Sample records for soft matter physics

  1. Soft matter food physics--the physics of food and cooking.

    PubMed

    Vilgis, Thomas A

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  2. Editorial

    NASA Astrophysics Data System (ADS)

    Maret, Georg; Reiter, Günter

    2005-01-01

    The European Physical Journal E Soft Matter (EPJE Soft Matter), launched on January 1, 2000, is now entering into its sixth year of existence. Despite the problems any new journal has to deal with, we see that EPJE Soft Matter is a success journal which achieved the goal to generate and strengthen links between physicists, chemists, engineers and also biologists interested in “Soft Matter". Why is EPJE Soft Matter needed and what is special with EPJE Soft Matter? Right from the start, EPJE Soft Matter aimed at providing a meeting place for the various communities involved in the rapidly growing field of “Soft Condensed Matter" science; a “melting pot" for ideas coming from physics, chemistry, materials science and also from biology. Besides regular publications the journal provides also a forum for discussion of controversial ideas (Perspectives, Commentaries, Focus Points, ...). The basic idea of publishing discussions is to draw the attention of all communities involved in “Soft Matter" science to fundamental current problems of common interest. The central philosophy of EPJE Soft Matter is thus to stimulate discussion amongst the community and to become a key tool for advancing soft matter science. EPJE Soft Matter is a journal made by scientists for scientists. Along these lines, the Editors-in-Chief welcome suggestions from colleagues for new concepts and novel ways of publishing scientific information and original results. How is EPJE Soft Matter performing? Being aware of the risk of addressing, in parallel, separate communities without sufficient mutual interaction, particular attention is paid to attracting contributions from traditionally linked fields like chemistry and physics in the case of polymers at interfaces. It appears that such a mix is well appreciated by the community as the impact factor of the journal is steadily growing (from 1.61 in 2001 to 2.45 in 2003). While publications from physics-related areas of Soft Matter are well represented in the journal, contributions from chemistry and biology are still rather sparse. Thus, one of our goal is to make the journal also more attractive for chemists and biologist interested in soft matter concepts. The future of EPJE Soft Matter In 2005, EPJE Soft Matter will see several organisational changes. First of all, the number of Editors-in-Chief will be reduced from four to two. We would like to take this opportunity to thank Athene Donald, Jean-François Joanny and Martin Möller for their enthusiastic efforts and personal engagements in setting up and raising EPJE Soft Matter to the place it takes up now. We believe that only because of their intense and excellent work EPJE Soft Matter has become a leading multidisciplinary journal. In the future, EPJE Soft Matter will continue to stimulate discussions and to publish also controversial ideas and views as long as they are based on the well-established scientific rules. EPJE Soft Matter will evolve towards a journal which is willing and capable to adapt to the needs of the involved communities. The Editors-in-Chief, together with their editorial board members, will always have an open ear for the problems colleagues may encounter in publishing their work. We will assure that requests and suggestions are treated in the most appropriate way and to the full satisfaction of authors and readers. We wish you a happy and productive New Year 2005!

  3. Soft matter food physics—the physics of food and cooking

    NASA Astrophysics Data System (ADS)

    Vilgis, Thomas A.

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  4. Introductory physics going soft

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Livne, Shelly; Safran, Samuel A.; Yerushalmi, Edit

    2012-01-01

    We describe an elective course on soft matter at the level of introductory physics. Soft matter physics serves as a context that motivates the presentation of basic ideas in statistical thermodynamics and their applications. It also is an example of a contemporary field that is interdisciplinary and touches on chemistry, biology, and physics. We outline a curriculum that uses the lattice gas model as a quantitative and visual tool, initially to introduce entropy, and later to facilitate the calculation of interactions. We demonstrate how free energy minimization can be used to teach students to understand the properties of soft matter systems such as the phases of fluid mixtures, wetting of interfaces, self-assembly of surfactants, and polymers. We discuss several suggested activities in the form of inquiry projects which allow students to apply the concepts they have learned to experimental systems.

  5. Soft matter: food for thought

    NASA Astrophysics Data System (ADS)

    Ogborn, Jon

    2004-01-01

    'Soft matter' is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on the boundary between physics and chemistry.

  6. Experimental soft-matter science

    NASA Astrophysics Data System (ADS)

    Nagel, Sidney R.

    2017-04-01

    Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label "soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far from equilibrium, nonlinear, thermal and entropic, slow, observable, gravity affected, patterned, nonlocal, interfacially elastic, memory forming, and active. This is only a partial list of how matter created from large component particles is distinct from "hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium behavior is confronted in biology, chemistry, geophysics, astrophysics, and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on 30-31 January 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research.

  7. Onsager's variational principle in soft matter.

    PubMed

    Doi, Masao

    2011-07-20

    In the celebrated paper on the reciprocal relation for the kinetic coefficients in irreversible processes, Onsager (1931 Phys. Rev. 37 405) extended Rayleigh's principle of the least energy dissipation to general irreversible processes. In this paper, I shall show that this variational principle gives us a very convenient framework for deriving many established equations which describe the nonlinear and non-equilibrium phenomena in soft matter, such as phase separation kinetics in solutions, gel dynamics, molecular modeling for viscoelasticity nemato-hydrodynamics, etc. Onsager's variational principle can therefore be regarded as a solid general basis for soft matter physics.

  8. Nucleation in Polymers and Soft Matter

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang

    2014-04-01

    Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.

  9. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    NASA Astrophysics Data System (ADS)

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. We thank those who contributed to this symposium as well as members of the 'Soft Matter Physics' project for their valuable discussions and collaborations. Non-equilibrium soft matter contents Insights on raft behavior from minimal phenomenological models G Garbès Putzel and M Schick Dynamical membrane curvature instability controlled by intermonolayer friction Anne-Florence Bitbol, Jean-Baptiste Fournier, Miglena I Angelova and Nicolas Puff Numerical investigations of the dynamics of two-component vesicles Takashi Taniguchi, Miho Yanagisawa and Masayuki Imai Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique Y Sakuma, N Urakami, T Taniguchi and M Imai Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers Fumihiko Tanaka, Tsuyoshi Koga, Isamu Kaneda and Françoise M Winnik Morphology and rheology of an immiscible polymer blend subjected to a step electric field under shear flow H Orihara, Y Nishimoto, K Aida, Y H Na, T Nagaya and S Ujiie Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime Kosuke Kamada, Hidemitsu Furukawa, Takayuki Kurokawa, Tomohiro Tada, Taiki Tominaga, Yukihiro Nakano and Jian Ping Gong Fabrication and structural analysis of polyrotaxane fibers and films Yasuhiro Sakai, Kentaro Ueda, Naoya Katsuyama, Koji Shimizu, Shunya Sato, Jun Kuroiwa, Jun Araki, Akira Teramoto, Koji Abe, Hideaki Yokoyama and Kohzo Ito Micellization kinetics of diblock copolymers in a homopolymer matrix: a self-consistent field study Raghuram Thiagarajan and David C Morse Hierarchical self-assembly of two-length-scale multiblock copolymers Gerrit ten Brinke, Katja Loos, Ivana Vukovic and Gerrit Gobius du Sart Kaleidoscopic morphologies from ABC star-shaped terpolymers Yushu Matsushita, Kenichi Hayashida, Tomonari Dotera and Atsushi Takano Direct and inverted nematic dispersions for soft matter photonics I Muševič, M Škarabot and M Humar Solvation effects in phase transitions in soft matter Akira Onuki, Takeaki Araki and Ryuichi Okamoto Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow Kazuyoshi Seki, Ken Ueda, Yu-ichi Okumura and Yuka Tabe Roles of bond orientational ordering in glass transition and crystallization Hajime Tanaka Shear banding in thixotropic and normal emulsions José Paredes, Noushine Shahidzadeh-Bonn and Daniel Bonn Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields Adam Wysocki and Hartmut Löwen Onsager's variational principle in soft matter Masao Doi

  10. Report on the NASA Soft and Complex Condensed Matter Workshop

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Technical Monitor); Chaikin, Paul; Nagel, Sidney

    2003-01-01

    During the past decade, NASA has been a leading U.S. supporter of soft and complex condensed matter research. Experiments in space shuttles, MIR, the International Space Station (ISS), as well as ground-based research have provided new insights into several areas including hard sphere colloids, crystal growth, phase ordering, and transport of complex fluids at the critical point. To help define the next generation of flight experiments needed to answer remaining important questions in the field of soft and complex condensed matter, NASA's Office of Biological and Physical Science sponsored a workshop on Soft and Complex Condensed Matter, March 6, 2003. This workshop asked leading members in the field of Soft and Complex Condensed Matter (at the APS March Meeting) to help identify exciting unanswered questions in the field, along with specific research topics for which the absence of gravity would enable significant results unobtainable by other means. The workshop was attended by 24 participants from universities across the U.S. and from five different countries (in addition to NASA GRC participants).

  11. Soft matter perspective on protein crystal assembly.

    PubMed

    Fusco, Diana; Charbonneau, Patrick

    2016-01-01

    Crystallography may be the gold standard of protein structure determination, but obtaining the necessary high-quality crystals is also in some ways akin to prospecting for the precious metal. The tools and models developed in soft matter physics to understand colloidal assembly offer some insights into the problem of crystallizing proteins. This topical review describes the various analogies that have been made between proteins and colloids in that context. We highlight the explanatory power of patchy particle models, but also the challenges of providing guidance for crystallizing specific proteins. We conclude with a presentation of possible future research directions. This review is intended for soft matter scientists interested in protein crystallization as a self-assembly problem, and as an introduction to the pertinent physics literature for protein scientists more generally. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The shape of things to come: Examining the interplay of elasticity, activity and geometry in soft matter

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.

    This dissertation contains within an exploration of the interactions between various soft matter systems and an environmental stimulus. The natural case studies for examining soft matter using the language of thermodynamics and phase transitions are biological constituents, from slender filaments to entire collections of organisms. We first present a brief overview of soft condensed matter, couching the thesis in terms of states of matter and preparing the stage for using continuum mechanics to examine the sensitive balance between competing physical forces in determining the final state of the systems of interest. Following this we present analysis of long-range interactions in a ubiquitous soft matter system, flexible filaments. Adhesion events that occur between attractive filaments can be understood in terms of phase transitions, and herein we present a methodology for describing physical regimes where such transitions take place. Following this we present analyses of slender filaments and flexible membranes interacting with viscous fluids; of primary concern is the transduction of undulatory motion of the surface into propulsive thrust, as a model of microorganism locomotion. We show that slender filaments near walls can be shown to exhibit non-intuitive force characteristics as a fundamental consequence of the flexibility and geometry of the system, for several models of passively actuated and internally active model flagella. We then present two different active models for propulsion using a flexible membrane: the first simplifies the geometry in order to elucidate the direct consequences of internal forcing on macroscopic propulsive thrust, while the second is a proof of principle model for a microscopic vesicular swimmer. Finally, we study collective locomotion of microorganisms and active colloidal dispersions by performing a robust hydrodynamics simulation of a concentrated suspension of microswimmers. We find that global polar order persists throughout the system as a function of various microscopic swimming/activity parameters, as well as the volume fraction.

  13. Physics in Europe--A Data File of Selected Research.

    DTIC Science & Technology

    1984-06-18

    Negev Sapir Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 1025 CPBICF laser plasma soft x-ray refractometry France...CPBICF laser plasma Schlieren diagnostic France 623 CPBICF laser plasma self focusing numerics UK 1025 CPBICF laser plasma soft x-ray refractometry

  14. Aneesur Rahman Prize Talk

    NASA Astrophysics Data System (ADS)

    Frenkel, Daan

    2007-03-01

    During the past decade there has been a unique synergy between theory, experiment and simulation in Soft Matter Physics. In colloid science, computer simulations that started out as studies of highly simplified model systems, have acquired direct experimental relevance because experimental realizations of these simple models can now be synthesized. Whilst many numerical predictions concerning the phase behavior of colloidal systems have been vindicated by experiments, the jury is still out on others. In my talk I will discuss some of the recent technical developments, new findings and open questions in computational soft-matter science.

  15. Light-driven dynamic Archimedes spirals and periodic oscillatory patterns of topological solitons in anisotropic soft matter

    DOE PAGES

    Martinez, Angel; Smalyukh, Ivan I.

    2015-02-12

    Oscillatory and excitable systems very commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topologicalmore » solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. Finally, we uncover underpinning physical mechanisms and discuss potential uses.« less

  16. Marginal Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  17. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    NASA Astrophysics Data System (ADS)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  18. Evolution in students' understanding of thermal physics with increasing complexity

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  19. BOOK REVIEW: Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Jones, Richard A. L.

    2002-11-01

    The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. i) The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. ii) The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented phenomenologically and formulated through the current percolation model and the Flory-Stockmayer model. The next two chapters consider the molecular order in soft condensed matter. The rich complexity of liquid crystals is emphasized and the Frederiks transition is described in relation to liquid crystal displays. The crystallinity in polymers is discussed and its usual semi-crystallinity presented as a consequence of entanglement and timescales. The next chapter describes the self-assembly of phases and the great importance of the self-assembly phenomenon in solutions of amphiphilic molecules is largely discussed in several specific phenomena. The book ends with a chapter devoted to the description of soft matter realizations in nature. Special attention is paid to the components and structure of life: nucleic acids, proteins, polysaccharides and membranes. There are two appendixes recalling the basic concepts of thermodynamics and statistical mechanics. In each chapter, several problems are included, and solutions to a selection of them are given. The bibliography proposed is pertinent and each chapter gives details of further reading, mostly addressed to known books on the topic. iii) The presentation of the book is good. Throughout the book, the relevant, basic or new concepts of each topic are typed in bold characters and succinctly defined. The figures are abundant and adequately illustrate the text either by plots of experimental data or by computed predictions from models. Many schematic representations of structures, molecular distributions or arrangements are also included. In summary, the author has succeeded in producing a scientifically rigorous book of affordable size (around 200 pages) that is well illustrated (about 120 figures) and written in a fluent style that describes the many different physical phenomena involved in soft condensed matter. N Clavaguera

  20. Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time.

    PubMed

    Harriman, O L J; Leake, M C

    2011-12-21

    The soft matter of biological systems consists of mesoscopic length scale building blocks, composed of a variety of different types of biological molecules. Most single biological molecules are so small that 1 billion would fit on the full-stop at the end of this sentence, but collectively they carry out the vital activities in living cells whose length scale is at least three orders of magnitude greater. Typically, the number of molecules involved in any given cellular process at any one time is relatively small, and so real physiological events may often be dominated by stochastics and fluctuation behaviour at levels comparable to thermal noise, and are generally heterogeneous in nature. This challenging combination of heterogeneity and stochasticity is best investigated experimentally at the level of single molecules, as opposed to more conventional bulk ensemble-average techniques. In recent years, the use of such molecular experimental approaches has become significantly more widespread in research laboratories around the world. In this review we discuss recent experimental approaches in biological physics which can be applied to investigate the living component of soft condensed matter to a precision of a single molecule. © 2011 IOP Publishing Ltd Printed in the UK & the USA

  1. Active matter, then and now.

    PubMed

    Keller, Evelyn Fox

    2016-09-01

    Historically, living was divided from dead, inert matter by its autonomous activity. Today, a number of materials not themselves alive are characterized as having inherent activity, and this activity has become the subject of a hot new field of physics, "Active Matter", or "Soft matter become alive." For active matter scientists, the relation of physics to biology is guaranteed in one direction by the assertion that the cell is a material, and hence its study can be considered a branch of material science, and in the other direction, by the claim that the physical dynamics of this material IS what brings the cell to life, and therefore its study is a proper branch of biology. I will examine these claims in relation to the concerns of nineteenth century scientists on the one hand, and on the other, in relation to future prospects of the division between animate and inanimate.

  2. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  3. Coarse-Grained Models for Protein-Cell Membrane Interactions

    PubMed Central

    Bradley, Ryan; Radhakrishnan, Ravi

    2015-01-01

    The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047

  4. Rheology of Soft Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.

    2010-04-01

    Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.

  5. Yield stress materials in soft condensed matter

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien

    2017-07-01

    A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.

  6. 100th anniversary of the birth of E M Lifshitz (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 March 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 100th anniversary of the birth of Academician E M Lifshitz was held in the conference hall of the institute of Physical Problems, RAS, on 26 March 2015. The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the reports: (1) Khalatnikov I M (Landau Institute for Theoretical Physics, RAS, Moscow) "Problem of singularity in cosmology"; (2) Kats E I (Landau Institute for Theoretical Physics, RAS, Moscow) "Van der Waals, Casimir, and Lifshitz forces in soft matter"; (3) Volovik G E (Landau Institute for Theoretical Physics, RAS, Moscow) "Superfluids in rotation: Onsager-Feynman vortices and Landau-Lifshitz vortex sheets." Papers written on the basis of oral presentations 1-3 are published below. • Stochastic cosmology, perturbation theories, and Lifshitz gravity, I M Khalatnikov, A Yu Kamenshchik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 878-891 • Van der Waals, Casimir, and Lifshitz forces in soft matter, E I Kats Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 892-896 • Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices, G E Volovik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 897-905

  7. Sociology.

    ERIC Educational Resources Information Center

    Bensalam Township School District, Cornwells Heights, PA.

    GRADES OR AGES: High school (grades not specified). SUBJECT MATTER: Sociology. ORGANIZATION AND PHYSICAL APPEARANCE: The course contains 13 units. The material is set out in columns--content, student activities, time, teacher activity or strategy, materials, and evaluation. The guide is mimeographed and spiral bound with a soft cover. OBJECTIVES…

  8. Psychology.

    ERIC Educational Resources Information Center

    Bensalam Township School District, Cornwells Heights, PA.

    GRADES OR AGES: High school (grades not specified). SUBJECT MATTER: Psychology. ORGANIZATION AND PHYSICAL APPEARANCE: The course contains 12 units. The material is set out in columns--content, student activities, time, teacher activity or strategy, materials, and evaluation. The guide is mimeographed and spiral bound with a soft cover. OBJECTIVES…

  9. Hydrodynamic theory of active matter

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank; Grill, Stephan W.; Salbreux, Guillaume

    2018-07-01

    We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

  10. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  11. American Conference on Neutron Scattering 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillen, J. Ardie

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  12. First Principles based methods and applications for realistic simulations on complex soft materials to develop new materials for energy, health, and environmental sustainability

    NASA Astrophysics Data System (ADS)

    Goddard, William

    2013-03-01

    For soft materials applications it is essential to obtain accurate descriptions of the weak (London dispersion, electrostatic) interactions between nonbond units, to include interactions with and stabilization by solvent, and to obtain accurate free energies and entropic changes during chemical, physical, and thermal processing. We will describe some of the advances being made in first principles based methods for treating soft materials with applications selected from new organic electrodes and electrolytes for batteries and fuel cells, forward osmosis for water cleanup, extended matter stable at ambient conditions, and drugs for modulating activation of GCPR membrane proteins,

  13. INTERNATIONAL CONFERENCE ON ULTRASHORT HIGH-ENERGY RADIATION AND MATTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, A J

    2004-01-15

    The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keVmore » Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.« less

  14. Living Effectively in the 70's.

    ERIC Educational Resources Information Center

    Alexis I. DuPont School District, Greenville, DE.

    GRADES OR AGES: Unspecified. SUBJECT MATTER: Effective living. ORGANIZATION AND PHYSICAL APPEARANCE: Most of the pages are divided into three columns: concept, some activities, and teacher comments. The guide is offset printed and spiral bound with a soft cover. OBJECTIVES AND ACTIVITIES: The guide is divided into eight units: human growth and…

  15. 2015 Soft Condensed Matter Physics: Self-Assembly and Active Matter GRC/GRS

    DTIC Science & Technology

    2015-10-20

    or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O...were Minorities – 0% Hispanic, 14% Asian and 0% African American. Approximately 29% of the participants at the 2015 meeting were women. In designing ...Trees" 8:10 pm - 8:30 pm Discussion 8:30 pm - 9:10 pm Todd Yeates (University of California, Los Angeles, USA) "Using Ideas in Symmetry to Design

  16. Mesoscopic modelling and simulation of soft matter.

    PubMed

    Schiller, Ulf D; Krüger, Timm; Henrich, Oliver

    2017-12-20

    The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.

  17. Soft x rays as a tool to investigate radiation-sensitive sites in mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, D.J.; Zaider, M.

    1983-01-01

    It is now clear that the initial geometrical distribution of primary radiation products in irradiated biological matter is fundamental to the observed end point (cell killing, mutation induction, chromosome aberrations, etc.). In recent years much evidence has accumulated indicating that for all radiations, physical quantities averaged over cellular dimensions (micrometers) are not good predictors of biological effect, and that energy-deposition processes at the nanometer level are critical. Thus irradiation of cells with soft x rays whose secondary electrons have ranges of the order of nanometers is a unique tool for investigating different models for predicting the biological effects of radiation.more » We demonstrate techniques whereby the biological response of the cell and the physical details of the energy deposition processes may be separated or factorized, so that given the response of a cellular system to, say, soft x rays, the response of the cell to any other radiation may be predicted. The special advantages of soft x rays for eliciting this information and also information concerning the geometry of the radiation sensitive structures within the cell are discussed.« less

  18. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

    NASA Astrophysics Data System (ADS)

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-08-01

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.

  19. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.

    PubMed

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-08-09

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.

  20. PREFACE: The 10th General Conference of the Condensed Matter Division of the European Physical Society

    NASA Astrophysics Data System (ADS)

    Sousa, J. B.

    1991-01-01

    The 10th General Conference of the Condensed Matter Division of the European Physical Society was held in Lisbon from 9 to 12 April 1990; it was attended by 670 scientists from 28 countries of Europe and overseas. Following the tradition of the series, the Lisbon EPS Conference covered most of the relevant topics in Condensed Matter Physics, organized in three major Symposia: Soft Matter and Polymers, Solid State Physics and The Physics of Materials for future Electronics. The last Symposium was jointly organized with the European Materials Research Society, starting a timely cooperation between both European Societies in important scientific and technological areas of common interest. The Conference included 4 plenary lectures, 69 invited talks and 440 contributions in poster sessions. The present volume T35 of the Topical Issues of Physica Scripta, contains papers of the invited talks. The motivation of this volume is to present a wider information of the contents of the Conference, and also to offer to the participants, and in particular to the younger ones, the opportunity of a deeper personal analysis of the ideas and concepts that have been under discussion during the four days of the Conference. The local organization of the Conference was the responsibility of the Portuguese Physical Society, through its Division of Condensed Matter Physics. The event substituted in 1990 the Iberian Symposium on Condensed Matter Physics, which is regularly and alternatively organized in Spain and Portugal every two years, under the special sponsorship of Unesco. We wish to express our thanks to the Conference Committees, to the authors and the individuals who contributed to the contents of the Conference. A special acknowledgement is due to the Sponsors for their generous support of this event.

  1. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles.

    PubMed

    Yunker, Peter J; Chen, Ke; Gratale, Matthew D; Lohr, Matthew A; Still, Tim; Yodh, A G

    2014-05-01

    This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.

  2. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  3. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    PubMed

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  4. Universal physical responses to stretch in the living cell

    PubMed Central

    Trepat, Xavier; Deng, Linhong; An, Steven S.; Navajas, Daniel; Tschumperlin, Daniel J.; Gerthoffer, William T.; Butler, James P.; Fredberg, Jeffrey J.

    2008-01-01

    With every beat of the heart, inflation of the lung or peristalsis of the gut, cell types of diverse function are subjected to substantial stretch. Stretch is a potent stimulus for growth, differentiation, migration, remodelling and gene expression1,2. Here, we report that in response to transient stretch the cytoskeleton fluidizes in such a way as to define a universal response class. This finding implicates mechanisms mediated not only by specific signalling intermediates, as is usually assumed, but also by non-specific actions of a slowly evolving network of physical forces. These results support the idea that the cell interior is at once a crowded chemical space3 and a fragile soft material in which the effects of biochemistry, molecular crowding and physical forces are complex and inseparable, yet conspire nonetheless to yield remarkably simple phenomenological laws. These laws seem to be both universal and primitive, and thus comprise a striking intersection between the worlds of cell biology and soft matter physics. PMID:17538621

  5. Glass-like dynamics in confined and congested ant traffic.

    PubMed

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I

    2015-09-07

    The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.

  6. Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates.

    PubMed

    Capati, M; Caprara, S; Di Castro, C; Grilli, M; Seibold, G; Lorenzana, J

    2015-07-06

    Empirical evidence in heavy fermion, pnictide and other systems suggests that unconventional superconductivity appears associated to some form of real-space electronic order. For the cuprates, despite several proposals, the emergence of order in the phase diagram between the commensurate antiferromagnetic state and the superconducting state is not well understood. Here we show that in this regime doped holes assemble in 'electronic polymers'. Within a Monte Carlo study, we find that in clean systems by lowering the temperature the polymer melt condenses first in a smectic state and then in a Wigner crystal both with the addition of inversion symmetry breaking. Disorder blurs the positional order leaving a robust inversion symmetry breaking and a nematic order, accompanied by vector chiral spin order and with the persistence of a thermodynamic transition. Such electronic phases, whose properties are reminiscent of soft-matter physics, produce charge and spin responses in good accord with experiments.

  7. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

    PubMed Central

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-01-01

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells. PMID:27503336

  8. Design guidelines for adapting scientific research articles: An example from an introductory level, interdisciplinary program on soft matter

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Safran, Samuel A.; Yerushalmi, Edit

    2013-01-01

    We present design guidelines for using Adapted Primary Literature (APL) as part of current interdisciplinary topics to introductory physics students. APL is a text genre that allows students to comprehend a scientific article, while maintaining the core features of the communication among scientists, thus representing an authentic scientific discourse. We describe the adaptation of a research paper by Nobel Laureate Paul Flory on phase equilibrium in polymer-solvent mixtures that was presented to high school students in a project-based unit on soft matter. The adaptation followed two design strategies: a) Making explicit the interplay between the theory and experiment. b) Re-structuring the text to map the theory onto the students' prior knowledge. Specifically, we map the theory of polymer-solvent systems onto a model for binary mixtures of small molecules of equal size that was already studied in class.

  9. Modeling semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Broedersz, C. P.; MacKintosh, F. C.

    2014-07-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks of such biopolymers have emerged as a new class of biological soft matter systems with remarkable material properties, which have spurred many of the theoretical developments discussed here. Starting from the mechanics and dynamics of individual semiflexible polymers, the physics of semiflexible bundles, entangled solutions, and disordered cross-linked networks are reviewed. Finally, recent developments on marginally stable fibrous networks, which exhibit critical behavior similar to other marginal systems such as jammed soft matter, are discussed.

  10. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  11. Revealing the jet substructure in a compressed spectrum of new physics

    NASA Astrophysics Data System (ADS)

    Han, Chengcheng; Park, Myeonghun

    2016-07-01

    The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in the theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag soft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve sensitivity in these nontrivial search regions.

  12. Interfacial structure of soft matter probed by SFG spectroscopy.

    PubMed

    Ye, Shen; Tong, Yujin; Ge, Aimin; Qiao, Lin; Davies, Paul B

    2014-10-01

    Sum frequency generation (SFG) vibrational spectroscopy, an interface-specific technique in contrast to, for example, attenuated total reflectance spectroscopy, which is only interface sensitive, has been employed to investigate the surface and interface structure of soft matter on a molecular scale. The experimental arrangement required to carry out SFG spectroscopy, with particular reference to soft matter, and the analytical methods developed to interpret the spectra are described. The elucidation of the interfacial structure of soft matter systems is an essential prerequisite in order to understand and eventually control the surface properties of these important functional materials. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 3D printing of soft-matter to open a new era of soft-matter MEMS/robotics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu

    2017-04-01

    3D printing technology is becoming useful and applicable by the progress of information and communication technology (ICT). It means 3D printer is a kind of useful robot for additive manufacturing and is controlled by computer with human-friendly software. Once user starts to use 3D printing of soft-matter, one can immediately understand computer-aided design (CAD) and engineering (CAE) technology will be more important and applicable for soft-matter systems. User can easily design soft-matter objects and 3D-print them. User can easily apply 3D-printed soft-matter objects to develop new research and application on MEMS and robotics. Here we introduce the recent progress of 3D printing (i.e. additive manufacturing), especially focusing on our 3D gel printing. We are trying to develop new advanced research and applications of 3D gel printer, including GEL-MECHANICS, GEL-PHOTONICS, and GEL-ROBOTICS. In the gel-mechanics, we are developing new gel materials for mechanical engineering. Some gels have high-mechanical strength and shape memory properties. In the gel-photonics. We are applying our original characterizing system, named `Scanning Microscopic Light Scattering (SMILS)', to analyze 3D printed gel materials. In the gel-robotics, we focus on 3D printing of soft parts for soft-robotics made form gel materials, like gel finger. Also we are challenging to apply 3D gel printing to start new company, to innovate new businesses in county side, and to create new 3D-printed foods.

  14. Focus issue on the Study of Matter at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Saini, Naurang L.; Saxena, Surendra K.; Bansil, Arun

    2015-09-01

    Study of matter at extreme conditions encompasses many different approaches for understanding the physics, chemistry and materials science underlying processes, products and technologies important for society. Although extreme conditions have been associated traditionally with research in areas of geology, mineral and earth sciences, the field has expanded in the recent years to include work on energy related materials and quantum functional materials from hard to soft matter. With the motivation to engage a large number of scientists with various disciplinary interests, ranging from physics, chemistry, geophysics to materials science, the study of matter at extreme conditions has been the theme of a series of conferences hosted by the High Pressure Science Society of America (HiPSSA) and the Center for the Study of Matter at Extreme Conditions (CeSMEC) of Florida International University (FIU), Miami. These SMEC (Study of Matter at Extreme Conditions) conferences are aimed at providing a unique platform for leading researchers to meet and share cutting-edge developments, and to bridge established fields under this interdisciplinary umbrella for research on materials. The seventh meeting in the SMEC series was held during March 23-30, 2013, while sailing from Miami to the Caribbean Islands, and concluded with great enthusiasm.

  15. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  16. Soft Matter: Food for Thought

    ERIC Educational Resources Information Center

    Ogborn, Jon

    2004-01-01

    "Soft matter" is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on…

  17. PREFACE: Proceedings of the 7th Liquid Matter Conference (Lund, Sweden, 27 June 1 July 2008)

    NASA Astrophysics Data System (ADS)

    Kahl, Gerhard; Sciortino, Francesco; Ullner, Magnus

    2008-12-01

    The three-yearly Liquid Matter Conference is organized by the Liquids Section of the Condensed Matter Division of the European Physical Society. This series of meetings began in Lyon in 1990. The previous meeting was held in 2005 in Utrecht. The original aim of the Liquid Matter Conference was to bring together scientists working on the liquid state of matter. A closer analysis of the program booklets over the past 18 years reveals that new and highly active research fields that are closely related to liquid matter have been successfully integrated in the scope of the conference, notably the rapidly developing fields of soft matter and biophysics. Concomitantly, a broadening of the spectrum from the classical liquid state to a wide spectrum of phases and systems could be observed. Therefore, the rapidly growing field covered by this conference series at present includes physics, chemistry, biology, and chemical engineering as well as various applied research areas. Liquid state physics is at the interface of many research fields. As a consequence, many of the attendants come from adjacent fields and encounter at the Liquid Matter Conference a community where they can meet experts from other research areas. This aspect of the Liquid Matter Conference makes it an exciting meeting as it not only offers the participants an up-to-date picture of the status of research into the liquid state of matter, but it also allows them to establish new (and often unexpected) transdisciplinary contacts for joint scientific endeavours. This applies in particular to the area of soft condensed matter such as colloidal suspensions, polymeric systems and biological materials. The Lund meeting, organized in collaboration with Lund University, had 574 registered participants from five continents. During the conference, and following the tradition established at the Utrecht meeting, the second Liquid Matter Prize of the European Physical Society was awarded to Professor Henk Lekkerkerker (Utrecht) and to Professor Peter Pusey (Edinburgh) for their seminal studies of colloidal matter. In addition to plenary speeches by the two recipients of the Liquid Matter Prize, the scientific program consisted of ten plenary lectures, 108 symposia talks, 23 of which were keynote lectures, and 458 poster contributions. This special issue of Journal of Physics: Condensed Matter contains 47 of the oral communications. The conference was held in the buildings of Lund University and the Student Union facing the University Square in the heart of Lund. The organizers gratefully acknowledge the substantial financial support offered by the Nobel Foundation and by the Swedish Research Council. The success of the conference owes a great debt of gratitude to the members of the Local Organizing Committee and all the people who helped them tirelessly (and very efficiently) to make the conference run smoothly and to the members of the International Program Committee, who were deeply involved in the planning of the conference. During the conference dinner our colleague Lennart Piculell gave a singing performance, which included a song dedicated to the two winners of the Liquid Matter Prize, entitled Hard-Breaking Gel, whose lyrics are printed below. Finally, the Board of the Liquids Section of the European Physical Society decided that the 8th Liquid Matter Conference will be held in Vienna (Austria) 6-10 September 2011. Hard-Breaking Gel New lyrics by Lennart Piculell to the melody of Heartbreak Hotel, created in June 2008 for the 7th Liquid Matter Conference, dedicated to Henk Lekkerkerker and Peter Pusey. Well, since my baby left me, I found a new place to be! It's downtown Lund, in a narrow street, Where hundreds of cool people meet! There I don't feel lonely, No, I don't feel lonely - So, if you feel lonely, you should try! It's all about liquid matter: Liquids flow, and soft bodies swell! Your mind is blown, and your blood will boil To a hard-breaking gel. And you won't be lonely, No, you won't be lonely - So, if you feel lonely, you should try! A tough guy tells you: Freeze! This is something that you have to test, 'Cause when you freeze you'll be super-cool, Or else you'll be under arrest. But you won't be lonely, baby, No, you won't be lonely, baby - So, if you feel lonely, you should try! I learn that the slightest nano-rod, That wouldn't seem very large; It still can fill up a lot of space As soon as you give it some charge! So, if you feel lonely, baby, Yes, if you feel lonely, baby - If you feel lonely, you should try! Well, when the party's over, What memories will time erase? Well, the chemistry may be lost on me, But I never forget a phase! And I won't be lonely, No, I won't be lonely - I won't be lonely 'til I die!

  18. A stochastic thermostat algorithm for coarse-grained thermomechanical modeling of large-scale soft matters: Theory and application to microfilaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less

  19. Preface

    NASA Astrophysics Data System (ADS)

    von Grünberg, H. H.; Klein, R.; Maret, G.

    2003-01-01

    This special issue of Journal of Physics: Condensed Matter contains the Proceedings of the Fifth Liquid Matter conference held in Konstanz, Germany, 14-18 September 2002. These conferences are organized every three years by the Liquids Section of the Condensed Matter Division of the European Physical Society. Previous meetings were held in Lyon, Firenze, Norwich and Granada. The aim of the conferences is to bring together scientists working on the liquid state of matter. This rapidly growing field includes the physics, chemistry, biology and chemical engineering of liquid matter as well as various applied research areas. The conference at Konstanz had 512 registered participants from four continents. The scientific programme consisted of 12 plenary lectures, 84 symposia talks and 506 poster contributions. This volume of the proceedings contains 60 of the oral communications. Similar to observations at previous Liquid Matter Conferences there is an increasing trend to use and expand concepts and methods originally developed for simple liquids to study and understand properties of more complex liquid systems. This applies in particular to the area of soft condensed matter such as colloidal suspensions, polymeric systems and biological materials. Research in this area is a good example of truly interdisciplinary activities, where traditional borders between physics and its neighbouring sciences have disappeared. As a consequence of this development a significant number of the participants of the conference come from other disciplines than physics, so that this meeting provided a very useful forum for the exchange of ideas and results among scientist with different backgrounds. The conference was held at the campus of the University of Konstanz. The organizers of the conference are very grateful to the University and its Rector Prof. G. von Graevenitz for the substantial help received and for sponsoring the conference. Finally, it is a pleasure to acknowledge the work of many students, of secretaries and of collaborators and colleagues, who helped to run the conference smoothly. The Board of the Liquids Section of the European Physical Society decided that the Sixth Liquid Matter Conference will be held in Utrecht, The Netherlands, 2-6 July, 2005.

  20. Moderate point: Balanced entropy and enthalpy contributions in soft matter

    NASA Astrophysics Data System (ADS)

    He, Baoji; Wang, Yanting

    2017-03-01

    Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative definitions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermodynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation, the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also briefly discussed. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 11274319 and 11421063).

  1. From cell extracts to fish schools to granular layers: the universal hydrodynamics of self-driven systems

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2007-03-01

    Collections of self-driven or ``active'' particles are now recognised as a distinct kind of nonequilibrium matter, and an understanding of their phases, hydrodynamics, mechanical response, and correlations is a vital and rapidly developing part of the statistical physics of soft-matter systems far from equilibrium. My talk will review our recent results, from theory, simulation and experiment, on order, fluctuations, and flow instabilities in collections of active particles, in suspension or on a solid surface. Our work, which began by adapting theories of flocking to include the hydrodynamics of the ambient fluid, provides the theoretical framework for understanding active matter in all its diversity: contractile filaments in cell extracts, crawling or dividing cells, collectively swimming bacteria, fish schools, and agitated monolayers of orientable granular particles.

  2. Zebra mussel effects on benthic invertebrates: physical or biotic?

    USGS Publications Warehouse

    Botts, P. Silver; Patterson, Benjamin A.; Schloesser, Don W.

    1996-01-01

    In soft sediments, Dreissena spp. create firm substrate in the form of aggregates of living mussels (druses) that roll free on the sediments. Druses provide physical structure which increases habitat heterogeneity, and the mussels increase benthic organic matter through the production of pseudofeces and feces. Descriptive and experimental studies were used to determine: 1) whether the density of benthic invertebrates in soft sediments increased in the presence of druses, and 2) whether the invertebrate assemblage responded to the physical structure provided by a druse or to some biotic effect associated with the presence of living mussels. In core samples collected biweekly during summer in Presque Isle Bay, Erie, Pennsylvania, amphipods, chironomids, oligochaetes, turbellarians, and hydrozoans were significantly more abundant in sand with druses than in bare sand. When mesh bags containing either a living druse, non-living druse, or no druse were incubated in the bay for 33 d, we found that chironomids were significantly more abundant in treatments with living druses than with non-living druses, and in treatments with non-living druses than with no druse; turbellarians, amphipods, and hydrozoans were significantly more abundant in treatments with living or non-living druses than with no druse; oligochaetes showed no significant differences among treatments. This study demonstrates that most taxa of benthic invertebrates in soft substrate respond specifically to the physical structure associated with aggregates of mussel shells, but further study is needed to examine chironomid responses to some biotic effect dependent on the presence of living mussels.

  3. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  4. High strain-rate soft material characterization via inertial cavitation

    NASA Astrophysics Data System (ADS)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  5. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  6. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  7. Flexible robotic actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam

    Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.

  8. Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin; Brinkmann, Martin; Müller, Frank

    2015-03-01

    Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.

  9. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  10. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  11. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  12. Track structure: time evolution from physics to chemistry.

    PubMed

    Dingfelder, M

    2006-01-01

    This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.

  13. Soft X-Ray Emission Lines from a Relativistic Accretion Disk in MCG -6-30-15 and Mrk 766

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sako, M.; Kahn, S. M.; Brinkman, A. C.; Kaastra, J. S.; Page, M. J.

    2000-01-01

    XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitation- ally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.

  14. Reversible Rigidity Control Using Low Melting Temperature Alloys

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-03-01

    Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.

  15. PREFACE: Topics in the application of scattering methods to investigate the structure and dynamics of soft condensed matter

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2006-09-01

    This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of the US Department of Energy for their support of the workshop.

  16. Measurements of Surfactant Squeeze-out Using Magnetically-Levitated Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Charles

    2004-01-01

    Liquid bridges: Columns of liquid supported by two solid surfaces. These are generally opposing right circular cylinders in 0g. For a cylindrical bridge of length L and diameter d, in zero g, the maximum slenderness ratio Lambda [L/d] = pi [Rayleigh]. In the presence of gravity the cylindrical shape of an axisymmetric bridge tends to deform. Fluid has a volumetric magnetic susceptibility X. Magnetic levitation has numerous applications in studies of fluids, "soft" and "hard" condensed matter physics, and biophysics

  17. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  18. Out-of-equilibrium dynamics in the cytoskeleton of the living cell

    NASA Astrophysics Data System (ADS)

    Lenormand, Guillaume; Bursac, Predrag; Butler, James P.; Fredberg, Jeffrey J.

    2007-10-01

    We report here measurements of rheological properties of the human airway smooth muscle cell using forced nanoscale motions of Arg-Gly-Asp RGD-coated microbeads tightly bound to the cytoskeleton. With changes of forcing amplitude, the storage modulus showed small but systematic nonlinearities, especially after treatment with a contractile agonist. In a dose-dependent manner, a large oscillatory shear applied from a few seconds up to 400s caused the cytoskeleton matrix to soften, a behavior comparable to physical rejuvenation observed in certain inert soft materials; the stiffness remained constant for as long as the large oscillatory shear was maintained, but suddenly fell with shear cessation. Stiffness then followed a slow scale-free recovery, a phenomenon comparable to physical aging. However, acetylated low-density lipoprotein acLDL-coated microbeads, which connect mainly to scavenger receptors, did not show similar out-of-equilibrium behaviors. Taken together, these data demonstrate in the cytoskeleton of the living cell behaviors with all the same signatures as that of soft inert condensed systems. This unexpected intersection of condensed matter physics and cytoskeletal biology suggests that trapping, intermittency, and approach to kinetic arrest represent central mesoscale features linking underlying molecular events to integrative cellular functions.

  19. Shape-programmable magnetic soft matter

    PubMed Central

    Lum, Guo Zhan; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin

    2016-01-01

    Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart. PMID:27671658

  20. Shape-programmable magnetic soft matter.

    PubMed

    Lum, Guo Zhan; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin

    2016-10-11

    Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.

  1. Shape-programmable magnetic soft matter

    NASA Astrophysics Data System (ADS)

    Zhan Lum, Guo; Ye, Zhou; Dong, Xiaoguang; Marvi, Hamid; Erin, Onder; Hu, Wenqi; Sitti, Metin

    2016-10-01

    Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.

  2. A note on the history of experimental and theoretical research into molecular attractive forces between solids

    NASA Astrophysics Data System (ADS)

    Danilova, N. P.

    2015-09-01

    From the Editorial Board. In a brief followup to the talk by E I Kats on "Van der Waals, Casimir, and Lifshitz forces in soft matter" (see pp. 892 - 896 of this issue) at the E M Lifshitz centennial session of the Physical Sciences Division of the Russian Academy of Sciences, an interesting and instructive story was told by Nina Petrovna Danilova (Department of Low Temperature Physics and Superconductivity, Faculty of Physics, Moscow State University) of how E M Lifshitz was enlisted to explain I I Abrikosova's and B V Derjaguin's experimental results. The Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal found the story appropriate to be published in the "Letters to the Editor" section of UFN in a jubilee selection of works marking the centennial of E M Lifshitz' birth.

  3. Topological defects and shapes of triatic liquid crystal vesicles

    NASA Astrophysics Data System (ADS)

    Serafin, Francesco; Manyuhina, Oksana; Bowick, Mark

    Is shape the manifestation of function, or does shape determine function? Since the time of Aristotle, the study of shape has proven to be a fruitful way to understand the behavior of physical systems, from atomic to biological systems scales. Two dimensional soft membranes are a perfect setting to understand the emergence of shape. An interesting possibility is to control and design new self-assemblable supramolecular shapes by coating the surface of soft closed vesicles with liquid crystals (LC) of various symmetries. The microscopic geometry of the liquid crystal molecules, in particular the structure of topological defects, when combined with the topology of the vesicle's surface, ultimately determines the vesicle's shape. Recent work has shown that the minimal energy shapes of smectic and nematic vesicles are faceted polyhedra. A very soft smectic vesicle develops sharp creases and forms a faceted tetrahedron. When the coating LC has the symmetries of the square, the vesicle forms a cube. In this work we extend these results to a 3-fold symmetric LC, proving that the vesicle's ground state is an octahedron. This gives a systematic way of predicting vesicle's shapes as we change the liquid crystal's symmetry. Soft Matter Program of Syracuse University.

  4. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE PAGES

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; ...

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10 4 achieved routinely today to well above 10 5. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations inmore » matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less

  5. Piezoresistive Carbon-based Hybrid Sensor for Body-Mounted Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Melnykowycz, M.; Tschudin, M.; Clemens, F.

    2017-02-01

    For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response. The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson’s Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson’s Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.

  6. Physical Model of the Genotype-to-Phenotype Map of Proteins

    NASA Astrophysics Data System (ADS)

    Tlusty, Tsvi; Libchaber, Albert; Eckmann, Jean-Pierre

    2017-04-01

    How DNA is mapped to functional proteins is a basic question of living matter. We introduce and study a physical model of protein evolution which suggests a mechanical basis for this map. Many proteins rely on large-scale motion to function. We therefore treat protein as learning amorphous matter that evolves towards such a mechanical function: Genes are binary sequences that encode the connectivity of the amino acid network that makes a protein. The gene is evolved until the network forms a shear band across the protein, which allows for long-range, soft modes required for protein function. The evolution reduces the high-dimensional sequence space to a low-dimensional space of mechanical modes, in accord with the observed dimensional reduction between genotype and phenotype of proteins. Spectral analysis of the space of 1 06 solutions shows a strong correspondence between localization around the shear band of both mechanical modes and the sequence structure. Specifically, our model shows how mutations are correlated among amino acids whose interactions determine the functional mode.

  7. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  8. Tuned, driven, and active soft matter

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2015-02-01

    One characteristic feature of soft matter systems is their strong response to external stimuli. As a consequence they are comparatively easily driven out of their ground state and out of equilibrium, which leads to many of their fascinating properties. Here, we review illustrative examples. This review is structured by an increasing distance from the equilibrium ground state. On each level, examples of increasing degree of complexity are considered. In detail, we first consider systems that are quasi-statically tuned or switched to a new state by applying external fields. These are common liquid crystals, liquid crystalline elastomers, or ferrogels and magnetic elastomers. Next, we concentrate on systems steadily driven from outside e.g. by an imposed flow field. In our case, we review the reaction of nematic liquid crystals, of bulk-filling periodically modulated structures such as block copolymers, and of localized vesicular objects to an imposed shear flow. Finally, we focus on systems that are "active" and "self-driven". Here our range spans from idealized self-propelled point particles, via sterically interacting particles like granular hoppers, via microswimmers such as self-phoretically driven artificial Janus particles or biological microorganisms, via deformable self-propelled particles like droplets, up to the collective behavior of insects, fish, and birds. As we emphasize, similarities emerge in the features and behavior of systems that at first glance may not necessarily appear related. We thus hope that our overview will further stimulate the search for basic unifying principles underlying the physics of these soft materials out of their equilibrium ground state.

  9. Final Technical Report for ``Paths to Discovery at the LHC : Dark Matter and Track Triggering"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Kristian

    Particle Dark Matter (DM) is perhaps the most compelling and experimentally well-motivated new physics scenario anticipated at the Large Hadron Collider (LHC). The DE-SC0014073 award allowed the PI to define and pursue a path to the discovery of Dark Matter in Run-2 of the LHC with the Compact Muon Solenoid (CMS) experiment. CMS can probe regions of Dark Matter phase-space that direct and indirect detection experiments are unable to constrain. The PI’s team initiated the exploration of these regions, searching specifically for the associated production of Dark Matter with top quarks. The effort focuses on the high-yield, hadronic decays ofmore » W bosons produced in top decay, which provides the highest sensitivity to DM produced via through low-mass spin-0 mediators. The group developed identification algorithms that achieve high efficiency and purity in the selection of hadronic top decays, and analysis techniques that provide powerful signal discrimination in Run-2. The ultimate reach of new physics searches with CMS will be established at the high-luminosity LHC (HL-LHC). To fully realize the sensitivity the HL-LHC promises, CMS must minimize the impact of soft, inelastic (“pileup”) interactions on the real-time “trigger” system the experiment uses for data refinement. Charged particle trajectory information (“tracking”) will be essential for pileup mitigation at the HL-LHC. The award allowed the PI’s team to develop firmware-based data delivery and track fitting algorithms for an unprecedented, real-time tracking trigger to sustain the experiment’s sensitivity to new physics in the next decade.« less

  10. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    PubMed Central

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  11. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

    PubMed

    Peterson, Joseph E; Lenczewski, Melissa E; Scherer, Reed P

    2010-10-12

    Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

  12. Printing soft matter in three dimensions.

    PubMed

    Truby, Ryan L; Lewis, Jennifer A

    2016-12-14

    Light- and ink-based three-dimensional (3D) printing methods allow the rapid design and fabrication of materials without the need for expensive tooling, dies or lithographic masks. They have led to an era of manufacturing in which computers can control the fabrication of soft matter that has tunable mechanical, electrical and other functional properties. The expanding range of printable materials, coupled with the ability to programmably control their composition and architecture across various length scales, is driving innovation in myriad applications. This is illustrated by examples of biologically inspired composites, shape-morphing systems, soft sensors and robotics that only additive manufacturing can produce.

  13. Printing soft matter in three dimensions

    NASA Astrophysics Data System (ADS)

    Truby, Ryan L.; Lewis, Jennifer A.

    2016-12-01

    Light- and ink-based three-dimensional (3D) printing methods allow the rapid design and fabrication of materials without the need for expensive tooling, dies or lithographic masks. They have led to an era of manufacturing in which computers can control the fabrication of soft matter that has tunable mechanical, electrical and other functional properties. The expanding range of printable materials, coupled with the ability to programmably control their composition and architecture across various length scales, is driving innovation in myriad applications. This is illustrated by examples of biologically inspired composites, shape-morphing systems, soft sensors and robotics that only additive manufacturing can produce.

  14. Energy Harvesting for Soft-Matter Machines and Electronics

    DTIC Science & Technology

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0353 Energy Harvesting for Soft-Matter Machines and Electronics Carmel Majidi CARNEGIE MELLON UNIVERSITY Final Report 06/09...ES) CARNEGIE MELLON UNIVERSITY 5000 FORBES AVENUE PITTSBURGH, PA 15213-3815 US 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...livelink.ebs.afrl.af.mil/livelink/llisapi.dll DISTRIBUTION A: Distribution approved for public release. Carnegie Mellon University MECHANICAL ENGINEERING FINAL

  15. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems.

    PubMed

    Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L; Choset, Howie; Umbanhowar, Paul B; Goldman, Daniel I

    2016-11-01

    Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems-a 'locomotion robophysics'-which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others' research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.

  16. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L.; Choset, Howie; Umbanhowar, Paul B.; Goldman, Daniel I.

    2016-11-01

    Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems—a ‘locomotion robophysics’—which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others’ research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.

  17. Emergent Structural Mechanisms for High-Density Collective Motion Inspired by Human Crowds

    NASA Astrophysics Data System (ADS)

    Bottinelli, Arianna; Sumpter, David T. J.; Silverberg, Jesse L.

    2016-11-01

    Collective motion of large human crowds often depends on their density. In extreme cases like heavy metal concerts and black Friday sales events, motion is dominated by physical interactions instead of conventional social norms. Here, we study an active matter model inspired by situations when large groups of people gather at a point of common interest. Our analysis takes an approach developed for jammed granular media and identifies Goldstone modes, soft spots, and stochastic resonance as structurally driven mechanisms for potentially dangerous emergent collective motion.

  18. Chewing side preference in first and all mastication cycles for hard and soft morsels

    PubMed Central

    Zamanlu, Masumeh; Khamnei, Saeed; SalariLak, Shaker; Oskoee, Siavash Savadi; Shakouri, Seyed Kazem; Houshyar, Yousef; Salekzamani, Yaghoub

    2012-01-01

    Preferred chewing side is a still controversial matter and various methods used have yielded some inconsistencies. The aim of this study is to compare the preference determined in different conditions. Nineteen healthy subjects were offered hard (walnut) and soft (cake) foods, while the electromyography was recorded from their masseter muscles, in 2009 in the Research Center of Physical Medicine and Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran. Four occurrences were determined as the side of the first chews/all chews in the two food types, and then analyzed for correlations and agreements. For hard food 73.68% and for soft food 57.89% of the subjects showed preference. The comparison of all chews showed a highly significant preference towards the right side in both food types (p=0.000 & 0.003). There was both correlation and agreement between the first chew preferences in both food types, and an agreement between the first and all chew preferences in the hard food. Therefore, there seems to exist some laterality in mastication, which is more explicit when using hard food and assessing all chews. PMID:22993653

  19. Statistical field theory description of inhomogeneous polarizable soft matter

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.

    2016-10-01

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  20. Statistical field theory description of inhomogeneous polarizable soft matter.

    PubMed

    Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H

    2016-10-21

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  1. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Arguin, J.-F.; Barnett, R. M.; Copic, K.; Dahl, O.; Groom, D. E.; Lin, C.-J.; Lys, J.; Murayama, H.; Wohl, C. G.; Yao, W.-M.; Zyla, P. A.; Amsler, C.; Antonelli, M.; Asner, D. M.; Baer, H.; Band, H. R.; Basaglia, T.; Bauer, C. W.; Beatty, J. J.; Belousov, V. I.; Bergren, E.; Bernardi, G.; Bertl, W.; Bethke, S.; Bichsel, H.; Biebel, O.; Blucher, E.; Blusk, S.; Brooijmans, G.; Buchmueller, O.; Cahn, R. N.; Carena, M.; Ceccucci, A.; Chakraborty, D.; Chen, M.-C.; Chivukula, R. S.; Cowan, G.; D'Ambrosio, G.; Damour, T.; de Florian, D.; de Gouvêa, A.; DeGrand, T.; de Jong, P.; Dissertori, G.; Dobrescu, B.; Doser, M.; Drees, M.; Edwards, D. A.; Eidelman, S.; Erler, J.; Ezhela, V. V.; Fetscher, W.; Fields, B. D.; Foster, B.; Gaisser, T. K.; Garren, L.; Gerber, H.-J.; Gerbier, G.; Gherghetta, T.; Golwala, S.; Goodman, M.; Grab, C.; Gritsan, A. V.; Grivaz, J.-F.; Grünewald, M.; Gurtu, A.; Gutsche, T.; Haber, H. E.; Hagiwara, K.; Hagmann, C.; Hanhart, C.; Hashimoto, S.; Hayes, K. G.; Heffner, M.; Heltsley, B.; Hernández-Rey, J. J.; Hikasa, K.; Höcker, A.; Holder, J.; Holtkamp, A.; Huston, J.; Jackson, J. D.; Johnson, K. F.; Junk, T.; Karlen, D.; Kirkby, D.; Klein, S. R.; Klempt, E.; Kowalewski, R. V.; Krauss, F.; Kreps, M.; Krusche, B.; Kuyanov, Yu. V.; Kwon, Y.; Lahav, O.; Laiho, J.; Langacker, P.; Liddle, A.; Ligeti, Z.; Liss, T. M.; Littenberg, L.; Lugovsky, K. S.; Lugovsky, S. B.; Mannel, T.; Manohar, A. V.; Marciano, W. J.; Martin, A. D.; Masoni, A.; Matthews, J.; Milstead, D.; Miquel, R.; Mönig, K.; Moortgat, F.; Nakamura, K.; Narain, M.; Nason, P.; Navas, S.; Neubert, M.; Nevski, P.; Nir, Y.; Olive, K. A.; Pape, L.; Parsons, J.; Patrignani, C.; Peacock, J. A.; Petcov, S. T.; Piepke, A.; Pomarol, A.; Punzi, G.; Quadt, A.; Raby, S.; Raffelt, G.; Ratcliff, B. N.; Richardson, P.; Roesler, S.; Rolli, S.; Romaniouk, A.; Rosenberg, L. J.; Rosner, J. L.; Sachrajda, C. T.; Sakai, Y.; Salam, G. P.; Sarkar, S.; Sauli, F.; Schneider, O.; Scholberg, K.; Scott, D.; Seligman, W. G.; Shaevitz, M. H.; Sharpe, S. R.; Silari, M.; Sjöstrand, T.; Skands, P.; Smith, J. G.; Smoot, G. F.; Spanier, S.; Spieler, H.; Stahl, A.; Stanev, T.; Stone, S. L.; Sumiyoshi, T.; Syphers, M. J.; Takahashi, F.; Tanabashi, M.; Terning, J.; Titov, M.; Tkachenko, N. P.; Törnqvist, N. A.; Tovey, D.; Valencia, G.; van Bibber, K.; Venanzoni, G.; Vincter, M. G.; Vogel, P.; Vogt, A.; Walkowiak, W.; Walter, C. W.; Ward, D. R.; Watari, T.; Weiglein, G.; Weinberg, E. J.; Wiencke, L. R.; Wolfenstein, L.; Womersley, J.; Woody, C. L.; Workman, R. L.; Yamamoto, A.; Zeller, G. P.; Zenin, O. V.; Zhang, J.; Zhu, R.-Y.; Harper, G.; Lugovsky, V. S.; Schaffner, P.

    2012-07-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov/.The 2012 edition of Review of Particle Physics is published for the Particle Data Group as article 010001 in volume 86 of Physical Review D.This edition should be cited as: J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

  2. The Intersection of Physics and Biology

    ScienceCinema

    Liphardt, Jan

    2017-12-22

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.

  3. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fassler, A.; Majidi, C.

    2013-05-01

    We introduce a family of soft-matter capacitors and inductors composed of microchannels of liquid-phase gallium-indium-tin alloy (galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). In contrast to conventional (rigid) electronics, these circuit elements remain electronically functional even when stretched to several times their natural length. As the surrounding elastomer stretches, the capacitance and inductance of the embedded liquid channels change monotonically. Using a custom-built loading apparatus, we experimentally measure relative changes in capacitance and inductance as a function of stretch in three directions. These experimental relationships are consistent with theoretical predictions that we derive with finite elasticity kinematics.

  4. Laser-speckle-visibility acoustic spectroscopy in soft turbid media.

    PubMed

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  5. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  6. Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter

    NASA Astrophysics Data System (ADS)

    Wignall, G. D.; Melnichenko, Y. B.

    2005-08-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.

  7. Colorization and Automated Segmentation of Human T2 MR Brain Images for Characterization of Soft Tissues

    PubMed Central

    Attique, Muhammad; Gilanie, Ghulam; Hafeez-Ullah; Mehmood, Malik S.; Naweed, Muhammad S.; Ikram, Masroor; Kamran, Javed A.; Vitkin, Alex

    2012-01-01

    Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described. PMID:22479421

  8. Soft, flexible micromanipulators comprising polypyrrole trilayer microactuators

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Maziz, Ali; Alici, Gursel; Spinks, Geoffrey M.; Jager, Edwin W. H.

    2015-04-01

    Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft, flexible and dextrous biocompatible manipulators for handling biological objects, such as single cells and tissues. Present day technologies are based on simple suction using micropipettes for grasping objects. The micropipettes lack the possibility of accurate force control, nor are they soft and compliant and may thus cause damage to the cells or tissue. Other micromanipulators use conventional electric motors however the further miniaturization of electrical motors and their associated gear boxes and/or push/pull wires has reached its limits. Therefore there is an urgent need for new technologies for micromanipulation of soft biological matter. We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. We present newly developed patterning and microfabrication methods for polymer microactuators as well as the latest results to integrate these microactuators into easy to use manipulation tools. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new bottom-up microfabrication process. We show for the first time that such a bottom-up fabricated actuator performs a movement in air. This is a significant step towards widening the application areas of the soft microactuators.

  9. Spin-analyzed SANS for soft matter applications

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.

    2017-06-01

    The small angle neutron scattering (SANS) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate SANS polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for SANS polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing SANS polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized SANS measurements.

  10. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  11. Highly Deformable Liquid Embedded Soft-Matter Capacitors and Inductors for Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Fassler, Andrew; Majidi, Carmel

    2013-03-01

    We have developed a family of soft-matter capacitors and inductors that can be stretched to several times their natural length. These circuit elements are composed of microchannels of a liquid-phase Gallium-Indium-Tin alloy (Galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). As the elastomer stretches, the embedded liquid channels deform, causing the capacitance and inductance to change monotonically. The relative changes in capacitance and inductance are experimentally measured as a function of stretch in three directions. The relationships found show potential for these devices to be used as strain sensors and tunable electronic filters. Additionally, theoretical predictions derived using finite elasticity kinematics are consistent with these experimentally found relationships.

  12. Preface

    NASA Astrophysics Data System (ADS)

    Lindgård, Per-Anker

    2003-05-01

    This special issue presents a series of papers on biological physics. It emphasizes the fact that Journal of Physics: Condensed Matter welcomes papers in this area and foresees a fruitful cross-fertilization between this and other more conventional condensed matter fields. The work was presented at the conference ÂNanophysics in Life SciencesÂ' held in Copenhagen on 21-22 June 2002. The meeting was arranged by, and marked the start of, the new Division of Physics in Life Sciences (DPL) within the European Physical Society (EPS). It also celebrated the opening of a new Danish research centre on quantum protein physics (QUP), which was co-organizer and co-sponsor. The meeting was organized at short notice and yet attracted some 80 participants from a number of countries (despite the fact that the chosen weekend included the `midsummer night', a feast nobody in the Northern Scandinavian countries would wish to miss - even when offered an event in the beautiful venue of the Carlsberg estate). The audience included many young people and students, demonstrating the great interest in the field of biological physics and in the topics chosen within that field. The selection represented, furthermore, the present scope of the new DPL division. All but one of the board members of DPL were able to attend and present their work, among others. They have subsequently delivered valuable contributions to this special issue. The subjects cover a large area (the full programme can be found on the division's web-page: DPL.risoe.dk). To mention a few: the dynamical and optical properties of biomolecules (proteins), experimental studies of single biomolecules, various theoretical approaches to the protein folding problem and DNA motion, biomolecular motor and transport functions, quantum chemical calculations. Many of these problems are closely related to those studied in conventional condensed matter. To emphasize one topic we have written the Viewpoint article (pages V5-V9) which ties together the concepts of solitons, self-trapping, polarons and pump-probe experiments used in both realms. The scope of biological physics is of course still wider. All biological processes occur in water, hence an important topic is how proteins and biomolecules behave and interact in liquids. There is in this case a strong overlap between subjects generally published in the Liquids, Soft Matter and Biophysics section of Journal of Physics: Condensed Matter, but not covered in this issue. Another branch not covered is the more mathematical, generally non-linear models of physiological processes. It is hoped that this issue will serve as a valuable current state-of-the-art overview of interesting and important problems in biological physics, which will stimulate the interest of the general readership of Journal of Physics: Condensed Matter and inspire the application of the knowledge and expertise accumulated in condensed matter physics. I wish to thank the participants for their contributions to the meeting and to this special issue, Institute of Physics Publishing editorial staff for the efficient and smooth handling of the refereeing of the articles, and finally the QUP Center, The Danish Graduate School of Biophysics, EPS and The Carlsberg Academy for financial and other support.

  13. Single Molecules as Optical Probes for Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  14. Bubbles are responsive materials interesting for nonequilibrium physics

    NASA Astrophysics Data System (ADS)

    Andreeva, Daria; Granick, Steve

    Understanding of nature and conditions of non-equilibrium transformations of bubbles, droplets, polysomes and vesicles in a gradient filed is a breath-taking question that dissipative systems raise. We ask: how to establish a dynamic control of useful characteristics, for example dynamic control of morphology and composition modulation in soft matter. A possible answer is to develop a new generation of dynamic impactors that can trigger spatiotemporal oscillations of structures and functions. We aim to apply acoustic filed for development of temperature and pressure oscillations at a microscale area. We demonstrate amazing dynamic behavior of gas-filled bubbles in pressure gradient field using a unique technique combining optical imaging, high intensity ultrasound and high speed camera. We find that pressure oscillations trigger continuous phase transformations that are considered to be impossible in physical systems.

  15. Physics of the gut: How polymers dynamically structure the gut environment

    NASA Astrophysics Data System (ADS)

    Preska Steinberg, Asher; Datta, Sujit; Bogatyrev, Said; Ismagilov, Rustem

    While the gut microbiome and biological regulation of the gut environment is being exhaustively studied by the microbiology community, little is known about the rich physics that governs the macro- and microstructure of the gut environment. The mammalian gut abounds in soft materials; ranging from soluble polymers (e.g. dietary fibers, therapeutic polymers and mucins) to colloidal matter (e.g. bacteria, viruses and nanoparticles carrying drugs). We have found experimentally that soluble polymers can dynamically re-structure the colonic mucus hydrogel by modulating its degree of swelling. We implemented a mean-field Flory-Huggins model to reveal that these polymer-mucus interactions can be captured using a simple, first principles thermodynamics model. In this model, the amount of deswelling increases with polymer concentration and size. We then used these physical principles to make predictions about how different polymer solutions affect the structure of mucus. Lastly, we explore applying this framework and similar physical principles to a variety of biological problems in the gut.

  16. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers.

    PubMed

    Witting, Madeleine; Obst, Katja; Friess, Wolfgang; Hedtrich, Sarah

    2015-11-01

    Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. PREFACE: Correlated Electrons (Japan)

    NASA Astrophysics Data System (ADS)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states and superconductivity of SCES and related research fields, and the prospects of SCES physics. I hope that it will give an insight into the fascination of SCES research and a feeling for the advances made in the past years.

  18. Laser speckle visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-03-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).

  19. 2016 American Conference on Neutron Scattering (ACNS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, Patrick

    The 8th American Conference on Neutron Scattering (ACNS) was held July 10-14, 2016 in Long Beach California, marking the first time the meeting has been held on the west coast. The meeting was coordinated by the Neutron Scattering Society of America (NSSA), and attracted 285 attendees. The meeting was chaired by NSSA vice president Patrick Woodward (the Ohio State University) assisted by NSSA president Stephan Rosenkranz (Argonne National Laboratory) together with the local organizing chair, Brent Fultz (California Institute of Technology). As in past years the Materials Research Society assisted with planning, logistics and operation of the conference. The sciencemore » program was divided into the following research areas: (a) Sources, Instrumentation, and Software; (b) Hard Condensed Matter; (c) Soft Matter; (d) Biology; (e) Materials Chemistry and Materials for Energy; (f) Engineering and Industrial Applications; and (g) Neutron Physics.« less

  20. Many-particle theory of nuclear system with application to neutron-star matter and other systems

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1978-01-01

    General problems in nuclear-many-body theory were considered. Superfluid states of neutron star matter and other strongly interacting many-fermion systems were analyzed by using the soft-core potential of Reid. The pion condensation in neutron star matter was also treated.

  1. Nanoparticle Controlled Soft Complex Structures with Topological Defects

    DTIC Science & Technology

    2013-10-01

    Condensed matter analogues of cosmology 25, 404201-1-404201-10, (2013); 7) Appl. Opt. 52, E47-E52 (2013); 8) Appl. Phys. Lett. 103, 143116 (2013...analogy with cosmology and magnetism, J. Phys.: Condens. Matter, Special Issue on Condensed matter analogues of cosmology 25, 404201, (2013). [24] A

  2. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  3. Direct and inverted nematic dispersions for soft matter photonics.

    PubMed

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  4. Effect of Sex and Body Mass Index on Children's Physical Activity Intensity during Free Play at an Indoor Soft Play Center: An Exploratory Study.

    PubMed

    Jones, Michelle A

    2017-09-12

    Background : Indoor soft play can provide a safe but exciting physical activity opportunity regardless of environmental conditions. Relatively little is known about the quality or quantity of physical activity engaged in by children during indoor free soft play. The aim of this study was to evaluate the contribution indoor free soft play can make in enabling children to meet physical activity guidelines and to evaluate the effects of sex and body mass index category. Methods : Seventy-two boys and girls aged five to 10 years engaged in un-controlled indoor free soft play with a mean duration of 120.7 (27.1) min, during which physical activity was monitored using Actigraph accelerometers. Results : Children spent an average of 61.7 (24.2) min engaging in moderate to vigorous physical activity (MVPA) and 51.4% ( n = 37) achieved the recommended 60 min of MVPA through the single visit to the indoor soft play center. Boys (68.3 (25.7) min) engaged in significantly ( p < 0.05) more MVPA than girls (55.8 (21.4) min). Normal weight (65.7 (23.3) min) children engaged in significantly more MVPA than overweight children (48.0 (18.9) min). Conclusions : Attendance at a soft play indoor center has the potential to support children to engage in sufficient MVPA and overcome environmental factors that can restrict physical activity opportunities.

  5. Effect of Sex and Body Mass Index on Children’s Physical Activity Intensity during Free Play at an Indoor Soft Play Center: An Exploratory Study

    PubMed Central

    2017-01-01

    Background: Indoor soft play can provide a safe but exciting physical activity opportunity regardless of environmental conditions. Relatively little is known about the quality or quantity of physical activity engaged in by children during indoor free soft play. The aim of this study was to evaluate the contribution indoor free soft play can make in enabling children to meet physical activity guidelines and to evaluate the effects of sex and body mass index category. Methods: Seventy-two boys and girls aged five to 10 years engaged in un-controlled indoor free soft play with a mean duration of 120.7 (27.1) min, during which physical activity was monitored using Actigraph accelerometers. Results: Children spent an average of 61.7 (24.2) min engaging in moderate to vigorous physical activity (MVPA) and 51.4% (n = 37) achieved the recommended 60 min of MVPA through the single visit to the indoor soft play center. Boys (68.3 (25.7) min) engaged in significantly (p < 0.05) more MVPA than girls (55.8 (21.4) min). Normal weight (65.7 (23.3) min) children engaged in significantly more MVPA than overweight children (48.0 (18.9) min). Conclusions: Attendance at a soft play indoor center has the potential to support children to engage in sufficient MVPA and overcome environmental factors that can restrict physical activity opportunities. PMID:28895904

  6. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  7. Polymers in Fluid Flows

    NASA Astrophysics Data System (ADS)

    Benzi, Roberto; Ching, Emily S. C.

    2018-03-01

    The interaction of flexible polymers with fluid flows leads to a number of intriguing phenomena observed in laboratory experiments, namely drag reduction, elastic turbulence, and heat transport modification in natural convection, and is one of the most challenging subjects in soft matter physics. In this review, we examine our present knowledge on the subject. Our present knowledge is mostly based on direct numerical simulations performed in the last twenty years, which have successfully explained, at least qualitatively, most of the experimental results. Our goal is to disentangle as much as possible the basic mechanisms acting in the system in order to capture the basic features underlying different theoretical approaches and explanations.

  8. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    PubMed Central

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  9. Science and Cooking: Motivating the Study of Freshman Physics

    NASA Astrophysics Data System (ADS)

    Weitz, David

    2011-03-01

    This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liphardt, Jan

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods showmore » how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.« less

  11. Thermal dark matter co-annihilating with a strongly interacting scalar

    NASA Astrophysics Data System (ADS)

    Biondini, S.; Laine, M.

    2018-04-01

    Recently many investigations have considered Majorana dark matter co-annihilating with bound states formed by a strongly interacting scalar field. However only the gluon radiation contribution to bound state formation and dissociation, which at high temperatures is subleading to soft 2 → 2 scatterings, has been included. Making use of a non-relativistic effective theory framework and solving a plasma-modified Schrödinger equation, we address the effect of soft 2 → 2 scatterings as well as the thermal dissociation of bound states. We argue that the mass splitting between the Majorana and scalar field has in general both a lower and an upper bound, and that the dark matter mass scale can be pushed at least up to 5…6TeV.

  12. Radiative mixing of the one Higgs boson and emergent self-interacting dark matter

    DOE PAGES

    Ma, Ernest

    2016-03-01

    In all scalar extensions of the standard model of particle interactions, the one Higgs boson responsible for electroweak symmetry breaking always mixes with other neutral scalars at tree level unless a symmetry prevents it. One unexplored important option is that the mixing may be radiative, and thus guaranteed to be small. Moreover, two first such examples are discussed. One is based on the soft breaking of the discrete symmetry Z3. The other starts with the non-Abelian discrete symmetry A4which is then softly broken to Z3, and results in the emergence of an interesting dark-matter candidate together with a light mediatormore » for the dark matter to have its own long-range interaction.« less

  13. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.

    PubMed

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang

    2015-10-14

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Soft matter: rubber and networks

    NASA Astrophysics Data System (ADS)

    McKenna, Gregory B.

    2018-06-01

    Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.

  15. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    PubMed Central

    Alaidi, Osama; Rames, Matthew J.

    2016-01-01

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941

  16. Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendruk, Tyler N., E-mail: tyler.shendruk@physics.ox.ac.uk; Bertrand, Martin; Harden, James L.

    2014-12-28

    Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap ofmore » the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.« less

  17. Soft Functionals for Hard Matter

    NASA Astrophysics Data System (ADS)

    Cooper, Valentino R.; Yuk, Simuck F.; Krogel, Jaron T.

    Theory and computation are critical to the materials discovery process. While density functional theory (DFT) has become the standard for predicting materials properties, it is often plagued by inaccuracies in the underlying exchange-correlation functionals. Using high-throughput DFT calculations we explore the accuracy of various exchange-correlation functionals for modeling the structural and thermodynamic properties of a wide range of complex oxides. In particular, we examine the feasibility of using the nonlocal van der Waals density correlation functional with C09 exchange (C09x), which was designed for sparsely packed soft matter, for investigating the properties of hard matter like bulk oxides. Preliminary results show unprecedented performance for some prototypical bulk ferroelectrics, which can be correlated with similarities between C09x and PBEsol. This effort lays the groundwork for understanding how these soft functionals can be employed as general purpose functionals for studying a wide range of materials where strong internal bonds and nonlocal interactions coexist. Research was sponsored by the US DOE, Office of Science, BES, MSED and Early Career Research Programs and used resources at NERSC.

  18. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    PubMed

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  19. Nonlinear dynamics and damage induced properties of soft matter with application in oncology

    NASA Astrophysics Data System (ADS)

    Naimark, O.

    2017-09-01

    Molecular-morphological signs of oncogenesis could be linked to multiscale collective effects in molecular, cell and tissue related to defects (damage) dynamics. It was shown that nonlinear behavior of biological systems can be linked to the existence of characteristic collective open state modes providing the coherent expression dynamics. New type of criticality in nonequilibrium systems with defects—structural-scaling transition allows the definition of the `driving force' for a biological soft matter related to consolidated open states. The set of collective open states (breathers, autosolitons and blow-up modes) in the molecular ensembles provides the collective expression dynamics to attract the entire system (cell, tissue) toward a few preferred global states. The co-existence of three types of collective modes determines the multifractal scenario of biological soft matter dynamics. The appearance of `globally convergent' dynamics corresponding to the coherent behavior of multiscale blow-up open states (blow-up gene expression) leads to anomalous localized softening (blow-up localized damage) and the subjection of the cells (or tissue) to monofractal dynamics. This dynamics can be associated with cancer progression.

  20. Collapse of Non-Rectangular Channels in a Soft Elastomer

    NASA Astrophysics Data System (ADS)

    Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel

    2013-03-01

    We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.

  1. Parents and friends both matter: simultaneous and interactive influences of parents and friends on European schoolchildren's energy balance-related behaviours - the ENERGY cross-sectional study.

    PubMed

    te Velde, Saskia J; ChinAPaw, Mai J M; De Bourdeaudhuij, Ilse; Bere, Elling; Maes, Lea; Moreno, Luis; Jan, Nataša; Kovacs, Eva; Manios, Yannis; Brug, Johannes

    2014-07-08

    The family, and parents in particular, are considered the most important influencers regarding children's energy-balance related behaviours (EBRBs). When children become older and gain more behavioural autonomy regarding different behaviours, the parental influences may become less important and peer influences may gain importance. Therefore the current study aims to investigate simultaneous and interactive associations of family rules, parent and friend norms and modelling with soft drink intake, TV viewing, daily breakfast consumption and sport participation among schoolchildren across Europe. A school-based cross-sectional survey in eight countries across Europe among 10-12 year old schoolchildren. Child questionnaires were used to assess EBRBs (soft drink intake, TV viewing, breakfast consumption, sport participation), and potential determinants of these behaviours as perceived by the child, including family rules, parental and friend norms and modelling. Linear and logistic regression analyses (n = 7811) were applied to study the association of parental (norms, modelling and rules) and friend influences (norm and modelling) with the EBRBs. In addition, potential moderating effects of parental influences on the associations of friend influences with the EBRBs were studied by including interaction terms. Children reported more unfavourable friend norms and modelling regarding soft drink intake and TV viewing, while they reported more favourable friend and parental norms and modelling for breakfast consumption and physical activity. Perceived friend and parental norms and modelling were significantly positively associated with soft drink intake, breakfast consumption, physical activity (only modelling) and TV time. Across the different behaviours, ten significant interactions between parental and friend influencing variables were found and suggested a weaker association of friend norms and modelling when rules were in place. Parental and friends norm and modelling are associated with schoolchildren's energy balance-related behaviours. Having family rules or showing favourable parental modelling and norms seems to reduce the potential unfavourable associations of friends' norms and modelling with the EBRBs.

  2. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    NASA Astrophysics Data System (ADS)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  4. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  5. 75 FR 60478 - In the Matter of Certain Machine Vision Software, Machine Vision Systems, and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Automation, Inc. (``Amistar'') of San Marcos, California; Techno Soft Systemnics, Inc. (``Techno Soft'') of... the claim terms ``test,'' ``match score surface,'' and ``gradient direction,'' all of his infringement... complainants' proposed construction for the claim terms ``test,'' ``match score surface,'' and ``gradient...

  6. Coupling nonlinear optical waves to photoreactive and phase-separating soft matter: Current status and perspectives

    NASA Astrophysics Data System (ADS)

    Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.

    2017-10-01

    Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.

  7. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    NASA Astrophysics Data System (ADS)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  8. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-02

    PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED

  9. Limits of predictions in thermodynamic systems: a review

    NASA Astrophysics Data System (ADS)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  10. Lindemann histograms as a new method to analyse nano-patterns and phases

    NASA Astrophysics Data System (ADS)

    Makey, Ghaith; Ilday, Serim; Tokel, Onur; Ibrahim, Muhamet; Yavuz, Ozgun; Pavlov, Ihor; Gulseren, Oguz; Ilday, Omer

    The detection, observation, and analysis of material phases and atomistic patterns are of great importance for understanding systems exhibiting both equilibrium and far-from-equilibrium dynamics. As such, there is intense research on phase transitions and pattern dynamics in soft matter, statistical and nonlinear physics, and polymer physics. In order to identify phases and nano-patterns, the pair correlation function is commonly used. However, this approach is limited in terms of recognizing competing patterns in dynamic systems, and lacks visualisation capabilities. In order to solve these limitations, we introduce Lindemann histogram quantification as an alternative method to analyse solid, liquid, and gas phases, along with hexagonal, square, and amorphous nano-pattern symmetries. We show that the proposed approach based on Lindemann parameter calculated per particle maps local number densities to material phase or particles pattern. We apply the Lindemann histogram method on dynamical colloidal self-assembly experimental data and identify competing patterns.

  11. Liquid Crystal Colloids

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  12. Parental attitudes towards soft drink vending machines in high schools.

    PubMed

    Hendel-Paterson, Maia; French, Simone A; Story, Mary

    2004-10-01

    Soft drink vending machines are available in 98% of US high schools. However, few data are available about parents' opinions regarding the availability of soft drink vending machines in schools. Six focus groups with 33 parents at three suburban high schools were conducted to describe the perspectives of parents regarding soft drink vending machines in their children's high school. Parents viewed the issue of soft drink vending machines as a matter of their children's personal choice more than as an issue of a healthful school environment. However, parents were unaware of many important details about the soft drink vending machines in their children's school, such as the number and location of machines, hours of operation, types of beverages available, or whether the school had contracts with soft drink companies. Parents need more information about the number of soft drink vending machines at their children's school, the beverages available, the revenue generated by soft drink vending machine sales, and the terms of any contracts between the school and soft drink companies.

  13. The State of Simulations: Soft-Skill Simulations Emerge as a Powerful New Form of E-Learning.

    ERIC Educational Resources Information Center

    Aldrich, Clark

    2001-01-01

    Presents responses of leaders from six simulation companies about challenges and opportunities of soft-skills simulations in e-learning. Discussion includes: evaluation metrics; role of subject matter experts in developing simulations; video versus computer graphics; technology needed to run simulations; technology breakthroughs; pricing;…

  14. The ASTRO-H X-ray astronomy satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger D.; Boyce, Kevin; Brenneman, Laura; Brown, Gregory; Cackett, Ed; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Harayama, Atsushi; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; Kimura, Masashi; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Konami, Saori; Kosaka, Tatsuro; Koujelev, Alexander; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, François; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. S.; Pottschmidt, Katja; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Ricci, Claudio; Russell, Helena; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sato, Kosuke; Sato, Rie; Sato, Goro; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiroaki; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; White, Nicholas; Wilkins, Dan; Yamada, Shinya; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen; ZuHone, John

    2014-07-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE <= 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.

  15. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  16. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  17. Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation

    NASA Astrophysics Data System (ADS)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2014-11-01

    Soft matter physics principles can be used to address important problems in the food industry. Starch granules are widely used in foods to create desirable textural attributes, but high levels of digestible starch may pose a risk of diabetes. Consequently, there is a need to find healthier replacements for starch granules. The objective of this research was to create hydrogel particles from protein and dietary fiber with similar dimensions and functional attributes as starch granules. Hydrogel particles were formed by mixing gelatin (0.5 wt%) with pectin (0 to 0.2 wt%) at pH values above the isoelectric point of the gelatin (pH 9, 30 °C). When the pH was adjusted to pH 5, the biopolymer mixture spontaneously formed micron-sized particles due to electrostatic attraction of cationic gelatin with anionic pectin through complex coacervation. Differential interference contrast (DIC) microscopy showed that the hydrogel particles were translucent and spheroid, and that their dimensions were determined by pectin concentration. At 0.01 wt% pectin, hydrogel particles with similar dimensions to swollen starch granules (D3,2 ≈ 23 µm) were formed. The resulting hydrogel suspensions had similar appearances to starch pastes and could be made to have similar textural attributes (yield stress and shear viscosity) by adjusting the effective hydrogel particle concentration. These hydrogel particles may therefore be used to improve the texture of reduced-calorie foods and thereby help tackle obesity and diabetes.

  18. Soft CP violation and the global matter-antimatter symmetry of the universe

    NASA Technical Reports Server (NTRS)

    Senjanovic, G.; Stecker, F. W.

    1980-01-01

    Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.

  19. Cool Quark Matter.

    PubMed

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-22

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  20. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  1. A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter

    DOE PAGES

    Mamontov, Eugene

    2016-06-29

    We present a concept and ray-tracing simulation results of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few eV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage overmore » several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. Lastly, this capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature.« less

  2. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  3. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals.

    PubMed

    Savitz, Samuel; Babadi, Mehrtash; Lifshitz, Ron

    2018-05-01

    For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.

  4. Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase.

    PubMed

    Nyström, Gustav; Arcari, Mario; Adamcik, Jozef; Usov, Ivan; Mezzenga, Raffaele

    2018-05-22

    Understanding how nanostructure and nanomechanics influence physical material properties on the micro- and macroscale is an essential goal in soft condensed matter research. Mechanisms governing fragmentation and chirality inversion of filamentous colloids are of specific interest because of their critical role in load-bearing and self-organizing functionalities of soft nanomaterials. Here we provide a fundamental insight into the self-organization across several length scales of nanocellulose, an important biocolloid system with wide-ranging applications as structural, insulating, and functional material. Through a combined microscopic and statistical analysis of nanocellulose fibrils at the single particle level, we show how mechanically and chemically induced fragmentations proceed in this system. Moreover, by studying the bottom-up self-assembly of fragmented carboxylated cellulose nanofibrils into cholesteric liquid crystals, we show via direct microscopic observations that the chirality is inverted from right-handed at the nanofibril level to left-handed at the level of the liquid crystal phase. These results improve our fundamental understanding of nanocellulose and provide an important rationale for its application in colloidal systems, liquid crystals, and nanomaterials.

  5. Dynamics of nanoparticles in complex fluids

    NASA Astrophysics Data System (ADS)

    Omari, Rami A.

    Soft matter is a subfield of condensed matter including polymers, colloidal dispersions, surfactants, and liquid crystals. These materials are familiar from our everyday life- glues, paints, soaps, and plastics are examples of soft materials. Many phenomena in these systems have the same underlying physical mechanics. Moreover, it has been recognized that combinations of these systems, like for example polymers and colloids, exhibit new properties which are not found in each system separately. These mixed systems have a higher degree of complexity than the separate systems. In order to understand their behavior, knowledge from each subfields of soft matter has to be put together. One of these complex systems is the mixture of nanoparticles with macromolecules such as polymers, proteins, etc. Understanding the interactions in these systems is essential for solving various problems in technological and medical fields, such as developing high performance polymeric materials, chromatography, and drug delivery vehicles. The author of this dissertation investigates fundemental soft matter systems, including colloid dispersions in polymer solutions and binary mixture. The diffusion of gold nanoparticles in semidilute and entangled solutions of polystyrene (PS) in toluene were studied using fluorescence correlation spectroscopy (FCS). In our experiments, the particle radius (R ≈ 2.5 nm) was much smaller compared to the radius of gyration of the chain but comparable to the average mesh size of the fluctuating polymer network. The diffusion coefficient (D) of the particles decreased monotonically with polymer concentration and it can be fitted with a stretched exponential function. At high concentration of the polymer, a clear subdiffusive motion of the particles was observed. The results were compared with the diffusion of free dyes, which showed normal diffusive behavior for all concentrations. In another polymer solution, poly ethylene glycol (PEG) in water, the diffusion of the gold nanoparticles depends on the dimentionless length scale R/zeta, where R is the radius of the nanoparticle and zeta is the average mesh size of the fluctuating polymer network. FCS were used to study the critical adsorption on curved surfaces by utilizing spherical nanoparticles immersed in a critical binary liquid mixture of 2,6 lutidine + water. The temperature dependence of the adsorbed film thickness and excess adsorption was determined from FCS measurements of the enlarged effective hydrodynamic radius of the particles. Our results indicated that the adsorbed film thickness is of the order of correlation length associated with concentration fluctuations. The excess adsorption per unit area increases following a power law in reduced temperature with an exponent of -1, which is the mean-field value for the bulk susceptibility exponent. The kinetics of adsorption of gold nanoparticles in polymer solutions on silicon substrate was studied using ellipsometry by measuring the thickness of the adsorbed layer versus time. The data showed an exponential growth with relaxation time constants, which is proportional to the diffusion of the gold nanoparticles in polymer solution.

  6. Signals of New Physics in the Underlying Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnik, Roni; /Stanford U., ITP /SLAC; Wizansky, Tommer

    2010-06-11

    LHC searches for new physics focus on combinations of hard physics objects. In this work we propose a qualitatively different soft signal for new physics at the LHC - the 'anomalous underlying event'. Every hard LHC event will be accompanied by a soft underlying event due to QCD and pile-up effects. Though it is often used for QCD and monte carlo studies, here we propose the incorporation of an underlying event analysis in some searches for new physics. An excess of anomalous underlying events may be a smoking-gun signal for particular new physics scenarios such as 'quirks' or 'hidden valleys'more » in which large amounts of energy may be emitted by a large multiplicity of soft particles. We discuss possible search strategies for such soft diffuse signals in the tracking system and calorimetry of the LHC experiments. We present a detailed study of the calorimetric signal in a concrete example, a simple quirk model motivated by folded supersymmetry. In these models the production and radiative decay of highly excited quirk bound states leads to an 'antenna pattern' of soft unclustered energy. Using a dedicated simulation of a toy detector and a 'CMB-like' multipole analysis we compare the signal to the expected backgrounds.« less

  7. Dark Matter from SUGRA GUTs: mSUGRA, NUSUGRA and Yukawa-unified SUGRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Howard

    2009-09-08

    Gravity-mediated SUSY breaking models with R-parity conservation give rise to dark matter in the universe. I review neutralino dark matter in the minimal supergravity model (mSUGRA), models with non-universal soft SUSY breaking terms (NUSUGRA) which yield a well-tempered neutralino, and models with unified Yukawa couplings at the GUT scale (as may occur in an SO(10) SUSY GUT theory). These latter models have difficulty accomodating neutralino dark matter, but work very well if the dark matter particles are axions and axinos.

  8. Material for "Substrate temperature controls molecular orientation in two-component vapor- deposited glasses." Soft Matter, 2016, 12, 3265.

    DOE Data Explorer

    Jiang, Jing [Nanjing University; Walters, Diane M [University of Wisconsin-Madison; Zhou, Dongshan [Nanjing University; Ediger, Mark D [University of Wisconsin-Madison

    2016-08-18

    Data set for work presented in Jiang, J.; Walters, D. M.; Zhou, D.; Ediger, M. D. “Substrate Temperature Controls Molecular Orientation in Two -Component Vapor-deposited Glasses.” Soft Matt. 2016, 12, 3265. Includes all data presented in the manuscript as well as example raw data and analysis.

  9. Hard evidence on soft skills.

    PubMed

    Heckman, James J; Kautz, Tim

    2012-08-01

    This paper summarizes recent evidence on what achievement tests measure; how achievement tests relate to other measures of "cognitive ability" like IQ and grades; the important skills that achievement tests miss or mismeasure, and how much these skills matter in life. Achievement tests miss, or perhaps more accurately, do not adequately capture, soft skills -personality traits, goals, motivations, and preferences that are valued in the labor market, in school, and in many other domains. The larger message of this paper is that soft skills predict success in life, that they causally produce that success, and that programs that enhance soft skills have an important place in an effective portfolio of public policies.

  10. Cancellation Mechanism for Dark-Matter-Nucleon Interaction.

    PubMed

    Gross, Christian; Lebedev, Oleg; Toma, Takashi

    2017-11-10

    We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.

  11. Dynamical studies of confined fluids and polymers

    NASA Astrophysics Data System (ADS)

    Grabowski, Christopher A.

    Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.

  12. Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter

    NASA Astrophysics Data System (ADS)

    Ghose, Somdeb; Adhikari, R.

    2014-03-01

    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.

  13. Discovery of Photon Index Saturation in the Black Hole Binary GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Seifina, Elena

    2009-01-01

    We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature < or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of < or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.

  14. Adaptive and Resilient Soft Tensegrity Robots.

    PubMed

    Rieffel, John; Mouret, Jean-Baptiste

    2018-04-17

    Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control-and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This article describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics to generate a wealth of dynamical behaviors.

  15. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    NASA Astrophysics Data System (ADS)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  16. Editorial. Festschrift on the occasion of Kurt Kremer's 60th birthday

    NASA Astrophysics Data System (ADS)

    Site, Luigi Delle; Deserno, Markus; Dünweg, Burkhard; Holm, Christian; Peter, Christine; Pleiner, Harald

    2016-10-01

    This special topics issue offers a broad perspective on recent theoretical and computational soft matter science, providing state of the art advances in many of its sub-fields. As is befitting for a discipline as diverse as soft matter, the papers collected here span a considerable range of subjects and questions, but they also illustrate numerous connections into both fundamental science and technological/industrial applications, which have accompanied the field since its earliest days. This issue is dedicated to Kurt Kremer, on the occasion of his 60th birthday, honouring his role in establishing this exciting field and consolidating its standing in the frame of current science and technology.

  17. Dynamic Forces Between Two Deformable Oil Droplets in Water

    NASA Astrophysics Data System (ADS)

    Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz

    2006-07-01

    The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.

  18. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  19. On the resolution of a MIEZE spectrometer

    NASA Astrophysics Data System (ADS)

    Martin, N.

    2018-02-01

    We study the effect of a finite sample size, beam divergence and detector thickness on the resolution function of a MIEZE spectrometer. We provide a transparent analytical framework which can be used to determine the optimal trade-off between incoming flux and time-resolution for a given experimental configuration. The key result of our approach is that the usual limiting factor of MIEZE spectroscopy, namely neutron path length differences throughout the instrument, can be suppressed up to relatively large momentum transfers by using a proper small-angle (SANS) geometry. Under such configuration, the hitherto accepted limits of MIEZE spectroscopy in terms of time-resolution are pushed upwards by typically an order of magnitude, giving access to most of the topical fields in soft- and hard-condensed matter physics.

  20. Squishy Physics Field Trips

    NASA Astrophysics Data System (ADS)

    Weeks, Eric R.; Cianci, Gianguido; Habdas, Piotr

    2008-03-01

    Our laboratory studies soft condensed matter, which means we investigate squishy materials such as foams, emulsions, and colloidal suspensions. These materials include common things such as peanut butter, toothpaste, mayonnaise, shampoo, and shaving cream. We have conducted several field trips for grade school students, where they come to our laboratory and play with squishy materials. They do both hands-on table-top projects and also look at samples with a microscope. We have also developed some of these activities into labs appropriate for first-year college students. Our first goal for these activities is to show students that science is fun, and the second goal is to get them intrigued by the idea that there are more phases than just solids, liquids, and gases.

  1. Physical modelling of the nuclear pore complex

    PubMed Central

    Fassati, Ariberto; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.

  2. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Microfluidic techniques for the study of self-assembly of soft materials

    NASA Astrophysics Data System (ADS)

    Aguade Cabanas, Rafael

    This research is an approach to the study of soft condensed matter where the use of new microfluidic technology plays a central role. Often, in the study of soft matter, the sample volumes are very small, of the order of nanoliters. Therefore to quantitatively measure the equilibrium or non-equilibrium phase behavior requires microfluidics. Presented here are (1) a new way of producing aqueous drops of order 1 nl volume, in oil, (2) a new fabrication protocol to make microfluidic devices out of epoxy glue, and (3) a new microfluidic flow cell to study colloidal self-assembly. Also presented here is a new kind of colloidal particle, consisting of single strands of DNA linked to the surface of fd virus. This new particle may serve as a liquid crystalline colloid with a temperature dependent tunable potential. The fabrication process is the first step in the study of the self-assembly of rod-like particles with a temperature dependent potential.

  4. Soft active matter: a contemporary example of Edwardsian statistical mechanics

    NASA Astrophysics Data System (ADS)

    Liverpool, Tanniemola

    Colonies of swimming bacteria, algae or spermatozoa are examples of active systems composed of interacting units that consume energy and collectively generate motion and mechanical stresses. Due to the anisotropy of their interactions, these active particles can exhibit orientational order at high concentrations and have been called ``living liquid crystals''. Biology at the cellular and multicellular scale provides numerous examples of these active systems. They provide a novel class of experimentally accessible system far from equilibrium. Their rich collective behaviour includes non-equilibrium phase transitions and pattern formation on mesoscopic scales. Interestingly however, some of the theoretical insights gained from field theories applied to equilibrium soft matter systems can be used to explain aspects of their behaviour, but with a number of surprising new twists. I will describe and summarise recent theoretical results characterising the behaviour of such soft active systems highlighting in particular the effects of their internal dynamics on their macroscopic behaviour. With support of the EPSRC Grant No. EP/G026440/1.

  5. New Platforms for Characterization of Biological Material Failure and Resilience Properties

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Butler, Benjamin J.; Nguyen, Thuy-Tien N.; Sorry, David; Williams, Alun; Proud, William G.

    2017-06-01

    Obtaining information about the material responses of viscoelastic soft matter, such as polymers and foams has, required adaptation of techniques traditionally used with hard condensed matter. More recently it has been recognized that understanding the strain-rate behavior of natural and synthetic soft biological materials poses even greater challenges for materials research due their heterogeneous composition and structural complexity. Expanding fundamental knowledge about how these classes of biomaterials function under different loading regimes is of considerable interest in both fundamental and applied research. A comparative overview of methods, developed in our laboratory or elsewhere, for determining material responses of cells and soft tissues over a wide range of strain rates (quasi-static to blast loading) will be presented. Examples will illustrate how data are obtained for studying material responses of cells and tissues. Strengths and weaknesses of current approaches will be discussed, with particular emphasis on challenges associated with the development of realistic experimental and computational models for trauma and other disease indications.

  6. Elasticity of microscale volumes of viscoelastic soft matter by cavitation rheometry

    NASA Astrophysics Data System (ADS)

    Pavlovsky, Leonid; Ganesan, Mahesh; Younger, John G.; Solomon, Michael J.

    2014-09-01

    Measurement of the elastic modulus of soft, viscoelastic liquids with cavitation rheometry is demonstrated for specimens as small as 1 μl by application of elasticity theory and experiments on semi-dilute polymer solutions. Cavitation rheometry is the extraction of the elastic modulus of a material, E, by measuring the pressure necessary to create a cavity within it [J. A. Zimberlin, N. Sanabria-DeLong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763-767 (2007)]. This paper extends cavitation rheometry in three ways. First, we show that viscoelastic samples can be approximated with the neo-Hookean model provided that the time scale of the cavity formation is measured. Second, we extend the cavitation rheometry method to accommodate cases in which the sample size is no longer large relative to the cavity dimension. Finally, we implement cavitation rheometry to show that the theory accurately measures the elastic modulus of viscoelastic samples with volumes ranging from 4 ml to as low as 1 μl.

  7. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  8. Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy.

    PubMed

    Nikfarjam, Miead; López-Guerra, Enrique A; Solares, Santiago D; Eslami, Babak

    2018-01-01

    In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip-sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.

  9. Hard evidence on soft skills✩

    PubMed Central

    Heckman, James J.; Kautz, Tim

    2012-01-01

    This paper summarizes recent evidence on what achievement tests measure; how achievement tests relate to other measures of “cognitive ability” like IQ and grades; the important skills that achievement tests miss or mismeasure, and how much these skills matter in life. Achievement tests miss, or perhaps more accurately, do not adequately capture, soft skills—personality traits, goals, motivations, and preferences that are valued in the labor market, in school, and in many other domains. The larger message of this paper is that soft skills predict success in life, that they causally produce that success, and that programs that enhance soft skills have an important place in an effective portfolio of public policies. PMID:23559694

  10. Parents and friends both matter: simultaneous and interactive influences of parents and friends on European schoolchildren’s energy balance-related behaviours – the ENERGY cross-sectional study

    PubMed Central

    2014-01-01

    Background The family, and parents in particular, are considered the most important influencers regarding children’s energy-balance related behaviours (EBRBs). When children become older and gain more behavioural autonomy regarding different behaviours, the parental influences may become less important and peer influences may gain importance. Therefore the current study aims to investigate simultaneous and interactive associations of family rules, parent and friend norms and modelling with soft drink intake, TV viewing, daily breakfast consumption and sport participation among schoolchildren across Europe. Methods A school-based cross-sectional survey in eight countries across Europe among 10–12 year old schoolchildren. Child questionnaires were used to assess EBRBs (soft drink intake, TV viewing, breakfast consumption, sport participation), and potential determinants of these behaviours as perceived by the child, including family rules, parental and friend norms and modelling. Linear and logistic regression analyses (n = 7811) were applied to study the association of parental (norms, modelling and rules) and friend influences (norm and modelling) with the EBRBs. In addition, potential moderating effects of parental influences on the associations of friend influences with the EBRBs were studied by including interaction terms. Results Children reported more unfavourable friend norms and modelling regarding soft drink intake and TV viewing, while they reported more favourable friend and parental norms and modelling for breakfast consumption and physical activity. Perceived friend and parental norms and modelling were significantly positively associated with soft drink intake, breakfast consumption, physical activity (only modelling) and TV time. Across the different behaviours, ten significant interactions between parental and friend influencing variables were found and suggested a weaker association of friend norms and modelling when rules were in place. Conclusion Parental and friends norm and modelling are associated with schoolchildren’s energy balance-related behaviours. Having family rules or showing favourable parental modelling and norms seems to reduce the potential unfavourable associations of friends’ norms and modelling with the EBRBs. PMID:25001090

  11. Artificial soft sediment resuspension and high density opportunistic macroalgal mat fragmentation as method for increasing sediment zoobenthic assemblage diversity in a eutrophic lagoon.

    PubMed

    Martelloni, Tatiana; Tomassetti, Paolo; Gennaro, Paola; Vani, Danilo; Persia, Emma; Persiano, Marco; Falchi, Riccardo; Porrello, Salvatore; Lenzi, Mauro

    2016-09-15

    Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development of soft scaffolding strategy to improve student’s creative thinking ability in physics

    NASA Astrophysics Data System (ADS)

    Nurulsari, Novinta; Abdurrahman; Suyatna, Agus

    2017-11-01

    Student’s creative thinking ability in physics learning can be developed through a learning experience. However, many students fail to gain a learning experience because of the lack of teacher roles in providing assistance to students when they face learning difficulties. In this study, a soft scaffolding strategy developed to improve student’s creative thinking ability in physics, especially in optical instruments. The methods used were qualitative and quantitative. The soft scaffolding strategy developed was called the 6E Soft Scaffolding Strategy where 6E stands for Explore real-life problems, Engage students with web technology, Enable experiment using analogies, Elaborate data through multiple representations, Encourage questioning, and Ensure the feedback. The strategy was applied to 60 students in secondary school through cooperative learning. As a comparison, conventional strategies were also applied to 60 students in the same school and grade. The result of the study showed that the soft scaffolding strategy was effective in improving student’s creative thinking ability.

  13. Heavy dark matter annihilation from effective field theory.

    PubMed

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  14. Physical characteristics of indigestible solids affect emptying from the fasting human stomach.

    PubMed Central

    Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A

    1989-01-01

    Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438

  15. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    NASA Astrophysics Data System (ADS)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  16. Relationship between severity of shoulder subluxation and soft-tissue injury in hemiplegic stroke patients.

    PubMed

    Huang, Shih-Wei; Liu, Sen-Yung; Tang, Hao-Wei; Wei, Ta-Sen; Wang, Wei-Te; Yang, Chao-Pin

    2012-09-01

    The aims of this study were: (i) to determine whether the severity of post-hemiplegic shoulder subluxation in stroke patients correlates with soft-tissue injury; and (ii) to determine the shoulder subluxation measurement cut-off points that are indications for further ultrasound examination for soft-tissue injuries in these patients. Cross-sectional study. A total of 39 stroke patients with shoulder subluxation. Shoulder subluxation was evaluated by physical examination, radiography and ultrasound. Soft-tissue injuries were assessed by ultrasound. Subluxation parameters were entered into stepwise logistic regression analyses to predict biceps and supraspinatus tendonitis. With the assumption that shoulder subluxation can be a predisposing factor for tendonitis, receiver operating characteristic curves for shoulder subluxation parameters of the affected side were used to determine cut-off points for optimal sensitivity and specificity of biceps and supraspinatus tendonitis. Shoulder subluxation lateral distance, measured by physical examination, is a predictor for supraspinatus tendonitis (odds ratio = 34.9, p = 0.036). Further ultrasound investigation for soft-tissue injury is indicated when subluxation lateral distance, measured by physical examination is ≥ 2.25 cm or, measured by radiographic examination, ≥ 3.18 cm for lateral distance, ≥ 3.08 cm for vertical distance, or ≥ 2.65 cm for horizontal distance. When post-hemiplegic shoulder subluxation measurements exceed the above-mentioned cut-off points in physical or radiographic examinations, further ultrasound evaluation for soft-tissue injury is recommended.

  17. The Evolution of Soft Collinear Effective Theory

    DOE PAGES

    Lee, Christopher

    2015-02-25

    Soft Collinear Effective Theory (SCET) is an effective field theory of Quantum Chromodynamics (QCD) for processes where there are energetic, nearly lightlike degrees of freedom interacting with one another via soft radiation. SCET has found many applications in high-energy and nuclear physics, especially in recent years the physics of hadronic jets in e +e -, lepton-hadron, hadron-hadron, and heavy-ion collisions. SCET can be used to factorize multi-scale cross sections in these processes into single-scale hard, collinear, and soft functions, and to evolve these through the renormalization group to resum large logarithms of ratios of the scales that appear in themore » QCD perturbative expansion, as well as to study properties of nonperturbative effects. We overview the elementary concepts of SCET and describe how they can be applied in high-energy and nuclear physics.« less

  18. Droplet based microfluidics.

    PubMed

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  19. Comparative Evaluation of Efficacy of Physics Forceps versus Conventional Forceps in Orthodontic Extractions: A Prospective Randomized Split Mouth Study.

    PubMed

    Patel, Harsh S; Managutti, Anil M; Menat, Shailesh; Agarwal, Arvind; Shah, Dishan; Patel, Jigar

    2016-07-01

    Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic procedure often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. Recently developed physics forceps is one of the instruments which is claimed to perform atraumatic extractions. The aim of the present study was to compare the efficacy of physics forceps with conventional forceps in terms of operating time, prevention of marginal bone loss & soft tissue loss, postoperative pain and postoperative complications following bilateral premolar extractions for orthodontic purpose. In this prospective split-mouth study, outcomes of the 2 groups (n = 42 premolars) requiring extraction of premolars for orthodontic treatment purpose using Physics forceps and Conventional forceps were compared. Clinical outcomes in form of time taken, loss of buccal soft tissue and buccal cortical plate based on extraction defect classification system, postoperative pain and other complication associated with extraction were recorded and compared. Statistically significant reduction in the operating time was noted in physics forceps group. Marginal bone loss and soft tissue loss was also significantly lesser in physics forceps group when compared to conventional forceps group. However, there was no statistically significant difference in severity of postoperative pain between both groups. The results of the present study suggest that physics forceps was more efficient in reducing operating time and prevention of marginal bone loss & soft tissue loss when compared to conventional forceps in orthodontically indicated premolar extractions.

  20. The Controversy over Controversies: A Plea for Flexibility and for "Soft-Directive" Teaching

    ERIC Educational Resources Information Center

    Warnick, Bryan R.; Spencer Smith, D.

    2014-01-01

    A controversy rages over the question of how should controversial topics be taught. Recent work has advanced the "epistemic criterion" as the resolution to this controversy. According to the epistemic criterion, a matter should be taught as controversial when contrary views can be entertained on the matter without the views being…

  1. Scattering and sequestering of blow-up moduli in local string models

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Witkowski, Lukas T.

    2011-12-01

    We study the scattering and sequestering of blow-up fields - either local to or distant from a visible matter sector - through a CFT computation of the dependence of physical Yukawa couplings on the blow-up moduli. For a visible sector of D3-branes on orbifold singularities we compute the disk correlator left< {tau_s^{{(1)}}tau_s^{{(2)}}...tau_s^{{(n)}}ψ ψ φ } rightrangle between orbifold blow-up moduli and matter Yukawa couplings. For n = 1 we determine the full quantum and classical correlator. This result has the correct factorisation onto lower 3-point functions and also passes numerous other consistency checks. For n > 1 we show that the structure of picture-changing applied to the twist operators establishes the sequestering of distant blow-up moduli at disk level to all orders in α'. We explain how these results are relevant to suppressing soft terms to scales parametrically below the gravitino mass. By giving vevs to the blow-up fields we can move into the smooth limit and thereby derive CFT results for the smooth Swiss-cheese Calabi-Yaus that appear in the Large Volume Scenario.

  2. Lattice QCD results on soft and hard probes of strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Olaf

    2017-11-01

    We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.

  3. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    DOE PAGES

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...

    2015-06-18

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less

  4. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes.

    PubMed

    García-Morales, M A; Roa-Morales, G; Barrera-Díaz, C; Balderas-Hernández, P

    2012-01-01

    In this research, we studied the treatment of wastewater from the soft drink process using oxidation with ozone. A scheme composed of sequential ozonation-peroxide, ozonation-coagulation and coagulation-ozonation treatments to reduce the organic matter from the soft drink process was also used. The samples were taken from the conventional activated sludge treatment of the soft drink process, and the experiments using chemical oxidation with ozone were performed in a laboratory using a reactor through a porous plate glass diffuser with air as a feedstock for the generation of ozone. Once the sample was ozonated, the treatments were evaluated by considering the contact time, leading to greater efficiency in removing colour, turbidity and chemical oxygen demand (COD). The effect of ozonation and coagulant coupled with treatment efficiency was assessed under optimal conditions, and substantial colour and turbidity removal were found (90.52% and 93.33%, respectively). This was accompanied by a 16.78% reduction in COD (initial COD was 3410 mg/L). The absorbance spectra of the oxidised products were compared using UV-VIS spectroscopy to indicate the level of oxidation of the wastewater. We also determined the kinetics of decolouration and the removal of turbidity with the best treatment. The same treatment was applied to the sample taken from the final effluent of the activated sludge system, and a COD removal efficiency of 100% during the first minute of the reaction with ozone was achieved. As a general conclusion, we believe that the coagulant polyaluminum chloride - ozone (PAC- ozone) treatment of wastewater from the manufacturing of soft drinks is the most efficient for removing turbidity and colour and represents an advantageous option to remove these contaminants because their removal was performed in minutes compared to the duration of traditional physical, chemical and biological processes that require hours or days.

  5. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    PubMed

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  6. Comparison of the effect of soft-core potentials and Coulombic potentials on bremsstrahlung during laser matter interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward

    2018-04-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.

  7. Swimming droplets driven by a surface wave

    PubMed Central

    Ebata, Hiroyuki; Sano, Masaki

    2015-01-01

    Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects. PMID:25708871

  8. Swimming droplets driven by a surface wave

    NASA Astrophysics Data System (ADS)

    Ebata, Hiroyuki; Sano, Masaki

    2015-02-01

    Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of the objects' details. In this article, we propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially, and cascades of bifurcations of the motion arise. Equations describing deformable particles and hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to improve our understanding of spontaneous motions of self-propelled objects.

  9. Combined Monte Carlo/torsion-angle molecular dynamics for ensemble modeling of proteins, nucleic acids and carbohydrates.

    PubMed

    Zhang, Weihong; Howell, Steven C; Wright, David W; Heindel, Andrew; Qiu, Xiangyun; Chen, Jianhan; Curtis, Joseph E

    2017-05-01

    We describe a general method to use Monte Carlo simulation followed by torsion-angle molecular dynamics simulations to create ensembles of structures to model a wide variety of soft-matter biological systems. Our particular emphasis is focused on modeling low-resolution small-angle scattering and reflectivity structural data. We provide examples of this method applied to HIV-1 Gag protein and derived fragment proteins, TraI protein, linear B-DNA, a nucleosome core particle, and a glycosylated monoclonal antibody. This procedure will enable a large community of researchers to model low-resolution experimental data with greater accuracy by using robust physics based simulation and sampling methods which are a significant improvement over traditional methods used to interpret such data. Published by Elsevier Inc.

  10. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  11. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics.

    PubMed

    Markvicka, Eric J; Bartlett, Michael D; Huang, Xiaonan; Majidi, Carmel

    2018-07-01

    Large-area stretchable electronics are critical for progress in wearable computing, soft robotics and inflatable structures. Recent efforts have focused on engineering electronics from soft materials-elastomers, polyelectrolyte gels and liquid metal. While these materials enable elastic compliance and deformability, they are vulnerable to tearing, puncture and other mechanical damage modes that cause electrical failure. Here, we introduce a material architecture for soft and highly deformable circuit interconnects that are electromechanically stable under typical loading conditions, while exhibiting uncompromising resilience to mechanical damage. The material is composed of liquid metal droplets suspended in a soft elastomer; when damaged, the droplets rupture to form new connections with neighbours and re-route electrical signals without interruption. Since self-healing occurs spontaneously, these materials do not require manual repair or external heat. We demonstrate this unprecedented electronic robustness in a self-repairing digital counter and self-healing soft robotic quadruped that continue to function after significant damage.

  12. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  13. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    NASA Astrophysics Data System (ADS)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  14. Probing Sub-GeV Dark Matter with Conventional Detectors.

    PubMed

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  15. Shear wave propagation in anisotropic soft tissues and gels

    PubMed Central

    Namani, Ravi; Bayly, Philip V.

    2013-01-01

    The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987

  16. Connecting and disconnecting nematic disclination lines in microfluidic channels.

    PubMed

    Agha, Hakam; Bahr, Christian

    2016-05-14

    Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We show that the application of an electric field establishes a continuous disclination that spans across a channel region in which a disclination usually would not exist (because of different anchoring conditions), demonstrating an interruptible and reconnectable soft rail for colloidal transport.

  17. Responses in large-scale structure

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Schmidt, Fabian

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  18. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  19. Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

    NASA Astrophysics Data System (ADS)

    Raschke, Markus

    2015-03-01

    To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

  20. A Study of Soft Neurological Signs and Its Correlates in Drug-Naive Patients with First Episode Psychosis.

    PubMed

    Gunasekaran, Vanishree; Venkatesh, V Mathan Kumar; Asokan, T V

    2016-01-01

    Soft neurological signs are minor, non localizing, objective abnormalities, thought to reflect damage in cortical and sub-cortical connections or connections within different cortical regions. Regional structural grey matter anomalies have already been observed and correlated with the presence of cognitive deficits and presence of soft neurological signs in schizophrenic patients. Drug naive patients presenting with first episode of psychosis (FEP)were clinically evaluated for soft neurological signs using the Cambridge Neurological Inventory. The soft neurological signs scores were compared with scores in healthy volunteers. In the patient group, this score was also correlated with demographic and disorder variables. Of the 30 patients with FEP, 60% were women. The average age of the participant was 36.2 years. The average duration of illness was 1.55 years. More than 50% of the patients had schizophrenia. 93.3% of patients with FEP had atleast one soft neurological sign compared to 16.6% of controls. The average score on BPRS was 25.86 and on PANSS was 39.29, and BPRS, PANSS scores had a significant correlation with total soft neurological signs score. There is a significantly higher incidence of soft neurological signs in patients with FEP, particularly schizophrenia. The presence of soft signs correlated with the severity of psychosis.

  1. Innovative Design and Processing of Multi-Functional Adaptive Structural Materials

    DTIC Science & Technology

    2014-01-09

    instability, Journal of the Mechanics and Physics of Solids, (02 2013): 611. doi: 10.1016/j.jmps.2012.09.006 C. Keplinger, J.-Y. Sun , C. C. Foo, P... mechanics meets chemistry.” invited session on De-formation and Fracture of Soft Materials, 2012 March Meeting of the American Physical So-ciety, March... mechanics meets chemistry.” invited session on Deformation and Fracture of Soft Materials, 2012 March Meeting of the American Physi-cal Society

  2. Liquid Metals: Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions (Adv. Mater. 19/2016).

    PubMed

    Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel

    2016-05-01

    An all-soft-matter composite consisting of liquid metal microdroplets embedded in a soft elastomer matrix is presented by C. Majidi and co-workers on page 3726. This composite exhibits a high dielectric constant while maintaining exceptional elasticity and compliance. The image shows the composite's microstructure captured by 3D X-ray imaging using a nano-computed tomographic scanner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hierarchical Multiscale Modeling of Macromolecules and their Assemblies

    PubMed Central

    Ortoleva, P.; Singharoy, A.; Pankavich, S.

    2013-01-01

    Soft materials (e.g., enveloped viruses, liposomes, membranes and supercooled liquids) simultaneously deform or display collective behaviors, while undergoing atomic scale vibrations and collisions. While the multiple space-time character of such systems often makes traditional molecular dynamics simulation impractical, a multiscale approach has been presented that allows for long-time simulation with atomic detail based on the co-evolution of slowly-varying order parameters (OPs) with the quasi-equilibrium probability density of atomic configurations. However, this approach breaks down when the structural change is extreme, or when nearest-neighbor connectivity of atoms is not maintained. In the current study, a self-consistent approach is presented wherein OPs and a reference structure co-evolve slowly to yield long-time simulation for dynamical soft-matter phenomena such as structural transitions and self-assembly. The development begins with the Liouville equation for N classical atoms and an ansatz on the form of the associated N-atom probability density. Multiscale techniques are used to derive Langevin equations for the coupled OP-configurational dynamics. The net result is a set of equations for the coupled stochastic dynamics of the OPs and centers of mass of the subsystems that constitute a soft material body. The theory is based on an all-atom methodology and an interatomic force field, and therefore enables calibration-free simulations of soft matter, such as macromolecular assemblies. PMID:23671457

  4. Functional and nutritional characteristics of soft wheat grown in no-till and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of no-till vs. conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity and end-product quality. Soft white winter wheat cv. ORCF 102 was evaluated over a tw...

  5. A new physical method to assess handle properties of fabrics made from wood-based fibers

    NASA Astrophysics Data System (ADS)

    Abu-Rous, M.; Liftinger, E.; Innerlohinger, J.; Malengier, B.; Vasile, S.

    2017-10-01

    In this work, the handfeel of fabrics made of wood-based fibers such as viscose, modal and Lyocell was investigated in relation to cotton fabrics applying the Tissue Softness Analyzer (TSA) method in comparison to other classical methods. Two different construction groups of textile were investigated. The validity of TSA in assessing textile softness of these constructions was tested. TSA results were compared to human hand evaluation as well as to classical physical measurements like drape coefficient, ring pull-through and Handle-o-meter, as well as a newer device, the Fabric Touch Tester (FTT). Physical methods as well as human hand assessments mostly agreed on the softest and smoothest range, but showed different rankings in the harder/rougher side fabrics. TSA ranking of softness and smoothness corresponded to the rankings by other physical methods as well as with human hand feel for the basic textile constructions.

  6. Hungry for solutions

    NASA Astrophysics Data System (ADS)

    MacPhee, Cait

    2016-11-01

    As obesity rates continue to rise in many parts of the world, Cait MacPhee explains how soft-matter physicists could help reverse the trend by crafting “functional” foods that promote feelings of fullness and satisfaction

  7. Comment on "Curvature capillary migration of microspheres" by N. Sharifi-Mood, I. B. Liu, K. J. Stebe, Soft Matter, 2015, 11, 6768.

    PubMed

    Würger, Alois

    2016-01-14

    In a recent paper, Sharifi-Mood et al. studied colloidal particles trapped at a liquid interface with opposite principal curvatures c1 = -c2. In the theory part, they claim that the trapping energy vanishes at second order in Δc = c1 - c2, which would invalidate our previous result [Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, 74, 041402]. Here we show that this claim arises from an improper treatment of the outer boundary condition on the deformation field. For both pinned and moving contact lines, we find that the outer boundary is irrelevant, which confirms our previous work. More generally, we show that the trapping energy is determined by the deformation close to the particle and does not depend on the far-field.

  8. Development of atomic force microscope with wide-band magnetic excitation for study of soft matter dynamics

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Chikamoto, Takuma; Ogawa, Tatsuya; Hirata, Yoshiki; Inoue, Takahito; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2009-02-01

    In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.

  9. The Twinkling Fractal Theory of the Glass Transition: Applications to Soft Matter

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2012-02-01

    The Twinkling Fractal Theory (TFT) of the glass transition has recently been demonstrated experimentally [J.F. Stanzione et al., J. Non Cryst. Sol., (2011, 357,311]. The hard to-soft matter transition is characterized by the presence of solid fractal clusters with liquid-like pools that are dynamically interchanging via their anharmonic intermolecular potentials with Boltzmann energy populations with a characteristic temperature dependent vibrational density of states g(φ) ˜ φ^df . The twinkling fractal frequencies φ cover a range of 10^12 Hz to 10-10Hz and the fractal solid clusters of size R have a lifetime τ ˜ R^Df/df, where the fractal dimension Df 2.4 and the fracton dimension df = 4/3. Here we explore its application to a number of soft matter issues. These include (a) Confinement effects on Tg reduction in thin films of thickness h, where by virtue of large cluster exclusion, δTg ˜ 1/h^Df/df; (b) Tg gradients near bulk surfaces, where the smaller clusters on the surface have a faster relaxation time; (c) Effect of twinkling surfaces on cell growth, where at T Tg + 20 C, there exists a twinkling fractal range that leads to bell-shaped enhancement of cell growth and chemical up-regulation via the twinkling surfaces ``communicating `` with the cells through their vibrations; and (d) adhesion above and below Tg where topological fluctuations associated with g(φ) promotes the development of nano-nails at the interface.

  10. Electric Switching of Fluorescence Decay in Gold-Silica-Dye Nematic Nanocolloids Mediated by Surface Plasmons.

    PubMed

    Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I

    2016-07-26

    Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.

  11. Probing the Hardest Branching within Jets in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Chien, Yang-Ting; Vitev, Ivan

    2017-09-01

    Heavy ion collisions present exciting opportunities to study the effects of quantum coherence in the formation of subatomic particle showers. We report on the first calculation of the momentum sharing and angular separation distributions between the leading subjets inside a reconstructed jet in such collisions. These observables are directly sensitive to the hardest branching within jets and can probe the early stage of the jet formation. We find that the leading-order medium-induced splitting functions, here obtained in the framework of soft-collinear effective theory with Glauber gluon interactions, capture the essential many-body physics, which is different from proton-proton reactions. Qualitative and in most cases quantitative agreement between theory and preliminary CMS measurements suggests that hard parton branching in strongly interacting matter can be dramatically modified. We also propose a new measurement that will illuminate its angular structure.

  12. Probing the Hardest Branching within Jets in Heavy-Ion Collisions.

    PubMed

    Chien, Yang-Ting; Vitev, Ivan

    2017-09-15

    Heavy ion collisions present exciting opportunities to study the effects of quantum coherence in the formation of subatomic particle showers. We report on the first calculation of the momentum sharing and angular separation distributions between the leading subjets inside a reconstructed jet in such collisions. These observables are directly sensitive to the hardest branching within jets and can probe the early stage of the jet formation. We find that the leading-order medium-induced splitting functions, here obtained in the framework of soft-collinear effective theory with Glauber gluon interactions, capture the essential many-body physics, which is different from proton-proton reactions. Qualitative and in most cases quantitative agreement between theory and preliminary CMS measurements suggests that hard parton branching in strongly interacting matter can be dramatically modified. We also propose a new measurement that will illuminate its angular structure.

  13. Droplets As Liquid Robots.

    PubMed

    Čejková, Jitka; Banno, Taisuke; Hanczyc, Martin M; Štěpánek, František

    2017-01-01

    Liquid droplets are very simple objects present in our everyday life. They are extremely important for many natural phenomena as well as for a broad variety of industrial processes. The conventional research areas in which the droplets are studied include physical chemistry, fluid mechanics, chemical engineering, materials science, and micro- and nanotechnology. Typical studies include phenomena such as condensation and droplet formation, evaporation of droplets, or wetting of surfaces. The present article reviews the recent literature that employs droplets as animated soft matter. It is argued that droplets can be considered as liquid robots possessing some characteristics of living systems, and such properties can be applied to unconventional computing through maze solving or operation in logic gates. In particular, the lifelike properties and behavior of liquid robots, namely (i) movement, (ii) self-division, and (iii) group dynamics, will be discussed.

  14. Soft x-ray generation by a tabletop Nd:YAG/glass laser system

    NASA Astrophysics Data System (ADS)

    Martellucci, S.; Bellecci, C.; Francucci, M.; Gaudio, P.; Richetta, M.; Toscano, D.; Rydzy, A.; Gelfusa, M.; Ciuffa, P.

    2006-08-01

    The advent and development of ultra-intense tabletop laser systems has played a significant role in recent decades thanks to the wide number of applications and studies in which these systems were demonstrated to be appropriate. Among these, one of the main applications of ultra-intense radiation is generation of plasma by solid, liquid or gaseous targets. The by-product of x-radiation found many different applications such as spectroscopy, imaging, microlithography, microscopy, radiographies (in particular of biological samples), radiation-matter interaction, fundamental plasma parameter determination, astrophysics, inertial confinement fusion, high energy physics, quantum electrodynamics, and many others. In the following a brief description of our tabletop Nd:YAG/glass apparatus (facility of the Quantum Electronic and Plasma Laboratory of the University of Rome 'Tor Vergata'), together with x-ray conversion efficiency studies for different targets, are reported.

  15. Understanding Physical Educators' Perceptions of Mattering Questionnaire--Physical Education

    ERIC Educational Resources Information Center

    Richards, K. Andrew R.; Gaudreault, Karen Lux; Woods, Amelia Mays

    2017-01-01

    Previous research has illustrated that physical educators feel their subject is valued less than others in the context of schools. However, to date, no instruments have been developed to measure physical education teachers' perceptions of mattering. This study sought to propose and validate the Perceived Mattering Questionnaire--Physical Education…

  16. Dynamical density functional theory analysis of the laning instability in sheared soft matter.

    PubMed

    Scacchi, A; Archer, A J; Brader, J M

    2017-12-01

    Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.

  17. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-11-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  18. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2016-11-28

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  19. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    PubMed Central

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-01-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite. PMID:27892452

  20. Physical basis of some membrane shaping mechanisms

    PubMed Central

    2016-01-01

    In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these ‘transport carriers’ follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298443

  1. Ferroelectric hybrid fibers to develop flexible sensors for shape sensing of smart textiles and soft condensed matter bodies

    NASA Astrophysics Data System (ADS)

    Sebastian, Tutu; Lusiola, Tony; Clemens, Frank

    2017-04-01

    Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1-3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0-3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.

  2. A Study of Soft Neurological Signs and Its Correlates in Drug-Naive Patients with First Episode Psychosis

    PubMed Central

    Gunasekaran, Vanishree; Venkatesh, V. Mathan Kumar; Asokan, T. V.

    2016-01-01

    Background: Soft neurological signs are minor, non localizing, objective abnormalities, thought to reflect damage in cortical and sub-cortical connections or connections within different cortical regions. Regional structural grey matter anomalies have already been observed and correlated with the presence of cognitive deficits and presence of soft neurological signs in schizophrenic patients. Materials and Methods: Drug naive patients presenting with first episode of psychosis (FEP)were clinically evaluated for soft neurological signs using the Cambridge Neurological Inventory. The soft neurological signs scores were compared with scores in healthy volunteers. In the patient group, this score was also correlated with demographic and disorder variables. Results: Of the 30 patients with FEP, 60% were women. The average age of the participant was 36.2 years. The average duration of illness was 1.55 years. More than 50% of the patients had schizophrenia. 93.3% of patients with FEP had atleast one soft neurological sign compared to 16.6% of controls. The average score on BPRS was 25.86 and on PANSS was 39.29, and BPRS, PANSS scores had a significant correlation with total soft neurological signs score. Conclusion: There is a significantly higher incidence of soft neurological signs in patients with FEP, particularly schizophrenia. The presence of soft signs correlated with the severity of psychosis. PMID:27833222

  3. Detection of white matter lesion regions in MRI using SLIC0 and convolutional neural network.

    PubMed

    Diniz, Pedro Henrique Bandeira; Valente, Thales Levi Azevedo; Diniz, João Otávio Bandeira; Silva, Aristófanes Corrêa; Gattass, Marcelo; Ventura, Nina; Muniz, Bernardo Carvalho; Gasparetto, Emerson Leandro

    2018-04-19

    White matter lesions are non-static brain lesions that have a prevalence rate up to 98% in the elderly population. Because they may be associated with several brain diseases, it is important that they are detected as soon as possible. Magnetic Resonance Imaging (MRI) provides three-dimensional data with the possibility to detect and emphasize contrast differences in soft tissues, providing rich information about the human soft tissue anatomy. However, the amount of data provided for these images is far too much for manual analysis/interpretation, representing a difficult and time-consuming task for specialists. This work presents a computational methodology capable of detecting regions of white matter lesions of the brain in MRI of FLAIR modality. The techniques highlighted in this methodology are SLIC0 clustering for candidate segmentation and convolutional neural networks for candidate classification. The methodology proposed here consists of four steps: (1) images acquisition, (2) images preprocessing, (3) candidates segmentation and (4) candidates classification. The methodology was applied on 91 magnetic resonance images provided by DASA, and achieved an accuracy of 98.73%, specificity of 98.77% and sensitivity of 78.79% with 0.005 of false positives, without any false positives reduction technique, in detection of white matter lesion regions. It is demonstrated the feasibility of the analysis of brain MRI using SLIC0 and convolutional neural network techniques to achieve success in detection of white matter lesions regions. Copyright © 2018. Published by Elsevier B.V.

  4. Influence of School Beverage Environment on the Association of Beverage Consumption With Physical Education Participation Among US Adolescents

    PubMed Central

    Chen, Hsin-Jen

    2013-01-01

    Objectives. We examined the association of adolescents’ beverage consumption with physical activity and studied how their school beverage environment influences the association. Methods. We used nationally representative data from the 2007 Early Childhood Longitudinal Study—Kindergarten Cohort (n = 8850). We examined nonlinear associations of eighth graders’ self-report of beverage consumption (milk, 100% juices, soft drinks) with moderate to vigorous physical activity and physical education (PE) participation using piecewise linear regression models. Results. We found a nonlinear association of participation in PE class with beverage consumption, especially in schools with vending machines and those selling soft drinks. For students participating in PE less than 3 days per week, beverage consumption was not significantly associated with participation in PE class frequency. For students participating in PE 3 to 5 days per week, 1 more day of participation in PE class was associated with 0.43 (SE = 0.14; P = .002) more times per week of soft drink consumption and 0.41 (SE = 0.17; P = .021) fewer glasses per week of milk consumption. Conclusions. The more soft drink and less milk consumption related to high participation in PE class might be prevented by improving the beverage environment in schools. Systematic environmental interventions are needed to prevent such potential unintended consequences of promoting physical activity. PMID:24028221

  5. What's in a Name Change?

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2015-03-01

    When solid state physics emerged in the 1940s, its name was controversial. By the 1970s, some physicists came to prefer "condensed matter" as a way to identify the discipline of physics examining complex matter. Physicists and historians often gloss this transition as a simple rebranding of a problematically named field, but attention to the motives behind these names reveals telling nuances. "Solid state physics" and "condensed matter physics"—along with "materials science," which also emerged during the Cold War—were named in accordance with ideological commitments about the identity of physics. Historians, therefore, can profitably understand solid state and condensed matter physics as distinct disciplines. Condensed matter, rather than being continuous with solid state physics, should be considered alongside materials science as an outlet for specific frustrations with the way solid state was organized.

  6. Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel J.; /Stanford U., Dept. Phys.; Green, Daniel

    2008-08-15

    In conventional models of gauge-mediated supersymmetry breaking, the lightest supersymmetric particle (LSP) is invariably the gravitino. However, if the supersymmetry breaking sector is strongly coupled, conformal sequestering may raise the mass of the gravitino relative to the remaining soft supersymmetry-breaking masses. In this letter, we demonstrate that such conformal dynamics in gauge-mediated theories may give rise to satisfactory neutralino dark matter while simultaneously solving the flavor and {mu}/B{mu} problems.

  7. Anomalies and asymmetries in quark-gluon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O. V., E-mail: teryaev@theor.jinr.ru

    The manifestations of axial anomaly and related effects in heavy-ion collisions are considered. Special role is played by various asymmetries. The azimuthal correlational asymmetries of neutron pairs at NICA/FAIR energy range may probe the global rotation of strongly interacting matter. The conductivity is related to the angular asymmetries of dilepton pairs. The strong magnetic field generated in heavy-ion collisions leads to the excess of soft dileptons flying predominantly in the scattering plane.

  8. Optical supercavitation in soft matter.

    PubMed

    Conti, C; DelRe, E

    2010-09-10

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  9. Optical Supercavitation in Soft Matter

    NASA Astrophysics Data System (ADS)

    Conti, C.; Delre, E.

    2010-09-01

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  10. Family- and school-based correlates of energy balance-related behaviours in 10-12-year-old children: a systematic review within the ENERGY (EuropeaN Energy balance Research to prevent excessive weight Gain among Youth) project.

    PubMed

    Verloigne, Maïté; Van Lippevelde, Wendy; Maes, Lea; Brug, Johannes; De Bourdeaudhuij, Ilse

    2012-08-01

    To identify family- and school-based correlates of specific energy balance-related behaviours (physical activity, sedentary behaviour, breakfast consumption, soft drink consumption) among 10-12-year-olds, using the EnRG framework (Environmental Research framework for weight Gain prevention). A literature review to identify observational studies exploring at least one family- or school-based correlate of the specific behaviours, resulting in seventy-six articles. Eighteen studies were conducted in Europe, forty-one studies in North America and seventeen studies in Australasia. Healthy children aged 10-12 years. Parental and maternal physical activity, doing physical activities with parents and parental logistic support were identified as the most important, positive correlates of physical activity. Parental rules was the most important correlate of sedentary behaviour and was inversely related to it. School socio-economic status was positively related to physical activity and inversely related to sedentary behaviour. The available studies suggested a positive relationship between soft drink availability at home and consumption. Soft drink availability and consumption at school were the most important school-based correlates of soft drink consumption. A permissive parenting style was related to more soft drink consumption and less breakfast consumption. An important role has been awarded to parents, suggesting parents should be involved in obesity prevention programmes. Despite the opportunities a school can offer, little research has been done to identify school-environmental correlates of energy balance-related behaviours in this age group. Obesity prevention programmes can focus on the most important correlates to maximize the effectiveness of the programme. Future research should aim at longitudinal studies.

  11. 75 FR 71146 - In the Matter of Certain Machine Vision Software, Machine Vision Systems, and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ...''); Amistar Automation, Inc. (``Amistar'') of San Marcos, California; Techno Soft Systemnics, Inc. (``Techno..., the ALJ's construction of the claim terms ``test,'' ``match score surface,'' and ``gradient direction...

  12. Creation and manipulation of topological states in chiral nematic microspheres

    PubMed Central

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-01-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media. PMID:26145716

  13. Momentum conserving Brownian dynamics propagator for complex soft matter fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padding, J. T.; Briels, W. J.

    2014-12-28

    We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally averaged velocities in the neighborhood of the dissolved coarse coordinates. The velocity variables are updated by a momentum conserving scheme. The properties of the stochastic updates are derived through the Chapman-Kolmogorov and Fokker-Planck equations for the evolution of the probability distribution of coarse-grained position and velocity variables, by requiring the equilibrium distribution to be a stationary solution.more » We test our new scheme on concentrated star polymer solutions and find that the transverse current and velocity time auto-correlation functions behave as expected from hydrodynamics. In particular, the velocity auto-correlation functions display a long time tail in complete agreement with hydrodynamics.« less

  14. Creation and manipulation of topological states in chiral nematic microspheres

    NASA Astrophysics Data System (ADS)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  15. Power-controlled transition from standard to negative refraction in reorientational soft matter.

    PubMed

    Piccardi, Armando; Alberucci, Alessandro; Kravets, Nina; Buchnev, Oleksandr; Assanto, Gaetano

    2014-11-25

    Refraction at a dielectric interface can take an anomalous character in anisotropic crystals, when light is negatively refracted with incident and refracted beams emerging on the same side of the interface normal. In soft matter subject to reorientation, such as nematic liquid crystals, the nonlinear interaction with light allows tuning of the optical properties. We demonstrate that in such material a beam of light can experience either positive or negative refraction depending on input power, as it can alter the spatial distribution of the optic axis and, in turn, the direction of the energy flow when traveling across an interface. Moreover, the nonlinear optical response yields beam self-focusing and spatial localization into a self-confined solitary wave through the formation of a graded-index waveguide, linking the refractive transition to power-driven readdressing of copolarized guided-wave signals, with a number of output ports not limited by diffraction.

  16. Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications

    PubMed Central

    Melnykowycz, Mark; Tschudin, Michael; Clemens, Frank

    2016-01-01

    A soft condensed matter sensor (SCMS) designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB) and a thermoplastic elastomer (TPE) was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain. PMID:26959025

  17. Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications.

    PubMed

    Melnykowycz, Mark; Tschudin, Michael; Clemens, Frank

    2016-03-04

    A soft condensed matter sensor (SCMS) designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB) and a thermoplastic elastomer (TPE) was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4-6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.

  18. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  19. Inner power, physical strength and existential well-being in daily life: relatives' experiences of receiving soft tissue massage in palliative home care.

    PubMed

    Cronfalk, Berit Seiger; Strang, Peter; Ternestedt, Britt-Marie

    2009-08-01

    This article explores relatives' experiences of receiving soft tissue massage as a support supplement while caring for a dying family member at home. In palliative home care, relatives play an important role as carers to seriously ill and dying family members. To improve their quality of life, different support strategies are of importance. Complementary methods, such as soft tissue massage have become an appreciated supplement for these patients. However, only few studies focus on relatives experiences of receiving soft tissue massage as a supplemental support. Qualitative design Nineteen relatives received soft tissue massage (hand or foot) nine times (25 minutes) in their homes. Open-ended semi-structured tape-recorded interviews were conducted once per relative after the nine times of massage, using qualitative content analysis. Soft tissue massage gave the relatives' feelings of 'being cared for', 'body vitality' and 'peace of mind'. For a while, they put worries of daily life aside as they just experienced 'being'. During massage, it became apparent that body and mind is constituted of an indestructible completeness. The overarching theme was 'inner power, physical strength and existential well-being in their daily lives'. All relatives experienced soft tissue massage positively, although they were under considerable stress. Soft tissue massage could be an option to comfort and support relatives in palliative home care. In palliative nursing care, soft tissue massage could present a worthy supplement in supporting caring relatives.

  20. Higgs and superparticle mass predictions from the landscape

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Serce, Hasan; Sinha, Kuver

    2018-03-01

    Predictions for the scale of SUSY breaking from the string landscape go back at least a decade to the work of Denef and Douglas on the statistics of flux vacua. The assumption that an assortment of SUSY breaking F and D terms are present in the hidden sector, and their values are uniformly distributed in the landscape of D = 4, N = 1 effective supergravity models, leads to the expectation that the landscape pulls towards large values of soft terms favored by a power law behavior P( m soft) ˜ m soft n . On the other hand, similar to Weinberg's prediction of the cosmological constant, one can assume an anthropic selection of weak scales not too far from the measured value characterized by m W,Z,h ˜ 100 GeV. Working within a fertile patch of gravity-mediated low energy effective theories where the superpotential μ term is ≪ m 3/2, as occurs in models such as radiative breaking of Peccei-Quinn symmetry, this biases statistical distributions on the landscape by a cutoff on the parameter ΔEW, which measures fine-tuning in the m Z - μ mass relation. The combined effect of statistical and anthropic pulls turns out to favor low energy phenomenology that is more or less agnostic to UV physics. While a uniform selection n = 0 of soft terms produces too low a value for m h , taking n = 1 and 2 produce most probabilistically m h ˜ 125 GeV for negative trilinear terms. For n ≥ 1, there is a pull towards split generations with {m}_{\\tilde{q},\\tilde{ℓ}}(1,2)˜ 10-30 TeV whilst {m}_{{\\tilde{t}}_1}˜ 1-2 TeV . The most probable gluino mass comes in at ˜ 3 - 4 TeV — apparently beyond the reach of HL-LHC (although the required quasi-degenerate higgsinos should still be within reach). We comment on consequences for SUSY collider and dark matter searches.

  1. Physics through the 1990s: Condensed-matter physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.

  2. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  3. Ultrafast nanoscale imaging using high order harmonic generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Merdji, Hamed

    2017-05-01

    Ultrafast coherent diffraction using soft and hard X-rays is actually revolutionizing imaging science thanks to new sources recently available. This powerful technique extends standard X-ray diffraction towards imaging of non-crystalline objects and leads actually to a strong impact in physics, chemistry and biology. New ultrashort pulses recently available hold the promise of watching matter evolving with unprecedented space and time resolution. Femtosecond coherent and intense radiation in the soft X-ray (λ = 10-40 nm) is currently produced in our laboratory, from highly non linear frequency conversion (high harmonic generation). A high intensity UV-X coherent beam is obtained using a loose focusing geometry, which allows coupling a very high amount of Ti:Sapphire laser system energy in the HHG process. Using a long gas cell and a long focal length lens, the emitting volume can be increased by orders of magnitude compared to standard HHG set-ups. This approach, allows reaching up to 1x1011 photons per shot for the 25th harmonic (λ=32nm). We have already demonstrated nanoscale imaging in a single shot mode reaching 70 nm spatial resolution and 20 femtoseconds snapshot [1]. We then implemented a recently proposed holographic technique using extended references. This technique, easy to implement, allows a direct non iterative image reconstruction. In the single shot regime, we demonstrated a spatial resolution of 110nm [2].This opens fascinating perspectives in imaging dynamical phenomena to be spread over a large scientific community. I will present recent results in the investigation of femtosecond phase spin-reversals of magnetic nano-domains [3]. Finally, I will report on recent development on noise sensitivity of the technique and perspectives in attosecond coherent imaging [4]. [1] A. Ravasio et al., Physical Review Letters 103, 028104 (2009). [2] D. Gauthier et al., Physical Review Letters 105, 093901 (2010). [3] Vodungbo et al., Nature Communications 3, 999 (2012) [4] Williams et al., Optics Letters 40 (13), 3205 (2015)

  4. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  5. Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.

    PubMed

    Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo

    2017-05-01

    The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    NASA Astrophysics Data System (ADS)

    Fisher, I. R.; Degiorgi, L.; Shen, Z. X.

    2011-12-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  7. Topological Defects in Liquid Crystals: Studying the Correlation between Defects and Curvature

    NASA Astrophysics Data System (ADS)

    Melton, Charles

    2015-03-01

    Topological defects have recently been the subject of many fascinating studies in soft condensed matter physics. In particular, linking the evolution of topological defects to curvature changes has been a focus, leading possible applications in the areas such as cosmetics, pharmaceuticals, and electronics. In this study, defects in nematic liquid crystal droplets are investigated via laboratory and theoretical techniques. Nematic liquid crystal defects are reproduced via Monte Carlo simulations using a modified 2D XY-Model Hamiltonian. The simulation is performed on a curved surface to replicate a nematic droplet and examine possible defect configurations. To complement this theoretical work, we have trapped nematic droplets inside a dual-beam optical trap. This system allows controllable non-contact droplet deformation on a microscope based platform. Future work will focus on using the trap to stretch nematic droplets, correlating the changing topological defects with theoretical predictions.

  8. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  9. Experimental Research Examining How People Can Cope with Uncertainty Through Soft Haptic Sensations.

    PubMed

    van Horen, Femke; Mussweiler, Thomas

    2015-09-16

    Human beings are constantly surrounded by uncertainty and change. The question arises how people cope with such uncertainty. To date, most research has focused on the cognitive strategies people adopt to deal with uncertainty. However, especially when uncertainty is due to unpredictable societal events (e.g., economical crises, political revolutions, terrorism threats) of which one is unable to judge the impact on one's future live, cognitive strategies (like seeking additional information) is likely to fail to combat uncertainty. Instead, the current paper discusses a method demonstrating that people might deal with uncertainty experientially through soft haptic sensations. More specifically, because touching something soft creates a feeling of comfort and security, people prefer objects with softer as compared to harder properties when feeling uncertain. Seeking for softness is a highly efficient and effective tool to deal with uncertainty as our hands are available at all times. This protocol describes a set of methods demonstrating 1) how environmental (un)certainty can be situationally activated with an experiential priming procedure, 2) that the quality of the softness experience (what type of softness and how it is experienced) matters and 3) how uncertainty can be reduced using different methods.

  10. QCD for Postgraduates (2/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-05-21

    Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.

  11. European Conference on Laser Interaction with Matter (16th ECLIM), Imperial College, London, 26-30 September 1983. Book of Abstracts.

    DTIC Science & Technology

    1983-09-30

    instability by a shaped ion beam M. SAPIR, D. HAVAZALET, Negev, Israel J9 - P Soft X-ray refractometry of laser heated plasmas R. BENATTAR, Ecole...OF STADARDS - ’lS3 - A ,-a J9 SOFT X RAY REFRACTOMETRY OF LASER HEATED PLASMAS R. BENATTAR Laboratoire PMI, Ecole Polytechnique, 91128 Palaiseau...about the more appropriate wavelength to probe the high density region of a laser created plasma by refractometry . After, we show two possibilities, using

  12. Solar Extreme UV radiation and quark nugget dark matter model

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  13. ROSSI X-RAY TIMING EXPLORER OBSERVATIONS OF THE LOW-MASS X-RAY BINARY 4U 1608-522 IN THE UPPER-BANANA STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiromitsu; Sakurai, Soki; Makishima, Kazuo, E-mail: hirotaka@hep01.hepl.hiroshima-u.ac.jp

    To investigate the physics of mass accretion onto weakly magnetized neutron stars (NSs), 95 archival Rossi X-Ray Timing Explorer data sets of an atoll source 4U 1608-522, acquired over 1996-2004 in the so-called upper-banana state, were analyzed. The object meantime exhibited 3-30 keV luminosity in the range of {approx}< 10{sup 35}-4 x 10{sup 37} erg s{sup -1}, assuming a distance of 3.6 kpc. The 3-30 keV Proportional Counter Array spectra, produced one from each data set, were represented successfully with a combination of a soft and a hard component, the presence of which was revealed in a model-independent manner bymore » studying spectral variations among the observations. The soft component is expressed by the so-called multi-color disk model with a temperature of {approx}1.8 keV, and is attributed to the emission from an optically thick standard accretion disk. The hard component is a blackbody (BB) emission with a temperature of {approx}2.7 keV, thought to be emitted from the NS surface. As the total luminosity increases, a continuous decrease is observed in the ratio of the BB luminosity to that of the disk component. This property suggests that it gradually becomes difficult for the matter flowing through the accretion disk to reach the NS surface, presumably forming outflows driven by the increased radiation pressure. On timescales of hours to days, the overall source variability was found to be controlled by two independent variables: the mass accretion rate and the innermost disk radius, which changes both physically and artificially.« less

  14. Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering.

    PubMed

    Sang, Yonghuan; Li, Meirong; Liu, Jiejie; Yao, Yuling; Ding, Zhaozhao; Wang, Lili; Xiao, Liying; Lu, Qiang; Fu, Xiaobing; Kaplan, David L

    2018-03-21

    Fine tuning physical cues of silk fibroin (SF) biomaterials to match specific requirements for different soft tissues would be advantageous. Here, amorphous SF nanofibers were used to fabricate scaffolds with better hierarchical extracellular matrix (ECM) mimetic microstructures than previous silk scaffolds. Kinetic control was introduced into the scaffold forming process, resulting in the direct production of water-stable scaffolds with tunable secondary structures and thus mechanical properties. These biomaterials remained with amorphous structures, offering softer properties than prior scaffolds. The fine mechanical tunability of these systems provides a feasible way to optimize physical cues for improved cell proliferation and enhanced neovascularization in vivo. Multiple physical cues, such as partly ECM mimetic structures and optimized stiffness, provided suitable microenvironments for tissue ingrowth, suggesting the possibility of actively designing bioactive SF biomaterials. These systems suggest a promising strategy to develop novel SF biomaterials for soft tissue repair and regenerative medicine.

  15. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    DTIC Science & Technology

    2016-05-01

    Oak Ridge, TN Robert H Lambeth and Frederick L Beyer Weapons and Materials Research Directorate, ARL Approved for...nanocomposites: phase diagram, rheology and structure using a combined small angle neutron scattering and reverse Monte Carlo approach. Soft Matter. 2010;6

  16. Development of Self-Assembled Nanoscale Templates via Microphase Separation Induced by Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Chu, Elza

    Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.

  17. A continuum mechanics constitutive framework for transverse isotropic soft tissues

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.

    2018-03-01

    In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.

  18. Photochemical Alternation of Phragmites australis Plant Litter: New Insight into the Chemical Evolution of Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2015-12-01

    The photolysis of natural organic matter (NOM) is a potential pathway for the alteration of material that is not easily biodegraded. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools. However, a detailed understanding of the underlying chemical changes to the material in both phases is lacking. Here, we use a suspension of particles derived from Phragmites australis, a common marsh reed with high lignin content, as our model "recalcitrant" POM substrate. The solution was irradiated for three weeks with regular sampling, and the composition of the POM and the photo-produced DOM were measured separately using a suite of mass spectrometric and spectroscopic techniques. The chemical composition of individual molecules was measured by coupling soft ionization techniques (electrospray (ESI) and matrix assisted laser desorption (MALDI) to high-resolution mass spectrometry. Structural information, including the distribution of the major carbon containing functional groups, was obtained using a combination of FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry. Results are discussed in the context of differences in chemical composition and structure with increased irradiation time for both organic matter pools. We observed a general shift in the mass spectra of POM towards lower molecular weight masses and an increase in the abundance of ions in DOM as a function of irradiation time- hence the larger POM matrix is likely fragmenting into smaller species that are more soluble. Spectroscopic measurements indicate that the abundance of acidic and alcohol functionalities increased with irradiation in both carbon pools. These complementary approaches provide new detailed information about how the chemical composition of recalcitrant NOM evolves as it is exposed to sunlight.

  19. Deformed soft matter under constraints

    NASA Astrophysics Data System (ADS)

    Bertrand, Martin

    In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.

  20. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  1. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2017-01-01

    Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.

  2. A Recipe for Soft Fluidic Elastomer Robots

    PubMed Central

    Marchese, Andrew D.; Katzschmann, Robert K.

    2015-01-01

    Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913

  3. A Recipe for Soft Fluidic Elastomer Robots.

    PubMed

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  4. Radiative model of neutrino mass with neutrino interacting MeV dark matter

    DOE PAGES

    Arhrib, Abdesslam; Bohm, Celine; Ma, Ernest; ...

    2016-04-26

    We consider the radiative generation of neutrino mass through the interactions of neutrinos with MeV dark matter. We construct a realistic renormalizable model with one scalar doublet (in additional to the standard model doublet) and one complex singlet together with three light singlet Majorana fermions, all transforming under a dark U(1)(D) symmetry which breaks softly to Z(2). We study in detail the scalar sector which supports this specific scenario and its rich phenomenology.

  5. The relationship between grain hardness, dough mixing parameters and bread-making quality in winter wheat.

    PubMed

    Salmanowicz, Bolesław P; Adamski, Tadeusz; Surma, Maria; Kaczmarek, Zygmunt; Karolina, Krystkowiak; Kuczyńska, Anetta; Banaszak, Zofia; Lugowska, Bogusława; Majcher, Małgorzata; Obuchowski, Wiktor

    2012-01-01

    The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index-PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index.

  6. The Relationship Between Grain Hardness, Dough Mixing Parameters and Bread-Making Quality in Winter Wheat

    PubMed Central

    Salmanowicz, Bolesław P.; Adamski, Tadeusz; Surma, Maria; Kaczmarek, Zygmunt; Karolina, Krystkowiak; Kuczyńska, Anetta; Banaszak, Zofia; Ługowska, Bogusława; Majcher, Małgorzata; Obuchowski, Wiktor

    2012-01-01

    The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index—PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index. PMID:22605973

  7. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  8. Local Interstellar Medium. International Astronomical Union Colloquium No. 81

    NASA Technical Reports Server (NTRS)

    Kondo, Y. (Editor); Bruhweiler, F. C. (Editor); Savage, B. D. (Editor)

    1984-01-01

    Helium and hydrogen backscattering; ultraviolet and EUV absorption spectra; optical extinction and polarization; hot gases; soft X-ray observations; infrared and millimeter wavelengths; radio wavelengths and theoretical models of the interstellar matter within about 150 parsecs of the Sun were examined.

  9. Homepage P. Fischer, LBNL, Berkeley CA | UC Santa Cruz CA

    Science.gov Websites

    mesoscale magnetic x-ray microscopy and spectroscopy (ultra-)fast spin dynamics soft x-ray tomography of condensed matter x-ray optics publications presentations invited talks conference contributions curriculum

  10. Hologram recording tubes

    NASA Technical Reports Server (NTRS)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  11. Lectures on Dark Matter Physics

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

  12. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm.

    PubMed

    Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G; Pfeifer, Rolf

    2013-01-01

    The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of "soft robotics". Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed.

  13. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm

    PubMed Central

    Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G.; Pfeifer, Rolf

    2013-01-01

    The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of “soft robotics”. Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed. PMID:23847526

  14. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  15. Towards realistic string vacua from branes at singularities

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando

    2009-05-01

    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.

  16. Describing the observed cosmic neutrinos by interactions of nuclei with matter

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2014-11-01

    IceCube has observed neutrinos that are presumably of extra-Galactic origin. Since specific sources have not yet been identified, we discuss what could be learned from the conceptual point of view. We use a simple model for neutrino production from the interactions between nuclei and matter, and we focus on the description of the spectral shape and flavor composition observed by IceCube. Our main parameters are the spectral index, maximal energy, magnetic field, and composition of the accelerated nuclei. We show that a cutoff at PeV energies can be achieved by soft enough spectra, a cutoff of the primary energy, or strong enough magnetic fields. These options, however, are difficult to reconcile with the hypothesis that these neutrinos originate from the same sources as the ultrahigh-energy cosmic rays. We demonstrate that heavier nuclei accelerated in the sources may be a possible way out if the maximal energy scales appropriately with the mass number of the nuclei. In this scenario, neutrino observations can actually be used to test the ultrahigh-energy cosmic ray acceleration mechanism. We also emphasize the need for a volume upgrade of the IceCube detector for future precision physics, for which the flavor information becomes a statistically meaningful model discriminator as well as a qualitatively new ingredient.

  17. Immotile Active Matter: Activity from Death and Reproduction

    NASA Astrophysics Data System (ADS)

    Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K.; Yunker, Peter J.

    2018-01-01

    Unlike equilibrium atomic solids, biofilms—soft solids composed of bacterial cells—do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015), 10.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.

  18. Immotile Active Matter: Activity from Death and Reproduction.

    PubMed

    Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K; Yunker, Peter J

    2018-01-05

    Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.

  19. Photochemical gas lasers and hybrid (solid/gas) blue-green femtosecond systems

    NASA Astrophysics Data System (ADS)

    Mikheev, L. D.; Tcheremiskine, V. I.; Uteza, O. P.; Sentis, M. L.

    2012-01-01

    The review summarizes milestones and major breakthrough results obtained in the course of the development of a photochemical method applied to optical excitation of gas lasers on electronic molecular transitions by radiation from such unconventional pump sources as high-temperature electrical discharges and strong shock waves in gas. It also describes principles and techniques applied in hybrid (solid/gas) high-intensity laser systems emitting in the blue-green spectral region, and discusses wavelength scaling of laser-matter interaction by the example of laser wake-field acceleration (LWFA), high-order harmonic generation (HHG) and “water window” soft X-ray lasers. One of the most significant results of the photochemical method development consists in emerging broad bandwidth lasers (XeF(C-A), Xe2Cl, and Kr2F) operating in the blue-green spectral range, which have potential for amplification of ultra-short (down to 10 fs) optical pulses towards the Petawatt peak power level. The main goal of this review is to argue that the active media of these lasers may provide a basis for the development of fs systems generating super-intense ultrashort laser pulses in the visible spectral range. Some specific hybrid schemes, comprising solid state front-ends and photodissociation XeF(C-A) power boosting amplifiers, are described. They are now under development at the Lasers Plasmas and Photonic Processes (LP3) Laboratory (Marseille, France), the P.N. Lebedev Physical Institute (Moscow, Russia) and the Institute of High-Current Electronics (Tomsk, Russia) with the aim of conducting proof-of-principle experiments. Some consequences of the visible-wavelength laser field interaction with matter are also surveyed to demonstrate advantages of short driver wavelength in the considered examples. One of the most important consequences is the possibility of coherent soft X-ray generation within the “water window” spectral range with the use of short wavelength driver pulses to pump a recombination laser.

  20. Beyond the Standard Model IV

    NASA Astrophysics Data System (ADS)

    Gunion, John F.; Han, Tao; Ohnemus, James

    1995-08-01

    The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard Scattering Events * B Physics * Inclusive Hadronic Production of the Bc Meson via Heavy Quark Fragmentation * Helicity Probabilities for Heavy Quark Fragmentation into Heavy-Light Excited Mesons * Hadronic Penguins in B Decays and Extraction of α, β and γ * CP Violation Physics * Maximum Likelihood Method for New Physics Mixing Angles, and Projections to Using B Factory Results * CP Violation in Fermionic Decays of Higgs Bosons * Test of CP Violation in Non-Leptonic Hyperon Decays * CP Violation in the Weinberg Multi-Higgs Model * Triple-Product Spin-Momentum Correlations in Polarized Z Decays to Three Jets * Radiative CP Violation * HERA Results * A Search for Leptoquarks and Squarks in H1 at HERA * Search for Leptoquarks in ep Collisions at √ {s}=296; {GeV} * Search for Excited Fermions in ep Collisions at √ {s}=296; {GeV} * Tevatron Results * Measurement of Diboson Production at the Tevatron Collider with D0 * Search for SUSY in D0 * Search for SUSY at CDF * Search for First and Second Generation Leptoquarks with the D0 Detector * Search for Exotic Particles at CDF * e+e- and μ+μ- Physics * Aspects of Higgs Boson Searches * Measurements of the Forward-Backward Asymmetry of Quarks in the DELPHI Experiment at LEP * Astrophysics, Dark Matter, Cosmology and Neutrino Physics * A Model Independent Approach to Future Solar Neutrino Experiments * Neutrino Oscillations with Beams from AGN's and GRB's * Implication of Macho Detections for Dark Matter Searches * Chiral Restoration in the Early Universe: Pion Halo in the Sky * SEWS, Anomalous Couplings, and Precision EW * Do WL and H form a P-Wave Bound State? * An Update on Strong WLWL Scattering at the LHC * The Difficulties Involved in Calculating δρ * What Can We Learn from the Measurement R_{b}≡Γ(Z → bbar{b}/Γ(Z → Hadrons)? * Gauge Invariance and Anomalous Gauge Boson Couplings * Probing the Standard Model with Hadronic WZ Production * Consequences of Recent Electroweak Data and W-Mass for the Top Quark and Higgs Masses * Equivalence Theorem as a Criterion for Probing the Electroweak Symmetry Breaking Mechanism * Conference Schedule * Schedule of the Parallel Sessions * List of Participants

  1. Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wen-Bin; Gu, Pei-Hong

    2016-05-18

    We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgsmore » triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.« less

  2. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks

    PubMed Central

    McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2018-01-01

    Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634

  3. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; ...

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  4. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  5. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    NASA Astrophysics Data System (ADS)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  6. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  7. Shear rheology and 1H TD-NMR combined to low-field RheoNMR: Set-up and application to quiescent and flow-induced crystallization of polymers

    NASA Astrophysics Data System (ADS)

    Räntzsch, Volker; Özen, Mürüvvet Begüm; Ratzsch, Karl-Friedrich; Guthausen, Gisela; Wilhelm, Manfred

    2017-05-01

    Rheology provides access to the flow properties of soft matter, while 1H TD-NMR is a useful technique for the characterization of molecular dynamics. To achieve greater insight into the interplay of these domains, especially under flow, it is desirable to combine these two methods in one set-up. We present a low-field RheoNMR set-up based on a portable 30 MHz 1H NMR unit that was integrated into a commercial strain-controlled shear rheometer. This unique combination can simultaneously conduct a full rheological characterization (G', G", |η*|, FT-Rheology: I3/1, Q0) while monitoring molecular dynamics in-situ via 1H TD-NMR for temperatures from -15 to +210 °C. Possible applications include the quantitative measurement of the composition in multiphase systems (fats, polymers, etc.) and soft matter during the application of flow, e.g. measurements on the flow-induced crystallization of polymers.

  8. Engineering nanometre-scale coherence in soft matter

    NASA Astrophysics Data System (ADS)

    Liu, Chaoren; Xiang, Limin; Zhang, Yuqi; Zhang, Peng; Beratan, David N.; Li, Yueqi; Tao, Nongjian

    2016-10-01

    Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.

  9. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective

    NASA Astrophysics Data System (ADS)

    Angioletti-Uberti, Stefano

    2017-11-01

    Functionalised nanoparticles for biomedical applications represents an incredibly exciting and rapidly growing field of research. Considering the complexity of the nano-bio interface, an important question is to what extent can theory and simulations be used to study these systems in a realistic, meaningful way. In this review, we will argue for a positive answer to this question. Approaching the issue from a "Soft Matter" perspective, we will consider those properties of functionalised nanoparticles that can be captured within a classical description. We will thus not concentrate on optical and electronic properties, but rather on the way nanoparticles' interactions with the biological environment can be tuned by functionalising their surface and exploited in different contexts relevant to applications. In particular, we wish to provide a critical overview of theoretical and computational coarse-grained models, developed to describe these interactions and present to the readers some of the latest results in this fascinating area of research.

  10. A Long Term Assessment of the Clinical Efficacy of the Fiberotomy as it Relates to Rotational Relapse.

    DTIC Science & Technology

    1983-01-01

    physical. The physical function held the tooth in place, resisted displacement, and "supported the soft tissues about the teeth." He believed that...and the tissues fixed. Separations of 0.75 to 2.0 mm were obtained. Histologic examination revealed tearing of the periodontal fibers on the tension...alveolar fibers which terminate in soft tissues revealed the same degree of tearing. In 1958, Fullmer and Lillie discovered a previously unobserved

  11. Use of Multiple Representations in Developing Preservice Chemistry Teachers' Understanding of the Structure of Matter

    ERIC Educational Resources Information Center

    Yakmaci-Guzel, Buket; Adadan, Emine

    2013-01-01

    The purpose of this study was to examine the changes in 19 preservice chemistry teachers' understandings of the structure of matter, including the aspects of the physical states of matter, the physical composition of matter, and the chemical composition of matter, before, immediately after, and months after they received a specific instruction.…

  12. Crystals: animal, vegetable or mineral?

    PubMed Central

    Hyde, Stephen T.

    2015-01-01

    The morphologies of biological materials, from body shapes to membranes within cells, are typically curvaceous and flexible, in contrast to the angular, facetted shapes of inorganic matter. An alternative dichotomy has it that biomolecules typically assemble into aperiodic structures in vivo, in contrast to inorganic crystals. This paper explores the evolution of our understanding of structures across the spectrum of materials, from living to inanimate, driven by those naive beliefs, with particular focus on the development of crystallography in materials science and biology. The idea that there is a clear distinction between these two classes of matter has waxed and waned in popularity through past centuries. Our current understanding, driven largely by detailed exploration of biomolecular structures at the sub-cellular level initiated by Bernal and Astbury in the 1930s, and more recent explorations of sterile soft matter, makes it clear that this is a false dichotomy. For example, liquid crystals and other soft materials are common to both living and inanimate materials. The older picture of disjoint universes of forms is better understood as a continuum of forms, with significant overlap and common features unifying biological and inorganic matter. In addition to the philosophical relevance of this perspective, there are important ramifications for science. For example, the debates surrounding extra-terrestrial life, the oldest terrestrial fossils and consequent dating of the emergence of life on the Earth rests to some degree on prejudices inferred from the supposed dichotomy between life-forms and the rest. PMID:26464788

  13. Crystals: animal, vegetable or mineral?

    PubMed

    Hyde, Stephen T

    2015-08-06

    The morphologies of biological materials, from body shapes to membranes within cells, are typically curvaceous and flexible, in contrast to the angular, facetted shapes of inorganic matter. An alternative dichotomy has it that biomolecules typically assemble into aperiodic structures in vivo, in contrast to inorganic crystals. This paper explores the evolution of our understanding of structures across the spectrum of materials, from living to inanimate, driven by those naive beliefs, with particular focus on the development of crystallography in materials science and biology. The idea that there is a clear distinction between these two classes of matter has waxed and waned in popularity through past centuries. Our current understanding, driven largely by detailed exploration of biomolecular structures at the sub-cellular level initiated by Bernal and Astbury in the 1930s, and more recent explorations of sterile soft matter, makes it clear that this is a false dichotomy. For example, liquid crystals and other soft materials are common to both living and inanimate materials. The older picture of disjoint universes of forms is better understood as a continuum of forms, with significant overlap and common features unifying biological and inorganic matter. In addition to the philosophical relevance of this perspective, there are important ramifications for science. For example, the debates surrounding extra-terrestrial life, the oldest terrestrial fossils and consequent dating of the emergence of life on the Earth rests to some degree on prejudices inferred from the supposed dichotomy between life-forms and the rest.

  14. Cork Embedded Internal Features and Contrast Mechanisms with Del Using 18, 20, 30, 36 and 40 keV Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, D.V.; Zhong, Z.; Akatsuka, T.

    Images of the cork used for wine and other bottles are visualized with the use of diffraction-enhanced imaging (DEI) technique. Present experimental studies allowed us to identify the cracks, holes, porosity, and importance of soft-matter (soft-material) and associated biology by visualization of the embedded internal complex features of the biological material such as cork and its microstructure. Highlighted the contrast mechanisms above and below the K-absorption edge of iodine and studied the attenuation through a combination of weakly and strongly attenuating materials.

  15. Cork Embedded Internal Features and Contrast Mechanisms with DEI using 18, 20, 30, 36, and 40 kev Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donepudi, R.; Cesareo, R; Brunetti, A

    Images of the cork used for wine and other bottles are visualized with the use of diffraction-enhanced imaging (DEI) technique. Present experimental studies allowed us to identify the cracks, holes, porosity, and importance of soft-matter (soft-material) and associated biology by visualization of the embedded internal complex features of the biological material such as cork and its microstructure. Highlighted the contrast mechanisms above and below the K-absorption edge of iodine and studied the attenuation through a combination of weakly and strongly attenuating materials.

  16. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  17. Human-in-the-loop development of soft wearable robots

    NASA Astrophysics Data System (ADS)

    Walsh, Conor

    2018-06-01

    The field of soft wearable robotics offers the opportunity to wear robots like clothes to assist the movement of specific body parts or to endow the body with functionalities. Collaborative efforts of materials, apparel and robotics science have already led to the development of wearable technologies for physical therapy. Optimizing the human-robot system by human-in-the-loop approaches will pave the way for personalized soft wearable robots for a variety of applications.

  18. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning.

    PubMed

    Giannaccini, Maria Elena; Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve

    2018-02-01

    Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.

  19. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning

    PubMed Central

    Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve

    2018-01-01

    Abstract Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally. PMID:29412080

  20. Decoherence as a way to measure extremely soft collisions with dark matter

    NASA Astrophysics Data System (ADS)

    Riedel, C. Jess; Yavin, Itay

    2017-07-01

    A new frontier in the search for dark matter (DM) is based on the idea of detecting the decoherence caused by DM scattering against a mesoscopic superposition of normal matter. Such superpositions are uniquely sensitive to very small momentum transfers from new particles and forces, especially DM with a mass below 100 MeV. Here we investigate what sorts of dark sectors are inaccessible with existing methods but would induce noticeable decoherence in the next generation of matter interferometers. We show that very soft but medium range (0.1 nm - 1 μ m ) elastic interactions between nuclei and DM are particularly suitable. We construct toy models for such interactions, discuss existing constraints, and delineate the expected sensitivity of forthcoming experiments. The first hints of DM in these devices would appear as small variations in the anomalous decoherence rate with a period of one sidereal day. This is a generic signature of interstellar sources of decoherence, clearly distinguishing it from terrestrial backgrounds. The OTIMA experiment under development in Vienna will begin to probe Earth-thermalizing DM once sidereal variations in the background decoherence rate are pushed below one part in a hundred for superposed 5-nm gold nanoparticles. The proposals by Bateman et al. and Geraci et al. could be similarly sensitive although they would require at least a month of data taking. DM that is absorbed or elastically reflected by the Earth, and so avoids a greenhouse density enhancement, would not be detectable by those three experiments. On the other hand, the aggressive proposals of the MAQRO collaboration and Pino et al. would immediately open up many orders of magnitude in DM mass, interaction range, and coupling strength, regardless of how DM behaves in bulk matter.

  1. Smart Actuators and Adhesives for Reconfigurable Matter.

    PubMed

    Ko, Hyunhyub; Javey, Ali

    2017-04-18

    Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.

  2. Ready, steady, cook, learn

    NASA Astrophysics Data System (ADS)

    2011-03-01

    A bold fusion of food, cooking and soft-matter science has left undergraduates at Harvard University in the US with an appetite for more - and is proof-positive that scientists, science educators and students can only benefit from exposure to creative types and innovators working outside of their own specialisms.

  3. Soft- and reactive landing of ions onto surfaces: Concepts and applications: CONCEPTS AND APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Gunaratne, Don; Laskin, Julia

    2015-04-16

    Soft- and reactive landing of mass-selected ions is gaining attention as a promising approach for the precisely-controlled preparation of materials on surfaces that are not amenable to deposition using conventional methods. A broad range of ionization sources and mass-filters are available that make ion soft-landing a versatile tool for surface modification using beams of hyperthermal (< 100 eV) ions. The ability to select the mass-to-charge ratio of the ion, its kinetic energy and charge state, along with precise control of the size, shape, and position of the ion beam on the deposition target distinguishes ion soft landing from other surfacemore » modification techniques. Soft- and reactive landing have been used to prepare interfaces for practical applications as well as precisely-defined model surfaces for fundamental investigations in chemistry, physics, and materials science. For instance, soft- and reactive landing have been applied to study the surface chemistry of ions isolated in the gas-phase, prepare arrays of proteins for high-throughput biological screening, produce novel carbon-based and polymer materials, enrich the secondary structure of peptides and the chirality of organic molecules, immobilize electrochemically-active proteins and organometallics on electrodes, create thin films of complex molecules, and immobilize catalytically active organometallics as well as ligated metal clusters. In addition, soft landing has enabled investigation of the size-dependent behavior of bare metal clusters in the critical subnanometer size regime where chemical and physical properties do not scale predictably with size. The morphology, aggregation, and immobilization of larger bare metal nanoparticles, which are directly relevant to the design of catalysts as well as improved memory and electronic devices, have also been studied using ion soft landing. This review article begins in section 1 with a brief introduction to the existing applications of ion soft- and reactive landing. Section 2 provides an overview of the ionization sources and mass filters that have been used to date for soft landing of mass-selected ions. A discussion of the competing processes that occur during ion deposition as well as the types of ions and surfaces that have been investigated follows in section 3. Section 4 discusses the physical phenomena that occur during and after ion soft landing including retention and reduction of ionic charge along with factors that impact the efficiency of ion deposition. The influence of soft landing on the secondary structure and biological activity of complex ions is addressed in section 5. Lastly, an overview of the structure and mobility as well as the catalytic, optical, magnetic, and redox properties of bare ionic clusters and nanoparticles deposited onto surfaces is presented in section 6.« less

  4. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots.

    PubMed

    Belluau, Michaël; Shipley, Bill

    2018-01-01

    Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.

  5. A comparison of MRI and clinical examination of acute lateral ankle sprains.

    PubMed

    Frey, C; Bell, J; Teresi, L; Kerr, R; Feder, K

    1996-09-01

    Because of its excellent soft tissue contrast and ability to demonstrate soft tissue structures, magnetic resonance imaging is ideally suited to the evaluation of the soft tissues surrounding the ankle, including the lateral collateral ligaments. This study was undertaken to compare the clinical evaluation of 15 patients who suffered inversion injuries of the ankle with the results found on magnetic resonance imaging within 48 hours of the injury. Physical examination was found to be 100% accurate in the diagnosis of grade III ligament injuries but only 25% accurate in the diagnosis of grade II injuries. Clinicians most often underestimate the damage with a grade II ligament tear. Furthermore, other associated injuries, such as significant capsule ruptures and tendon damage, were often overlooked at physical examination.

  6. Nanobiotechnology: soft lithography.

    PubMed

    Mele, Elisa; Pisignano, Dario

    2009-01-01

    An entirely new scientific and technological area has been born from the combination of nanotechnology and biology: nanobiotechnology. Such a field is primed especially by the strong potential synergy enabled by the integration of technologies, protocols, and investigation methods, since, while biomolecules represent functional nanosystems interesting for nanotechnology, micro- and nano-devices can be very useful instruments for studying biological materials. In particular, the research of new approaches for manipulating matter and fabricating structures with micrometre- and sub-micrometre resolution has determined the development of soft lithography, a new set of non-photolithographic patterning techniques applied to the realization of selective proteins and cells attachment, microfluidic circuits for protein and DNA chips, and 3D scaffolds for tissue engineering. Today, soft lithographies have become an asset of nanobiotechnology. This Chapter examines the biological applications of various soft lithographic techniques, with particular attention to the main general features of soft lithography and of materials commonly employed with these methods. We present approaches particularly suitable for biological materials, such as microcontact printing (muCP) and microfluidic lithography, and some key micro- and nanobiotechnology applications, such as the patterning of protein and DNA microarrays and the realization of microfluidic-based analytical devices.

  7. Differentiating between Women in Hard and Soft Science and Engineering Disciplines

    ERIC Educational Resources Information Center

    Camp, Amanda G.; Gilleland, Diane S.; Pearson, Carolyn; Vander Putten, James

    2010-01-01

    The intent of this study was to investigate characteristics that differentiate between women in soft (social, psychological, and life sciences) and hard (engineering, mathematics, computer science, physical science) science and engineering disciplines. Using the Beginning Postsecondary Students Longitudinal Study: 1996-2001 (2002), a descriptive…

  8. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial surface brightness distribution. The present data may suggest that the X-ray surface brightness is more extended than the optical profile. In this case, a straightforward explanation in terms of stellar sources could not be satisfactory. The available data can be better explained with three different contributions: a very soft component of stellar origin, a hard component from X-ray binaries, and an approximately 0.6 keV hot ISM. The latter can explain the extended X-ray surface brightness profile, if the galaxy has a dark-to-luminous mass ratio of 9, with the dark matter very broadly distributed, and a SN Ia explosive rate of approximately 0.6 the Tammann rate.

  9. Soft Hair on Black Holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  10. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  11. Quality of Life, Physical and Mental Status and Contentment of Patients with Localized Soft Tissue or Bone Sarcoma: A Questionnaire Analysis

    PubMed Central

    Sachsenmaier, Saskia M.; Ipach, Ingmar; Kluba, Torsten

    2015-01-01

    Extremity soft tissue and bone sarcomas represent a rare group of bone and connective tissue cancers. In literature, there is little information about psycho-emotional status and impact on quality of life after the diagnosis and treatment of this kind of tumors. The aim of this survey was to define the profile of the patients at risk and their need for psychooncological care. Our self-created questionnaire consists of 71 items related to the individual emotional, mental and physical situation after the diagnosis of soft tissue and bone sarcoma. Sixty-six patients, surgically treated at our department, were included. Only 37.5% of the patients considered themselves to be completely emotional stable. Psychooncological treatment was accepted mostly by female patients, by patients with higher education level and by married patients. Emotional stability and confidence in future were associated with a strong familiar background, with numerous consultations of psychooncological service and also to gender and physical condition. Current quality of life was strongly correlated to physical condition. Thanks to our questionnaire, we disclosed few risk factors for negative emotional outcome after therapy, such as higher age, social isolation, female gender and poor physical status. PMID:26330994

  12. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but theymore » will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP* in the time between the Dark Matter and Neutrino workshops (June 29 – July 3) covering the subjects of dark matter, dark energy, neutrino physics, gravitational waves, collider physics and many others. PPC brought about 90 national and international participants. Started at Texas A&M University in 2007, PPC travelled to many places which include Geneva (Switzerland), Turin (Italy), Seoul (South Korea) and Leon (Mexico) over last few years. The objectives of CETUP*2015 and PPC2015 were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments.« less

  13. Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom

    ERIC Educational Resources Information Center

    Ford, Jes; Stang, Jared; Anderson, Catherine

    2015-01-01

    Dark matter makes up most of the matter in the universe but very little of a standard introductory physics curriculum. Here we present our construction and use of a spandex sheet-style gravity simulator to qualitatively demonstrate two aspects of modern physics related to dark matter. First, we describe an activity in which students explore the…

  14. Nonlinear negative refraction in reorientational soft matter

    NASA Astrophysics Data System (ADS)

    Alberucci, Alessandro; Jisha, Chandroth P.; Assanto, Gaetano

    2015-09-01

    We analyze the propagation of self-trapped optical beams close to the Fréedericksz threshold in nematic liquid crystals. Accounting for power-dependent changes in walk-off due to the all-optical response, we demonstrate that light beams can switch from positive to negative refraction according to the excitation.

  15. Power-induced evolution and increased dimensionality of nonlinear modes in reorientational soft matter.

    PubMed

    Laudyn, Urszula A; Jung, Paweł S; Zegadło, Krzysztof B; Karpierz, Miroslaw A; Assanto, Gaetano

    2014-11-15

    We demonstrate the evolution of higher order one-dimensional guided modes into two-dimensional solitary waves in a reorientational medium. The observations, carried out at two different wavelengths in chiral nematic liquid crystals, are in good agreement with a simple nonlocal nonlinear model.

  16. Future of Electron Scattering and Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Ernest; Stemmer, Susanne; Zheng, Haimei

    2014-02-25

    The ability to correlate the atomic- and nanoscale-structure of condensed matter with physical properties (e.g., mechanical, electrical, catalytic, and optical) and functionality forms the core of many disciplines. Directing and controlling materials at the quantum-, atomic-, and molecular-levels creates enormous challenges and opportunities across a wide spectrum of critical technologies, including those involving the generation and use of energy. The workshop identified next generation electron scattering and diffraction instruments that are uniquely positioned to address these grand challenges. The workshop participants identified four key areas where the next generation of such instrumentation would have major impact: A – Multidimensional Visualizationmore » of Real Materials B – Atomic-scale Molecular Processes C – Photonic Control of Emergence in Quantum Materials D – Evolving Interfaces, Nucleation, and Mass Transport Real materials are comprised of complex three-dimensional arrangements of atoms and defects that directly determine their potential for energy applications. Understanding real materials requires new capabilities for three-dimensional atomic scale tomography and spectroscopy of atomic and electronic structures with unprecedented sensitivity, and with simultaneous spatial and energy resolution. Many molecules are able to selectively and efficiently convert sunlight into other forms of energy, like heat and electric current, or store it in altered chemical bonds. Understanding and controlling such process at the atomic scale require unprecedented time resolution. One of the grand challenges in condensed matter physics is to understand, and ultimately control, emergent phenomena in novel quantum materials that necessitate developing a new generation of instruments that probe the interplay among spin, charge, orbital, and lattice degrees of freedom with intrinsic time- and length-scale resolutions. Molecules and soft matter require imaging and spectroscopy with high spatial resolution without damaging their structure. The strong interaction of electrons with matter allows high-energy electron pulses to gather structural information before a sample is damaged. Electron ScatteringImaging, diffraction, and spectroscopy are the fundamental capabilities of electron-scattering instruments. The DOE BES-funded TEAM (Transmission Electron Aberration-corrected Microscope) project achieved unprecedented sub-atomic spatial resolution in imaging through aberration-corrected transmission electron microscopy. To further advance electron scattering techniques that directly enable groundbreaking science, instrumentation must advance beyond traditional two-dimensional imaging. Advances in temporal resolution, recording the full phase and energy spaces, and improved spatial resolution constitute a new frontier in electron microscopy, and will directly address the BES Grand Challenges, such as to “control the emergent properties that arise from the complex correlations of atomic and electronic constituents” and the “hidden states” “very far away from equilibrium”. Ultrafast methods, such as the pump-probe approach, enable pathways toward understanding, and ultimately controlling, the chemical dynamics of molecular systems and the evolution of complexity in mesoscale and nanoscale systems. Central to understanding how to synthesize and exploit functional materials is having the ability to apply external stimuli (such as heat, light, a reactive flux, and an electrical bias) and to observe the resulting dynamic process in situ and in operando, and under the appropriate environment (e.g., not limited to UHV conditions). To enable revolutionary advances in electron scattering and science, the participants of the workshop recommended three major new instrumental developments: A. Atomic-Resolution Multi-Dimensional Transmission Electron Microscope: This instrument would provide quantitative information over the entire real space, momentum space, and energy space for visualizing dopants, interstitials, and light elements; for imaging localized vibrational modes and the motion of charged particles and vacancies; for correlating lattice, spin, orbital, and charge; and for determining the structure and molecular chemistry of organic and soft matter. The instrument will be uniquely suited to answer fundamental questions in condensed matter physics that require understanding the physical and electronic structure at the atomic scale. Key developments include stable cryogenic capabilities that will allow access to emergent electronic phases, as well as hard/soft interfaces and radiation- sensitive materials. B. Ultrafast Electron Diffraction and Microscopy Instrument: This instrument would be capable of nano-diffraction with 10 fs temporal resolution in stroboscopic mode, and better than 100 fs temporal resolution in single shot mode. The instrument would also achieve single- shot real-space imaging with a spatial/temporal resolution of 10 nm/10 ps, representing a thousand fold improvement over current microscopes. Such a capability would be complementary to x-ray free electron lasers due to the difference in the nature of electron and x-ray scattering, enabling space-time mapping of lattice vibrations and energy transport, facilitating the understanding of molecular dynamics of chemical reactions, the photonic control of emergence in quantum materials, and the dynamics of mesoscopic materials. C. Lab-In-Gap Dynamic Microscope: This instrument would enable quantitative measurements of materials structure, composition, and bonding evolution in technologically relevant environments, including liquids, gases and plasmas, thereby assuring the understanding of structure function relationship at the atomic scale with up to nanosecond temporal resolution. This instrument would employ a versatile, modular sample stage and holder geometry to allow the multi-modal (e.g., optical, thermal, mechanical, electrical, and electrochemical) probing of materials’ functionality in situ and in operando. The electron optics encompasses a pole piece that can accommodate the new stage, differential pumping, detectors, aberration correctors, and other electron optical elements for measurement of materials dynamics. To realize the proposed instruments in a timely fashion, BES should aggressively support research and development of complementary and enabling instruments, including new electron sources, advanced electron optics, new tunable specimen pumps and sample stages, and new detectors. The proposed instruments would have transformative impact on physics, chemistry, materials science, engineering« less

  17. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  18. Soft thermal contributions to 3-loop gauge coupling

    NASA Astrophysics Data System (ADS)

    Laine, M.; Schicho, P.; Schröder, Y.

    2018-05-01

    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.

  19. Relaxation processes and physical aging in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with recent theoretical and numerical simulations are discussed as well.

  20. Collider Interplay for Supersymmetry, Higgs and Dark Matter

    DOE PAGES

    Buchmueller, Oliver; Citron, M.; Ellis, J.; ...

    2015-10-01

    Here, we discuss the potential impacts on the CMSSM of future LHC runs and possible e +e – and higher-energy proton–proton colliders, considering searches for supersymmetry via /E T events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /E T searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2more » variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m 0,m 1/2 and A 0 of the CMSSM. Slepton measurements at CLIC would enable m 0 and m 1/2 to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e +e – collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.« less

  1. Extreme Mechanics of Growing Matter

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2013-03-01

    Growth is a distinguishing feature of all living things. Unlike standard materials, living matter can autonomously respond to alterations in its environment. As a result of a continuous ultrastructural turnover and renewal of cells and extracellular matrix, living matter can undergo extreme changes in composition, size, and shape within the order of months, weeks, or days. While hard matter typically adapts by increasing its density to grow strong, soft matter adapts by increasing its volume to grow large. Here we provide a state-of-the-art review of growing matter, and compare existing mathematical models for growth and remodeling of living systems. Applications are plentiful ranging from plant growth to tumor growth, from asthma in the lungs to restenosis in the vasculature, from plastic to reconstructive surgery, and from skeletal muscle adaptation to heart failure. Using these examples, we discuss current challenges and potential future directions. We hope to initiate critical discussions around the biophysical modeling of growing matter as a powerful tool to better understand biological systems in health and disease. This research has been supported by the NSF CAREER award CMMI 0952021.

  2. Feshbach Prize: New Phenomena and New Physics from Strongly-Correlated Quantum Matter

    NASA Astrophysics Data System (ADS)

    Carlson, Joseph A.

    2017-01-01

    Strongly correlated quantum matter is ubiquitous in physics from cold atoms to nuclei to the cold dense matter found in neutron stars. Experiments from table-top to the extremely large scale experiments including FRIB and LIGO will help determine the properties of matter across an incredible scale of distances and energies. Questions to be addressed include the existence of exotic states of matter in cold atoms and nuclei, the response of this correlated matter to external probes, and the behavior of matter in extreme astrophysical environments. A more complete understanding is required, both to understand these diverse phenomena and to employ this understanding to probe for new underlying physics in experiments including neutrinoless double beta decay and accelerator neutrino experiments. I will summarize some aspects of our present understanding and highlight several important prospects for the future.

  3. Novel dark matter phenomenology at colliders

    NASA Astrophysics Data System (ADS)

    Wardlow, Kyle Patrick

    While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.

  4. Soft Robotic Grippers.

    PubMed

    Shintake, Jun; Cacucciolo, Vito; Floreano, Dario; Shea, Herbert

    2018-05-07

    Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Monte Carlo simulations of soft proton flares: testing the physics with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Fioretti, Valentina; Bulgarelli, Andrea; Malaguti, Giuseppe; Spiga, Daniele; Tiengo, Andrea

    2016-07-01

    Low energy protons (< 100 - 300 keV) in the Van Allen belt and the outer regions can enter the field of view of X-ray focusing telescopes, interact with the Wolter-I optics, and reach the focal plane. The funneling of soft protons was discovered after the damaging of the Chandra/ACIS Front-Illuminated CCDs in September 1999 after the first passages through the radiation belt. The use of special filters protects the XMM-Newton focal plane below an altitude of 70000 km, but above this limit the effect of soft protons is still present in the form of sudden ares in the count rate of the EPIC instruments that can last from hundreds of seconds to hours and can hardly be disentangled from X-ray photons, causing the loss of large amounts of observing time. The accurate characterization of (i) the distribution of the soft proton population, (ii) the physics interaction at play, and (iii) the effect on the focal plane, are mandatory to evaluate the background and design the proton magnetic diverter on board future X-ray focusing telescopes (e.g. ATHENA). Several solutions have been proposed so far for the primary population and the physics interaction, however the difficulty in precise angle and energy measurements in laboratory makes the smoking gun still unclear. Since the only real data available is the XMM-Newton spectrum of soft proton flares in orbit, we try to characterize the input proton population and the physics interaction by simulating, using the BoGEMMS framework, the proton interaction with a simplified model of the X-ray mirror module and the focal plane, and comparing the result with a real observation. The analysis of ten orbits of observations of the EPIC/pn instrument show that the detection of flares in regions far outside the radiation belt is largely influenced by the different orientation of the Earth's magnetosphere respect with XMM-Newton'os orbit, confirming the solar origin of the soft proton population. The Equator-S proton spectrum at 70000 km altitude is used for the proton population entering the optics, where a combined multiple and Firsov scattering is used as physics interaction. If the thick filter is used, the soft protons in the 30-70 keV energy range are the main contributors to the simulated spectrum below 10 keV. We are able to reproduce the proton vignetting observed in real data-sets, with a 50% decrease from the inner to the outer region, but a maximum flux of 0:01 counts cm2 s-1 keV-1 is obtained below 10 keV, about 5 times lower than the EPIC/MOS detection and 100 times lower than the EPIC/pn one. Given the high variability of the are intensity, we conclude that an average spectrum, based on the analysis of a full season of soft proton events is required to compare Monte Carlo simulations with real events.

  6. New Soft Tissue Implants Using Organic Elastomers

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.

  7. PREFACE: SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor: Devoted to the 75th anniversary of Yu M Ostanevich's birth

    NASA Astrophysics Data System (ADS)

    Gordely, Valentin; Kuklin, Alexander; Balasoiu, Maria

    2012-03-01

    The Second International Workshop 'SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor', devoted to the 75th anniversary of the birth of Professor Yu M Ostanevich (1936-1992), an outstanding neutron physicist and the founder of small-angle neutron scattering (field, group, and instrument) at JINR FLNPh, was held on 27-30 May at the Frank Laboratory of Neutron Physics. The first Workshop was held in October 2006. Research groups from different neutron centers, universities and research institutes across Europe presented more than 35 oral and poster presentations describing scientific and methodological results. Most of them were obtained with the help of the YuMO instrument before the IBR-2 shutdown in 2006. For the last four years the IBR-2 reactor has been shut down for refurbishment. At the end of 2010 the physical launch of the IBR-2M reactor was finally realized. Nowadays the small-angle neutron scattering (SANS) technique is applied to a wide range of scientific problems in condensed matter, soft condensed matter, biology and nanotechnology, and despite the fact that there are currently over 30 SANS instruments in operation worldwide at both reactor and spallation sources, the demand for beam-time is considerably higher than the time available. It must be remembered, however, that as the first SANS machine on a steady-state reactor was constructed at the Institute Laue Langevin, Grenoble, the first SANS instrument on a 'white' neutron pulsed beam was accomplished at the Joint Institute for Nuclear Research at the IBR-30 reactor, beamline N5. During the meeting Yu M Ostanevich's determinative and crucial contribution to the construction of spectrometers at the IBR-2 high-pulsed reactor was presented, as well as his contribution to the development of the time-of-flight (TOF) small-angle scattering technique, and a selection of other scientific areas. His leadership and outstanding scientific achievements in applications of the Mossbauer effect in physics and chemistry, in SANS studies of polyelectrolytes, small molecules, fractals, metallic glasses, macromolecules, polymers, etc., were recognized by a number of awards including the State Prize of the Russian Federation in 2000. The scientific program of the workshop focused on fundamental and methodical research at the YuMO spectrometer and developments of the SANS instrument at the modernized IBR-2M reactor. We recall that the acronym YuMO of the small-angle neutron scattering spectrometer (MURN), was given in honor of Yu M Ostanevich. One of the most important objectives of this user meeting was to discuss the further development possibilities of the YuMO spectrometer with experts, in the frame of a SANS YuMO Round Table, taking into account the specific performance of the modernized YuMO SANS instrument, and the scientific and technical requests of the instrument's users. Highlights on modern achievements in nanoscience, polymers and biology were other significant goals of the meeting. The plenary invited talks were presented by leading scientists in small-angle neutron scattering and soft condensed matter, including members of the Russian Academy of Sciences: Prof. Heinrich Stuhrmann, Prof. Alexei Khokhlov, Prof. Jose Teixeira, Prof. Alexander Ozerin, Prof. Albrecht Wiedenmann, etc. There were 27 oral talks given and 32 posters presented by 92 participants from 12 countries: Czech Republic, Egypt, France, Germany, Hungary, Moldova, Mongolia, Poland, Romania, Russian Federation, Slovak Republic, and Ukraine. The workshop was organized with the financial support of the Frank Laboratory of Neutron Physics (Joint Institute for Nuclear Research), Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH (Romania), Institute of Macromolecular Chemistry AS CR (Czech Republic), and Comenius University (Slovakia). V Gordeliy, A Kuklin and M Balasoiu SANSgroup Participants of the meeting The PDF also contains additional photographs from the meeting.

  8. Predictions from a flavour GUT model combined with a SUSY breaking sector

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Hohl, Christian

    2017-10-01

    We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.

  9. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  10. Application of laser scanning confocal microscopy in the soft tissue exquisite structure for 3D scan

    PubMed Central

    Zhang, Zhaoqiang; Ibrahim, Mohamed; Fu, Yang; Wu, Xujia; Ren, Fei; Chen, Lei

    2018-01-01

    Three-dimensional (3D) printing is a new developing technology for printing individualized materials swiftly and precisely in the field of biological medicine (especially tissue-engineered materials). Prior to printing, it is necessary to scan the structure of the natural biological tissue, then construct the 3D printing digital model through optimizing the scanned data. By searching the literatures, magazines at home and abroad, this article reviewed the current status, main processes and matters needing attention of confocal laser scanning microscope (LSCM) in the application of soft tissue fine structure 3D scanning, empathizing the significance of LSCM in this field. PMID:29755838

  11. Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal

    NASA Astrophysics Data System (ADS)

    Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hoja, Johannes; Tkatchenko, Alexandre

    2017-09-01

    The nonlinear response of soft-mode excitations in polycrystalline acetylsalicylic acid (aspirin) is studied with two-dimensional terahertz spectroscopy. We demonstrate that the correlation of CH3 rotational modes with collective oscillations of π electrons drives the system into the nonperturbative regime of light-matter interaction, even for a moderate strength of the THz driving field on the order of 50 kV /cm . Nonlinear absorption around 1.1 THz leads to a blueshifted coherent emission at 1.7 THz, revealing the dynamic breakup of the strong electron-phonon correlations. The observed behavior is reproduced by theoretical calculations including dynamic local-field correlations.

  12. 4D Printed Actuators with Soft-Robotic Functions.

    PubMed

    López-Valdeolivas, María; Liu, Danqing; Broer, Dick Jan; Sánchez-Somolinos, Carlos

    2018-03-01

    Soft matter elements undergoing programed, reversible shape change can contribute to fundamental advance in areas such as optics, medicine, microfluidics, and robotics. Crosslinked liquid crystalline polymers have demonstrated huge potential to implement soft responsive elements; however, the complexity and size of the actuators are limited by the current dominant thin-film geometry processing toolbox. Using 3D printing, stimuli-responsive liquid crystalline elastomeric structures are created here. The printing process prescribes a reversible shape-morphing behavior, offering a new paradigm for active polymer system preparation. The additive character of this technology also leads to unprecedented geometries, complex functions, and sizes beyond those of typical thin-films. The fundamental concepts and devices presented therefore overcome the current limitations of actuation energy available from thin-films, thereby narrowing the gap between materials and practical applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott R.; Zuiderwijk, Antal; Souslov, Anton; Coulais, Corentin; van Hecke, Martin

    2017-11-01

    The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids--the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics.

  14. 0.5-keV Soft X-ray attosecond continua

    PubMed Central

    Teichmann, S. M.; Silva, F.; Cousin, S. L.; Hemmer, M.; Biegert, J.

    2016-01-01

    Attosecond light pulses in the extreme ultraviolet have drawn a great deal of attention due to their ability to interrogate electronic dynamics in real time. Nevertheless, to follow charge dynamics and excitations in materials, element selectivity is a prerequisite, which demands such pulses in the soft X-ray region, above 200 eV, to simultaneously cover several fundamental absorption edges of the constituents of the materials. Here, we experimentally demonstrate the exploitation of a transient phase matching regime to generate carrier envelope controlled soft X-ray supercontinua with pulse energies up to 2.9±0.1 pJ and a flux of (7.3±0.1) × 107 photons per second across the entire water window and attosecond pulses with 13 as transform limit. Our results herald attosecond science at the fundamental absorption edges of matter by bridging the gap between ultrafast temporal resolution and element specific probing. PMID:27167525

  15. Measuring the Value Added of Management: A Knowledge Value Added Approach

    DTIC Science & Technology

    2007-04-30

    approach would work in an open acquisitions environment. Management “ Dark Matter ” Dark matter , in the physics sense, is largely unobservable—albeit...critical to understanding the physics of the universe. The dark matter of management has also been largely unobservable in the outputs of the core...this creative aspect as management “ dark matter .” This management “ dark matter ” has largely been assumed to be critical to the duties of a manager

  16. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  17. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  18. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Research on reverse recovery characteristics of SiGeC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Gao, Yong; Liu, Jing; Yang, Yuan

    2008-12-01

    This paper analyses the reverse recovery characteristics and mechanism of SiGeC p-i-n diodes. Based on the integrated systems engineering (ISE) data, the critical physical models of SiGeC diodes are proposed. Based on hetero-junction band gap engineering, the softness factor increases over six times, reverse recovery time is over 30% short and there is a 20% decrease in peak reverse recovery current for SiGeC diodes with 20% of germanium and 0.5% of carbon, compared to Si diodes. Those advantages of SiGeC p-i-n diodes are more obvious at high temperature. Compared to lifetime control, SiGeC technique is more suitable for improving diode properties and the tradeoff between reverse recovery time and forward voltage drop can be easily achieved in SiGeC diodes. Furthermore, the high thermal-stability of SiGeC diodes reduces the costs of further process steps and offers more freedoms to device design.

  19. More than the sum of its parts: Coarse-grained peptide-lipid interactions from a simple cross-parametrization

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Wang, Zun-Jing; Deserno, Markus

    2014-03-01

    Interfacial systems are at the core of fascinating phenomena in many disciplines, such as biochemistry, soft-matter physics, and food science. However, the parametrization of accurate, reliable, and consistent coarse-grained (CG) models for systems at interfaces remains a challenging endeavor. In the present work, we explore to what extent two independently developed solvent-free CG models of peptides and lipids—of different mapping schemes, parametrization methods, target functions, and validation criteria—can be combined by only tuning the cross-interactions. Our results show that the cross-parametrization can reproduce a number of structural properties of membrane peptides (for example, tilt and hydrophobic mismatch), in agreement with existing peptide-lipid CG force fields. We find encouraging results for two challenging biophysical problems: (i) membrane pore formation mediated by the cooperative action of several antimicrobial peptides, and (ii) the insertion and folding of the helix-forming peptide WALP23 in the membrane.

  20. Bespoke optical springs and passive force clamps from shaped dielectric particles

    NASA Astrophysics Data System (ADS)

    Simpson, S. H.; Phillips, D. B.; Carberry, D. M.; Hanna, S.

    2013-09-01

    By moulding optical fields, holographic optical tweezers are able to generate structured force fields with magnitudes and length scales of great utility for experiments in soft matter and biological physics. It has recently been noted that optically induced force fields are determined not only by the incident optical field, but by the shape and composition of the particles involved [Gluckstad J. Optical manipulation: sculpting the object. Nat Photonics 2011;5:7-8]. Indeed, there are desirable but simple attributes of a force field, such as orientational control, that cannot be introduced by sculpting optical fields alone. With this insight in mind, we show, theoretically, how relationships between force and displacement can be controlled by optimizing particle shapes. We exhibit a constant force optical spring, made from a tapered microrod and discuss methods by which it could be fabricated. In addition, we investigate the optical analogue of streamlining, and show how objects can be shaped so as to reduce the effects of radiation pressure, and hence switch from non-trapping to trapping regimes.

  1. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals.

    PubMed

    Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I

    2014-05-01

    We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.

  2. Inverse Problem in Self-assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  3. Resonant x-ray scattering from a skyrmion lattice

    NASA Astrophysics Data System (ADS)

    Roy, S.; Langner, M. C.; Mishra, S. K.; Lee, J. C. T.; Shi, X. W.; Hossain, M. A.; Chuang, Y.-D.; Kevan, S. D.; Schoenlein, R. W.; Seki, S.; Tokura, Y.

    2014-03-01

    Topologically protected novel phases in condensed matter systems are a current research topic of tremendous interest due to both the unique physics and their potential in device applications. Skyrmions are a topological phase that in magnetic systems manifest as a hexagonal lattice of spin-swirls. We report the first observation of the skyrmion lattice using resonant soft x-ray diffraction in Cu2OSeO3, a cubic insulator that exhibits degenerate helical magnetic structures along <100> axes in zero magnetic field. Within a narrow window of temperature and applied magnetic field we observed the six fold symmetric satellite peaks due to the skyrmion lattice around the (001) lattice Bragg peak. As a function of incident photon energy a rotational splitting of the skyrmion satellite peaks was observed that we ascribe to the two Cu sublattices of Cu2OSeO3, with different magnetically active orbitals. The splitting implies a long wavelength modulation of the skyrmion lattice. Work supported by U.S. DOE.

  4. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  5. Dynamics of topological solitons, knotted streamlines, and transport of cargo in liquid crystals

    NASA Astrophysics Data System (ADS)

    Sohn, Hayley R. O.; Ackerman, Paul J.; Boyle, Timothy J.; Sheetah, Ghadah H.; Fornberg, Bengt; Smalyukh, Ivan I.

    2018-05-01

    Active colloids and liquid crystals are capable of locally converting the macroscopically supplied energy into directional motion and promise a host of new applications, ranging from drug delivery to cargo transport at the mesoscale. Here we uncover how topological solitons in liquid crystals can locally transform electric energy to translational motion and allow for the transport of cargo along directions dependent on frequency of the applied electric field. By combining polarized optical video microscopy and numerical modeling that reproduces both the equilibrium structures of solitons and their temporal evolution in applied fields, we uncover the physical underpinnings behind this reconfigurable motion and study how it depends on the structure and topology of solitons. We show that, unexpectedly, the directional motion of solitons with and without the cargo arises mainly from the asymmetry in rotational dynamics of molecular ordering in liquid crystal rather than from the asymmetry of fluid flows, as in conventional active soft matter systems.

  6. Remote Control and Data Acquisition: A Case Study

    NASA Technical Reports Server (NTRS)

    DeGennaro, Alfred J.; Wilkinson, R. Allen

    2000-01-01

    This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs. This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities include access to all new instrument functions without any programming or dependence on others to write drivers or virtual instruments, simple full screen text-based experiment configuration and control user interface, months of continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.

  7. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  8. Pattern Driven Stress Localization

    NASA Astrophysics Data System (ADS)

    Croll, Andrew; Crosby, Alfred

    2010-03-01

    The self-assembly of patterns from isotropic initial states is a major driver of modern soft-matter research. This avenue of study is directed by the desire to understand the complex physics of the varied structures found in Nature, and by technological interest in functional materials that may be derived through biomimicry. In this work we show how a simple striped phase can respond with significant complexity to an appropriately chosen perturbation. In particular, we show how a buckled elastic plate transitions into a state of stress localization using a simple, self-assembled variation in surface topography. The collection of topographic boundaries act in concert to change the state from isotropic sinusoidal wrinkles, to sharp folds or creases separated by relatively flat regions. By varying the size of the imposed topographic pattern or the wavelength of the wrinkles, we construct a state diagram of the system. The localized state has implications for both biological systems, and for the control of non-linear pattern formation.

  9. Resource Letter HCMP-1: History of Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2017-02-01

    This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.

  10. First Record of Soft Tissue Preservation in the Upper Devonian of Poland

    PubMed Central

    Zatoń, Michał; Broda, Krzysztof

    2015-01-01

    Soft tissue preservation is reported from Upper Devonian deposits of the Holy Cross Mountains, central Poland, for the first time. The preserved soft tissues are muscles associated with arthropod cuticle fragments. The muscles are phosphatized with variable states of preservation. Well-preserved specimens display the typical banding of striated muscles. Other muscle fragments are highly degraded and/or recrystallized such that their microstructure is barely visible. The phosphatized muscles and associated cuticle are fragmented, occur in patches and some are scattered on the bedding plane. Due to the state of preservation and the lack of diagnostic features, the cuticle identification is problematic; however, it may have belonged to a phyllocarid crustacean. Taphonomic features of the remains indicate that they do not represent fossilized fecal matter (coprolite) but may represent a regurgitate, but the hypothesis is difficult to test. Most probably they represent the leftover remains after arthropod or fish scavenging. The present study shows that soft tissues, which even earlier were manipulated by scavenger, may be preserved if only special microenvironmental conditions within and around the animal remains are established. PMID:26559060

  11. First Record of Soft Tissue Preservation in the Upper Devonian of Poland.

    PubMed

    Zatoń, Michał; Broda, Krzysztof

    2015-01-01

    Soft tissue preservation is reported from Upper Devonian deposits of the Holy Cross Mountains, central Poland, for the first time. The preserved soft tissues are muscles associated with arthropod cuticle fragments. The muscles are phosphatized with variable states of preservation. Well-preserved specimens display the typical banding of striated muscles. Other muscle fragments are highly degraded and/or recrystallized such that their microstructure is barely visible. The phosphatized muscles and associated cuticle are fragmented, occur in patches and some are scattered on the bedding plane. Due to the state of preservation and the lack of diagnostic features, the cuticle identification is problematic; however, it may have belonged to a phyllocarid crustacean. Taphonomic features of the remains indicate that they do not represent fossilized fecal matter (coprolite) but may represent a regurgitate, but the hypothesis is difficult to test. Most probably they represent the leftover remains after arthropod or fish scavenging. The present study shows that soft tissues, which even earlier were manipulated by scavenger, may be preserved if only special microenvironmental conditions within and around the animal remains are established.

  12. Colliding with the Speed of Light, Using Low-Energy Photon-Photon Collision Study the Nature of Matter and the universe

    NASA Astrophysics Data System (ADS)

    Zhang, Meggie

    2013-03-01

    Our research discovered logical inconsistence in physics and mathematics. Through reviewing the entire history of physics and mathematics we gained new understanding about our earlier assumptions, which led to a new interpretation of the wave function and quantum physics. We found the existing experimental data supported a 4-dimensional fractal structure of matter and the universe, we found the formation of wave, matter and the universe through the same process started from a single particle, and the process itself is a fractal that contributed to the diversity of matter. We also found physical evidence supporting a not-continuous fractal space structure. The new understanding also led to a reinterpretation of nuclear collision theories, based on this we succeeded a room-temperature low-energy photon-photon collision (RT-LE-PPC), this method allowed us to observe a topological disconnected fractal structure and succeeded a simulation of the formation of matter and the universe which provided evidences for the nature of light and matter and led to a quantum structure interpretation, and we found the formation of the universe started from two particles. However this work cannot be understood with current physics theories due to the logical problems in the current physics theories.

  13. A Survey and Proposed Framework on the Soft Biometrics Technique for Human Identification in Intelligent Video Surveillance System

    PubMed Central

    Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum

    2012-01-01

    Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing. PMID:22919273

  14. A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system.

    PubMed

    Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum

    2012-01-01

    Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.

  15. Comparison of different soft grippers for lunch box packaging.

    PubMed

    Wang, Zhongkui; Zhu, Mingzhu; Kawamura, Sadao; Hirai, Shinichi

    2017-01-01

    Automating the lunch box packaging is a challenging task due to the high deformability and large individual differences in shape and physical property of food materials. Soft robotic grippers showed potentials to perform such tasks. In this paper, we presented four pneumatic soft actuators made of different materials and different fabrication methods and compared their performances through a series of tests. We found that the actuators fabricated by 3D printing showed better linearity and less individual differences, but showed low durability compared to actuators fabricated by traditional casting process. Robotic grippers were assembled using the soft actuators, and grasping tests were performed on soft paper containers filled with food materials. Results suggested that grippers with softer actuators required lower air pressure to lift up the same weight and generated less deformation on the soft container. The actuator made of casting process with Dragon Skin 10 material lifted the most weight among different actuators.

  16. Relationships of personality traits and stress to gingival status or soft-tissue oral pathology: an exploratory study.

    PubMed

    Minneman, M A; Cobb, C; Soriano, F; Burns, S; Schuchman, L

    1995-01-01

    The purpose of this study was to examine the relationships of personality traits and stress with gingival inflammation and with soft-tissue oral pathology. Personality traits of psychoticism (P), extroversion and introversion (E), and neuroticism (N) were measured with Eysenck's personality questionnaire (EPQ). Stress was measured with a modified organizational and individual assessment survey (OIAS) developed by Hendrix. Military recruits from Ft. Leonard Wood, Missouri, were examined for soft-tissue oral pathology and gingival status at weeks one (n = 241) and six (n = 61) of basic combat training (BCT). The EPQ and OIAS were administered to 217 recruits during week six of BCT. A discriminant analysis was used to determine correlations among study variables. Significant correlations (P < .05) were found between personality traits and various measures of tolerance of stress. Little variance was found between groups originally presenting with or without disease. Only physical stress (P < .005) was shown to affect soft-tissue pathology, while gingival inflammation correlated significantly to E scores (P < .02), tolerance to change (P < .02), and anxiety (P < .05). Data support a possible relationship among certain personality traits, stress variables, and gingival inflammation or soft-tissue pathology in recruits with extreme personality characteristics or perception of high physical stress levels in basic combat training.

  17. The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.

  18. Effect of sodium chloride and sodium bicarbonate on the physicochemical properties of soft wheat flour doughs and gluten polymerization.

    PubMed

    Chen, Gengjun; Ehmke, Laura; Miller, Rebecca; Faa, Pierre; Smith, Gordon; Li, Yonghui

    2018-06-07

    Soft wheat flour doughs were prepared with different levels of salt (NaCl) and/or baking soda (NaHCO3). Oscillation rheology, elongational viscosity, and extensibility of doughs were tested to evaluate the effect of salt and/or baking soda on the physical properties of doughs. Furthermore, a series of physical-biochemical analytical techniques were used to investigate gluten polymerization in doughs, including Zeta potential analyzer, Fourier transform infrared spectroscopy (FTIR), spectrophotometer, and reversed phase high performance liquid chromatography (RP-HPLC). Addition of high levels of NaHCO3 (1.0 % fwb), either by itself or in combination with NaCl, increased dough strength, elongational viscosity, and viscoelasticity. RP-HPLC results demonstrated macromolecular aggregation of gluten proteins in the presence of NaCl and/or NaHCO3. Addition of NaHCO3 or NaCl also decreased both free sulfhydryl content and random coil structure of gluten isolated from the doughs. Overall, NaCl and/or NaHCO3 induced the changes of molecular conformation of gluten, which impacted the physicochemical qualities of soft wheat flour dough. Our study provides a better understanding of salt and baking soda functionality in the formation of soft flour dough, which will support the searching of feasible sodium reduction strategies in soft flour bakery products.

  19. Improving Memory after Interruption: Exploiting Soft Constraints and Manipulating Information Access Cost

    ERIC Educational Resources Information Center

    Morgan, Phillip L.; Patrick, John; Waldron, Samuel M.; King, Sophia L.; Patrick, Tanya

    2009-01-01

    Forgetting what one was doing prior to interruption is an everyday problem. The recent soft constraints hypothesis (Gray, Sims, Fu, & Schoelles, 2006) emphasizes the strategic adaptation of information processing strategy to the task environment. It predicts that increasing information access cost (IAC: the time, and physical and mental effort…

  20. Active Surfaces and Interfaces of Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  1. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity.

    PubMed

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T; Wang, Ruikang K; O'Donnell, Matthew

    2016-12-23

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  2. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    PubMed Central

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew

    2016-01-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea. PMID:28008920

  3. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-12-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  4. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  5. The Study on the Physical Properties of Blazar Jets

    NASA Astrophysics Data System (ADS)

    Kang, S. J.

    2017-09-01

    Active galactic nuclei (AGNs) belong to a special class of active galaxies, and have violent active phenomena and intense physical processes in the nuclei. Blazar is a subclass of AGNs, and has a relativistic jet with a small jet viewing angle. Therefore, the boosting effect is very important, and almost all the observed radiation is dominated by the jet. The relativistic jet physics is not very clear yet, such as the jet formation, collimation, and matter content etc. The multi-waveband radiation of blazar is dominated by jet, which provides an ideal laboratory for studying the jet physics. The first chapter of this thesis introduces the recent progress of AGNs and blazars. We further introduce the jet model that commonly used in blazars in the second chapter. In the third chapter, we fit simultaneously (or quasi-simultaneously) the multi-waveband spectral energy distributions (SEDs) for a sample of low-synchrotron-peaked (LSP) blazars with the jet model and χ2 procedure, which takes into account different soft photon fields (broad line region or a molecular torus). We find that the SED fitting with an external soft photon from IR torus is systematically better than that from the broad line region (BLR) based on a χ2 test, which suggests that the γ-ray emitting region most possibly stays outside the BLR. The minimum electron Lorentz factor, γmin, is constrained from the modeling of these LSP blazars with good soft X-ray data, and in a range from 5 to 160 (with a median value of 55), which plays a key role in jet power estimation. Assuming one-to-one ratio of proton and electron, we find that the jet power for LSP blazars is systematically higher than that of Fanaroff-Riley type II (FR II) radio galaxies. A possible reason for this is that there are some positrons in the jets of these blazars. If this is the case, the jet power will be reduced. Therefore, we propose a mixed composition of e±-p in the jets of these LSP blazars. If we assume that the jet power of LSP blazars is the same as that of FR IIs, we find that it is an electron-positron pair dominated leptonic jet in these blazars, and the number density of electron-positron pairs is several times higher than that of electron-proton pairs, but the jet power is still dominated by protons. For the high-synchrotron-peaked (HSP) BL Lac PKS 1424+240, the SED fitting with the synchrotron self-Compton (SSC) model gave unreasonable fitting parameters (e.g., a very large Doppler factor δ). In this work, we take into account the possible external soft photon field, and then fit the multi-waveband SEDs of blazar PKS 1424+240 with one-zone leptonic jet models in both states. We find the SSC+external-Compton (EC) model can give a better fitting result if the EC process is included. However, the needed energy density of external soft photon field (U_{ext}) is much lower than the typical value. This result is consistent with the results of some other BL Lacs, where the BLR or torus is very weak or disappearing. It means that there is evolution of the energy density of external soft photon field with decreasing of the luminosity of blazars (the flat spectrum radio quasars (FSRQs)-BL Lac: low energy peaked BL Lac (LBL)-intermediate energy peaked BL Lac (IBL)-high energy peaked BL Lac (HBL)). And on this basis, in the chapter 5, we further explore the possible evolution of the external soft photon field of blazars based on the EC process. We employ the one-zone homogeneous leptonic jet model and χ2 procedure to fit simultaneously or quasi-simultaneously multi-waveband SEDs for a sample of blazars with a wide distribution of luminosities. In our model, we set Uext as a free parameter. Studying the energy density of the external photon field in different subclasses of blazars, we find: (1) the Uext of the high luminosity blazar (FSRQs and LBLs) keeps roughly as a constant, which is, however, smaller than that constrained from BLR observations. Assuming IR as the source of soft photons, the Uext is roughly consistent with the torus observational result. This further supports the result that the external soft photon field may originate from torus, and the γ-ray emitting region of these LSP blazars locates outside the BLR. (2) For some IBLs, the EC process may be still needed, but the photon energy density is less than the typical values of the photon energy density of BLR (or dust torus), where the Uext decreases with decreasing of the luminosity. This evolution is consistent with the BLR or torus as directly constrained from the radio-quiet AGN. The final part summarizes the study on the subject, and makes some suggestions for further researches.

  6. The Effectiveness of Physical Agents for Lower-Limb Soft Tissue Injuries: A Systematic Review.

    PubMed

    Yu, Hainan; Randhawa, Kristi; Côté, Pierre; Optima Collaboration

    2016-07-01

    Study Design Systematic review. Background Soft tissue injuries to the lower limb bring a substantial health and economic burden to society. Physical agents are commonly used to treat these injuries. However, the effectiveness of many such physical agents is not clearly established in the literature. Objective To evaluate the effectiveness and safety of physical agents for soft tissue injuries of the lower limb. Methods We searched 5 databases from 1990 to 2015 for randomized controlled trials (RCTs), cohort studies, and case-control studies. Paired reviewers independently screened the retrieved literature and appraised relevant studies using the Scottish Intercollegiate Guidelines Network criteria. Studies with a high risk of bias were excluded. We synthesized low-risk-of-bias studies according to principles of best-evidence synthesis. Results We screened 10261 articles. Of 43 RCTs identified, 20 had a high risk of bias and were excluded from the analysis, and 23 RCTs had a low risk of bias and were included in the analysis. The available higher-quality evidence suggests that patients with persistent plantar fasciitis may benefit from ultrasound or foot orthoses, while those with persistent midportion Achilles tendinopathy may benefit from shockwave therapy. However, the current evidence does not support the use of shockwave therapy for recent plantar fasciitis, low-Dye taping for persistent plantar fasciitis, low-level laser therapy for recent ankle sprains, or splints for persistent midportion Achilles tendinopathy. Finally, evidence on the effectiveness of the following interventions is not established in the current literature: (1) shockwave therapy for persistent plantar fasciitis, (2) cryotherapy or assistive devices for recent ankle sprains, (3) braces for persistent midportion Achilles tendinopathy, and (4) taping or electric muscle stimulation for patellofemoral pain syndrome. Conclusion Almost half the identified RCTs that evaluated the effectiveness of physical agents for the management of lower-limb soft tissue injuries had a high risk of bias. High-quality RCTs are still needed to assess the effectiveness of physical agents for managing the broad range of lower-limb soft tissue injuries. The effectiveness of most interventions remains unclear. Level of Evidence Therapy, 1a. Protocol registered July 10, 2014 with PROSPERO (CRD42014010621). J Orthop Sports Phys Ther 2016;46(7):523-554. Epub 6 Jun 2016. doi:10.2519/jospt.2016.6521.

  7. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  8. A White Paper on keV sterile neutrino Dark Matter

    DOE PAGES

    Adhikari, R.

    2017-01-13

    Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  9. A White Paper on keV sterile neutrino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R.

    Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  10. Kant and the Conservation of Matter

    NASA Astrophysics Data System (ADS)

    Morris, Joel

    This dissertation is an examination of Kant's rather notorious claim that natural science, or physics, has a priori principles, understood as the claim that physics is constrained by rules warranted by the essential nature of thought. The overall direction of this study is towards examining Kant's claim by close study of a particular principle of physics, the principle of the conservation of matter. If indeed this is a principle of physics, and Kant can successfully show that it is a priori, then it will be reasonable to conclude, in company with Kant, that physics has a priori principles. Although Kant's proof of the principle of the conservation of matter has been traditionally regraded as a reasonably straightforward consequence of his First Analogy of Experience, a careful reading of his proof reveals that this is not really the case. Rather, Kant's proof of the conservation of matter is a consequence of (i) his schematisation of the category of substance in terms of permanence, and (ii) his identification of matter as substance, by appeal to what he thinks is the empirical criterion of substance, activity. Careful examination of Kant's argument in defence of the principle of the conservation of matter, however, reveals a number of deficiencies, and it is concluded that Kant cannot be said to have satisfactorily demonstrated the principle of the conservation of matter or to have convincingly illustrated his claim that physics has a priori principles by appeal to this instance.

  11. Magnetoemission of magnetar crust

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.; Korovina, Yu. V.

    2017-05-01

    The magnetoemission of crusts of magnetars (ultramagnetized neutron stars) is considered as an origin of repeated soft gamma-ray bursts. It is shown that all observations of such bursts can be described and systematized on the basis of amodel of randomly jumping interacting moments that includes quantum fluctuations and internuclear magnetic interaction in inhomogeneous crusty nuclear matter.

  12. A Multi-Scale Modeling and Experimental Program for the Dynamic Mechanical Response of Tissue

    DTIC Science & Technology

    2014-12-09

    diseases ”. Speaker, Session Chair of Pathological Fibrils, American Crystallographic Association, Albuquerque NM, May 2014. Joseph Orgel (7...Nonlinear, Soft Matter Phys., vol. 73, no. 3, p. 031901, Mar. 2006. [4] S. Münster, L. M. Jawerth, B. a Leslie, J. I. Weitz, B. Fabry , and D. a Weitz

  13. BioRef: A versatile time-of-flight reflectometer for soft matter applications at Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobl, M.; Kreuzer, M.; Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin

    2011-05-15

    BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fuer Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad rangemore » of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film.« less

  14. ϕ Meson Production at Forward Rapidity with the PHENIX Detector at RHIC

    NASA Astrophysics Data System (ADS)

    Sarsour, Murad

    2017-12-01

    The ϕ meson production in p+p collisions is an important tool to study QCD, providing data to tune phenomenological QCD models, while in high-energy heavy-ion collisions it provides key information on the hot and dense state of the strongly interacting matter produced in such collisions. It is sensitive to the medium-induced effects such as strangeness enhancement, a phenomenon associated with soft particles in bulk matter. Measurements in the dilepton channels are especially interesting since leptons interact only electromagnetically, thus carrying the information from their production phase directly to the detector. Measurements in different nucleus-nucleus collisions allow us to perform a systematic study of the nuclear medium effects on ϕ meson production. The PHENIX detector provides the capabilities to measure the ϕ meson production in a wide range of transverse momentum and rapidity to study various cold nuclear effects such as soft multiple parton rescattering and modification of the parton distribution functions in nuclei. In this proceeding, we report the most recent PHENIX results on ϕ meson production in p+p, d+Au and Cu+Au collisions.

  15. Soft-matter composites with electrically tunable elastic rigidity

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-08-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.

  16. Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3.

    PubMed

    Valle, Francesco; Brucale, Marco; Chiodini, Stefano; Bystrenova, Eva; Albonetti, Cristiano

    2017-09-01

    While the widespread emergence of nanoscience and nanotechnology can be dated back to the early eighties, the last decade has witnessed a true coming of age of this research field, with novel nanomaterials constantly finding their way into marketed products. The performance of nanomaterials being dominated by their nanoscale morphology, their quantitative characterization with respect to a number of properties is often crucial. In this context, those imaging techniques able to resolve nanometer scale details are clearly key players. In particular, atomic force microscopy can yield a fully quantitative tridimensional (3D) topography at the nanoscale. Herein, we will review a set of morphological analysis based on the scaling approach, which give access to important quantitative parameters for describing nanomaterial samples. To generalize the use of such morphological analysis on all D-dimensions (1D, 2D and 3D), the review will focus on specific soft matter aggregates with fractal dimension ranging from just above 1 to just below 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Self-Propelled Oil Droplets and Their Morphological Change to Giant Vesicles Induced by a Surfactant Solution at Low pH.

    PubMed

    Banno, Taisuke; Tanaka, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-09-20

    Unique dynamics using inanimate molecular assemblies based on soft matter have drawn much attention for demonstrating far-from-equilibrium chemical systems. However, there are no soft matter systems that exhibit a possible pathway linking the self-propelled oil droplets to formation of giant vesicles stimulated by low pH. In this study, we conceived an experimental oil-in-water emulsion system in which flocculated particles composed of a imine-containing oil transformed to spherical oil droplets that self-propelled and, after coming to rest, formed membranous figures. Finally, these figures became giant vesicles. From NMR, pH curves, and surface tension measurements, we determined that this far-from-equilibrium phenomenon was due to the acidic hydrolysis of the oil, which produced a benzaldehyde derivative as an oil component and a primary amine as a surfactant precursor, and the dynamic behavior of the hydrolytic products in the emulsion system. These findings afforded us a potential linkage between mobile droplet-based protocells and vesicle-based protocells stimulated by low pH.

  18. Axino LSP baryogenesis and dark matter

    DOE PAGES

    Monteux, Angelo; Shin, Chang Sub

    2015-05-01

    We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitinomore » can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.« less

  19. Solar Extreme UV radiation and quark nugget dark matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of mattermore » which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.« less

  20. Post-16 update

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Post-16 Initiative logo This is the first of a regular series of contributions from the Institute's Post-16 Initiative. The Initiative is taking a hard and searching look at the physics taught in schools and colleges from age 16 to age 19. To start with, it is responding to Government initiatives, but hopes to encourage and stimulate good practice in physics teaching on a longer time scale than can be afforded in making responses to current developments. Here Jon Ogborn writes about what AS courses need to be, while Peter Campbell gives his thoughts about teaching matter. Advanced Subsidiary physics: what should it be? From September 2000 all A-levels will be new. Students can take the first Advanced Subsidiary (AS) year and stop there - or decide to go on. In the Institute of Physics post-16 Initiative, we have been thinking how to provide a satisfying one-year experience of physics at the new AS level, and what it should achieve. The students will decide. So the AS course must give a decent picture of what physics is, what it offers for their futures, what interests it can satisfy. That all says breadth, with enough depth to see what is in store later. And this sounds like the right recipe for someone who is taking a single AS year of physics to broaden their A-level experience. It must also be attractive. A way forward is shown by the Salters - Horners course, attracting interest through leading from applications. Why does that work? It gives physics a story to tell, into which ideas fit and make sense. Our own new A-level, Advancing Physics, must also have interesting stories to tell, which must in addition build up an honest picture of physics. An example: teach electric circuits through modern sensing devices. Sensor instrumentation is a key activity of physicists, full of new ideas, but also simple. It makes essential use of circuits such as the potential divider. Practical work gets better things to do than checking the equation for resistors in parallel. It requires good use of computers. Other examples: use modern imaging methods to teach information processing and optics; study `designer materials' to reflect both the inventiveness and the curiosity of physicists. Tell stories from fundamental efforts to understand the world: forces and motion, waves and photons, the structure of the Universe, a hint of relativity. The new AS course has to fit QCA criteria, but should also look beyond them to suggest how to shape the future of A-level physics. Jon Ogborn Director, Institute of Physics Post-16 Initiative The study of matter The study of matter is as central to pure physics as it is to technological applications. Currently Advanced GNVQ Science requires much more detailed knowledge of materials than most A-level courses. But in every case, what 16 - 19 year-old students experience is a rather dated study of engineering materials, with an emphasis on mechanical properties. Almost entirely absent is the notion of our new ability to design materials. Recently, new techniques of visualization, modelling the hierarchy of structures inside a material and simulating the resulting changes in properties, have all dramatically changed the nature of materials science. Post-16 physics courses should mention some new classes of materials responsible for major industrial and social changes. For example, let's look at `soft matter' such as polymers, liquid crystals and emulsions. These are the stuff of Nature, which we are only now learning to imitate. The continuing miniaturization of computer chips and sensors is based on functional properties - optical, electrical, thermal or magnetic. If students are to understand and perhaps later to contribute to developments such as these, they deserve a better introduction. Careful thinking needs to go into deciding what a basic course might entail. But what topic could be better suited to coursework in the form of student research? Teaching about matter in an up-to-date way may sound too great a challenge for schools and colleges, if we forget the power of new technologies. We can now enhance student learning using key visualization tools: images of materials, from all types of microscopy; animations to show dynamics as well as structure, sometimes in 3D; `virtual experimentation': models to manipulate, with data as well as image outputs. Universities and research organizations could help by contributing to new collections of these tools, annotated at an appropriate level, in CD-ROM format but also at their own websites. Peter Campbell

  1. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  2. Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials.

    PubMed

    Seifi, Massoud; Matini, Negin-Sadat

    2017-01-01

    Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed.

  3. Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials

    PubMed Central

    Seifi, Massoud; Matini, Negin-Sadat

    2017-01-01

    Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed. PMID:29263776

  4. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low degree of humification (properties involved in the maintenance of physical support, water storage and air provision functions). From the practical viewpoint, the results support the idea that the detailed structural study of the different soil C-forms is useful for accurately monitoring soil physical status. The quantification of total soil organic carbon ought to be complemented with qualitative analyses of the organic matter, at least at the spectroscopic level, which can be used for the early diagnosis of possible degradation processes. Moreover, in already degraded soils, the knowledge of the sources of variability for each physical property provides valuable information for the restoration of these ecosystems by adapting inputs of organic matter with specific features (aliphatic nature, oxidation degree, humification stage, etc.) to particular soil degradation problems (i.e. soil compaction, waterlogging, water erosion, etc.).

  5. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    NASA Astrophysics Data System (ADS)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y aimed to provide recent advances in polymer synthesis, self-assembling processes and morphologies, and functionalization of nano-soft-materials in order to initiate mutual and collaborative research interest that is essential to develop revolutionarily new nano-soft-materials in the decades ahead. Four Keynote lectures, 15 invited talks and 30 posters presented important new discoveries in polymeric nano-soft-materials, precision polymer synthesis, self-assembling and their functionalization. As for the precision polymer synthesis, the latest results were provided for studies on synthesis of polyrotaxane with movable graft chains, organic-inorganic hybridization of polymers, supra-molecular coordination assembly of conjugated polymers, precision polymerization of adamantane-containing monomers, production of high density polymer brush and synthesis of rod coil type polymer. The state-of-the-art results were introduced for the formation of nano-helical-structure of block copolymer containing asymmetric carbon atoms, self-assembling of block copolymers under the electric field, self-assembling of liquid crystalline elastomers, preparation of nano cylinder template films and mesoscopic simulation of phase transition of polymers and so forth. Moreover, recent advantages of three-dimensional electron microtomography and scanning force microscopy were proposed for analyses of nano-structures and properties of polymeric multi-component systems. Syntheses, properties and functions of slide-ring-gel, organic-inorganic hybrid hydrogels, hydrogel nano-particles, liquid-crystalline gels, the self-oscillating gels, and double network gels attracted participants' attention. Modifications of naturally occurring polymeric materials with supercritical carbon dioxide were introduced as a novel technology. Some of the attractive topics are presented in this issue. We are grateful to all the speakers and participants for valuable contributions and active discussions. Organizing committee of Symposium Y (IUMRS-ICA 2008) Chair Seiichi Kawahara (Nagaoka University of Technology, Japan) Vice Chairs Rong-Ming Ho (National Tsing Hua University, Taiwan) Hiroshi Jinnai (Kyoto Institute of Technology, Japan) Masami Kamigaito (Nagoya University, Japan) Takashi Miyata (Kansai University, Japan) Hiroshi Morita (National Institute of Advanced Industrial Science and Technology, Japan) Hideyuki Otsuka (Kyushu University, Japan) Daewon Sohn (Hanyang University, Korea) Keiji Tanaka (Kyushu University, Japan)

  6. Active chainmail fabrics for soft robotic applications

    NASA Astrophysics Data System (ADS)

    Ransley, Mark; Smitham, Peter; Miodownik, Mark

    2017-08-01

    This paper introduces a novel type of smart textile with electronically responsive flexibility. The chainmail inspired fabric is modelled parametrically and simulated via a rigid body physics framework with an embedded model of temperature controlled actuation. Our model assumes that individual fabric linkages are rigid and deform only through their own actuation, thereby decoupling flexibility from stiffness. A physical prototype of the active fabric is constructed and it is shown that flexibility can be significantly controlled through actuator strains of ≤10%. Applications of these materials to soft-robotics such as dynamically reconfigurable orthoses and splints are discussed.

  7. Pseudo-majoron as light mediator of singlet scalar dark matter

    DOE PAGES

    Ma, Ernest; Maniatis, Markos

    2017-07-28

    In the singlet-triplet majoron model of neutrino mass, lepton number is spontaneously broken. If it is also softly broken, then a naturally light pseudoscalar particle ηI exists. It may then act as a light mediator for a real singlet scalar χ with odd dark parity. It is itself unstable, but decays dominantly to two neutrinos through its triplet scalar component, thereby not disturbing the cosmic microwave background (CMB). It also mixes with the standard-model Higgs boson only in one loop, thereby not contributing significantly to the elastic scattering of χ off nuclei in dark-matter direct-search experiments.

  8. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.

    PubMed

    Wehrman, Matthew D; Milstrey, Melissa J; Lindberg, Seth; Schultz, Kelly M

    2018-04-19

    The microstructure of soft matter directly impacts macroscopic rheological properties and can be changed by factors including colloidal rearrangement during previous phase changes and applied shear. To determine the extent of these changes, we have developed a microfluidic device that enables repeated phase transitions induced by exchange of the surrounding fluid and microrheological characterization while limiting shear on the sample. This technique is µ 2 rheology, the combination of microfluidics and microrheology. The microfluidic device is a two-layer design with symmetric inlet streams entering a sample chamber that traps the gel sample in place during fluid exchange. Suction can be applied far away from the sample chamber to pull fluids into the sample chamber. Material rheological properties are characterized using multiple particle tracking microrheology (MPT). In MPT, fluorescent probe particles are embedded into the material and the Brownian motion of the probes is recorded using video microscopy. The movement of the particles is tracked and the mean-squared displacement (MSD) is calculated. The MSD is related to macroscopic rheological properties, using the Generalized Stokes-Einstein Relation. The phase of the material is identified by comparison to the critical relaxation exponent, determined using time-cure superposition. Measurements of a fibrous colloidal gel illustrate the utility of the technique. This gel has a delicate structure that can be irreversibly changed when shear is applied. µ 2 rheology data shows that the material repeatedly equilibrates to the same rheological properties after each phase transition, indicating that phase transitions do not play a role in microstructural changes. To determine the role of shear, samples can be sheared prior to injection into our microfluidic device. µ 2 rheology is a widely applicable technique for the characterization of soft matter enabling the determination of rheological properties of delicate microstructures in a single sample during phase transitions in response to repeated changes in the surrounding environmental conditions.

  9. The transformation of (bio)ethics expertise in a world of ethical pluralism.

    PubMed

    Kovács, József

    2010-12-01

    Today, bioethics experts have an increasing role in public life. However, the question arises: what does bioethics expertise really mean? Can there be such a thing in our globalised world characterised by ethical pluralism? I will argue that bioethics as a discipline represents the transformation of ethics expertise from a hard to a soft form of it. Bioethics was born as a reaction to the growing awareness of ethical pluralism, and it denied the hard form of normative-prescriptive ethics expertise (the ability to determine what is the right course of action for others), particularly in its medical ethics form. In contrast, the traditional medical ethics model, and pre-modern societies in general, believed in hard normative ethics expertise. From this followed the characteristic paternalism of traditional medical practice: if physicians were experts in moral matters as well, if they knew what the right course of action to choose was, then they had a right to benevolently force this course of action on their patients. The remnants of this doctrine, although rarely stated explicitly, still can often be seen in clinical practice. The whole bioethics movement can be seen as a radical denial of the doctrine of physician's hard expertise in moral matters. Bioethics, however, represents a type of soft ethics expertise (mainly value sensitivity). Hence follows the seeming paradox of bioethics expertise: bioethics is both a denial of ethics expertise (in its hard form) as well as a type of (soft) ethics expertise.

  10. Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging.

    PubMed

    Papenberg, Goran; Ferencz, Beata; Mangialasche, Francesca; Mecocci, Patrizia; Cecchetti, Roberta; Kalpouzos, Grégoria; Fratiglioni, Laura; Bäckman, Lars

    2016-10-01

    Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Rolling friction—models and experiment. An undergraduate student project

    NASA Astrophysics Data System (ADS)

    Vozdecký, L.; Bartoš, J.; Musilová, J.

    2014-09-01

    In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.

  12. IUE and ROSAT monitoring of the bright QSO H1821+643

    NASA Technical Reports Server (NTRS)

    Halpern, Jules; Kolman, Michiel; Shrader, Chris; Filippenko, Alexei

    1991-01-01

    The analysis is presented of IUE observations of the bright QSO H1821+643, obtained during the ROSAT All Sky Survey (the RIASS program). The objectives were: (1) to establish whether the UV and soft X ray radiation have the same physical origin; and (2) to determine if this physical origin is an accretion disk. Supporting ground based spectrophotometry was also obtained. The analysis shows that the shape and flux level of the UV continuum did not vary among the seven IUE observation spanning one month, to an upper limit of about 8 percent. So it is of great interest to determine whether the soft X ray flux varied during this period. Since X ray variability in AGNs is often more rapid and of higher amplitude than in the UV, detection of X ray variability in the ROSAT data could severely challenge the accretion disk model for the soft X ray excess.

  13. Computational dynamics of soft machines

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Tian, Qiang; Liu, Cheng

    2017-06-01

    Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

  14. Electric dipole moments in natural supersymmetry

    NASA Astrophysics Data System (ADS)

    Nakai, Yuichiro; Reece, Matthew

    2017-08-01

    We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.

  15. Traumatic eye injuries as a result of blunt impact: computational issues

    NASA Astrophysics Data System (ADS)

    Clemente, C.; Esposito, L.; Bonora, N.; Limido, J.; Lacome, J. L.; Rossi, T.

    2014-05-01

    The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. Reliable numerical simulations of eye impact can be very useful tools to understand the physical mechanisms responsible for traumatic eye injuries accompanying blunt impact. The complexity and variability of the physical and mechanical properties of the biological materials, the lack of agreement on their related experimental data as well as the unsuitability of specific numerical codes and models are only some of the difficulties when dealing with this matter. All these challenging issues must be solved to obtain accurate numerical analyses involving dynamic behavior of biological soft tissues. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulations were performed with IMPETUS-AFEA, a new general non-linear finite element (FE) software which offers non uniform rational B-splines (NURBS) FE technology for the simulation of large deformation and fracture in materials. IMPETUS code was selected in order to solve hourglass and locking problems typical of nearly incompressible materials like eye tissues. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets.

  16. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  17. On the relation between Vicsek and Kuramoto models of spontaneous synchronization

    NASA Astrophysics Data System (ADS)

    Chepizhko, A. A.; Kulinskii, V. L.

    2010-12-01

    The Vicsek model for self-propelling particles in 2D is investigated with respect to the addition of the stochastic perturbation of dynamic equations. We show that this model represents in essence the same type of bifurcations under a different type of noise as the celebrated Kuramoto model of spontaneous synchronization. These models demonstrate similar behavior at least within the mean-field approach. To prove this we consider two types of noise for the Vicsek model which are commonly considered in the literature: the intrinsic and the extrinsic ones (according to the terminology of Pimentel et al. [J.A. Pimentel, M. Aldana, C. Huepe, H. Larralde, Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 77 (6) (2008) doi:10.1103/PhysRevE.77.061138. URL: http://dx.doi.org/10.1103/PhysRevE.77.061138]). The qualitative correspondence with the bifurcation of stationary states in the Kuramoto model is stated. A new type of stochastic perturbation-the “mixed” noise is proposed. It is constructed as the weighted superposition of the intrinsic and the extrinsic noises. The corresponding phase diagram “noise amplitude vs. interaction strength” is obtained. The possibility of the tricritical behavior for the Vicsek model is predicted.

  18. Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Grier, David

    2004-03-01

    An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.

  19. Chapter 2:Basic properties of undervalued hardwoods

    Treesearch

    John I. Zerbe

    2005-01-01

    Among the most abundant of our undervalued hardwoods are the soft maples. However, other species that are also underutilized include some species of birch and some lower grades of the hard maples. This chapter covers physical, mechanical, and other important properties of different soft maples, hard maples, and yellow birch and compares them with the properties of...

  20. Elastohydrodynamic Lift at a Soft Wall

    NASA Astrophysics Data System (ADS)

    Davies, Heather S.; Débarre, Delphine; El Amri, Nouha; Verdier, Claude; Richter, Ralf P.; Bureau, Lionel

    2018-05-01

    We study experimentally the motion of nondeformable microbeads in a linear shear flow close to a wall bearing a thin and soft polymer layer. Combining microfluidics and 3D optical tracking, we demonstrate that the steady-state bead-to-surface distance increases with the flow strength. Moreover, such lift is shown to result from flow-induced deformations of the layer, in quantitative agreement with theoretical predictions from elastohydrodynamics. This study thus provides the first experimental evidence of "soft lubrication" at play at small scale, in a system relevant, for example, to the physics of blood microcirculation.

  1. Equation of State and Shock-Driven Decomposition of 'Soft' Materials

    DOE PAGES

    Coe, Joshua Damon; Dattelbaum, Dana Mcgraw

    2017-12-01

    Equation of state (EOS) efforts at National Nuclear Security Administration (NNSA) national laboratories tend to focus heavily on metals, and rightly so given their obvious primacy in nuclear weapons. Our focus here, however, is on the EOS of 'soft' matter such as polymers and their derived foams, which present a number of challenges distinct from those of other material classes. This brief description will cover only one aspect of polymer EOS modeling: treatment of shock-driven decomposition. Here, these interesting (and sometimes neglected) materials exhibit a number of other challenging features— glass transitions, complex thermal behavior, response that is both viscousmore » and elastic—each warranting additional discussions of their own.« less

  2. Equation of State and Shock-Driven Decomposition of 'Soft' Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Joshua Damon; Dattelbaum, Dana Mcgraw

    Equation of state (EOS) efforts at National Nuclear Security Administration (NNSA) national laboratories tend to focus heavily on metals, and rightly so given their obvious primacy in nuclear weapons. Our focus here, however, is on the EOS of 'soft' matter such as polymers and their derived foams, which present a number of challenges distinct from those of other material classes. This brief description will cover only one aspect of polymer EOS modeling: treatment of shock-driven decomposition. Here, these interesting (and sometimes neglected) materials exhibit a number of other challenging features— glass transitions, complex thermal behavior, response that is both viscousmore » and elastic—each warranting additional discussions of their own.« less

  3. Bone-Patellar Tendon-Bone Versus Soft-Tissue Allograft for Anterior Cruciate Ligament Reconstruction: A Systematic Review.

    PubMed

    Joyce, Christopher D; Randall, Kyle L; Mariscalco, Michael W; Magnussen, Robert A; Flanigan, David C

    2016-02-01

    To describe the outcomes of bone-patellar tendon-bone (BPTB) and soft-tissue allografts in anterior cruciate ligament (ACL) reconstruction with respect to graft failure risk, physical examination findings, instrumented laxity, and patient-reported outcomes. A search of the PubMed, Scopus, CINAHL (Cumulative Index to Nursing and Allied Health Literature) Complete, Cochrane Collaboration, and SPORTDiscus databases was performed. English-language studies with outcome data on primary ACL reconstruction with nonirradiated BPTB and soft-tissue allografts were identified. Outcome data included failure risk, physical examination findings, instrumented laxity measurements, and patient-reported outcome scores. Seventeen studies met the inclusion criteria. Of these studies, 11 reported on BPTB allografts exclusively, 5 reported on soft-tissue allografts exclusively, and 1 compared both types. The comparative study showed no difference in failure risk, Lachman grade, pivot-shift grade, instrumented laxity, or overall International Knee Documentation Committee score between the 2 allograft types. Data from all studies yielded a failure risk of 10.3% (95% confidence interval [CI], 4.5% to 18.1%) in the soft-tissue group and 15.2% (95% CI, 11.3% to 19.6%) in the BPTB group. The risk of a Lachman grade greater than 5 mm was 6.4% (95% CI, 1.7% to 13.7%) in the soft-tissue group and 8.6% (95% CI, 6.3% to 11.2%) in the BPTB group. The risk of a grade 2 or 3 pivot shift was 1.4% (95% CI, 0.3% to 3.3%) in the soft-tissue group and 4.1% (95% CI, 1.9% to 7.2%) in the BPTB group. One comparative study showed no difference in results after ACL reconstruction with nonirradiated BPTB and soft-tissue allografts. Inclusion of case series in the analysis showed qualitatively similar outcomes with the 2 graft types. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Assimilation of terrigenous organic matter via bacterial biomass as a food source for a brackish clam, Corbicula japonica (Mollusca: Bivalva)

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Mizota, Chitoshi; Maki, Yonosuke; Matsumasa, Masatoshi

    2013-07-01

    Corbicula japonica collected from the Kitakami River estuary, northeastern Japan, showed lower δ34S values in soft-body parts (+1.7 to +11.0‰) than the ambient seawater sulfate sulfur (+21‰), and this value gradually decreased at successive sites up to 15.8 km upstream from the river mouth. Previous study using carbon and nitrogen isotopes suggests that the bivalve nonselectively assimilates particulate organic matter of marine and terrestrial origin by filter feeding. This pattern in δ34S values may indicate a considerable contribution of a food source derived from terrigenous organic matter, which has low δ34S values close to 0‰, and the bivalve has been reported to have cellulase and hemicellulase activities. Unique fatty acids (iso 17:0 and anteiso 17:0 acids), both characteristic of sulfate-reducing bacteria, were observed in the salt-free, soft-body parts of the bivalve. The concentration of monounsaturated fatty acids, possibly derived from bacteria, was also high. Trace amounts of a polyunsaturated fatty acid (20:5ω3) specific to dinoflagellates were detected. In Corbicula habitats, reductive sandy layers with ample sulfides that were sporadically intercalated into the oxidative sandy sediment were often observed. The stable isotopic signatures of sediment sulfides (acid-volatile sulfide) and associated pore-water sulfates were -8.9 to +8.6‰ and +22.4 to +26.3‰, respectively, indicating the existence of bacterial sulfate-reducing activity and thiobios biomass. These isotopic signatures of the sediment, with the fatty acid composition of the bivalve, confirm the importance of a food source derived from bacteria belonging to the thiobios in the substrate sediments via pedal feeding, rather than direct digestion of terrigenous organic matter, in this estuarine ecosystem.

  5. Food habits and physical activity patterns among Palestinian adolescents: findings from the national study of Palestinian schoolchildren (HBSC-WBG2004).

    PubMed

    Al Sabbah, H; Vereecken, C; Kolsteren, P; Abdeen, Z; Maes, L

    2007-07-01

    To describe the food habits and physical (in)activity patterns and to investigate the relationship with sociodemographic factors among Palestinian adolescents. The Palestinian Health Behaviour in School-aged Children (HBSC) is a cross-sectional survey of grades 6, 8, 10 and 12. Students completed a modified version of the international HBSC questionnaire. A total of 8885 students were included in this analysis; 53% were from the West Bank and 47% from the Gaza Strip. Adolescents in the West Bank consume more fruit, meat, chicken, sweets and soft drinks, but less vegetables than adolescents in Gaza (P<0.01). Girls reported more daily consumption of fruit, vegetables and sweets than boys (P<0.001), and less consumption of soft drinks, milk, meat and chicken (P<0.01). Boys were physically more active than girls (P<0.01), whereas girls reported doing more homework (P<0.001). Both boys and girls reported less physical activity with increasing age (P<0.001). Consumption of fruit and milk was positively associated with both parents' education, while consumption of meat, chicken and soft drinks was positively associated with mother's education only. Having breakfast on schooldays was positively associated with the father's education. Physical activity and television viewing were associated with the mother's education (P<0.01). The parents' level of education had no effect on vegetable consumption and dieting status. This study indicated that there are problems with Palestinian adolescents' eating, dieting and physical activity. Regional, gender and parental socio-economic status differences should be taken into account in developing interventions. More detailed studies are needed with more elaborate instruments about food habits and physical activity of adolescents.

  6. Physical activity, fitness, and gray matter volume

    PubMed Central

    Erickson, Kirk I.; Leckie, Regina L.; Weinstein, Andrea M.

    2014-01-01

    In this review we explore the association between physical activity, cardiorespiratory fitness, and exercise on gray matter volume in older adults. We conclude that higher cardiorespiratory fitness levels are routinely associated with greater gray matter volume in the prefrontal cortex and hippocampus, and less consistently in other regions. We also conclude that physical activity is associated with greater gray matter volume in the same regions that are associated with cardiorespiratory fitness including the prefrontal cortex and hippocampus. Some heterogeneity in the literature may be explained by effect moderation by age, stress, or other factors. Finally, we report promising results from randomized exercise interventions that suggest that the volume of the hippocampus and prefrontal cortex remain pliable and responsive to moderate intensity exercise for 6-months to 1-year. Physical activity appears to be a propitious method for influencing gray matter volume in late adulthood, but additional well-controlled studies are necessary to inform public policies about the potential protective or therapeutic effects of exercise on brain volume. PMID:24952993

  7. A Course of Coordinated Sciences: The Structure of Matter

    ERIC Educational Resources Information Center

    Mannino, S.; And Others

    1976-01-01

    Describes a three-year coordinated sciences course taught to Italian high school students by physics and biology teachers and biology, physics, and psychology faculty from the University of Palermo. The course examines the structure of matter and energy from physical, biological, chemical, economical, and historical viewpoints. (MLH)

  8. 75 Easy Physics Demonstrations. Teacher Book.

    ERIC Educational Resources Information Center

    Kardos, Thomas

    This book is a collection of classroom demonstrations in physics designed to present basic scientific ideas on a concrete level. The topics covered include: physical change and properties of matter; energy waves and energy forms; absorption of heat; radiant energy; vacuum bottles; kinetic molecular theory; states of matter; pressure of air; work…

  9. Exploiting the Dynamics of Soft Materials for Machine Learning

    PubMed Central

    Hauser, Helmut; Li, Tao; Pfeifer, Rolf

    2018-01-01

    Abstract Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world. PMID:29708857

  10. Exploiting the Dynamics of Soft Materials for Machine Learning.

    PubMed

    Nakajima, Kohei; Hauser, Helmut; Li, Tao; Pfeifer, Rolf

    2018-06-01

    Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.

  11. The Edges Of Dark Matter Halos: Theory And Observations

    NASA Astrophysics Data System (ADS)

    More, Surhud

    2017-06-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  12. Fermilab | About Fermilab | Photo and Video Gallery

    Science.gov Websites

    LHC Dark matter and dark energy ADMX Muons More fundamental particles and forces Theory Scientific society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery rarely interact with matter. thumb Med-Res Hi-Res A view of Fermilab's MINERvA detector with the MINOS

  13. On physical scales of dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemp, Marcel, E-mail: mzemp@pku.edu.cn

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to themore » illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.« less

  14. A deep X-ray view of the bare AGN Ark 120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    NASA Astrophysics Data System (ADS)

    Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.

    2018-01-01

    Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe 0.5 keV), optically-thick corona (τ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.

  15. Event-by-Event Hydrodynamics+Jet Energy Loss: A Solution to the R_{AA}⊗v_{2} Puzzle.

    PubMed

    Noronha-Hostler, Jacquelyn; Betz, Barbara; Noronha, Jorge; Gyulassy, Miklos

    2016-06-24

    High p_{T}>10  GeV elliptic flow, which is experimentally measured via the correlation between soft and hard hadrons, receives competing contributions from event-by-event fluctuations of the low-p_{T} elliptic flow and event-plane angle fluctuations in the soft sector. In this Letter, a proper account of these event-by-event fluctuations in the soft sector, modeled via viscous hydrodynamics, is combined with a jet-energy-loss model to reveal that the positive contribution from low-p_{T} v_{2} fluctuations overwhelms the negative contributions from event-plane fluctuations. This leads to an enhancement of high-p_{T}>10  GeV elliptic flow in comparison to previous calculations and provides a natural solution to the decade-long high-p_{T} R_{AA}⊗v_{2} puzzle. We also present the first theoretical calculation of high-p_{T} v_{3}, which is shown to be compatible with current LHC data. Furthermore, we discuss how short-wavelength jet-medium physics can be deconvoluted from the physics of soft, bulk event-by-event flow observables using event-shape engineering techniques.

  16. A multi-physics model for ultrasonically activated soft tissue.

    PubMed

    Suvranu De, Rahul

    2017-02-01

    A multi-physics model has been developed to investigate the effects of cellular level mechanisms on the thermomechanical response of ultrasonically activated soft tissue. Cellular level cavitation effects have been incorporated in the tissue level continuum model to accurately determine the thermodynamic states such as temperature and pressure. A viscoelastic material model is assumed for the macromechanical response of the tissue. The cavitation model based equation-of-state provides the additional pressure arising from evaporation of intracellular and cellular water by absorbing heat due to structural and viscoelastic heating in the tissue, and temperature to the continuum level thermomechanical model. The thermomechanical response of soft tissue is studied for the operational range of frequencies of oscillations and applied loads for typical ultrasonically activated surgical instruments. The model is shown to capture characteristics of ultrasonically activated soft tissue deformation and temperature evolution. At the cellular level, evaporation of water below the boiling temperature under ambient conditions is indicative of protein denaturation around the temperature threshold for coagulation of tissues. Further, with increasing operating frequency (or loading), the temperature rises faster leading to rapid evaporation of tissue cavity water, which may lead to accelerated protein denaturation and coagulation.

  17. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  18. Measuring information transfer in a soft robotic arm.

    PubMed

    Nakajima, K; Schmidt, N; Pfeifer, R

    2015-05-13

    Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.

  19. Bamboo leaf ash as the stabilizer for soft soil treatment

    NASA Astrophysics Data System (ADS)

    Rahman, A. S. A.; Jais, I. B. M.; Sidek, N.; Ahmad, J.; Rosli, M. I. F.

    2018-04-01

    Soft soil is a type of soil that have the size of particle less than 0.063mm. The strength of the soft soil does not fulfil the requirement for construction. The present of soft soil at the construction site always give a lot of problems and issues to geotechnical sector. Soil settlement is one of the problems that related to soft soil. The determination of the soft soil physical characteristics will provide a detail description on its characteristic. Soft soil need to be treated in order to gain the standard strength for construction. One of the method to strengthen the soft soil is by using pozzolanic material as a treatment method for soft soil. Furthermore bamboo leaf ash is one of the newly founded materials that contain pozzolanic material. Any material that consist of Silicon Dioxide (SiO2) as the main component and followed by Aluminium Oxide (Al2O3) and Iron Oxide (Fe2O3) are consider as pozzolanic material. Bamboo leaf ash is mix with the cement as the treatment material. Bamboo leaf ash will react with the cement to produce additional cement binder. Thus, it will increase the soil strength and will ease the geotechnical sector to achieve high quality of construction product.

  20. Dynamic properties of interfaces in soft matter: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Sagis, Leonard M. C.

    2011-10-01

    The dynamic properties of interfaces often play a crucial role in the macroscopic dynamics of multiphase soft condensed matter systems. These properties affect the dynamics of emulsions, of dispersions of vesicles, of biological fluids, of coatings, of free surface flows, of immiscible polymer blends, and of many other complex systems. The study of interfacial dynamic properties, surface rheology, is therefore a relevant discipline for many branches of physics, chemistry, engineering, and life sciences. In the past three to four decades a vast amount of literature has been produced dealing with the rheological properties of interfaces stabilized by low molecular weight surfactants, proteins, (bio)polymers, lipids, colloidal particles, and various mixtures of these surface active components. In this paper recent experiments are reviewed in the field of surface rheology, with particular emphasis on the models used to analyze surface rheological data. Most of the models currently used are straightforward generalizations of models developed for the analysis of rheological data of bulk phases. In general the limits on the validity of these generalizations are not discussed. Not much use is being made of recent advances in nonequilibrium thermodynamic formalisms for multiphase systems, to construct admissible models for the stress-deformation behavior of interfaces. These formalisms are ideally suited to construct thermodynamically admissible constitutive equations for rheological behavior that include the often relevant couplings to other fluxes in the interface (heat and mass), and couplings to the transfer of mass from the bulk phase to the interface. In this review recent advances in the application of classical irreversible thermodynamics, extended irreversible thermodynamics, rational thermodynamics, extended rational thermodynamics, and the general equation for the nonequilibrium reversible-irreversible coupling formalism to multiphase systems are also discussed, and shown how these formalisms can be used to generate a wide range of thermodynamically admissible constitutive models for the surface stress tensor. Some of the generalizations currently in use are shown to have only limited validity. The aim of this review is to stimulate new developments in the fields of experimental surface rheology and constitutive modeling of multiphase systems using nonequilibrium thermodynamic formalisms and to promote a closer integration of these disciplines.

  1. Nano to Meso-scale Structure in Liquid Crystals: the Cybotactic Nematic Phase of Bent-core Mesogens

    NASA Astrophysics Data System (ADS)

    Francescangeli, Oriano

    2012-02-01

    The extent of molecular order and the resulting broken symmetry determine the properties and mesophase type of liquid crystals (LCs). Thermotropic bent-core mesogens (BCMs) represent a new class of LCs exhibiting substantially different physical properties than traditional linear (calamitic) materials. In recent years BCMs have become the focus of intense experimental and theoretical investigation, with several exciting new developments. These include chiral mesophases composed of achiral BCMs, giant flexoelectricity, biaxial nematic (N) order, a ferroelectric response in the N phase, and a large flow birefringence. A key issue that is currently widely debated concerns the actual nature of the N phase of BCMs which gives rise to some of the above mentioned effects and is unambiguously identified by a peculiar low-angle X-ray diffraction pattern (the ``four-spot pattern''). The consensus emerging is that this N phase of BCMs constitutes a new type of mesophase, namely, a cybotactic nematic (Ncyb) phase unrelated to pretransition cybotaxis, in agreement with experimental [1-3] and theoretical findings [4]. This Ncyb phase is composed of nanometer-size clusters of BCMs exhibiting a relatively high degree of internal order---orientational as well as translational order (strata) imposed by close packing the BCM nonlinear shape. This peculiar supramolecular structure of the Ncyb mesophase of BCMs---evanescent, biaxial clusters of tilted and stratified nonlinear mesogens percolating the nematic fluid---accounts for their unusual properties, e.g., biaxial order [4], ferroelectric response [1], and extraordinary field-induced effects [5]. In this talk I will give an overview of the most recent developments and the current state of research on this subject. [4pt] [1] O. Francescangeli et al., Adv. Funct. Mater. 19,2592 (2009). [0pt] [2] O. Francescangeli and E.T. Samulski, Soft Matter 6, 2413 (2010) [0pt] [3] O. Francescangeli et al., Soft Matter 7, 895 (2011). [0pt] [4] A.G. Vanakaras and D.J.Photinos, J. Chem. Phys. 128, 154512 (2008). [0pt] [5] O. Francescangeli et al., Phys. Rev. Lett. 107, 207801 (2011).

  2. Wire-Active Microrheology to Differentiate Viscoelastic Liquids from Soft Solids.

    PubMed

    Loosli, Frédéric; Najm, Matthieu; Chan, Raymond; Oikonomou, Evdokia; Grados, Arnaud; Receveur, Mathieu; Berret, Jean-François

    2016-12-15

    Viscoelastic liquids are characterized by a finite static viscosity and a yield stress of zero, whereas soft solids have an infinite viscosity and a non-zero yield stress. The rheological nature of viscoelastic materials has long been a challenge and is still a matter of debate. Here, we provide for the first time the constitutive equations of linear viscoelasticity for magnetic wires in yield-stress materials, together with experimental measurements by using magnetic rotational spectroscopy (MRS). In MRS, the wires were subjected to a rotational magnetic field as a function of frequency and the motion of the wire was monitored by using time-lapse microscopy. The studied soft solids were aqueous dispersions of gel-forming polysaccharide (gellan gum) at concentrations above the gelification point. It was found that soft solids exhibited a clear and distinctive signature compared with viscous and viscoelastic liquids. In particular, the average wire rotation velocity equaled zero over a broad frequency range. We also showed that the MRS technique is quantitative. The equilibrium elastic modulus was retrieved from the wire oscillation amplitudes, and agrees with polymer-dynamics theory. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.

    PubMed

    Cianchetti, M; Calisti, M; Margheri, L; Kuba, M; Laschi, C

    2015-05-13

    The octopus is an interesting model for the development of soft robotics, due to its high deformability, dexterity and rich behavioural repertoire. To investigate the principles of octopus dexterity, we designed an eight-arm soft robot and evaluated its performance with focused experiments. The OCTOPUS robot presented here is a completely soft robot, which integrates eight arms extending in radial direction and a central body which contains the main processing units. The front arms are mainly used for elongation and grasping, while the others are mainly used for locomotion. The robotic octopus works in water and its buoyancy is close to neutral. The experimental results show that the octopus-inspired robot can walk in water using the same strategy as the animal model, with good performance over different surfaces, including walking through physical constraints. It can grasp objects of different sizes and shapes, thanks to its soft arm materials and conical shape.

  4. Final Report for EPSCoR Implementation Award DE-FG02-08ER46528 to University of Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egami, Takeshi

    With the completion of the Spallation Neutron Source (SNS) and upgrading of the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) the state of Tennessee now leads the world in the capability of neutron scattering research. This project aimed at directing the great impact of these facilities to researchers in the EPSCoR states, Tennessee in particular, by creating a research collaboration network around these facilities. The plan consisted of two parts: (1) Direct effort to increase the user base through the travel fellowship for graduate students and faculty from the EPSCoR states to use the neutron facilitiesmore » at the ORNL, and through workshops and schools on the application of neutron scattering, and (2) Research collaboration among the core participants from UTK, ORNL and other states. The EPSCoR Travel Fellowship Program has supported over 300 distinct and 600 cumulative neutron facility users and over 250 workshop participants, with the total of nearly 600 distinct recipients. This program has been highly popular particularly among young faculty members who often have difficulty in raising travel funds, and enabled participation of young graduate students to neutron research. This program has been the foundation of this project. We supported several educational workshops, organized one (“neutrons for novice”) by ourselves each year, targeting non-users of neutron scattering. These efforts significantly contributed to expand the neutron user base among the EPSCoR states. The core research targeted condensed matter physics and soft matter sciences. The core research groups participating in this project include not only researchers from Tennessee but those from Kansas, South Carolina, Puerto Rico and Louisiana, making this project a national, rather than regional, enterprise. Collaborations that were seeded by this project have grown into two major projects, one in materials science (irradiation effects on high-entropy alloys) and the other in soft matter sciences (bio-membranes). Through this project we promoted the use of neutron scattering, particularly in biological and life sciences and in energy sciences, and facilitated the DOE investment in this field to impact wide fields of science and engineering. This project was administered through the Joint Institute for Neutron Sciences (JINS) of the University of Tennessee (UT) and ORNL. JINS is jointly supported by both UT and ORNL, and participate in organizing workshops and schools to promote the use of neutron scattering.« less

  5. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop

    2018-05-01

    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  6. Theoretical aspects of antimatter and gravity

    NASA Astrophysics Data System (ADS)

    Blas, Diego

    2018-03-01

    In this short contribution, I review the physical case of studying the gravitational properties of antimatter from a theoretical perspective. I first discuss which elements are desirable for any theory where the long-range interactions between matter and antimatter differ from those of matter with itself. Afterwards I describe the standard way to hide the effects of new forces in matter-matter interactions which still allows one to generate ponderable matter-antimatter interactions. Finally, I comment on some recent ideas and propose some possible future directions. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  7. Perceived Mattering to the Family and Physical Violence within the Family by Adolescents

    ERIC Educational Resources Information Center

    Elliott, Gregory C.; Cunningham, Susan M.; Colangelo, Melissa; Gelles, Richard J.

    2011-01-01

    Mattering is the extent to which people believe they make a difference in the world around them. This study hypothesizes that adolescents who believe they matter less to their families will more likely threaten or engage in intrafamily physical violence. The data come from a national sample of 2,004 adolescents. Controlling for respondents' age,…

  8. Changes in Properties of Matter. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    All matter possesses certain properties--mass, weight, volume and density. But what happens to these properties when the matter changes form? How does wood become ash when it burns? And how does ice cream change when it melts? Students will learn the difference between chemical and physical changes in this excellent introduction to the changes of…

  9. A White Paper on keV sterile neutrino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R.; Agostini, M.; Ky, N. Anh

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arisingmore » from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  10. A White Paper on keV sterile neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Agostini, M.; Ky, N. Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P. S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; Pires, C. A. de S.; de Vega, H. J.; Dias, A. G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Drewes, M.; Drexlin, G.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N. W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J. A.; Franse, J.; Fraenkle, F. M.; Frenk, C. S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Glück, F.; Goodman, M. C.; Gonzalez-Garcia, M. C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Hansen, S. H.; Hassel, C.; Heeck, J.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Jochum, J.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lasserre, T.; Lesgourgues, J.; Lhuillier, D.; Li, Y. F.; Liao, W.; Long, A. W.; Maltoni, M.; Mangano, G.; Mavromatos, N. E.; Menci, N.; Merle, A.; Mertens, S.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V. S.; Papastergis, E.; Parke, S.; Pascoli, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D. C.; Ranitzsch, P. C.-O.; Rest, O.; Robinson, D. J.; Rodrigues da Silva, P. S.; Ruchayskiy, O.; Sanchez, N. G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schönert, S.; Scholl, S.; Shankar, F.; Shrock, R.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N. Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C. G.; Valerius, K.; Valle, J. W. F.; Venos, D.; Viel, M.; Vivier, M.; Wang, M. Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.

    2017-01-01

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.

  11. Beyond the CMSSM without an accelerator: Proton decay and direct dark matter detection

    DOE PAGES

    Ellis, John; Evans, Jason L.; Luo, Feng; ...

    2016-01-05

    Here, we consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale M inbelow the grand unification (GUT) scale M GUT, a scenario referred to as ‘sub-GUT’. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale.more » Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if M in is close to M GUT, but it may lie within its reach if M in≲10 11 GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.« less

  12. Beyond the CMSSM without an accelerator: proton decay and direct dark matter detection.

    PubMed

    Ellis, John; Evans, Jason L; Luo, Feng; Nagata, Natsumi; Olive, Keith A; Sandick, Pearl

    We consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale [Formula: see text] below the grand unification (GUT) scale [Formula: see text], a scenario referred to as 'sub-GUT'. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if [Formula: see text] is close to [Formula: see text], but it may lie within its reach if [Formula: see text] GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.

  13. A soft x-ray octadecyl hydrogen maleate crystal spectrograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, P.Z.; Fill, E.E.; Tietang, G.

    1996-03-01

    A crystal spectrograph is described which can be used to investigate laser-produced plasmas in the region of soft x rays at wavelengths of up to 60 A. The spectrograph uses an octadecyl hydrogen maleate crystal with a 2{ital d} of 63.5 A, combined with a very thin carbon filter (3000 A thick). As examples of its application, soft x-ray spectra in the range of 43{endash}51 A from laser plasmas of Si and Cu are presented. A spectral resolution of {lambda}/{Delta}{lambda}=1100 is deduced from the spectra. {copyright} {ital 1996 American Institute of Physics.}

  14. Performance of the round window soft coupler for the backward stimulation of the cochlea in a temporal bone model.

    PubMed

    Gostian, Antoniu-Oreste; Schwarz, David; Mandt, Philipp; Anagiotos, Andreas; Ortmann, Magdalene; Pazen, David; Beutner, Dirk; Hüttenbrink, Karl-Bernd

    2016-11-01

    The round window vibroplasty is a feasible option for the treatment of conductive, sensorineural and mixed hearing loss. Although clinical data suggest a satisfying clinical outcome with various coupling methods, the most efficient coupling technique of the floating mass transducer to the round window is still a matter of debate. For this, a soft silicone-made coupler has been developed recently that aims to ease and optimize the stimulation of the round window membrane of this middle ear implant. We performed a temporal bone study evaluating the performance of the soft coupler compared to the coupling with individually shaped cartilage, perichondrium and the titanium round window coupler with loads up to 20 mN at the unaltered and fully exposed round window niche. The stimulation of the cochlea was measured by the volume velocities of the stapes footplate detected by a laser Doppler vibrometer. The coupling method was computed as significant factor with cartilage and perichondrium allowing for the highest volume velocities followed by the soft and titanium coupler. Exposure of the round window niche allowed for higher volume velocities while the applied load did not significantly affect the results. The soft coupler allows for a good contact to the round window membrane and an effective backward stimulation of the cochlea. Clinical data are mandatory to evaluate performance of this novel coupling method in vivo.

  15. Discovery of Rapidly Moving Partial X-Ray Absorbers Within Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2016-01-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called "softness dips" in a approx.100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either approx.40% or approx.70% partial covering absorption to kT approx.12 keV plasma emission by matter with a neutral hydrogen column density of approx.(2-8) ×10(exp 21)/sq cm, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the gamma Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT approx 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.

  16. Tuning structure and mobility of solvation shells surrounding tracer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmer, James; Jain, Avni; Bollinger, Jonathan A.

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less

  17. Tuning structure and mobility of solvation shells surrounding tracer additives.

    PubMed

    Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.

  18. Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.

    PubMed

    Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L A; Yodh, A G; Torquato, Salvatore

    2015-01-01

    Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.

  19. Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation.

    PubMed

    Cano-Lamadrid, Marina; Hernández, Francisca; Corell, Mireia; Burló, Francisco; Legua, Pilar; Moriana, Alfonso; Carbonell-Barrachina, Ángel A

    2017-01-01

    The influence of three irrigation treatments (T0, no stress; T1, soft stress; and, T2, moderate stress) on the key functional properties [fatty acids, sugar alcohols, organic acids, minerals, total polyphenols content (TPC), and antioxidant activity (AA)], sensory quality, and consumers' acceptance of table olives, cv. 'Manzanilla', was evaluated. A soft water stress, T1, led to table olives with the highest oil and dry matter contents, with the highest intensities of key sensory attributes and slightly, although not significant, higher values of consumer satisfaction degree. Besides, RDI in general (T1 and T2) slightly increased green colour, the content of linoleic acid, but decreased the content of phytic acid and some minerals. The soft RDI conditions are a good option for the cultivation of olive trees because they are environmentally friendly and simultaneously maintain or even improve the functionality, sensory quality, and consumer acceptance of table olives. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  1. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  2. Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres

    NASA Astrophysics Data System (ADS)

    Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L. A.; Yodh, A. G.; Torquato, Salvatore

    2015-01-01

    Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.

  3. Prestige Asymmetry in American Physics: Aspirations, Applications, and the Purloined Letter Effect.

    PubMed

    Martin, Joseph D

    2017-12-01

    Argument Why do similar scientific enterprises garner unequal public approbation? High energy physics attracted considerable attention in the late-twentieth-century United States, whereas condensed matter physics - which occupied the greater proportion of US physicists - remained little known to the public, despite its relevance to ubiquitous consumer technologies. This paper supplements existing accounts of this much remarked-upon prestige asymmetry by showing that popular emphasis on the mundane technological offshoots of condensed matter physics and its focus on human-scale phenomena have rendered it more recondite than its better-known sibling field. News reports about high energy physics emphasize intellectual achievement; reporting on condensed matter physics focuses on technology. And whereas frontier-oriented rhetoric of high energy physics communicates ideals of human potential, discoveries that smack of the mundane highlight human limitations and fail to resonate with the widespread aspirational vision of science - a consequence I call "the purloined letter effect."

  4. Observational Search for Negative Matter in Intergalactic Voids

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    Negative matter is a hypothetical form of matter with negative rest mass, inertial mass, and gravitational mass. It is not antimatter. If negative matter could be collected in macroscopic amounts, its negative inertial property could be used to make an continuously operating propulsion system which requires neither energy nor reaction mass, yet still violates no laws of physics. Negative matter has never been observed, but its existence is not forbidden by the laws of physics. We propose that NASA support an extension to an ongoing astrophysical observational effort by da Costa, et al. (1996) which could possibly determine whether or not negative matter exists in the well-documented but little-understood intergalactic voids.

  5. Emergence of a dark force in corpuscular gravity

    NASA Astrophysics Data System (ADS)

    Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M.

    2018-02-01

    We investigate the emergent laws of gravity when dark energy and the de Sitter space-time are modeled as a critical Bose-Einstein condensate of a large number of soft gravitons NG. We argue that this scenario requires the presence of various regimes of gravity in which NG scales in different ways. Moreover, the local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons pulled out from this dark energy condensate (DEC). We then explain the additional component of the acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from the DEC and correctly reproduces the modified Newtonian dynamics (MOND) acceleration. It also allows for an effective description in terms of general relativity sourced by an anisotropic fluid. We finally calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a region of size r at galactic scales and show that it is consistent with the Λ CDM predictions.

  6. The Generation Model of Particle Physics and Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Robson, B. A.

    2013-09-01

    Galactic dark matter is matter hypothesized to account for the discrepancy of the mass of a galaxy determined from its gravitational effects, assuming the validity of Newton's law of universal gravitation, and the mass calculated from the "luminous matter", stars, gas, dust, etc. observed to be contained within the galaxy. The conclusive observation from the rotation curves of spiral galaxies that the mass discrepancy is greater, the larger the distance scales involved implies that either Newton's law of universal gravitation requires modification or considerably more mass (dark matter) is required to be present in each galaxy. Both the modification of Newton's law of gravitation and the hypothesis of the existence of considerable dark matter in a galaxy are discussed. It is shown that the Generation Model (GM) of particle physics, which leads to a modification of Newton's law of gravitation, is found to be essentially equivalent to that of Milgrom's modified Newtonian dynamics (MOND) theory, with the GM providing a physical understanding of the MOND theory. The continuing success of MOND theory in describing the extragalactic mass discrepancy problems constitutes a strong argument against the existence of undetected dark matter haloes, consisting of unknown nonbaryonic matter, surrounding spiral galaxies.

  7. PREFACE: Young Researcher Meeting, Trieste 2014

    NASA Astrophysics Data System (ADS)

    Agostini, F.; Antolini, C.; Aversa, R.; Cattani, G.; Di Stefano, M.; Longobardi, M.; Martinelli, M.; Miceli, A.; Migliaccio, M.; Paci, F.; Pietrobon, D.; Pusceddu, E.; Stellato, F.

    2014-12-01

    YRM_LOGO The Young Researcher Meeting (www.yrmr.it) has confirmed once again this year the enthusiasm and determination of Ph.D. students, postdoctoral fellows and young researchers to play a major role in the scientific progress. Since 2009, we regularly gather together to discuss the most recent developments and achievements in Physics, firmly convinced that sharing our expertise and experience is the foundation of research activity. The format we chose is an informal meeting primarily aimed at graduate students and postdoctoral researchers, who are encouraged to present their work in brief presentations that provide genuine engagement of the audience and cross-pollination of ideas. One of the main purposes of the conference is to create an international network of young researchers, both experimentalists and theorists, and fruitful collaborations across the different branches of Physics. After four editions that strengthened it, the Young Researcher Meeting 2014 was held at the International School for Advanced Studies - SISSA, Trieste, for the second time. The fifth appointment was a two-day conference on July 14th-15th 2014. It has been sponsored by a number of research groups of SISSA, the University of Udine and the Solar Physics group of the University of Rome "Tor Vergata", thus gathering even broader support than previous editions. The success of this year event is testified by an increased number of participants and institutions all around Europe. This resulted in an extremely rich and interactive poster session that covered several areas of pure and applied Physics. With the intent of broadening the contents and stimuli adopting multidisciplinary tools, the YRM 2014 hosted the workshop "Communicating Science" held in collaboration with SISSA Medialab. This choice reflects the growing importance of the outreach activity performed by scientists, especially at the earliest stages of their career, as a way of increasing their expertise and developing soft skills. Engaging the public and finding unconventional ways to communicate results turn out to be real assets in improving the quality of presentation of current research to peers, as well as to the general public. In this volume, we collect part of the contributions that have been presented at the conference. They cover topics in astrophysics and cosmology, particle and theoretical physics, soft and condensed matter, medical physics and applied physics. Given the recent experimental achievements in particle physics and cosmology, several contributions were focused on the latest results obtained in these fields, presenting the impact of experiments such as LHC and Planck to the community of young researchers and forecasting the future goals in these areas of research. Particular interest was aroused by the session fully dedicated to applied Physics and conservation of cultural assets. Besides the intrinsic scientific value of the discussed topics, the increasing relative weight of the applied Physics session is a demonstration of the benefits that fundamental science brings to the community. YRM Organising and Editorial Committee Fabio Agostini (fabio.agostini31@gmail.com) Telespazio A Finmeccanica Thales Company Claudia Antolini (claudia.antolini@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati and Fudan University Rossella Aversa (raversa@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Giordano Cattani (giordano.cattani@gmail.com) Marco Di Stefano (distefan@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Maria Longobardi (marialongobardi@gmail.com) Department of Condensed Matter Physics, University of Geneva Matteo Martinelli (martinelli@thphys.uni-heidelberg.de) SISSA - Scuola Internazionale Superiore di Studi Avanzati and Institut fur Theoretische Physik Alice Miceli (alice.miceli@uniroma2.it) Physics Department, University of Rome Tor Vergata Marina Migliaccio (mm858@ast.cam.ac.uk) Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge Francesco Paci (fpaci@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Davide Pietrobon (davide.pietrobon@berkeley.edu) University of California at Berkeley Emanuela Pusceddu (emanuela.pusceddu@gmail.com) Institute of Biometeorology CNR Francesco Stellato (francesco.stellato@roma2.infn.it) INFN Roma Tor Vergata ACKNOWLEDGEMENTS The organisers of the 5th Young Researcher Meeting would like to thank all the scientists who participated to the meeting. We furthermore thank all our sponsors that are listed below for supporting the event. We are grateful to the International School for Advanced Studies (SISSA) for hosting the conference for the second time, and to its director, Prof. Guido Martinelli, for his support and advice. We owe gratitude to SISSA Medialab, for organising the public event on science communication and providing technical support throughout the entire meeting. The publication of the proceedings of the conference is partially supported by the Solar Physics group in Tor Vertaga; we also acknowledge support from the University of Udine. The event was broadcast live by OggiScienza (http://oggiscienza.wordpress.com). The complete videos of the meeting can be found at the YRM Youtube channel https://www.youtube.com/channel/UCw3roeK9oC4NPc-sRQ2t0rg SISSAInternational School for Advanced Studies (SISSA), Trieste PRINPRIN 2010-2011 (MIUR 2010YJ2NYW_001) - "Symmetries, Masses and Mysteries: Electroweak symmetry breaking, flavor mixing and CP violation, and Dark Matter in the LHC era" - SISSA, Trieste BIOMolecular and Statistical Biophysics Group - SISSA, Trieste THEOPRIN 2012 (2012CPPYP7_006) - "Theoretical Astroparticle Physics" - SISSA, Trieste ASTROPRIN 2010-2011 (MIUR 2010NHBSBE_008) - "L'Universo oscuro e l'evoluzione cosmica dei barioni: dalle survey attuali a Euclid" - SISSA, Trieste UDINEDepartment of Chemistry, Physics and Environment of the University of Udine BERRILLISolar Physics Group - Department of Physics of the University of Rome "Tor Vergata"

  8. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).

  9. PREFACE: Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer

    NASA Astrophysics Data System (ADS)

    Ferry, David; Dowben, Peter; Inglesfield, John

    2009-11-01

    This year marks the 20th anniversary of the launch of Journal of Physics: Condensed Matter in 1989. The journal was formed from the merger of Journal of Physics C: Solid State Physics and Journal of Physics F: Metal Physics which had separated in 1971. In the 20 years since its launch, Journal of Physics: Condensed Matter has more than doubled in size, while raising standards. Indeed, Journal of Physics: Condensed Matter has become one of the leading scientific journals for our field. This could not have occurred without great leadership at the top. No one has been more responsible for this growth in both size and quality than our Senior Publisher, Richard Palmer. Richard first started work at IOP in March 1971 as an Editorial Assistant with J. Phys. B After a few months, he transferred to J. Phys.C The following year, the Assistant Editor of J. Phys. C, Malcolm Haines, left suddenly in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of J. Phys. C, before being given the job of Assistant Editor permanently. Since J. Phys. C and J. Phys. F re-merged to form Journal of Physics: Condensed Matter, Richard gradually shed his other journal responsibilities, except for Reports on Progress in Physics, to build up Journal of Physics: Condensed Matter. He has worked closely with four Editors-in-Chief of J. Phys. C and five of Journal of Physics: Condensed Matter. When Richard announced his retirement this past winter, we met it with a great deal of both happiness and sadness. Of course, we are happy that he is going to be allowed to enjoy his retirement, but we remain very sad to lose such a valuable member of our team, especially the one who had provided the heart and soul of the journal over its 20 years. We will be able to rely upon the team which Richard ably trained as we go into the future. The Executive Board decided to do this special issue, both to commemorate the 20th year of Journal of Physics: Condensed Matter and to honour Richard for his long years of service to IOP Publishing and Journal of Physics: Condensed Matter. This issue is dedicated to Richard for his many years of work and friendship with the journal board that has seen a great many changes over the years. This issue covers a very wide range of topics, since we approached all current and past members of the various boards of Journal of Physics: Condensed Matter in seeking papers for this special issue. The response has been very positive and this will be one of our larger special issues. The desire to honour Richard is widespread among these various boards, so that we have been almost overwhelmed with submissions, although many who wished to contribute could not because of other obligations. We hope that you, the readership, will enjoy these articles.

  10. Structural and phase transitions of one and two polymer mushrooms in poor solvent

    NASA Astrophysics Data System (ADS)

    Yang, Delian; Wang, Qiang

    2014-05-01

    Using the recently proposed fast lattice Monte Carlo (FLMC) simulations and the corresponding lattice self-consistent field (LSCF) calculations based on the same model system, where multiple occupancy of lattice sites is allowed [Q. Wang, Soft Matter 5, 4564 (2009); Q. Wang, Soft Matter 5, 6206 (2010)], we studied the coil-globule transition (CGT) of one-mushroom systems and the fused-separated transition (FST) of two-mushroom systems, where a polymer mushroom is formed by a group of n homopolymer chains each of N segments end-grafted at the same point onto a flat substrate and immersed in a poor solvent. With our soft potential that allows complete particle overlapping, LSCF theory neglecting the system fluctuations/correlations becomes exact in the limit of n → ∞, and FLMC results approach LSCF predictions with increasing n. Using LSCF calculations, we systematically constructed the phase diagrams of one- and two-mushroom systems. A second-order symmetric-asymmetric transition (SAT) was found in the globule state of one-mushroom systems, where the rotational symmetry around the substrate normal passing through the grafting point is broken in each individual configuration but preserved by the degeneracy of different orientations of these asymmetric configurations. Three different states were also found in two-mushroom systems: separated coils, separated globules, and fused globule. We further studied the coupling between FST in two-mushroom systems and CGT and SAT of each mushroom. Finally, direct comparisons between our simulation and theoretical results, without any parameter-fitting, unambiguously and quantitatively revealed the fluctuation/correlation effects on these phase transitions.

  11. 75 FR 61141 - In the Matter of The Coca-Cola Company; Analysis of Agreement Containing Consent Order to Aid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... subsequent exclusive license from Dr Pepper Snapple Group, Inc. (``DPSG''), to bottle, distribute, and sell the Dr Pepper, Diet Dr Pepper, and Canada Dry carbonated soft drink brands of DPSG in certain... from the sale of all products were about $31 billion. III. Licensor Dr Pepper Snapple Group, Inc. DPSG...

  12. Bimaterial Microcantilevers as a Hybrid Sensing Platform

    DTIC Science & Technology

    2008-01-01

    cantilevers are immersed in dilute solution (milli molar) of desired organic molecule (e.g., alkanethiols) in aqueous or organic solvent (e.g., water... active layers, and some of the im- portant applications. Emphasizing the material design aspects, the review underscores the most important findings... active sensing materials in microelectromechanical systems (MEMS), soft matter-inclusive sensors bring a desir- able diversity in signal transduction

  13. Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique.

    PubMed

    Graf, Gesche; Kocherbitov, Vitaly

    2013-08-29

    The high-resolution humidity scanning QCM-D technique enables investigation of hydration of soft matter films using a quartz crystal microbalance with dissipation monitoring (QCM-D) equipped with a humidity module. Based on a continuous increase of relative humidity, properties of soft matter films can be investigated depending on the water content of the surrounding atmosphere. Determination of complete water sorption isotherms is possible via analysis of the overtone dependence of the resonance frequencies. Rheological properties are monitored via measurement of the dissipation. The glass transition can be identified from the change of viscoelastic properties of the film reflected in changes of the dissipation. A high-resolution water sorption isotherm of lysozyme was measured and compared with results from water sorption calorimetry. Analysis of the rheological behavior during hydration of lysozyme films revealed the presence of two separate sharp transitions at the water activities 0.67 and 0.91, which are connected to the glass transition. In previous works, only the existence of a broad glass transition has been reported so far. Combining the QCM-D data with Raman scattering data presented earlier, a new mechanism of isothermal glass transition in lysozyme is proposed.

  14. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  15. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    NASA Astrophysics Data System (ADS)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft w ˜ k2 dispersion relation. The dynamics of this novel phase is described by a new set of Maxwell's equations.

  16. East Europe Report, Scientific Affairs, No. 776.

    DTIC Science & Technology

    1983-05-11

    Washington, D.C. 20402. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000...the beginning of neutrons physics--the science of the properties of the neutron and its interactions-with the nucleus and matter . The science has...media, the magnetic properties of matter and phase transitions; in the physics of nuclear reactors and nuclear technology; in developing and applying

  17. Development of soft-sphere contact models for thermal heat conduction in granular flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A. B.; Pannala, S.; Ma, Z.

    2016-06-08

    Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the 'softness' of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-basedmore » correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy.« less

  18. Soft X-ray observations of Centaurus X-3 from Copernicus

    NASA Technical Reports Server (NTRS)

    Margon, B.; Mason, K. O.; Hawkins, F. J.; Sanford, P. W.

    1975-01-01

    We have detected soft X-ray emission from Centaurus X-3 in the 0.6-1.9 keV band, using the focusing telescope aboard OAO Copernicus. The flux is compatible with an extrapolation of the harder X-ray spectrum, attenuated by (3-4) times 10 to the 22nd atoms per sq cm of interstellar and/or circumstellar matter. The data are consistent with the distance estimate of 5-10 kpc derived from the spectroscopic modulus of the optical component, and obviate the need to postulate the primary to be an anomalously subluminous hot star. There is currently no compelling evidence that such models must be invoked to explain any of the observed compact X-ray sources.

  19. Particle Dark Matter constraints: the effect of Galactic uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, Maria; Bernal, Nicolás; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less

  20. Relating structure and flow of soft colloids

    NASA Astrophysics Data System (ADS)

    Kundu, S. K.; Gupta, S.; Stellbrink, J.; Willner, L.; Richter, D.

    2013-11-01

    To relate the complex macroscopic flow of soft colloids to details of its microscopic equilibrium and non-equilibrium structure is still one big challenge in soft matter science. We investigated several well-defined colloidal model systems like star polymers or diblock copolymer micelles by linear/non-linear rheology, static/dynamic light scattering (SLS/DLS) and small angle neutron scattering (SANS). In addition, in-situ SANS experiments during shear (Rheo-SANS) revealed directly shear induced structural changes on a microscopic level. Varying the molecular architecture of the individual colloidal particle as well as particle-particle interactions and covering at the same time a broad concentration range from the very dilute to highly concentrated, glassy regime, we could separate contributions from intra- and inter-particle softness. Both can be precisely "tuned" by varying systematically the functionality, 6 ≤ f≤ 64, for star polymers or aggregation number, 30 ≤ N agg ≤ 1000 for diblock copolymer micelles, as well as the degree of polymerization of the individual polymer arm 100 ≤ D p ≤ 3000. In dilute solutions, the characteristic shear rate at which deformation of the soft colloid is observed can be related to the Zimm time of the polymeric corona. In concentrated solutions, we validated a generalized Stokes-Einstein approach to describe the increase in macroscopic viscosity and mesoscopic self diffusion coefficient on approaching the glassy regime. Both can be explained in terms of an ultra-soft interaction potential. Moreover, non-equilibrium structure factors are obtained by Rheo-SANS. All experimental results are in excellent quantitative agreement with recent theoretical predictions.

  1. Particle physics today, tomorrow and beyond

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2018-01-01

    The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.

  2. The concept of physical surface in nuclear matter

    NASA Astrophysics Data System (ADS)

    Mazilu, Nicolae; Agop, Maricel

    2015-02-01

    The main point of a physical definition of surface forces in the matter in general, especially in the nuclear matter, is that the curvature of surfaces and its variation should be physically defined. The forces are therefore just the vehicles of introducing physics. The problem of mathematical definition of a surface in term of the curvature parameters thus naturally occurs. The present work addresses this problem in terms of the asymptotic directions of a surface in a point. A physical meaning of these parameters is given, first in terms of inertial forces, then in terms of a differential theory of colors, whereby the space of curvature parameters is identified with the color space. The work concludes with an image of the evolution of a local portion of a surface.

  3. Theoretical aspects of antimatter and gravity.

    PubMed

    Blas, Diego

    2018-03-28

    In this short contribution, I review the physical case of studying the gravitational properties of antimatter from a theoretical perspective. I first discuss which elements are desirable for any theory where the long-range interactions between matter and antimatter differ from those of matter with itself. Afterwards I describe the standard way to hide the effects of new forces in matter-matter interactions which still allows one to generate ponderable matter-antimatter interactions. Finally, I comment on some recent ideas and propose some possible future directions.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).

  4. Development of hand exoskeleton for rehabilitation of post-stroke patient

    NASA Astrophysics Data System (ADS)

    Zaid, Amran Mohd; Chean, Tee Chu; Sukor, Jumadi Abdul; Hanafi, Dirman

    2017-10-01

    Degenerative muscle diseases characterized by loss of strength in human hand significantly affect the physical of affected individuals. A soft assistive exoskeleton glove is designed to help post-stroke patient with their rehabilitation process. The glove uses soft bending actuator which has a rubber like tender characteristic. Due to its rubber like characteristic, flexion of finger can be achieved easily through pneumatic air without considering other hand motions. The application involves a post-stroke patient to wear the soft exoskeleton glove on his paralyzed hand and control the actuation of the glove by using pneumatic air source. The fabrication of the soft bending actuator involves silicone rubber Mold Star® 15 SLOW which falls within the soft category of shore A hardness scale. The soft bending actuator is controlled by Arduino Mega 2560 as main controller board and relay module is used to trigger the 3/2-way single solenoid valve by switching on the 24VDC power supply. The actuation of the soft bending actuator can be manipulated by setting delay ON and OFF for the relay switching. Thus, the repetition of the bending motion can be customized to fulfil the rehabilitation needs of the patient.

  5. Living liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S.; Sokolov, A.; Lavrentovich, O. D.

    2014-01-13

    Collective motion of self-propelled organisms or synthetic par­ticles, often termed •active fluid,• has attracted enormous atten­tion in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here,we introduce a class of active matter-living liquid crystals (UCs}­ that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingre­dients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena. caused by the coupling between themore » activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence­ enabled visualization of microflow generated by the nanometers­ thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.« less

  6. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  7. Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk rheology on capillary and Rayleigh waves.

    PubMed

    Monroy, Francisco

    2017-09-01

    From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Consumption of fruits and vegetables associated with other risk behaviors among adolescents in Northeast Brazil

    PubMed Central

    Silva, Fabiana Medeiros de Almeida; Smith-Menezes, Aldemir; Duarte, Maria de Fátima da Silva

    2016-01-01

    Abstract Objective: To determine the prevalence of consumption of fruits and vegetables and identify the association with low level of physical activity, exposure to sedentary behavior, consumption of soft drinks and overweight/obesity in adolescents. Methods: This is a cross-sectional school-based study with a representative sample of 3992 students aged 14–19 years from the state of Sergipe, Brazil. The outcome was low consumption of fruits and vegetables (<5servings/day). Independent variables were: level of physical activity, sedentary behavior, consumption of soft drinks, and overweight/obesity. Global Student Health Survey questionnaire and body mass and height measurements were used, as well as chi-square test and crude and adjusted binary logistic regression. The significance level adopted was 5%. Results: The prevalence of inadequate consumption of fruits and vegetables was high – 88.6% (95%CI=87.6–89.5). Higher likelihood of low consumption of fruits and vegetables was verified among boys who were exposed to sedentary behavior (OR=1.63; 95%CI=1.18–2.24), who consumed soft drinks (OR=3.04; 95%CI=2.10–4.40), with insufficiently physical activity (OR=1.98; 95%CI=1.43–2.73) and girls who consumed soft drinks (OR=1.88; 95%CI=1.43–2.47) and those with overweight/obesity (OR=1.63; 95%CI=1.19–2.23). Conclusions: There is a need of public policies aimed at encouraging the consumption of healthy foods among adolescents. PMID:27240560

  9. Consumption of fruits and vegetables associated with other risk behaviors among adolescents in Northeast Brazil.

    PubMed

    Silva, Fabiana Medeiros de Almeida; Smith-Menezes, Aldemir; Duarte, Maria de Fátima da Silva

    2016-09-01

    To determine the prevalence of consumption of fruits and vegetables and identify the association with low level of physical activity, exposure to sedentary behavior, consumption of soft drinks and overweight/obesity in adolescents. This is a cross-sectional school-based study with a representative sample of 3992 students aged 14-19 years from the state of Sergipe, Brazil. The outcome was low consumption of fruits and vegetables (<5servings/day). Independent variables were: level of physical activity, sedentary behavior, consumption of soft drinks, and overweight/obesity. Global Student Health Survey questionnaire and body mass and height measurements were used, as well as chi-square test and crude and adjusted binary logistic regression. The significance level adopted was 5%. The prevalence of inadequate consumption of fruits and vegetables was high - 88.6% (95%CI=87.6-89.5). Higher likelihood of low consumption of fruits and vegetables was verified among boys who were exposed to sedentary behavior (OR=1.63; 95%CI=1.18-2.24), who consumed soft drinks (OR=3.04; 95%CI=2.10-4.40), with insufficiently physical activity (OR=1.98; 95%CI=1.43-2.73) and girls who consumed soft drinks (OR=1.88; 95%CI=1.43-2.47) and those with overweight/obesity (OR=1.63; 95%CI=1.19-2.23). There is a need of public policies aimed at encouraging the consumption of healthy foods among adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Observations of solar active regions and solar flares by OSO-7

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1977-01-01

    Contributions made to the physics of coronal active regions and flares by the extreme ultraviolet and soft X-ray spectroheliograph on OSO-7 were discussed. Coronal structures above active regions were discussed from the point of view of their morphology and physical properties, including their relationship to photospheric and coronal magnetic fields. OSO-7 also recorded flares with sufficient spatial and temporal resolution to record, in some instances for the first time, the extreme ultraviolet and soft X-ray emission associated with such chromospheric phenomena as filament activation and the emergence of satellite sunspots. Flare phenomena were reviewed in terms of the several stages of evolution typically associated with the event.

  11. Soft electron processor for surface sterilization of food material

    NASA Astrophysics Data System (ADS)

    Baba, Takashi; Kaneko, Hiromi; Taniguchi, Shuichi

    2004-09-01

    As frozen or chilled foods have become popular nowadays, it has become very important to provide raw materials with lower level microbial contamination to food processing companies. Consequently, the sterilization of food material is one of the major topics for food processing. Dried materials like grains, beans and spices, etc., are not typically deeply contaminated by microorganisms, which reside on the surfaces of materials, so it is very useful to take low energetic, lower than 300 keV, electrons with small penetration power (Soft-Electrons), as a sterilization method for such materials. Soft-Electrons is researched and named by Dr. Hayashi et al. This is a non-thermal method, so one can keep foods hygienic without serious deterioration. It is also a physical method, so is free from residues of chemicals in foods. Recently, Nissin-High Voltage Co., Ltd. have developed and manufactured equipment for commercial use of Soft-Electrons (Soft Electron Processor), which can process 500 kg/h of grains. This report introduces the Soft Electron Processor and shows the results of sterilization of wheat and brown rice by the equipment.

  12. New scale-down methodology from commercial to lab scale to optimize plant-derived soft gel capsule formulations on a commercial scale.

    PubMed

    Oishi, Sana; Kimura, Shin-Ichiro; Noguchi, Shuji; Kondo, Mio; Kondo, Yosuke; Shimokawa, Yoshiyuki; Iwao, Yasunori; Itai, Shigeru

    2018-01-15

    A new scale-down methodology from commercial rotary die scale to laboratory scale was developed to optimize a plant-derived soft gel capsule formulation and eventually manufacture superior soft gel capsules on a commercial scale, in order to reduce the time and cost for formulation development. Animal-derived and plant-derived soft gel film sheets were prepared using an applicator on a laboratory scale and their physicochemical properties, such as tensile strength, Young's modulus, and adhesive strength, were evaluated. The tensile strength of the animal-derived and plant-derived soft gel film sheets was 11.7 MPa and 4.41 MPa, respectively. The Young's modulus of the animal-derived and plant-derived soft gel film sheets was 169 MPa and 17.8 MPa, respectively, and both sheets showed a similar adhesion strength of approximately 4.5-10 MPa. Using a D-optimal mixture design, plant-derived soft gel film sheets were prepared and optimized by varying their composition, including variations in the mass of κ-carrageenan, ι-carrageenan, oxidized starch and heat-treated starch. The physicochemical properties of the sheets were evaluated to determine the optimal formulation. Finally, plant-derived soft gel capsules were manufactured using the rotary die method and the prepared soft gel capsules showed equivalent or superior physical properties compared with pre-existing soft gel capsules. Therefore, we successfully developed a new scale-down methodology to optimize the formulation of plant-derived soft gel capsules on a commercial scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Condensed-Matter Physics.

    ERIC Educational Resources Information Center

    Hirsch, Jorge E.; Scalapino, Douglas J.

    1983-01-01

    Discusses ways computers are being used in condensed-matter physics by experimenters and theorists. Experimenters use them to control experiments and to gather and analyze data. Theorists use them for detailed predictions based on realistic models and for studies on systems not realizable in practice. (JN)

  14. Gas Marbles: Much Stronger than Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Timounay, Yousra; Pitois, Olivier; Rouyer, Florence

    2017-06-01

    Enwrapping liquid droplets with hydrophobic particles allows the manufacture of so-called "liquid marbles" [Aussillous and Quéré Nature (London) 411, 924 (2001); , 10.1038/35082026Mahadevan Nature (London)411, 895 (2001), 10.1038/35082164]. The recent intensive research devoted to liquid marbles is justified by their very unusual physical and chemical properties and by their potential for various applications, from microreactors to water storage, including water pollution sensors [Bormashenko Curr. Opin. Colloid Interface Sci. 16, 266 (2011), 10.1016/j.cocis.2010.12.002]. Here we demonstrate that this concept can be successfully applied for encapsulating and protecting small gas pockets within an air environment. Similarly to their liquid counterparts, those new soft-matter objects, that we call "gas marbles," can sustain external forces. We show that gas marbles are surprisingly tenfold stronger than liquid marbles and, more importantly, they can sustain both positive and negative pressure differences. This magnified strength is shown to originate from the strong cohesive nature of the shell. Those interesting properties could be exploited for imprisoning valuable or polluted gases or for designing new aerated materials.

  15. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  16. Gas Marbles: Much Stronger than Liquid Marbles.

    PubMed

    Timounay, Yousra; Pitois, Olivier; Rouyer, Florence

    2017-06-02

    Enwrapping liquid droplets with hydrophobic particles allows the manufacture of so-called "liquid marbles" [Aussillous and Quéré Nature (London) 411, 924 (2001); NATUAS0028-083610.1038/35082026Mahadevan Nature (London)411, 895 (2001)NATUAS0028-083610.1038/35082164]. The recent intensive research devoted to liquid marbles is justified by their very unusual physical and chemical properties and by their potential for various applications, from microreactors to water storage, including water pollution sensors [Bormashenko Curr. Opin. Colloid Interface Sci. 16, 266 (2011)COCSFL1359-029410.1016/j.cocis.2010.12.002]. Here we demonstrate that this concept can be successfully applied for encapsulating and protecting small gas pockets within an air environment. Similarly to their liquid counterparts, those new soft-matter objects, that we call "gas marbles," can sustain external forces. We show that gas marbles are surprisingly tenfold stronger than liquid marbles and, more importantly, they can sustain both positive and negative pressure differences. This magnified strength is shown to originate from the strong cohesive nature of the shell. Those interesting properties could be exploited for imprisoning valuable or polluted gases or for designing new aerated materials.

  17. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  18. A new quaternary semiconductor compound (Ba2Sb4GeS10): Ab initio study

    NASA Astrophysics Data System (ADS)

    Ozisik, Havva Bogaz; Ozisik, Haci; Deligoz, Engin

    2017-03-01

    The newly synthesised Ba2Sb4GeS10 compound is notable because of the interesting features of the quaternary Sb-containing materials. The first principle method has been used to determine the physical properties of this compound. In particular, the electronic structure has been analysed using both conventional GGA-PBE and HSE06 functional. The values of the band gap for PBE and HSE06 calculations were 1.324 and 1.84 eV, respectively. The calculated elastic constants were used to predict polycrystalline mechanical properties. The estimated Vickers hardness (2.7 GPa) values show that Ba2Sb4GeS10 is soft matter. Moreover, the vibrational properties of the compound have been studied. The calculation of the elastic constants and phonon dispersion curves indicates that the Ba2Sb4GeS10 compound is stable both mechanically and dynamically. Furthermore, the minimum thermal conductivity and optical properties, such as dielectric functions and energy loss function, have also been discussed in detail in this paper.

  19. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, Eduardo; Maldacena, Juan; Chatterjee, Lali

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement inmore » both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.« less

  20. Center for Theoretical Underground Physics and Related Areas – CETUP*2016 Summer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczerbinska, Barbara

    For last six years Center for Theoretical Underground Physics and Related Areas (CETUP*) successfully provided a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. CETUP*2016 was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle and nuclear physics, astrophysics and cosmology from around the world. Scientists invited to participate in the program not only provided theoretical support to the underground science,more » but they also examined core questions including: What is the nature of dark matter?, What is the origin of the neutrino masses?, How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, , What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? and many others. The 2016 CETUP* summer program consisted of three sessions (June 6 – July 16, 2016) covering various aspects of theoretical and experimental neutrino physics, unification and dark matter. The two week long session on Physics and Instrumentation of the Near Detector for the Long-Baseline Neutrino Experiments (June 6 – June 16) was followed by the two week long Neutrino Physics/Unification session: “From Grand Unification to String Theory and Back” (June 20 – July 2). The program ended with two week long session on Dark Matter Physics (July 4 – July 16). This six-week long program allowed for thorough discussions and an effective and comprehensive analysis of topics related to Dark Matter, Dark Energy, Neutrino Physics including astrophysical neutrinos, near and far detector physics, neutrino interactions, Higgs Boson, Inflation, Leptogenesis and many others that will advance the knowledge in particle and nuclear physics, astrophysics and cosmology. The scientific program usually consisted of 2-3 hour-long talks on selected subjects in dark matter and neutrino physics from both theoretical and experimental perspective and followed by extended in depth discussions. The format of the program accommodated separate discussion sessions where the outstanding issues of the disciplines were explored, for example: The Future of Large Physics Projects in the US, and the Role of Theory in the Future of US Physics. 2016 CETUP* summer program was attended by over 70 national and international scientists (including 17 graduate students, 16 postdocs and 39 senior scientists) from over 48 different universities and laboratories. CETUP* participants were very active senior and junior members of the community in order to make the discussions informative and productive. CETUP* 2016 provided a stimulating venue for the exchange of scientific ideas among experts in dark matter, neutrino physics, particle physics, astrophysics and cosmology. During Dark Matter session thirty-seven scientific talks and extended discussions were presented. Twenty-nine talks and discussions were conducted during the Neutrino Physics sessions by international Neutrino Physics experts. The power point presentations for the talks and discussions can be found on the CETUP* website: http://research.dsu.edu/cetup/agenda.aspx. Based on the collaborations established during CETUP* already ten preprints were published and many more are in preparation: https://research.dsu.edu/cetup/preprints.aspx?cetupYear=2016. The proceedings from CETUP*2016 are in preparation to be published by American Institute of Physics in summer 2017. Multiple outreach efforts aimed to share the excitement of the research with K-12, teachers, undergraduate and graduate students as well as the general public.« less

Top