examples in skin-mounted wearable include wireless sensors for measuring temperature and wired systems for recording mechano-acoustic responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid 3D Printing of Soft Electronics.
Valentine, Alexander D; Busbee, Travis A; Boley, John William; Raney, Jordan R; Chortos, Alex; Kotikian, Arda; Berrigan, John Daniel; Durstock, Michael F; Lewis, Jennifer A
2017-10-01
Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dielectric Elastomer Actuated Systems and Methods
NASA Technical Reports Server (NTRS)
Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)
2008-01-01
The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.
Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery
De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna
2015-01-01
In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%. PMID:26650236
Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery.
De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna
2015-11-14
In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%.
Injectable PolyMIPE Scaffolds for Soft Tissue Regeneration
Moglia, Robert S.; Robinson, Jennifer L.; Muschenborn, Andrea D.; Touchet, Tyler J.; Maitland, Duncan J.; Cosgriff-Hernandez, Elizabeth
2013-01-01
Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20–200 kPa) and strengths (4–60 kPa) as well as high recovery after the first conditioning cycle (97–99%). The resultant pore architecture was highly interconnected with large voids (0.5–2 mm) from carbon dioxide generation surrounded by water-templated pores (50–300 μm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair. PMID:24563552
The upcoming 3D-printing revolution in microfluidics.
Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert
2016-05-21
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.
Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo
Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal
2017-01-01
In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878
Soft Somatosensitive Actuators via Embedded 3D Printing.
Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A
2018-04-01
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An integrated design and fabrication strategy for entirely soft, autonomous robots.
Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J
2016-08-25
Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-30
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-01-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143
NASA Astrophysics Data System (ADS)
Yu, Jiao; Nie, Erwei; Zhu, Yanying; Hong, Yi
2018-03-01
Biodegradable elastomeric scaffolds for soft tissue repair represent a growing area of biomaterials research. Mechanical strength is one of the key factors to consider in the evaluation of candidate materials and the designs for tissue scaffolds. It is desirable to develop non-invasive evaluation methods of the mechanical property of scaffolds which would provide options for monitoring temporal mechanical property changes in situ. In this paper, we conduct in silico simulation and in vitro evaluation of an elastomeric scaffold using a novel ultrasonic shear wave imaging (USWI). The scaffold is fabricated from a biodegradable elastomer, poly(carbonate urethane) urea using salt leaching method. A numerical simulation is performed to test the robustness of the developed inversion algorithm for the elasticity map reconstruction which will be implemented in the phantom experiment. The generation and propagation of shear waves in a homogeneous tissue-mimicking medium with a circular scaffold inclusion is simulated and the elasticity map is well reconstructed. A PVA phantom experiment is performed to test the ability of USWI combined with the inversion algorithm to non-invasively characterize the mechanical property of a porous, biodegradable elastomeric scaffold. The elastic properties of the tested scaffold can be easily differentiated from the surrounding medium in the reconstructed image. The ability of the developed method to identify the edge of the scaffold and characterize the elasticity distribution is demonstrated. Preliminary results in this pilot study support the idea of applying the USWI based method for non-invasive elasticity characterization of tissue scaffolds.
Mechanochemically Active Soft Robots.
Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L
2015-10-14
The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.
The upcoming 3D-printing revolution in microfluidics
Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert
2016-01-01
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171
Liquid-Embedded Elastomer Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Park, Yong-Lae; Paik, Jamie; Wood, Robert
2012-02-01
Hyperelastic sensors are fabricated by embedding a silicone rubber film with microchannels of conductive liquid. In the case of soft tactile sensors, pressing the surface of the elastomer will deform the cross-section of underlying channels and change their electrical resistance. Soft pressure sensors may be employed in a variety of applications. For example, a network of pressure sensors can serve as artificial skin by yielding detailed information about contact pressures. This concept was demonstrated in a hyperelastic keypad, where perpendicular conductive channels form a quasi-planar network within an elastomeric matrix that registers the location, intensity and duration of applied pressure. In a second demonstration, soft curvature sensors were used for joint angle proprioception. Because the sensors are soft and stretchable, they conform to the host without interfering with the natural mechanics of motion. This marked the first use of liquid-embedded elastomer electronics to monitor human or robotic motion. Finally, liquid-embedded elastomers may be implemented as conductors in applications that call for flexible or stretchable circuitry, such as robotic origami.
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Johnston, I. D.; Tracey, M. C.; Tan, C. K. L.
2010-06-01
Fluid transport is accomplished in a micro throttle pump (MTP) by alternating deformation of a micro channel cast into a polydimethylsiloxane (PDMS) elastomeric substrate. The active deformation is achieved using a bimorph PZT piezoelectric disc actuator bonded to a glass diaphragm. The bimorph PZT deflects the diaphragm as well as alternately pushing and pulling the elastomer layer providing displacement amplification in the PDMS directly surrounding the micro channel. In order to improve pumping rates we have embedded a polymethylmethacrylate (PMMA) ring into the PMDS substrate which increases the magnitude of the displacement amplification achieved. FEM simulation of the elastomeric substrate deformation predicts that the inclusion of the PMMA ring should increase the channel deformation. We experimentally demonstrate that inclusion of a PMMA ring, having a diameter equal to that of the circular node of the PZT/glass/PDMS composite, increases in the throttle resistance ratio by 40% and the maximum pumping rate by 90% compared to an MTP with no ring.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
NASA Astrophysics Data System (ADS)
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-01-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-27
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Maji, Debashis; Das, Soumen
2018-03-01
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Weller, W. H.
1977-01-01
An experimental investigation was conducted of the dynamic response and inplane stability associated with a new soft-inplane helicopter rotor. The unique feature of this rotor was the use of an internal elastomeric damper to restrain the blade inplane motion about the lead-lag hinge. The properties of the elastomer were selected to provide both a nominal first inplane frequency ratio of 0.65 and sufficient damping to eliminate the need for additional external damping sources to prevent ground resonance on a typical fuselage structure. For this investigation a 1/5-scale aeroelastic model was used to represent the rotor. The four-blade model had a diameter of 3.05 m (10 ft) and a solidity of 0.103. The first out-of-plane frequency ratio was 1.06. The model was tested in hover and in forward flight up to an advance ratio of 0.45. At each forward speed the rotor lift was varied up to simulated maneuver conditions. The measured rotor loads and response were within acceptable limits, and no adverse response qualities were observed. Moderate out-of-plane hub moments were measured, even for zero lift, to indicate the beneficial control power available for this design. Blade inplane stability testing indicated that the rotor system damping remained at moderate levels throughout the operating envelope.
Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
Jarrett, C; McDaid, A J
2017-07-01
A novel, cable-driven soft joint is presented for use in robotic rehabilitation exoskeletons to provide intrinsic, comfortable human-robot interaction. The torque-displacement characteristics of the soft elastomeric core contained within the joint are modeled. This knowledge is used in conjunction with a dynamic system model to derive a sliding mode controller (SMC) to implement low-level torque control of the joint. The SMC controller is experimentally compared with a baseline feedback-linearised proportional-derivative controller across a range of conditions and shown to be robust to un-modeled disturbances. The torque controller is then tested with six healthy subjects while they perform a selection of activities of daily living, which has validated its range of performance. Finally, a case study with a participant with spastic cerebral palsy is presented to illustrate the potential of both the joint and controller to be used in a physiotherapy setting to assist clinical populations.
Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training
Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong
2017-01-01
We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders. PMID:28429757
4D Printed Actuators with Soft-Robotic Functions.
López-Valdeolivas, María; Liu, Danqing; Broer, Dick Jan; Sánchez-Somolinos, Carlos
2018-03-01
Soft matter elements undergoing programed, reversible shape change can contribute to fundamental advance in areas such as optics, medicine, microfluidics, and robotics. Crosslinked liquid crystalline polymers have demonstrated huge potential to implement soft responsive elements; however, the complexity and size of the actuators are limited by the current dominant thin-film geometry processing toolbox. Using 3D printing, stimuli-responsive liquid crystalline elastomeric structures are created here. The printing process prescribes a reversible shape-morphing behavior, offering a new paradigm for active polymer system preparation. The additive character of this technology also leads to unprecedented geometries, complex functions, and sizes beyond those of typical thin-films. The fundamental concepts and devices presented therefore overcome the current limitations of actuation energy available from thin-films, thereby narrowing the gap between materials and practical applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training
NASA Astrophysics Data System (ADS)
Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong
2017-04-01
We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.
Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.
Wang, Shuodao; Huang, Yonggang; Rogers, John A
2015-09-01
Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems.
Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics
Wang, Shuodao; Huang, Yonggang; Rogers, John A.
2016-01-01
Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems. PMID:27668126
Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.
Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin
2016-09-12
Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.
Martin, Cristina; Sofla, Aarash; Zhang, Boyang; Nunes, Sara S; Radisic, Milica
2013-03-01
A novel method for fabrication of branched, tubular, perfusable microvessels for use in vascular tissue engineering is reported. A tubular, elastomeric, biodegradable scaffold is first fabricated via a new, double fusible injection molding technique that uses a ternary alloy with a low melting temperature, Field's metal, and paraffin as sacrificial components. A cylindrical core metal of 500 μm or lower dia-meter with the target branching scaffold geometry is first constructed, then the metal structure is coated with paraffin and, finally, the metal-paraffin construct is embedded in polydimethylsiloxane (PDMS). The paraffin layer is then removed by heating and replaced by a biodegradable elastomeric pre-polymer that is subsequently UV-cured inside the PDMS. Next, the metal core is melted away and the PDMS is removed to attain the branched tubular elastomeric biodegradable scaffold. Finally, it is also demonstrated that human umbilical vein endothelial cells (HUVEC) were able to spread on the surface of the scaffold and form a confluent monolayer, confirming the potential of this new technique for making engineered blood vessels.
Soft bio-integrated systems for continuous health monitoring
NASA Astrophysics Data System (ADS)
Raj, M.; Wei, P. H.; Morey, B.; Wang, X.; Keen, B.; DePetrillo, P.; Hsu, Y. Y.; Ghaffari, R.
2014-06-01
Electronically-enabled wearable systems that monitor physiological activity and electrophysiological activity hold the key to truly personalized medical care outside of the hospital setting. However, fundamental technical challenges exist in achieving medical systems that are comfortable, unobtrusive and fully integrated without external connections to bench top instruments. In particular, there is a fundamental mismatch in mechanical coupling between existing classes of rigid electronics and soft biological substrates, like the skin. Here we describe new mechanical and electrical design strategies for wearable devices with mechanical properties that approach that of biological tissue. These systems exploit stretchable networks of conformal sensors (i.e. electrodes, temperature sensors, and accelerometers) and associated circuitry (i.e. microcontroller, memory, voltage regulators, rechargeable battery, wireless communication modules) embedded in ultrathin, elastomeric substrates. Quantitative analyses of sensor performance and mechanics under tensile and torsional stresses illustrate the ability to mechanically couple with soft tissues in a way that is mechanically invisible to the user. Representative examples of these soft biointegrated systems can be applied for continuous sensing of muscle and movement activity in the home and ambulatory settings.
The Subscale Orbital Fluid Transfer Experiment
NASA Technical Reports Server (NTRS)
Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry
1989-01-01
The Center for Advanced Spacecraft Propulsion (CASP) is a subcontractor to Boeing Aerospace Corporation to provide support for the concept definition and design of a subscale orbital fluid transfer experiment (SOFTE). SOFTE is an experiment that will look at the fluid mechanics of the process of transfer of a saturated fluid between two tanks. The experiment will be placed in two get away special (GAS) can containers; the tanks will be in one container and the power and electronics will be in a second container. Since GAS cans are being used, the experiment will be autonomous. The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, methods for accurately metering the amount of fluid transferred between the two tanks, possible test fluids, and materials for the elastomeric diaphragm.
Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus
2014-11-01
In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate
NASA Astrophysics Data System (ADS)
Chen, Youlong; Liu, Yilun; Yan, Yuan; Zhu, Yong; Chen, Xi
2016-10-01
When a stiff nanowire is deposited on a compliant soft substrate, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a polydimethylsiloxane (PDMS) substrate is studied. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed. Due to the helical buckling, the bending strain in SiNW is significantly reduced and the maximum local strain is almost uniformly distributed along SiNW. Based on the theoretical model, the energy landscape for different buckling modes of SiNW on PDMS substrate is given, which shows that both the in-plane and out-of-plane buckling modes have the local minimum potential energy, whereas the helical buckling model has the global minimum potential energy. Furthermore, the helical buckling spacing and amplitudes are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. As the effective compressive strain in elastomeric substrate increases, the buckling profile evolves from a vertical ellipse to a lateral ellipse, and then approaches to a circle when the effective compressive strain is larger than 30%. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nano-structures.
Microfluidic Chips Controlled with Elastomeric Microvalve Arrays
Li, Nianzhen; Sip, Chris; Folch, Albert
2007-01-01
Miniaturized microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed microfluidic chips featuring elastomeric polydimethylsiloxane (PDMS) microvalve arrays that: 1) need no extra energy source to close the fluidic path, hence the loaded device is highly portable; and 2) allow for microfabricating deep (up to 1 mm) channels with vertical sidewalls and resulting in very precise features. The PDMS microvalves-based devices consist of three layers: a fluidic layer containing fluidic paths and microchambers of various sizes, a control layer containing the microchannels necessary to actuate the fluidic path with microvalves, and a middle thin PDMS membrane that is bound to the control layer. Fluidic layer and control layers are made by replica molding of PDMS from SU-8 photoresist masters, and the thin PDMS membrane is made by spinning PDMS at specified heights. The control layer is bonded to the thin PDMS membrane after oxygen activation of both, and then assembled with the fluidic layer. The microvalves are closed at rest and can be opened by applying negative pressure (e.g., house vacuum). Microvalve closure and opening are automated via solenoid valves controlled by computer software. Here, we demonstrate two microvalve-based microfluidic chips for two different applications. The first chip allows for storing and mixing precise sub-nanoliter volumes of aqueous solutions at various mixing ratios. The second chip allows for computer-controlled perfusion of microfluidic cell cultures. The devices are easy to fabricate and simple to control. Due to the biocompatibility of PDMS, these microchips could have broad applications in miniaturized diagnostic assays as well as basic cell biology studies. PMID:18989408
Buckligami: Actuation of soft structures through mechanical instabilities
NASA Astrophysics Data System (ADS)
Lazarus, Arnaud; Reis, Pedro
2013-03-01
We present a novel mechanism for actuating soft structures, that is triggered through buckling. Our elastomeric samples are rapid-prototyped using digital fabrication and comprise of a cylindrical shell patterned with an array of voids, each of which is covered by a thin membrane. Decreasing the internal pressure of the structure induces local buckling of the ligaments of the pattern, resulting in controllable folding of the global structure. Using rigid inclusions to plug the voids in specific geometric arrangements allows us to excite a variety of different fundamental motions of the cylindrical shell, including flexure and twist. We refer to this new mechanism of buckling-induced folding as ``buckligami.'' Given that geometry, elasticity and buckling are the underlying ingredients of this local folding mechanism, the global actuation is scalable, reversible and repeatable. Characterization and rationalization of our experiments provide crucial fundamental understanding to aid the design of new scale-independent actuators, with potential implications in the field of soft robotics.
NASA Astrophysics Data System (ADS)
Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie
2018-03-01
Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.
Nanoscale Structure of Urethane/Urea Elastomeric Films
NASA Astrophysics Data System (ADS)
Reis, Dennys; Trindade, Ana C.; Godinho, Maria Helena; Silva, Laura C.; do Carmo Gonçalves, Maria; Neto, Antônio M. Figueiredo
2017-02-01
The nanostructure of urethane/urea elastomeric membranes was investigated by small-angle X-ray scattering (SAXS) in order to establish relationships between their structure and mechanical properties. The networks were made up of polypropylene oxide (PPO) and polybutadiene (PB) segments. The structural differences were investigated in two types of membranes with the same composition but with different thermal treatment after casting. Type I was cured at 70-80 °C and type II at 20 °C. Both membranes showed similar phase separation by TEM, with nanodomains rich in PB or PPO and 25 nm dimensions. The main difference between type I and type II membranes was found by SAXS. The type I membrane spectra showed, besides a broad band at a 27-nm q value (modulus of the scattering vector), an extra band at 6 nm, which was not observed in the type II membrane. The SAXS spectra were interpreted in terms of PPO, PB soft segments, and urethane/urea links, as well as hard moiety segregation in the reaction medium. This additional segregation ( q = 7 nm), although subtle, results in diverse mechanical behavior of in both membranes.
The thermal and mechanical properties of a low density elastomeric ablation material
NASA Technical Reports Server (NTRS)
Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.
1973-01-01
Thermal and mechanical properties data were obtained for a low density elastomeric resin based ablation material with phenolic-glass honeycomb reinforcement. Data were obtained for the material in the charred and uncharred state. Ablation material specimens were charred in a laboratory furnace at temperatures in the range from 600 K to 1700 K to obtain char specimens representative of the ablation char layer formed during reentry. These specimens were then used to obtain effective thermal conductivity, heat capacity, porosity, and permeability data at the char formation temperature. This provided a boxing of the data which enables the prediction of the transient response of the material during ablation. Limited comparisons were made between the furnace charred specimens and specimens which had been exposed to simulated reentry conditions.
Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang
2017-01-01
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338
3D printing antagonistic systems of artificial muscle using projection stereolithography.
Peele, Bryan N; Wallin, Thomas J; Zhao, Huichan; Shepherd, Robert F
2015-09-09
The detailed mechanical design of a digital mask projection stereolithgraphy system is described for the 3D printing of soft actuators. A commercially available, photopolymerizable elastomeric material is identified and characterized in its liquid and solid form using rheological and tensile testing. Its capabilities for use in directly printing high degree of freedom (DOF), soft actuators is assessed. An outcome is the ∼40% strain to failure of the printed elastomer structures. Using the resulting material properties, numerical simulations of pleated actuator architectures are analyzed to reduce stress concentration and increase actuation amplitudes. Antagonistic pairs of pleated actuators are then fabricated and tested for four-DOF, tentacle-like motion. These antagonistic pairs are shown to sweep through their full range of motion (∼180°) with a period of less than 70 ms.
Artificial heart for humanoid robot
NASA Astrophysics Data System (ADS)
Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas
2014-03-01
A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.
Improved power transfer to wearable systems through stretchable magnetic composites
NASA Astrophysics Data System (ADS)
Lazarus, N.; Bedair, S. S.
2016-05-01
The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.
1980-02-01
propylene rubber) EPDM Brake valve parts and seals 80 EPDM (SAE, RM 69) Referee test slabs 70L VITON 0-rings 70 TN4 -i______ - -.- . .J....... TABLE 2...separated. The volume and hardness of two rubber test specimens was determined. One specimen was placed in the lower fluid layer (conventional fluid...and one specimen was suspended horizontally in the top fluid layer (silicone). The jar was stored on the laboratory shelf at ambient temperature. The
Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H
2018-02-28
This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.
Model calibration for a soft elastomeric capacitor sensor considering slippage under fatigue cracks
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Bennett, Caroline; Collins, William; Laflamme, Simon
2016-04-01
A newly-developed soft elastomeric capacitor (SEC) strain sensor has shown promise in fatigue crack monitoring. The SECs exhibit high levels of ductility and hence do not break under excessive strain when the substrate cracks due to slippage or de-bonding between the sensor and epoxy. The actual strain experienced by a SEC depends on the amount of slippage, which is difficult to simulate numerically, making it challenging to accurately predict the response of a SEC near a crack. In this paper, a two-step approach is proposed to simulate the capacitance response of a SEC. First, a finite element (FE) model of a steel compact tension specimen was analyzed under cyclic loading while the cracking process was simulated based on an element removal technique. Second, a rectangular boundary was defined near the crack region. The SEC outside the boundary was assumed to have perfect bond with the specimen, while that inside the boundary was assumed to deform freely due to slippage. A second FE model was then established to simulate the response of the SEC within the boundary subject to displacements at the boundary from the first FE model. The total simulated capacitance was computed from the model results by combining the computed capacitance inside and outside the boundary. The performance of the simulation incorporating slippage was evaluated by comparing the model results with the experimental data from the test performed on a compact tension specimen. The FE model considering slippage showed results that matched the experimental findings more closely than the FE model that did not consider slippage.
Protein mechanics: from single molecules to functional biomaterials.
Li, Hongbin; Cao, Yi
2010-10-19
Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of multidomain elastomeric proteins, and the design of novel elastomeric proteins that exhibit stimuli-responsive mechanical properties. Moving forward, we are now exploring the use of these artificial elastomeric proteins as building blocks of protein-based biomaterials. Ultimately, we would like to rationally tailor mechanical properties of elastomeric protein-based materials by programming the molecular sequence, and thus nanomechanical properties, of elastomeric proteins at the single-molecule level. This step would help bridge the gap between single protein mechanics and material biomechanics, revealing how the mechanical properties of individual elastomeric proteins are translated into the properties of macroscopic materials.
Szajerski, P; Zaborski, M; Bem, H; Baryn, W; Kusiak, E
Two commercially available (EP, Z) and eight new elastomeric composites (M1-M4, G1-G4, of thickness ≈1 mm) containing mixtures of differing proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesised and examined as protective shields. The intensity of the X-ray fluorescence radiation generated in the typical elastomeric shields for CT, containing Bi and other heavy metal additives influence on the practical shielding properties. A method for assessing the radiation shielding properties of elastomeric composites used in CT examination procedures via X-ray spectrometry has been proposed. To measure the radiation reduction ability of the protective shields, the dose reduction factor (DRF) has been determined. The lead equivalents for the examined composites were within the ranges of 0.046-0.128 and 0.048-0.130 mm for 122.1 and 136.5 keV photons, respectively. The proposed method, unlike to the common approach, includes a dose contribution from the induced X-ray fluorescence radiation of the heavy metal elements in the protective shields. The results clearly indicate that among the examined compositions, the highest values DRF have been achieved with preparations containing Bi+W, Bi+W+Gd and Bi+W+Sb mixtures with gradually decreasing content of heavy metal additives in the following order: Bi, W, Gd and Sb. The respective values of DRF obtained for the investigated composites were 21, 28 and 27 % dose reduction for a 1 mm thick shield and 39 and ~50 % for a 2 mm thick layer (M1-M4).
Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.
Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A
2018-03-01
The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter deployment repeatability. Also, an interesting creep effect was discovered, that a hinges deployment error would decrease with time.
Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand
NASA Astrophysics Data System (ADS)
Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel
2018-03-01
We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.
Applications of two- and three-dimensional microstructures formed by soft lithographic techniques
NASA Astrophysics Data System (ADS)
Jackman, Rebecca Jane
This thesis describes the development of several soft lithographic techniques. Each of these techniques has applications in two- and three-dimensional microfabrication or in the design of microreactor systems. All soft lithographic techniques make use of an elastomeric element that is formed by casting and curing a prepolymer against a planar substrate having three-dimensional (3D) relief. Chapters 1--3 (and Appendices I--VII) describe the use of a soft lithographic technique, microcontact printing (muCP), to produce patterns with micron-scale resolution on both planar and non-planar substrates. Electrodeposition transforms patterns produced by muCP into functional, 3D structures. It is an additive method that: (i) strengthens the metallic patterns; (ii) increases the conductivity of the structures; (iii) enables high-strain deformations to be performed on the structures; and (iv) welds non-connected structures. Applications for cylindrical microstructures, formed by the combination of muCP and electroplating, are presented. Some important classes of materials---biological macromolecules, gels, sol-gels, some polymers, low molecular weight organic and organometallic species---are often incompatible with conventional patterning techniques. Chapters 4 and 5 describe the use of elastomeric membranes as dry resists or as masks in dry lift-off to produce simple features as small as 5 mum from these and other materials on both planar and non-planar surfaces. These procedures are "dry" because the membranes conformed and sealed reversibly to surfaces without the use of solvents. This technique, for example, produced a simple electroluminescent device. By using two membranes simultaneously, multicolored, photoluminescent patterns of organic materials were created. Membranes were also used in sequential, dry-lift off steps to produce patterns with greater complexity. Chapter 6 (and Appendix XII) demonstrates that the ability to mold elastomers enables the fabrication of large (≤45 cm2) arrays of microwells (volumes ≥3 fL/well; densities ≤107 wells/cm2 ). These microwells can function as vessels for performing chemical reactions---"microreactors". Discontinuous dewetting is a technique that takes advantage of the interfacial properties of the elastomer and allows wells to be filled rapidly (typically ˜104 wells/second) and uniformly with a wide range of liquids. Several rudimentary strategies for addressing microwells are investigated including electroosmotic pumping and diffusion of gases.
He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; McKay, Roy; Bergman, Michael S; Zhuang, Ziqing
2014-03-01
The objective of this study was to investigate the effects of breathing frequency and flow rate on the total inward leakage (TIL) of an elastomeric half-mask donned on an advanced manikin headform and challenged with combustion aerosols. An elastomeric half-mask respirator equipped with P100 filters was donned on an advanced manikin headform covered with life-like soft skin and challenged with aerosols originated by burning three materials: wood, paper, and plastic (polyethylene). TIL was determined as the ratio of aerosol concentrations inside (C in) and outside (C out) of the respirator (C in/C out) measured with a nanoparticle spectrometer operating in the particle size range of 20-200nm. The testing was performed under three cyclic breathing flows [mean inspiratory flow (MIF) of 30, 55, and 85 l/min] and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). A completely randomized factorial study design was chosen with four replicates for each combination of breathing flow rate and frequency. Particle size, MIF, and combustion material had significant (P < 0.001) effects on TIL regardless of breathing frequency. Increasing breathing flow decreased TIL. Testing with plastic aerosol produced higher mean TIL values than wood and paper aerosols. The effect of the breathing frequency was complex. When analyzed using all combustion aerosols and MIFs (pooled data), breathing frequency did not significantly (P = 0.08) affect TIL. However, once the data were stratified according to combustion aerosol and MIF, the effect of breathing frequency became significant (P < 0.05) for all MIFs challenged with wood and paper combustion aerosols, and for MIF = 30 l/min only when challenged with plastic combustion aerosol. The effect of breathing frequency on TIL is less significant than the effects of combustion aerosol and breathing flow rate for the tested elastomeric half-mask respirator. The greatest TIL occurred when challenged with plastic aerosol at 30 l/min and at a breathing frequency of 30 breaths/min.
Mehdi, Ghalem; Belarbi, Abderrahmane; Mansouri, Bensmaine; Azari, Zitouni
2015-01-01
This paper focused on optimal stress distribution in the mandibular bone surrounding a dental implant and is devoted to the development of a modified Osteoplant® implant type in order to minimize stress concentration in the bone-implant interface. This study investigated 0.4 mm thick layers of two elastomeric stress barriers incorporated into the dental implant using 3-D finite element analysis. Overall, this proposed implant provoked lower load transfer in bone-implant interface due to the effect of the elastomers as stress absorbers. The stress level in the bone was reduced between 28% and 42% for three load cases: 75 N, 60 N and 27 N in corono-apical, linguo-buccal and disto-mesial direction, respectively. The proposed model provided an acceptable solution for load transfer reduction to the mandible. This investigation also permitted to choose how to incorporate two elastomers into the Osteoplant® implant system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... Elastomeric Gel and Components Thereof; Notice of Investigation AGENCY: U.S. International Trade Commission... importation, and the sale within the United States after importation of certain devices having elastomeric gel... after importation of certain devices having elastomeric gel and components thereof that infringe one or...
Mohammadi, Amir; Mahmoodi, Farhang
2015-01-01
Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state.
Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development
NASA Astrophysics Data System (ADS)
Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin
2017-09-01
Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.
3D-PRINTING OF TRANSPARENT BIO-MICROFLUIDIC DEVICES IN PEG-DA
Urrios, Arturo; Parra-Cabrera, Cesar; Bhattacharjee, Nirveek; Gonzalez-Suarez, Alan M.; Rigat-Brugarolas, Luis G.; Nallapatti, Umashree; Samitier, Josep; DeForest, Cole A.; Posas, Francesc; Garcia-Cordero, José L.; Folch, Albert
2016-01-01
The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices. PMID:27217203
Monte Carlo study of magnetization reversal in the model of a hard/soft magnetic bilayer
NASA Astrophysics Data System (ADS)
Taaev, T. A.; Khizriev, K. Sh.; Murtazaev, A. K.
2017-06-01
Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.
Elastic cavitation and fracture via injection.
Hutchens, Shelby B; Fakhouri, Sami; Crosby, Alfred J
2016-03-07
The cavitation rheology technique extracts soft materials mechanical properties through pressure-monitored fluid injection. Properties are calculated from the system's response at a critical pressure that is governed by either elasticity or fracture (or both); however previous elementary analysis has not been capable of accurately determining which mechanism is dominant. We combine analyses of both mechanisms in order to determine how the full system thermodynamics, including far-field compliance, dictate whether a bubble in an elastomeric solid will grow through either reversible or irreversible deformations. Applying these analyses to experimental data, we demonstrate the sensitivity of cavitation rheology to microstructural variation via a co-dependence between modulus and fracture energy.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.
Development of Magnetorheological Fluid Elastomeric Dampers for Helicopter Stability Augmentation
2005-01-01
ABSTRACT Title of Dissertation: DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID ELASTOMERIC DAMPERS FOR HELICOPTER STABILITY AUGMENTATION Wei Hu, Doctor of...motion increases. Magnetorheological (MR) fluids based dampers have controllable damping with little or no stiffness. In order to combine the...advantages of both elastomeric materials and MR flu- ids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are developed in this thesis. In
Duval, Jérôme F L; Merlin, Jenny; Narayana, Puranam A L
2011-01-21
We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may dramatically change depending on the interplay between characteristic Debye length, thickness of ion-permeable layers and their respective protolytic features (e.g. location, magnitude and sign of charge density). This formalism extends a recent model by Ohshima which is strictly limited to interaction between soft mono-shell particles within Deryagin and Debye-Hückel approximations under conditions where ionizable sites are completely dissociated.
Experimental Polyvinyl Chloride (PVC) Roofing: Field Test Results.
1987-02-01
construction. These were the single-ply membranes of the ethylene-propylene-diene monomer ( EPDM ) and polyvinyl chloride (PVC) types, and the sprayed-in-place...polyurethane foam (PUF) with an elastomeric coating. EPDM and PUF roofs were constructed in 19802 and the PVC roofs were completed during summer 1983...faced isocyanu- rate foam board in two layers . Roofing systems were installed loose-laid and ballasted. Specific membrane materials were Plymouth
Soft Multifunctional Composites and Emulsions with Liquid Metals.
Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel
2017-07-01
Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and analysis of coiled fiber reinforced soft pneumatic actuator.
Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish
2018-04-18
Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.
Chen, Qi-Zhi; Liang, Shu-Ling; Wang, Jiang; Simon, George P
2011-11-01
Poly (glycerol sebacate) (PGS) is a promising elastomer for use in soft tissue engineering. However, it is difficult to achieve with PGS a satisfactory balance of mechanical compliance and degradation rate that meet the requirements of soft tissue engineering. In this work, we have synthesised a new PGS nanocomposite system filled with halloysite nanotubes, and mechanical properties, as well as related chemical characters, of the nanocomposites were investigated. It was found that the addition of nanotubular halloysite did not compromise the extensibility of material, compared with the pure PGS counterpart; instead the elongation at rupture was increased from 110 (in the pure PGS) to 225% (in the 20 wt% composite). Second, Young's modulus and resilience of 3-5 wt% composites were ∼0.8 MPa and >94% respectively, remaining close to the level of pure PGS which is desired for applications in soft tissue engineering. Third, an important feature of the 1-5 wt% composites was their stable mechanical properties over an extended period, which could allow the provision of reliable mechanical support to damaged tissues during the lag phase of the healing process. Finally, the in vitro study indicated that the addition of halloysite slowed down the degradation rate of the composites. In conclusion, the good compliance, enhanced stretchability, stable mechanical behavior over an extended period, and reduced degradation rates make the 3-5 wt% composites promising candidates for application in soft tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.
3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order.
Kotikian, Arda; Truby, Ryan L; Boley, John William; White, Timothy J; Lewis, Jennifer A
2018-03-01
Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent-free, main-chain LCE ink is created via aza-Michael addition with the appropriate viscoelastic properties for 3D printing. Next, high operating temperature direct ink writing of LCE inks is used to align their mesogen domains along the direction of the print path. To demonstrate the power of this additive manufacturing approach, shape-morphing LCEA architectures are fabricated, which undergo reversible planar-to-3D and 3D-to-3D' transformations on demand, that can lift significantly more weight than other LCEAs reported to date. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won
2018-06-14
We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.
Investigation of elastomeric bearing pad failures in Louisiana bridges.
DOT National Transportation Integrated Search
1999-09-01
Elastomeric bearing pads provide a medium to transfer girder loads to the supporting substructure. Low cost and low maintenance, in comparison with mechanical-type bearings, make elastomeric bearing pads attractive to use. However, some problems have...
Sharma, Ravish; Sharma, Kavita; Sawhney, Rajesh
2018-03-01
Besides, other factors, the choice of materials used as orthodontic ligatures could be one of the many tools to counter the effects of microbial adhesion, that culminates into dental ailments. Therefore, we assessed bacterial adhesion on elastomeric ligatures with special reference to coloured elastomeric rings during orthodontic treatment. A split mouth study, involving 240 samples of different elastomeric ligatures from forty orthodontic patients possessing good oral hygiene was carried out. The archwire was ligated to the brackets on both arches with elastomeric rings (superslick, clear transparent , blue and pink) at predetermined quadrants. After six weeks, ligatures from second premolars were removed and processed for bacterial enumeration using standard techniques. Bacterial counts were also determined for stimulated saliva samples taken at 0 and 6 weeks. A statistically significant difference in bacterial counts was obtained amongst different elastomeric modules used. Maximum bacterial counts were found on conventional pigmented elastomeric modules, followed by Superslick module and clear module. More number of bacteria associated with the conventional pink as compared to the conventional blue pigmented modules, however it was not statistically significant. The three bacterial genera Streptococcus Staphylococcus and Aerobic Lactobacilli adhered to elastomeric modules in following predominant pattern i.e. Conventional pink>Conventional Blue>Superslick>Clear. The studies evidenced colour and material dependent bacterial colonization on orthodontic modules and could be an indicator of bacterial biofilm forming potential based on surface chemistries and a clinically efficacious tool to redesign conventional and modified elastomeric rings as orthodontic ligation accessories. Key words: Bacterial colonization, biofilm, coloured elastomers, orthodontic ligatures.
An Experimental Study of Elastomeric Bridge Bearings with Design Recommendations
DOT National Transportation Integrated Search
1995-10-01
Recent AASHTO specifications have placed a number of restrictions on the use of elastomeric bridge bearings. Elastomeric bearings with tapers built in to accommodate span end elevation differences were disallowed by the most current specifications ev...
Thermomechanical behavior of shape memory elastomeric composites
NASA Astrophysics Data System (ADS)
Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2012-01-01
Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.
Kinetic analysis of elastomeric lag damper for helicopter rotors
NASA Astrophysics Data System (ADS)
Liu, Yafang; Wang, Jidong; Tong, Yan
2018-02-01
The elastomeric lag dampers suppress the ground resonance and air resonance that play a significant role in the stability of the helicopter. In this paper, elastomeric lag damper which is made from silicone rubber is built. And a series of experiments are conducted on this elastomeric lag damper. The stress-strain curves of elastomeric lag dampers employed shear forces at different frequency are obtained. And a finite element model is established based on Burgers model. The result of simulation and tests shows that the simple, linear model will yield good predictions of damper energy dissipation and it is adequate for predicting the stress-strain hysteresis loop within the operating frequency and a small-amplitude oscillation.
Polysiloxane-Based Organoclay Nanocomposites as Flame Retardants
2013-01-01
g-K; Total HR¼ 12.4 J=g-K) and Poly(p-phenyleneterephthalamide) ( KEVLAR ; HRC¼ 302 J=g-K; Total HR¼ 14.8 J=g-K)[27]. Cloisite 30b has previously been...magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater. 1998, 10 (7), 1820–1826. 14. Pashaei, S.; Siddaramaiah; Syed, A.A. Thermal...Babaluo, A.A. Investigation on the mechanical and thermal properties of intercalated epoxy =layered silicate nano- composites. Inter. J. Polym
Active viscoelastic matter: from bacterial drag reduction to turbulent solids.
Hemingway, E J; Maitra, A; Banerjee, S; Marchetti, M C; Ramaswamy, S; Fielding, S M; Cates, M E
2015-03-06
A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a "drag-reduction" effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.
Active Viscoelastic Matter: From Bacterial Drag Reduction to Turbulent Solids
NASA Astrophysics Data System (ADS)
Hemingway, E. J.; Maitra, A.; Banerjee, S.; Marchetti, M. C.; Ramaswamy, S.; Fielding, S. M.; Cates, M. E.
2015-03-01
A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a "drag-reduction" effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.
A nonlinear theory for fibre-reinforced magneto-elastic rods
NASA Astrophysics Data System (ADS)
Ciambella, Jacopo; Favata, Antonino; Tomassetti, Giuseppe
2018-01-01
We derive a model for the finite motion of a fibre-reinforced magneto-elastic rod. The reinforcing particles are assumed weakly and uniformly magnetized, rigid and firmly embedded into the elastomeric matrix. We deduce closed-form expressions of the quasi-static motion of the rod in terms of the external magnetic field and of the body forces. The dependences of the motion on the shape of the inclusions, their orientation, their anisotropic magnetic properties and the Young modulus of the matrix are analysed and discussed. Two case studies are presented, in which the rod is used as an actuator suspended in a cantilever configuration. This work can foster new applications in the field of soft-actuators.
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...
Analysis of the Influence of Food Colorings in Esthetic Orthodontic Elastomeric Ligatures.
Dias da Silva, Vanessa; de Lima, Eduardo Martinelli S; Dias, Caroline; Osório, Leandro Berni
2016-01-01
The purpose of this study was to evaluate in vitro the color changes of esthetic orthodontic elastomeric ligatures of different shades when exposed to four food colorings commonly found in the diet of patients. The sample consisted of esthetic orthodontic elastomeric ligatures in the colors pearl, pearl blue, pearl white and colorless, which were immersed for 72 hours in five different solutions: distilled water (control group), coffee, tea, Coca-Cola ® and wine. The color changes of the esthetic orthodontic elastomeric ligatures were measured with the aid of a spectrophotometer, at T1 - as provided by the manufacturer; and T2 - after colorings process. The results indicated that the esthetic orthodontic elastomeric ligatures of all initial hues are susceptible to pigmentation. Among the evaluated colors, all changed the finished look and the color of the samples tested. In ascending order, the color of the samples was as follows: distilled water, Coca-Cola ® , black tea, wine and coffee. The substances that have a greater potential for pigmentation in esthetic orthodontic elastomeric ligatures were black tea, wine and coffee, respectively. All shades of esthetic orthodontic elastomeric ligatures are susceptible to color change.
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...
Anti-diffusion metal coated O-rings
Biallas, George Herman; Boyce, James Reid
2016-03-22
A method for inhibiting diffusion of gases and/or transmission of photons through elastomeric seals and a diffusion inhibiting elastomeric seal wherein at least a portion of the surface of a diffusion inhibiting elastomeric seal is coated with a compatibly-deformable, malleable metal coating.
Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers
Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai
2016-01-01
Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428
Pithon, Matheus Melo; dos Santos, Rogerio Lacerda; Judice, Renata Lima Pasini; de Assuncao, Paulo Sergio; Restle, Luciana
2013-11-01
Sterilisation using peracetic acid (PAA) has been advocated for orthodontic elastic bands. However, cane-loaded elastomeric ligatures can also become contaminated during processing, packaging, and manipulation before placement in the oral cavity and are therefore susceptible, and possible causes, of cross-contamination. To test the hypothesis that 0.25% peracetic acid (PAA), following the sterilisation of elastomers, influences the cytotoxicity of elastomeric ligatures on L929 cell lines. Four hundred and eighty silver elastomeric ligatures were divided into 4 groups of 120 ligatures to produce, Group TP (latex natural, bulk pack, TP Orthodontics), Group M1 (Polyurethane, bulk pack, Morelli), Group M2 (Polyurethane, cane-loaded, Morelli) and Group U (Polyurethane, cane-loaded, Uniden). Of the 120 ligatures in each group, 100 were sterilised in 0.25% PAA at time intervals (N = 20) of 1 hour, 2 hours, 3 hours, 4 hours and 5 hours. The 20 remaining elastomeric ligatures in each group were not sterilised and served as controls. Cytotoxicity was assessed using L929 cell lines and a dye-uptake method. Analysis of variance (ANOVA), followed by the Tukey post hoc test (p < 0.05) determined statistical relevance. There was a significant difference between TP, Morelli and Uniden elastomerics (p < 0.05), but no difference between the two types of Morelli elastomerics at the 1 hour time interval. In addition, there was a significant difference between Group CC and the other groups assessed, except between Groups CC and TP at the 1 hour time interval. The non-sterilised elastomeric ligatures showed similar cell viability to that observed after 1 hour of standard sterilisation. PAA did not significantly influence the cytotoxicity of elastomeric ligatures after a sterilisation time of 1 hour and is therefore recommended for clinical use.
NASA Astrophysics Data System (ADS)
Bit Lee, Han; Kim, Young Won; Yoon, Jonghun; Lee, Nak Kyu; Park, Suk-Hee
2017-04-01
We developed a skin-conformal flexible sensor in which three-dimensional (3D) free-form elastomeric sheets were harmoniously integrated with a piezoelectric nanofiber mat. The elastomeric sheets were produced by polydimethylsiloxane (PDMS) molding via using a 3D printed mold assembly, which was adaptively designed from 3D scanned skin surface geometry. The mold assembly, fabricated using a multi-material 3D printer, was composed of a pair of upper/lower mold parts and an interconnecting hinge, with material properties are characterized by different flexibilities. As a result of appropriate deformabilites of the upper mold part and hinge, the skin-conformal PDMS structures were successfully sandwich molded and demolded with good repeatability. An electrospun poly(vinylidene fluoride trifluoroethylene) nanofiber mat was prepared as the piezoelectric active layer and integrated with the 3D elastomeric parts. We confirmed that the highly responsive sensing performances of the 3D integrated sensor were identical to those of a flat sensor in terms of sensitivity and the linearity of the input-output relationship. The close 3D conformal skin contact of the flexible sensor enabled discernable perception of various scales of physical stimuli, such as tactile force and even minute skin deformation caused by the tester’s pulse. Collectively from the 3D scanning design to the practical application, our achievements can potentially meet the needs of tailored human interfaces in the field of wearable devices and human-like robots.
Metal-polysiloxane shields for radiation therapy of maxillo-facial tumors.
Farahani, M; Eichmiller, F C; McLaughlin, W L
1991-01-01
In the treatment of some head and neck lesions with high-intensity radiation (teletherapy), an essential procedure is the application of an individually customized shielding appliance, which is designed, modeled, and formed into a working extra- or intraoral stent for the purpose of sparing healthy tissues. The present state of the art is slow and technique intensive, which can add to patient discomfort and inconvenience during molding and fabrication. A new formulation is described, which offers speed and ease of forming a moldable composite stent especially for intraoral use. Interleaved stacks of calibrated thin radiochromic film strips and soft-tissue-simulating plastic (polystyrene) layers gave a means of mapping one- or two-dimensional profiles of dose distributions adjacent to the high-density shielding materials using a spectrophotometer equipped with a gel scanner or a scanning laser-beam microdensitometer. Tests using collimated gamma-ray beams from a 60Co teletherapy unit were made in order to measure the dose distribution near interfaces of tissue-simulating polymer and the composite stent material with and without mixtures of metals (Ag-Cu and Sn-Sb). These results show that quickly formed composites made of a flexible resin with high concentrations of powdered spherical metal alloys provide effective custom-designed shielding, and, with a thin overlayer of the resin without metal, a diminished back-scattered radiation dose to normal tissues. An example of a successful formulation is a mixture of 90% by weight Ag-Cu alloy powder in a vinyl polysiloxane resin. This material is a moldable putty which, upon polymerization, forms a rigid elastomeric material, providing a half-value layer of approximately 2.5 to 2.8 cm for a gamma-ray beam from a 60Co source.
Alici, Gursel; Canty, Taylor; Mutlu, Rahim; Hu, Weiping; Sencadas, Vitor
2018-02-01
In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262 kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48 kPa-both experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.
The Mechanical Properties of Hydrated Intermediate Filaments: Insights from Hagfish Slime Threads
Fudge, Douglas S.; Gardner, Kenn H.; Forsyth, V. Trevor; Riekel, Christian; Gosline, John M.
2003-01-01
Intermediate filaments (IFs) impart mechanical integrity to cells, yet IF mechanics are poorly understood. It is assumed that IFs in cells are as stiff as hard α-keratin, F-actin, and microtubules, but the high bending flexibility of IFs and the low stiffness of soft α-keratins suggest that hydrated IFs may be quite soft. To test this hypothesis, we measured the tensile mechanics of the keratin-like threads from hagfish slime, which are an ideal model for exploring the mechanics of IF bundles and IFs because they consist of tightly packed and aligned IFs. Tensile tests suggest that hydrated IF bundles possess low initial stiffness (Ei = 6.4 MPa) and remarkable elasticity (up to strains of 0.34), which we attribute to soft elastomeric IF protein terminal domains in series with stiffer coiled coils. The high tensile strength (180 MPa) and toughness (130 MJ/m3) of IF bundles support the notion that IFs lend mechanical integrity to cells. Their long-range elasticity suggests that IFs may also allow cells to recover from large deformations. X-ray diffraction and congo-red staining indicate that post-yield deformation leads to an irreversible α→β conformational transition in IFs, which leads to plastic deformation, and may be used by cells as a mechanosensory cue. PMID:12944314
Elastase-Sensitive Elastomeric Scaffolds with Variable Anisotropy for Soft Tissue Engineering
Guan, Jianjun; Fujimoto, Kazuro L.; Wagner, William R.
2010-01-01
Purpose To develop elastase-sensitive polyurethane scaffolds that would be applicable to the engineering of mechanically active soft tissues. Methods A polyurethane containing an elastase-sensitive peptide sequence was processed into scaffolds by thermally induced phase separation. Processing conditions were manipulated to alter scaffold properties and anisotropy. The scaffold’s mechanical properties, degradation, and cytocompatibility using muscle-derived stem cells were characterized. Scaffold in vivo degradation was evaluated by subcutaneous implantation. Results When heat transfer was multidirectional, scaffolds had randomly oriented pores. Imposition of a heat transfer gradient resulted in oriented pores. Both scaffolds were flexible and relatively strong with mechanical properties dependent upon fabrication conditions such as solvent type, polymer concentration and quenching temperature. Oriented scaffolds exhibited anisotropic mechanical properties with greater tensile strength in the orientation direction. These scaffolds also supported muscle-derived stem cell growth more effectively than random scaffolds. The scaffolds expressed over 40% weight loss after 56 days in elastase containing buffer. Elastase-sensitive scaffolds were complete degraded after 8 weeks subcutaneous implantation in rats, markedly faster than similar polyurethanes that did not contain the peptide sequence. Conclusion The elastase-sensitive polyurethane scaffolds showed promise for application in soft tissue engineering where controlling scaffold mechanical properties and pore architecture are desirable. PMID:18509596
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRONOWSKI,DAVID R.
The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.
NASA Astrophysics Data System (ADS)
Widada, Sugeng; Saputra, Sidhi; Hariadi
2018-02-01
Semarang City is located in the northern coastal plain of Java which is geologically composed of alluvial deposits. The process of the sediment diagenesis has caused a land subsidence. On the other hand, the development of the industrial, service, education and housing sectors has increased the number of building significantly. The number of building makes the pressure of land surface increased, and finally, this also increased the rate of land subsidence. The drilling data indicates that not all layers of lithology are soft layers supporting the land subsidence. However, vertical distribution of the soft layer is still unclear. This study used Resistivity method to map out the soft zone layers of lithology. Schlumberger electrode configuration with sounding system method was selected to find a good vertical resolution and maximum depth. The results showed that the lithology layer with resistivity less than 3 ohm is a layer of clay and sandy clay that has the low bearing capacity so easily compressed by pressure load. A high land subsidence is happening in the thick soft layer. The thickness of that layer is smaller toward the direction of avoiding the beach. The improvement of the bearing capacity of this layer is expected to be a solution to the problem of land subsidence.
Heat sealable, flame and abrasion resistant coated fabric
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R. (Inventor)
1983-01-01
Flame retardant, abrasion resistant elastomeric compositions are disclosed which are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Heat sealable coated fabrics employing such elastomeric compositions as coating film are produced by dissolving the elastomeric composition to form a solution, casting the solution onto a release paper and drying it to form an elastomeric film. The film is then bonded to a woven, knitted, or felted fabric.
NASA Astrophysics Data System (ADS)
Pashneh-Tala, Samand; Owen, Robert; Bahmaee, Hossein; Rekštytė, Sima; Malinauskas, Mangirdas; Claeyssens, Frederik
2018-05-01
Poly(glycerol sebacate) (PGS) has been utilised in numerous biomaterial applications over recent years. This elastomeric and rapidly degradable polymer is cytocompatible and suited to various applications in soft tissue engineering and drug delivery. Although PGS is simple to synthesise as an insoluble prepolymer, it requires the application of high temperatures for extended periods of time to produce an insoluble matrix. This places limitations on the processing capabilities of PGS and its possible applications. Here, we present a photocurable form of PGS with improved processing capabilities: PGS-methacrylate (PGS-M). By methacrylating the secondary hydroxyl groups of the glycerol units in the PGS prepolymer chains, the material was rendered photocurable and, in combination with a photoinitiator, crosslinked rapidly on exposure to UV light at ambient temperatures. The polymer's molecular weight and the degree of methacrylation could be controlled independently and the mechanical properties of the crosslinked material tailored. The polymer also displayed rapid degradation under physiological conditions and cytocompatibility with various primary cell types. As a demonstration of the processing capabilities of PGS-M, µm scale 3D scaffold structures were fabricated using 2-photon polymerisation and used for 3D cell culture. The tunable properties of PGS-M coupled with its enhanced processing capabilities make the polymer an attractive potential biomaterial for various future applications.
The Windowed Removable Partial Denture: A Treatment Option for Patients with Lone-Standing Teeth.
Jum'ah, Ahmad A; Haite, Terence; Nattress, Brian
2015-03-01
The decision as to whether to retain or extract a single remaining natural tooth prior to the provision of dentures can be a difficult one. If the tooth is left in situ, the development of an adequate peripheral seal around the denture is not possible thereby compromising the appliance' retention. If the tooth is extracted the possibility of gaining direct retention with the use of clasps or attachments is lost. This paper aims to illustrate the use of windowed removable partial denture design and review the literature relevant to this area. The use of such a design can enhance the retention of the appliance by encircling the lone standing tooth/teeth utilising an elastomeric permanent soft lining material.
Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.
Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae
2013-11-26
Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.
2008-09-01
thermostats, or materials such as carbon layers, which vary in thickness with location and are self - healing and self - regulating. Ships commonly use heating...aircraft today. Pneumatic deicing systems consist of rubber or other elastomeric boots placed on the leading edge of an aircraft wing or on any surface...by Kenney, two as- semblies consisting of neoprene rubber and urethane-coated Dacron fabric were hung from bulkheads where icing would occur. A timer
Geosynthetic Reinforcement of Sand-Mat Layer above Soft Ground
Park, Jong-Beom; Park, Hyun-Soo; Kim, Daehyeon
2013-01-01
In order to improve the bearing capacity of soft ground for the purpose of getting trafficability of construction vehicles, the reinforcement of geosynthetics for sand-mat layers on soft ground has often been used. As the strength of the geosynthetics increases, and the sand-mat system becomes stronger, the bearing capacity of sand-mat systems will be increased. The depths of geosynthetics, reinforced in sand-mat layers, were varied with respect to the width of footing. The tensile strengths of geosynthetics were also varied to evaluate the effect of reinforcement on the bearing capacity of soft ground. The dispersion angles, with varying sand-mat thicknesses, were also determined in consideration of the tensile strength of geosynthetics and the depths of reinforcement installations. The bearing capacity ratios, with the variation of footing width and reinforced embedment depth, were determined for the geosynthetics-only, reinforced soft ground, 1-layer sand-mat system and 2-layer sand-mat system against the non-reinforced soft ground. From the test results of various models, a principle that better explains the concept of geosynthetic reinforcement has been found. On the basis of this principle, a new bearing capacity equation for practical use in the design of geosynthetically reinforced soft ground has been proposed by modifying Yamanouchi’s equation. PMID:28788392
Method for making an elastomeric member with end pieces
Hoppie, L.O.; McNinch, J.H. Jr.; Nowell, G.C.
1984-10-23
A molding process is described for molding an elongated elastomeric member with wire mesh sleeves bonded to the ends. A molding preform of elastomeric material is positioned within a seamless mold cylinder, and the open ends of the wire mesh sleeves are mounted to end plug assemblies slidably received into the mold cylinder and positioned against the ends of the preform. A specialized profile is formed into surfaces of the respective end plug assemblies and by heating of the mold, the ends of the elastomeric preform are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves. Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces there through. The completed elastomeric member is removed from the mold cylinder by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder and removal thereof. 9 figs.
Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.
Cao, Yi; Li, Hongbin
2008-08-01
Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.
Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.
2015-01-01
In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662
Biodegradable and Elastomeric Poly(glycerol sebacate) as a Coating Material for Nitinol Bare Stent
Kim, Min Ji; Hwang, Moon Young; Kim, JiHeung; Chung, Dong June
2014-01-01
We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64%, and repeated elongation behavior was also observed to at least three times the original length without rupture. The water-in-air contact angles of the PGS surfaces were about 60°. We also analyzed the properties of an electrospray coating of biodegradable PGS on a nitinol stent for the purpose of enhancing long-term patency for the therapeutic treatment of varicose veins disease. The surface morphology and thickness of coating layer could be controlled by adjusting the electrospraying conditions and solution parameters. PMID:24955369
Flame retardant spandex type polyurethanes
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)
1978-01-01
Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.
Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials
Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan
2018-01-01
Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707
Physical properties of conventional and Super Slick elastomeric ligatures after intraoral use.
Crawford, Nicola Louise; McCarthy, Caroline; Murphy, Tanya C; Benson, Philip Edward
2010-01-01
To investigate the change in the physical properties of conventional and Super Slick elastomeric ligatures after they have been in the mouth. Nine healthy volunteers took part. One orthodontic bracket was bonded to a premolar tooth in each of the four quadrants of the mouth. Two conventional and two Super Slick elastomeric ligatures were placed at random locations on either side of the mouth. The ligatures were collected after various time intervals and tested using an Instron Universal testing machine. The two outcome measures were failure load and the static frictional resistance. The failure load for conventional ligatures was reduced to 67% of the original value after 6 weeks in situ. Super Slick elastomeric ligatures showed a comparable reduction after 6 weeks in situ (63% of original value). There were no statistical differences in the static friction between conventional and Super Slick elastomerics that had been in situ for either 24 hours (P = .686) or 6 weeks (P = .416). There was a good correlation between failure load and static friction (r = .49). There were statistically significant differences in the failure loads of elastomerics that had not be placed in the mouth and those that had been in the mouth for 6 weeks. There were no differences in the static frictional forces produced by conventional and Super Slick ligatures either before or after they had been placed in the mouth. There appears to be a direct proportional relationship between failure load and static friction of elastomeric ligatures.
How rheological heterogeneities control the internal deformation of salt giants.
NASA Astrophysics Data System (ADS)
Raith, Alexander; Urai, Janos L.
2017-04-01
Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.
Magnetostatic effects on switching in small magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bapna, Mukund; Piotrowski, Stephan K.; Oberdick, Samuel D.
Perpendicular CoFeB/MgO/CoFeB magnetic tunnel junctions with diameters under 100 nm are investigated by conductive atomic force microscopy. Minor loops of the tunnel magnetoresistance as a function of applied magnetic field reveal the hysteresis of the soft layer and an offset due to the magnetostatic field of the hard layer. Within the hysteretic region, telegraph noise is observed in the tunnel current. Simulations show that in this range, the net magnetic field in the soft layer is spatially inhomogeneous, and that antiparallel to parallel switching tends to start near the edge, while parallel to antiparallel reversal favors nucleation in the interior ofmore » the soft layer. As the diameter of the tunnel junction is decreased, the average magnitude of the magnetostatic field increases, but the spatial inhomogeneity across the soft layer is reduced.« less
NASA Astrophysics Data System (ADS)
Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie
2018-01-01
Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.
Kerr microscopy study of exchange-coupled FePt/Fe exchange spring magnets
NASA Astrophysics Data System (ADS)
Hussain, Zaineb; Kumar, Dileep; Reddy, V. Raghavendra; Gupta, Ajay
2017-05-01
Magnetization reversal and magnetic microstructure of top soft magnetic layer (Fe) in exchange spring coupled L10 FePt/Fe is studied using high resolution Kerr microscopy. With remnant state of the hard magnetic layer (L10 FePt) as initial condition, magnetization loops along with magnetic domains are recorded for the top soft magnetic layer (Fe) using Kerr microscopy. Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. It is also observed that one can tune the magnitude of hysteresis shift by reaching the remanent state from different saturating fields (HSAT) and also by varying the angle between measuring field and HSAT. The hysteresis loops and magnetic domains of top soft Fe layer demonstrate unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of established model of exchange bias phenomena framed for field-cooled ferromagnetic - antiferromagnetic bilayer systems.
Method for making an elastomeric member with end pieces
Hoppie, Lyle O.; McNinch, Jr., Joseph H.; Nowell, Gregory C.
1984-01-01
A molding process for molding an elongated elastomeric member (60) with wire mesh sleeves (16) bonded to the ends (14). A molding preform (10) of elastomeric material is positioned within a seamless mold cylinder (26), and the open ends of the wire mesh sleeves (16) are mounted to end plug assemblies (30) slidably received into the mold cylinder (26) and positioned against the ends (14) of the preform (10). A specialized profile is formed into surfaces (44) of the respective end plug assemblies (30) and by heating of the mold (26), the ends (14) of the elastomeric preform (10) are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves (16). Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces therethrough. The completed elastomeric member (60) is removed from the mold cylinder (26) by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder (26) and removal thereof.
Elastomeric member and method of manufacture therefor
Hoppie, L.O.
1985-12-10
An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.
Hoppie, L.O.
1985-07-30
An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond there between. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.
NASA Astrophysics Data System (ADS)
Wu, Gang; Wang, Kehai; Zhang, Panpan; Lu, Guanya
2018-01-01
Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations (PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.
Oliver, Gemma
2016-10-27
Outpatient parenteral antibiotic therapy (OPAT) is a growing area of practice that has numerous benefits for both patients and the healthcare system. In order for OPAT services to be successful, strategies need to be in place to maximise efficiency while providing safe, high-quality care. The use of elastomeric pumps to deliver intravenous (IV) antibiotics can have many benefits for OPAT services; they are cost-effective, easy to use and allow the patient to be fully ambulant. However, plans need to be put in place to make sure their use is safe and effective. This article discusses the use of elastomeric pumps by a UK-based OPAT team and the governance processes the team put in place to optimise patient safety when using elastomeric pumps to deliver IV antibiotics. Furthermore, with experience of using elastomeric pumps for more than 4 years the OPAT team was asked to evaluate an elastomeric pump new to the UK market: the Accufuser pump (Vygon (UK) Limited). By collecting data on its use it was found to be safe and easy to use. The team felt that the Accufuser pump ran to time in 96% of completed evaluations and considered it to be clinically acceptable in all responses.
Evans, Kristin S; Wood, Cory M; Moffitt, Allen H; Colgan, John A; Holman, J Kevin; Marshall, Steven D; Pope, D Spencer; Sample, Lew B; Sherman, Stephen L; Sinclair, Peter M; Trulove, Tim S
2017-04-01
The purposes of this study were to evaluate whether unaltered elastomeric chain can continue to move teeth for 16 weeks and to relate it to the amount of force remaining for the same batch of elastomeric chains. The in-vivo portion of the study had a sample of 30 paired extraction space sites from 22 subjects who were measured for closure of the space every 28 days. The altered side elastomeric chain served as the control and was replaced at 28-day intervals whereas the experimental side remained unaltered. In the in-vitro portion of the study, 100 each of 2-unit and 3-unit segments of the same batch of elastomeric chains were placed in a water bath, and the force was measured for 20 of each segment length at the 28-day measurement points. Statistically significant amounts of space closure occurred at both the altered and unaltered sites at all measurement time points. The mean space closure at the altered sites was minimally greater than that observed at the paired unaltered sites. The mean differences of space closure between the altered and unaltered sites ranged from a minimum of -0.05 mm at 4 weeks to a maximum of -0.14 mm at 8 weeks. The elastomeric chain force degraded rapidly by 4 weeks but continued a gradual diminution of force to 86 g at 16 weeks. Unaltered elastomeric chain continued to move teeth into extraction spaces for 16 weeks in this sample from both statistically and clinically significant standpoints. There were minimal and statistically insignificant differences in the mean space closure measurements between the paired altered and unaltered sites. The elastomeric chain force at 16 weeks was less than 100 g, yet at the same time point, teeth continued to move clinically. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.
Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice
2018-05-01
Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.
Soft tubular microfluidics for 2D and 3D applications
Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck
2017-01-01
Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs. PMID:28923968
Soft tubular microfluidics for 2D and 3D applications
NASA Astrophysics Data System (ADS)
Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee
2017-10-01
Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.
Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John
2010-01-01
This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.
Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators
Martinez, Ramses V.; Whitesides, George M.
2017-10-25
Soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible are described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into three-dimensional structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while keeping them light in weight.
Effective modern methods of protecting metal road structures from corrosion
NASA Astrophysics Data System (ADS)
Panteleeva, Margarita
2017-10-01
In the article the ways of protection of barrier road constructions from various external influences which cause development of irreversible corrosion processes are considered. The author studied modern methods of action on metal for corrosion protection and chose the most effective of them: a method of directly affecting the metal structures themselves. This method was studied in more detail in the framework of the experiment. As a result, the article describes the experiment of using a three-layer polymer coating, which includes a thermally activated primer, an elastomeric thermoplastic layer with a spatial structure, and a strong outer polyolefin layer. As a result of the experiment, the ratios of the ingredients for obtaining samples of the treated metal having the best parameters of corrosion resistance, elasticity, and strength were revealed. The author constructed a regression equation describing the main properties of the protective polymer coating using the simplex-lattice planning method in the composition-property diagrams.
Elastomer degradation sensor using a piezoelectric material
Olness, Dolores U.; Hirschfeld, deceased, Tomas B.
1990-01-01
A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.
Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity
Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe
2013-01-01
The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181
Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets
NASA Astrophysics Data System (ADS)
Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.
2016-10-01
The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.
Effect of Bleaching Mouthwash on Force Decay of Orthodontic Elastomeric Chains.
Behnaz, Mohammad; Namvar, Fatemeh; Sohrabi, Setareh; Parishanian, Mina
2018-02-01
Force decay elastomeric chains are significant, and it is a clinical problem. The aim of this study was to evaluate the effects of bleaching agent in the mouthwash on the force decay of orthodontic chains. In this experimental study, 160 gray closed elastomeric chains were randomly divided into three groups (one control and two test groups). Four loops of chains were stretched for 25 mm on custom-made jig. Control group specimens were immersed in artificial saliva during the test period. Test group specimens were immersed twice a day for 30 seconds in the whitening (LISTERINE® HEALTHY WHITE™) and daily sodium fluoride (LISTERINE® TOTAL CARE ZERO) mouthwashes. All specimens were immersed in artificial saliva at 37°C. Force was measured at different time points (initial, 1, 7, 14, 21, 28 days). Statistical analysis was performed by two-way analysis of variance (ANOVA) and Bonferroni methods (a = 0.05). Force of elastomeric chains was decreased dramatically in all groups during the experiment. After 24 hours, force was decreased by 42.18, 48.34, and 53.38% in control group, daily, and bleaching mouthwash groups respectively. The corresponding numbers after 4 weeks were 66.30, 76.73, and 86.48. The difference between three groups at days 1 and 28 was statistically significant (p < 0.05). Within the limitations of the current in vitro study, bleaching and sodium fluoride mouthwashes could cause force decay of orthodontic elastomeric chains. Whitening mouthwash is more weakening for elastomeric chains. Use of whitening mouthwash by orthodontic patients could decrease the force of elastomeric chains, so it could be recommended to use them for a short time.
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)
1978-01-01
Flame retardant elastomeric compositions comprised of either spandex type polyurethane having halogen containing polyols incorporated into the polymer chain, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives were developed. Methods are described for preparing fibers of the flame retardant elastomeric materials and manufactured articles as well as nonelastic materials such as polybenzimidazoles, fiberglass, and nylons, for high oxygen environments.
Force decay of elastomeric chains - a mechanical design and product comparison study.
Balhoff, David A; Shuldberg, Matthew; Hagan, Joseph L; Ballard, Richard W; Armbruster, Paul C
2011-03-01
To evaluate the percentage force decay of elastomeric chain products utilizing three different design mechanisms simulating canine retraction; and to evaluate the percentage force decay of elastomeric chain products from four different companies. In vitro, laboratory study. LSUHSC Dental School, New Orleans, LA, USA. Closed (non-spaced), grey elastomeric chains from four companies were selected for the study. Three acrylic resin jigs were constructed to provide a framework for three simulated space closure mechanisms. The 6-5-3, the chain loop, and the 6-3 were the configuration mechanisms used in the study. An electronic force gauge was used to measure the percentage force decay associated with each elastomeric chain over 28 days at preselected times. There was a significant difference in the mean percentage force decay for the three different mechanisms (P < 0·001). For all four companies, the 6-3 mechanical design had the smallest mean percentage force decay. There was a significant difference in the mean percentage force decay for the different companies (P < 0·001). For all three mechanisms, Ormco had the smallest percentage force decay while Unitek had the highest percentage force decay. The significant difference in the mean percentage force decay for the different mechanisms suggests that the 6-3 design is a more efficient means of closing extraction spaces utilizing elastomeric chains.
Kim, Myung Hwa; Shim, Yon Hee; Kim, Min-Soo; Shin, Yang-Sik; Lee, Hyun Joo; Lee, Jeong Soo
2017-01-01
When considering the principles of a pain control strategy by patients, reliable administration of additional bolus doses is important for providing the adequate analgesia and improving patient satisfaction. We compared the efficacy of elastomeric patient-control module (PCM) with conventional PCM providing epidural analgesia postoperatively.A noninferiority comparison was used. Eighty-six patients scheduled for open upper abdominal surgery were randomized to use either an elastomeric or conventional PCM connected to balloon pump. After successful epidural catheter insertion at T6-8 level, fentanyl (15-20 μg/kg) in 0.3% ropivacaine 100 mL was administered at basal rate 2 mL/h with bolus 2 mL and lock-out time 15 minutes. The primary outcome was the verbal numerical rating score for pain.The 95% confidence intervals for differences in pain scores during the first 48 hours postoperatively were <1, indicating noninferiority of the elastomeric PCM. The duration of pump reservoir exhaustion was shorter for the elastomeric PCM (mean [SD], 33 hours [8 hours] vs 40 hours [8 hours], P = 0.0003). There were no differences in the frequency of PCM use, additional analgesics, or adverse events between groups.The elastomeric PCM was as effective as conventional PCM with and exhibited a similar safety profile.
Elastomeric member and method of manufacture therefor
Hoppie, Lyle O.
1985-01-01
An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.
Hoppie, Lyle O.
1985-01-01
An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.
NASA Astrophysics Data System (ADS)
Skotheim, Jan; Mahadevan, Laksminarayanan
2004-11-01
We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.
High-temperature seals and lubricants for geothermal rock bits. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, R.R.; Winzenried, R.W.; Jones A.H.
1981-04-01
High temperature seals (elastomeric and mechanical) and lubricants were developed specifically for journal-type rock bits to be used in geothermal well drilling. Results at simulated downhole conditions indicate that five selected elastomeric seals (L'Garde No. 267, Utex Nos. 227, 231 and HTCR, and Sandia Glow Discharge Coated Viton) are capable of 288/sup 0/C (500/sup 0/F) service. Two prototype mechanical seals did not achieve the life determined for the elastomeric seals. Six lubricants (Pacer PLX-024 oil, PLX-043 oil, PLX-045 oil, Geobond Oil, and Geobond Grease) demonstrated 316/sup 0/C (600/sup 0/F) capability. Recommendation is made for full-scale simulated geothermal drilling tests utilizingmore » the improved elastomeric seals and lubricants.« less
Influence of particle arrangement on the permittivity of an elastomeric composite
NASA Astrophysics Data System (ADS)
Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.
2017-01-01
Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
Mechanically tunable terahertz graphene plasmonics using soft metasurface
NASA Astrophysics Data System (ADS)
Wang, Li; Liu, Xin; Zang, Jianfeng
2016-12-01
This letter presents a new approach to continuously tune the resonances of graphene plasmons in terahertz soft metasurface. The continuous tunability of plasmon resonance is either unachievable in conventional plasmonic materials like noble metals or requires gate voltage regulation in graphene. Here we investigate a simplest form of terahertz metasurface, graphene nanoribbon arrays (GNRAs), and demonstrate the graphene plasmon resonance modes can be tailored by mechanical deformation of the elastomeric substrate using finite element method (FEM). By integrating the electric doping with substrate deformation, we have managed to tune the resonance wavelength from 13.7 to 50.6 μm. The 36.9 μm tuning range is nearly doubled compared with that by electric doping regulation only. Moreover, we observe the plasmon coupling effect in GNRAs on waved substrate and its evolution with substrate curvature. A new decoupling mechanism enabled by the out-of-plane separation of the adjacent ribbons is revealed. The out-of-plane setup of plasmonic components extends the fabrication of plasmonic devices into three-dimensional space, which simultaneously increases the nanoribbon density and decreases the coupling strength. Our findings provide an additional degree of freedom to design reconfigurable metasurfaces and metadevices.
van Eldijk, Mark B.; McGann, Christopher L.
2013-01-01
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S. G.; Sidman, K. R.; Massucco, A. A. (Inventor)
1976-01-01
Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc.
Modeling the behavior of an earthquake base-isolated building.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coveney, V. A.; Jamil, S.; Johnson, D. E.
1997-11-26
Protecting a structure against earthquake excitation by supporting it on laminated elastomeric bearings has become a widely accepted practice. The ability to perform accurate simulation of the system, including FEA of the bearings, would be desirable--especially for key installations. In this paper attempts to model the behavior of elastomeric earthquake bearings are outlined. Attention is focused on modeling highly-filled, low-modulus, high-damping elastomeric isolator systems; comparisons are made between standard triboelastic solid model predictions and test results.
Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-01-01
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827
Measurement of oil film thickness for application to elastomeric Stirling engine rod seals
NASA Technical Reports Server (NTRS)
Krauter, A. I.
1981-01-01
The rod seal in the Stirling engine has the function of separating high pressure gas from low or ambient pressure oil. An experimental apparatus was designed to measure the oil film thickness distribution for an elastomeric seal in a reciprocating application. Tests were conducted on commercial elastomeric seals having a 76 mm rod and a 3.8 mm axial width. Test conditions included 70 and 90 seal durometers, a sliding velocity of 0.8 m/sec, and a zero pressure gradient across the seal. An acrylic cylinder and a typical synthetic base automotive lubricant were used. The experimental results showed that the effect of seal hardness on the oil film thickness is considerable. A comparison between analytical and experimental oil film profiles for an elastomeric seal during relatively high speed reciprocating motion showed an overall qualitative agreement.
Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing.
Thrasher, Carl J; Schwartz, Johanna J; Boydston, Andrew J
2017-11-15
A series of photoresins suitable for the production of elastomeric objects via digital light processing additive manufacturing are reported. Notably, the printing procedure is readily accessible using only entry-level equipment under ambient conditions using visible light projection. The photoresin formulations were found to be modular in nature, and straightforward adjustments to the resin components enabled access to a range of compositions and mechanical properties. Collectively, the series includes silicones, hydrogels, and hybrids thereof. Printed test specimens displayed maximum elongations of up to 472% under tensile load, a tunable swelling behavior in water, and Shore A hardness values from 13.7 to 33.3. A combination of the resins was used to print a functional multimaterial three-armed pneumatic gripper. These photoresins could be transformative to advanced prototyping applications such as simulated human tissues, stimuli-responsive materials, wearable devices, and soft robotics.
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media.
Finlayson, Chris E; Baumberg, Jeremy J
2017-06-22
We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid "gum-like" media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or "polymer opals") with intense tunable structural color. The further engineering of this shear-ordering using a controllable "roll-to-roll" process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.
Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A
2015-06-23
Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body.
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media
Finlayson, Chris E.; Baumberg, Jeremy J.
2017-01-01
We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals”) with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics. PMID:28773044
Atomic-layer soft plasma etching of MoS2
Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)
2016-01-01
Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335
Cost saving synergistic shaft seal
NASA Technical Reports Server (NTRS)
Ludwig, L. P.; Strom, T. N.
1976-01-01
Segmented carbon rings, used to replace elastomeric seal lip, provide resistance to high temperatures generated in lubricating film. Machining and close manufacturing tolerances of conventional segmented seal are avoided by mounting segmented rings in elastomeric flex section.
Flame resistant elastic elastomeric fibers
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Massucco, A. A.
1972-01-01
Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.
Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts
NASA Astrophysics Data System (ADS)
Skotheim, J. M.; Mahadevan, L.
2005-09-01
We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.
Machine for use in monitoring fatigue life for a plurality of elastomeric specimens
NASA Technical Reports Server (NTRS)
Fitzer, G. E. (Inventor)
1977-01-01
An improved machine is described for use in determining the fatigue life for elastomeric specimens. The machine is characterized by a plurality of juxtaposed test stations, specimen support means located at each of the test stations for supporting a plurality of specimens of elastomeric material, and means for subjecting the specimens at each of said stations to sinusoidal strain at a strain rate unique with respect to the strain rate at which the specimens at each of the other stations is subjected to sinusoidal strain.
Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler
NASA Astrophysics Data System (ADS)
Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing
2016-05-01
Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.
NASA Astrophysics Data System (ADS)
Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.
2017-08-01
The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.
Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick
2006-06-15
We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.
Elastomeric silicone substrates for terahertz fishnet metamaterials
NASA Astrophysics Data System (ADS)
Khodasevych, I. E.; Shah, C. M.; Sriram, S.; Bhaskaran, M.; Withayachumnankul, W.; Ung, B. S. Y.; Lin, H.; Rowe, W. S. T.; Abbott, D.; Mitchell, A.
2012-02-01
In this work, we characterize the electromagnetic properties of polydimethylsiloxane (PDMS) and use this as a free-standing substrate for the realization of flexible fishnet metamaterials at terahertz frequencies. Across the 0.2-2.5 THz band, the refractive index and absorption coefficient of PDMS are estimated as 1.55 and 0-22 cm-1, respectively. Electromagnetic modeling, multi-layer flexible electronics microfabrication, and terahertz time-domain spectroscopy are used in the design, fabrication, and characterization of the metamaterials, respectively. The properties of PDMS add a degree of freedom to terahertz metamaterials, with the potential for tuning by elastic deformation or integrated microfluidics.
Elastomeric member for energy storage device
Hoppie, Lyle O.; Chute, Richard
1985-01-01
An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.
NASA Astrophysics Data System (ADS)
Wood, R.; Monson, J.; Coughlin, T.
1999-03-01
The presence of a soft magnetic layer adjacent to a magnetic recording medium reduces the demagnetization of both perpendicular and longitudinal recording media. However, for perpendicular media, there is no reduction in the worst case, DC, demagnetizing field and no lessening of the decay. For longitudinal media, the highest demagnetizing fields occur at high densities. The soft layer or keeper can reduce these fields significantly and slow the initial decay. The soft underlayer also induces a small anisotropy field that assists the thermal stability of a perpendicular medium. A similar layer with a longitudinal medium, however, causes a small reduction in thermal stability, but only at low levels of demagnetizing field. For longitudinal recording media the overall effect of the keeper on thermal stability is quite complicated: the initial decay may be delayed significantly (a factor of ten in time) but the final decay to zero may still proceed more rapidly.
A clinical comparison between nickel titanium springs and elastomeric chains.
Bokas, Jim; Woods, Michael
2006-05-01
To compare the rates of maxillary canine retraction and molar anchorage loss when using either NiTi springs or elastomeric chains delivering a known force with sliding edgewise mechanics. Twelve patients who required maxillary canine retraction into first premolar extraction sites as part of their orthodontic treatment were selected. In a split-mouth design, these patients received precalibrated NiTi springs (112 quadrants) and pre-measured elastomeric chains (12 quadrants), all delivering initial forces of approximately 200 g and being reactivated at 28 day intervals. Space closure and forward movement of the maxillary first molars were evaluated using maxillary impressions, which were taken before the start of canine retraction and then at 28 day intervals until canine retraction was almost complete. Statistical analysis revealed that the mean rate of space closure with NiTi springs (1.85 mm/month) was only 0.17 mm/month greater (p = 0.011) than that produced with the elastomeric chains (1.68 mm/month). The mean rates of anchorage loss for the NiTi springs and elastomeric chain were 0.46 mm/month and 0.45 mm/month respectively. This difference was not statistically significant. These amounts of forward molar movement were calculated to be between one quarter and one third of the average space closure per month, even in the presence of a fixed transpalatal arch. The results indicate that the rates of space closure and molar anchorage loss using either NiTi springs or elastomeric chains, if reactivated every 28 days, are likely to be similar.
Khandaker, Md Shahriar K; Dudek, Daniel M; Beers, Eric P; Dillard, David A; Bevan, David R
2016-08-01
The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of switching stability of tunneling magnetoresistance system with artificial ferrimagnet
NASA Astrophysics Data System (ADS)
You, Chun-Yeol; Bader, Sam. D.; Scheinfein, M. R.
2002-03-01
In the study of spin dependent magnetic tunneling junctions, the switching stability of the magnetically hard layer is a crucial issue in magnetic random access memory applications[1]. After repeated cycling of the soft layer, the magnetization of the hard layer is demagnetized by the stray field from the domain wall created during the switching[2]. The magnitude of the stray field from the soft layer is large enough to switch a domain in the hard layer. Therefore, reducing this stray field is necessary to increase the switching stability. In this study, we explore an artificial ferrimagnet to replace the usual soft layer in order to reduce stray field. The ferrimagnet consists of an antiferromagnetically coupled trilayer that has two ferromagnetic layers of unequal thickness and opposite magnetization orientation. Since the sign of stray field of the two ferromagnetic layers is opposed, the total stray field is greatly reduced. [Supported by the US DOE, BES-MS, under Contract W-31-109-ENG-38.] [1] S. Gider et al. Science 281, 797 (1998). [2] L. Thomas et al. Phys. Rev. Lett. 84, 1816 (2000).
Furukawa, Yoko; Dale, Jason R
2013-04-08
We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.
Harnessing Macroscopic Forces in Catalysis
2009-11-09
Figure 1. Schematic representation of biasing reaction selectivity via mechanocatalysis. A catalyst, “ mcat ”, is embedded in an elastomeric support...Deformation of the elastomeric support transfers mechanical stress to mcat . Under stress-free conditions, mcat catalyzes the transformation of reactant
A microfluidic cell culture array with various oxygen tensions.
Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung
2013-08-21
Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.
The Use of Deconstructed Tires as Elastic Elements in Railway Tracks.
Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Rubio-Gámez, Mª Carmen
2014-08-18
Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks.
The Use of Deconstructed Tires as Elastic Elements in Railway Tracks
Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Rubio-Gámez, Mª Carmen
2014-01-01
Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks. PMID:28788168
Study of elastomeric bearings for superelevated U-Beam bridges.
DOT National Transportation Integrated Search
2009-10-01
The primary objective of this research was to determine the best way to consider the effects of transverse : superelevation on uniform-height steel-reinforced elastomeric bearing pads for U-Beam bridges. Existing TxDOT : design provisions did not spe...
Compact assembly generates plastic foam, inflates flotation bag
NASA Technical Reports Server (NTRS)
1965-01-01
Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.
Electro-expulsive separation system
NASA Technical Reports Server (NTRS)
Haslim, Leonard A. (Inventor); Lee, Robert D. (Inventor)
1987-01-01
An electro-expulsive system has one or more overlapped conductors, each comprising a flexible ribbon conductor, which is folded back on itself. The conductors are embedded in an elastomeric material. Large current pulses are fed to the conductors from power storage units. As a result of the antiparallel currents, the opposed segments of a conductor are forcefully separated and the elastomeric material is distended. Voids in the elastomer aid the separation of the conductor segments. The distention is almost instantaneous when a current pulse reaches the conductor and the distention tends to remove any solid body on the surface of the elastomeric material.
NASA Technical Reports Server (NTRS)
Linton, R. C.; Finckenor, M. M.; Kamenetzky, R. R.; Gray, P.
1993-01-01
Research was conducted at MSFC on the behavior of elastomeric materials after exposure to simulated space environment. Silicone S383 and Viton V747 samples were exposed to thermal vacuum, ultraviolet radiation, and atomic oxygen and then evaluated for changes in material properties. Characterization of the elastomeric materials included weight, hardness, optical inspection under normal and black light, spectrofluorescence, solar absorptance and emittance, Fourier transform infrared spectroscopy, and permeability. These results indicate a degree of sensitivity to exposure and provided some evidence of UV and atomic oxygen synergism.
Colour changes of orthodontic elastomeric module materials exposed to in vitro dietary media.
Ardeshna, Anil P; Vaidyanathan, Tritala K
2009-09-01
To evaluate the colour stability of orthodontic elastomeric module material exposed to dietary media. An in vitro laboratory study. Coloured and clear orthodontic elastomeric modules from four companies were exposed to coffee, cola, tea and spices for 72 h. The difference in colour components was measured with a Minolta chromameter before and after exposure. Significant changes in colour, including grey level and chromaticity, both as a function of colour and company of elastomeric ligature module were found following exposure to beverages and spices. Colour change was most affected by Deltab* (yellowness) and most significant in clear modules. Modules made using injection mouldings were more resistant to colour change than those by extrusion. Spice mix had the most effect and cola beverage the least. Clinically, these changes compromised both colour stability and esthetics of the elastomeric module. Clinicians should make patients aware of the effect of consuming beverages and spices on the colour stability of their selected ligature modules. Clinicians should favour modules made with injection moulding. Darker colour modules may be preferred to clear modules to avoid excessive colour degradation through dietary media such as beverages and food spices. Patients consuming large amounts of spices or coffee should avoid clear modules made by extrusion processing because of their tendency to discolour.
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
Radisic, Milica; Park, Hyoungshin; Martens, Timothy P.; Salazar-Lazaro, Johanna E.; Geng, Wenliang; Wang, Yadong; Langer, Robert; Freed, Lisa E.; Vunjak-Novakovic, Gordana
2009-01-01
Native myocardium consists of several cell types, of which approximately one-third are myocytes and most of the nonmyocytes are fibroblasts. By analogy with monolayer culture in which fibroblasts were removed to prevent overgrowth, early attempts to engineer myocardium utilized cell populations enriched for cardiac myocytes (CMs; ~80–90% of total cells). We hypothesized that the pre-treatment of synthetic elastomeric scaffolds with cardiac fibroblasts (CFs) will enhance the functional assembly of the engineered cardiac constructs by creating an environment supportive of cardiomyocyte attachment and function. Cells isolated from neonatal rat ventricles were prepared to form three distinct populations: rapidly plating cells identified as CFs, slowly plating cells identified as CMs, and unseparated initial population of cells (US). The cell fractions (3 × 106 cells total) were seeded into poly(glycerol sebacate) scaffolds (highly porous discs, 5 mm in diameter × 2-mm thick) using Matrigel™, either separately (CM or CF), concurrently (US), or sequentially (CF pre-treatment followed by CM culture, CF + CM), and cultured in spinner flasks. The CF + CM group had the highest amplitude of contraction and the lowest excitation threshold, superior DNA content, and higher glucose consumption rate. The CF + CM group exhibited compact 100- to 200-μm thick layers of elongated myocytes aligned in parallel over layers of collagen-producing fibroblasts, while US and CM groups exhibited scattered and poorly elongated myocytes. The sequential co-culture of CF and CM on a synthetic elastomer scaffold thus created an environment supportive of cardiomyocyte attachment, differentiation, and contractile function, presumably due to scaffold conditioning by cultured fibroblasts. When implanted over the infarcted myocardium in a nude rat model, cell-free poly(glycerol sebacate) remained at the ventricular wall after 2 weeks of in vivo, and was vascularized. PMID:18041719
Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS
Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine; ...
2018-04-17
Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less
Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine
Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less
Engineering Bony Hybrid Organs In Vitro
2006-11-01
microfluidic cell culture system using elastomeric channels and Braille displays (Gu et al., 2004; Futai et al., 2004). We have now further developed this...Takayama S, 2004: Computerized microfluidic cell culture using elastomeric channels and braille displays. Proc. Natl. Acad. Sci. USA 101, 15861-15866
Al-Balbeesi, Hana O; Bin Huraib, Sahar M; AlNahas, Nadia W; AlKawari, Huda M; Abu-Amara, Abdulrahman B; Vellappally, Sajith; Anil, Sukumaran
2016-01-01
The objective of the present investigation is to evaluate patients' pain perception and discomfort, the duration of pain and the level of self-medication over time during tooth separation, and the effectiveness of elastomeric and spring types of orthodontic separators in Saudi population. The study group consisted of 30 female adolescent patients who had elastomeric/spring separators as part of their orthodontic treatment. A self-administrated questionnaire comprising 16 multiple choice questions and another with visual analog scale were used to record the patient's pain perceptions at 4 hours, 24 hours, 3 days, 5 days, and 7 days from the time of insertion. The level of pain and discomfort during these time periods were assessed by a visual analog scale. After a separation period of 7 days, the amount of separation was measured with a leaf gauge. Type and frequency of analgesic consumption was also recorded. The Statistical Package for the Social Sciences (SPSS) version 20 (IBM SPSS -Chicago, IL: SPSS Inc.,) was used for statistical analysis. The data showed significant increase in the level of pain at 4 hours, 24 hours, and 3 days from separator placement. The elastomeric separators produced significantly more separation than the spring separators and also caused maximum pain during the first 3 days after insertion. However, there was no significant difference between the score of pain between two separators at all time intervals. Both elastomeric and spring separators showed comparative levels of pain and discomfort during the early phase of separation. Elastomeric separators were found to be more effective in tooth separation than spring separators. However, further studies are necessary to substantiate this preliminary observation.
Viscoplastic Matrix Materials for Embedded 3D Printing.
Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A
2018-03-16
Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.
Imperceptible magnetoelectronics
Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
2015-01-01
Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices. PMID:25607534
Mesoscale assembly of chemically modified graphene into complex cellular networks
Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo
2014-01-01
The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766
Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi
2014-01-01
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758
Imperceptible magnetoelectronics
NASA Astrophysics Data System (ADS)
Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
2015-01-01
Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m-2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.
Coaxial printing method for directly writing stretchable cable as strain sensor
NASA Astrophysics Data System (ADS)
Yan, Hai-liang; Chen, Yan-qiu; Deng, Yong-qiang; Zhang, Li-long; Hong, Xiao; Lau, Woon-ming; Mei, Jun; Hui, David; Yan, Hui; Liu, Yu
2016-08-01
Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well-posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.
Coaxial printing method for directly writing stretchable cable as strain sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hai-liang; Chengdu Green Energy and Green Manufacturing Technology R&D Center, 610299 Chengdu; Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn
Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchabilitymore » and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.« less
NASA Astrophysics Data System (ADS)
Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua
2018-03-01
Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites.
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-06-06
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-01-01
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. PMID:27265380
Flame resistant elastic elastomeric fiber
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.
1974-01-01
Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.
Simulations of Shock-induced Bubble Collapse near Hard and Soft Objects
NASA Astrophysics Data System (ADS)
Rodriguez, Mauro; Johnsen, Eric
2016-11-01
Understanding the dynamics of cavitation bubbles and shock waves in and near hard and soft objects is important particularly in various naval and medical applications. Two examples are therapeutic ultrasound procedures, which utilize this phenomenon for breaking kidney stones (lithotripsy) and ablation of pathogenic tissue (histotripsy), and erosion to elastomeric coatings on propellers. Although not fully understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension of the pulses. To understand the damage mechanism, it is of key interest to quantifying the influence of the shock waves on the material and the response of the material to the shock waves. A novel Eulerian numerical approach for simulating shock and acoustic wave propagation in viscoelastic media is leveraged to understand this influence. High-fidelity simulations of the bubble collapse dynamics for various experimental configurations (i.e. the viscous or viscoelastic material surrounding the bubble and neighboring object's rigidity are varied) will be conducted. In particular, we will discuss the shock emission from collapse and its propagation in the neighboring object, including stresses thereby produced. This research was supported in part by ONR Grant N00014-12-1-0751 under Dr. Ki-Han Kim and by NSF Grant Number CBET 1253157.
Nazhat, S N; Parker, S; Patel, M P; Braden, M
2001-09-01
Novel elastomer/methacrylate systems have been developed for potential soft prosthetic applications. Mixtures of varying compositions of an isoprene-styrene copolymer elastomer and tetrahydrofurfuryl methacrylate (SIS/THFMA) formed one-gel systems and were heat cured with a peroxide initiator. The blends were characterised in terms of sorption in deionised water and simulated body fluids (SBF), tensile properties and viscoelastic parameters of storage modulus and tan delta, as well as glass transition temperatures using dynamic mechanical analysis (DMA). DMA data gave two distinct peaks in tan delta, a lower temperature transition due to the isoprene phase in SIS and one at high temperature thought to be a combination of THFMA and the styrene phase in SIS. The tensile data showed a clear phase inversion within the mid range compositions changing from plastic to elastomeric behaviour. The sorption studies in deionised water showed a two stage uptake with an initial Fickian region that was linear to t 1/2 followed by a droplet growth/clustering system. The slope of the linear region was dependent on the composition ratio. The extent of overall uptake was osmotically dependent as all materials equilibrated at a much lower uptake in SBF. The diffusion coefficients were found to be concentration dependent.
Mechanics of an Asymmetric Hard-Soft Lamellar Nanomaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Weichao; Fredrickson, Glenn H.; Kramer, Edward J.
2016-03-24
Nanolayered lamellae are common structures in nanoscience and nanotechnology, but most are nearly symmetric in layer thickness. Here, we report on the structure and mechanics of highly asymmetric and thermodynamically stable soft–hard lamellar structures self-assembled from optimally designed PS 1-(PI-b-PS 2) 3 miktoarm star block copolymers. The remarkable mechanical properties of these strong and ductile PS (polystyrene)-based nanomaterials can be tuned over a broad range by varying the hard layer thickness while maintaining the soft layer thickness constant at 13 nm. Upon deformation, thin PS lamellae (<100 nm) exhibited kinks and predamaged/damaged grains, as well as cavitation in the softmore » layers. In contrast, deformation of thick lamellae (>100 nm) manifests cavitation in both soft and hard nanolayers. In situ tensile-SAXS experiments revealed the evolution of cavities during deformation and confirmed that the damage in such systems reflects both plastic deformation by shear and residual cavities. The aspects of the mechanics should point to universal deformation behavior in broader classes of asymmetric hard–soft lamellar materials, whose properties are just being revealed for versatile applications.« less
Hyono, Atsushi; Gaboriaud, Fabien; Mazda, Toshio; Takata, Youichi; Ohshima, Hiroyuki; Duval, Jérôme F L
2009-09-15
The stability of native and enzyme-treated human red blood cells of type A (Rh D positive) against agglutination is investigated under conditions where it is mediated by immunoglobuline G (IgG) anti-D antibody binding. The propensity of cells to agglutinate is related to their interphasic (electrokinetic) properties. These properties significantly depend on the concentration of proteolytic papain enzyme and protease-free neuraminidase enzyme that the cells are exposed to. The analysis is based on the interpretation of electrophoretic data of cells by means of the numerical theory for the electrokinetics of soft (bio)particles. A significant reduction of the hydrodynamic permeability of the external soft glycoprotein layer of the cells is reported under the action of papain. This reflects a significant decrease in soft surface layer thickness and a loss in cell surface integrity/rigidity, as confirmed by nanomechanical AFM analysis. Neuraminidase action leads to an important decrease in the interphase charge density by removing sialic acids from the cell soft surface layer. This is accompanied by hydrodynamic softness modulations less significant than those observed for papain-treated cells. On the basis of these electrohydrodynamic characteristics, the overall interaction potential profiles between two native cells and two enzyme-treated cells are derived as a function of the soft surface layer thickness in the Debye-Hückel limit that is valid for cell suspensions under physiological conditions (approximately 0.16 M). The thermodynamic computation of cell suspension stability against IgG-mediated agglutination then reveals that a decrease in the cell surface layer thickness is more favorable than a decrease in interphase charge density for inducing agglutination. This is experimentally confirmed by agglutination data collected for papain- and neuraminidase-treated cells.
A clinical investigation of force delivery systems for orthodontic space closure.
Nightingale, C; Jones, S P
2003-09-01
To investigate the force retention, and rates of space closure achieved by elastomeric chain and nickel titanium coil springs. Randomized clinical trial. Eastman Dental Hospital, London and Queen Mary's University Hospital, Roehampton, 1998-2000. Twenty-two orthodontic patients, wearing the pre-adjusted edgewise appliance undergoing space closure in opposing quadrants, using sliding mechanics on 0.019 x 0.025-inch posted stainless steel archwires. Medium-spaced elastomeric chain [Durachain, OrthoCare (UK) Ltd., Bradford, UK] and 9-mm nickel titanium coil springs [OrthoCare (UK) Ltd.] were placed in opposing quadrants for 15 patients. Elastomeric chain only was used in a further seven patients. The initial forces on placement and residual forces at the subsequent visit were measured with a dial push-pull gauge [Orthocare (UK) Ltd]. Study models of eight patients were taken before and after space closure, from which measurements were made to establish mean space closure. The forces were measured in grammes and space closure in millimetres. Fifty-nine per cent (31/53) of the elastomeric sample maintained at least 50 per cent of the initial force over a time period of 1-15 weeks. No sample lost all its force, and the mean loss was 47 per cent (range: 0-76 per cent). Nickel titanium coil springs lost force rapidly over 6 weeks, following that force levels plateaued. Forty-six per cent (12/26) maintained at least 50 per cent of their initial force over a time period of 1-22 weeks, and mean force loss was 48 per cent (range: 12-68 per cent). The rate of mean weekly space closure for elastomeric chain was 0.21 mm and for nickel titanium coil springs 0.26 mm. There was no relationship between the initial force applied and rate of space closure. None of the sample failed during the study period giving a 100 per cent response rate. In clinical use, the force retention of elastomeric chain was better than previously concluded. High initial forces resulted in high force decay. Nickel titanium coil springs and elastomeric chain closed spaces at a similar rate.
Kronström, Mats H; Johnson, Glen H; Hompesch, Richard W
2010-01-01
A new elastomeric impression material has been formulated with a ring-opening metathesis chemistry. In addition to other properties of clinical significance, the impression accuracy must be confirmed. The purpose of this study was to compare the accuracy of the new elastomeric impression material with vinyl polysiloxane and polyether following both spray and immersion disinfection. Impressions of a modified dentoform with a stainless steel crown preparation in the lower right quadrant were made, and type IV gypsum working casts and dies were formed. Anteroposterior (AP), cross-arch (CA), buccolingual (BL), mesiodistal (MD), occlusogingivobuccal (OGB), and occlusogingivolingual (OGL) dimensions were measured using a microscope. Working cast and die dimensions were compared to those of the master model. The impression materials were a newly formulated, ring-opening metathesis-polymerization impression material (ROMP Cartridge Tray and ROMP Volume Wash), vinyl polysiloxane (VPS, Aquasil Ultra Monophase/LV), and a polyether (PE, Impregum Penta Soft/Permadyne Garant L). Fifteen impressions with each material were made, of which 5 were disinfected by spray for 10 minutes (CaviCide), 5 were disinfected by immersion for 90 minutes (ProCide D), and 5 were not disinfected. There were significant cross-product interactions with a 2-way ANOVA, so a 1-way ANOVA and Dunnett's T3 multiple comparison test were used to compare the dimensional changes of the 3 impression materials, by disinfection status and for each location (alpha=.05). For ROMP, there were no significant differences from the master, for any dimension, when comparing the control and 2 disinfectant conditions. No significant differences were detected among the 3 impression materials for CA, BL, and MD. The working die dimensions of OGB and OGL for VPS with immersion disinfection were significantly shorter than with PE and ROMP (P<.05). Overall, the AP dimension was more accurate than CA, and the BL of working dies was 0.040 mm greater in diameter than MD. The accuracy of gypsum working casts and working dies from the new and 2 existing types of impression material were similar, for both spray and immersion disinfection. Judicious application of a die spacer can compensate for the small differences observed. VPS may require additional laboratory accommodation to compensate for a shorter working die. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Stretching-induced wrinkling in plastic-rubber composites.
Yang, Junyu; Damle, Sameer; Maiti, Spandan; Velankar, Sachin S
2017-01-25
We examine the mechanics of three-layer composite films composed of an elastomeric layer sandwiched between two thin surface layers of plastic. Upon stretching and releasing such composite films, they develop a highly wrinkled surface texture. The mechanism for this texturing is that during stretching, the plastic layers yield and stretch irreversibly whereas the elastomer stretches reversibly. Thus upon releasing, the plastic layers buckle due to compressive stress imposed by the elastomer. Experiments are conducted using SEPS elastomer and 50 micron thick LLDPE plastic films. Stretching and releasing the composites to 2-5 times their original length induces buckles with wavelength on the order of 200 microns, and the wavelength decreases as the stretching increases. FEM simulations reveal that plastic deformation is involved at all stages during this process: (1) during stretching, the plastic layer yields in tension; (2) during recovery, the plastic layer first yields in-plane in compression and then buckles; (3) post-buckling, plastic hinges are formed at high-curvature regions. Homogeneous wrinkles are predicted only within a finite window of material properties: if the yield stress is too low, the plastic layers yield in-plane, without wrinkling, whereas if the yield stress is too high, non-homogeneous wrinkles are predicted. This approach to realizing highly wrinkled textures offers several advantages, most importantly the fact that high aspect ratio wrinkles (amplitude to wavelength ratios exceeding 0.4) can be realized.
Tensile properties of orthodontic elastomeric ligatures.
Ahrari, F; Jalaly, T; Zebarjad, M
2010-01-01
Tensile properties of elastomeric ligatures become important when efficiency of orthodontic appliances is considered. The aim of this study was to compare tensile strength, extension to tensile strength, toughness and modulus of elasticity of elastomeric ligatures in both the as--received condition and after 28 days of immersion in the simulated oral environment. Furthermore, the changes that occurred in tensile properties of each brand of ligatures after 28 days were evaluated. Experimental-laboratory based. Elastomeric ligatures were obtained from different companies and their tensile properties were measured using Zwick testing machine in both the as-received condition and after 28 days of immersion in the simulated oral environment. The data were analyzed using independent sample t-tests, analysis of variance and Tukey tests. After 28 days, all the ligatures experienced a significant decrease in tensile strength, extension to tensile strength and toughness ( P < 0.05), whereas modulus of elasticity increased in some groups and decreased in others. There were significant differences in tensile properties of different brands of ligatures in both conditions ( P < 0.05), with the exception of modulus of elasticity after 28 days. The decrease in strength properties of elastomeric ligatures shows that they should be replaced at each appointment to reduce the risk of rupture. There are significant differences in tensile properties of different brands of ligatures, which should be considered during selection of these products.
Physical and Chemical Stability of Urapidil in 0.9% Sodium Chloride in Elastomeric Infusion Pump.
Tomasello, Cristina; Leggieri, Anna; Rabbia, Franco; Veglio, Franco; Baietto, Lorena; Fulcheri, Chiara; De Nicolò, Amedeo; De Perri, Giovanni; D'Avolio, Antonio
2016-01-01
Urapidil is an antihypertensive agent, usually administered through intravenous bolus injection, slow-intravenous infusion, or continuous-drug infusion by perfusor. Since to date no evidences are available on drug stability in elastomeric pumps, patients have to be hospitalized. The purpose of this study was to validate an ultra-performance liquid chromatographic method to evaluate urapidil stability in an elastomeric infusion pump, in order to allow continuous infusion as home-care treatment. Analyses were conducted by diluting urapidil in an elastomeric pump. Two concentrations were evaluated: 1.6 mg/mL and 3.3 mg/mL. For the analyses, a reverse-phase ultra-performance liquid chromatographic- photodiode array detection instrument was used. Stressed degradation, pH changes, and visual clarity were used as stability indicators up to 10 days after urapidil solution preparation. The drug showed no more than 5% degradation during the test period at room temperature. No pH changes and no evidences of incompatibility were observed. Stress tests resulted in appreciable observation of degradation products. Considering the observed mean values, urapidil hydrochloride in sodium chloride 0.9% in elastomeric infusion pumps is stable for at least 10 days. These results indicate that this treatment could be administered at home for a prolonged duration (at least 7 days) with a satisfactory response. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Thermodynamic properties of a hard/soft-magnetic bilayer model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taaev, T. A., E-mail: taaev89@mail.ru; Khizriev, K. Sh.; Murtazaev, A. K.
2016-05-15
A model for describing the thermodynamic properties of a hard/soft-magnetic bilayer is proposed and thoroughly studied using the Monte Carlo method. Temperature dependences of the heat capacity, total magnetization, magnetizations of the hard- and soft-magnetic layers, total magnetic susceptibility, and susceptibilities of the hard- and soft-magnetic layers have been calculated by this method in the framework of the proposed model. The obtained temperature dependences of the heat capacity and magnetic susceptibility display double maxima that result from the two phase transitions that take place in the system. The influence of system dimensions on the thermodynamic properties of the model hasmore » been considered.« less
Large-scale ordering of nanoparticles using viscoelastic shear processing.
Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J
2016-06-03
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.
Large-scale ordering of nanoparticles using viscoelastic shear processing
Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.
2016-01-01
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808
Use of elastomers in regenerative braking systems
NASA Astrophysics Data System (ADS)
The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.
In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre
Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.
Elastohydrodynamic Lift at a Soft Wall
NASA Astrophysics Data System (ADS)
Davies, Heather S.; Débarre, Delphine; El Amri, Nouha; Verdier, Claude; Richter, Ralf P.; Bureau, Lionel
2018-05-01
We study experimentally the motion of nondeformable microbeads in a linear shear flow close to a wall bearing a thin and soft polymer layer. Combining microfluidics and 3D optical tracking, we demonstrate that the steady-state bead-to-surface distance increases with the flow strength. Moreover, such lift is shown to result from flow-induced deformations of the layer, in quantitative agreement with theoretical predictions from elastohydrodynamics. This study thus provides the first experimental evidence of "soft lubrication" at play at small scale, in a system relevant, for example, to the physics of blood microcirculation.
Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
Barbee, Jr., Troy W.; Bajt, Sasa
2002-01-01
The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers
Variable spreading layer in 4U 1608-52 during thermonuclear X-ray bursts in the soft state
NASA Astrophysics Data System (ADS)
Kajava, J. J. E.; Koljonen, K. I. I.; Nättilä, J.; Suleimanov, V.; Poutanen, J.
2017-11-01
Thermonuclear (type-I) X-ray bursts, observed from neutron star (NS) low-mass X-ray binaries (LMXB), provide constraints on NS masses and radii and consequently the equation of state of NS cores. In such analyses, various assumptions are made without knowing if they are justified. We have analysed X-ray burst spectra from the LMXB 4U 1608-52, with the aim of studying how the different persistent emission components react to the bursts. During some bursts in the soft spectral state we find that there are two variable components: one corresponding to the burst blackbody component and another optically thick Comptonized component. We interpret the latter as the spreading layer between the NS surface and the accretion disc, which is not present during the hard-state bursts. We propose that the spectral changes during the soft-state bursts are driven by the spreading layer that could cover almost the entire NS in the brightest phases due to the enhanced radiation pressure support provided by the burst, and that the layer subsequently returns to its original state during the burst decay. When deriving the NS mass and radius using the soft-state bursts two assumptions are therefore not met: the NS is not entirely visible and the burst emission is reprocessed in the spreading layer, causing distortions of the emitted spectrum. For these reasons, the NS mass and radius constraints using the soft-state bursts are different compared to the ones derived using the hard-state bursts.
Theory Of Dewetting In A Filled Elastomer Under Stress
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.
1993-01-01
Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.
NASA Technical Reports Server (NTRS)
Caro, Edward R. (Inventor); Bonazza, Walter J. (Inventor)
1987-01-01
A coaxial cable connector is provided, which resists radio frequency breakdown in coaxial cables used in the vacuum of outer space. The connector body surrounds an insulator which includes an easily compressible elastomeric portion. An insulated coaxial cable is prepared so that its insulation projects beyond the outer conductor and compresses the elastomeric portion of the connector insulator.
Composite Materials for Maxillofacial Prostheses.
1980-08-01
projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure
CLEAR: Cross-Layer Exploration for Architecting Resilience
2017-03-01
benchmark analysis, also provides cost-effective solutions (~1% additional energy cost for the same 50× improvement). This paper addresses the...core (OoO-core) [Wang 04], across 18 benchmarks . Such extensive exploration enables us to conclusively answer the above cross-layer resilience...analysis of the effects of soft errors on application benchmarks , provides a highly effective soft error resilience approach. 3. The above
Electrically Driven Microengineered Bioinspired Soft Robots.
Shin, Su Ryon; Migliori, Bianca; Miccoli, Beatrice; Li, Yi-Chen; Mostafalu, Pooria; Seo, Jungmok; Mandla, Serena; Enrico, Alessandro; Antona, Silvia; Sabarish, Ram; Zheng, Ting; Pirrami, Lorenzo; Zhang, Kaizhen; Zhang, Yu Shrike; Wan, Kai-Tak; Demarchi, Danilo; Dokmeci, Mehmet R; Khademhosseini, Ali
2018-03-01
To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buck, Tyson; Pellegrini, Peter; Sauerwein, Rebecca; Leo, Michael C; Covell, David A; Maier, Tom; Machida, Curtis A
2011-01-01
To (1) evaluate the use of adenosine triphosphate (ATP)-driven bioluminescence for quantification of total plaque bacteria in orthodontic patients, (2) compare plaque bacteria amounts at the bracket-tooth interface with use of elastomeric-ligated and self-ligating brackets after 1 year of orthodontic treatment, and (3) analyze formation of white spot lesions by photographic evaluation and laser-light fluorescence (DIAGNOdent). Thirteen subjects had fixed orthodontic appliances placed where lateral incisors were bonded with either elastomeric-ligated or self-ligating brackets. Plaque bacteria were collected from incisor surfaces after 1 year and quantified using plating methods and ATP-driven bioluminescence. White spot lesions were evaluated by photographic and DIAGNOdent determinations. A 2 x 2 x 2 mixed-design ANOVA was conducted to determine differences in plaque retention between elastomeric-ligated and self-ligating brackets. ATP-driven bioluminescence values correlated to numbers of total plaque bacteria (r = 0.80). However, unlike findings published in the original pilot study, which described increased plaque retention with elastomeric-ligated brackets at 5 weeks postbonding, there were no significant differences in bacterial numbers or ATP-driven bioluminescence values surrounding the elastomeric-ligated vs self-ligating brackets after 1 year of orthodontic treatment. Based on photographic and DIAGNOdent determinations, white spot lesions were found relatively equally on teeth bonded with either bracket type. DIAGNOdent measurements were found to have moderate sensitivity (0.71) and good specificity (0.88) when compared to white spot lesions determined using photographic evaluation. ATP-driven bioluminescence can be used as an accurate assessment of total plaque bacteria in orthodontic patients. After 1 year of orthodontic treatment for patients in this pilot study, there appeared to be no differences in retention of plaque bacteria or white spot lesions comparing the bracket types. The use of DIAGNOdent has some limitations, but may prove to be useful to monitor white spot lesions longitudinally.
Perpendicular exchange coupling effects in ferrimagnetic TbFeCo/GdFeCo hard/soft structures
NASA Astrophysics Data System (ADS)
Wang, Ke; Wang, Yahong; Ling, Fujin; Xu, Zhan
2018-04-01
Bilayers consisting of magnetically hard TbFeCo and soft GdFeCo alloy were fabricated. Exchange-spring and sharp switching in a step-by-step fashion were observed in the TbFeCo/GdFeCo hard/soft bilayers with increasing GdFeCo thickness. A perpendicular exchange bias field of several hundred Oersteds is observed from the shift of minor loops pinned by TbFeCo layer. The perpendicular exchange energy is derived to be in the range of 0.18-0.30 erg/cm2. The exchange energy is shown to increase with the thickness of GdFeCo layer in the bilayers, which can be attributed to the enhanced perpendicular anisotropy of GdFeCo layer in our experimental range.
Comparison of performance of three different types of respiratory protection devices.
Lawrence, Robert B; Duling, Matthew G; Calvert, Catherine A; Coffey, Christopher C
2006-09-01
Respiratory protection is offered to American workers in a variety of ways to guard against potential inhalation hazards. Two of the most common ways are elastomeric N95 respirators and N95 filtering-facepiece respirators. Some in the health care industry feel that surgical masks provide an acceptable level of protection in certain situations against particular hazards. This study compared the performance of these types of respiratory protection during a simulated workplace test that measured both filter penetration and face-seal leakage. A panel of 25 test subjects with varying face sizes tested 15 models of elastomeric N95 respirators, 15 models of N95 filtering-facepiece respirators, and 6 models of surgical masks. Simulated workplace testing was conducted using a TSI PORTACOUNT Plus model 8020, and consisted of a series of seven exercises. Six simulated workplace tests were performed with redonning of the respirator/mask occurring between each test. The results of these tests produced a simulated workplace protection factor (SWPF). The geometric mean (GM) and the 5th percentile values of the SWPFs were computed by category of respiratory protection using the six overall SWPF values. The level of protection provided by each of the three respiratory protection types was compared. The GM and 5th percentile SWPF values without fit testing were used for the comparison, as surgical masks were not intended to be fit tested. The GM values were 36 for elastomeric N95 respirators, 21 for N95 filtering-facepiece respirators, and 3 for surgical masks. An analysis of variance demonstrated a statistically significant difference between all three. Elastomeric N95 respirators had the highest 5th percentile SWPF of 7. N95 filtering-facepiece respirators and surgical masks had 5th percentile SWPFs of 3 and 1, respectively. A Fisher Exact Test revealed that the 5th percentile SWPFs for all three types of respiratory protection were statistically different. In addition, both qualitative (Bitrex and saccharin) and quantitative (N95-Companion) fit testing were performed on the N95 filtering- and elastomeric-facepiece respirators. It was found that passing a fit test generally improves the protection afforded the wearer. Passing the Bitrex fit test resulted in 5th percentile SWPFs of 11.1 and 7.9 for elastomeric and filtering-facepiece respirators, respectively. After passing the saccharin tests, the elastomeric respirators provided a 5th percentile of 11.7, and the filtering-facepiece respirators provided a 5th percentile of 11.0. The 5th percentiles after passing the N95-Companion were 13.0 for the elastomeric respirators and 20.5 for the filtering-facepiece respirators. The data supports fit testing as an essential element of a complete respiratory protection program.
Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui
2017-01-01
Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.
Study on algorithm of process neural network for soft sensing in sewage disposal system
NASA Astrophysics Data System (ADS)
Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying
2006-11-01
A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.
Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices.
Mun, Seongcheol; Yun, Sungryul; Nam, Saekwang; Park, Seung Koo; Park, Suntak; Park, Bong Je; Lim, Jeong Mook; Kyung, Ki-Uk
2018-01-01
This paper reports soft actuator based tactile stimulation interfaces applicable to wearable devices. The soft actuator is prepared by multi-layered accumulation of thin electro-active polymer (EAP) films. The multi-layered actuator is designed to produce electrically-induced convex protrusive deformation, which can be dynamically programmable for wide range of tactile stimuli. The maximum vertical protrusion is and the output force is up to 255 mN. The soft actuators are embedded into the fingertip part of a glove and front part of a forearm band, respectively. We have conducted two kinds of experiments with 15 subjects. Perceived magnitudes of actuator's protrusion and vibrotactile intensity were measured with frequency of 1 Hz and 191 Hz, respectively. Analysis of the user tests shows participants perceive variation of protrusion height at the finger pad and modulation of vibration intensity through the proposed soft actuator based tactile interface.
Guerra, C; Schwartz, C J
2012-02-01
Friction blisters occur when shear loading causes the separation of dermal layers. Consequences range from minor pain to life-threatening infection. Past research in blister formation has focused on in vivo experiments, which complicate a mechanics-based study of the phenomenon. A Synthetic Skin Simulant Platform (3SP) approach was developed to investigate the effect of textile fabrics (t-shirt knit and denim cottons) and surface treatments (dry and wet lubricants) on blister formation. 3SP samples consist of bonded elastomeric layers that are surrogates for various dermal layers. These layers display frictional and mechanical properties similar to their anatomical analogues. Blistering was assessed by the measurement of deboned area between layers. Denim caused greater blistering than did the t-shirt knit cotton, and both lubricants significantly reduced blister area and surface damage. A triglyceride-based lubricant had a more pronounced effect on blister reduction than corn starch. The triglyceride lubricant used with t-shirt knit cotton resulted in no blisters being formed. The performance of the 3SP approach follows previously reported frictional behavior of skin in vivo. The results of textile and surface treatment performance suggest that future 3SP iterations can be focused on specific anatomical sites based on application type. © 2011 John Wiley & Sons A/S.
Layer-by-layer design method for soft-X-ray multilayers
NASA Technical Reports Server (NTRS)
Yamamoto, Masaki; Namioka, Takeshi
1992-01-01
A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.
NASA Technical Reports Server (NTRS)
Champman, A. J.
1972-01-01
Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.
Metallic Seal Development for Advanced Docking/Berthing System
NASA Technical Reports Server (NTRS)
Oswald, Jay; Daniels, Christopher; Dunlap, Patrick, Jr.; Steinetz, Bruce
2006-01-01
Feasibility of metal-to-metal androgenous seals has been demonstrated. Techniques to minimize surface irregularities must be examined. Two concepts investigated: 1) Flexible metal interface with elastomeric preloader; 2) Flexibility will accommodate any surface irregularities from the mating surface. Rigid metal interface with elastomeric preloader. Rigidity of the metal surface will prevent irregularities (waves) from occurring.
NASA Technical Reports Server (NTRS)
Turner, J. E.
1993-01-01
An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.
Ma, Zuwei; Hong, Yi; Nelson, Devin M; Pichamuthu, Joseph E; Leeson, Cory E; Wagner, William R
2011-09-12
Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.
Ported jacket for use in deformation measurement apparatus
Wagner, L.A.; Senseny, P.E.; Mellegard, K.D.; Olsberg, S.B.
1990-03-06
A device for allowing deformation measurement of a jacketed specimen when the specimen is loaded includes an elastomeric specimen container or jacket surrounding a specimen while the specimen is being loaded by a test apparatus. The specimen jacket wall is compressible, and the wall follows and allows deformation of the specimen. The jacket wall of compressible material is provided with at least one opening and a thin layer or shim of substantially non-compressible (metal) material which covers and seals this opening. An extensometer is then positioned with its specimen engaging contact members engaging the substantially non-compressible material to measure the deformation of the specimen when the specimen is loaded, without compressibility effects of the jacket. 9 figs.
NASA Astrophysics Data System (ADS)
Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun
2018-01-01
Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).
NASA Astrophysics Data System (ADS)
Arib Rejab, M. N.; Shukor, S. A. Abdul; Sofian, M. R. Mohd; Inayat-Hussain, J. I.; Nazirah, A.; Asyraf, I.
2017-10-01
This paper presents the results of an experimental work to determine the dynamic stiffness and loss factor of elastomeric mounts. It also presents the results of theoretical analysis to determine the transmissibility and vibration power flow of these mounts, which are associated with their contribution to structure-borne noise. Four types of elastomeric mounts were considered, where three of them were made from green natural rubber material (SMR CV60, Ekoprena and Pureprena) and one made from petroleum based synthetic rubber (EPDM). In order to determine the dynamic stiffness and loss factor of these elastomeric mounts, dynamic tests were conducted using MTS 830 Elastomer Test System. Dynamic stiffness and loss factor of these mounts were measured for a range of frequency between 5 Hz and 150 Hz, and with a dynamic amplitude of 0.2 mm (p-p). The transmissibility and vibration power flow were determined based on a simple 2-Degree-of-Freedom model representing a vibration isolation system with a flexible receiver. This model reprsents the three main parts of a vehicle, which are the powertrain and engine mounting, the flexible structure and the floor of the vehicle. The results revealed that synthetic rubber (EPDM) was only effective at high frequency region. Natural rubber (Ekoprena), on the other hand, was found to be effective at both low and high frequency regions due to its low transmissibility at resonant frequency and its ability to damp the resonance. The estimated structure-borne noise emission showed that Ekoprena has a lower contribution to structure-borne noise as compared to the other types of elastomeric mounts.
Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.
Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel
2012-04-01
The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.
Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X
2015-12-30
It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.
Voltage-controlled surface wrinkling of elastomeric coatings.
van den Ende, Daan; Kamminga, Jan-Dirk; Boersma, Arjen; Andritsch, Thomas; Steeneken, Peter G
2013-07-05
Wrinkling of elastomeric coatings by an electric field is reported. The associated changes in the coating's optical properties yield switchable mirrors and windows. The field Ec needed to induce wrinkling is a factor of 4.4 lower than the theoretically predicted value, which is attributed to space-charge injection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Doane, William J.; Hall, Ronald G.
1992-01-01
This paper describes the design and process development of low-cost structural parts made by a modified resin transfer molding process. Innovative application of elastomeric tooling to increase laminate fiber volume and automated forming of fiber preforms are discussed, as applied to fabrication of a representative section of a cruise missile fuselage.
Talic, Nabeel F; Almudhi, Abdullazez A
2016-01-01
Objective: To compare the stain resistance of three types of clear elastomeric modules exposed to several common dietary substances through the assessment of the perception of a group of dentists to discoloration using visual analog scale (VAS). Materials and Methods: Elastomeric modules from Unitek (AU), Ormco (OR), and dentaurum (DE) were immersed in the following food substances: Coffee, black tea, chocolate, energy drink, ketchup, and Coca-Cola for 72 h. VAS was used to reflect the module staining severity. Results: Significant difference was found among the three types of modules examined in this study. OR modules showed the least mean staining ratings by the examiners. There was no statistical difference in the staining properties between AU and DE modules. Coffee and tea showed higher staining potential as compared to all staining media. Furthermore, there was no difference in the staining characteristics of coffee and black tea. Conclusions: Coffee and tea are strong staining media that should be avoided by patients who opted to have esthetic appliances for their orthodontic treatment. Elastomeric modules manufactured by AU showed higher staining optical properties as compared to the other two companies, which could be related to the manufacturing processing of these modules. PMID:27127754
NASA Astrophysics Data System (ADS)
Nadal Gisbert, Antonio V.
In this work is investigated the recycling of tires to elastomeric requirements by thermal compression. The production of recycled products is carried out starting from the powder, of elastomeric nature, coming from the grinding of used tires denominated GTR (Ground Tire Rubber) of different grain size, although the fundamental objective is the recycling of powder of 0,2mm grain size. The process of forming used for obtaining the recycled product is thermal compression, due to its simplicity and low cost. The composition of the powder has been analyzed and also the influence, on the elastomeric characteristics of the recycled product, of different parameters: Grain size, compact pressure, temperature, time, thickness of the recycled product and combination of sizes. At last we give an hypothesis that justifies the mechanism that gives cohesion to the powder GTR and allows their recycling. We also have carried out an analysis of the investigation lines, at the present, on the recycling of tires in general and an economic study of the viability of the recycled product in front of present products in the market, agglomerated with polyurethane, that have their application in using it in different types of floors.
Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos
2016-01-01
Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993
Silicone absorption of elastomeric closures--an accelerated study.
Degrazio, F L; Hlobik, T; Vaughan, S
1998-01-01
There is a trend in the parenteral industry to move from the use of elastomeric closures which are washed, siliconized, dried and sterilized in-house at the pharmaceutical manufacturers' site to pre-prepared closures purchased from the closure supplier. This preparation can consist of washing to reduce particle-load and bioburden, siliconization, placement in ready-to-sterilize bags and may eventually extend to sterilization by steam autoclave or gamma irradiation. Since silicone oil lubrication is critical to the processability/machinability of closures, research was designed to investigate this phenomenon in closures prepared using the Westar RS (Ready-to-Sterilize) process. This paper presents the data gathered in a study of the characteristic of silicone absorption into elastomeric closures under accelerated conditions. Variables such as silicone viscosity, rubber formulation, effect of sterilization and others are considered.
Out-of-Plane Designed Soft Metasurface for Tunable Surface Plasmon Polariton.
Liu, Xin; Huang, Zhao; Zhu, Chengkai; Wang, Li; Zang, Jianfeng
2018-02-14
Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.
High friction on ice provided by elastomeric fiber composites with textured surfaces
NASA Astrophysics Data System (ADS)
Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.
2015-03-01
Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.
Elastomer actuators: systematic improvement in properties by use of composite materials
NASA Astrophysics Data System (ADS)
Molberg, Martin; Leterrier, Yves; Plummer, Christopher J. G.; Löwe, Christiane; Opris, Dorina M.; Clemens, Frank; Månson, Jan-Anders E.
2010-04-01
Dielectric elastomer actuators (DEAs) have attracted increasing attention over the last few years owing to their outstanding properties, e.g. their large actuation strains, high energy density, and pliability, which have opened up a wide spectrum of potential applications in fields ranging from microengineering to medical prosthetics. There is consequently a huge demand for new elastomer materials with improved properties to enhance the performance of DEAs and to overcome the limitations associated with currently available materials, such as the need for high activation voltages and the poor long-term stability. The electrostatic pressure that activates dielectric elastomers can be increased by higher permittivity of the elastomer and thus may lead to lower activation voltages. This has led us to consider composite elastomeric dielectrics based on thermoplastic elastomers or PDMS, and conductive polyaniline or ceramic (soft doped PZT) powder fillers. The potential of such materials and strategies to counter the adverse effects of increased conductivity and elastic modulus are discussed.
Mullins effect in a filled elastomer under uniaxial tension
Maiti, A.; Small, W.; Gee, R. H.; ...
2014-01-16
Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading)more » two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.« less
NASA Astrophysics Data System (ADS)
Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.
2014-09-01
Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.
Perversions driven spontaneous symmetry breaking in heterogeneous elastic ribbons
NASA Astrophysics Data System (ADS)
Liu, Shuangping; Yao, Zhenwei; Olvera de La Cruz, Monica
2015-03-01
Perversion structures in an otherwise uniform helical structure are associated with several important concepts in fundamental physics and materials science, including the spontaneous symmetry breaking and the elastic buckling. They also have strong connections with biological motifs (e.g., bacteria shapes and plant tendrils) and have potential applications in micro-muscles and soft robotics. In this work, using a three-dimensional elastomeric bi-stripe model, we investigate the properties of perversions that are independent of the specific ribbon shapes. Several intrinsic features of perversions are revealed, including the spontaneous condensation of energy as well as the distinct energy transfer modes within the perversion region. These properties of perversions associated with the storage of elastic energies can be exploited in the design of actuator devices. We thank the financial support from the U.S. Department of Commerce, National Institute of Standards and Technology, the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research.
Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A
2014-09-19
Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.
Bhattacharya, Sisir; Parekh, Satish; Dedhiya, Mahendra
2015-01-01
The objective of this study was to determine in-use stability of ceftaroline fosamil infusion solution of concentrations up to 12 mg/mL in elastomeric home infusion system prefilled with 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP and MINI-BAG Plus Container delivery devices prefilled with 0.9% sodium chloride injection. In-use ceftaroline fosamil infusion solution (12 mg/mL) was prepared for elastomeric home infusion systems (Homepump Eclipse, Baxter Intermate, and AccuRx Elastomeric Pump) pre-filled with either 0.9% sodium chloride injection or 5% dextrose; or Baxter MINI-BAG Plus Containers pre-filled with 0.9% Sodium Chloride Injection USP (4 mg/mL to 12 mg/mL ceftaroline fosamil in final solution). The systems were stored refrigerated for 24 hours followed by up to 6 hours of storage at room temperature. Samples were analyzed at various time points for assay and degradation product by a validated stability-indicating high-performance liquid chromatography method. In-use ceftaroline fosamil infusion solution, ranging from 4-mg/mL to a maximum of 12-mg/mL concentration, in elastomeric home infusion systems prefilled with 0.9% sodium chloride injection or 5% dextrose, and MINI-BAG Plus Containers prefilled with 0.9% sodium chloride injection were chemically stable for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours at room temperature and had acceptable compatibility with material used. Ceftaroline fosamil (4 mg/mL to 12 mg/mL) maintains its potency for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours of storage at room temperature upon reconstitution in infusion solution with 0.9% sodium chloride or 5% dextrose when used in elastomeric home infusion system and MINI-BAG Plus Containers delivery devices prefilled with 0.9% sodium chloride injection.
Mahoney, Peter; Carr, Debra; Arm, Richard; Gibb, Iain; Hunt, Nicholas; Delaney, Russ J
2018-03-01
The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.
Nakatani, Masashi; Fukuda, Toru; Arakawa, Naomi; Kawasoe, Tomoyuki; Omata, Sadao
2013-02-01
Few attempts have been made to distinguish the softness of different skin layers, though specific measurement of the superficial layer would be useful for evaluating the emollient effect of cosmetics and for diagnosis of skin diseases. We developed a sensor probe consisting of a piezoelectric tactile sensor and a load cell. To evaluate it, we firstly measured silicone rubber samples with different softness. Then, it was applied to human forearm skin before and after tape-stripping. A VapoMeter and skin-surface hygrometer were used to confirm removal of the stratum corneum. A Cutometer was used to obtain conventional softness data for comparison. Both the piezoelectric tactile sensor and the load cell could measure the softness of silicone rubber samples, but the piezoelectric tactile sensor was more sensitive than the load cell when the reaction force of the measured sample was under 100 mN in response to a 2-mm indentation. For human skin in vivo, transepidermal water loss and skin conductance were significantly changed after tape-stripping, confirming removal of the stratum corneum. The piezoelectric tactile sensor detected a significant change after tape-stripping, whereas the load cell did not. Thus, the piezoelectric tactile sensor can detect changes of mechanical properties at the skin surface. The load cell data were in agreement with Cutometer measurements, which showed no change in representative skin elasticity parameters after tape-stripping. These results indicate that our sensor can simultaneously measure the mechanical properties of the superficial skin layer and whole skin. © 2012 John Wiley & Sons A/S.
Electrically conductive polyurethanes for biomedical applications
NASA Astrophysics Data System (ADS)
Williams, Charles M.; Nash, M. A.; Poole-Warren, Laura A.
2005-02-01
Electrical interfacing with neural tissue poses significant problems due to host response to the material. This response generally leads to fibrous encapsulation and increased impedance across the electrode. In neural electrodes such as cochlear implants, an elastomeric material like silicone is used as an insulator for the metal electrode. This project ultimately aims to produce a polymer electrode with elastomeric mechanical properties, metal like conductivity and capability. The approach taken was to produce a nanocomposite elastomeric material based on polyurethane (PU) and carbon nanotubes. Carbon nanotubes are ideal due to their high aspect ratio as well as being a ballistic conductor. The choice of PU is based on its elastomeric properties, processability and biocompatibility. Multi-walled nanotubes (MWNTs) were dispersed ultrasonically in various dispersive solutions before being added at up to 20wt% to a 5wt% PU (Pellethane80A) in Dimethylacetamide (DMAc). Films were then solvent cast in a vacuum oven overnight. The resulting films were tested for conductivity using a two-probe technique and mechanically tested using an Instron tensiometer. The percolation threshold (p) of the PU/MWNT films occurred at loadings of between 7 and 10 wt% in this polymer system. Conductivity of the films (above p) was comparable to those for similar systems reported in the literature at up to approximately 7x10-2 Scm-1. Although PU stiffness increased with increased %loading of nanotubes, all composites were highly flexible and maintained elastomeric properties. From these preliminary results we have demonstrated electrical conductivity. So far it is evident that a superior percolation threshold is dependent on the degree of dispersion of the nanotubes. This has prompted work into investigating other preparations of the films, including melt-processing and electrospinning.
Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire
2014-04-15
The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.
Esthetic perception of orthodontic appliances by Brazilian children and adolescents.
Kuhlman, Deise Caldas; Lima, Tatiana Araújo de; Duplat, Candice Belchior; Capelli, Jonas
2016-01-01
The objective of this present study was to understand how children and adolescents perceive esthetic attractiveness of a variety of orthodontic appliances. It also analyzed preferences according to patients' age, sex and socioeconomic status. A photograph album consisting of eight photographs of different orthodontic appliances and clear tray aligners placed in a consenting adult with pleasing smile was used. A sample of children or adolescents aged between 8 and 17 years old (n = 276) was asked to rate each image for its attractiveness on a visual analog scale. Comparisons between the appliances attractiveness were performed by means of nonparametric statistics with Friedman's test followed by Dunn's multiple comparison post-hoc test. Correlation between appliances and individuals' socioeconomic status, age, sex, and esthetic perception was assessed by means of Spearman's correlation analysis. Attractiveness ratings of orthodontic appliances varied nonsignificantly for children in the following hierarchy: traditional metallic brackets with green elastomeric ligatures > traditional metallic brackets with gray elastomeric ligatures > sapphire esthetic brackets; and for adolescents, as follows: sapphire esthetic brackets > clear aligner without attachments > traditional metallic brackets with green elastomeric ligatures. The correlation between individuals' socioeconomic status and esthetic perception of a given appliance was negative and statistically significant for appliances such as the golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures. Metal appliances were considered very attractive, whereas aligners were classified as less attractive by children and adolescents. The correlation between esthetic perception and socioeconomic status revealed that individuals with a higher socioeconomic level judged esthetics as the most attractive attribute. For those with higher economic status, golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures were assessed as the worst esthetic option.
Esthetic perception of orthodontic appliances by Brazilian children and adolescents
Kuhlman, Deise Caldas; de Lima, Tatiana Araújo; Duplat, Candice Belchior; Capelli, Jonas
2016-01-01
ABSTRACT Objective: The objective of this present study was to understand how children and adolescents perceive esthetic attractiveness of a variety of orthodontic appliances. It also analyzed preferences according to patients' age, sex and socioeconomic status. Methods: A photograph album consisting of eight photographs of different orthodontic appliances and clear tray aligners placed in a consenting adult with pleasing smile was used. A sample of children or adolescents aged between 8 and 17 years old (n = 276) was asked to rate each image for its attractiveness on a visual analog scale. Comparisons between the appliances attractiveness were performed by means of nonparametric statistics with Friedman's test followed by Dunn's multiple comparison post-hoc test. Correlation between appliances and individuals' socioeconomic status, age, sex, and esthetic perception was assessed by means of Spearman's correlation analysis. Results: Attractiveness ratings of orthodontic appliances varied nonsignificantly for children in the following hierarchy: traditional metallic brackets with green elastomeric ligatures > traditional metallic brackets with gray elastomeric ligatures > sapphire esthetic brackets; and for adolescents, as follows: sapphire esthetic brackets > clear aligner without attachments > traditional metallic brackets with green elastomeric ligatures. The correlation between individuals' socioeconomic status and esthetic perception of a given appliance was negative and statistically significant for appliances such as the golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures. Conclusion: Metal appliances were considered very attractive, whereas aligners were classified as less attractive by children and adolescents. The correlation between esthetic perception and socioeconomic status revealed that individuals with a higher socioeconomic level judged esthetics as the most attractive attribute. For those with higher economic status, golden orthodontic brackets and traditional metallic brackets with green elastomeric ligatures were assessed as the worst esthetic option. PMID:27901230
Micro-masonry for 3D additive micromanufacturing.
Keum, Hohyun; Kim, Seok
2014-08-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.
Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon
2016-06-22
We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.
Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard
2018-02-09
The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne; Schöpfer, Martin P. J.
2018-05-01
We investigate episodic soft-sediment deformation structures cross-cut by normal faults preserved in unlithified finely laminated calcite rich sediments in the Hirlatz cave in the Northern Calcareous Alps (Austria). These sediments comprise varve-like alternations of brighter carbonate/quartz rich layers, and darker clay mineral rich layers. The deformed sediments contain abundant millimeter to centimeter-scale soft-sediment structures (load casts, ball-and-pillow structures), sheet slumps (thrust faults and folds), erosive channels filled with slides and chaotic slumps. After deposition and soft-sediment deformation normal faults developed within the entire sedimentary succession, an event that probably correlates with an offset of c. 10 cm of the passage wall above the outcrop. Our major conclusions are: (i) The sediments have a glacial origin and were deposited in the Hirlatz cave under phreatic fluvio-lacustrine conditions. The deposition and the soft-sediment deformation occurred most likely during the last glaciation (i.e. around 25 ka ago); (ii) The liquefaction and formation of the soft-sediment structures in water-saturated stratified layers was triggered by episodic seismic events; (iii) The internally deformed sediments were later displaced by normal faults; (iv) A possible source for the seismic events is the active sinistral Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault which is located about 10 km south of the outcrop and plays a major role in accommodating the extrusion of the Eastern Alps towards the Pannonian Basin. To our knowledge, the described structures are the first report of liquefaction and seismically induced soft-sediment deformations in Quaternary sediments in the Eastern Alps.
Impact face influence on low velocity impact performance of interply laminated plates
NASA Astrophysics Data System (ADS)
Manikandan, Periyasamy; Chai, Gin Boay
2015-03-01
Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.
Microscale Soft Patterning for Solution Processable Metal Oxide Thin Film Transistors.
Jung, Sang Wook; Chae, Soo Sang; Park, Jee Ho; Oh, Jin Young; Bhang, Suk Ho; Baik, Hong Koo; Lee, Tae Il
2016-03-23
We introduce a microscale soft pattering (MSP) route utilizing contact printing of chemically inert sub-nanometer thick low molecular weight (LMW) poly(dimethylsiloxane) (PDMS) layers. These PDMS layers serve as a release agent layer between the n-type Ohmic metal and metal oxide semiconductors (MOSs) and provide a layer that protects the MOS from water in the surrounding environment. The feasibility of our MSP route was experimentally demonstrated by fabricating solution processable In2O3, IZO, and IGZO TFTs with aluminum (Al), a typical n-type Ohmic metal. We have demonstrated patterning gaps as small as 13 μm. The TFTs fabricated using MSP showed higher field-effect-mobility and lower hysteresis in comparison with those made using conventional photolithography.
Lee, Seung Goo; Kim, Haena; Choi, Hyun Ho; Bong, Hyojin; Park, Yeong Don; Lee, Wi Hyoung; Cho, Kilwon
2013-04-18
The evaporation-induced self-alignment of semiconductor nanowires is achieved using wrinkled elastomeric templates. The wrinkled templates, which have a surface topography that can be tuned via changes in the mechanical strain, are used as both a template to align the nanowires and as a stamp to transfer the aligned nanowires to target substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Paul, J. T., Jr.; Buntin, G. A.
1982-01-01
Graphite (or carbon) fiber composite impact strength improvement was attempted by modifying the fiber surface. Elastomeric particles were made into lattices and deposited ionically on surface treated graphite fiber in an attempt to prepare a surface containing discrete rubber particles. With hard, nonelastomeric polystyrene discrete particle coverage was achieved. All the elastomeric containing lattices resulted in elastomer flow and filament agglomeration during drying.
Elastomeric impression materials: a comparison of accuracy of multiple pours.
Kumar, Dheeraj; Madihalli, Anand U; Reddy, K Rajeev Kumar; Rastogi, Namrataa; Pradeep, N T
2011-07-01
The aim of the present study is to compare the various elastomeric impression materials in terms of accuracy and dimensional stability, with respect to obtaining multiple casts from a single elastomeric impression at various times of pours. Three master dies were prepared for the impression making, two of these were made of brass containing a central hole with undercuts. The third die simulated a conventionally prepared typodont maxillary central incisor. Three elastomeric impression materials were chosen for the study. Each impression was poured at various time periods. Casts thus obtained were evaluated under a traveling microscope to evaluate various dimensional changes. Addition silicones provided dies which were shorter in height and bigger in diameter. Polyethers provided dies which were shorter in both height and diameter. Condensation silicones showed insignificant changes from the master die at the immediate pour but deteriorated rapidly after that in subsequent pours. None of the impression material showed a consistent behavior up to the fourth pour. They occasionally showed deviation from the pattern, but all these values were statistically insignificant. Polyethers showed lesser ability than both the addition silicones as well as the condensation silicones to recover from induced deformation. Addition silicones as well as the condensation silicones have better ability to recover from induced deformation when compared to polyether.
De Francesco, Francesco; Guastafierro, Antonio; Nicoletti, Gianfranco; Razzano, Sergio; Riccio, Michele; Ferraro, Giuseppe A
2017-05-12
Autologous fat grafting procedures in plastic surgery have been extensively used to reinforce soft tissue in congenital or acquired tissue impairments. With this background, the aim of this study is firstly to examine the impact of a selective centrifugation on existing adipose stem cells (ASCs) in terms of stemness profile maintenance and, secondly, to investigate the effect of restoring volume in reconstruction on patients affected by soft tissue damage. After centrifugation, the fat graft products were separated into two layers and subsequently examined in vitro for the expression of CD34, CD90, CD117, CD105, CD29, CD31, CD44, CD73, CD133, CD14 and CD45 markers by flow cytometry and gene expression analyses were performed for Sox2, WNT3A, END, CD44, FUT4, COLL1, CTNNB1, hbEGF, KRTLG, MMP2 and VIM genes. The results showed that in the middle-high density (MHD) layer there was a peak concentration of ASCs, compared to another layer obtained after centrifugation. Research carried out on patients under treatment for soft tissue regeneration using cells obtained from MHD layer selection will be fundamental in comparative analysis. These studies will lead to an adequate standardization of outcomes, provided that treatment is performed through cell selection. Therefore, a unique procedure in tissue reconstruction and regeneration through fat grafting is presented here.
Studying the Warm Layer and the Hardening Factor in Cygnus X-1
NASA Technical Reports Server (NTRS)
Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin
2002-01-01
As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.
Fluid assisted installation of electrical cable accessories
Mayer, Robert W.; Silva, Frank A.
1977-01-01
An electrical cable accessory includes a generally tubular member of elastomeric material which is to be installed by placement over a cylindrical surface to grip the cylindrical surface, when in appropriate assembled relation therewith, with a predetermined gripping force established by dilation of the tubular member, the installation being facilitated by introducing fluid under pressure, through means provided in the tubular member, between the tubular member and the cylindrical surface, and simultaneously impeding the escape of the fluid under pressure from between the tubular member and the cylindrical surface by means adjacent one of the ends of the tubular member to cause dilation of the tubular member and establish a fluid layer between the tubular member and the cylindrical surface, thereby reducing the gripping force during installation.
Effects of low-modulus coatings on pin-bone contact stresses in external fixation.
Manley, M T; Hurst, L; Hindes, R; Dee, R; Chiang, F P
1984-01-01
The intent of this study was to investigate the stress distribution in cortical bone around fracture fixation pins and around pins coated with various polymeric and elastomeric materials. Since these interface stresses cannot be measured directly, a photoelastic technique was employed and stresses were measured in two-dimensional bone models fabricated from sheets of epoxy resin. Our results showed that when a fixation pin was loaded in compression, the compressive stress measured in the model was greatest at the pin-model interface. The magnitude of the compressive stress was found to diminish steeply away from the hole in a log decrement distribution which was asymptotic to the value of the average stress in the model. When polymeric and elastomeric materials were applied as pin coatings and the performance of the coated pins was compared to that of uncoated pins of the same overall diameter, a reduction of the maximum stress in the bone model was demonstrated. Among the coatings tested, we found that of the polymeric materials ultrahigh molecular weight polyethylene (UHMWPE) was most effective at reducing the peak cortical stress magnitude. The most effective coating material overall was found to be silicon elastomer. Computation of stress values in models loaded through stainless-steel pins and through pins coated with 1-mm silicon elastomer showed that the presence of the elastomer layer caused a reduction of about 50% in the maximum compressive stress in the model.
Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J
2017-05-31
Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.
Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers
Prisbrey, Shon T.
2004-07-06
The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).
Zhang, Zhaoyan; Hieu Luu, Trung
2012-01-01
Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891
Zhang, Zhaoyan; Luu, Trung Hieu
2012-09-01
Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed.
Generation of organized germ layers from a single mouse embryonic stem cell.
Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning
2014-05-30
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.
Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn
2011-12-01
The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.
Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak
2014-06-01
The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. All the three disinfectants produced complete disinfection, and didn't cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81.
NASA Astrophysics Data System (ADS)
Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.
2017-08-01
Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.
Structural optimization of 3D-printed synthetic spider webs for high strength
NASA Astrophysics Data System (ADS)
Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.
2015-05-01
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.
Structural optimization of 3D-printed synthetic spider webs for high strength.
Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J
2015-05-15
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.
NASA Astrophysics Data System (ADS)
Kut, Stanislaw; Ryzinska, Grazyna; Niedzialek, Bernadetta
2016-01-01
The article presents the results of tests in order to verifying the effectiveness of the nine selected elastomeric material models (Neo-Hookean, Mooney with two and three constants, Signorini, Yeoh, Ogden, Arruda-Boyce, Gent and Marlow), which the material constants were determined in one material test - the uniaxial tension testing. The convergence assessment of nine analyzed models were made on the basis of their performance from an experimental bending test of the elastomer samples from the results of numerical calculations FEM for each material models. To calculate the material constants for the analyzed materials, a model has been generated by the stressstrain characteristics created as a result of experimental uniaxial tensile test with elastomeric dumbbell samples, taking into account the parameters received in its 18th cycle. Using such a calculated material constants numerical simulation of the bending process of a elastomeric, parallelepipedic sampleswere carried out using MARC / Mentat program.
Ultrasonic monitoring of the setting of silicone elastomeric impression materials.
Kanazawa, Tomoe; Murayama, Ryosuke; Furuichi, Tetsuya; Imai, Arisa; Suda, Shunichi; Kurokawa, Hiroyasu; Takamizawa, Toshiki; Miyazaki, Masashi
2017-01-31
This study used an ultrasonic measurement device to monitor the setting behavior of silicone elastomeric impression materials, and the influence of temperature on setting behavior was determined. The ultrasonic device consisted of a pulser-receiver, transducers, and an oscilloscope. The two-way transit time through the mixing material was divided by two to account for the down-and-back travel path; then it was multiplied by the sonic velocity. Analysis of variance and the Tukey honest significant difference test were used. In the early stages of the setting process, most of the ultrasonic energy was absorbed by the elastomers and the second echoes were relatively weak. As the elastomers hardened, the sonic velocities increased until they plateaued. The changes in sonic velocities varied among the elastomers tested, and were affected by temperature conditions. The ultrasonic method used in this study has considerable potential for determining the setting processes of elastomeric impression materials.
Ternary NiFeX as soft biasing film in a magnetoresistive sensor
NASA Astrophysics Data System (ADS)
Chen, Mao-Min; Gharsallah, Neila; Gorman, Grace L.; Latimer, Jacquie
1991-04-01
The properties of NiFeX ternary films (X being Al, Au, Nb, Pd, Pt, Si, and Zr) have been studied for soft-film biasing of the magnetoresistive (MR) trilayer sensor. In general, the addition of the element X into the NiFe alloy film decreases the saturation magnetization Bs and magnetoresistance coefficient of the film, while increasing the film's electrical resistivity ρ. One of the desirable properties of a soft film for biasing is high sheet resistance for minimum current flow. A figure of merit Bsρ that takes into account both the rate of increase in Bs and the rate of decrease in ρ when adding X element was derived to compare the effectiveness of various X elements in reducing the current shunting through the soft-film layer. Using this criterion, NiFeNb and NiFeZr emerge as good soft-film materials having a maximum sheet resistance relative to the MR layer. Other critical properties such as magnetoresistance coefficient, magnetostriction, coercivity, and anisotropy field were also examined and are discussed in this paper.
Stable Liquid Jets Bouncing off Soft Gels
NASA Astrophysics Data System (ADS)
Daniel, Dan; Yao, Xi; Aizenberg, Joanna
2018-01-01
A liquid jet can stably bounce off a sufficiently soft gel by following the contour of the dimple created upon impact. This new phenomenon is insensitive to the wetting properties of the gels and was observed for different liquids over a wide range of surface tensions, γ =24 -72 mN /m . In contrast, other jet rebound phenomena are typically sensitive to γ : only a high γ jet rebounds off a hard solid (e.g. superhydrophobic surface) and only a low γ jet bounces off a liquid bath. This is because an air layer must be stabilized between the two interfaces. For a soft gel, no air layer is necessary and the jet rebound remains stable even when there is direct liquid-gel contact.
Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U
1997-03-01
Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.
Soft optics in intelligent optical networks
NASA Astrophysics Data System (ADS)
Shue, Chikong; Cao, Yang
2001-10-01
In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.
USDA-ARS?s Scientific Manuscript database
Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than their synthetic counterparts. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-cl...
Toward soft-tissue elastography using digital holography to monitor surface acoustic waves
NASA Astrophysics Data System (ADS)
Li, Shiguang; Mohan, Karan D.; Sanders, William W.; Oldenburg, Amy L.
2011-11-01
Measuring the elasticity distribution inside the human body is of great interest because elastic abnormalities can serve as indicators of several diseases. We present a method for mapping elasticity inside soft tissues by imaging surface acoustic waves (SAWs) with digital holographic interferometry. With this method, we show that SAWs are consistent with Rayleigh waves, with velocities proportional to the square root of the elastic modulus greater than 2-40 kPa in homogeneous tissue phantoms. In two-layer phantoms, the SAW velocity transitions approximately from that of the lower layer to that of the upper layer as frequency is increased in agreement with the theoretical relationship between SAW dispersion and the depth-dependent stiffness profile. We also observed deformation in the propagation direction of SAWs above a stiff inclusion placed 8 mm below the surface. These findings demonstrate the potential for quantitative digital holography-based elastography of soft tissues as a noninvasive method for disease detection.
Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.
Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D
2018-06-05
Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Electrical connector composite housing and method of making same
Silva, Frank A.
1979-01-01
A sleeve-like insert of conductive elastomeric material of a type which serves as an internal shield in electrical connectors for connecting high voltage cables has an end portion folded upon itself, the enfolded portion being substantially permanently retained in its desired position by allowing insulative elastomeric material to fill apertures in the end portion and become bonded thereto in a void free manner, during molding of an insulating outer sleeve-like jacket about the insert.
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R. (Inventor)
1981-01-01
Flame retardant, abrasion resistant elastomeric compositions are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Coated fabrics employing such elastomeric compositions as coating film are flexible, lightweight, and air impermeable and can be made using heat or dielectric sealing procedures.
EPDM - Silicone blends - a high performance elastomeric composition for automotive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, J.M.
1987-01-01
Styling and design changes have dramatically altered performance requirements for elastomers. High performance engines with electronic fuel injection have increased temperatures under the hood. Therefore, high performance elastomers are required to meet today's service conditions. New technology has been developed to compatibilize EPDM and silicone into high performance elastomeric compositions. These blends have physical, electrical and mechanical properties, for 175/sup 0/C service. Formulations are discussed for applications which require heat and weather resistance.
De Francesco, Francesco; Guastafierro, Antonio; Nicoletti, Gianfranco; Razzano, Sergio; Riccio, Michele; Ferraro, Giuseppe A.
2017-01-01
Autologous fat grafting procedures in plastic surgery have been extensively used to reinforce soft tissue in congenital or acquired tissue impairments. With this background, the aim of this study is firstly to examine the impact of a selective centrifugation on existing adipose stem cells (ASCs) in terms of stemness profile maintenance and, secondly, to investigate the effect of restoring volume in reconstruction on patients affected by soft tissue damage. After centrifugation, the fat graft products were separated into two layers and subsequently examined in vitro for the expression of CD34, CD90, CD117, CD105, CD29, CD31, CD44, CD73, CD133, CD14 and CD45 markers by flow cytometry and gene expression analyses were performed for Sox2, WNT3A, END, CD44, FUT4, COLL1, CTNNB1, hbEGF, KRTLG, MMP2 and VIM genes. The results showed that in the middle-high density (MHD) layer there was a peak concentration of ASCs, compared to another layer obtained after centrifugation. Research carried out on patients under treatment for soft tissue regeneration using cells obtained from MHD layer selection will be fundamental in comparative analysis. These studies will lead to an adequate standardization of outcomes, provided that treatment is performed through cell selection. Therefore, a unique procedure in tissue reconstruction and regeneration through fat grafting is presented here. PMID:28498335
Initial Tensile and Residual Forces of Pigmented Elastomeric Ligatures from Various Brands
NASA Astrophysics Data System (ADS)
Wichai, Wassana; Anuwongnukroh, Niwat; Dechkunakorn, Surachai; Kaypetch, Rattiporn; Tua-ngam, Peerapong
2017-11-01
This study aimed to investigate the initial tensile and residual forces of pigmented elastomeric ligatures (clear, pink, and metallic) from three commercial brands - Brand 1 (USA), Brand 2 (USA), and Brand 3(China). Twelve elastomeric ligatures of each brand and color were evaluated for initial tensile and residual forces after stretching for 28 days at 37°C by a Universal Testing Machine. The results showed that the highest initial tensile force was 14.78 N, 20.71 N, and 15.1 N for the metallic color of Brand-1, pink color of Brand -2, and metallic color of Brand -3, respectively. There were significant (p<0.05) differences in the initial tensile force of each brand, except clear and metallic color of Brand-1 & 3 and pink color of Brand-2 & 3. Similarly, among the pigmented ligatures from each brand, significant (p<0.05) differences were observed in the initial tensile force, except metallic color of Brand-1 & 3. Brand-3 had the highest residual force after 28 days, whereas the loss of force was 80-90% in Brand-1 & 2 and 20-30% in Brand-3. There were also significant (p<0.05) differences in the residual forces in each color and brand, except metallic color of Brand-1. In conclusion, there were significant differences in the initial tensile and residual forces among the three pigmented elastomeric ligatures of the three commercial brands.
Blow-out protector and fire control system for petroleum exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caraway, M.F.; Caraway, B.L.
1987-10-06
A blow-out protector is described for an oil well comprising a housing having a vertical passageway therethrough for a Kelly. The housing has a lower end adapter flange to be connected to a well casing, an elastomeric body having an opening for the Kelly and carried on the Kelly for providing sealing contact with the Kelly and housing passageway, a catch ring secured to the Kelly and having a surface defined by a given diameter, a compressor ring plate positioned below the elastomeric body on the Kelly, means on an interior of the housing having a given diameter and preventingmore » the compressor ring plate from falling down and yet providing engagement with the surface of the catch ring, the compressor ring plate having a hole for passage of the Kelly drive-mechanism for the drill pipe, the catch ring on the Kelly positioned below the compressor plate. The diameter of the catch ring is smaller than the diameter of the interior means on the housing so that when the Kelly is pulled up the catch ring will contact and force the compressor ring plate against the elastomeric body and force the elastomeric body into tight contact with both the Kelly and the housing thus sealing the space between the Kelly and the housing against a blow-out.« less
Forsberg, C M; Brattström, V; Malmberg, E; Nord, C E
1991-10-01
Twelve orthodontic patients undergoing treatment with fixed appliances took part in the present study. In all patients elastomeric rings were used for ligation on one side of the dental arch midline, whereas steel wires were used on the opposite side. The number of micro-organisms in samples of plaque, taken from the labial surface of the upper lateral incisors, was recorded on five occasions during treatment. In samples of saliva, the numbers of Streptococcus mutans and lactobacilli were recorded on the same occasions. This registration was also made on two occasions before insertion of the fixed appliance, and 6 weeks after the period of active treatment. The results showed that, in the majority of patients, the incisor which was attached to the arch-wire with an elastomeric ring, exhibited a greater number of micro-organisms in the plaque than the incisor ligated with steel wire. Following insertion of fixed appliances the number of S. mutans and lactobacilli in saliva increased significantly. Variations in the number of micro-organisms in the saliva during active treatment were not reflected in any relative increase or decrease in microbial colonization on either steel ligatures or elastomeric rings. The use of retainers after active treatment was not associated with increased numbers of micro-organisms in the saliva.
Fracture characterization of inhomogeneous wrinkled metallic films deposited on soft substrates
NASA Astrophysics Data System (ADS)
Kishida, Hiroshi; Ishizaka, Satoshi; Nagakura, Takumi; Suzuki, Hiroaki; Yonezu, Akio
2017-12-01
This study investigated the fracture properties of wrinkled metallic films on a polydimethylsiloxane (PDMS) soft substrate. In particular, the crack density of the wrinkled film during tensile deformation was examined. In order to achieve better deformability of metallic thin films, a method to fabricate a wrinkled thin film on a PDMS soft substrate was first established. The copper (Cu) nano-film fabricated in this study possessed a wrinkled geometry, which plays a critical role in determining the extent of large elastic deformation. To create the wrinkled structure, wet-etching with a polymeric sacrificial layer was used. A sacrificial layer was first deposited onto a silicone rubber sheet. During the curing process of the layer, a compressive strain was applied such that the hardened surface layer buckled, and a wrinkled form was obtained. Subsequently, a PDMS solution was used to cover the layer in order to form a wrinkled PDMS substrate. Finally, the Cu film was deposited onto the wrinkled PDMS, such that the wrinkled Cu film on a soft PDMS substrate was fabricated. The use of uni-axial tensile tests resulted in film crack generation at the stress concentration zone in the wrinkled structure of the films. When the tensile loading was increased, the number of cracks increased. It was found that the increase in crack density was strongly related to the inhomogeneous nature of the wrinkled structure. Such a trend in crack density was investigated using FEM (finite element method) computations, such that this study established a simple mechanical model that may be used to predict the increase in crack density during tensile deformation. This model was verified through several experiments using various wrinkle patterns. The proposed mechanical model may be useful to predict the crack density of a wrinkled metallic film subject to tensile loading.
Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
NASA Astrophysics Data System (ADS)
C, X. Sang; G, P. Zhao; W, X. Xia; X, L. Wan; F, J. Morvan; X, C. Zhang; L, H. Xie; J, Zhang; J, Du; A, R. Yan; P, Liu
2016-03-01
The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8 × 10-6 erg/cm to 0.45 × 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).
Al-Melh, M Abu; Andersson, L
2017-12-01
The initial placement of orthodontic elastomeric separators can be uncomfortable and painful. Therefore, it is important to relieve this disturbing sensation to create a discomfort or pain-free orthodontic visit. The purpose of this study was to investigate the effect of a lidocaine/prilocaine topical anesthetic on pain and discomfort associated with the placement of orthodontic elastomeric separators. Fifty subjects aging between 20-35 years were included in this study. In the maxillary arch, a lidocaine/prilocaine topical anesthetic was placed around the ginigval margins of the premolar and molar on side. On the other side, a placebo agent was placed around the ginigval margins of the premolar and molar. After two minutes, an elastomeric separator was placed between the premolar and molar on both sides. The subjects were then asked to report their findings on a Verbal Scale and a Visual Analogue Scale every second minute for a period of 10 min. The subjects were also given a questionnaire to evaluate the overall impression on the topical anesthetic use. The overall mean discomfort/pain score was found to be significantly lower (p < 0.001) with the topical anesthetic than with the placebo. Repeated measures ANOVA with a Greenhouse-Geisser correction determined that mean pain scores were statistically significantly low with the 10-min time duration (F (1.54,42.2) = 40.7, p = 0.001), with an estimated grand mean (8.37, 95% CI 6.75-9.98). The questionnaire responses revealed that 87% of the subjects reported an overall satisfaction and agreement with the topical anesthetic than with the placebo or no difference (13%) after the initial separator placement. The discomfort and pain resulting from the initial placement of orthodontic elastomeric separators can be significantly reduced with the lidocaine/prilocaine topical anesthetic.
From Red Cells to Soft Porous Lubrication
NASA Astrophysics Data System (ADS)
Gacka, T.; Nathan, R.; Wu, L.; Wu, Q.; Cbmss Laboratory Team; Chinese Academy Of Sci. Team
2011-11-01
Feng and Weinbaum (J. Fluid. Mech., 422, 282, 2000), inspired by the enhanced lift phenomena in downhill skiing, developed a new lubrication theory for highly compressible porous media where significantly increased lifting force was predicted as a planing surface glided over a soft porous layer; suggesting superior potential use of porous media for soft lubrication. In this study, we experimentally examine the lift generation phenomena by developing a novel soft porous bearing that consists of a running conveyer belt covered with a soft, 100% polyester, porous sheet, and a stationary, fully instrumented, inclined, planar, upper board. Pore pressure was generated as the upper boundary glides over the soft porous bearing and was measured by pressure sensors. One observed that the pore pressure distribution is consistent with predictions by Feng and Weinbaum (2000), and is a function of the relative velocity between the planing surface and the running belt, the mechanical properties (e.g. porosity, permeability and stiffness) and thickness of the porous layer, as well as the compression ratios at the leading and trailing edges. A load cell is used to characterize the performance of the porous bearing, by comparing pore pressure to total lifting forces. The study presented herein significantly improves our understanding of the behavior of highly compressible porous media under fast compression.
High Resolution Quantification of Cellular Forces for Rigidity Sensing
NASA Astrophysics Data System (ADS)
Liu, Shuaimin
This thesis describes a comprehensive study of understanding the mechanism of rigidity sensing by quantitative analysis using submicron pillar array substrates. From mechanobiology perspective, we explore and study molecular pathways involved in rigidity and force sensing at cell-matrix adhesions with regard to cancer, regeneration, and development by quantification methods. In Chapter 2 and 3, we developed fabrication and imaging techniques to enhance the performance of a submicron pillar device in terms of spatial and temporal measurement ability, and we discovered a correlation of rigidity sensing forces and corresponding proteins involved in the early rigidity sensing events. In Chapter 2, we introduced optical effect arising from submicron structure imaging, and we described a technique to identify the correct focal plane of pillar tip by fabricating a substrate with designed-offset pillars. From calibration result, we identified the correct focal plane that was previously overlooked, and verified our findings by other imaging techniques. In Chapter 3, we described several techniques to selectively functionalize elastomeric pillars top and compared these techniques in terms of purposes and fabrication complexity. Techniques introduced in this chapter included direct labeling, such as stamping of fluorescent substances (organic dye, nano-diamond, q-dot) to pillars top, as well as indirect labeling that selectively modify the surface of molds with either metal or fluorescent substances. In Chapter 4, we examined the characteristics of local contractility forces and identified the components formed a sarcomere like contractile unit (CU) that cells use to sense rigidity. CUs were found to be assembled at cell edge, contain myosin II, alpha-actinin, tropomodulin and tropomyosin (Tm), and resemble sarcomeres in size (˜2 mum) and function. Then we performed quantitative analysis of CUs to evaluate rigidity sensing activity over ˜8 hours time course and found that density of CUs decrease with time after spreading on stiff substrate. However addition of EGF dramatically increased local contraction activity such that about 30% of the total contractility was in the contraction units. This stimulatory effect was only observed on stiff substrate not on soft. Moreover, we find that in the early interactions of cells with rigid substrates that EGFR activity is needed for normal spreading and the assembly of local contraction units in media lacking serum and any soluble EGF. In Chapter 5, we performed high temporal- and spatial-resolution tracking of contractile forces exerted by cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like CUs simultaneously moved opposing pillars in net steps of ˜2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of alpha-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.
USDA-ARS?s Scientific Manuscript database
Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than most synthetic fabrics. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-clay nan...
Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials.
Duval, Jérôme F L; van Leeuwen, Herman P
2004-11-09
The current theoretical approaches to electrokinetics of gels or polyelectrolyte layers are based on the assumption that the position of the very interface between the aqueous medium and the gel phase is well defined. Within this assumption, spatial profiles for the volume fraction of polymer segments (phi), the density of fixed charges in the porous layer (rho fix), and the coefficient modeling the friction to hydrodynamic flow (k) follow a step-function. In reality, the "fuzzy" nature of the charged soft layer is intrinsically incompatible with the concept of a sharp interface and therefore necessarily calls for more detailed spatial representations for phi, rho fix, and k. In this paper, the notion of diffuse interface is introduced. For the sake of illustration, linear spatial distributions for phi and rho fix are considered in the interfacial zone between the bulk of the porous charged layer and the bulk electrolyte solution. The corresponding distribution for k is inferred from the Brinkman equation, which for low phi reduces to Stokes' equation. Linear electrostatics, hydrodynamics, and electroosmosis issues are analytically solved within the context of streaming current and streaming potential of charged surface layers in a thin-layer cell. The hydrodynamic analysis clearly demonstrates the physical incorrectness of the concept of a discrete slip plane for diffuse interfaces. For moderate to low electrolyte concentrations and nanoscale spatial transition of phi from zero (bulk electrolyte) to phi o (bulk gel), the electrokinetic properties of the soft layer as predicted by the theory considerably deviate from those calculated on the basis of the discontinuous approximation by Ohshima.
NASA Astrophysics Data System (ADS)
Jiao, J. Y.; Ma, T. Y.; Li, Z. W.; Qiao, L.; Wang, Y.; Wang, T.; Li, F. S.
2018-02-01
We report on the investigation of coercivity changes of the Co72Pt28/Co81Ir19 exchange-coupled composite (ECC) media with negative soft-layer (SL) magnetocrystalline anisotropy (MA). Our results show that the hard-layer (HL) of our sample exhibits a columnar type microstructure with well isolated grains and the SL with hcp-structure grows on top of the HL with the same texture. Therefore, strong coupling of the two layers have been realized as evidenced by the magnetic characterization. Importantly, we observe a more effective reduction of the coercivity of the ECC media by using SLs with negative MA when compared to the use of SLs with positive or negligible MA. The experimental results are corroborated by theoretical calculations.
Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation.
Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza
2017-06-21
The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.
Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H
2017-08-01
We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fluorinated elastomeric materials
Lagow, Richard J.; Dumitru, Earl T.
1986-11-04
This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.
Fluorinated elastomeric materials
Lagow, Richard J.; Dumitru, Earl T.
1990-02-13
This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.
Method of making hollow elastomeric bodies
NASA Technical Reports Server (NTRS)
Broyles, H. F.; Moacanin, J.; Cuddihy, E. F. (Inventor)
1976-01-01
Annular elastomeric bodies having intricate shapes are cast by dipping a heated, rotating mandrel into a solution of the elastomer, permitting the elastomer to creep into sharp recesses, drying the coated mandrel and repeating the operation until the desired thickness has been achieved. A bladder for a heart assist pump in which a cylindrical body terminating in flat, sharp horizontal flanges fabricated by this procedure has been subjected to over 2,500 hours of simulated life conditions with no visible signs of degradation.
Friction and abrasion of elastomeric materials
NASA Technical Reports Server (NTRS)
Gent, A. N.
1975-01-01
An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Korus, R. A. (Inventor)
1980-01-01
Crosslinking elastomeric polytriazines are prepared by a 4 step procedure which consists of (1) forming a poly(imidoylamidine) by the reaction, under reflux conditions, of anhydrous ammonia with certain perfluorinated alkyl or alkylether dinitriles; (2) forming a linear polytriazine by cyclizing the imidoylamidine linkages by reaction with certain perfluorinated alkyl or alkylether acid anhydrides or halides; (3) extending the linear polytriazine chain by further refluxing in anhydrous ammonia; and (4) heating to cyclize the new imidoylamidine and thereby crosslink the polymer.
Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.
Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong
2014-03-26
We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.
Large membrane deflection via capillary force actuation
NASA Astrophysics Data System (ADS)
Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.
2018-06-01
Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.
Active alignment/contact verification system
Greenbaum, William M.
2000-01-01
A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
Cation Valence Control in La0.7Sr0.3Co0.5Mn0.5O3 Thin Films and Bilayers
NASA Astrophysics Data System (ADS)
Kane, Alex; Chopdekar, Rajesh; Arenholz, Elke; Mehta, Apurva; Takamura, Yayoi
The unique interplay between spin, orbital, charge, and lattice degrees of freedom at interfaces in perovskite oxides makes them model systems to probe and exert magnetic control at the nanoscale. Previous work revealed exchange coupling in bilayers composed of a hard ferromagnetic (FM) La0.7Sr0.3CoO3 (LSCO) layer and a soft FM La0.7Sr0.3MnO3 (LSMO) layer, coincident with charge transfer across the LSCO/LSMO interface. An interfacial Co2+-rich LSCO layer produced a FM superexchange interaction with Mn4+ ions in the adjacent LSMO layer, mimicking the behavior of ordered Co2+/Mn4 + ions in the double perovskite La2CoMnO6. In an attempt to manipulate the extent of charge transfer in this system, La0.7Sr0.3Co0.5Mn0.5O3 (LSCMO)/LSMO and LSCMO/LSCO bilayers were deposited by pulsed laser deposition. Bulk magnetometry and soft x-ray magnetic spectroscopy were used to investigate the Mn/Co magnetic and electronic structures, comparing the surface/interface dominant effects vs. the film average. The LSCMO/LSMO bilayer enhanced the magnetically soft Co2+ population at the interface, while the LSCMO/LSCO bilayers strongly suppressed the Co2+ state in the LSCMO layer.
Stable carbon and oxygen isotope record of central Lake Erie sediments
Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.
1998-01-01
Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.
Swaine, Jillian M; Moe, Andrew; Breidahl, William; Bader, Daniel L; Oomens, Cees W J; Lester, Leanne; O'Loughlin, Edmond; Santamaria, Nick; Stacey, Michael C
2018-02-01
High strain in soft tissues that overly bony prominences are considered a risk factor for pressure ulcers (PUs) following spinal cord impairment (SCI) and have been computed using Finite Element methods (FEM). The aim of this study was to translate a MRI protocol into ultrasound (US) and determine between-operator reliability of expert sonographers measuring diameter of the inferior curvature of the ischial tuberosity (IT) and the thickness of the overlying soft tissue layers on able-bodied (AB) and SCI using real-time ultrasound. Part 1: Fourteen AB participants with a mean age of 36.7 ± 12.09 years with 7 males and 7 females had their 3 soft tissue layers in loaded and unloaded sitting measured independently by 2 sonographers: tendon/muscle, skin/fat and total soft tissue and the diameter of the IT in its short and long axis. Part 2: Nineteen participants with SCI were screened, three were excluded due to abnormal skin signs, and eight participants (42%) were excluded for abnormal US signs with normal skin. Eight SCI participants with a mean age of 31.6 ± 13.6 years and all male with 4 paraplegics and 4 tetraplegics were measured by the same sonographers for skin, fat, tendon, muscle and total. Skin/fat and tendon/muscle were computed. AB between-operator reliability was good (ICC = 0.81-0.90) for 3 soft tissues layers in unloaded and loaded sitting and poor for both IT short and long axis (ICC = -0.028 and -0.01). SCI between-operator reliability was good in unloaded and loaded for total, muscle, fat, skin/fat, tendon/muscle (ICC = 0.75-0.97) and poor for tendon (ICC = 0.26 unloaded and ICC = -0.71 loaded) and skin (ICC = 0.37 unloaded and ICC = 0.10). A MRI protocol was successfully adapted for a reliable 3 soft tissue layer model and could be used in a 2-D FEM model designed to estimate soft tissue strain as a novel risk factor for the development of a PU. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biocatalysis: Unmasked by stretching
NASA Astrophysics Data System (ADS)
Kharlampieva, Eugenia; Tsukruk, Vladimir V.
2009-09-01
The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.
Importance of core electrostatic properties on the electrophoresis of a soft particle
NASA Astrophysics Data System (ADS)
De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.
2016-08-01
The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.
Structural optimization of 3D-printed synthetic spider webs for high strength
Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.
2015-01-01
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372
Adjustment of Part Properties for an Elastomeric Laser Sintering Material
NASA Astrophysics Data System (ADS)
Wegner, A.; Ünlü, T.
2018-03-01
Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.
NASA Astrophysics Data System (ADS)
Ashrafizadeh, H.; McDonald, A.; Mertiny, P.
2016-02-01
Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.
Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
NASA Astrophysics Data System (ADS)
Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.
2014-03-01
Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.
Octopus-like suction cups: from natural to artificial solutions.
Tramacere, F; Follador, M; Pugno, N M; Mazzolai, B
2015-05-13
Octopus suckers are able to attach to all nonporous surfaces and generate a very strong attachment force. The well-known attachment features of this animal result from the softness of the sucker tissues and the surface morphology of the portion of the sucker that is in contact with objects or substrates. Unlike artificial suction cups, octopus suckers are characterized by a series of radial grooves that increase the area subjected to pressure reduction during attachment. In this study, we constructed artificial suction cups with different surface geometries and tested their attachment performances using a pull-off setup. First, smooth suction cups were obtained for casting; then, sucker surfaces were engraved with a laser cutter. As expected, for all the tested cases, the engraving treatment enhanced the attachment performance of the elastomeric suction cups compared with that of the smooth versions. Moreover, the results indicated that the surface geometry with the best attachment performance was the geometry most similar to octopus sucker morphology. The results obtained in this work can be utilized to design artificial suction cups with higher wet attachment performance.
Pulsipher, Abigail; Westcott, Nathan P; Luo, Wei; Yousaf, Muhammad N
2009-06-10
In this work, we develop a new, rapid and inexpensive method to generate spatially controlled aldehyde and carboxylic acid surface groups by microfluidic oxidation of 11-hydroxyundecylphosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO) surfaces. SAMs are activated and patterned using a reversibly sealable, elastomeric polydimethylsiloxane cassette, fabricated with preformed micropatterns by soft lithography. By flowing the mild oxidant pyridinium chlorochromate through the microchannels, only selected areas of the SAM are chemically altered. This microfluidic oxidation strategy allows for ligand immobilization by two chemistries originating from a single SAM composition. ITO is robust, conductive, and transparent, making it an ideal platform for studying interfacial interactions. We display spatial control over the immobilization of a variety of ligands on ITO and characterize the resulting oxime and amide linkages by electrochemistry, X-ray photoelectron spectroscopy, contact angle, fluorescence microscopy, and atomic force microscopy. This general method may be used with many other materials to rapidly generate patterned and tailored surfaces for studies ranging from molecular electronics to biospecific cell-based assays and biomolecular microarrays.
Bioinspired adaptive gradient refractive index distribution lens
NASA Astrophysics Data System (ADS)
Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael
2018-02-01
Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.
Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C
2011-03-09
The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.
Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing.
Bennett, Joe
2017-12-01
A testing methodology was developed to expose photopolymer resins and measure the cured material to determine two key parameters related to the photopolymerization process: E c (critical energy to initiate polymerization) and D p (penetration depth of curing light). Five commercially available resins were evaluated under exposure from 365 nm and 405 nm light at varying power densities and energies. Three different methods for determining the thickness of the cured resin were evaluated. Caliper measurements, stylus profilometry, and confocal laser scanning microscopy showed similar results for hard materials while caliper measurement of a soft, elastomeric material proved inaccurate. Working curves for the five photopolymers showed unique behavior both within and among the resins as a function of curing light wavelength. E c and D p for the five resins showed variations as large as 10×. Variations of this magnitude, if unknown to the user and not controlled for, will clearly affect printed part quality. This points to the need for a standardized approach for determining and disseminating these, and perhaps, other key parameters.
Aeroelastic characteristics of the AH-64 bearingless tail rotor
NASA Technical Reports Server (NTRS)
Banerjee, D.
1988-01-01
The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.
Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less
Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics.
Cantarella, Giuseppe; Vogt, Christian; Hopf, Raoul; Münzenrieder, Niko; Andrianakis, Panagiotis; Petti, Luisa; Daus, Alwin; Knobelspies, Stefan; Büthe, Lars; Tröster, Gerhard; Salvatore, Giovanni A
2017-08-30
Although recent progress in the field of flexible electronics has allowed the realization of biocompatible and conformable electronics, systematic approaches which combine high bendability (<3 mm bending radius), high stretchability (>3-4%), and low complexity in the fabrication process are still missing. Here, we show a technique to induce randomly oriented and customized wrinkles on the surface of a biocompatible elastomeric substrate, where Thin-Film Transistors (TFTs) and circuits (inverter and logic NAND gates) based on amorphous-IGZO are fabricated. By tuning the wavelength and the amplitude of the wrinkles, the devices are fully operational while bent to 13 μm bending radii as well as while stretched up to 5%, keeping unchanged electrical properties. Moreover, a flexible rectifier is also realized, showing no degradation in the performances while flat or wrapped on an artificial human wrist. As proof of concept, transparent TFTs are also fabricated, presenting comparable electrical performances to the nontransparent ones. The extension of the buckling approach from our TFTs to circuits demonstrates the scalability of the process, prospecting applications in wireless stretchable electronics to be worn or implanted.
Finite element analysis as a design tool for thermoplastic vulcanizate glazing seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gase, K.M.; Hudacek, L.L.; Pesevski, G.T.
1998-12-31
There are three materials that are commonly used in commercial glazing seals: EPDM, silicone and thermoplastic vulcanizates (TPVs). TPVs are a high performance class of thermoplastic elastomers (TPEs), where TPEs have elastomeric properties with thermoplastic processability. TPVs have emerged as materials well suited for use in glazing seals due to ease of processing, economics and part design flexibility. The part design and development process is critical to ensure that the chosen TPV provides economics, quality and function in demanding environments. In the design and development process, there is great value in utilizing dual durometer systems to capitalize on the benefitsmore » of soft and rigid materials. Computer-aided design tools, such as Finite Element Analysis (FEA), are effective in minimizing development time and predicting system performance. Examples of TPV glazing seals will illustrate the benefits of utilizing FEA to take full advantage of the material characteristics, which results in functional performance and quality while reducing development iterations. FEA will be performed on two glazing seal profiles to confirm optimum geometry.« less
Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors.
Choi, Changsoon; Lee, Jae Myeong; Kim, Shi Hyeong; Kim, Seon Jeong; Di, Jiangtao; Baughman, Ray H
2016-12-14
Twistable and stretchable fiber-based electrochemical devices having high performance are needed for future applications, including emerging wearable electronics. Weavable fiber redox supercapacitors and strain sensors are here introduced, which comprise a dielectric layer sandwiched between functionalized buckled carbon nanotube electrodes. On the macroscopic scale, the sandwiched core rubber of the fiber acts as a dielectric layer for capacitive strain sensing and as an elastomeric substrate that prevents electrical shorting and irreversible structural changes during severe mechanical deformations. On the microscopic scale, the buckled CNT electrodes effectively absorb tensile or shear stresses, providing an essentially constant electrical conductance. Consequently, the sandwich fibers provide the dual functions of (1) strain sensing, by generating approximately 115.7% and 26% capacitance changes during stretching (200%) and giant twist (1700 rad·m -1 or 270 turns·m -1 ), respectively, and (2) electrochemical energy storage, providing high linear and areal capacitances (2.38 mF·cm -1 and 11.88 mF·cm -2 ) and retention of more than 95% of initial energy storage capability under large mechanical deformations.
Micro-masonry for 3D Additive Micromanufacturing
Keum, Hohyun; Kim, Seok
2014-01-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178
Gu, Xinzhu; Matsumura, Yasumoto; Tang, Ying; Roy, Souvik; Hoff, Richard; Wang, Bing; Wagner, William R
2017-07-01
Biodegradable and elastomeric patches have been applied to the surface of infarcted hearts as temporary mechanical supports to effectively alter adverse left ventricular remodeling processes. In this report, recombinant adeno-associated virus (AAV), known for its persistent transgene expression and low pathogenicity, was incorporated into elastomeric polyester urethane urea (PEUU) and polyester ether urethane urea (PEEUU) and processed by electrospinning into two formats (solid fibers and core-sheath fibers) designed to influence the controlled release behavior. The extended release of AAV encoding green fluorescent protein (GFP) was assessed in vitro. Sustained and localized viral particle delivery was achieved over 2 months in vitro. The biodegradable cardiac patches with or without AAV-GFP were implanted over rat left ventricular lesions three days following myocardial infarction to evaluate the transduction effect of released viral vectors. AAV particles were directly injected into the infarcted hearts as a control. Cardiac function and remodeling were significantly improved for 12 weeks after patch implantation compared to AAV injection. More GFP genes was expressed in the AAV patch group than AAV injection group, with both α-SMA positive cells and cardiac troponin T positive cells transduced in the patch group. Overall, the extended release behavior, prolonged transgene expression, and elastomeric mechanical properties make the AAV-loaded scaffold an attractive option for cardiac tissue engineering where both gene delivery and appropriate mechanical support are desired. Copyright © 2017. Published by Elsevier Ltd.
Fully Printed Flexible and Stretchable Electronics
NASA Astrophysics Data System (ADS)
Zhang, Suoming
Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit good reliability under bending conditions owing to the ultrathin polyimide substrate as well as the superior mechanical flexibility of the gate dielectric and carbon nanotube network. Furthermore, we have demonstrated that by using two types of SWCNT samples with different optical absorption characteristics, the photoresponse exhibits unique wavelength selectivity, as manifested by the good correlation between the responsive wavelengths of the devices with the absorption peaks of the corresponding carbon nanotubes. All the proposed materials above together with the unique direct printing process may offer an entry into more sophisticated flexible or stretchable electronic systems with monolithically integrated sensors, actuators, and displays for real life applications.
Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data
NASA Astrophysics Data System (ADS)
Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang
2017-10-01
Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.
Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
Umedachi, T; Vikas, V; Trimmer, B A
2016-03-10
Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new performance capabilities.
Design of a Soft Robotic Elbow Sleeve with Passive and Intent-Controlled Actuation
Koh, Tze Hui; Cheng, Nicholas; Yap, Hong Kai; Yeow, Chen-Hua
2017-01-01
The provision of continuous passive, and intent-based assisted movements for neuromuscular training can be incorporated into a robotic elbow sleeve. The objective of this study is to propose the design and test the functionality of a soft robotic elbow sleeve in assisting flexion and extension of the elbow, both passively and using intent-based motion reinforcement. First, the elbow sleeve was developed, using elastomeric and fabric-based pneumatic actuators, which are soft and lightweight, in order to address issues of non-portability and poor alignment with joints that conventional robotic rehabilitation devices are faced with. Second, the control system was developed to allow for: (i) continuous passive actuation, in which the actuators will be activated in cycles, alternating between flexion and extension; and (ii) an intent-based actuation, in which user intent is detected by surface electromyography (sEMG) sensors attached to the biceps and triceps, and passed through a logic sequence to allow for flexion or extension of the elbow. Using this setup, the elbow sleeve was tested on six healthy subjects to assess the functionality of the device, in terms of the range of motion afforded by the device while in the continuous passive actuation. The results showed that the elbow sleeve is capable of achieving approximately 50% of the full range of motion of the elbow joint among all subjects. Next, further experiments were conducted to test the efficacy of the intent-based actuation on these healthy subjects. The results showed that all subjects were capable of achieving electromyography (EMG) control of the elbow sleeve. These preliminary results show that the elbow sleeve is capable of carrying out continuous passive and intent-based assisted movements. Further investigation of the clinical implementation of the elbow sleeve for the neuromuscular training of neurologically-impaired persons, such as stroke survivors, is needed. PMID:29118693
Water Surface Impact and Ricochet of Deformable Elastomeric Spheres
NASA Astrophysics Data System (ADS)
Hurd, Randy C.
Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this "football" dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface.
NASA Astrophysics Data System (ADS)
Szumiata, Tadeusz; Gzik-Szumiata, Małgorzata; Brzózka, Katarzyna; Górka, Bogumił; Gawroński, Michał; Caruana Finkel, Anastasia; Reeves-McLaren, Nik; Morley, Nicola A.
2016-03-01
The main aim of the work was to show the correlation between magnetostrictive properties and microstructure of 25 nm thick Co90Fe10 films deposited on soft magnetic underlayers. A special attention was paid to the role of the interface region. In the case of Co90Fe10 on 25 nm and 35 nm thick METGLAS underlayers one can resolve in conversion electron Mössbauer spectra two hyperfine field distributions (high-field and medium-field ones) corresponding to both constituents of bilayers. Analogical distributions describe the spectra of Co90Fe10 on 25 nm and 35 nm thick Ni81Fe19 underlayers, however an additional low-field, smeared component has been observed. It has been attributed to the interface layer (of partially disordered structure) between magnetostrictive layer and soft magnetic layer. Such interpretation is backed up by the obtained strong correlation between mean hyperfine field value and magnetostriction constant of the films. The investigated bilayers are good candidates for MRAM devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, A.; Bhattacharyya, D.
A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterizedmore » by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.« less
Rayleigh-Taylor instability in soft elastic layers
NASA Astrophysics Data System (ADS)
Riccobelli, D.; Ciarletta, P.
2017-04-01
This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
A method to generate soft shadows using a layered depth image and warping.
Im, Yeon-Ho; Han, Chang-Young; Kim, Lee-Sup
2005-01-01
We present an image-based method for propagating area light illumination through a Layered Depth Image (LDI) to generate soft shadows from opaque and nonrefractive transparent objects. In our approach, using the depth peeling technique, we render an LDI from a reference light sample on a planar light source. Light illumination of all pixels in an LDI is then determined for all the other sample points via warping, an image-based rendering technique, which approximates ray tracing in our method. We use an image-warping equation and McMillan's warp ordering algorithm to find the intersections between rays and polygons and to find the order of intersections. Experiments for opaque and nonrefractive transparent objects are presented. Results indicate our approach generates soft shadows fast and effectively. Advantages and disadvantages of the proposed method are also discussed.
Soft actuators and soft actuating devices
Yang, Dian; Whitesides, George M.
2017-10-17
A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.
Imaging performance of a normal incidence soft X-ray telescope
NASA Technical Reports Server (NTRS)
Henry, J. P.; Spiller, E.; Weisskopf, M.
1982-01-01
Measurements are presented of the imaging performance of a normal incidence spherical soft X-ray mirror at BK-alpha (67.6 A). The reflector was a 124-layer coating consisting of alternating Re-W alloy and C layers with a protective C overcoat 34 A thick deposited on a Zerodur substrate. Measurements made at an angle of 1.5 deg off axis with the prototype of the Einstein Observatory high resolution imager reveal the resolution of the mirror to be about 1 arcsec FWHM, with 50% of the reflected power within the detector field of 512 arcsec contained within a diameter of 5 arcsec. The data demonstrate the practicality and potential good performance of normal-incidence soft X-ray optics, and show that the scattering performances of such devices may be as good or better than the best grazing incidence devices.
Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.
Shelef, Yaniv; Bar-On, Benny
2017-09-01
The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Min; Li, Songjing
2016-01-01
In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future.
Omena, Thaís Pionório; Fontes-Pereira, Aldo José; Costa, Rejane Medeiros; Simões, Ricardo Jorge; von Krüger, Marco Antônio; Pereira, Wagner Coelho de Albuquerque
2017-01-01
One goal of therapeutic ultrasound is enabling heat generation in tissue. Ultrasound application protocols typically neglect these processes of absorption and backscatter/reflection at the skin/fat, fat/muscle, and muscle/bone interfaces. The aim of this study was to investigate the heating process at interfaces close to the transducer and the bone with the aid of computer simulation and tissue-mimicking materials (phantoms). The experimental setup consists of physiotherapeutic ultrasound equipment for irradiation, two layers of soft tissue-mimicking material, and one with and one without an additional layer of bone-mimicking material. Thermocouple monitoring is used in both cases. A computational model is used with the experimental parameters in a COMSOL® software platform. The experimental results show significant temperature rise (42 °C) at 10 mm depth, regardless of bone layer presence, diverging 3 °C from the simulated values. The probable causes are thermocouple and transducer heating and interface reverberations. There was no statistical difference in the experimental results with and without the cortical bone for the central thermocouple of the first interface [ t (38) = -1.52; 95% CI = -0.85, 0.12; p = 14]. Temperature rise (>6 °C) close to the bone layer was lower than predicted (>21 °C), possibly because without the bone layer, thermocouples at 30 mm make contact with the water bath and convection intensifies heat loss; this factor was omitted in the simulation model. This work suggests that more attention should be given to soft tissue layer interfaces in ultrasound therapeutic procedures even in the absence of a close bone layer.
NASA Astrophysics Data System (ADS)
Drobitch, Justine L.; Ahsanul Abeed, Md; Bandyopadhyay, Supriyo
2017-10-01
We describe an approach to implement precessional switching of a perpendicular-magnetic-anisotropy magneto-tunneling-junction (p-MTJ) without using any magnetic field. The switching is accomplished with voltage-controlled-magnetic-anisotropy (VCMA), spin transfer torque (STT) and mechanical strain. The soft layer of the p-MTJ is magnetostrictive and the strain acts as an effective in-plane magnetic field around which the magnetization of the soft layer precesses to complete a flip. A two-terminal energy-efficient p-MTJ based memory cell, that is compatible with crossbar architecture and high cell density, is designed.
Prestressed elastomer for energy storage
Hoppie, Lyle O.; Speranza, Donald
1982-01-01
Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.
Long-time dynamic compatibility of elastomeric materials with hydrazine
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.
1973-01-01
The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.
NASA Technical Reports Server (NTRS)
Chakar, A.
1984-01-01
A study of the properties and manufacturing techniques for long-fiber reinforced elastomeric composites for flexible and damping structural materials is presented. Attention is given to the usage of polyurethane in the matrix to obtain plastic elastomeric matrices and vitreous transition temperatures which vary from -80 C to 10 C, as well as assure good fiber adhesion. Various polyurethane formulations synthesized from diisocyanate prepolymers are examined in terms of mechanical and thermal properties. The principal reinforcing fiber selected is a unidirectional glass cloth.
Thermal control structure and garment
Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC
2012-03-13
A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.
Spin-filter spin valves with nano-oxide layers for high density recording heads
NASA Astrophysics Data System (ADS)
Al-Jibouri, Abdul; Hoban, M.; Lu, Z.; Pan, G.
2002-05-01
A new spin-filter spin valve with nano-oxide specular layers with structure of Ta/NiFe/IrMn/CoFe/NOL1/CoFe/Cu/CoFetfl/CutCu/NOL2/Ta was deposited using a Nordiko 9606 physical vapor deposition system. The data clearly show that the magnetoresistive (MR) ratio has been significantly improved for spin valves with thinner free layers. The MR ratio remains larger than 12% even when the CoFe free layer is as thin as 1 nm. An optimized MR ratio of ˜15% was obtained when tfl was about 1.2 nm and tCu about 1.5 nm, and was a result of the balance between the increase in the electron mean free path difference and current shunting through the conducting layer. It is also found that the Cu enhancing layer can improve soft magnetic properties of the CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibited coercivity of ˜3 Oe after annealing in a static magnetic field. This kind of spin valve with a very thin soft CoFe free layer is particularly attractive for ultra high density read head applications.
Indirect Coupling of Magnetic Layers via Domain Wall Fringing fields
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2001-03-01
Ferromagnetic films separated by thin metallic spacer layers are usually coupled through an indirect exchange interaction which oscillates in sign between ferro and antiferromagnetic coupling as a function of the spacer layer thickness^1. For both such metallic systems, and for multilayered systems in which the ferromagnetic films are separated by thin insulating layers, correlated roughness of the magnetic layers gives rise to a weak ferromagnetic coupling via dipole fields. Another type of dipolar coupling mechanism, which has largely been ignored, is that arising from domain wall fringing fields. These fields can be locally very large^2 and can result in the demagnetization of ferromagnetic films which are nominally highly coercive ("hard") in sandwiches comprised of "hard" and "soft" ferromagnetic layers. When the moment of the soft layer is reversed back and forth in small magnetic fields, much too small to affect the moment of the hard layer, substantial local fringing fields from domain walls created in the soft film gradually result in the demagnetization of the hard film. In some cases the moment of the hard layer decays in an oscillatory manner as it is successively partially demagnetized and remagnetized. This process has been observed on both macroscopic and microscopic length scales using SQUID magnetometry and high resolution photoemission electron microscopy, respectively^3. Magnetic interactions from domain wall fringing fields may be very important for magnetic devices, especially, magnetoresistance sensors and memory elements. [1] S.S.P. Parkin, N. More and K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990); S.S.P. Parkin, Phys. Rev. Lett., 67, 3598 (1991). [2] L. Thomas, M. Samant and S.S.P. Parkin, Phys. Rev. Lett. 84, 1816 (2000). [3] L. Thomas, J Lüning, A. Scholl, F. Nolting, S. Anders, J. Stöhr and S.S.P. Parkin, Phys. Rev. Lett. 84, 3462 (2000).
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J
2015-07-01
A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers
NASA Astrophysics Data System (ADS)
Lorenz, H.; Klüppel, M.
2012-11-01
A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.
Selway, Nichola; Chan, Vincent; Stokes, Jason R
2017-02-22
Friction (and lubrication) between soft contacts is prevalent in many natural and engineered systems and plays a crucial role in determining their functionality. The contribution of viscoelastic hysteresis losses to friction in these systems has been well-established and defined for dry contacts; however, the influence of fluid viscosity and wetting on these components of friction has largely been overlooked. We provide systematic experimental evidence of the influence of lubricant viscosity and wetting on lubrication across multiple regimes within a viscoelastic contact. These effects are investigated for comparatively smooth and rough elastomeric contacts (PTFE-PDMS and PDMS-PDMS) lubricated by a series of Newtonian fluids with systematically controlled viscosity and static wetting properties, using a ball-on-disc tribometer. The distinct tribological behaviour, characterised generally by a decrease in the friction coefficient with increasing fluid viscosity and wettability, is explained in terms of lubricant dewetting and squeeze-out dynamics and their impact on multi-scale viscoelastic dissipation mechanisms at the bulk-, asperity-, sub-asperity- and molecular-scale. It is proposed that lubrication within the (non-molecularly) smooth contact is governed by localised fluid entrapment and molecular-scale (interfacial) viscoelastic effects, while additional rubber hysteresis stimulated by fluid-asperity interactions, combined with rapid fluid drainage at low speeds within the rough contact, alter the general shape of the Stribeck curve. This fluid viscosity effect is in some agreement with theoretical predictions. Conventional methods for analysing and interpreting tribological data, which typically involve scaling sliding velocity with lubricant viscosity, need to be revised for viscoelastic contacts with consideration of these indirect viscosity effects.
Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.
Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin
2016-09-27
While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.
Remanent-magnetization decay in CoCr films
NASA Astrophysics Data System (ADS)
Skorjanec, J.; Cottles, V.; Close, J.; Iverson, P.; Edwards, J.; Dahlberg, E. Dan
1990-05-01
The decay of the remanent magnetization of several thin films of CoCr has been studied using the extraordinary Hall effect as a probe of the component of the magnetization perpendicular to the plane of the films. Consistent with previous measurements of CoCr, the remanent magnetization decays quasilogarithmically with time after the removal of a saturating magnetic field. In the present work the effect of a magnetically soft keeper layer on the decay of the magnetization has been investigated. It is found that the keeper layer does not affect the remanent magnetization nor does it decrease the decay rate of the perpendicular magnetization. This result indicates that the soft keeper layer is not effective at screening the demagnetization field on a length scale relevant to the decay-producing fields.
Studies on high-moment soft magnetic FeCo/Co thin films
NASA Astrophysics Data System (ADS)
Fu, Yu; Yang, Zheng; Matsumoto, Mitsunori; Liu, Xiao-Xi; Morisako, Akimitsu
2006-06-01
The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=Fe65Co35) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and target-substrate spacing dT-S are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.
Liquid metals as ultra-stretchable, soft, and shape reconfigurable conductors
NASA Astrophysics Data System (ADS)
Eaker, Collin B.; Dickey, Michael D.
2015-05-01
Conventional, rigid materials remain the key building blocks of most modern electronic devices, but they are limited in their ability to conform to curvilinear surfaces. It is possible to make electronic components that are flexible and in some cases stretchable by utilizing thin films, engineered geometries, or inherently soft and stretchable materials that maintain their function during deformation. Here, we describe the properties and applications of a micromoldable liquid metal that can form conductive components that are ultra-stretchable, soft, and shape-reconfigurable. This liquid metal is a gallium-based alloy with low viscosity and high conductivity. The metal develops spontaneously a thin, passivating oxide layer on the surface that allows the metal to be molded into non-spherical shapes, including films and wires, and patterned by direct-write techniques or microfluidic injection. Furthermore, unlike mercury, the liquid metal has low toxicity and negligible vapor pressure. This paper discusses the mechanical and electrical properties of the metal in the context of electronics, and discusses how the properties of the oxide layer have been exploited for new patterning techniques that enable soft, stretchable and reconfigurable devices.
Accelerated loading evaluation of subbase layers in pavement performance : tech summary.
DOT National Transportation Integrated Search
2009-04-01
The mighty Mississippi River formed and sculpted most of south Louisiana, creating large areas of alluvial : deposits consisting of soft, wet, and unconsolidated soil layers. Many Louisiana pavements were built in : these areas of naturally low shear...
Ryan, Melissa K; Ritchie, Brett; Sluggett, Janet K; Sluggett, Andrew J; Ralton, Lucy; Reynolds, Karen J
2017-01-01
Introduction Previous studies comparing satisfaction with electronic and elastomeric infusion pumps are limited, and improvements in size and usability of electronic pumps have since occurred. The Comparing Home Infusion Devices (CHID) study plans to assess patient and nurse satisfaction with an elastomeric and electronic pump for delivering intravenous antibiotic treatment in the home. Secondary objectives are to determine pump-related complications and actual antibiotic dose administered, evaluate temperature variation and compare pump operating costs. Methods and analysis The CHID study will be a randomised, crossover trial. A trained research nurse will recruit patients with infectious disease aged ≥18 years and prescribed ≥8 days of continuous intravenous antibiotic therapy from the Royal Adelaide Hospital (RAH) (Adelaide, Australia). Patients will be randomised to receive treatment at home via an elastomeric (Baxter Infusor) or an electronic (ambIT Continuous) infusion pump for 4–7 days, followed by the other for a further 4–7 days. Patient satisfaction will be assessed by a 10-item survey to be completed at the end of each arm. Nurse satisfaction will be assessed by a single 24-item survey. Patient logbooks and case notes from clinic visits will be screened to identify complications. Pumps/infusion bags will be weighed to estimate the volume of solution delivered. Temperature sensors will record skin and ambient temperatures during storage and use of the pumps throughout the infusion period. Costs relating to pumps, consumables, antibiotics and servicing will be determined. Descriptive statistics will summarise study data. Ethics and dissemination This study has been approved by the RAH Human Research Ethics Committee (HREC/16/RAH/133 R20160420, version 6.0, 5 September 2016). Study results will be disseminated through peer-reviewed publications and conference presentations. The CHID study will provide key insights into patient and provider satisfaction with elastomeric and electronic infusion pumps and inform future device selection. Trial registration number ACTRN12617000251325; Pre-results. PMID:28760798
Hobbs, Jodie G; Ryan, Melissa K; Ritchie, Brett; Sluggett, Janet K; Sluggett, Andrew J; Ralton, Lucy; Reynolds, Karen J
2017-07-31
Previous studies comparing satisfaction with electronic and elastomeric infusion pumps are limited, and improvements in size and usability of electronic pumps have since occurred. The Comparing Home Infusion Devices (CHID) study plans to assess patient and nurse satisfaction with an elastomeric and electronic pump for delivering intravenous antibiotic treatment in the home. Secondary objectives are to determine pump-related complications and actual antibiotic dose administered, evaluate temperature variation and compare pump operating costs. The CHID study will be a randomised, crossover trial. A trained research nurse will recruit patients with infectious disease aged ≥18 years and prescribed ≥8 days of continuous intravenous antibiotic therapy from the Royal Adelaide Hospital (RAH) (Adelaide, Australia). Patients will be randomised to receive treatment at home via an elastomeric (Baxter Infusor) or an electronic (ambIT Continuous) infusion pump for 4-7 days, followed by the other for a further 4-7 days. Patient satisfaction will be assessed by a 10-item survey to be completed at the end of each arm. Nurse satisfaction will be assessed by a single 24-item survey. Patient logbooks and case notes from clinic visits will be screened to identify complications. Pumps/infusion bags will be weighed to estimate the volume of solution delivered. Temperature sensors will record skin and ambient temperatures during storage and use of the pumps throughout the infusion period. Costs relating to pumps, consumables, antibiotics and servicing will be determined. Descriptive statistics will summarise study data. This study has been approved by the RAH Human Research Ethics Committee (HREC/16/RAH/133 R20160420, version 6.0, 5 September 2016). Study results will be disseminated through peer-reviewed publications and conference presentations. The CHID study will provide key insights into patient and provider satisfaction with elastomeric and electronic infusion pumps and inform future device selection. ACTRN12617000251325; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Celik, Cihangir
Advances in microelectronics result in sub-micrometer electronic technologies as predicted by Moore's Law, 1965, which states the number of transistors in a given space would double every two years. The most available memory architectures today have submicrometer transistor dimensions. The International Technology Roadmap for Semiconductors (ITRS), a continuation of Moore's Law, predicts that Dynamic Random Access Memory (DRAM) will have an average half pitch size of 50 nm and Microprocessor Units (MPU) will have an average gate length of 30 nm over the period of 2008-2012. Decreases in the dimensions satisfy the producer and consumer requirements of low power consumption, more data storage for a given space, faster clock speed, and portability of integrated circuits (IC), particularly memories. On the other hand, these properties also lead to a higher susceptibility of IC designs to temperature, magnetic interference, power supply, and environmental noise, and radiation. Radiation can directly or indirectly affect device operation. When a single energetic particle strikes a sensitive node in the micro-electronic device, it can cause a permanent or transient malfunction in the device. This behavior is called a Single Event Effect (SEE). SEEs are mostly transient errors that generate an electric pulse which alters the state of a logic node in the memory device without having a permanent effect on the functionality of the device. This is called a Single Event Upset (SEU) or Soft Error . Contrary to SEU, Single Event Latchup (SEL), Single Event Gate Rapture (SEGR), or Single Event Burnout (SEB) they have permanent effects on the device operation and a system reset or recovery is needed to return to proper operations. The rate at which a device or system encounters soft errors is defined as Soft Error Rate (SER). The semiconductor industry has been struggling with SEEs and is taking necessary measures in order to continue to improve system designs in nano-scale technologies. Prevention of SEEs has been studied and applied in the semiconductor industry by including radiation protection precautions in the system architecture or by using corrective algorithms in the system operation. Decreasing 10B content (20%of natural boron) in the natural boron of Borophosphosilicate glass (BPSG) layers that are conventionally used in the fabrication of semiconductor devices was one of the major radiation protection approaches for the system architecture. Neutron interaction in the BPSG layer was the origin of the SEEs because of the 10B (n,alpha) 7Li reaction products. Both of the particles produced have the capability of ionization in the silicon substrate region, whose thickness is comparable to the ranges of these particles. Using the soft error phenomenon in exactly the opposite manner of the semiconductor industry can provide a new neutron detection system based on the SERs in the semiconductor memories. By investigating the soft error mechanisms in the available semiconductor memories and enhancing the soft error occurrences in these devices, one can convert all memory using intelligent systems into portable, power efficient, directiondependent neutron detectors. The Neutron Intercepting Silicon Chip (NISC) project aims to achieve this goal by introducing 10B-enriched BPSG layers to the semiconductor memory architectures. This research addresses the development of a simulation tool, the NISC Soft Error Analysis Tool (NISCSAT), for soft error modeling and analysis in the semiconductor memories to provide basic design considerations for the NISC. NISCSAT performs particle transport and calculates the soft error probabilities, or SER, depending on energy depositions of the particles in a given memory node model of the NISC. Soft error measurements were performed with commercially available, off-the-shelf semiconductor memories and microprocessors to observe soft error variations with the neutron flux and memory supply voltage. Measurement results show that soft errors in the memories increase proportionally with the neutron flux, whereas they decrease with increasing the supply voltages. NISC design considerations include the effects of device scaling, 10B content in the BPSG layer, incoming neutron energy, and critical charge of the node for this dissertation. NISCSAT simulations were performed with various memory node models to account these effects. Device scaling simulations showed that any further increase in the thickness of the BPSG layer beyond 2 mum causes self-shielding of the incoming neutrons due to the BPSG layer and results in lower detection efficiencies. Moreover, if the BPSG layer is located more than 4 mum apart from the depletion region in the node, there are no soft errors in the node due to the fact that both of the reaction products have lower ranges in the silicon or any possible node layers. Calculation results regarding the critical charge indicated that the mean charge deposition of the reaction products in the sensitive volume of the node is about 15 fC. It is evident that the NISC design should have a memory architecture with a critical charge of 15 fC or less to obtain higher detection efficiencies. Moreover, the sensitive volume should be placed in close proximity to the BPSG layers so that its location would be within the range of alpha and 7Li particles. Results showed that the distance between the BPSG layer and the sensitive volume should be less than 2 mum to increase the detection efficiency of the NISC. Incoming neutron energy was also investigated by simulations and the results obtained from these simulations showed that NISC neutron detection efficiency is related with the neutron cross-sections of 10B (n,alpha) 7Li reaction, e.g., ratio of the thermal (0.0253 eV) to fast (2 MeV) neutron detection efficiencies is approximately equal to 8000:1. Environmental conditions and their effects on the NISC performance were also studied in this research. Cosmic rays were modeled and simulated via NISCSAT to investigate detection reliability of the NISC. Simulation results show that cosmic rays account for less than 2 % of the soft errors for the thermal neutron detection. On the other hand, fast neutron detection by the NISC, which already has a poor efficiency due to the low neutron cross-sections, becomes almost impossible at higher altitudes where the cosmic ray fluxes and their energies are higher. NISCSAT simulations regarding soft error dependency of the NISC for temperature and electromagnetic fields show that there are no significant effects in the NISC detection efficiency. Furthermore, the detection efficiency of the NISC decreases with both air humidity and use of moderators since the incoming neutrons scatter away before reaching the memory surface.
Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng
2016-10-01
Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.
Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng
2016-01-01
Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211
Sustainably powering wearable electronics solely by biomechanical energy
Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin
2016-01-01
Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971
Santamaria, N; Gerdtz, M; Liu, W; Rakis, S; Sage, S; Ng, A W; Tudor, H; McCann, J; Vassiliou, T; Morrow, F; Smith, K; Knott, J; Liew, D
2015-08-01
Critically ill patients are at high risk of developing pressure ulcers (PU), with the sacrum and heels being highly susceptible to pressure injuries. The objective of our study was to evaluate the clinical effectiveness of a new multi-layer, self-adhesive soft silicone foam heel dressing to prevent PU development in trauma and critically ill patients in the intensive care unit (ICU). A cohort of critically ill patients were enrolled at the Royal Melbourne Hospital. Each patient had the multi-layer soft silicone foam dressing applied to each heel on admission to the emergency department. The dressings were retained with a tubular bandage for the duration of the patients' stay in the ICU. The skin under the dressings was examined daily and the dressings were replaced every three days. The comparator for our cohort study was the control group from the recently completed Border Trial. Of the 191 patients in the initial cohort, excluding deaths, loss to follow-up and transfers to another ward, 150 patients were included in the final analysis. There was no difference in key demographic or physiological variables between the cohorts, apart from a longer ICU length of stay for our current cohort. No PUs developed in any of our intervention cohort patients compared with 14 patients in the control cohort (n=152; p<0.001) who developed a total of 19 heel PUs. We conclude, based on our results, that the multi-layer soft silicone foam dressing under investigation was clinically effective in reducing ICU-acquired heel PUs. The findings also support previous research on the clinical effectiveness of multi-layer soft silicone foam dressings for PU prevention in the ICU.
2013-01-01
Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718
Protection against hip fractures by energy absorption.
Lauritzen, J B; Askegaard, V
1992-02-01
Impact lateral to the hip was noted in 37 of 60 patients with hip fracture. Women with hip fracture (n = 12) had an average 22 mm thick soft tissue cover of the hip as compared to 32 mm in healthy women (n = 27), even for the same body mass index. Experiments where a steel weight was dropped from various heights onto porcine soft tissue showed that a layer of 29 mm could absorb 60% more energy than a 20 mm thick layer before nearly metallic contact would occur, corresponding to a sharp rise in load. If the results are related to conditions in vivo, then the passive protection of soft tissue over the hip is important for the development of hip fractures, and may under certain assumptions explain the higher risk of hip fractures in thin persons. An external hip protection device might therefore prevent some hip fractures.
Mikkor, Mati
1981-01-01
This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.
Fused filament 3D printing of ionic polymer-metal composites (IPMCs)
NASA Astrophysics Data System (ADS)
Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.
2015-12-01
This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.
2016-06-23
somnath.chattopadhyay@csun.edu 1-818-677-7197 clean/etch. Excessively hard- baked photoresist can usually be dissolved in piranha etching solution. 48 hours of...coated onto the freshly cleaned and dried wafer at 3000RPM, then soft- baked at 180ºC for 120 seconds. This gives a PMGI layer of about 0.4µm. Then the...PR is spin coated onto the wafer at about 4000RPM and soft baked at 115ºC for 90seconds, resulting in a PR layer about 1.3µm thick. The wafer is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
Colloidal crystal beads composed of core-shell particles for multiplex bioassay.
Xu, Hua; Zhu, Cun; Zhao, Yuanjin; Zhao, Xiangwei; Hu, Jing; Gu, Zhongze
2009-04-01
A convenient method was developed to fabricate colloidal crystal beads (CCBs) with tough mechanical strength, which was used as encoded carriers for multiplex bioassay. The latex particles used for the construction of the CCBs were designed with a rigid core PS and a elastomeric shell poly(MMA/EA/MAA), and were prepared via one-step soap-free emulsion polymerization. The as-above-prepared CCBs were thermo-treated to drive the elastomeric shells of adjacent latex particles joining together. It was found that the coalescence of latex particles can greatly improve the mechanical strength of the CCBs for multiplex bioassay.
Da, Lincui; Gong, Mei; Chen, Anjing; Zhang, Yi; Huang, Yizhou; Guo, Zhijun; Li, Shengfu; Li-Ling, Jesse; Zhang, Li; Xie, Huiqi
2017-09-01
Although soft tissue replacement has been clinically successful in many cases, the corresponding procedure has many limitations including the lack of resilience and mechanical integrity, significant donor-site morbidity, volume loss with time, and fibrous capsular contracture. These disadvantages can be alleviated by utilizing bio-absorbable scaffolds with high resilience and large strain, which are capable of stimulating natural tissue regeneration. Hence, the chemically crosslinked tridimensional scaffolds obtained by incorporating water-based polyurethane (PU) (which was synthesized from polytetramethylene ether glycol, isophorone diisocyanate, and 2,2-bis(hydroxymethyl) butyric acid) into a bioactive extracellular matrix consisting of small intestinal submucosa (SIS) have been tested in this study to develop a new approach for soft tissue engineering. After characterizing the structure and properties of the produced PU/SIS composites, the strength, Young's modulus, and resilience of wet PU/SIS samples were compared with those of crosslinked PU. In addition, the fabricated specimens were investigated using human umbilical vein endothelial cells to evaluate their ability to enhance cell attachment and proliferation. As a result, the synthesized PU/SIS samples exhibited high resilience and were capable of enhancing cell viability with no evidence of cytotoxicity. Subcutaneous implantation in animals and the subsequent testing conducted after 2, 4, and 8weeks indicated that sound implant integration and vascularization occurred inside the PU/SIS composites, while the presence of SIS promoted cell infiltration, angiogenesis, and ultimately tissue regeneration. The obtained results revealed that the produced PU/SIS composites were characterized by high bioactivity and resilience, and, therefore, could be used for soft tissue engineering applications. Hybrid composites containing synthetic polymers with high mechanical strength and naturally derived components, which create a bio-mimetic environment, are one of the most promising biomaterials. Although synthetic polymer/ECM composites have been previously used for soft tissue repair, their resilience properties were not investigated in sufficient detail, while the development of elastic composites composed of synthetic polymers and ECMs in nontoxic aqueous solutions remains a rather challenging task. In this study, porous PU/SIS composites were fabricated in a non-toxic manner; the obtained materials exhibited sufficient mechanical support, which promote cell growth, angiogenesis, and tissue regeneration. The described method can be adapted for the development of scaffolds with various acellular matrices and subsequently used during the restoration of particular types of tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Role of “Hard” and “Soft” Confinement on Polymer Dynamics at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Ravi P.; Green, Peter F.
2017-08-11
We investigated the segmental dynamics of asymmetrically confined polymer films and report an unusual phenomenon in which the presence and thickness of a soft confining layer are responsible for significant changes in the segmental dynamics of the confined films. Specifically, the segmental dynamics of poly(vinyl alcohol) (PVA) thin films asymmetrically confined between hard aluminum (Al), and soft polystyrene (PS) films are shown to shift by as much as half an order of magnitude upon changes in the thicknesses of the confining PS layer. These effects are more significant than those due to symmetric confinement between hard Al substrates or exposuremore » to a free surface. These observations, partially rationalized in terms of recent simulations and theory, implicate the role of the moduli of the confining layers.« less
Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Ciarletta, P.
2014-12-01
Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.
Surface Characterization of an Organized Titanium Dioxide Layer
NASA Astrophysics Data System (ADS)
Curtis, Travis
Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar cell devices. This thesis explores how layer-by-layer replication can lead to well defined, dimensionally controlled volumes and details how these control mechanisms influence surface characteristics of the semiconducting oxide.
Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints
NASA Technical Reports Server (NTRS)
Jensen, K. A.
1983-01-01
The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.
Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique
Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi
2017-01-01
We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH. PMID:28531106
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique.
Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi
2017-05-20
We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.
Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation
NASA Astrophysics Data System (ADS)
Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin
2016-02-01
Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.
Meyer, W; Liumsiricharoen, M; Suprasert, A; Fleischer, L G; Hewicker-Trautwein, M
2013-09-16
Using immunohistochemistry, the study demonstrates the distribution of keratins (pan-keratin with CK1-8, 10, 14-16, 19; keratins CK1, 5, 6, 9, 10; hair keratins AE13, AE14) in the epidermis of the Malayan pangolin (Manis javanica). A varying reaction spectrum was observed for pan-keratin, with body region-dependent negative to very strong reaction intensities. The dorsolateral epidermis exhibited positive reactions only in its vital layers, whereas the abdominal epidermis showed strong positive reactions in the soft two outer strata. The single acidic and basic-to-neutral (cyto)keratins produced clear variations compared to the pan-keratin tinging. E.g., CK1 appeared in all epidermal layers of both body regions, except for the ventral stratum corneum, whereas CK5, 6, 9, 10 were restricted to the soft ventral epidermis. Here, distinctly positive reactions were confined to the stratum granulosum, except for CK6 that appeared in the soft stratum corneum. A different staining pattern was obvious for the hair keratins, i.e., positive reactions of AE13 concentrated only in the granular layer of the dorsal epidermis. In the abdominal epidermis, remarkable tinging for AE14 was visible in the stratum basale, decreasing toward the corneal layer, but was also found in the outer root sheath cells of the hair follicles in the ventral body part. Our findings are discussed related to the evolution of the horny dorsal scales of the pangolin, which may have started from the tail root, projecting forward to the head.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Torres, C.; Streppa, L.; Arneodo, A.
2016-01-18
Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less
Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions
NASA Astrophysics Data System (ADS)
Feng, Qi
Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.
Determination of synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC.
de Andrade, Francisca Ivani; Florindo Guedes, Maria Izabel; Pinto Vieira, Ícaro Gusmão; Pereira Mendes, Francisca Noélia; Salmito Rodrigues, Paula Alves; Costa Maia, Carla Soraya; Marques Ávila, Maria Marlene; de Matos Ribeiro, Luzara
2014-08-15
Synthetic food colourings were analyzed on commercial carbonated orange and grape soft drinks produced in Ceará State, Brazil. Tartrazine (E102), Amaranth (E123), Sunset Yellow (E110) and Brilliant Blue (E133) were extracted from soft drinks using C18 SPE and identified by thin layer chromatography (TLC), this method was used to confirm the composition of food colouring in soft drinks stated on label. The concentration of food colouring in soft drink was determined by ion-pair high performance liquid chromatography with photodiode array detection. The results obtained with the samples confirm that the identification and quantification methods are recommended for quality control of the synthetic colours in soft drinks, as well as to determine whether the levels and lables complies with the recommendations of food dyes legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
Liu, Changchun; Cui, Dafu; Li, Hui
2010-09-15
An ideal microfluidic-based biosensor flow cell should have not only a "soft" interface for high strength sealing with biosensing chips, but also "hard" macro-to-micro interface for tubing connection. Since these properties are exclusive of each other, no one material can provide the advantages of both. In this paper, we explore the application of a SiO(2) thin film, deposited by plasma-enhanced chemical vapor deposition (PECVD) technology, as an intermediate layer for irreversibly adhering polydimethylsiloxane (PDMS) to plastic substrate, and develop a hard-soft, compact, robust microfluidic-based biosensor flow cell for the multi-array immunoassay application of surface plasmon resonance (SPR) imaging. This hard-soft biosensor flow cell consists of one rigid, computer numerically controlled (CNC)-machined poly(methyl methacrylate) (PMMA) base coated with a 200 nm thick SiO(2) thin film, and one soft PDMS microfluidic layer. This novel microfluidic-based biosensor flow cell does not only keep the original advantage of conventional PDMS-based biosensor flow cell such as the intrinsically soft interface, easy-to-fabrication, and low cost, but also has a rigid, robust, easy-to-use interface to tubing connection and can be operated up to 185 kPa in aqueous environments without failure. Its application was successfully demonstrated with two types of experiments by coupling with SPR imaging biosensor: the real-time monitoring of the immunoglobulin G (IgG) interaction, as well as the detection of sulfamethoxazole (SMOZ) and sulfamethazine (SMZ) with the sensitivity of 3.5 and 0.6 ng/mL, respectively. This novel hard-soft microfluidic device is also useful for a variety of other biosensor flow cells. Copyright 2010 Elsevier B.V. All rights reserved.
Al Kheraif, Abdulaziz Abdullah
2013-05-01
Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does not eliminate all disease-causing microorganisms and microwave sterilization leads to a rougher impression surface.
Wahab, Siti Waznah; Bister, Dirk; Sherriff, Martyn
2014-02-01
This study investigated the effect of ultraviolet type A light (UVA) exposure on the tensile properties of elastomeric chain. UVA light exposure was used as model for artificial aging, simulating prolonged storage of elastomeric chain. Tensile strength (n = 60) was measured after exposing Ormco, Forestadent and 3M chains to UVA light for 0, 2, 3, and 4 weeks. Force decay was measured (n = 60) using chain exposed for 5, 10, and 14 days. The chains were subsequently stretched at a constant distance and the resulting forces measured at 0, 1, 24 hours and 7, 14, 21, and 28 days. This test simulated a clinical scenario of pre-stretching and subsequent shortening of elastomeric chain. Tensile strength had statistically significant difference and was directly related to the duration of ultraviolet (UV) light exposure. Forestadent chain, which had the second highest value for the 'as received' product, showed the most consistent values over time with the lowest degradation. Ormco showed the lowest values for 'as received' as well as after UV exposure; 3M chain had the highest loss of tensile strength. Force decay was also significantly different. UV light exposure of 10 days or more appears to mark a 'watershed' between products: 3M had most survivors, Forestadent chain had some survivors, depending on the time the chain was stretched for. None of the Ormco product survived UV light exposure for more than 5 days. UVA light exposure may be used as a model for artificial aging as it reduces force delivery and tensile strength of exposed chains.
Acoustic Microfluidics for Bioanalytical Application
NASA Astrophysics Data System (ADS)
Lopez, Gabriel
2013-03-01
This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.
Rotation of an immersed cylinder sliding near a thin elastic coating
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.
2017-07-01
It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.
Morrison, Barclay; Goletiani, Cezar; Yu, Zhe; Wagner, Sigurd
2013-01-01
A high resolution elastically stretchable microelectrode array (SMEA) to interface with neural tissue is described. The SMEA consists of an elastomeric substrate, such as poly(dimethylsiloxane) (PDMS), elastically stretchable gold conductors, and an electrically insulating encapsulating layer in which contact holes are opened. We demonstrate the feasibility of producing contact holes with 40 µm × 40 µm openings, show why the adhesion of the encapsulation layer to the underlying silicone substrate is weakened during contact hole fabrication, and provide remedies. These improvements result in greatly increased fabrication yield and reproducibility. An SMEA with 28 microelectrodes was fabricated. The contact holes (100 µm × 100 µm) in the encapsulation layer are only ~10% the size of the previous generation, allowing a larger number of microelectrodes per unit area, thus affording the capability to interface with a smaller neural population per electrode. This new SMEA is used to record spontaneous and evoked activity in organotypic hippocampal tissue slices at 0% strain before stretching, at 5 % and 10 % equibiaxial strain, and again at 0% strain after relaxation. The noise of the recordings increases with increasing strain. The frequency of spontaneous neural activity also increases when the SMEA is stretched. Upon relaxation, the noise returns to pre-stretch levels, while the frequency of neural activity remains elevated. Stimulus-response curves at each strain level are measured. The SMEA shows excellent biocompatibility for at least two weeks. PMID:24093006
Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors.
Song, Zhilong; Huang, Zhao; Liu, Jingyao; Hu, Zhixiang; Zhang, Jianbing; Zhang, Guangzu; Yi, Fei; Jiang, Shenglin; Lian, Jiabiao; Yan, Jia; Zang, Jianfeng; Liu, Huan
2018-05-25
Stretchable gas sensors that accommodate the shape and motion characteristics of human body are indispensable to a wearable or attachable smart sensing system. However, these gas sensors usually have poor response and recovery kinetics when operated at room temperature, and especially suffer from humidity interference and mechanical robustness issues. Here, we demonstrate the first fully stretchable gas sensors which are operated at room temperature with enhanced stability against humidity. We created a crumpled quantum dot (QD) sensing layer on elastomeric substrate with flexible graphene as electrodes. Through the control over the prestrain of the flexible substrate, we achieved a 5.8 times improvement in NO 2 response at room temperature with desirable stretchability even under 1000 stretch/relax cycles mechanism deformation. The uniformly wavy structural configuration of the crumpled QD gas-sensing layer enabled an improvement in the antihumidity interference. The sensor response shows a minor vibration of 15.9% at room temperature from relative humidity of 0 to 86.7% compared to that of the flat-film sensors with vibration of 84.2%. The successful assembly of QD solids into a crumpled gas-sensing layer enabled a body-attachable, mechanically robust, and humidity-resistant gas sensor, opening up a new pathway to room-temperature operable gas sensors which may be implemented in future smart sensing systems such as stretchable electronic nose and multipurpose electronic skin.
Bio-functionalized silk hydrogel microfluidic systems.
Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L
2016-07-01
Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong
2017-06-01
This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.
New horizons in selective laser sintering surface roughness characterization
NASA Astrophysics Data System (ADS)
Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.
2017-12-01
Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.
Layer-by-layer-assembled healable antifouling films.
Chen, Dongdong; Wu, Mingda; Li, Bochao; Ren, Kefeng; Cheng, Zhongkai; Ji, Jian; Li, Yang; Sun, Junqi
2015-10-21
Healable antifouling films are fabricated by the exponential layer-by-layer assembly of PEGylated branched poly(ethylenimine) and hyaluronic acid followed by post-crosslinking. The antifouling function originates from the grafted PEG and the extremely soft nature of the films. The rapid and multiple healing of damaged antifouling functions caused by cuts and scratches can be readily achieved by immersing the films in normal saline solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.
We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less
NASA Technical Reports Server (NTRS)
Puster, R. L.; Chapman, A. J.
1977-01-01
An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.
Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers
NASA Astrophysics Data System (ADS)
Khudorozhkov, A. A.; Skirdkov, P. N.; Zvezdin, K. A.; Vetoshko, P. M.; Popkov, A. F.
2017-12-01
A spin-torque diode, which is a magnetic tunnel junction with magnetic layers softly pinned at some tilt to each other, is proposed. The resonance operating frequency of such a dual exchange-pinned spin-torque diode can be significantly higher (up to 9.5 GHz) than that of a traditional free layer spin-torque diode, and, at the same time, the sensitivity remains rather high. Using micromagnetic modeling we show that the maximum microwave sensitivity of the considered diode is reached at the bias current densities slightly below the self-sustained oscillations initiating. The dependence of the resonance frequency and the sensitivity on the angle between pinning exchange fields is presented. Thus, a way of designing spin-torque diode with a given resonance response frequency in the microwave region in the absence of an external magnetic field is proposed.
NASA Astrophysics Data System (ADS)
Wen, Dandan; Bai, Feiming; Wang, Yicheng; Zhong, Zhiyong; Zhang, Huaiwu
2013-05-01
Laminated amorphous FeSiBC films with various spacer layers, including Cu, Co0.45Cu0.55, Co0.8Cu0.2, and CoFe, were prepared in order to study the effect of interface structure and magnetic exchange interaction on the magnetic softness and uniaxial anisotropy of multilayered film. It is found that laminating FeSiBC film with thin nonmagnetic or weak magnetic spacers yields much lower coercivity and higher remanent magnetization than those with magnetic spacers. Optimal films with the desired properties of Hc ˜ 1.5 Oe, Mr/Ms = 95%, and Hk ˜ 16 Oe were obtained. Therefore, it is confirmed that the exchange interaction constant of spacer layer plays a more important role than that of interface structure. Furthermore, laminating FeSiBC with nonmagnetic layers only slightly changes magnetostrictive coefficient.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Shear Stress Sensing using Elastomer Micropillar Arrays
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.
2013-01-01
The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.
Wrinkling instabilities in soft bilayered systems
Budday, Silvia; Andres, Sebastian; Walter, Bastian
2017-01-01
Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385
Damage Detection and Self-Repair in Inflatable/Deployable Structures
NASA Technical Reports Server (NTRS)
Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy
2009-01-01
Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.
Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel
2015-11-01
Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Dell'Angela, M.; Anniyev, T.; Beye, M.; ...
2015-03-01
Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
Importance of pH-regulated charge density on the electrophoresis of soft particles
NASA Astrophysics Data System (ADS)
Gopmandal, Partha P.; Ohshima, H.
2017-02-01
The present study deals with the electrophoresis of spherical soft particles consisting of an ion and liquid-penetrable but liquid-flow-impenetrable inner core surrounded by an ion and fluid-penetrable polyelectrolyte layer. The inner core is considered to be dielectric and bearing basic functional group coated with polyelectrolyte layer containing acidic functional group. An approximate expression for the electrophoretic mobility of such a particle is obtained under a low potential limit. The electrophoretic behaviour of the undertaken particle is investigated for a wide range of bulk pH values and electrolyte concentrations. Our study also indicates some remarkable features of the electrophoresis e.g., occurrence of zero mobility, mobility reversal etc.
Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W
2015-03-01
Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji
2012-01-01
This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high complexity and throughput analysis. PMID:22761019
Application of mathematical planning in production of filled emulsion rubbers
NASA Astrophysics Data System (ADS)
Pugacheva, I. N.; Molokanova, L. V.; Popova, L. V.; Repin, P. S.
2018-05-01
The applicability of mathematical planning of experiment in the field of chemistry and chemical engineering, in particular in the industrial production of synthetic rubbers, is considered in the article. Possibility of using secondary material resources, which are waste products of light industry, in the production of elastomeric compositions is studied. The method of obtaining a powdered cellulose additive from wastes containing cellulose fiber is described. The best way of introducing the obtained additive into elastomeric compositions based on the emulsion rubber is established. Optimal conditions for obtaining filled emulsion rubber with the help of a powdered cellulose additive were established basing on the mathematical planning of experiment.
NASA Technical Reports Server (NTRS)
Brien, M.
1977-01-01
An experimental evaluation was performed on a high-speed (72.9 m/s, 14,349 ft/min) transmission seal of the synergistic type. During testing of the seal, oil leakage occurred at positive bearing cavity pressures. Modifications were made in an attempt to eliminate the leakage but none were completely successful. Leakage appears to be the result of questionable positioning of the sealing elements resulting in inadequate shaft contact by the oil side sealing element. This condition may be related to the nonsymmetrical shape of the elastomeric retainer and to dimensional changes caused by swelling of the elastomeric retainer from exposure to the sealed fluid. Indications of a speed dependent leakage characteristic were also observed.
From Red Cells to Soft Porous Lubrication
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Gacka, Thomas; Nathan, Rungun; Crawford, Robert; Vucbmss Team
2014-11-01
Biological scientists have wondered, since the motion of red cells was first observed in capillaries, how the highly flexible red cell can move with so little friction in tightly fitting microvessels without being damaged or undergoing hemolysis. Theoretical studies (Feng and Weinbaum, 2000, JFM; Wu et al., 2004, PRL) attributed this frictionless motion to the dramatically enhanced hydrodynamic lifting force generated inside the soft, porous, endothelial surface layer (ESL) covering the inner surfaces of our capillaries, as a red blood cell glides over it. Herein we report the first experimental examination of this concept. The results conclusively demonstrate that significant fraction of the overall lifting force generated in a soft porous layer as a planing surface glides over it, is contributed by the pore fluid pressure, and thus frictional loss is reduced significantly. Moreover, the experimental predictions showed excellent agreement with the experimental data. This finding has the potential of dramatically changing existing lubrication approaches, and can result in substantial savings in energy consumption and thus reduction in greenhouse gas emissions.
Romeo, Alessia; Lacour, Stphanie P
2015-08-01
Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.
Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites
Wysocki, Aleksander L.; Antropov, Vladimir P.
2016-12-01
Here, we developed a micromagnetic method for modeling magnetic systems with periodic boundary conditions along an arbitrary number of dimensions. The main feature is an adaptation of the Ewald summation technique for evaluation of long-range dipolar interactions. The method was applied to investigate the hysteresis process in hard-soft magnetic nanocomposites with various geometries. The dependence of the results on different micromagnetic parameters was studied. We found that for layered structures with an out-of-plane hard phase easy axis the hysteretic properties are very sensitive to the strength of the interlayer exchange coupling, as long as the spontaneous magnetization for the hardmore » phase is significantly smaller than for the soft phase. The origin of this behavior was discussed. Additionally, we investigated the soft phase size optimizing the energy product of hard-soft nanocomposites.« less
Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints
NASA Technical Reports Server (NTRS)
Jensen, K. A.
1984-01-01
The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046
Reinforcement of mono- and bi-layer poly(ethylene glycol) hydrogels with a fibrous collagen scaffold
Kinneberg, K. R. C.; Nelson, A.; Stender, M.; Aziz, A. H.; Mozdzen, L. C.; Harley, B. A. C.; Bryant, S. J.; Ferguson, V. L.
2015-01-01
Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bilayer, multi-phase hydrogel interpenetrated with a fibrous collagen scaffold. ‘Soft’ 10% (w/w) and ‘stiff’ 30% (w/w) PEGDM was formed into mono- or bilayer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single- (hydrogel only) or multi-phase (hydrogel+fibrous scaffold penetrating throughout the stiff layer and extending >500μm into the soft layer). Including a fibrous scaffold into both soft and stiff single-phase hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. In multi-phase hydrogels, finite element simulations predict substantially reduced stress and strain gradients across the soft—stiff hydrogel interface. When combining two low moduli constituent material, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function – the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion. PMID:26001970
The Influence of Stratigraphic History on Landscape Evolution
NASA Astrophysics Data System (ADS)
Forte, A. M.; Yanites, B.; Whipple, K. X.
2016-12-01
Variation in rock erodibility can play a significant role in landscape evolution. Using a version of the CHILD landscape evolution model that allows for variations in rock erodibility, we found surprisingly complex landscape evolution in simulations with simple, two unit stratigraphies with contrasting erodibility. This work indicated that the stratigraphic order of units in terms of erodibility, the orientation of the contact with respect to the main drainage direction, and the contact dip angle all have pronounced effects on landscape evolution. Here we expand that work to explore the implications of more complicated stratigraphies on landscape evolution. Introducing multiple units adds additional controls on landscape evolution, namely the thicknesses and relative erodibility of rock layers. In models with a sequence of five alternating hard and soft units embedded within arbitrarily thick over- and underlying units, the number of individual layers that noticeably influence landscape morphology decreases as the thickness of individual layers reduces. Contacts with soft rocks over hard produce the most noticeable effect in model output such as erosion rate and channel steepness. For large contrasts in erodibility of 25 m thick layers, only one soft over hard contact is clearly manifest in the landscape. Between 50 and 75 m, two such contacts are manifest, and by 100 m thickness, all three of these contacts are manifest. However, for a given thickness of layers, more units are manifest in the landscape as the erodibility contrast between units decreases. This is true even though the magnitude of landscape effects away from steady-state erosion rates or channel steepness also decrease with decreasing erodibility contrast. Finally, we explore suites of models with alternating layers reflecting either `hardening-' or `softening-upwards' stratigraphies and find that the two scenarios result in decidedly different landscape forms. Hardening-upwards sections produce a gradational change where as individual layers have more influence in the landscape form in softening-upwards sections. Generally, our modeling highlights that past depositional history can exert a fundamental control on landscape evolution during later erosion through the resulting layered stratigraphy.
Comparison between semiconducting and oxide layers as a reflection layer in spin-valve films
NASA Astrophysics Data System (ADS)
Dinia, A.; Schmerber, G.; Ulhaq, C.
2003-07-01
It is well established that appropriate oxide capping is effective in forming nano-oxide layers (NOL) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. However, the beneficial effect of a NOL is strongly dependent on its process of formation. Therefore, we are interested to use a nano-semiconducting layer (NSL) for specular reflection instead of oxide layers because its achievement is easier since no specific growth conditions are needed. Moreover, we intend to compare the efficiency of the electronic confinement inside the spin valve induced either by NSL or NOLs for structures with the same stack. We have prepared hard-soft spin valve structures by sputtering on glass substrates with the following stacking sequence: Fe6 nm/Cu3 nm/CoFe1.8 nmRu0.8 nmCoFe3 nmCu2 nmRu2 nm. The reflecting layers have been inserted in the middle of the Fe soft layer and on the top of the spin valve. The GMR effect is enhanced by 60% and 75% respectively for the NSL and the NOL. This shows that the NOL is more efficient in term of electronic confinement. To understand the origin of the difference between the NOL and NSL magnetization measurements as well as transmission electron microscopy are presented.
NASA Astrophysics Data System (ADS)
Tripathi, Anurag; Khakhar, D. V.
2010-04-01
We study smooth, slightly inelastic particles flowing under gravity on a bumpy inclined plane using event-driven and discrete-element simulations. Shallow layers (ten particle diameters) are used to enable simulation using the event-driven method within reasonable computational times. Steady flows are obtained in a narrow range of angles (13°-14.5°) ; lower angles result in stopping of the flow and higher angles in continuous acceleration. The flow is relatively dense with the solid volume fraction, ν≈0.5 , and significant layering of particles is observed. We derive expressions for the stress, heat flux, and dissipation for the hard and soft particle models from first principles. The computed mean velocity, temperature, stress, dissipation, and heat flux profiles of hard particles are compared to soft particle results for different values of stiffness constant (k) . The value of stiffness constant for which results for hard and soft particles are identical is found to be k≥2×106mg/d , where m is the mass of a particle, g is the acceleration due to gravity, and d is the particle diameter. We compare the simulation results to constitutive relations obtained from the kinetic theory of Jenkins and Richman [J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985)] for pressure, dissipation, viscosity, and thermal conductivity. We find that all the quantities are very well predicted by kinetic theory for volume fractions ν<0.5 . At higher densities, obtained for thicker layers ( H=15d and H=20d ), the kinetic theory does not give accurate prediction. Deviations of the kinetic theory predictions from simulation results are relatively small for dissipation and heat flux and most significant deviations are observed for shear viscosity and pressure. The results indicate the range of applicability of soft particle simulations and kinetic theory for dense flows.
Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang
2015-12-16
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.
Oellig, Claudia; Schunck, Jacob; Schwack, Wolfgang
2018-01-19
Mate beer and Mate soft drinks are beverages produced from the dried leaves of Ilex paraguariensis (Yerba Mate). In Yerba Mate, the xanthine derivatives caffeine, theobromine and theophylline, also known as methylxanthines, are important active components. The presented method for the determination of caffeine, theobromine and theophylline in Mate beer and Mate soft drinks by high-performance thin-layer chromatography with ultraviolet detection (HPTLC-UV) offers a fully automated and sensitive determination of the three methylxanthines. Filtration of the samples was followed by degassing, dilution with acetonitrile in the case of Mate beers for protein precipitation, and centrifugation before the extracts were analyzed by HPTLC-UV on LiChrospher silica gel plates with fluorescence indicator and acetone/toluene/chloroform (4:3:3, v/v/v) as the mobile phase. For quantitation, the absorbance was scanned at 274nm. Limits of detection and quantitation were 1 and 4ng/zone, respectively, for caffeine, theobromine and theophylline. With recoveries close to 100% and low standard deviations reliable results were guaranteed. Experimental Mate beers as well as Mate beers and Mate soft drinks from the market were analyzed for their concentrations of methylxanthines. Copyright © 2017 Elsevier B.V. All rights reserved.
Soft Plumbing: Direct-Writing and Controllable Perfusion of Tubular Soft Materials
NASA Astrophysics Data System (ADS)
Guenther, Axel; Omoruwa, Patricia; Chen, Haotian; McAllister, Arianna; Jeronimo, Mark; Malladi, Shashi; Hakimi, Navid; Cao, Li; Ramchandran, Arun
2016-11-01
Tubular and ductular structures are abundant in tissues in a wide variety of diameters, wall thicknesses, and compositions. In spite of their relevance to engineered tissues, organs-on-chips and soft robotics, the rapid and consistent preparation of tubular structures remains a challenge. Here, we use a microfabricated printhead to direct-write biopolymeric tubes with dimensional and compositional control. A biopolymer solution is introduced to the center layer of the printhead, and the confining fluids to the top and the bottom layers. The radially flowing biopolymer solution is sandwiched between confining solutions that initiate gelation, initially assuming the shape of a funnel until emerging through a cylindrical confinement as a continuous biopolymer tube. Tubular constructs of sodium alginate and collagen I were obtained with inner diameters (0.6-2.2mm) and wall thicknesses (0.1-0.4mm) in favorable agreement with predictions of analytical models. We obtained homogeneous tubes with smooth and buckled walls and heterotypic constructs that possessed compositions that vary along the tube circumference or radius. Ductular soft materials were reversibly hosted in 3D printed fluidic devices for the perfusion at well-defined transmural pressures to explore the rich variety of dynamical features associated with collapsible tubes that include buckling, complete collapse, and self-oscillation.
Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy
NASA Astrophysics Data System (ADS)
Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo
2017-10-01
We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.
A soft gamma-ray concentrator using thin-film multilayer structures
NASA Astrophysics Data System (ADS)
Bloser, Peter F.; Aliotta, Paul H.; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Shirazi, Farzane; Tsavalas, John G.; Wong, Emily N.; Kippen, R. Marc
2015-09-01
We have begun to investigate the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Building on initial investigations at Los Alamos National Laboratory, we are investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness using magnetron sputter and pulsed laser deposition techniques. We present the initial results of tests aimed at fabricating such structures by combining magnetron sputtering with either spin coating or pulsed laser deposition, and demonstrating gamma-ray channeling of 122 keV photons in the laboratory. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.
NASA Astrophysics Data System (ADS)
Peng, Yuandong; Nie, Junwu; Zhang, Wenjun; Ma, Jian; Bao, Chongxi; Cao, Yang
2016-02-01
We investigated the effect of the addition of Al2O3 nanoparticles on the permeability and core loss of Fe soft magnetic composites coated with silicone. Fourier transform infra-red spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis revealed that the surface layer of the powder particles consisted of a thin insulating Al2O3 layer with uniform surface coverage. The permeability and core loss of the composite with the Al2O3 addition annealed at 650 °C were excellent. The results indicated that the Al2O3 nanoparticle addition increases the permeability stablility with changing frequency and decreases the core loss over a wide range of frequencies.
NASA Astrophysics Data System (ADS)
Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.
2014-06-01
In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.
NASA Astrophysics Data System (ADS)
Li, Zhuoyuan; Sheng, Meiping; Wang, Minqing; Dong, Pengfei; Li, Bo; Chen, Hualing
2018-07-01
In this paper, a novel fabrication process of stacked dielectric elastomer actuator (SDEA) is developed based on casting process and elastomeric electrode. The so-fabricated SDEA benefits the advantages of homogenous and reproducible properties as well as little performance degradation after one-year use. A coupling model of SDEA is established by taking into consideration of the elastomeric electrode and the calculated results agree with the experiments. Based on the model, we attain the method to optimize the SDEA’s parameters. Finally, the SDEA is used as an isolator in active vibration isolation system to verify the feasibility in dynamic application. And the experiment results show a great prospect for SDEA in such application.
NASA Technical Reports Server (NTRS)
Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.
1974-01-01
An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.