Effect of smectic A temperature width on the soft mode in ferroelectric liquid crystals
NASA Astrophysics Data System (ADS)
Choudhary, A.; Kaur, S.; Prakash, J.; Sreenivas, K.; Bawa, S. S.; Biradar, A. M.
2008-08-01
The behavior of soft mode range with respect to the temperature width of smectic A (Sm A) phase has been studied in four different ferroelectric liquid crystal (FLC) materials in the frequency range 10Hz-10MHz. The studies have been carried out in a planarly well aligned cells at different temperatures and different bias fields in Sm C* and Sm A phases. Dielectric studies of these FLCs near Sm C*-Sm A phase transition show that the temperature range of soft mode relaxation frequency phenomenon varies with the temperature width of Sm A phase. The dependence of tilt angle on temperature shows the nature of the order of transition at Sm C*-Sm A phase. The coupling between order parameters of Sm C* and Sm A phase influences the soft mode and phase transition in Sm C* and Sm A phases.
Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka
2012-10-12
Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.
Nonlinear dynamics and damage induced properties of soft matter with application in oncology
NASA Astrophysics Data System (ADS)
Naimark, O.
2017-09-01
Molecular-morphological signs of oncogenesis could be linked to multiscale collective effects in molecular, cell and tissue related to defects (damage) dynamics. It was shown that nonlinear behavior of biological systems can be linked to the existence of characteristic collective open state modes providing the coherent expression dynamics. New type of criticality in nonequilibrium systems with defects—structural-scaling transition allows the definition of the `driving force' for a biological soft matter related to consolidated open states. The set of collective open states (breathers, autosolitons and blow-up modes) in the molecular ensembles provides the collective expression dynamics to attract the entire system (cell, tissue) toward a few preferred global states. The co-existence of three types of collective modes determines the multifractal scenario of biological soft matter dynamics. The appearance of `globally convergent' dynamics corresponding to the coherent behavior of multiscale blow-up open states (blow-up gene expression) leads to anomalous localized softening (blow-up localized damage) and the subjection of the cells (or tissue) to monofractal dynamics. This dynamics can be associated with cancer progression.
Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal
NASA Astrophysics Data System (ADS)
Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hoja, Johannes; Tkatchenko, Alexandre
2017-09-01
The nonlinear response of soft-mode excitations in polycrystalline acetylsalicylic acid (aspirin) is studied with two-dimensional terahertz spectroscopy. We demonstrate that the correlation of CH3 rotational modes with collective oscillations of π electrons drives the system into the nonperturbative regime of light-matter interaction, even for a moderate strength of the THz driving field on the order of 50 kV /cm . Nonlinear absorption around 1.1 THz leads to a blueshifted coherent emission at 1.7 THz, revealing the dynamic breakup of the strong electron-phonon correlations. The observed behavior is reproduced by theoretical calculations including dynamic local-field correlations.
An infinite set of Ward identities for adiabatic modes in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, E-mail: khinterbichler@perimeterinstitute.ca, E-mail: lh399@columbia.edu, E-mail: jkhoury@sas.upenn.edu
2014-01-01
We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. At each order n, the consistency relations constrain — completely for n = 0,1, and partially for n ≥ 2 — themore » q{sup n} behavior of the soft limits. The identities at n = 0 recover Maldacena's original consistency relations for a soft scalar and tensor mode, n = 1 gives the recently-discovered conformal consistency relations, and the identities for n ≥ 2 are new. As a check, we verify directly that the n = 2 identity is satisfied by known correlation functions in slow-roll inflation.« less
Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis
The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less
Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions
Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis; ...
2017-05-26
The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less
Soft modes in the perceptron model for jamming.
NASA Astrophysics Data System (ADS)
Franz, Silvio
I will show how a well known neural network model \\x9Dthe perceptro provides a simple solvable model of glassy behavior and jamming. The glassy minima of the energy function of this model can be studied in full analytic detail. This allows the identification of two kind of soft modes the first ones associated to the existence a marginal glass phase and a hierarchical structure of the energy landscape, the second ones associated to isostaticity and marginality of jamming. These results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses. This work was supported by a Grant from the Simons Foundation (454941 to Silvio Franz).
NASA Astrophysics Data System (ADS)
Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei
2015-06-01
Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.
Sachdev–Ye–Kitaev model as Liouville quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex
2016-08-08
Here, we show that the proper inclusion of soft reparameterization modes in the Sachdev–Ye–Kitaev model of N randomly interacting Majorana fermions reduces its long-time behavior to that of Liouville quantum mechanics.
Surface modes and reconstruction of diamond structure crystals
NASA Astrophysics Data System (ADS)
Goldammer, W.; Ludwig, W.; Zierau, W.
1986-08-01
Applying our recently proposed Green function method we calculate the surface phonon spectra for the (111) surfaces of the diamond structure crystals C, Si, Ge and α-Sn on the basis of a phenomenological force constant model. Allowing for changes in the surface force constants we investigate the possibility of a surface phonon softening. Relating these soft modes to surface reconstructions we find evidence for a Si (7 × 7), Ge (8 × 8) and α-Sn (3 × 3) reconstruction, while diamond does not exhibit a soft mode behavior at all. We can thus explain the occurrence of different surface structures in these geometrically identical crystals as being determined to a great extent already by bulk properties. Finally, we derive models of the reconstructed surfaces and discuss our model for the Si (7 × 7) surface with respect to experimental TED patterns.
Propulsion of rotationally actuated soft magnetic microswimmers
NASA Astrophysics Data System (ADS)
Samsami, Kiarash; Mirbagheri, Seyed Amir; Meshkati, Farshad; Fu, Henry
2017-11-01
Microrobotic swimmers have been the subject of many studies recently because of their possible biomedical applications such as drug delivery and micro manipulation. We examine rigid magnetic microrobots that are propelled by rotation induced by a rotating magnetic field, thought to be the most promising class of microrobots. Previous studies have considered ferromagnetic swimmers with permanent magnetizations and paramagnetic swimmers, but many experimental realizations are in fact soft magnets. Here we investigate how soft magnetic swimmers differ from ferromagnetic and paramagnetic swimmers. We specifically investigate the behavior of step-out frequencies, velocity-frequency response, and the stability and multiplicity of stable swimming modes for microrobots with nonmagnetic helical tails and ellipsoidal soft magnetic heads.
Co-based amorphous thin films on silicon with soft magnetic properties
NASA Astrophysics Data System (ADS)
Masood, Ansar; McCloskey, P.; Mathúna, Cian Ó.; Kulkarni, S.
2018-05-01
The present work investigates the emergence of multiple modes in the high-frequency permeability spectrum of Co-Zr-Ta-B amorphous thin films. Amorphous thin films of different thicknesses (t=100-530 nm) were deposited by DC magnetron sputtering. Their static and dynamic soft magnetic properties were investigated to explore the presence of multi-magnetic phases in the films. A two-phase magnetic behavior of the thicker films (≥333 nm) was revealed by the in-plane hysteresis loops. Multiple resonance peaks were observed in the high-frequency permeability spectrum of the thicker films. The thickness dependent multiple resonance peaks below the main ferromagnetic resonance (FMR) can be attributed to the two-phase magnetic behaviors of the films.
Pressure-induced structural transition in chalcopyrite ZnSiP2
NASA Astrophysics Data System (ADS)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.
2017-05-01
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.
Localizing softness and stress along loops in 3D topological metamaterials
NASA Astrophysics Data System (ADS)
Baardink, Guido; Souslov, Anton; Paulose, Jayson; Vitelli, Vincenzo
2018-01-01
Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating surface. However, in all 3D mechanical metamaterials proposed to date, the topological modes are mixed with bulk soft modes, which organize themselves in Weyl loops. Here, we report the design of a 3D topological metamaterial without Weyl lines and with a uniform polarization that leads to an asymmetry between the number of soft modes on opposing surfaces. We then use this construction to localize topological soft modes in interior regions of the material by including defect lines—dislocation loops—that are unique to three dimensions. We derive a general formula that relates the difference in the number of soft modes and states of self-stress localized along the dislocation loop to the handedness of the vector triad formed by the lattice polarization, Burgers vector, and dislocation-line direction. Our findings suggest a strategy for preprogramming failure and softness localized along lines in 3D, while avoiding extended soft Weyl modes.
Soft-Collinear Mode for Jet Rates in Soft-Collinear Effective Theory
Chien, Yang-Ting; Lee, Christopher; Hornig, Andrew
2016-01-29
We propose the addition of a new "soft-collinear" mode to soft collinear effective theory (SCET) below the usual soft scale to factorize and resum logarithms of jet radii R in jet cross sections. We consider exclusive 2-jet cross sections in e +e - collisions with an energy veto Λ on additional jets. The key observation is that there are actually two pairs of energy scales whose ratio is R: the transverse momentum QR of the energetic particles inside jets and their total energy Q, and the transverse momentum ΛR of soft particles that are cut out of the jet cones and their energy Λ. The soft-collinear mode is necessary to factorize and resum logarithms of the latter hierarchy. We show how this factorization occurs in the jet thrust cross section for cone and k T-type algorithms at O(α s) and using the thrust cone algorithm at O(αmore » $$2\\atop{s}$$). We identify the presence of hard-collinear, in-jet soft, global (veto) soft, and soft-collinear modes in the jet thrust cross section. We also observe here that the in-jet soft modes measured with thrust are actually the "csoft" modes of the theory SCET +. We dub the new theory with both csoft and soft-collinear modes "SCET ++". We go on to explain the relation between the "unmeasured" jet function appearing in total exclusive jet cross sections and the hard-collinear and csoft functions in measured jet thrust cross sections. We do not resum logs that are non-global in origin, arising from the ratio of the scales of soft radiation whose thrust is measured at Q$${{\\tau}}$$/R and of the soft-collinear radiation at 2ΛR. Their resummation would require the introduction of additional operators beyond those we consider here. The steps we outline here are a necessary part of summing logs of R that are global in nature and have not been factorized and resummed beyond leading-log level previously.« less
Soft-Collinear Mode for Jet Rates in Soft-Collinear Effective Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Yang-Ting; Lee, Christopher; Hornig, Andrew
We propose the addition of a new "soft-collinear" mode to soft collinear effective theory (SCET) below the usual soft scale to factorize and resum logarithms of jet radii R in jet cross sections. We consider exclusive 2-jet cross sections in e +e - collisions with an energy veto Λ on additional jets. The key observation is that there are actually two pairs of energy scales whose ratio is R: the transverse momentum QR of the energetic particles inside jets and their total energy Q, and the transverse momentum ΛR of soft particles that are cut out of the jet cones and their energy Λ. The soft-collinear mode is necessary to factorize and resum logarithms of the latter hierarchy. We show how this factorization occurs in the jet thrust cross section for cone and k T-type algorithms at O(α s) and using the thrust cone algorithm at O(αmore » $$2\\atop{s}$$). We identify the presence of hard-collinear, in-jet soft, global (veto) soft, and soft-collinear modes in the jet thrust cross section. We also observe here that the in-jet soft modes measured with thrust are actually the "csoft" modes of the theory SCET +. We dub the new theory with both csoft and soft-collinear modes "SCET ++". We go on to explain the relation between the "unmeasured" jet function appearing in total exclusive jet cross sections and the hard-collinear and csoft functions in measured jet thrust cross sections. We do not resum logs that are non-global in origin, arising from the ratio of the scales of soft radiation whose thrust is measured at Q$${{\\tau}}$$/R and of the soft-collinear radiation at 2ΛR. Their resummation would require the introduction of additional operators beyond those we consider here. The steps we outline here are a necessary part of summing logs of R that are global in nature and have not been factorized and resummed beyond leading-log level previously.« less
The tracer diffusion coefficient of soft nanoparticles in a linear polymer matrix
Imel, Adam E.; Rostom, Sahar; Holley, Wade; ...
2017-03-09
The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and are often difficult to determine experimentally. To address this shortcoming, we have developed a novel method to determine the tracer diffusion coefficient of soft polystyrene nanoparticles in a linear polystyrene matrix. Monitoring the interdiffusion of soft nanoparticles into a linear polystyrene matrix provides the mutual diffusion coefficient of this system, from which the tracer diffusion coefficient of the soft nanoparticle can be determined using the slow mode theory. Utilizing this protocol, the role of nanoparticle molecular weight and rigidity on its tracer diffusion coefficient is provided. These resultsmore » demonstrate that the diffusive behavior of these soft nanoparticles differ from that of star polymers, which is surprising since our recent studies suggest that the nanoparticle interacts with a linear polymer similarly to that of a star polymer. It appears that these deformable nanoparticles mostly closely mimic the diffusive behavior of fractal macromolecular architectures or microgels, where the transport of the nanoparticle relies on the cooperative motion of neighboring linear chains. Finally, the less cross-linked, and thus more deformable, nanoparticles diffuse faster than the more highly crosslinked nanoparticles, presumably because the increased deformability allows the nanoparticle to distort and fit into available space.« less
The Extreme Mechanics of Soft Structures
NASA Astrophysics Data System (ADS)
Reis, Pedro
2015-03-01
I will present a series of experimental investigations on the rich behavior of soft mechanical structures, which, similarly to soft materials, can undergo large deformations under a variety of loading conditions. Soft structures typically comprise slender elements that can readily undergo mechanical instabilities to achieve extreme flexibility and reversible reconfigurations. This field has came to be warmly known as `Extreme Mechanics', where one of the fundamental challenges lies in rationalizing the geometric nonlinearities that arise in the post-buckling regime. I shall focus on problems involving thin elastic rods and shells, through examples ranging from the deployment of submarine cables onto the seabed, locomotion of uniflagellar bacteria, crystallography of curved wrinkling and its usage for active aerodynamic drag reduction. The main common feature underlying this series of studies is the prominence of geometry, and its interplay with mechanics, in dictating complex mechanical behavior that is relevant and applicable over a wide range of length scales. Moreover, our findings suggest that we rethink our relationship with mechanical instabilities which, rather than modes of failure, can be embraced as opportunities for functionality that are scalable, reversible, and robust. The author knowledges financial support from the National Science Foundation, CMMI-1351449 (CAREER).
Pressure-induced structural transition in chalcopyrite ZnSiP 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less
Comparative face-shear piezoelectric properties of soft and hard PZT ceramics
NASA Astrophysics Data System (ADS)
Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin
2015-12-01
The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.
Yield stress in amorphous solids: A mode-coupling-theory analysis
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic
2013-11-01
The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.
Soft Vibrational Modes Predict Breaking Events during Force-Induced Protein Unfolding.
Habibi, Mona; Plotkin, Steven S; Rottler, Jörg
2018-02-06
We investigate the correlation between soft vibrational modes and unfolding events in simulated force spectroscopy of proteins. Unfolding trajectories are obtained from molecular dynamics simulations of a Gō model of a monomer of a mutant of superoxide dismutase 1 protein containing all heavy atoms in the protein, and a normal mode analysis is performed based on the anisotropic network model. We show that a softness map constructed from the superposition of the amplitudes of localized soft modes correlates with unfolding events at different stages of the unfolding process. Soft residues are up to eight times more likely to undergo disruption of native structure than the average amino acid. The memory of the softness map is retained for extensions of up to several nanometers, but decorrelates more rapidly during force drops. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Finite-Element Methods for Real-Time Simulation of Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay
2003-01-01
Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.
Aeroelastic Stability of A Soft-Inplane Gimballed Tiltrotor Model In Hover
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross
2001-01-01
Soft-inplane rotor systems can significantly reduce the inplane rotor loads generated during the maneuvers of large tiltrotors, thereby reducing the strength requirements and the associated structural weight of the hub. Soft-inplane rotor systems. however, are subject to instabilities associated with ground resonance, and for tiltrotors this instability has increased complexity as compared to a conventional helicopter. Researchers at Langley Research Center and Bell Helicopter-Textron, Inc. have completed ail initial study of a soft-inplane gimballed tiltrotor model subject to ground resonance conditions in hover. Parametric variations of the rotor collective pitch and blade root damping, and their associated effects oil the model stability were examined. Also considered in the study was the effectiveness of ail active swash-plate and a generalized predictive control (GPC) algorithm for stability augmentation of the ground resonance conditions. Results of this study show that the ground resonance behavior of a gimballed soft-inplane tiltrotor can be significantly different from that of a classical soft-inplane helicopter rotor. The GPC-based active swash-plate was successfully implemented, and served to significantly augment damping of the critical modes to an acceptable value.
Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Giannakis, Dimitrios
2009-06-01
Free-surface Hartmann flow is the parallel flow of a viscous, electrically conducting, capillary fluid on a planar surface, subject to gravity and a flow- normal magnetic field. This type of flow arises in a variety of industrial and astrophysical contexts, including liquid-metal walls in fusion devices, heavy- ion accelerator targets, and surface layers of white dwarfs and neutron stars. Typically, the Reynolds number, Re >10 4 , is high, and the background magnetic field is strong ( Ha >100, where the Hartmann number, Ha , measures the square root of the ratio of electromagnetic to viscous forces). On the other hand, the magnetic Prandtl number, Pm (the ratio of viscous to magnetic diffusivity), of laboratory fluids is small (e.g., Pm <10 -4 for liquid metals), as is the case in a number of astrophysical models. When the background magnetic field is zero, free-surface Hartmann flow exhibits the so-called soft and hard instability modes; the former being a surface wave destabilized by viscous stresses acting on the free surface, whereas the latter is a shear mode destabilized by positive Reynolds stress associated with an internal critical layer. We study in detail the influence of the external magnetic field on these two instabilities, working in the regime Pm <10^-4. We also consider flows in the inductionless limit, Pr [arrow right]0, where magnetic field perturbations diffuse infinitely fast, and the sole MHD effect is a Lorentz force arising from currents induced by the perturbed fluid motion within the background magnetic field. We have developed a spectral Galerkin method to solve the coupled Orr- Sommerfeld and induction equations, which, in conjunction with suitable stress conditions at the free surface and continuity conditions for the magnetic field, govern the linear stability of free-surface Hartmann flow. Our scheme's discrete bases for the velocity and magnetic fields consist of linear combinations of Legendre polynomials, chosen according to the order of the Sobolev spaces of the continuous problem. The orthogonality properties of the bases solve the matrix-coefficient growth problem of the discrete stability operators, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p =3000 with p -independent roundoff error. We find that, because it is a critical-layer instability (moderately modified by the presence of the free surface), the hard mode exhibits similar behavior to the even unstable mode in the corresponding closed-channel flow, in terms of both the weak influence of Pm on its neutral-stability curve and the monotonic increase of its critical Reynolds number, Re c , with the Hartmann number. In contrast, the soft mode's stability properties exhibit the novel behavior of differing markedly between problems with small, but nonzero, Pm and their counterparts in the inductionless limit. Notably, the critical Reynolds number of the soft mode grows exponentially with Ha in inductionless problems, but when Pm is nonzero that growth is suppressed to either a sublinearly increasing, or a decreasing function of Ha (respectively when the lower wall is an electrical insulator or a perfect conductor). In the insulating-wall case, we also observe pairs of counter-propagating Alfvén waves, the upstream- propagating wave undergoing an instability at high Alfvén numbers. We attribute the observed Pm -sensitivity of the soft instability to the strong-field behavior of the participating inductionless mode, which, even though stabilized by the magnetic field, approaches neutral stability as Ha grows. This near-equilibrium is consistent with a balance between Lorentz and gravitational forces, and renders the mode susceptible to effects associated with the dynamical response of the magnetic field to the flow (which vanishes in the inductionless limit), even when the magnetic diffusivity is large. The boundary conditions play a major role in the magnetic field response to the flow, since they determine (i) the properties of the steady-state induced current, which couples magnetic perturbations to the velocity field, and (ii) the presence or not of magnetic modes in the spectrum (these modes are not part of the spectrum of conducting-wall problems), which interact with the hydrodynamic ones, including the soft mode. In general, our analysis indicates that the inductionless approximation must be used with caution when dealing with free-surface MHD.
Femtosecond resolution of soft mode dynamics in structural phase transitions
NASA Technical Reports Server (NTRS)
Dougherty, Thomas P.; Wiederrecht, Gary P.; Nelson, Keith A.; Garrett, Mark H.; Jensen, Hans P.; Warde, Cardinal
1992-01-01
The microscopic pathway along which ions or molecules in a crystal move during structural phase transition can often be described in terms of a collective vibrational mode of the lattice. In many cases, this mode, called a 'soft' phonon mode because of its characteristically low frequency near the phase transition temperature, is difficult to characterize through conventional frequency-domain spectroscopies such as light or neutron scattering. A femtosecond time-domain analog of light-scattering spectroscopy called impulsive stimulated Raman scattering (ISRS) has been used to examine the soft modes of two perovskite ferroelectric crystals. The low-frequency lattice dynamics of KNbO3 and BaTiO3 are clarified in a manner that permits critical evaluation of microscopic models for their ferroelectric transitions. The results illustrate the advantages of ISRS over conventional Raman spectroscopy of low-frequency, heavily damped soft modes.
Thomas, Geethu E.; Geetha, Kiran A.; Augustine, Lesly; Mamiyil, Sabu; Thomas, George
2016-01-01
Mode of reproduction is generally considered to have long-range evolutionary implications on population survival. Because sexual reproduction produces genetically diverse genotypes, this mode of reproduction is predicted to positively influence the success potential of offspring in evolutionary arms race with parasites (Red queen) whereas, without segregation and recombination, the obligate asexual multiplication may push a species into extinction due to the steady accumulation of deleterious mutations (Muller’s ratchet). However, the extent of linearity between reproductive strategies, genetic diversity and population fitness, and the contributions of different breeding strategies to population fitness are yet to be understood clearly. Genus Zingiber belonging to the pan-tropic family Zingiberaceae represents a good system to study contributions of different breeding behavior on genetic diversity and population fitness, as this genus comprises species with contrasting breeding systems. In this study, we analyzed breeding behavior, amplified fragment length polymorphism diversity and response to the soft-rot pathogen Pythium aphanidermatum in 18 natural populations of three wild Zingiber spp.: Z. neesanum, Z. nimmonii, and Z. zerumbet, together with the obligately asexual cultivated congener, ginger (Z. officinale). Ginger showed an exceptionally narrow genetic base, and adding to this, all the tested cultivars were uniformly susceptible to soft-rot. Concordant with the postulates of Muller’s ratchet, the background selection may be continuously pushing ginger into the ancestral state, rendering it inefficient in host-pathogen coevolution. Z. neesanum and Z. nimmonii populations were sexual and genetically diverse; however, contrary to Red Queen expectations, the populations were highly susceptible to soft-rot. Z. zerumbet showed a hemiclonal breeding behavior. The populations inhabiting forest understory were large and continuous, sexual and genetically diverse, but were susceptible, whereas populations inhabiting the revenue land were fragmented and monoclonal, but were resistant. It may be possible that, when genetic recombination becomes at a premium due to the genetic constraints imparted by habitat fragmentation or pathogen pressure, Z. zerumbet PMID:28066470
Experimental soft-matter science
NASA Astrophysics Data System (ADS)
Nagel, Sidney R.
2017-04-01
Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label "soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far from equilibrium, nonlinear, thermal and entropic, slow, observable, gravity affected, patterned, nonlocal, interfacially elastic, memory forming, and active. This is only a partial list of how matter created from large component particles is distinct from "hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium behavior is confronted in biology, chemistry, geophysics, astrophysics, and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on 30-31 January 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research.
Generalization of soft phonon modes
NASA Astrophysics Data System (ADS)
Rudin, Sven P.
2018-04-01
Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. Here, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system with N atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, PVM0, represents the 3 N -dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, PVM0 serves as a generalization of soft phonon modes. At low temperatures, PVM0 reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case PVM0 culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, PVM0 can be equally well calculated on either side of the structural phase transition. Two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the β phase of uranium, the higher-symmetry structure of which stabilizes with temperature.
NASA Astrophysics Data System (ADS)
Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.
2018-02-01
Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.
Direct link between boson-peak modes and dielectric α-relaxation in glasses.
Cui, Bingyu; Milkus, Rico; Zaccone, Alessio
2017-02-01
We compute the dielectric response of glasses starting from a microscopic system-bath Hamiltonian of the Zwanzig-Caldeira-Leggett type and using an ansatz from kinetic theory for the memory function in the resulting generalized Langevin equation. The resulting framework requires the knowledge of the vibrational density of states (DOS) as input, which we take from numerical evaluation of a marginally stable harmonic disordered lattice, featuring a strong boson peak (excess of soft modes over Debye ∼ω_{p}^{2} law). The dielectric function calculated based on this ansatz is compared with experimental data for the paradigmatic case of glycerol at T≲T_{g}. Good agreement is found for both the reactive (real) part of the response and for the α-relaxation peak in the imaginary part, with a significant improvement over earlier theoretical approaches. On the low-frequency side of the α peak, the fitting supports the presence of ∼ω_{p}^{4} modes at vanishing eigenfrequency as recently shown [E. Lerner, G. During, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.035501]. α-wing asymmetry and stretched-exponential behavior are recovered by our framework, which shows that these features are, to a large extent, caused by the soft boson-peak modes in the DOS.
NASA Astrophysics Data System (ADS)
Liu, Lei; Li, Yaning
2018-07-01
A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.
Soft tilt and rotational modes in the hybrid improper ferroelectric Ca3Mn2O7
NASA Astrophysics Data System (ADS)
Glamazda, A.; Wulferding, D.; Lemmens, P.; Gao, B.; Cheong, S.-W.; Choi, K.-Y.
2018-03-01
Raman spectroscopy is employed to probe directly the soft rotation and tilting modes, which are two primary order parameters predicted in the hybrid improper ferroelectric material Ca3Mn2O7 . We observe a giant softening of the 107 -cm-1 octahedron tilting mode by 26 cm-1 on heating through the structural transition from a ferroelectric to paraelectric orthorhombic phase. This is contrasted by a small softening of the 150 -cm-1 rotational mode by 6 cm-1. In the intermediate phase, the competing soft modes with different symmetries coexist, bringing about many-faceted anomalies in spin excitations and lattice vibrations. Our work demonstrates that the soft rotation and tilt patterns, relying on a phase-transition path, are a key factor in determining ferroelectric, magnetic, and lattice properties of Ca3Mn2O7 .
Generalization of soft phonon modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudin, Sven P.
Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less
Generalization of soft phonon modes
Rudin, Sven P.
2018-04-27
Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
Jiao, Ti-Feng; Gao, Feng-Qing; Shen, Xi-Hai; Zhang, Qing-Rui; Zhang, Xian-Fu; Zhou, Jing-Xin; Gao, Fa-Ming
2013-01-01
The self-assembly of small functional molecules into supramolecular structures is a powerful approach toward the development of new nanoscale materials and devices. As a class of self-assembled materials, low weight molecular organic gelators, organized in special nanoarchitectures through specific non-covalent interactions, has become one of the hot topics in soft matter research due to their scientific values and many potential applications. Here, a bolaform cholesteryl imide compound with conjugated aromatic spacer was designed and synthesized. The gelation behaviors in 23 solvents were investigated as efficient low-molecular-mass organic gelator. The experimental results indicated that the morphologies and assembly modes of as-formed organogels can be regulated by changing the kinds of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecule self-assemble into different aggregates, from wrinkle and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes. Finally, some rational assembly modes in organogels were proposed and discussed. The present work may give some insight to the design and character of new organogelators and soft materials with special structures. PMID:28788428
Predicting plasticity with soft vibrational modes: from dislocations to glasses.
Rottler, Jörg; Schoenholz, Samuel S; Liu, Andrea J
2014-04-01
We show that quasilocalized low-frequency modes in the vibrational spectrum can be used to construct soft spots, or regions vulnerable to rearrangement, which serve as a universal tool for the identification of flow defects in solids. We show that soft spots not only encode spatial information, via their location, but also directional information, via directors for particles within each soft spot. Single crystals with isolated dislocations exhibit low-frequency phonon modes that localize at the core, and their polarization pattern predicts the motion of atoms during elementary dislocation glide in two and three dimensions in exquisite detail. Even in polycrystals and disordered solids, we find that the directors associated with particles in soft spots are highly correlated with the direction of particle displacements in rearrangements.
Strain and ferroelectric soft-mode induced superconductivity in strontium titanate
NASA Astrophysics Data System (ADS)
Dunnett, K.; Narayan, Awadhesh; Spaldin, N. A.; Balatsky, A. V.
2018-04-01
We investigate the effects of strain on superconductivity with particular reference to SrTiO3. Assuming that a ferroelectric mode that softens under tensile strain is responsible for the coupling, an increase in the critical temperature and range of carrier densities for superconductivity is predicted, while the peak of the superconducting dome shifts towards lower carrier densities. Using a Ginzburg-Landau approach in 2D, we find a linear dependence of the critical temperature on strain: if the couplings between the order parameter and strains in different directions differ while their sum is fixed, different behaviors under uniaxial and biaxial strain can be understood.
Systematic Analysis of the Effects of Mode Conversion on Thermal Radiation from Neutron Stars
NASA Astrophysics Data System (ADS)
Yatabe, Akihiro; Yamada, Shoichi
2017-12-01
In this paper, we systematically calculate the polarization in soft X-rays emitted from magnetized neutron stars, which are expected to be observed by next-generation X-ray satellites. Magnetars are one of the targets for these observations. This is because thermal radiation is normally observed in the soft X-ray band, and it is thought to be linearly polarized because of different opacities for two polarization modes of photons in the magnetized atmosphere of neutron stars and the dielectric properties of the vacuum in strong magnetic fields. In their study, Taverna et al. illustrated how strong magnetic fields influence the behavior of the polarization observables for radiation propagating in vacuo without addressing a precise, physical emission model. In this paper, we pay attention to the conversion of photon polarization modes that can occur in the presence of an atmospheric layer above the neutron star surface, computing the polarization angle and fraction and systematically changing the magnetic field strength, radii of the emission region, temperature, mass, and radii of the neutron stars. We confirmed that if plasma is present, the effects of mode conversion cannot be neglected when the magnetic field is relatively weak, B∼ {10}13 {{G}}. Our results indicate that strongly magnetized (B≳ {10}14 {{G}}) neutron stars are suitable to detect polarizations, but not-so-strongly magnetized (B∼ {10}13 {{G}}) neutron stars will be the ones to confirm the mode conversion.
Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
Jammed Humans in High-Density Crowd Disasters
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Sumpter, David; Silverberg, Jesse
When people gather in large groups like those found at Black Friday sales events, pilgrimages, heavy metal concerts, and parades, crowd density often becomes exceptionally high. As a consequence, these events can produce tragic outcomes such as stampedes and ''crowd crushes''. While human collective motion has been studied with active particle simulations, the underlying mechanisms for emergent behavior are less well understood. Here, we use techniques developed to study jammed granular materials to analyze an active matter model inspired by large groups of people gathering at a point of common interest. In the model, a single behavioral rule combined with body-contact interactions are sufficient for the emergence of a self-confined steady state, where particles fluctuate around a stable position. Applying mode analysis to this system, we find evidence for Goldstone modes, soft spots, and stochastic resonance, which may be the preferential mechanisms for dangerous emergent collective motions in crowds.
NASA Astrophysics Data System (ADS)
Jankowska-Sumara, Irena; Ko, Jae-Hyeon; Podgórna, Maria; Oh, Soo Han; Majchrowski, Andrzej
2017-09-01
Raman light scattering was used to detect the sequence of transitions in a PbHf1-xSnxO3 (PHS) single crystal with x = 0.30 in a temperature range of 77-873 K. Changes of Raman spectra were observed in the vicinity of structural phase transitions: between the antiferroelectric (AFE1)-antiferroelectric (AFE2)—intermediate—paraelectric phases. Light scattering and dielectric investigations were used to find out the nature and sequence of the phase transition, as well as the large dielectric permittivity values measured at the phase transition, by searching for the soft-phonon-mode behavior. The experimentally recorded spectra were analyzed in terms of the damped-harmonic oscillator model for the phonon bands. It is demonstrated that the structural phase transformations in PHS can be considered as the result of softening of many modes, not only the ferroelectric one. It was also proved that locally broken symmetry effects are present at temperatures far above the Curie temperature and are connected with the softening of two optic modes of different nature.
Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.
Kim, Jong-Woong; Jung, Seung-Boo
2012-04-01
The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.
GoQBot: a caterpillar-inspired soft-bodied rolling robot.
Lin, Huai-Ti; Leisk, Gary G; Trimmer, Barry
2011-06-01
Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.
Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.
2003-01-01
A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.
Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross
2003-01-01
A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.
Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick
2006-06-15
We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.
BMS symmetry, soft particles and memory
NASA Astrophysics Data System (ADS)
Chatterjee, Atreya; Lowe, David A.
2018-05-01
In this work, we revisit unitary irreducible representations of the Bondi–Metzner–Sachs (BMS) group discovered by McCarthy. Representations are labelled by an infinite number of supermomenta in addition to 4-momentum. Tensor products of these irreducible representations lead to particle-like states dressed by soft gravitational modes. Conservation of 4-momentum and supermomentum in the scattering of such states leads to a memory effect encoded in the outgoing soft modes. We note there exist irreducible representations corresponding to soft states with strictly vanishing 4-momentum, which may nevertheless be produced by scattering of particle-like states. This fact has interesting implications for the S-matrix in gravitational theories.
Role of soft-iron impellers on the mode selection in the von kármán-sodium dynamo experiment.
Giesecke, André; Stefani, Frank; Gerbeth, Gunter
2010-01-29
A crucial point for the understanding of the von Kármán-sodium (VKS) dynamo experiment is the influence of soft-iron impellers. We present numerical simulations of a VKS-like dynamo with a localized permeability distribution that resembles the shape of the flow driving impellers. It is shown that the presence of soft-iron material essentially determines the dynamo process in the VKS experiment. An axisymmetric magnetic field mode can be explained by the combined action of the soft-iron disk and a rather small alpha effect parametrizing the induction effects of unresolved small scale flow fluctuations.
NASA Astrophysics Data System (ADS)
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson
2018-05-01
The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.
NASA Astrophysics Data System (ADS)
Chay, Junegone; Kim, Chul
2018-05-01
We reanalyze the factorization theorems for the Drell-Yan process and for deep inelastic scattering near threshold, as constructed in the framework of the soft-collinear effective theory (SCET), from a new, consistent perspective. In order to formulate the factorization near threshold in SCET, we should include an additional degree of freedom with small energy, collinear to the beam direction. The corresponding collinear-soft mode is included to describe the parton distribution function (PDF) near threshold. The soft function is modified by subtracting the contribution of the collinear-soft modes in order to avoid double counting on the overlap region. As a result, the proper soft function becomes infrared finite, and all the factorized parts are free of rapidity divergence. Furthermore, the separation of the relevant scales in each factorized part becomes manifest. We apply the same idea to the dihadron production in e+e- annihilation near threshold, and show that the resultant soft function is also free of infrared and rapidity divergences.
Monopolar soft-mode coagulation using hemostatic forceps for peptic ulcer bleeding.
Yamasaki, Yasushi; Takenaka, Ryuta; Nunoue, Tomokazu; Kono, Yoshiyasu; Takemoto, Koji; Taira, Akihiko; Tsugeno, Hirofumi; Fujiki, Shigeatsu
2014-01-01
Upper gastrointestinal hemorrhage from bleeding peptic ulcer is sometimes difficult to treat by conventional endoscopic methods. Recently, monopolar electrocoagulation using a soft-coagulation system and hemostatic forceps (soft coagulation) has been used to prevent bleeding during endoscopic submucosal dissection. The aim of this study was to assess the safety and efficacy of soft coagulation in the treatment of bleeding peptic ulcer. A total of 39 patients with peptic ulcers were treated using soft coagulation at our hospital between January 2005 and March 2010. Emergency treatment employed an ERBE soft-mode coagulation system using hemostatic forceps. Second-look endoscopy was performed to evaluate the efficacy of prior therapy. Initial hemostasis was defined as accomplished by soft coagulation, with or without other endoscopic therapy prior to soft coagulation. The rate of initial hemostasis, rebleeding, and ultimate hemostasis were retrospectively analyzed. The study subjects were 31 men and 8 women with a mean age of 68.3±13.7 years, with 29 gastric ulcers and 10 duodenal ulcers. Initial hemostasis was achieved in 37 patients (95%). During follow-up, bleeding recurred in two patients, who were retreated with soft coagulation. The monopolar soft coagulation is feasible and safe for treating bleeding peptic ulcers.
NASA Astrophysics Data System (ADS)
Wei, Wei
2005-11-01
In low gravity, the stability of liquid bridges and other systems having free surfaces is affected by the ambient vibration of the spacecraft. Such vibrations are expected to excite capillary modes. The lowest unstable mode of cylindrical liquid bridges, the (2,0) mode, is particularly sensitive to the vibration when the ratio of the bridge length to the diameter approaches pi. In this work, a Plateau tank has been used to simulate the weightless condition. An optical system has been used to detect the (2,0) mode oscillation amplitude and generate an error signal which is determined by the oscillation amplitude. This error signal is used by the feedback system to produce proper voltages on the electrodes which are concentric with the electrically conducting, grounded bridge. A mode-coupled electrostatic stress is thus generated on the surface of the bridge. The feedback system is designed such that the modal force applied by the Maxwell stress can be proportional to the modal amplitude or modal velocity, which is the derivative of the modal amplitude. Experiments done in the Plateau tank demonstrate that the damping of the capillary oscillation can be enhanced by using the electrostatic stress in proportion to the modal velocity. On the other hand, using the electrostatic stress in proportion to the modal amplitude can raise the natural frequency of the bridge oscillation. If a spacecraft vibration frequency is close to a capillary mode frequency, the amplitude gain can be used to shift the mode frequency away from that of the spacecraft and simultaneously add some artificial damping to further reduce the effect of g-jitter. It is found that the decay of a bridge (2,0) mode oscillation is well modeled by a Duffing equation with a small cubic soft-spring term. The nonlinearity of the bridge (3,0) mode is also studied. The experiments reveal the hysteresis of (3,0) mode bridge oscillations, and this behavior is a property of the soft nonlinearity of the bridge. Relevant to acoustical bridge stabilization, the theoretical radiation force on a compressible cylinder in an acoustic standing wave is also investigated.
Localization of soft modes at the depinning transition
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Bouzat, Sebastian; Kolton, Alejandro B.; Rosso, Alberto
2018-02-01
We characterize the soft modes of the dynamical matrix at the depinning transition, and compare the matrix with the properties of the Anderson model (and long-range generalizations). The density of states at the edge of the spectrum displays a universal linear tail, different from the Lifshitz tails. The eigenvectors are instead very similar in the two matrix ensembles. We focus on the ground state (soft mode), which represents the epicenter of avalanche instabilities. We expect it to be localized in all finite dimensions, and make a clear connection between its localization length and the Larkin length of the depinning model. In the fully connected model, we show that the weak-strong pinning transition coincides with a peculiar localization transition of the ground state.
The Advanced Light Source (ALS) Slicing Undulator Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, P. A.; Glover, T. E.; Plate, D.
2007-01-19
A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.
Martin, James E.; Swol, Frank Van
2015-07-10
We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, themore » case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.« less
Luo, Ming; Skorina, Erik H; Tao, Weijia; Chen, Fuchen; Ozel, Selim; Sun, Yinan; Onal, Cagdas D
2017-06-01
Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture that offers proprioceptive sensing of pressure-operated bending actuation modules. We present integrated custom magnetic curvature sensors embedded in the neutral axis of bidirectional bending actuators. We describe our recent advances in the design and fabrication of these modules to improve the reliability of proprioceptive curvature feedback over our prior work. In particular, we study the effect of dimensional parameters on improving the linearity of curvature measurements. In addition, we present a sliding-mode controller formulation that drives the binary solenoid valve states directly, giving the control system the ability to hold the actuator steady without continuous pressurization and depressurization. In comparison to other methods, this control approach does not rely on pulse width modulation and hence offers superior dynamic performance (i.e., faster response rates). Our experimental results indicate that the proposed soft robotic modules offer a large range of bending angles with monotonic and more linear embedded curvature measurements, and that the direct sliding-mode control system exhibits improved bandwidth and a notable reduction in binary valve actuation operations compared to our earlier iterative sliding-mode controller.
Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Glinchuk, Maya D.; Eliseev, Eugene A.; Vysochanskii, Yulian M.
2017-09-01
Using the Landau-Ginzburg-Devonshire theory and one component approximation, we examined the conditions of the soft acoustic phonon mode (A-mode) appearance in a ferroelectric (FE) depending on the magnitude of the flexoelectric coefficient f and temperature T . If the flexocoefficient f is equal to the temperature-dependent critical value fcr(T ) at some temperature T =TIC , the A-mode frequency tends to zero at wave vector k =k0cr , and the spontaneous polarization becomes spatially modulated in the temperature range T
Topological modes bound to dislocations in mechanical metamaterials
NASA Astrophysics Data System (ADS)
Paulose, Jayson; Chen, Bryan Gin-Ge; Vitelli, Vincenzo
2015-02-01
Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable vibrational properties, that originate in the geometry of their unit cell. Often at the heart of such unusual behaviour is a soft mode: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, soft modes become the building blocks of robots and smart materials. Here, we demonstrate the existence of topological soft modes that can be positioned at desired locations in a metamaterial while being robust against a wide range of structural deformations or changes in material parameters. These protected modes, localized at dislocations in deformed kagome and square lattices, are the mechanical analogue of topological states bound to defects in electronic systems. We create physical realizations of the topological modes in prototypes of kagome lattices built out of rigid triangular plates. We show mathematically that they originate from the interplay between two Berry phases: the Burgers vector of the dislocation and the topological polarization of the lattice. Our work paves the way towards engineering topologically protected nanomechanical structures for molecular robotics or information storage and read-out.
Efficiency of soft tissue incision with a novel 445-nm semiconductor laser.
Braun, Andreas; Kettner, Moritz; Berthold, Michael; Wenzler, Johannes-Simon; Heymann, Paul Günther Baptist; Frankenberger, Roland
2018-01-01
Using a 445-nm semiconductor laser for tissue incision, an effective cut is expected due to the special absorption properties of blue laser light in soft tissues. The aim of the present study was the histological evaluation of tissue samples after incision with a 445-nm diode laser. Forty soft tissue specimens were obtained from pork oral mucosa and mounted on a motorized linear translation stage. The handpiece of a high-frequency surgery device, a 970-nm semiconductor laser, and a 445-nm semiconductor laser were connected to the slide, allowing a constant linear movement (2 mm/s) and the same distance of the working tip to the soft tissue's surface. Four incisions were made each: (I) 970-nm laser with conditioned fiber tip, contact mode at 3-W cw; (II-III): 445-nm laser with non-conditioned fiber tip, contact mode at 2-W cw, and non-contact mode (1 mm) at 2 W; and (IV): high-frequency surgery device with straight working tip, 90° angulation, contact mode at 50 W. Histological analysis was performed after H&E staining of the embedded specimens at 35-fold magnification. The comparison of the incision depths showed a significant difference depending on the laser wavelength and the selected laser parameters. The highest incision depth was achieved with the 445-nm laser contact mode (median depth 0.61 mm, min 0.26, max 1.17, interquartile range 0.58) (p < 0.05) with the lowest amount of soft tissue denaturation (p < 0.05). The lowest incision depth was measured for the high-frequency surgical device (median depth 0.36 mm, min 0.12, max 1.12, interquartile range 0.23) (p < 0.05). Using a 445-nm semiconductor laser, a higher cutting efficiency can be expected when compared with a 970-nm diode laser and high-frequency surgery. Even the 445-nm laser application in non-contact mode shows clinically acceptable incision depths without signs of extensive soft tissue denaturation.
Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals.
Cherukara, Mathew J; Sasikumar, Kiran; Cha, Wonsuk; Narayanan, Badri; Leake, Steven J; Dufresne, Eric M; Peterka, Tom; McNulty, Ian; Wen, Haidan; Sankaranarayanan, Subramanian K R S; Harder, Ross J
2017-02-08
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behavior is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use X-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic "hard" or inhomogeneous and "soft" or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystal structure obtained from the ultrafast X-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Suzuki, Y.; Sakakibara, S.; Watanabe, K. Y.; Ida, K.; Goto, M.; Du, X. D.; Narushima, Y.; Takemura, Y.; Yamada, H.
In the high beta experiments of the Large Helical Device (LHD), the plasma tends to expand from the last closed flux surface (LCFS) determined by the vacuum magnetic field. The pressure/temperature gradient in the external region is finite. The scale length of the pressure profile does not change so much even when the mean free path of electrons exceeds the connection length of the magnetic field line to the wall. There appear MHD instabilities with amplitude of 10-4 of the toroidal magnetic field. From the mode number of the activities (m/n = 2/3, 1/2, 2/4), the location of the corresponding rational surface is outside the vacuum LCFS. The location of the mode is consistent with the fluctuation measurement, e.g., soft X-ray detector arrays. The MHD mode localized in the magnetic stochastic region is affected by the magnetic field structure estimated by the connection length to the wall using 3D equilibrium calculation.
Anelastic characterization of soft poroelastic materials by anelastography
NASA Astrophysics Data System (ADS)
Flores B, Carolina; Ammann, Jean Jacques; Rivera, Ricardo
2008-11-01
This paper presents the ID characterization of the local anelastic strain determined in soft poroelastic materials through acoustic scattering in a creep test configuration. Backscattering signals are obtained at successive times in a specimen submitted to a constant stress, applied coaxially to the acoustic beam of a 5 MHz ultrasonic transducer operated in pulse-echo mode. The local displacement is measured by determining the local shift between the RF traces by performing a running cross-correlation operation between equivalent segments extracted from two pairs of RF traces. The local strain the in the specimen is obtained as the displacement gradient. The method has been implemented on biphasic porous materials that present poroelastic behaviors such as synthetic latex sponges impregnated with viscous liquids. The strain/time curves have been interpreted through a continuous bimodal anelastic model (CBA), composed of an infinite set of Kelvin-Voigt cells connected in series with an elastic spring. The fit of an experimental strain/time curve selected at a specific depth through the CBA model allow characterizing the local anelastic behavior through a set of 7 characteristics parameters for the specimen at this location: three short-term and three long-term anelastic parameters and one elastic constant.
NASA Astrophysics Data System (ADS)
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
Leclerc, Gwladys E.; Debernard, Laetitia; Foucart, Félix; Robert, Ludovic; Pelletier, Kay M.; Charleux, Fabrice; Ehman, Richard; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine F.
2012-01-01
The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ = 3.45 kPa, η = 6.17 Pa.s) of the phantom and the Mooney-Rivlin coefficients were C10 = 1.09.10-2 MPa and C01 = −8.96.10-3 MPa corresponding to μ = 3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE. PMID:22284992
Leclerc, Gwladys E; Debernard, Laëtitia; Foucart, Félix; Robert, Ludovic; Pelletier, Kay M; Charleux, Fabrice; Ehman, Richard; Ho Ba Tho, Marie-Christine; Bensamoun, Sabine F
2012-04-05
The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
Investigation of the phase velocities of guided acoustic waves in soft porous layers.
Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F
2005-02-01
A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.
Effective description of domain wall strings
NASA Astrophysics Data System (ADS)
Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.
2018-04-01
The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.
Atomistic simulation of shocks in single crystal and polycrystalline Ta
NASA Astrophysics Data System (ADS)
Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.
2011-06-01
Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.
[INVITED] On the mechanisms of single-pulse laser-induced backside wet etching
NASA Astrophysics Data System (ADS)
Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.
2017-02-01
Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the ;soft; mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the ;hard; mode (at higher laser fluencies) are observed. In the ;soft; single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the ;soft; mode. In the ;hard; mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the ;hard; mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the ;soft; mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.
NASA Astrophysics Data System (ADS)
Wei, Gang; Zhang, Wei
2013-06-01
The deformation and fracture behavior of steel projectile impacting ceramic target is an interesting investigation topic. The deformation and failure behavior of projectile and target was investigated experimentally in the normal impact by different velocities. Lab-scale ballistic tests of AD95 ceramic targets with 20 mm thickness against two different hardness 38CrSi steel projectiles with 7.62 mm diameter have been conducted at a range of velocities from 100 to 1000 m/s. Experimental results show that, with the impact velocity increasing, for the soft projectiles, the deformation and fracture modes were mushrooming, shear cracking, petalling and fragmentation(with large fragments and less number), respectively; for the hard projectiles there are three deformation and fracture modes: mushrooming, shearing cracking and fragmentation(with small fragments and large number). All projectiles were rebound after impact. But, with the velocity change, the target failure modes have changed. At low velocity, only radial cracks were found; then circumferential cracks appeared with the increasing velocity; the ceramic cone occurred when the velocity reached 400 m/s above, and manifested in two forms: front surface intact at lower velocity and perforated at higher velocity. The higher velocity, the fragment size is smaller and more uniform distribution. The difference of ceramic target damage is not obvious after impacted by two kinds of projectiles with different hardness at the same velocity. National Natural Science Foundation of China (No.: 11072072).
Liu, Ting; Liu, Mengmeng; Dou, Su; Sun, Jiangman; Cong, Zifeng; Jiang, Chunyan; Du, Chunhua; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin
2018-03-27
A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.
Soft collinear effective theory for gravity
NASA Astrophysics Data System (ADS)
Okui, Takemichi; Yunesi, Arash
2018-03-01
We present how to construct a soft collinear effective theory (SCET) for gravity at the leading and next-to-leading powers from the ground up. The soft graviton theorem and decoupling of collinear gravitons at the leading power are manifest from the outset in the effective symmetries of the theory. At the next-to-leading power, certain simple structures of amplitudes, which are completely obscure in Feynman diagrams of the full theory, are also revealed, which greatly simplifies calculations. The effective Lagrangian is highly constrained by effectively multiple copies of diffeomorphism invariance that are inevitably present in gravity SCET due to mode separation, an essential ingredient of any SCET. Further explorations of effective theories of gravity with mode separation may shed light on Lagrangian-level understandings of some of the surprising properties of gravitational scattering amplitudes. A gravity SCET with an appropriate inclusion of Glauber modes may serve as a powerful tool for studying gravitational scattering in the Regge limit.
2015-01-01
Durotaxis, biased cell movement up a stiffness gradient on culture substrates, is one of the useful taxis behaviors for manipulating cell migration on engineered biomaterial surfaces. In this study, long-term durotaxis was investigated on gelatinous substrates containing a soft band of 20, 50, and 150 μm in width fabricated using photolithographic elasticity patterning; sharp elasticity boundaries with a gradient strength of 300 kPa/50 μm were achieved. Time-dependent migratory behaviors of 3T3 fibroblast cells were observed during a time period of 3 days. During the first day, most of the cells were strongly repelled by the soft band independent of bandwidth, exhibiting the typical durotaxis behavior. However, the repellency by the soft band diminished, and more cells crossed the soft band or exhibited other mixed migratory behaviors during the course of the observation. It was found that durotaxis strength is weakened on the substrate with the narrowest soft band and that adherent affinity-induced entrapment becomes apparent on the widest soft band with time. Factors, such as changes in surface topography, elasticity, and/or chemistry, likely contributing to the apparent diminishing durotaxis during the extended culture were examined. Immunofluorescence analysis indicated preferential collagen deposition onto the soft band, which is derived from secretion by fibroblast cells, resulting in the increasing contribution of haptotaxis toward the soft band over time. The deposited collagen did not affect surface topography or surface elasticity but did change surface chemistry, especially on the soft band. The observed time-dependent durotaxis behaviors are the result of the mixed mechanical and chemical cues. In the studies and applications of cell migratory behavior under a controlled stimulus, it is important to thoroughly examine other (hidden) compounding stimuli in order to be able to accurately interpret data and to design suitable biomaterials to manipulate cell migration. PMID:24851722
Hybrid 3D Printing of Soft Electronics.
Valentine, Alexander D; Busbee, Travis A; Boley, John William; Raney, Jordan R; Chortos, Alex; Kotikian, Arda; Berrigan, John Daniel; Durstock, Michael F; Lewis, Jennifer A
2017-10-01
Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hard and soft acids and bases: structure and process.
Reed, James L
2012-07-05
Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.
NASA Astrophysics Data System (ADS)
Chang, Jianhua; Zhu, Lingyan; Li, Hongxu; Xu, Fan; Liu, Binggang; Yang, Zhenbo
2018-01-01
Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction, correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and an extended detection range of 11 km.
Romanos, Georgios E; Belikov, Andrey V; Skrypnik, Alexei V; Feldchtein, Felix I; Smirnov, Michael Z; Altshuler, Gregory B
2015-07-01
Uncovering implants with lasers, while bloodless, has been associated with a risk of implant and bone overheating. The present study evaluated the effect of using a new generation of high-power diode lasers on the temperature of a dental implant and the surrounding tissues using an in vitro model. The implant temperature was measured at three locations using micro thermocouples. Collateral thermal damage of uncovered soft tissues was evaluated using NTBC stain. Implant temperature rise during and collateral thermal soft-tissue damage following implant uncovering with and without tissue air-cooling was studied using both the classic operational mode and the new thermo-optically powered (TOP) technology. For the classic surgical mode using a cork-initiated tip and constant laser power set at 3.4 W, the maximum temperature rise in the coronal and apical parts of the implant was 23.2 ± 4.1°С and 9.5 ± 1.8°С, respectively, while 1.5 ± 0.5 mm of collateral thermal damage of the soft tissue surrounding the implant model occurred. Using the TOP surgical tip with constant laser power reduced implant overheating by 30%; collateral thermal soft-tissue damage was 0.8 ± 0.2 mm. Using the TOP surgical mode with a tip temperature setting of 800°C and air-cooling reduced the implant temperature rise by more than 300%, and only 0.2 ± 0.1 mm of collateral thermal soft-tissue damage occurred, typical for optimized CO2 laser surgery. Furthermore, use of the new generation diode technology (TOP surgical mode) appeared to reduce the time required for implant uncovering by a factor of two, compared to the standard surgical mode. Use of the new generation diode technology (TOP surgical mode) may significantly reduce overheating of dental implants during uncovering and seems to be safer for the adjacent soft and hard tissues. Use of such diode lasers with air-cooling can radically reduce the rise in implant temperatures (by more than three times), potentially making this technology safe and effective for implant uncovering. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imrisek, M.; Faculty of Mathematics and Physics, Charles University in Prague, Prague; Weinzettl, V.
2014-11-15
The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.
Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D
2016-07-25
A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.
Kurkela, Aleksi; Vuorinen, Aleksi
2016-07-22
We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.
Observation of soft phonon mode in TbFe 3 ( BO 3 ) 4 by inelastic neutron scattering
Pavlovskiy, M. S.; Shaykhutdinov, Krill A.; Wu, L. S.; ...
2018-02-28
In this study, the phonon dispersion in terbium iron borate TbFe 3(BO 3) 4 has been measured by inelastic neutron scattering in a temperature range 180S=192.5 K and studied by ab initio calculations. Significant, but not complete, softening of the transverse acoustic (TA) branch has been observed at the corner of the Brillouin zone (Λ point) at temperatures T≳T S, in full agreement with theoretical calculations. Finally, the TA soft mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.
Observation of soft phonon mode in TbFe 3 ( BO 3 ) 4 by inelastic neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlovskiy, M. S.; Shaykhutdinov, Krill A.; Wu, L. S.
In this study, the phonon dispersion in terbium iron borate TbFe 3(BO 3) 4 has been measured by inelastic neutron scattering in a temperature range 180S=192.5 K and studied by ab initio calculations. Significant, but not complete, softening of the transverse acoustic (TA) branch has been observed at the corner of the Brillouin zone (Λ point) at temperatures T≳T S, in full agreement with theoretical calculations. Finally, the TA soft mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.
Shear thinning in soft particle suspensions
NASA Astrophysics Data System (ADS)
Voudouris, Panayiotis; van der Zanden, Berco; Florea, Daniel; Fahimi, Zahra; Wyss, Hans
2012-02-01
Suspensions of soft deformable particles are encountered in a wide range of food and biological materials. Examples are biological cells, micelles, vesicles or microgel particles. While the behavior of suspenions of hard spheres - the classical model system of colloid science - is reasonably well understood, a full understanding of these soft particle suspensions remains elusive. The relation between single particle properties and macroscopic mechanical behavior still remains poorly understood in these materials. Here we examine the surprising shear thinning behavior that is observed in soft particle suspensions as a function of particle softness. We use poly-N-isopropylacrylamide (p-NIPAM) microgel particles as a model system to study this effect in detail. These soft spheres show significant shear thinning even at very large Peclet numbers, where this would not be observed for hard particles. The degree of shear thinning is directly related to the single particle elastic properties, which we characterize by the recently developed Capillary Micromechanics technique. We present a simple model that qualitatively accounts for the observed behavior.
NASA Astrophysics Data System (ADS)
Dolino, G.; Berge, B.; Vallade, M.; Moussa, F.
1992-07-01
The origin of the incommensurate phase of quartz is attributed to a gradient interaction between the optical soft mode of the α-β transition of quartz and a transverse acoustic mode. To test this model high resolution inelastic neutron scattering studies of the lattice dynamics of quartz have been performed. For the first time, a resolved zone center soft mode has been observed in the β phase of quartz at 1 THz at 1 250 K, confirming the displacive character of this transition. Along [xi 0 0] a strong interaction has been observed between this soft mode and the acoustic branch with u_{xy} shear strain. The softening of the two mixed branches produced by this interaction has been followed by decreasing temperature. Near the transition a dip appears in the lower frequency branch, which goes continuously to 0 near xi=0.035 at the incommensurate phase transition. Due to a large damping, the soft branch is overdamped near the transition leading to a quasielastic peak. Along [ xi xi 0] where the soft mode is coupled with the longitudinal acoustic mode, no dip is observed in the lower frequency mode. These results are in good agreement with the predictions of the gradient interaction model discussed in the following paper. L'existence de la phase incommensurable du quartz est attribuée à une interaction entre le gradient du mode mou optique de la transition α β et un mode acoustique transverse. Pour vérifier ce modèle, des mesures de diffusion inélastique des neutrons, de haute résolution, ont été faites. Un mode mou résolu en centre de zone a, pour la première fois, été observé vers 1 THz à 1 250 K, dans la phase β du quartz, confirmant le caractère displacif de cette transition. Le long de [ xi 0 0] , une forte interaction est observée entre ce mode mou et la branche acoustique ayant une déformation de cisaillement u_{xy}. L'amollissement des deux branches mixtes, résultant de cette interaction, a été suivi en fonction de la température. Près de la transition, un minimum apparaît sur la branche basse fréquence, qui décroît continuement jusqu'à 0 pour xi=0,035 à la transition incommensurable. En raison d'un amortissement important, la branche molle est suramortie près de la transition, ce qui produit un pic quasiélastique. Le long de [xi xi 0], où le mode mou est couplé avec le mode acoustique longitudinal, aucun minimum n'est observé. Ces résultats sont en bon accord avec les prédictions du modèle de couplage avec un gradient, dèveloppé dans l'article suivant.
Jing, He; Wang, Xiaofei; Wang, Wei-Ning; Biswas, Pratim
2015-04-01
Corona discharge based techniques are promising approaches for oxidizing elemental mercury (Hg0) in flue gas from coal combustion. In this study, in-situ soft X-rays were coupled to a DC (direct current) corona-based electrostatic precipitator (ESP). The soft X-rays significantly enhanced Hg0 oxidation, due to generation of electrons from photoionization of gas molecules and the ESP electrodes. This coupling technique worked better in the positive corona discharge mode because more electrons were in the high energy region near the electrode. Detailed mechanisms of Hg0 oxidation are proposed and discussed based on ozone generation measurements and Hg0 oxidation behavior observations in single gas environments (O2, N2, and CO2). The effect of O2 concentration in flue gas, as well as the effects of particles (SiO2, TiO2, and KI) was also evaluated. In addition, the performance of a soft X-rays coupled ESP in Hg0 oxidations was investigated in a lab-scale coal combustion system. With the ESP voltage at +10 kV, soft X-ray enhancement, and KI addition, mercury oxidation was maximized. Mercury is a significant-impact atmospheric pollutant due to its toxicity. Coal-fired power plants are the primary emission sources of anthropogenic releases of mercury; hence, mercury emission control from coal-fired power plant is important. This study provides an alternative mercury control technology for coal-fired power plants. The proposed electrostatic precipitator with in situ soft X-rays has high efficiency on elemental mercury conversion. Effects of flue gas conditions (gas compositions, particles, etc.) on performance of this technology were also evaluated, which provided guidance on the application of the technology for coal-fired power plant mercury control.
Luo, Huiping; Scholp, Austin
2017-01-01
Objectives To investigate the snoring modes of patients with Obstructive Sleep Apnea Hypopnea Syndrome and to discover the main sources of snoring in soft tissue vibrations. Methods A three-dimensional finite element model was developed with SolidEdge to simulate the human upper airway. The inherent modal simulation was conducted to obtain the frequencies and the corresponding shapes of the soft tissue vibrations. The respiration process was simulated with the fluid-solid interaction method through ANSYS. Results The first 6 orders of modal vibration were 12 Hz, 18 Hz, 21 Hz, 22 Hz, 36 Hz, and 39 Hz. Frequencies of modes 1, 2, 4, and 5 were from tongue vibrations. Frequencies of modes 3 and 6 were from soft palate vibrations. Steady pressure distribution and air distribution lines in the upper airway were shown clearly in the fluid-solid interaction simulation results. Conclusions We were able to observe the vibrations of soft tissue and the modeled airflow by applying the finite element methods. Future studies could focus on improving the soft tissues vibration compliances by adjusting the model parameters. Additionally, more attention should be paid to vibrational components below 20 Hz when performing an acoustic analysis of human snore sounds due to the presence of these frequencies in this model. PMID:29204444
Luo, Huiping; Scholp, Austin; Jiang, Jack J
2017-01-01
To investigate the snoring modes of patients with Obstructive Sleep Apnea Hypopnea Syndrome and to discover the main sources of snoring in soft tissue vibrations. A three-dimensional finite element model was developed with SolidEdge to simulate the human upper airway. The inherent modal simulation was conducted to obtain the frequencies and the corresponding shapes of the soft tissue vibrations. The respiration process was simulated with the fluid-solid interaction method through ANSYS. The first 6 orders of modal vibration were 12 Hz, 18 Hz, 21 Hz, 22 Hz, 36 Hz, and 39 Hz. Frequencies of modes 1, 2, 4, and 5 were from tongue vibrations. Frequencies of modes 3 and 6 were from soft palate vibrations. Steady pressure distribution and air distribution lines in the upper airway were shown clearly in the fluid-solid interaction simulation results. We were able to observe the vibrations of soft tissue and the modeled airflow by applying the finite element methods. Future studies could focus on improving the soft tissues vibration compliances by adjusting the model parameters. Additionally, more attention should be paid to vibrational components below 20 Hz when performing an acoustic analysis of human snore sounds due to the presence of these frequencies in this model.
NASA Astrophysics Data System (ADS)
Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian
2016-08-01
A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.
Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX.
Bush, C E; Stratton, B C; Robinson, J; Zakharov, L E; Fredrickson, E D; Stutman, D; Tritz, K
2008-10-01
A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results.
Low, Jin-Huat; Yeow, Chen-Hua
2016-08-02
Soft compliant gripping is essential in delicate surgical manipulation for minimizing the risk of tissue grip damage caused by high stress concentrations at the point of contact. It can be achieved by complementing traditional rigid grippers with soft robotic pneumatic gripper devices. This manuscript describes a rod-based approach that combined both 3D-printing and a modified soft lithography technique to fabricate the soft pneumatic gripper. In brief, the pneumatic featureless mold with chamber component is 3D-printed and the rods were used to create the pneumatic channels that connect to the chamber. This protocol eliminates the risk of channels occluding during the sealing process and the need for external air source or related control circuit. The soft gripper consists of a chamber filled with air, and one or more gripper arms with a pneumatic channel in each arm connected to the chamber. The pneumatic channel is positioned close to the outer wall to create different stiffness in the gripper arm. Upon compression of the chamber which generates pressure on the pneumatic channel, the gripper arm will bend inward to form a close grip posture because the outer wall area is more compliant. The soft gripper can be inserted into a 3D-printed handling tool with two different control modes for chamber compression: manual gripper mode with a movable piston, and robotic gripper mode with a linear actuator. The double-arm gripper with two actuatable arms was able to pick up objects of sizes up to 2 mm and yet generate lower compressive forces as compared to elastomer-coated and non-coated rigid grippers. The feasibility of having other designs, such as single-arm or hook gripper, was also demonstrated, which further highlighted the customizability of the soft gripper device, and it's potential to be used in delicate surgical manipulation to reduce the risk of tissue grip damage.
Monroy, Francisco
2017-09-01
From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic soft variable structure control of singular systems
NASA Astrophysics Data System (ADS)
Liu, Yunlong; Zhang, Caihong; Gao, Cunchen
2012-08-01
The dynamic soft variable structure control (VSC) of singular systems is discussed in this paper. The definition of soft VSC and the design of its controller modes are given. The stability of singular systems with the dynamic soft VSC is proposed. The dynamic soft variable structure controller is designed, and the concrete algorithm on the dynamic soft VSC is given. The dynamic soft VSC of singular systems which was developed for the purpose of intentionally precluding chattering, achieving high regulation rates and shortening settling times enhanced the dynamic quality of the systems. It is illustrated the feasibility and validity of the proposed strategy by a simulation example, and an outlook on its auspicious further development is presented.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
A Unique Self-Sensing, Self-Actuating AFM Probe at Higher Eigenmodes
Wu, Zhichao; Guo, Tong; Tao, Ran; Liu, Leihua; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2015-01-01
With its unique structure, the Akiyama probe is a type of tuning fork atomic force microscope probe. The long, soft cantilever makes it possible to measure soft samples in tapping mode. In this article, some characteristics of the probe at its second eigenmode are revealed by use of finite element analysis (FEA) and experiments in a standard atmosphere. Although the signal-to-noise ratio in this environment is not good enough, the 2 nm resolution and 0.09 Hz/nm sensitivity prove that the Akiyama probe can be used at its second eigenmode under FM non-contact mode or low amplitude FM tapping mode, which means that it is easy to change the measuring method from normal tapping to small amplitude tapping or non-contact mode with the same probe and equipment. PMID:26580619
Local thermal energy as a structural indicator in glasses.
Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran
2017-07-11
Identifying heterogeneous structures in glasses-such as localized soft spots-and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses-an intrinsic signature of glassy frustration-anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal [Formula: see text] density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field-a "softness field"-is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.
NASA Astrophysics Data System (ADS)
Babaee, Sahab
In the search for materials with new properties, there have been significant advances in recent years aimed at the construction of architected materials whose behavior is governed by structure, rather than composition. Through careful design of the material's architecture, new mechanical properties have been demonstrated, including negative Poisson's ratio, high stiffness to weight ratio and mechanical cloaking. However, most of the proposed architected materials (also known as mechanical metamaterials) have a unique structure that cannot be recon figured after fabrication, making them suitable only for a specific task. This thesis focuses on the design of architected materials that take advantage of the applied large deformation to enhance their functionality. Mechanical instabilities, which have been traditionally viewed as a failure mode with research focusing on how to avoid them, are exploited to achieve novel and tunable functionalities. In particular I demonstrate the design of mechanical metamaterials with tunable negative Poisson ratio, adaptive phononic band gaps, acoustic switches, and reconfigurable origami-inspired waveguides. Remarkably, due to large deformation capability and full reversibility of soft materials, the responses of the proposed designs are reversible, repeatable, and scale independent. The results presented here pave the way for the design of a new class of soft, active, adaptive, programmable and tunable structures and systems with unprecedented performance and improved functionalities.
Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian
2016-01-01
A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components. PMID:27477888
[The investigation of formant on different artistic voice].
Wang, Jianqun; Gao, Xia; Liu, Xiaozhou; Feng, Yulin; Shen, Xiaohui; Yu, Chenjie; Yang, Ye
2008-08-01
To explore the characteristic of formant-a very important parameter in the spectrogram of three types of artistic voice (western mode; Chinese mode; Beijing opera). We used MATLAB software to make the short-time Fourier transform and spectrogram analysis on the homeostasis vowel examples of the three types. The western mode had different representation "singer formant" (Fs) based on the voice part; the Chinese mode's notable features were that F1, F2, F3, were continuous and the energy of them changed softly; the Beijing opera had the common representation which was a very wide formant and there was soft transition between formants and various harmonic, besides it showed a similar component like the "Fs" (two formants connected normally). Different artistic voice showed their own characteristics of the formant parameter in the spectrogram, which had important value on the identification, objective evaluation and prediction.
A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes
NASA Astrophysics Data System (ADS)
Wang, Meng; Lin, Bao-Ping; Yang, Hong
2016-12-01
In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.
A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes.
Wang, Meng; Lin, Bao-Ping; Yang, Hong
2016-12-22
In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
NASA Astrophysics Data System (ADS)
Acome, E.; Mitchell, S. K.; Morrissey, T. G.; Emmett, M. B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C.
2018-01-01
Existing soft actuators have persistent challenges that restrain the potential of soft robotics, highlighting a need for soft transducers that are powerful, high-speed, efficient, and robust. We describe a class of soft actuators, termed hydraulically amplified self-healing electrostatic (HASEL) actuators, which harness a mechanism that couples electrostatic and hydraulic forces to achieve a variety of actuation modes. We introduce prototypical designs of HASEL actuators and demonstrate their robust, muscle-like performance as well as their ability to repeatedly self-heal after dielectric breakdown—all using widely available materials and common fabrication techniques. A soft gripper handling delicate objects and a self-sensing artificial muscle powering a robotic arm illustrate the wide potential of HASEL actuators for next-generation soft robotic devices.
NASA Astrophysics Data System (ADS)
Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto
2012-12-01
Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.
NASA Astrophysics Data System (ADS)
Xu, Liangfei; Reimer, Uwe; Li, Jianqiu; Huang, Haiyan; Hu, Zunyan; Jiang, Hongliang; Janßen, Holger; Ouyang, Minggao; Lehnert, Werner
2018-02-01
City buses using polymer electrolyte membrane (PEM) fuel cells are considered to be the most likely fuel cell vehicles to be commercialized in China. The technical specifications of the fuel cell systems (FCSs) these buses are equipped with will differ based on the powertrain configurations and vehicle control strategies, but can generally be classified into the power-follow and soft-run modes. Each mode imposes different levels of electrochemical stress on the fuel cells. Evaluating the aging behavior of fuel cell stacks under the conditions encountered in fuel cell buses requires new durability test protocols based on statistical results obtained during actual driving tests. In this study, we propose a systematic design method for fuel cell durability test protocols that correspond to the power-follow mode based on three parameters for different fuel cell load ranges. The powertrain configurations and control strategy are described herein, followed by a presentation of the statistical data for the duty cycles of FCSs in one city bus in the demonstration project. Assessment protocols are presented based on the statistical results using mathematical optimization methods, and are compared to existing protocols with respect to common factors, such as time at open circuit voltage and root-mean-square power.
Improved Rubin-Bodner Model for the Prediction of Soft Tissue Deformations
Zhang, Guangming; Xia, James J.; Liebschner, Michael; Zhang, Xiaoyan; Kim, Daeseung; Zhou, Xiaobo
2016-01-01
In craniomaxillofacial (CMF) surgery, a reliable way of simulating the soft tissue deformation resulted from skeletal reconstruction is vitally important for preventing the risks of facial distortion postoperatively. However, it is difficult to simulate the soft tissue behaviors affected by different types of CMF surgery. This study presents an integrated bio-mechanical and statistical learning model to improve accuracy and reliability of predictions on soft facial tissue behavior. The Rubin-Bodner (RB) model is initially used to describe the biomechanical behavior of the soft facial tissue. Subsequently, a finite element model (FEM) computers the stress of each node in soft facial tissue mesh data resulted from bone displacement. Next, the Generalized Regression Neural Network (GRNN) method is implemented to obtain the relationship between the facial soft tissue deformation and the stress distribution corresponding to different CMF surgical types and to improve evaluation of elastic parameters included in the RB model. Therefore, the soft facial tissue deformation can be predicted by biomechanical properties and statistical model. Leave-one-out cross-validation is used on eleven patients. As a result, the average prediction error of our model (0.7035mm) is lower than those resulting from other approaches. It also demonstrates that the more accurate bio-mechanical information the model has, the better prediction performance it could achieve. PMID:27717593
Local thermal energy as a structural indicator in glasses
NASA Astrophysics Data System (ADS)
Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran
2017-07-01
Identifying heterogeneous structures in glasses—such as localized soft spots—and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses—an intrinsic signature of glassy frustration—anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal
Dynamic origin of segment magnetization reversal in thin-film Penrose tilings
NASA Astrophysics Data System (ADS)
Montoncello, F.; Giovannini, L.; Farmer, B.; De Long, L.
2017-02-01
We investigate the low-frequency spin wave dynamics involved in the magnetization reversal of a Penrose P2 tiling using the dynamical matrix method. This system consists of a two-dimensional, connected wire network of elongated thin-film segments, whose complete reversal occurs as a cascade of successive local segment reversals. Using soft mode theory, we interpret the reversal of an individual segment as a first order magnetic transition, in which magnetization curve of the system suffers a small discontinuity. Near this discontinuity a specific mode of the spin wave spectrum goes soft (i.e., its frequency goes to zero), triggering a local instability of the magnetization. We show that this mode is localized, and is at the origin of the local reversal. We discuss the correlation of the mode spatial profile with the ;reversal mechanism;, which is the passage of a domain wall through the segment. This process differs from reversal in periodic square or honeycomb artificial spin ices, where a cascade of reversing segments (e.g., ;Dirac string;) follows an extended (though irregular) path across the sample; here the spatial distribution of successive segment reversals is discontinuous, but strictly associated with the area where a soft mode is localized. The migration of the localization area across the P2 tiling (during reversal in decreasing applied fields) depends on changes in the internal effective field map. We discuss these results in the context of spin wave localization due to the unique topology of the P2 tiling.
Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects
Liu, Ying; Hu, Chongze; Huang, Jingsong; ...
2015-06-23
Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less
Adaptive and Resilient Soft Tensegrity Robots.
Rieffel, John; Mouret, Jean-Baptiste
2018-04-17
Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control-and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This article describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics to generate a wealth of dynamical behaviors.
NASA Astrophysics Data System (ADS)
Mathieson, Haley Aaron
This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels, accounting for P-Delta effects, inherent out-of-straightness profile of any shape at initial conditions, and the excessive shear deformation of soft core and its effect on buckling capacity. Another model was developed to predict the load-deflection response and failure modes of in-plane loaded sandwich beams. After successful verification of the models using experimental results, comprehensive parametric studies were carried out using these models to cover parameters beyond the limitations of the experimental program.
NASA Astrophysics Data System (ADS)
Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu
2017-06-01
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.
The B-field soft theorem and its unification with the graviton and dilaton
NASA Astrophysics Data System (ADS)
Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin
2017-10-01
In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the graviton's soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.
The Quasi-Linear Viscoelastic Properties of Diabetic and Non-Diabetic Plantar Soft Tissue
Pai, Shruti; Ledoux, William R.
2011-01-01
The purpose of this study was to characterize the viscoelastic behavior of diabetic and non-diabetic plantar soft tissue at six ulcer-prone/load-bearing locations beneath the foot to determine any changes that may play a role in diabetic ulcer formation and subsequent amputation in this predisposed population. Four older diabetic and four control fresh frozen cadaveric feet were each dissected to isolate plantar tissue specimens from the hallux, first, third, and fifth metatarsals, lateral midfoot, and calcaneus. Stress relaxation experiments were used to quantify the viscoelastic tissue properties by fitting the data to the quasi-linear viscoelastic (QLV) theory using two methods, a traditional frequency-insensitive approach and an indirect frequency-sensitive approach, and by measuring several additional parameters from the raw data including the rate and amount of overall relaxation. The stress relaxation response of both diabetic and non-diabetic specimens was unexpectedly similar and accordingly few of the QLV parameters for either fit approach and none of raw data parameters differed. Likewise, no differences were found between plantar locations. The accuracy of both fit methods was comparable, however, neither approach predicted the ramp behavior. Further, fit coefficients varied considerably from one method to the other, making it hard to discern meaningful trends. Future testing using alternate loading modes and intact feet may provide more insight into the role that time-dependent properties play in diabetic foot ulceration. PMID:21327701
Flow interaction with a flexible viscoelastic sheet
NASA Astrophysics Data System (ADS)
Shoele, Kourosh
2017-11-01
Many new engineered materials and almost all soft biological tissues are made up of heterogeneous multi-scale components with complex viscoelastic behavior. This implies that their macro constitutive relations cannot be modeled sufficiently with a typical integer-order viscoelastic relation and a more general mode is required. Here, we study the flow-induced vibration of a viscoelastic sheet where a generalized fractional constitutive model is employed to represent the relation between the bending stress and the temporal response of the structure. A new method is proposed for the calculation of the convolution integral inside the fractal model and its computational benefits will be discussed. Using a coupled fluid-structure interaction (FSI) methodology based on the immersed boundary technique, dynamic fluttering modes of the structure as a result of the fluid force will be presented and the role of fractal viscoelasticity on the dynamic of the structure will be shown. Finally, it will be argued how the stress relaxation modifies the flow-induced oscillatory responses of this benchmark problem.
Collective Dynamics of Periplasmic Glutamine Binding Protein upon Domain Closure
Loeffler, Hannes H.; Kitao, Akio
2009-01-01
The glutamine binding protein is a vital component of the associated ATP binding cassette transport systems responsible for the uptake of glutamine into the cell. We have investigated the global movements of this protein by molecular dynamics simulations and principal component analysis (PCA). We confirm that the most dominant mode corresponds to the biological function of the protein, i.e., a hinge-type motion upon ligand binding. The closure itself was directly observed from two independent trajectories whereby PCA was used to elucidate the nature of this closing reaction. Two intermediary states are identified and described in detail. The ligand binding induces the structural change of the hinge regions from a discontinuous β-sheet to a continuous one, which also enhances softness of the hinge and modifies the direction of hinge motion to enable closing. We also investigated the convergence behavior of PCA modes, which were found to converge rather quickly when the associated magnitudes of the eigenvalues are well separated. PMID:19883597
Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7
NASA Astrophysics Data System (ADS)
Ye, Feng; Wang, Jinchen; Sheng, Jieming; Hoffmann, C.; Gu, T.; Xiang, H. J.; Tian, Wei; Molaison, J. J.; dos Santos, A. M.; Matsuda, M.; Chakoumakos, B. C.; Fernandez-Baca, J. A.; Tong, X.; Gao, Bin; Kim, Jae Wook; Cheong, S.-W.
2018-01-01
We report a single crystal neutron and x-ray diffraction study of the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7 (CMTO), a prototypical system where the electric polarization arises from the condensation of two lattice distortion modes. With increasing temperature (T ), the out-of-plane, antiphase tilt of MnO6 decreases in amplitude while the in-plane, in-phase rotation remains robust and experiences abrupt changes across the first-order structural transition. Application of hydrostatic pressure (P ) to CMTO at room temperature shows a similar effect. The consistent behavior under both T and P reveals the softness of antiphase tilt and highlights the role of the partially occupied d orbital of the transition-metal ions in determining the stability of the octahedral distortion. Polarized neutron analysis indicates the symmetry-allowed canted ferromagnetic moment is less than the 0.04 μB/Mn site, despite a substantial out-of-plane tilt of the MnO6 octahedra.
Vibration of mechanically-assembled 3D microstructures formed by compressive buckling
NASA Astrophysics Data System (ADS)
Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang
2018-03-01
Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.
Kyttä, A Marketta; Broberg, Anna K; Kahila, Maarit H
2012-01-01
To determine the relationship between (1) urban structure characteristics, (2) children's environmental experiences and active behavioral patterns, and (3) perceived health and body mass index (BMI). Cross-sectional study. City of Turku, western coast of Finland, 175,000 inhabitants. Average residential density of the studied settings was 17 housing units per hectare, proportion of green structure 43%, and proportion of population under 15 years old 17%. One thousand eight hundred thirty seven fifth (10-12 years old) and seventh (13-15 years old) graders from 54 schools in Turku. Self-reported behavioral patterns (activity of school travel mode, territorial range, mobility licenses, and distance to meaningful places) and environmental experiences (localized meaningful places, likability index, environmental fears) were gathered on the basis of locality with an Internet-based softGIS method. Self-reported BMI, perceived health, and daily symptoms were also queried. Geographic information system-based measures of urban structure (residential density, proportion of green structure, proportion of children), calculated within a 500-m buffer of each respondent's home, were used as independent variables. Mainly logistic regression analysis. After controlling for gender, age, and neighborhood socioeconomic status (proportion of academically educated), residential density was significantly associated with active travel mode to school and short distances to the meaningful places of children. The proportions of green structure and children had an association with nonactive transport, long distance to meaningful places, and small territorial range. We also found significant associations between active school travel mode and reduced risk of being overweight when controlled for gender and age but not when the proportion of academically educated was also controlled. The negative association between likability index and daily symptoms and positive association with perceived health remained significant after controlling for all three background variables. The only urban structure variable directly associated with good perceived health was the proportion of green structure around the child's home. Moderate urban density seems to have child-friendly characteristics such as an ability to promote active school journeys and to guarantee a short distance to meaningful places. The studied Finnish children expressed very few environmental fears, and the possibilities for them to independently use the opportunities of the urban environment were very high. The limitation of the study was that the socioeconomic background variables were extracted from register-based geographic grid data rather than from respondents. More refined measures of urban structure are also needed in future studies.
Philips, Nele; Sioen, Isabelle; Michels, Nathalie; Sleddens, Ester; De Henauw, Stefaan
2014-07-23
Exploring associations between parenting behavior and children's health related behavior including physical activity, sedentary behavior, diet and sleep. We recruited 288 parents and their children (6-12y old). Children's weight and height were measured. Fat percentage was determined by air displacement plethysmography. Parents reported socio-demographic data, sleep information, physical activity and sedentary behavior of their child and completed the Comprehensive General Parenting Questionnaire (CGPQ) and a Food Frequency Questionnaire. Children completed the Dutch Eating Behavior Questionnaire. Associations between parenting behavior (CGPQ) and children's health related behavior were assessed with univariate and multiple regression analyses. A small positive correlation was found between sweet food consumption frequency and "coercive control" (r = 0.139) and a small negative correlation between fruit and vegetables consumption frequency and "overprotection" (r = -0.151). Children consumed more frequently soft drinks when their parents scored lower on "structure" (r = -0.124) and higher on "overprotection" (r = 0.123); for the light soft drinks separately, a small positive correlation with "behavioral control" was found (r = 0.172). A small negative correlation was found between "emotional eating" and "structure" (r = -0.172) as well as "behavioral control" (r = -0.166). "Coercive control" was negatively correlated with the child's sleep duration (r = -0.171). After correction for confounding factors, the following significant associations were found: (1) a small negative association between "structure" and soft drinks consumption (β = -0.17 for all soft drinks and -0.22 for light soft drinks), (2) a small positive association between "behavioral control" and light soft drinks (β = 0.34), (3) a small positive association of "nurturance" and "coercive control" with sedentary behavior (β = 0.16 for both parent constructs) and (4) a small negative association between the parenting construct "coercive control" and sleep duration (β = -0.23). The significant but small associations between parenting constructs and the investigated variables suggest that different aspects of parenting style play an important role in the genesis of the health related behavior of children. Overall, our findings suggest that health professionals should encourage parents to apply the more positive parenting constructs i.e., more "structure" and "behavioral control", and less "coercive control". They could, for instance, supervise and manage their child's activities and help their child to achieve certain goals.
Hard and soft acids and bases: atoms and atomic ions.
Reed, James L
2008-07-07
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.
Absence of rippling in graphene under biaxial tensile strain
NASA Astrophysics Data System (ADS)
Rakshit, Bipul; Mahadevan, Priya
2010-10-01
Recent experiments [C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, and T. F. Heinz, Nature (London) 462, 339 (2009)10.1038/nature08569] on graphene grown on ultraflat substrates have found no rippling in graphene when subject to temperature cycling. Unsupported/unstrained films of graphene as well as films grown on various substrates on the other hand have been found to show rippling effects. As graphene grown on a substrate is invariably strained, we examine the behavior of the out-of-plane acoustic-phonon mode with biaxial tensile strain. This mode is generally associated with the rippling of graphene. We find that it can be fit to a relation of the form w2=Ak4+Bk2 , where w and k are the frequency and wave vector, respectively. The coefficient A is found to show a weak dependence on strain while B is found to increase linearly with strain. The strain-induced hardening explains the absence of rippling in graphene subject to biaxial strain. In addition, we find that graphene when subject to a biaxial tensile strain is found to undergo a structural transition with the mode at K going soft at a strain percentage of 15%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhiani, Lasha; Khoury, Justin; Wang, Junpu, E-mail: lashaber@gmail.com, E-mail: jkhoury@sas.upenn.edu, E-mail: jwang217@jhu.edu
Single-field perturbations satisfy an infinite number of consistency relations constraining the squeezed limit of correlation functions at each order in the soft momentum. These can be understood as Ward identities for an infinite set of residual global symmetries, or equivalently as Slavnov-Taylor identities for spatial diffeomorphisms. In this paper, we perform a number of novel, non-trivial checks of the identities in the context of single field inflationary models with arbitrary sound speed. We focus for concreteness on identities involving 3-point functions with a soft external mode, and consider all possible scalar and tensor combinations for the hard-momentum modes. In allmore » these cases, we check the consistency relations up to and including cubic order in the soft momentum. For this purpose, we compute for the first time the 3-point functions involving 2 scalars and 1 tensor, as well as 2 tensors and 1 scalar, for arbitrary sound speed.« less
Continuum limit of the vibrational properties of amorphous solids.
Mizuno, Hideyuki; Shiba, Hayato; Ikeda, Atsushi
2017-11-14
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.
Continuum limit of the vibrational properties of amorphous solids
Mizuno, Hideyuki; Ikeda, Atsushi
2017-01-01
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law. PMID:29087941
Anomalous vibrational properties in the continuum limit of glasses
NASA Astrophysics Data System (ADS)
Shimada, Masanari; Mizuno, Hideyuki; Ikeda, Atsushi
2018-02-01
The low-temperature thermal properties of glasses are anomalous with respect to those of crystals. These thermal anomalies indicate that the low-frequency vibrational properties of glasses differ from those of crystals. Recent studies revealed that, in the simplest model of glasses, i.e., the harmonic potential system, phonon modes coexist with soft localized modes in the low-frequency (continuum) limit. However, the nature of low-frequency vibrational modes of more realistic models is still controversial. In the present work, we study the Lennard-Jones (LJ) system using large-scale molecular-dynamics (MD) simulation and establish that the vibrational property of the LJ glass converges to coexistence of the phonon modes and the soft localized modes in the continuum limit as in the case of the harmonic potential system. Importantly, we find that the low-frequency vibrations are rather sensitive to the numerical scheme of potential truncation, which is usually implemented in the MD simulation, and this is the reason why contradictory arguments have been reported by previous works. We also discuss the physical origin of this sensitiveness by means of a linear stability analysis.
Analysis of Rayleigh-Lamb Modes in Soft-solids with Application to Surface Wave Elastography
NASA Astrophysics Data System (ADS)
Benech, Nicolás; Grinspan, Gustavo; Aguiar, Sofía; Brum, Javier; Negreira, Carlos; tanter, Mickäel; Gennisson, Jean-Luc
The goal of Surface Wave Elastography (SE) techniques is to estimate the shear elasticity of the sample by measuring the surface wave speed. In SE the thickness of the sample is often assumed to be infinite, in this way, the surface wave speed is directly linked to the sample's shear elasticity. However for many applications this assumption is not true. In this work, we study experimentally the Rayleigh-Lamb modes in soft solids of finite thickness to explore the optimal conditions for SWE. Experiments were carried out in three tissue mimicking phantoms of different thicknesses (10 mm, 20 mm and 60 mm) and same shear elasticity. The surface waves were generated at the surface of the phantom using piston attached to a mechanical vibrator. The central frequency of the excitation was varied between 60 Hz to 160 Hz. One component of the displacement field generated by the piston was measured at the surface and in the bulk of the sample trough a standard speckle tracking technique using a 256 element, 7.5 MHz central frequency linear array and an ultrasound ultrafast electronics. Finally, by measuring the phase velocity at each excitation frequency, velocity dispersion curves were obtained for each phantom. The results show that instead of a Rayleigh wave, zero order symmetric (S0) and antisymmetric (A0) Lamb modes are excited with this type of source. Moreover, in this study we show that due to the near field effects of the source, which are appreciable only in soft solids at low frequencies, both Lamb modes are separable in time and space. We show that while the Ao mode dominates close the source, the S0 mode dominates far away.
4D scattering amplitudes and asymptotic symmetries from 2D CFT
Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman
2017-01-25
We reformulate the scattering amplitudes of 4D at space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D at space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlatorsmore » via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the \\tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Lastly, we discuss a toy model for black hole horizons via a restriction to the Rindler region.« less
4D scattering amplitudes and asymptotic symmetries from 2D CFT
NASA Astrophysics Data System (ADS)
Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman
2017-01-01
We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.
Comparison of three different orthodontic wires for bonded lingual retainer fabrication
Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan
2012-01-01
Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930
Soft hair of dynamical black hole and Hawking radiation
NASA Astrophysics Data System (ADS)
Chu, Chong-Sun; Koyama, Yoji
2018-04-01
Soft hair of black hole has been proposed recently to play an important role in the resolution of the black hole information paradox. Recent work has emphasized that the soft modes cannot affect the black hole S-matrix due to Weinberg soft theorems. However as soft hair is generated by supertranslation of geometry which involves an angular dependent shift of time, it must have non-trivial quantum effects. We consider supertranslation of the Vaidya black hole and construct a non-spherical symmetric dynamical spacetime with soft hair. We show that this spacetime admits a trapping horizon and is a dynamical black hole. We find that Hawking radiation is emitted from the trapping horizon of the dynamical black hole. The Hawking radiation has a spectrum which depends on the soft hair of the black hole and this is consistent with the factorization property of the black hole S-matrix.
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-08-06
This study assessed personal and environmental correlates of Belgian university students' soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students' beverage choices.
Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2015-01-01
This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790
Magnetic properties of strained multiferroic CoC r2O4 : A soft x-ray study
NASA Astrophysics Data System (ADS)
Windsor, Y. W.; Piamonteze, C.; Ramakrishnan, M.; Scaramucci, A.; Rettig, L.; Huever, J. A.; Bothschafter, E. M.; Bingham, N. S.; Alberca, A.; Avula, S. R. V.; Noheda, B.; Staub, U.
2017-06-01
Using resonant soft x-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoC r2O4 , a type-II multiferroic. The film is [110] oriented, such that both the ferroelectric and ferromagnetic moments can coexist in-plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. The transmission measurements utilized x-ray excited optical luminescence from the substrate. Resonant soft x-ray diffraction (RXD) was used to study the magnetic order of the low temperature phase. The XMCD signals of Co and Cr appear at the same ordering temperature TC≈90 K , and are always opposite in sign. The coercive field of the Co and of Cr moments is the same, and is approximately two orders of magnitude higher than in bulk. Through sum rules analysis an enlarged C o2 + orbital moment (mL) is found, which can explain this hardening. The RXD signal of the (q q 0) reflection appears below TS, the same ordering temperature as the conical magnetic structure in bulk, indicating that this phase remains multiferroic under strain. To describe the azimuthal dependence of this reflection, a slight modification is required to the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory for magnetic spinels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke
2016-03-07
Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi 0.5Mn 1.5O 4, the line shape of the Mn L 3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L 3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are usefulmore » enough for the Ni L edge which is far from the O K edge.« less
Implementation of Soft X-ray Tomography on NSTX
NASA Astrophysics Data System (ADS)
Tritz, K.; Stutman, D.; Finkenthal, M.; Granetz, R.; Menard, J.; Park, W.
2003-10-01
A set of poloidal ultrasoft X-ray arrays is operated by the Johns Hopkins group on NSTX. To enable MHD mode analysis independent of the magnetic reconstruction, the McCormick-Granetz tomography code developed at MIT is being adapted to the NSTX geometry. Tests of the code using synthetic data show that that present X-ray system is adequate for m=1 tomography. In addition, we have found that spline basis functions may be better suited than Bessel functions for the reconstruction of radially localized phenomena in NSTX. The tomography code was also used to determine the necessary array expansion and optimal array placement for the characterization of higher m modes (m=2,3) in the future. Initial reconstruction of experimental soft X-ray data has been performed for m=1 internal modes, which are often encountered in high beta NSTX discharges. The reconstruction of these modes will be compared to predictions from the M3D code and magnetic measurements.
Modal propagation angles in ducts with soft walls and their connection with suppressor performance
NASA Technical Reports Server (NTRS)
Rice, E. J.
1979-01-01
The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.
Liu, Xiang; Effenberger, Frank; Chand, Naresh
2015-03-09
We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrsky, J.; Alexander, A.A.; Griffen, O.H.
1980-12-31
A dual mode warhead is provided for use against both soft and hard targets and capable of sensing which type of target has been struck comprising a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom and later split upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by high and one by low impact deceleration. The firing train actuated by low impact deceleration contains amore » pyrotechnic delay to allow penetration of soft targets.« less
Burrowing hard corals occurring on the sea floor since 80 million years ago.
Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi
2016-04-14
We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic.
Burrowing hard corals occurring on the sea floor since 80 million years ago
NASA Astrophysics Data System (ADS)
Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi
2016-04-01
We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic.
Soft thermal contributions to 3-loop gauge coupling
NASA Astrophysics Data System (ADS)
Laine, M.; Schicho, P.; Schröder, Y.
2018-05-01
We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.
The singular behavior of one-loop massive QCD amplitudes with one external soft gluon
NASA Astrophysics Data System (ADS)
Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander
2012-03-01
We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.
A versatile model for soft patchy particles with various patch arrangements.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-01-21
We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.
Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
Wilkening, Andre; Ivlev, Oleg
2013-06-01
Assistive behavior and inherent compliance are assumed to be the essential properties for effective robot-assisted therapy in neurological as well as in orthopedic rehabilitation. This paper presents two adaptive model-based assistive controllers for pneumatic direct driven soft rehabilitation robots that are based on separated models of the soft-robot and the patient's extremity, in order to take into account the individual patient's behavior, effort and ability during control, what is assumed to be essential to relearn lost motor functions in neurological and facilitate muscle reconstruction in orthopedic rehabilitation. The high inherent compliance of soft-actuators allows for a general human-robot interaction and provides the base for effective and dependable assistive control. An inverse model of the soft-robot with estimated parameters is used to achieve robot transparency during treatment and inverse adaptive models of the individual patient's extremity allow the controllers to learn on-line the individual patient's behavior and effort and react in a way that assist the patient only as much as needed. The effectiveness of the controllers is evaluated with unimpaired subjects using a first prototype of a soft-robot for elbow training. Advantages and disadvantages of both controllers are analyzed and discussed.
Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.
2017-03-01
In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
Kim, Tae-il; McCall, Jordan G; Jung, Yei Hwan; Huang, Xian; Siuda, Edward R; Li, Yuhang; Song, Jizhou; Song, Young Min; Pao, Hsuan An; Kim, Rak-Hwan; Lu, Chaofeng; Lee, Sung Dan; Song, Il-Sun; Shin, Gunchul; Al-Hasani, Ream; Kim, Stanley; Tan, Meng Peun; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A; Bruchas, Michael R
2013-04-12
Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.
Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.
Kapranas, Apostolos; Tena, Alejandro
2015-01-07
Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.
Laudyn, Urszula A; Jung, Paweł S; Zegadło, Krzysztof B; Karpierz, Miroslaw A; Assanto, Gaetano
2014-11-15
We demonstrate the evolution of higher order one-dimensional guided modes into two-dimensional solitary waves in a reorientational medium. The observations, carried out at two different wavelengths in chiral nematic liquid crystals, are in good agreement with a simple nonlocal nonlinear model.
Noise transmission by viscoelastic sandwich panels
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1977-01-01
An analytical study on low frequency noise transmission into rectangular enclosures by viscoelastic sandwich panels is presented. Soft compressible cores with dilatational modes and hard incompressible cores with dilatational modes neglected are considered as limiting cases of core stiffness. It is reported that these panels can effect significant noise reduction.
Phonon modes and thermal conductance in carbon nanotubes
NASA Astrophysics Data System (ADS)
Tomanek, David
2001-03-01
The unique electronic transport behavior of quasi-1D carbon nanotubes(Stefano Sanvito, Young-Kyun Kwon, David Tomanek, and Colin J. Lambert, Phys. Rev. Lett. 84), 1974 (2000). finds an unexpected counterpart in their unusually high thermal conductance.(Savas Berber, Young-Kyun Kwon, and David Tomanek, Phys. Rev. Lett. 84), 4613 (2000). The latter is a consequence of the structural rigidity of nanotubes, resulting in a large sound velocity, and their phonon structure. Soft phonon modes, primarily associated with tube bending and twisting, are essentially decoupled from the energy-carrying hard phonon modes which originate in the stretching and bending of interatomic bonds. The absence of an efficient coupling mechanism between these different phonon modes is responsible for their low damping and a long phonon mean free path. With a peak value λ=37,000W/m/K at 100K, the thermal conductance of an isolated (10,10) nanotube, predicted using non-equilibrium molecular dynamics simulations, is comparable to that of isotopically pure diamond. At room temperature, the predicted value λ=6,600W/m/K even exceeds that of this best thermal conductor. Unlike bulk graphite, where coupling between the flexible layers reduces the basal plane thermal conductance by one order of magnitude, we find that the inter-tube coupling in nanotube ropes does not reduce the single-tube conductance significantly.
Structural phase transition in deuterated benzil C14D10O2 : Neutron inelastic scattering
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Welberry, T. R.; Hagen, M. E.; Fernandez-Baca, J. A.
2006-04-01
Neutron inelastic scattering has been used to examine the structural phase transition in deuterated benzil C14D10O2 . The transition in benzil, in which the unit cell goes from a trigonal P3121 unit cell above TC to a cell doubled P21 unit cell below TC , leads to the emergence of a Bragg peak at the M -point of the high temperature Brillouin zone. It has previously been suggested that the softening of a transverse optic phonon at the Γ -point leads to the triggering of an instability at the M -point causing the transition to occur. This suggestion has been investigated by measuring the phonon spectrum at the M -point for a range of temperatures above TC and the phonon dispersion relation along the Γ-M direction just above TC . It is found that the transverse acoustic phonon at the M -point is of lower energy than the Γ -point optic mode and has a softening with temperature as T approaches TC from above that is much faster than that of the Γ -point optic mode. This behavior is inconsistent with the view that the Γ -point mode is responsible for triggering the phase transition. Rather the structural phase transition in benzil appears to be driven by a conventional soft TA mode at the M -point.
Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina
2013-01-01
It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less
Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.
2015-01-01
The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
The soft X-ray polychromator for the Solar Maximum Mission
NASA Technical Reports Server (NTRS)
Acton, L. W.; Finch, M. L.; Gilbreth, C. W.; Culhane, J. L.; Bentley, R. D.; Bowles, J. A.; Guttridge, P.; Gabriel, A. H.; Firth, J. G.; Hayes, R. W.
1980-01-01
The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.
The soft X-ray polychromator for the Solar Maximum Mission
NASA Astrophysics Data System (ADS)
Acton, L. W.; Culhane, J. L.; Gabriel, A. H.; Bentley, R. D.; Bowles, J. A.; Firth, J. G.; Finch, M. L.; Gilbreth, C. W.; Guttridge, P.; Hayes, R. W.; Joki, E. G.; Jones, B. B.; Kent, B. J.; Leibacher, J. W.; Nobles, R. A.; Patrick, T. J.; Phillips, K. J. H.; Rapley, C. G.; Sheather, P. H.; Sherman, J. C.; Stark, J. P.; Springer, L. A.; Turner, R. F.; Wolfson, C. J.
1980-02-01
The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.
Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter
NASA Technical Reports Server (NTRS)
Pinson, L. D.
1975-01-01
Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.
ERIC Educational Resources Information Center
Nickelson, Jen; Roseman, Mary G.; Forthofer, Melinda S.
2010-01-01
Objective: To examine associations between parental limits on soft drinks and purchasing soft drinks from school vending machines and consuming soft drinks among middle school students. Design: Secondary analysis of cross-sectional data from the middle school Youth Risk Behavior Survey. Setting: Eight public middle schools in central Kentucky.…
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites.
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-06-06
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-01-01
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. PMID:27265380
Sensing surface mechanical deformation using active probes driven by motor proteins
Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira
2016-01-01
Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937
Flexible High Speed Codec (FHSC)
NASA Technical Reports Server (NTRS)
Segallis, G. P.; Wernlund, J. V.
1991-01-01
The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
Tailoring superelasticity of soft magnetic materials
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
2015-10-01
Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simulations. This behavior results from a combination of two stress-induced mechanisms: a detachment mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.
NASA Astrophysics Data System (ADS)
Angsten, Thomas; Asta, Mark
2018-04-01
Ground-state epitaxial phase diagrams are calculated by density functional theory (DFT) for SrTiO3, CaTiO3, and SrHfO3 perovskite-based compounds, accounting for the effects of antiferrodistortive and A -site displacement modes. Biaxial strain states corresponding to epitaxial growth of (001)-oriented films are considered, with misfit strains ranging between -4 % and 4%. Ground-state structures are determined using a computational procedure in which input structures for DFT optimizations are identified as local minima in expansions of the total energy with respect to strain and soft-mode degrees of freedom. Comparison to results of previous DFT studies demonstrates the effectiveness of the computational approach in predicting ground-state phases. The calculated results show that antiferrodistortive octahedral rotations and associated A -site displacement modes act to suppress polarization and reduce the epitaxial strain energy. A projection of calculated atomic displacements in the ground-state epitaxial structures onto soft-mode eigenvectors shows that three ferroelectric and six antiferrodistortive displacement modes are dominant at all misfit strains considered, with the relative contributions from each varying systematically with the strain. Additional A -site displacement modes contribute to the atomic displacements in CaTiO3 and SrHfO3, which serve to optimize the coordination of the undersized A -site cation.
Mustafa, A; Seeley, J; Munirama, S; Columb, M; McKendrick, M; Schwab, A; Corner, G; Eisma, R; Mcleod, G
2018-04-01
Errors may occur during regional anaesthesia whilst searching for nerves, needle tips, and test doses. Poor visual search impacts on decision making, clinical intervention, and patient safety. We conducted a randomised single-blind study in a single university hospital. Twenty trainees and two consultants examined the paired B-mode and fused B-mode and elastography video recordings of 24 interscalene and 24 femoral blocks conducted on two soft embalmed cadavers. Perineural injection was randomised equally to 0.25, 0.5, and 1.0 ml volumes. Tissue displacement perceived on both imaging modalities was defined as 'target' or 'distractor'. Our primary objective was to test the anaesthetists' perception of the number and proportion of targets and distractors on B-mode and fused elastography videos collected during femoral and sciatic nerve block on soft embalmed cadavers. Our secondary objectives were to determine the differences between novices and experts, and between test-dose volumes, and to measure the area and brightness of spread and strain patterns. All anaesthetists recognised perineural spread using 0.25 ml volumes. Distractor patterns were recognised in 133 (12%) of B-mode and in 403 (38%) of fused B-mode and elastography patterns; P<0.001. With elastography, novice recognition improved from 12 to 37% (P<0.001), and consultant recognition increased from 24 to 53%; P<0.001. Distractor recognition improved from 8 to 31% using 0.25 ml volumes (P<0.001), and from 15 to 45% using 1 ml volumes (P<0.001). Visual search improved with fusion elastography, increased volume, and consultants. A need exists to investigate image search strategies. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.
Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu
2016-01-01
Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense.
Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function
Yim, Sehyuk; Goyal, Kartik; Sitti, Metin
2014-01-01
In this paper, we present a magnetically actuated multimodal drug release mechanism using a tetherless soft capsule endoscope for the treatment of gastric disease. Because the designed capsule has a drug chamber between both magnetic heads, if it is compressed by the external magnetic field, the capsule could release a drug in a specific position locally. The capsule is designed to release a drug in two modes according to the situation. In the first mode, a small amount of drug is continuously released by a series of pulse type magnetic field (0.01–0.03 T). The experimental results show that the drug release can be controlled by the frequency of the external magnetic pulse. In the second mode, about 800 mm3 of drug is released by the external magnetic field of 0.07 T, which induces a stronger magnetic attraction than the critical force for capsule’s collapsing. As a result, a polymeric coating is formed around the capsule. The coated area is dependent on the drug viscosity. This paper presents simulations and various experiments to evaluate the magnetically actuated multimodal drug release capability. The proposed soft capsules could be used as minimally invasive tetherless medical devices with therapeutic capability for the next generation capsule endoscopy. PMID:25378896
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
The application of high-speed photography in z-pinch high-temperature plasma diagnostics
NASA Astrophysics Data System (ADS)
Wang, Kui-lu; Qiu, Meng-tong; Hei, Dong-wei
2007-01-01
This invited paper is presented to discuss the application of high speed photography in z-pinch high temperature plasma diagnostics in recent years in Northwest Institute of Nuclear Technology in concentrative mode. The developments and applications of soft x-ray framing camera, soft x-ray curved crystal spectrometer, optical framing camera, ultraviolet four-frame framing camera and ultraviolet-visible spectrometer are introduced.
Fuzzy logic, neural networks, and soft computing
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial intelligence. In the years ahead, this may well become a widely held position.
NASA Astrophysics Data System (ADS)
Zieliński, P.; More, M.; Cochon, E.; Lefebvre, J.
1996-03-01
The molecule of benzil (diphenylethanedione, C14H10O2) has been approximated by a system of rigid segments to model the lowest-frequency part of its vibrational spectrum. The interactions of internal degrees of freedom have been described with the use of phenomenological force constants. The structure of the trigonal (P3121) phase has then been modelled by means of a temperature-dependent atom-atom potential based on thermal motions of atoms. The potential gives the correct account of the softening of an E-symmetry, zone-center mode which underlies the phase transition to the low-temperature monoclinic phase (P21). The low-frequency modes at the zone center, supposed until now to be difference overtones, have been shown to result from a coupling between internal and external degrees of freedom. A low-frequency soft mode at the point M of the zone border has been found, which explains the behavior of observed peaks in diffuse x-ray scattering experiments. The values and the temperature evolution of the effective elastic constants calculated within the model are in a very good agreement with the results of ultrasonic and Brillouin scattering data. The model has been shown insufficient in the description of dielectric and piezoelectric properties of benzil.
The Adjunctive Soft-Tissue Diode Laser in Orthodontics.
Borzabadi-Farahani, Ali
2017-04-01
Lasers are a relatively new addition to the orthodontist's armamentarium. This article reviews the fundamental basic science of available soft-tissue lasers, with an emphasis on diode lasers, and discusses various adjunct applications of the diode laser for soft-tissue orthodontic procedures. Diode lasers function by cutting with an initiated hot tip and produce minimal to no interaction with healthy dental hard tissue, making them suitable for soft-tissue procedures. The contact cutting mode provides enhanced bloodless site visibility and facility to perform delicate soft tissue procedures, which is important in areas with difficult access. Such adjunctive uses include laser gingivectomy to improve oral hygiene or bracket positioning, esthetic laser gingival recontouring, and laser exposure of superficially impacted teeth. Selected cases treated with a 940-nm indium-gallium-arsenide-phosphide (InGaAsP) diode laser will be presented.
NASA Astrophysics Data System (ADS)
Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie
2017-08-01
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
2014-01-01
Objective Exploring associations between parenting behavior and children’s health related behavior including physical activity, sedentary behavior, diet and sleep. Methods We recruited 288 parents and their children (6-12y old). Children’s weight and height were measured. Fat percentage was determined by air displacement plethysmography. Parents reported socio-demographic data, sleep information, physical activity and sedentary behavior of their child and completed the Comprehensive General Parenting Questionnaire (CGPQ) and a Food Frequency Questionnaire. Children completed the Dutch Eating Behavior Questionnaire. Associations between parenting behavior (CGPQ) and children’s health related behavior were assessed with univariate and multiple regression analyses. Results A small positive correlation was found between sweet food consumption frequency and “coercive control” (r = 0.139) and a small negative correlation between fruit and vegetables consumption frequency and “overprotection” (r = −0.151). Children consumed more frequently soft drinks when their parents scored lower on “structure” (r = −0.124) and higher on “overprotection” (r = 0.123); for the light soft drinks separately, a small positive correlation with “behavioral control” was found (r = 0.172). A small negative correlation was found between “emotional eating” and “structure” (r = −0.172) as well as “behavioral control” (r = −0.166). “Coercive control” was negatively correlated with the child’s sleep duration (r = −0.171). After correction for confounding factors, the following significant associations were found: (1) a small negative association between “structure” and soft drinks consumption (β = −0.17 for all soft drinks and −0.22 for light soft drinks), (2) a small positive association between “behavioral control” and light soft drinks (β = 0.34), (3) a small positive association of “nurturance” and “coercive control” with sedentary behavior (β = 0.16 for both parent constructs) and (4) a small negative association between the parenting construct “coercive control” and sleep duration (β = −0.23). Conclusion The significant but small associations between parenting constructs and the investigated variables suggest that different aspects of parenting style play an important role in the genesis of the health related behavior of children. Overall, our findings suggest that health professionals should encourage parents to apply the more positive parenting constructs i.e., more “structure” and “behavioral control”, and less “coercive control”. They could, for instance, supervise and manage their child’s activities and help their child to achieve certain goals. PMID:25052905
Go, Dennis; Rommel, Dirk; Chen, Lisa; Shi, Feng; Sprakel, Joris; Kuehne, Alexander J C
2017-02-28
Soft amphoteric microgel systems exhibit a rich phase behavior. Crystalline phases of these material systems are of interest because they exhibit photonic stop-gaps, giving rise to iridescent color. Such microgel systems are promising for applications in soft, switchable, and programmable photonic filters and devices. We here report a composite microgel system consisting of a hard and fluorescently labeled core and a soft, amphoteric microgel shell. At pH above the isoelectric point (IEP), these colloids easily crystallize into three-dimensional colloidal assemblies. By adding a cyclic lactone to the system, the temporal pH profile can be controlled, and the microgels can be programmed to melt, while they lose charge. When the microgels gain the opposite charge, they recrystallize into assemblies of even higher order. We provide a model system to study the dynamic phase behavior of soft particles and their switchable and programmable photonic effects.
Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface
Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...
2017-10-23
Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less
Soft materials in neuroengineering for hard problems in neuroscience.
Jeong, Jae-Woong; Shin, Gunchul; Park, Sung Il; Yu, Ki Jun; Xu, Lizhi; Rogers, John A
2015-04-08
We describe recent advances in soft electronic interface technologies for neuroscience research. Here, low modulus materials and/or compliant mechanical structures enable modes of soft, conformal integration and minimally invasive operation that would be difficult or impossible to achieve using conventional approaches. We begin by summarizing progress in electrodes and associated electronics for signal amplification and multiplexed readout. Examples in large-area, surface conformal electrode arrays and flexible, multifunctional depth-penetrating probes illustrate the power of these concepts. A concluding section highlights areas of opportunity in the further development and application of these technologies. Copyright © 2015 Elsevier Inc. All rights reserved.
Soft theorems for shift-symmetric cosmologies
NASA Astrophysics Data System (ADS)
Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca
2018-03-01
We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.
Ahn, Sun Joo Grace
2015-01-01
In immersive virtual environments (IVEs), users may observe negative consequences of a risky health behavior in a personally involving way via digital simulations. In the context of an ongoing health promotion campaign, IVEs coupled with pamphlets are proposed as a novel messaging strategy to heighten personal relevance and involvement with the issue of soft-drink consumption and obesity, as well as perceptions that the risk is proximal and imminent. The framework of construal level theory guided the design of a 2 (tailoring: other vs. self) × 2 (medium: pamphlet only vs. pamphlet with IVEs) between-subjects experiment to test the efficacy in reducing the consumption of soft drinks over 1 week. Immediately following exposure, tailoring the message to the self (vs. other) seemed to be effective in reducing intentions to consume soft drinks. The effect of tailoring dissipated after 1 week, and measures of actual soft-drink consumption 1 week following experimental treatments demonstrated that coupling IVEs with the pamphlet was more effective. Behavioral intention was a significant predictor of actual behavior, but underlying mechanisms driving intentions and actual behavior were distinct. Results prescribed a messaging strategy that incorporates both tailoring and coupling IVEs with traditional media to increase behavioral changes over time.
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
Kozina, M.; van Driel, T.; Chollet, M.; ...
2017-05-03
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; van Driel, T.; Chollet, M.
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
Quantum critical scaling in the disordered itinerant ferromagnet UCo 1-xFe xGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kevin; Eley, Serena Merteen; Civale, Leonardo
The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the secondorder nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Lastly, our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo 1$-$xFe xGe as the first clear example that exhibits the associatedmore » critical exponents predicted by the BKV theory.« less
Quantum critical scaling in the disordered itinerant ferromagnet UCo 1-xFe xGe
Huang, Kevin; Eley, Serena Merteen; Civale, Leonardo; ...
2016-11-30
The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the secondorder nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Lastly, our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo 1$-$xFe xGe as the first clear example that exhibits the associatedmore » critical exponents predicted by the BKV theory.« less
Positive signs in massive gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2016-04-01
We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Remmen, Grant N.
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
Cigarette ignition of soft furnishings: A literature review with commentary
NASA Astrophysics Data System (ADS)
Krasny, John F.
1987-04-01
Literature pertinent to the ignition by smoldering cigarettes of upholstered furniture and mattresses (soft furnishings) was searched through early 1986. This included literature on the smoldering behavior of cigarettes in air; their behavior on a variety of substrates simulating soft furnishings; mechanism of smoldering in substrates; relative cigarette ignition resistance of substrates; and relative propensity of commercial cigarette packings to ignite substrates. According to the reviewed literature, the smoldering behavior of cigarettes on substrates differs from that of cigarettes burning in air: on substrates, cigarette temperatures tend to be lower, and burning rates slower. These differences seem to be larger for substrates which ignite than for those which self-extinguish after the cigarette burns out. The characteristics of soft furnishings which insure resistance to cigarette ignition have been established, but those of cigarettes with low propensity to ignite furnishings have not. No mathematical model has been reported for the interaction of cigarette and substrate, but some empirical data do exist.
Elfhag, K; Tynelius, P; Rasmussen, F
2007-06-08
We studied sugar-sweetened soft drinks and light soft drinks in their associations to psychological constructs of eating behavior and demographic data for adults and children. Soft drink intakes were assessed by consumption of soft drinks in number of days the last week, and eating behavior was measured by the Dutch Eating Behaviour Questionnaire (DEBQ). The sample included 3265 men and women, and their 12-year old children, originating from Swedish national databases. Associations to younger age and lower education in adults were in particular apparent for sugar-sweetened soft drinks. Consumption of sugar-sweetened soft drinks was further associated to less restrained and more external eating in adults. In contrast, light soft drinks were associated with higher BMI, more restrained eating and also more emotional eating in adults. For the children these associations were generally weaker. Sugar-sweetened soft drinks are consumed by persons with a lower education, who furthermore are less prone to attempt to restrict their calorie intake, and by some of those who are sensitive to external stimuli of foods. Light soft drinks are rather chosen by the more heavy persons who try to restrict their energy intake perhaps in order to control the body weight, and more unexpectedly, by adults who eat for comfort. Being more sensitive to an external stimulus of food such as taste seems to imply proneness to consume sugar-sweetened soft drinks instead of the light versions. Light soft drinks may be perceived as an adequate substitute in the use of foods for comfort, meaning the sweet taste may be sufficient for this purpose.
Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics.
Han, Min-Woo; Ahn, Sung-Hoon
2017-04-01
A loop-linked structure, which is capable of morphing in various modes, including volumetric transformation, is developed based on knitting methods. Morphing flowers (a lily-like, a daffodil-like, gamopetalous, and a calla-like flower) are fabricated using loop patterning, and their blooming motion is demonstrated by controlling a current that selectively actuates the flowers petals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Russell, Joshua; Pierce-Shimomura, Jonathan T.
2015-01-01
Background While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al. 2014). New Method We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. Results We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3–8% RH/cm across a 9-cm long x 7.5-cm wide gel-covered arena. Comparison with Existing Method(s) Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed & Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. Conclusion The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae. PMID:25176025
NASA Astrophysics Data System (ADS)
Al Akhrass, S.; Reiter, G.; Hou, S. Y.; Yang, M. H.; Chang, Y. L.; Chang, F. C.; Wang, C. F.; Yang, A. C.-M.
2008-05-01
A nonmonotonic, two-stage dewetting behavior was observed for spin coated thin viscoelastic polymer films on soft elastic substrates. At times shorter than the relaxation time of the polymer (t<τrep), dewetting generated deep trenches in the soft rubbery substrate which, in turn, almost stopped dewetting. At later stages (t≫τrep), dewetting accelerated, accompanied by an unstable rim. However, holes nucleated at t<τrep showed only this second-stage behavior. Our observations are attributed to large elastic deformations in the substrate caused by transient residual stresses within the film.
NASA Astrophysics Data System (ADS)
Fujioka, J.; Horiuchi, S.; Kida, N.; Shimano, R.; Tokura, Y.
2009-09-01
We have investigated the polarization π -molecular skeleton coupled dynamics for the proton-displacive organic ferroelectrics, cocrystal of phenazine with the 2,5-dihalo-3,6-dihydroxy-p-benzoquinones by measurements of the terahertz/infrared spectroscopy. In the course of the ferroelectric-to-paraelectric transition, the ferroelectric soft phonon mode originating from the intermolecular dynamical displacement is observed in the imaginary part of dielectric spectra γ2 , when the electric field of the light (E) is parallel to the spontaneous polarization (P) . The soft phonon mode is isolated from the intramolecular vibrational mode and hence the intramolecular skeleton dynamics is almost decoupled from the polarization fluctuation. In the spectra for E parallel to the hydrogen-bonded supramolecular chain, by contrast, the vibrational mode mainly originating from the oxygen atom motion within the π -molecular plane is anomalously blurred and amalgamated into the polarization relaxation mode concomitantly with the dynamical proton disorder. This indicates that the dynamical disorder of the intramolecular skeleton structure, specifically that of oxygen atom, is strongly enhanced by the proton fluctuation and is significantly coupled to the polarization fluctuation along the hydrogen-bonded supramolecular chain. The results are discussed in terms of the proton-mediated anisotropic polarization π -molecular skeleton interaction, which characterizes these emerging proton-displacive ferroelectrics.
Markvicka, Eric J; Bartlett, Michael D; Huang, Xiaonan; Majidi, Carmel
2018-07-01
Large-area stretchable electronics are critical for progress in wearable computing, soft robotics and inflatable structures. Recent efforts have focused on engineering electronics from soft materials-elastomers, polyelectrolyte gels and liquid metal. While these materials enable elastic compliance and deformability, they are vulnerable to tearing, puncture and other mechanical damage modes that cause electrical failure. Here, we introduce a material architecture for soft and highly deformable circuit interconnects that are electromechanically stable under typical loading conditions, while exhibiting uncompromising resilience to mechanical damage. The material is composed of liquid metal droplets suspended in a soft elastomer; when damaged, the droplets rupture to form new connections with neighbours and re-route electrical signals without interruption. Since self-healing occurs spontaneously, these materials do not require manual repair or external heat. We demonstrate this unprecedented electronic robustness in a self-repairing digital counter and self-healing soft robotic quadruped that continue to function after significant damage.
Finite element dynamic analysis of soft tissues using state-space model.
Iorga, Lucian N; Shan, Baoxiang; Pelegri, Assimina A
2009-04-01
A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed 'u-p' element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the 'forward' simulation and 'inverse' estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.
NASA Astrophysics Data System (ADS)
Heng, LAN; Guosheng, XU; Kevin, TRITZ; Ning, YAN; Tonghui, SHI; Yongliang, LI; Tengfei, WANG; Liang, WANG; Jingbo, CHEN; Yanmin, DUAN; Yi, YUAN; Youwen, SUN; Shuai, GU; Qing, ZANG; Ran, CHEN; Liang, CHEN; Xingwei, ZHENG; Shuliang, CHEN; Huan, LIU; Yang, YE; Huiqian, WANG; Baonian, WAN; the EAST Team
2017-12-01
A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (∼1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/a∼ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.
Superconductivity and hybrid soft modes in Ti Se 2
Maschek, M.; Rosenkranz, S.; Hott, R.; ...
2016-12-12
The interplay between superconductivity and charge-density-wave (CDW) order plays a central role in the layered transition-metal dichalcogenides. 1 T-TiSe 2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cu xTiSe 2 and pressurized 1 T-TiSe 2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. Wemore » argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. Finally, these results indicate that 1 T-TiSe 2 under pressure is close to the elusive state of the excitonic insulator.« less
Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; ...
2015-09-29
The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic softmore » mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.« less
Thermodynamic performance of the 3-stage ADR for the Astro-H Soft-X-ray Spectrometer instrument
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.
2016-03-01
The Soft X-ray Spectrometer (SXS) instrument (Mitsuda et al., 2010) [1] on Astro-H (Takahashi et al., 2010) [2] will use a 3-stage ADR (Shirron et al., 2012) to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at ⩽1.20 K as the heat sink (Fujimoto et al., 2010). In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and single-shot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
Molecular-dynamics simulation of a model with incommensurate phases
NASA Astrophysics Data System (ADS)
Parlinski, Krzysztof
1987-06-01
Two-dimensional models of displacive and order-disorder behavior, in the form of crystallites with free boundary conditions and with one-dimensional incommensurate and/or commensurate phases, have been studied using the molecular-dynamics method. The incommensurate phase can be characterized with any wave vector by the appropriate choice of potential-energy parameters. The ground-state devil's staircases of the models are complete. By a series of cooling runs the phase diagram is established. The map of the particle configuration, a result of the cooling run, formed a nonideal incommensurate phase. In the diffraction pattern of that configuration the intensities of the satellites, especially those of higher order, are considerably lower. The displacive system shows a soft, underdamped phonon mode, which with lowering temperature condenses at the critical wave vector, producing the incommensurate phase, in which the phase and amplitude modes are observed. The phase-mode dispersion curve does not show a gap. Adding 2% point defects to the system does not influence the phase and amplitude modes. The kinetics of the variation of the wave-vector modulation of the incommensurate phase has also been studied. The relevant non- equilibrium devil's staircase exhibits quasisteps at irrational numbers which are attributed to the nucleation and growth of new incommensurate periods observed as a stripple. Examples of nucleation inside and at the edges of the crystallite are given. Point defects hinder the propagation of the deperiodization line which borders the stripple.
The Structural Phase Transition in Deuterated Benzil, C 14D 10O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goosens, D. J.; Welberry, T. R.; Hagen, Mark E
2006-01-01
Neutron inelastic scattering has been used to examine the structural phase transition in deuterated benzil C{sub 14}D{sub 10}O{sub 2}. The transition in benzil, in which the unit cell goes from a trigonal P3{sub 1}21 unit cell above T{sub c} to a cell doubled P2{sub 1} unit cell below T{sub c}, leads to the emergence of a Bragg peak at the M-point of the high temperature Brillouin zone. It has previously been suggested that the softening of a transverse optic phonon at the {lambda}-point leads to the triggering of an instability at the M-point causing the transition to occur. This suggestionmore » has been investigated by measuring the phonon spectrum at the M-point for a range of temperatures above T{sub c} and the phonon dispersion relation along the {lambda}-M direction just above T{sub c}. It is found that the transverse acoustic phonon at the M-point is of lower energy than the {lambda}-point optic mode and has a softening with temperature as T approaches T{sub c} from above that is much faster than that of the {lambda}-point optic mode. This behavior is inconsistent with the view that the {lambda}-point mode is responsible for triggering the phase transition. Rather the structural phase transition in benzil appears to be driven by a conventional soft TA mode at the M-point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goossens, D. J.; Welberry, T. R.; Hagen, M. E.
2006-04-01
Neutron inelastic scattering has been used to examine the structural phase transition in deuterated benzil C{sub 14}D{sub 10}O{sub 2}. The transition in benzil, in which the unit cell goes from a trigonal P3{sub 1}21 unit cell above T{sub C} to a cell doubled P2{sub 1} unit cell below T{sub C}, leads to the emergence of a Bragg peak at the M-point of the high temperature Brillouin zone. It has previously been suggested that the softening of a transverse optic phonon at the {gamma}-point leads to the triggering of an instability at the M-point causing the transition to occur. This suggestionmore » has been investigated by measuring the phonon spectrum at the M-point for a range of temperatures above T{sub C} and the phonon dispersion relation along the {gamma}-M direction just above T{sub C}. It is found that the transverse acoustic phonon at the M-point is of lower energy than the {gamma}-point optic mode and has a softening with temperature as T approaches T{sub C} from above that is much faster than that of the {gamma}-point optic mode. This behavior is inconsistent with the view that the {gamma}-point mode is responsible for triggering the phase transition. Rather the structural phase transition in benzil appears to be driven by a conventional soft TA mode at the M-point.« less
Soft matter food physics--the physics of food and cooking.
Vilgis, Thomas A
2015-12-01
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Soft matter food physics—the physics of food and cooking
NASA Astrophysics Data System (ADS)
Vilgis, Thomas A.
2015-12-01
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
NASA Astrophysics Data System (ADS)
Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.
2008-11-01
The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.
Influence of fundamental mode fill factor on disk laser output power and laser beam quality
NASA Astrophysics Data System (ADS)
Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen
2017-11-01
An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.
Perceived Leadership Soft Skills and Trustworthiness of Deans in Three Malaysian Public Universities
ERIC Educational Resources Information Center
Tang, Keow Ngang; Ariratana, Wallapha; Treputharan, Saowanee
2013-01-01
Soft skills comprised both rational and emotional elements, becoming a new focus on leadership, as behavior displayed during interaction with other individuals will affect effective interaction outcomes. This study aimed to examine the leadership soft skills of deans in public universities of Malaysia. This survey designed research was performed…
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Shiu, Gary
2018-05-01
We show that the soft photon, gluon, and graviton theorems can be understood as the Ward-Takahashi identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft theorems are presented.
Oldenburg, Amy L
2010-01-01
We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named ‘nanotransducers’, which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30–400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young’s modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process. PMID:20124653
Global model for the lithospheric strength and effective elastic thickness
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2013-08-01
Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.
NASA Technical Reports Server (NTRS)
Hartz, Leslie
1994-01-01
Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.
Drug delivery through soft contact lenses.
Jain, M. R.
1988-01-01
Clinical studies were conducted on 466 patients waiting for senile cataract surgery and receiving chloromycetin, gentamicin, or carbenicillin subconjunctivally and through New Sauflon 70 and New Sauflon 85 lenses. The aqueous drug levels were biologically estimated at various time intervals. Soft contact lenses provided significantly higher drug penetration than subconjunctival therapy. Both modes of treatment provided therapeutically effective levels against most of the common ocular pathogens for varying intervals of 2 to 12 hours. PMID:3349016
Bronson, N R
1984-05-01
A new A-mode biometry system for determining axial length measurements of the eye has been developed that incorporates a soft-membrane transducer. The soft transducer decreases the risk of indenting the cornea with the probe resulting in inaccurate measurements. A microprocessor evaluates echo patterns and determines whether or not axial alignment has been obtained, eliminating possible user error. The new A-scan requires minimal user skill and can be used successfully by both physician and technician.
Fluorescence (Multiwave) Confocal Microscopy.
Welzel, J; Kästle, Raphaela; Sattler, Elke C
2016-10-01
In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.
Poggio, C; Lombardini, M; Gaviati, S; Chiesa, M
2012-07-01
The current in vitro study evaluated Vickers hardness (VK) and depth of cure (hardness ratio) of six resin composites, polymerized with a light-emitting diode (LED) curing unit by different polymerization modes: Standard 20 s, Standard 40 s, Soft-start 40 s. SIX RESIN COMPOSITES WERE SELECTED FOR THE PRESENT STUDY: three microhybrid (Esthet.X HD, Amaris, Filtek Silorane), two nanohybrid (Grandio, Ceram.X mono) and one nanofilled (Filtek Supreme XT). The VK of the surface was determined with a microhardness tester using a Vickers diamond indenter and a 200 g load applied for 15 seconds. The mean VK and hardness ratio of the specimens were calculated using the formula: hardness ratio = VK of bottom surface / VK of top surface. For all the materials tested and with all the polymerization modes, hardness ratio was higher than the minimum value indicated in literature in order to consider the bottom surface as adequately cured (0.80). Curing time did not affect hardness ratio values for Filtek Silorane, Grandio and Filtek Supreme XT. The effectiveness of cure at the top and bottom surface was not affected by Soft-start polymerization mode.
An experimental investigation of the structural dynamics of a torsionally soft rotor in vacuum
NASA Technical Reports Server (NTRS)
Srinivasan, A. V.; Cutts, D. G.; Shu, H. T.
1986-01-01
An extensive data base of structural dynamic characteristics has been generated from an experimental program conducted on a torsionally soft two-bladed model helicopter rotor system. Measurements of vibratory strains for five modes of vibration were made at twenty-one locations on the two blades at speeds varying from 0 to 1000 RPM and for several combinations of precone, droop and flexure stiffness. Tests were conducted in vacuum under carefully controlled conditions using a unique excitation device with a system of piezoelectric crystals bonded to the blade surface near the root. Frequencies, strain mode shapes and dampings are extracted from the time histories and can be used to validate structural dynamics codes. The dynamics of the system are such that there is a clear tendency for the first torsion and second flap modes to couple within the speed range considered. Strain mode shapes vary significantly with speed and configuration. This feature is important in the calcualtion of aeroelastic instabilities. The tension axis tests confirmed that the modulus-weighted centroid for the nonhomogeneous airfoil is slightly off the mass centroid and validated previous static tests done to determine location of the tension axis.
NASA Astrophysics Data System (ADS)
Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward
2017-10-01
This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.
Discrete modes of social information processing predict individual behavior of fish in a group
Harpaz, Roy; Tkačik, Gašper
2017-01-01
Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here, we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an “active” mode, in which they are sensitive to the swimming patterns of conspecifics, and a “passive” mode, where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors’ behavior. At the group level, switching between active and passive modes is uncorrelated among fish, but correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multimodal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates as well as to other species. PMID:28874581
Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo
2016-08-16
Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.
NASA Astrophysics Data System (ADS)
Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.
2017-12-01
The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.
NASA Astrophysics Data System (ADS)
He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe
2013-11-01
Ferromagnetic materials will affect not only the electromagnetic response but also the mechanical behaviors of coated conductors. The influence of soft ferromagnetic substrate on magneto-elastic behavior in a superconductor/ferromagnetic (SC/FM) bilayer exposed to a transverse magnetic field is investigated theoretically. The ferromagnetic substrate is regarded as ideal soft magnets with high permeability and small magnetic hysteresis. Due to the composite structure of SC/FM hybrids, magneto-elastic behavior will be subjected to combined effect of equivalent force and flexural moment. Analytical expressions for internal stress and strain components are derived by virtue of a two-dimensional elasticity analysis. It is worth pointing out that the y component of strain has much larger positive value during field ascent, which may result in the delamitation at the interface. Irreversible magnetostrictive behaviors are observed both along x direction and along y direction. For the thickness dependence of magnetostriction, the flexural moment dominates when the SC thickness is small while the equivalent force plays a critical role at higher SC thickness.
Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert
2009-01-01
The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.
Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.
San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan
2012-02-01
Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM.
NASA Astrophysics Data System (ADS)
Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun
2017-04-01
Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.
Positive signs in massive gravity
Cheung, Clifford; Remmen, Grant N.
2016-04-01
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
NASA Astrophysics Data System (ADS)
Ren, Juan
Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line tracking is implemented to enhance the sample topography tracking. An adaptive multi-loop mode (AMLM) imaging approach is proposed to substantially increase the imaging speed of tapping mode (TM) while preserving the advantages of TM over CM by integrating an inner-outer feedback control loop to regulate the TM-deflection on top of the conventional TM-amplitude feedback control to improve the sample topography tracking. Experiments demonstrated that the proposed ACM and AMLM are capable of increasing the imaging speed by at least 20 times for conventional contact and tapping mode imaging, respectively, with no loss of imaging quality and well controlled tip-sample interaction force. In addition, an adaptive mode imaging for in-liquid topography quantification on live cells is presented. The experiment results demonstrated that instead of keeping constant scanning speed, the proposed speed optimization scheme is able to increase the imaging speed on live human prostate cancer cells by at least eight-fold with no loss of imaging quality. Secondly, control based approaches to accurate nanomechanical quantification on soft materials for both broadband and in-liquid force-curve measurements are proposed to address the adverse effects caused by the system coupling dynamics and the cantilever acceleration, which were not compensated for by the conventional AFM measurement approach. The proposed nanomechanical measurement approaches are demonstrated through experiments to measure the viscoelastic properties of different polymer samples in air and live human cells in liquid to study the variation of rate-dependent elastic modulus of cervix cancer cell during the epithelial-mesenchymal transition process.
The effect of thermocycling on tensile bond strength of two soft liners.
Geramipanah, Farideh; Ghandari, Masoumeh; Zeighami, Somayeh
2013-09-01
Failure of soft liners depends mostly on separation from the denture base resin; therefore measurement of the bond strength is very important. The purpose of this study was to compare the tensile bond strength of two soft liners (Acropars, Molloplast-B) to denture base resin before and after thermocycling. Twenty specimens fromeach of the two different soft liners were processed according to the manufacturer's instructions between two polymethyl methacrylate (PMMA) sheets. Ten specimens in each group were maintained in 37°C water for 24 hours and 10 were thermocycled (5000 cycles) among baths of 5° and 55°C. The tensile bond strength was measured using a universal testing machine at a crosshead speed of 5 mm/min. Mode of failure was determined with SEM (magnification ×30). Two-way ANOVA was used to analyze the data. The mean and standard deviation of tensile bond strength of Acropars and Molloplast-B before thermocycling were 6.59±1.85 and1.51±0.22 MPa, respectively and 5.89±1.52 and1.37±0.18 MPa, respectively after thermocycling. There was no significant difference before and after thermocycling. Mode of failure in Acropars and Molloplast-B were adhesive and cohesive, respectivley. The bond strength of Acropars was significantly higher than Molloplast-B (P<0.05).
Static magnetism and thermal switching in randomly oriented L10 FePt thin films
NASA Astrophysics Data System (ADS)
Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.
2018-05-01
Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.
Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.
Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A
2017-12-01
Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.
Mechanics of hard films on soft substrates
NASA Astrophysics Data System (ADS)
Lu, Nanshu
2009-12-01
Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the strain they are subject to. Instead of using blanket films that fail at strains less than i%, we have patterned ceramic films into a lattice of periodic, isolated islands. Failure modes such as channel cracking, debonding, and wrinkling have been identified. Island behaviors are controlled by factors such as island size, thickness, and elastic mismatch with the substrate. A very soft interlayer between the islands and the underlying polyimide substrate reduces strains in the islands by orders of magnitude. Using this approach, substrates with arrays of 200 x 200 mum2 large SiNx islands were stretched beyond 20% without cracking or debonding the islands. In summary, highly stretchable thin metal films and ceramic island arrays supported by polymer substrates have been achieved, along with mechanistic understandings of their deformation and failure mechanisms.
Diode laser application in soft tissue oral surgery.
Azma, Ehsan; Safavi, Nassimeh
2013-01-01
Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. The diode laser can be used as a modality for oral soft tissue surgery.
Diode Laser Application in Soft Tissue Oral Surgery
Azma, Ehsan; Safavi, Nassimeh
2013-01-01
Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331
Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo
Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal
2017-01-01
In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878
A combination of Raspberry Pi and SoftEther VPN for controlling research devices via the Internet.
Kuroda, Toshikazu
2017-11-01
Remote control over devices for experiments may increase the efficiency of operant research and expand the area where behavior can be studied. This article introduces a combination of Raspberry Pi ® (Pi) and SoftEther VPN ® that allows for such remote control via the Internet. The Pi is a small Linux computer with a great degree of flexibility for customization. Test results indicate that a Pi-based interface meets the requirement for conducting operant research. SoftEther VPN ® allows for establishing an extensive private network on the Internet using a single private Wi-Fi router. Step-by-step instructions are provided in the present article for setting up the Pi along with SoftEther VPN ® . Their potential for improving the way of conducting research is discussed. © 2017 Society for the Experimental Analysis of Behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less
Structural discrimination via density functional theory and lattice dynamics: Monoclinic Mg2NiH4
NASA Astrophysics Data System (ADS)
Herbst, J. F.; Hector, L. G., Jr.
2009-04-01
Two distinct crystal structures for the monoclinic, low-temperature phase of Mg2NiH4 , which we designate as LTI and LTII, are available in the published literature. We demonstrate that density functional theory and lattice dynamics can easily identify LTII as the preferable structure at two levels of inquiry. First, enthalpies of formation ΔH calculated using three different forms for the exchange-correlation energy functional are in better agreement with experiment for LTII. Second, the phonon spectrum calculated for LTII contains no anomalies while that for LTI exhibits a variety of soft modes. By analyzing the soft modes in LTI as well as those we find for the known CaMgNiH4 structure with Ca replaced by Mg we derive a crystal structure that closely approximates LTII.
Histology-validated x-ray tomography for imaging human coronary arteries
NASA Astrophysics Data System (ADS)
Buscema, Marzia; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Matviykiv, Sofiya; Holme, Margaret N.; Hipp, Alexander; Beckmann, Felix; Saxer, Till; Michaud, Katarzyna; Müller, Bert
2016-10-01
Heart disease is the number one cause of death worldwide. To improve therapy and patient outcome, the knowledge of anatomical changes in terms of lumen morphology and tissue composition of constricted arteries is crucial for designing a localized drug delivery to treat atherosclerosis disease. Traditional tissue characterization by histology is a pivotal tool, although it brings disadvantages such as vessel morphology modification during decalcification and slicing. X-ray tomography in absorption and phase contrast modes yields a deep understanding in blood vessel anatomy in healthy and diseased stages: measurements in absorption mode make visible highly absorbing tissue components including cholesterol plaques, whereas phase contrast tomography gains better contrast of the soft tissue components such as vessel walls. Established synchrotron radiation-based micro-CT techniques ensure high performance in terms of 3D visualization of highly absorbing and soft tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru
2013-11-15
Using numerical simulation, it is shown that the recombination of free excitons photoexcited in diamond nanocrystals embedded in a polymer film can occur in the cooperative mode. It is found that this mode can be implemented despite the fact that diamond is an 'indirect' semiconductor. It is shown that the power of the generated radiation at the pulse peak during the cooperative recombination of free excitons can exceed that of the incoherent spontaneous emission of the same initial number of free excitons by more than an order of magnitude. Finally, it is shown that the process under consideration can bemore » used to generate picosecond pulses of ultraviolet and soft X-ray electromagnetic field at a wavelength of 235 nm.« less
Microstructural Organization of Elastomeric Polyurethanes with Siloxane-Containing Soft Segments
NASA Astrophysics Data System (ADS)
Choi, Taeyi; Weklser, Jadwiga; Padsalgikar, Ajay; Runt, James
2011-03-01
In the present study, we investigate the microstructure of two series of segmented polyurethanes (PUs) containing siloxane-based soft segments and the same hard segments, the latter synthesized from diphenylmethane diisocyanate and butanediol. The first series is synthesized using a hydroxy-terminated polydimethylsiloxane macrodiol and varying hard segment contents. The second series are derived from an oligomeric diol containing both siloxane and aliphatic carbonate species. Hard domain morphologies were characterized using tapping mode atomic force microscopy and quantitative analysis of hard/soft segment demixing was conducted using small-angle X-ray scattering. The phase transitions of all materials were investigated using DSC and dynamic mechanical analysis, and hydrogen bonding by FTIR spectroscopy.
NASA Astrophysics Data System (ADS)
Ritz, Ethan; Benedek, Nicole
Many of the functional properties of ABO3 perovskite oxides (for example, ferroelectricity) are strongly linked to particular phonon modes in the material. In addition, in many cases it is possible to formulate simple guidelines or `rules of thumb' that link crystal structure and chemistry to specific lattice dynamical characteristics. The thermal transport properties of perovskites are thus potentially highly tunable and dynamically controllable with external fields. We use first-principles density functional theory to reveal new details related to the origin of the large negative thermal expansion (NTE) observed for ferroelectric PbTiO3. Although the origin of NTE in this material is often ascribed to ferroelectricity (which arises from the freezing in of a soft, zone-center optical phonon), our results suggest that zone-boundary modes play a major role in driving NTE. In addition, hybridization between different electronic states has a significant effect on the lattice dynamics of PbTiO3 in general, and its NTE behavior in particular. Our work has implications for the understanding of, discovery and design of NTE in perovskites and other families of inorganic materials. This work was supported in part by a NASA Space Technology Research Fellowship.
Mechanism of force mode dip-pen nanolithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn; Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800; Xie, Hui
In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.
Roychowdhury, Subhajit; Jana, Manoj K; Pan, Jaysree; Guin, Satya N; Sanyal, Dirtha; Waghmare, Umesh V; Biswas, Kanishka
2018-04-03
Crystalline solids with intrinsically low lattice thermal conductivity (κ L ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ L of 0.35 Wm -1 K -1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ L in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tissue Anisotropy Modeling Using Soft Composite Materials.
Chanda, Arnab; Callaway, Christian
2018-01-01
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.
Tissue Anisotropy Modeling Using Soft Composite Materials
Callaway, Christian
2018-01-01
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996
Abi Haidar, Gina; Lahham Salameh, Nina; Afifi, Rema A
2011-01-01
The Global School-based Student Health Survey (2005) indicated that in Lebanon, 33% of students in grades 7-9 drink carbonated soft drinks two or more times per day. Observational evidence suggests that students do not drink enough water. A pilot project called Jarrib Baleha ['try without it'] was implemented with 110 students in grades 3 and 4 in two schools in Lebanon to promote drinking water instead of soft drinks. Specific objectives included increasing knowledge about the benefits of water and the harms of soft drinks, increasing confidence in choosing water over soft drinks, and increasing actual water drinking behavior while decreasing soft drink consumption. Four 50-minute theory-informed, interactive and participatory sessions were implemented --by a graduate student in partial fulfillment of requirements for a MPH degree--over a period of two weeks. The intervention sessions--based on the Health Belief Model--took place during a class period. Process evaluation measured satisfaction of the students with the sessions. Impact evaluation measured changes in knowledge, attitudes including self-efficacy, and behavior, using a self-administered questionnaire completed prior to and after the intervention. Bivariate analysis using crosstabs was carried out to compare pretest and posttest scores on knowledge, attitudes, and behavior. Comparison of the knowledge index between pretest and posttest indicated that, overall, knowledge increased from 6.0769 to 9.1500 (p = 0.000). Compared to pretest, students at posttest also felt more confident to drink less soft drinks and more water (p < 0.05), to drink water when thirsty (p < 0.05), and to choose water over soft drinks when going to a restaurant (p < 0.05). The percentage of students drinking 6 or more cups of water increased from 27.7% to 59.1% (p = 0.000); and those drinking less than one can of soft drink/day increased from 25.5% to 57.6% (p = 0.000). These results are encouraging and suggest the Jarrib Baleha intervention could be implemented on a wider scale with students from both public and private schools. A more robust evaluation design is recommended. A comprehensive approach to school-based nutrition is also suggested.
Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data
NASA Technical Reports Server (NTRS)
Toot, G. David
1989-01-01
The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.
Solar flare hard and soft X ray relationship determined from SMM HXRBS and BCS data
NASA Astrophysics Data System (ADS)
Toot, G. David
1989-09-01
The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.
Semi-Autonomous Control with Cyber-Pain for Artificial Muscles and Smart Structures
2010-09-15
avoid some key failure modes. Our approach has built on our developments in dynamic self-sensing and realistic simulation of DEA electromechanics...local controller) to avoid some key failure modes. Our approach has built on our developments in dynamic self-sensing and realistic simulation of DEA...strains [4]. In its natural state long polymer backbones are entangled with intermittent cross-links tying neighbouring backbones together. The soft
Lerner, Edan; Bouchbinder, Eran
2017-08-01
Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"-the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ω^{β} with β depending on the parent temperature T_{0} from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β≈3, whereas β appears to approach the previously observed value β=4 as T_{0} approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale-including all physically realistic quenching rates of molecular or atomistic glasses-would result in a glass whose density of vibrational modes is universally characterized by β=4.
Design of a high power TM01 mode launcher optimized for manufacturing by milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo
2016-12-15
Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less
Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses
NASA Astrophysics Data System (ADS)
Lerner, Edan; Bouchbinder, Eran
2017-08-01
Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .
Shafer, Morgan W.; Unterberg, Ezekial A.; Wingen, Andreas; ...
2014-12-29
Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. In this study, these measurements are used to test and to validate plasma response models, which are crucial for providing predictivemore » capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic(MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measuredperturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. Finally, these results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.« less
Polymer-dispersed liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan
2016-10-01
The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.
Soft microfluidic assemblies of sensors, circuits, and radios for the skin.
Xu, Sheng; Zhang, Yihui; Jia, Lin; Mathewson, Kyle E; Jang, Kyung-In; Kim, Jeonghyun; Fu, Haoran; Huang, Xian; Chava, Pranav; Wang, Renhan; Bhole, Sanat; Wang, Lizhe; Na, Yoon Joo; Guan, Yue; Flavin, Matthew; Han, Zheshen; Huang, Yonggang; Rogers, John A
2014-04-04
When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.
Roy, Konda Karthik; Kumar, Kanumuru Pavan; John, Gijo; Sooraparaju, Sujatha Gopal; Nujella, Surya Kumari; Sowmya, Kyatham
2018-01-01
Aim: The aim of this study is to compare and to evaluate effect of curing light and curing modes on the nanohybrid composite resins with conventional Bis-GMA and novel tricyclodecane (TCD) monomers. Methodology: Two nanohybrid composites, IPS empress direct and charisma diamond were used in this study. Light-emitting diode (LED)-curing unit and quartz-tungsten-halogen (QTH)-curing unit which were operated into two different modes: continuous and soft start. Based on the composite resin, curing lights, and mode of curing used, the samples were divided into 8 groups. After polymerization, the samples were stored for 48 h in complete darkness at 37°C and 100% humidity. The Vickers hardness (VK) of the surface was determined with Vickers indenter by the application of 200 g for 15 s. Three VK readings were recorded for each sample surface both on top and bottom surfaces. For all the specimens, the three hardness values for each surface were averaged and reported as a single value. The mean VK and hardness ratio were calculated. The depth of cure was assessed based on the hardness ratio. Results: Comparison of mean hardness values and hardness ratios was done using ANOVA with post hoc Tukey's test. Conclusion: Both QTH- and LED-curing units had shown the adequate depth of cure. Soft-start-curing mode in both QTH- and LED-curing lights had effectively increased microhardness than the continuous mode of curing. TCD monomer had shown higher hardness values compared with conventional Bis-GMA-containing resin. PMID:29628651
Sreenilayam, S P; Agra-Kooijman, D M; Panov, V P; Swaminathan, V; Vij, J K; Panarin, Yu P; Kocot, A; Panov, A; Rodriguez-Lojo, D; Stevenson, P J; Fisch, Michael R; Kumar, Satyendra
2017-03-01
A heptamethyltrisiloxane liquid crystal (LC) exhibiting I-SmA^{*}-SmC^{*} phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δn) with electric field, a low shrinkage in the layer thickness (∼1.75%) at 20 °C below the SmA^{*}-SmC^{*} transition, and low values of the reduction factor (∼0.40) suggest that the SmA^{*} phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the SmC^{*} phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δn with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the SmA^{*} phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the SmA^{*} to the SmC^{*} phase.
NASA Astrophysics Data System (ADS)
Sreenilayam, S. P.; Agra-Kooijman, D. M.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Kocot, A.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P. J.; Fisch, Michael R.; Kumar, Satyendra
2017-03-01
A heptamethyltrisiloxane liquid crystal (LC) exhibiting I -Sm A*-Sm C* phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δ n ) with electric field, a low shrinkage in the layer thickness (˜1.75%) at 20 °C below the Sm A*-Sm C* transition, and low values of the reduction factor (˜0.40) suggest that the Sm A* phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the Sm C* phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δ n with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the Sm A* phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013), 10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the Sm A* to the Sm C* phase.
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm.
Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G; Pfeifer, Rolf
2013-01-01
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of "soft robotics". Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed.
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm
Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G.; Pfeifer, Rolf
2013-01-01
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of “soft robotics”. Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed. PMID:23847526
IPMC-driven thrust generation: a new conceptual design (Conference Presentation)
NASA Astrophysics Data System (ADS)
Olsen, Zakai; Kim, Kwang Jin
2017-04-01
Ionic Polymer-Metal Composites (IPMC) are highly functional actuators that find many uses in the field of soft robotics due to their low actuation voltage and ability to operate in aquatic environments. The actuation of an IPMC relies on the swelling of the negatively charged side when a potential is applied, due to the free-moving cations and water molecules migrating to that half. While this bending type actuation can be utilized to perform many tasks, it is ill suited for the primary propulsion mechanism in certain soft robotic applications. Here, a new conceptual design is presented which utilizes the bending of IPMC materials to achieve complex actuation motion in an attempt to generate a non-zero net thrust for propulsion of soft robots. The design capitalizes on advances in the manufacturing processes of electroactive polymer materials, which now allow for more complex shapes and thus new and unique modes of actuation. By utilizing the consistent bending deformation of IPMC actuators, in conjunction with carefully considered geometry, an IPMC driven body may serve as a primary mode of propulsion through a positive net thrust generation. This work consists of the initial feasibility study, concept testing, and optimization for such an actuator through computer modeling and simulation. COMSOL will be used for the finite element analysis to design the most efficient and optimized design for a positive net thrust generation. Such an IPMC design may find a great deal of applications, and the potential of future integration into other soft robotic systems is considered.
Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories
NASA Astrophysics Data System (ADS)
Nohle, Joshua David
In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, R. C. da; Universidade Federal de Campina Grande, Pombal-PB, 58840-000; Toledo, T. A. de
The effects of the atomic substitution of Pb by Ni in the PbTiO{sub 3} ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1) soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO{sub 3} and NiTiO{sub 3} composite, denouncedmore » by the recovering of the both, tetragonallity factor and the E(TO1) soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.« less
NASA Astrophysics Data System (ADS)
Humar, Matjaž; Hyun Yun, Seok
2015-09-01
Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.
Shock sensing dual mode warhead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamblen, M.; Walchak, M.T.; Richmond, L.
1980-12-31
A shock sensing dual mode warhead is provided for use against both soft and hard targets and is capable of sensing which type of target has been struck. The warhead comprises a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze shock sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by dynamic pressure caused high impact deceleration and one initiated by low impact deceleration. Themore » firing train actuated by high impact deceleration senses dynamic pressure transmitted, during deformation of the warhead, through the explosive filler which is employed as a fuzing signature. The firing train actuated by low impact deceleration contains a pyrotechnic delay to allow penetration of soft targets.« less
Universal Non-Debye Scaling in the Density of States of Amorphous Solids.
Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Poncet, Alexis; Zamponi, Francesco
2016-07-22
At the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.
Electrically switchable organo–inorganic hybrid for a white-light laser source
Huang, Jui-Chieh; Hsiao, Yu-Cheng; Lin, Yu-Ting; Lee, Chia-Rong; Lee, Wei
2016-01-01
We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source. PMID:27324219
Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10
NASA Astrophysics Data System (ADS)
Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.
1989-06-01
We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].
Dynamics of Active Microfilaments
NASA Astrophysics Data System (ADS)
Ling, Feng; Guo, Hanliang; Kanso, Eva
2017-11-01
Soft elastic filaments are ubiquitous in natural and artificial systems at various length scales, and their interactions within and between filaments and their environments provide a persistent source of curiosity due to both the complexity of their behaviors and the relative mathematical simplicity of their structures. Specifically, a deeper understanding of the dynamic characteristics of microscopic filaments in viscous fluids is relevant to many biophysical and physiological processes. Here we start with the Cosserat model that allows all six possible modes of deformation for an elastic rod, and focus on the case of inextensible filaments submerged in viscous fluids by ignoring inertial effects and using local resistive force theory for fluid-filament interactions. We verify our simulations against special analytic solutions and present some results on the active internal control of cilia and flagella motion. We conclude by commenting on the utility of this general framework for studying other cellular and sub-cellular physical processes such as systems involving protein filaments.
Nickelson, Jen; Roseman, Mary G; Forthofer, Melinda S
2010-01-01
To examine associations between parental limits on soft drinks and purchasing soft drinks from school vending machines and consuming soft drinks among middle school students. Secondary analysis of cross-sectional data from the middle school Youth Risk Behavior Survey. Eight public middle schools in central Kentucky. All sixth- through eighth-grade students in 7 schools and all eighth-grade students in 1 school (n = 4,049). Self-reported parental limits on soft drink intake, school vending machine soft drink purchases, soft drink consumption, and control variables. Chi-square and binary logistic regression analyses. Compared to students with no parental limits on soft drink consumption, students with the strictest limits were less likely to purchase soft drinks from school vending machines and consume soft drinks; conversely, students with minor parental limitations were more likely to consume soft drinks. The odds of consuming soft drinks were nearly 4 times greater when students purchased soft drinks from school vending machines than when they did not. Further research may enhance understanding of the influence of varying degrees of parental limitations. Efforts to reduce children's soft drink consumption may be augmented by policies limiting soft drink purchases in schools. Copyright 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.
Giant voltage-induced deformation of a dielectric elastomer under a constant pressure
NASA Astrophysics Data System (ADS)
Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian
2014-09-01
Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.
Analysis of influence of different pressure and different depth of pvd on soft foundation treatment
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, XueKui
2018-02-01
According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.
Factors associated with toothache among African American adolescents living in rural South Carolina.
Yuen, Hon K; Wiegand, Ryan E; Hill, Elizabeth G; Magruder, Kathryn M; Slate, Elizabeth H; Salinas, Carlos F; London, Steven D
2011-01-01
The aim of this study is to explore behavioral factors associated with toothache among African American adolescents living in rural South Carolina. Using a self-administered questionnaire, data were collected on toothache experience in the past 12 months, oral hygiene behavior, dental care utilization, and cariogenic snack and nondiet soft drink consumption in a convenience sample of 156 African American adolescents age 10 to 18 years living in rural South Carolina. Univariable and multivariable logistic regression analyses were used to assess the associations between reported toothache experience and sociodemographic variables, oral health behavior, and snack consumption. Thirty-four percent of adolescents reported having toothache in the past 12 months. In univariable modeling, age, dental visit in the last 2 years, quantity and frequency of cariogenic snack consumption, and quantity of nondiet soft drink consumption were each significantly associated with experiencing toothache in the past 12 months (all p values < 0.05). Multivariable logistic regression analysis indicated that younger age, frequent consumption of cariogenic snacks, and number of cans of nondiet soft drink consumed during the weekend significantly increased the odds of experiencing toothache in the past 12 months (all p values ≤ 0.01). Findings indicate age, frequent consumption of cariogenic snacks, and number of cans of nondiet soft drinks are related to toothache in this group. Public policy implications related to selling cariogenic snacks and soft drink that targeting children and adolescents especially those from low income families are discussed.
McCarberg, Bill H; Kopecky, Ernest A; O'Connor, Melinda; Marseilles, Ann; Varanasi, Ravi K; Thompson, Christy; Fleming, Alison B
2016-12-01
Patients with chronic pain may experience difficulty swallowing, in part due to worsening disease, comorbid conditions, iatrogenic etiology, or age. Patients or caregivers may manipulate extended-release (ER) opioid formulations to facilitate oral dosing due to a lack of therapeutic options that allow for sprinkle or enteral feeding tube administration. If crushed or broken, current oral ER opioids can be associated with adverse sequelae, including risk of potentially fatal overdose. To review the safety, in vitro dissolution data, and in vivo pharmacokinetic data that support alternative modes of administration of oxycodone DETERx (Xtampza ER) via sprinkling onto soft foods for oral ingestion or via enteral feeding tubes. A review of oxycodone DETERx data from in vitro and in vivo studies was conducted to demonstrate support for alternative routes and modes of administration. There was no difference in the dissolution profile when administered with various soft foods or when mixed with various liquid vehicles and administered via nasogastric (NG) or gastrostomy (G) tubes, based on in vitro studies. When sprinkled onto applesauce and administered orally, the microspheres were bioequivalent to the intact oxycodone capsules. When crushed or chewed, the formulation maintained its pharmacokinetic profile; no bolus dose of opioid was released. The sprinkle-dose study was limited by the single-dose study design, as well as the small sample size. Oxycodone DETERx is the first ER oxycodone formulation that can be administered either intact, sprinkled onto soft foods, or via NG/G tubes, thereby providing options for treating pain in patients who have difficulty swallowing.
Viscoelastic damping in crystalline composites and alloys
NASA Astrophysics Data System (ADS)
Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel
We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.
NASA Astrophysics Data System (ADS)
Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo
The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for high-voltage X-ray DC-DC power converter with a voltage multiplier strategy has some specified voltage pattern tracking voltage response performances under rapid rising time and no overshoot in start transient tube voltage as well as the minimized steady-state voltage ripple in tube voltage.
Changes in Dimensionality and Fractal Scaling Suggest Soft-Assembled Dynamics in Human EEG
Wiltshire, Travis J.; Euler, Matthew J.; McKinney, Ty L.; Butner, Jonathan E.
2017-01-01
Humans are high-dimensional, complex systems consisting of many components that must coordinate in order to perform even the simplest of activities. Many behavioral studies, especially in the movement sciences, have advanced the notion of soft-assembly to describe how systems with many components coordinate to perform specific functions while also exhibiting the potential to re-structure and then perform other functions as task demands change. Consistent with this notion, within cognitive neuroscience it is increasingly accepted that the brain flexibly coordinates the networks needed to cope with changing task demands. However, evaluation of various indices of soft-assembly has so far been absent from neurophysiological research. To begin addressing this gap, we investigated task-related changes in two distinct indices of soft-assembly using the established phenomenon of EEG repetition suppression. In a repetition priming task, we assessed evidence for changes in the correlation dimension and fractal scaling exponents during stimulus-locked event-related potentials, as a function of stimulus onset and familiarity, and relative to spontaneous non-task-related activity. Consistent with predictions derived from soft-assembly, results indicated decreases in dimensionality and increases in fractal scaling exponents from resting to pre-stimulus states and following stimulus onset. However, contrary to predictions, familiarity tended to increase dimensionality estimates. Overall, the findings support the view from soft-assembly that neural dynamics should become increasingly ordered as external task demands increase, and support the broader application of soft-assembly logic in understanding human behavior and electrophysiology. PMID:28919862
Gebremariam, Mekdes K; Lien, Nanna; Torheim, Liv Elin; Andersen, Lene F; Melbye, Elisabeth L; Glavin, Kari; Hausken, Solveig E S; Sleddens, Ester F C; Bjelland, Mona
2016-08-17
The existence of socioeconomic differences in dietary behaviors is well documented. However, studies exploring the mechanisms behind these differences among adolescents using comprehensive and reliable measures of mediators are lacking. The aims of this study were (a) to assess the psychometric properties of new scales assessing the perceived rules and accessibility related to the consumption of vegetables and soft drinks and (b) to explore their mediating role in the association between parental education and the corresponding dietary behaviors. A cross-sectional survey including 440 adolescents from three counties in Norway (mean age 14.3 years (SD = 0.6)) was conducted using a web-based questionnaire. Principal component analysis, test-retest and internal reliability analysis were conducted. The mediating role of perceived accessibility and perceived rules in the association between parental education and the dietary behaviors was explored using linear regression analyses. Factor analyses confirmed two separate subscales, named "accessibility" and "rules", both for vegetables and soft drinks (factor loadings >0.60). The scales had good internal consistency reliability (0.70-0.87). The test-retest reliability of the scales was moderate to good (0.44-0.62). Parental education was inversely related to the consumption of soft drinks and positively related to the consumption of vegetables. Perceived accessibility and perceived rules related to soft drink consumption were found to mediate the association between parental education and soft drink consumption (47.5 and 8.5 % of total effect mediated). Accessibility of vegetables was found to mediate the association between parental education and the consumption of vegetables (51 % of total effect mediated). The new scales developed in this study are comprehensive and have adequate validity and reliability; they are therefore considered appropriate for use among 13-15 year-olds. Parents, in particular those with a low educational background, should be encouraged to increase the accessibility of vegetables and to decrease the accessibility of soft drinks, in particular during dinner. Enforcing parental rules limiting soft drink intake in families with low parental education also appears relevant.
From elasticity to capillarity in soft materials indentation
NASA Astrophysics Data System (ADS)
Pham, Jonathan T.; Schellenberger, Frank; Kappl, Michael; Butt, Hans-Jürgen
2017-06-01
For soft materials with Young's moduli below 100 kPa, quantifying mechanical and interfacial properties by small scale indentation is challenging because in addition to adhesion and elasticity, surface tension plays a critical role. Until now, microscale contact of very soft materials has only been studied by static experiments under zero external loading. Here we introduce a combination of the colloidal probe technique and confocal microscopy to characterize the force-indentation and force-contact radius relationships during microindentation of soft silicones. We confirm that the widespread Johnson-Kendall-Roberts theory must be extended to predict the mechanical contact for soft materials. Typically a liquid component is found within very soft materials. With a simple analytical model, we illustrate that accounting for this liquid surface tension can capture the contact behavior. Our results highlight the importance of considering liquid that is often associated with soft materials during small scale contact.
NASA Technical Reports Server (NTRS)
Spector, E.; LeBlanc, A.; Shackelford, L.
1995-01-01
This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.
Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa
NASA Astrophysics Data System (ADS)
O'Bannon, Earl; Williams, Quentin
2016-10-01
The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.
Suppressing Anomalous Localized Waffle Behavior in Least Squares Wavefront Reconstructors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D
2002-10-08
A major difficulty with wavefront slope sensors is their insensitivity to certain phase aberration patterns, the classic example being the waffle pattern in the Fried sampling geometry. As the number of degrees of freedom in AO systems grows larger, the possibility of troublesome waffle-like behavior over localized portions of the aperture is becoming evident. Reconstructor matrices have associated with them, either explicitly or implicitly, an orthogonal mode space over which they operate, called the singular mode space. If not properly preconditioned, the reconstructor's mode set can consist almost entirely of modes that each have some localized waffle-like behavior. In thismore » paper we analyze the behavior of least-squares reconstructors with regard to their mode spaces. We introduce a new technique that is successful in producing a mode space that segregates the waffle-like behavior into a few ''high order'' modes, which can then be projected out of the reconstructor matrix. This technique can be adapted so as to remove any specific modes that are undesirable in the final reconstructor (such as piston, tip, and tilt for example) as well as suppress (the more nebulously defined) localized waffle behavior.« less
Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument
NASA Technical Reports Server (NTRS)
Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard
2015-01-01
The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
NASA Astrophysics Data System (ADS)
Mrlík, M.; Leadenham, S.; AlMaadeed, M. A.; Erturk, A.
2016-04-01
The harvesting of mechanical strain and kinetic energy has received great attention over the past two decades in order to power wireless electronic components such as those used in passive and active monitoring applications. Piezoelectric ceramics, such as PZT (lead zirconate titanate), constitute the most commonly used electromechanical interface in vibration energy harvesters. However, there are applications in which piezoelectric ceramics cannot be used due to their low allowable curvature and brittle nature. Soft polymer PVDF (polyvinylidene fluoride) is arguably the most popular non-ceramic soft piezoelectric energy harvester material for such scenarios. Another type of polymer that has received less attention is PP (polypropylene) for electret-based energy harvesting using the thickness mode (33- mode). This work presents figure of merit comparison of PP versus PVDF for off-resonant energy harvesting in thickness mode operation, revealing substantial advantage of PP over PVDF. For thickness mode energy harvesting scenarios (e.g. dynamic compression) at reasonable ambient vibration frequencies, the figure of merit for the maximum power output is proportional to the square of the effective piezoelectric strain constant divided by the effective permittivity constant. Under optimal conditions and for the same volume, it is shown that PP can generate more than two orders of magnitude larger electrical power as compared to PVDF due to the larger effective piezoelectric strain constant and lower permittivity of the former.
Soft skill appraisal for dentistry: a tool for positive practice management.
Jawale, Bhushan Arun; Bendgude, Vikas; Husain, Nadeem; Thosar, Nilima; Tandon, Piyush
2011-11-01
Soft skills adoption is a learning experience for every practitioner and every academician. Author has expressed his opinion for success through educational and real values of soft skill. Soft skills behavior of individual and institution help in achieving desirable goals in general and specialty practices. Author also focused on some realistic soft skill methods for improvisation of practices for all doctor. These skills indulge positive energy in human relationship for working in symbiosis and explore infinite capabilities at institutional and doctoral level. Here, some optimistic suggestions are given for improving dental practices and academic fulfillments. These soft skills help to organize, plan and manage, and track changes during the course of the growing dental practices. However, understanding of the soft skills in practice management, its simplicity and complexity and also, its contributing factors, helps practitioners to understand the dynamic, social and complex contexts of practices. It is really helpful to all practitioners to grow their practices using soft skills.
X-ray variability of Cygnus X-1 in its soft state
NASA Technical Reports Server (NTRS)
Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.
1997-01-01
Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.
Five-dimensional ultrasound system for soft tissue visualization.
Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M
2015-12-01
A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.
Dynamic and rheological properties of soft biological cell suspensions
Yazdani, Alireza; Li, Xuejin
2016-01-01
Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271
Propagation mode of Portevin-Le Chatelier plastic instabilities in an aluminium-magnesium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeghloul, A.; Mliha-Touati, M.; Bakir, S.
1996-11-01
The Portevin-Le Chatelier (PLC) effect is characterized by the appearance of serrations in load (hard tensile machine for constant strain rate tests) or by steps (soft tensile machine for constant stress rate tests) or by steps (soft tensile machine for constant stress rate tests) on the stress-strain curves. It is now widely accepted that the PLC propagative instability stems from the dynamic interaction between diffusing solute atoms and mobile dislocations in the temperature and strain rate ranges where dynamic strain ageing (DSA) takes place. This competition results in a negative strain-rate sensitivity. However, in some alloys, like concentrated solid solutions,more » shearing of precipitates accompanied by their dissolution and subsequent reprecipitation during tensile test may also lead to a negative strain rate sensitivity. In view of the renewed theoretical interest in propagative instabilities, it is important that the experimental features of band propagation be well characterized. In this work the authors present experimental results that are obtained from the investigation of the PLC bands associated with discontinuous yielding. These results show that the band strain, the band velocity and the propagation mode of the bands depend on the stress rate when the test is carried out on a soft tensile machine.« less
Gasiorowska, Agata; Chaplin, Lan Nguyen; Zaleskiewicz, Tomasz; Wygrab, Sandra; Vohs, Kathleen D
2016-03-01
People can get most of their needs broadly satisfied in two ways: by close communal ties and by dealings with people in the marketplace. These modes of relating-termed communal and market-often necessitate qualitatively different motives, behaviors, and mind-sets. We reasoned that activating market mode would produce behaviors consistent with it and impair behaviors consistent with communal mode. In a series of experiments, money-the market-mode cue-was presented to Polish children ages 3 to 6. We measured communal behavior by prosocial helpfulness and generosity and measured market behavior by performance and effort. Results showed that handling money (compared with other objects) increased laborious effort and reduced helpfulness and generosity. The effects of money primes were not due to the children's mood, liking for money, or task engagement. This work is the first to demonstrate that young children tacitly understand market mode and also understand that money is a cue to shift into it. © The Author(s) 2016.
Evaluation of a Soft Skills Training Program
ERIC Educational Resources Information Center
Charoensap-Kelly, Piyawan; Broussard, Lauren; Lindsly, Mallory; Troy, Megan
2016-01-01
This study was conducted to determine the effectiveness of a soft skills employee training program. We examined willingness to learn and delivery methods (face-to-face vs. online) and their associations with the training outcomes in terms of learning and behavioral change. Results showed that neither participants' willingness to learn nor delivery…
Employer Perceptions of Student Informational Interviewing Skills and Behaviors
ERIC Educational Resources Information Center
Orr, Claudia; Sherony, Bruce; Steinhaus, Carol
2011-01-01
Employers continue to report that soft skills are critically important in obtaining employment and achieving long-term career success. Given the challenging job market for college graduates, business school faculty need to provide practical opportunities for students to develop their soft skills in professional settings. A longitudinal study was…
Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H
2017-08-01
We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Xiaowei; Sahraei, Elham; Wang, Kai
2016-01-01
Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185
An inverse finite-element model of heel-pad indentation.
Erdemir, Ahmet; Viveiros, Meredith L; Ulbrecht, Jan S; Cavanagh, Peter R
2006-01-01
A numerical-experimental approach has been developed to characterize heel-pad deformation at the material level. Left and right heels of 20 diabetic subjects and 20 nondiabetic subjects matched for age, gender and body mass index were indented using force-controlled ultrasound. Initial tissue thickness and deformation were measured using M-mode ultrasound; indentation forces were recorded simultaneously. An inverse finite-element analysis of the indentation protocol using axisymmetric models adjusted to reflect individual heel thickness was used to extract nonlinear material properties describing the hyperelastic behavior of each heel. Student's t-tests revealed that heel pads of diabetic subjects were not significantly different in initial thickness nor were they stiffer than those from nondiabetic subjects. Another heel-pad model with anatomically realistic surface representations of the calcaneus and soft tissue was developed to estimate peak pressure prediction errors when average rather than individualized material properties were used. Root-mean-square errors of up to 7% were calculated, indicating the importance of subject-specific modeling of the nonlinear elastic behavior of the heel pad. Indentation systems combined with the presented numerical approach can provide this information for further analysis of patient-specific foot pathologies and therapeutic footwear designs.
Dynamics of a Tapped Granular Column
NASA Astrophysics Data System (ADS)
Rosato, Anthony; Blackmore, Denis; Zuo, Luo; Hao, Wu; Horntrop, David
2015-11-01
We consider the behavior of a column of spheres subjected to a time-dependent vertical taps. Of interest are various dynamical properties, such as the motion of its mass center, its response to taps of different intensities and forms, and the effect of system size and material properties. The interplay between diverse time and length scales are the key contributors to the column's evolving dynamics. Soft sphere discrete element simulations were conducted over a very wide parameter space to obtain a portrait of column behavior as embodied by the collective dynamics of the mass center motion. Results compared favorably with a derived reduced-order paradigm of the mass center motion (surprisingly analogous to that for a single bouncing ball on an oscillating plate) with respect to dynamical regimes and their transitions. A continuum model obtained from a system of Newtonian equations, as a locally averaged limit in the transport mode along trajectories is described, and a numerical solution protocol for a one-dimensional system is outlined. Typical trajectories and density evolution profiles are shown. We conclude with a discussion of our investigations to relate predictions of the continuum and reduced dynamical systems models with discrete simulations.
Neurological soft signs in children with attention deficit hyperactivity disorder.
Patankar, V C; Sangle, J P; Shah, Henal R; Dave, M; Kamath, R M
2012-04-01
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with wide repercussions. Since it is etiologically related to delayed maturation, neurological soft signs (NSS) could be a tool to assess this. Further the correlation of NSS with severity and type of ADHD and presence of Specific Learning Disability (SLD) would give further insight into it. To study neurological soft signs and risk factors (type, mode of delivery, and milestones) in children with ADHD and to correlate NSS with type and severity of ADHD and with co-morbid Specific Learning Disability. The study was carried out in Child care services of a tertiary teaching urban hospital. It was a cross-sectional single interview study. 52 consecutive children diagnosed as having ADHD were assessed for the presence of neurological soft signs using Revised Physical and Neurological Examination soft Signs scale (PANESS). The ADHD was rated by parents using ADHD parent rating scale. The data was analyzed using the chi-squared test and Pearson's co-relational analysis. Neurological soft signs are present in 84% of children. They are equally present in both the inattentive-hyperactive and impulsive-hyperactive types of ADHD. The presence of neurological soft signs in ADHD are independent of the presence of co-morbid SLD. Dysrrhythmias and overflow with gait were typically seen for impulsive-hyperactive type and higher severity of ADHD is related to more errors.
Factors Associated with Toothache among African American Adolescents Living in Rural South Carolina
Wiegand, Ryan E.; Hill, Elizabeth G.; Magruder, Kathryn M.; Slate, Elizabeth H.; Salinas, Carlos F.; London, Steven D.
2012-01-01
Objective The aim of this study is to explore behavioral factors associated with toothache among African American adolescents living in rural South Carolina. Methods Using a self-administered questionnaire, data were collected on toothache experience in the past 12 months, oral hygiene behavior, dental care utilization, and cariogenic snack and non-diet soft drink consumption in a convenience sample of 156 African American adolescents aged 10-18 years old living in rural South Carolina. Univariable and multivariable logistic regression analyses were used to assess the associations between reported toothache experience and socio-demographic variables, oral health behavior, and snack consumption. Results Thirty-four percent of adolescents reported having toothache in the past 12 months. In univariable modeling, age, dental visit in the last two years, quantity and frequency of cariogenic snack consumption, and quantity of non-diet soft drink consumption were each significantly associated with experiencing toothache in the past 12 months (all p-values < 0.05). Multivariable logistic regression analysis indicated that younger age, frequent consumption of cariogenic snacks, and number of cans of non-diet soft drink consumed during the weekend significantly increased the odds of experiencing toothache in the past 12 months (all p-values ≤ 0.01). Conclusion Findings indicate age, frequent consumption of cariogenic snacks and number of cans of non-diet soft drinks are related to toothache in this group. Public policy implications related to selling cariogenic snacks and soft drink that targeting children and adolescents especially those from low income families are discussed. PMID:22085328
Caracterisation des mecanismes d'usure en cavitation de revetements HVOF a base de CaviTec
NASA Astrophysics Data System (ADS)
Lavigne, Sebastien
The increasing demand for high performance power conversion systems continuously pushes for improvement in efficiency and power density. This dissertation focuses on a topological effort to efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where both capacitors and inductors are used in the voltage conversion and power transfer process. Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from poor efficiency due to the inevitable charge redistribution process. With a strategic placement of one or more inductors, the charge redistribution loss can be eliminated by inductively charging/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor size can be greatly reduced without reducing the efficiency. A general analytical framework is presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging operation with a single inductor. For topologies that cannot, a split-phase control technique is introduced, which amends existing two-phase controls to completely eliminate the charge redistribution loss. In addition, alternative placements of inductors are explored to extend the family of hybrid converters. The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar manner to that of a conventional SC converter, with the addition of a soft-charging inductor. The switching frequency of such converters can be adjusted to operate in either zero current switching (ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching loss and conduction loss. It is shown that the capacitor and inductor values can be selected to achieve a minimal passive component volume, which can be significantly smaller than that of a conventional SC converter or a magnetic-based converter. On the other hand, PWM-based hybrid converters generate a PWM rectangular wave as the terminal voltage to the inductor, similar to the operation of a buck converter. In contrast to conventional SC converters, such hybrid converters can achieve lossless and continuous regulation of the output voltage. Compared to buck converters, the required inductor is greatly reduced, as well as the switch stress. A 80-170 V input, 12-24 V output prototype PWM Dickson converter is implemented using GaN switches. The measured peak efficiency is 97%, and high efficiency can be maintained over the entire input and output operating range. In addition, the similarity between multilevel converters (for example, flying capacitor multilevel (FCML) converters) and the PWM-based hybrid SC converters is discussed. Both types of converters can be seen as a hybrid converter which uses both capacitors and inductors for energy transfer. A general framework to compare these converters, along with conventional buck converters, is proposed. In this framework, the power losses (including conduction loss and switching loss) are kept constant, while the total passive component volume is used as the figure of merit. Based on the principle of maximizing energy utilization of passive components, a 7-level FCML converter and an active energy buffer are designed and implemented for single phase dc-ac applications. In addition, the stand-alone system includes a start-up circuitry, EMC filter and auxiliary power supply. The enclosed box achieves a combined power density of 216 W/in3 and an efficiency of 97.4%, and compares favorably against the state-of-the-art designs under the same specification. To further improve the efficiency and power density, soft-switching techniques are investigated and applied on the hybrid converters. A zero voltage switching (ZVS) technique is introduced for both the fixed-ratio mode and the PWM mode operated hybrid converters. The previous hardware prototypes are modified for ZVS operation, and prove the feasibility of simultaneous soft-charging and soft-switching operation. Last but not the least, some of the practical issues associated with the hybrid converter are discussed, such as practical capacitor selection, capacitor voltage balancing and other circuit implementation challenges. Future work based on these topics is given. In summary, these hybrid converters are suited for applications where extreme efficiency and power density are critical. Through efficient utilization of active and passive devices, the hybrid topologies can offer a greater optimization opportunity and ability to take advantage of technology improvement than is possible with conventional designs.
Timmermans, Maartje; van Lier, Pol A C; Koot, Hans M
2008-04-01
Health risk behaviors like substance use (alcohol, tobacco, soft/hard drugs) and risky sexual behavior become more prevalent in adolescence. Children with behavior problems are thought to be prone to engage in health risk behaviors later in life. It is, however, unclear which problems within the externalizing spectrum account for these outcomes. Three hundred and nine children were followed from age 4/5 years to 18 years (14-year follow-up). Level and course of parent-rated opposition, physical aggression, status violations and property violations were used to predict adolescent-reported substance use and risky sexual behavior at age 18 years. Both level and change in physical aggression were unique predictors of all forms of adolescent health risk behavior. Levels of status violations predicted smoking and soft drug use only, while change in property violations predicted each of the health risk behaviors. The links between opposition and health risk behaviors were accounted for by co-occurring problem behaviors. Of externalizing problems, physical aggression is the best predictor of adolescent substance use and risky sexual behavior from childhood onwards. Possible explanations and implications of these findings, and future research directions are discussed.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator
ERIC Educational Resources Information Center
Thomchick, John; McKelvey, J. P.
1978-01-01
Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)
Evidence of rayleigh-hertz surface waves and shear stiffness anomaly in granular media.
Bonneau, L; Andreotti, B; Clément, E
2008-09-12
Using the nonlinear dependence of sound propagation speed with pressure, we evidence the anomalous elastic softness of a granular packing in the vicinity of the jamming transition. Under gravity and close to a free surface, the acoustic propagation is only possible through surface modes guided by the stiffness gradient. These Rayleigh-Hertz modes are evidenced in a controlled laboratory experiment. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of nonlinear elasticity including finite size effects. These results allow one to access the elastic properties of the packing under vanishing confining pressure.
Klompmaker, Adiël A; Fraaije, René H B
2012-01-01
Direct animal behavior can be inferred from the fossil record only in exceptional circumstances. The exceptional mode of preservation of ammonoid shells in the Posidonia Shale (Lower Jurassic, lower Toarcian) of Dotternhausen in southern Germany, with only the organic periostracum preserved, provides an excellent opportunity to observe the contents of the ammonoid body chamber because this periostracum is translucent. Here, we report upon three delicate lobsters preserved within a compressed ammonoid specimen of Harpoceras falciferum. We attempt to explain this gregarious behavior. The three lobsters were studied using standard microscopy under low angle light. The lobsters belong to the extinct family of the Eryonidae; further identification was not possible. The organic material of the three small lobsters is preserved more than halfway into the ammonoid body chamber. The lobsters are closely spaced and are positioned with their tails oriented toward each other. The specimens are interpreted to represent corpses rather than molts. The lobsters probably sought shelter in preparation for molting or against predators such as fish that were present in Dotternhausen. Alternatively, the soft tissue of the ammonoid may have been a source of food that attracted the lobsters, or it may have served as a long-term residency for the lobsters (inquilinism). The lobsters represent the oldest known example of gregariousness amongst lobsters and decapods in the fossil record. Gregarious behavior in lobsters, also known for extant lobsters, thus developed earlier in earth's history than previously known. Moreover, this is one of the oldest known examples of decapod crustaceans preserved within cephalopod shells.
Klompmaker, Adiël A.; Fraaije, René H. B.
2012-01-01
Direct animal behavior can be inferred from the fossil record only in exceptional circumstances. The exceptional mode of preservation of ammonoid shells in the Posidonia Shale (Lower Jurassic, lower Toarcian) of Dotternhausen in southern Germany, with only the organic periostracum preserved, provides an excellent opportunity to observe the contents of the ammonoid body chamber because this periostracum is translucent. Here, we report upon three delicate lobsters preserved within a compressed ammonoid specimen of Harpoceras falciferum. We attempt to explain this gregarious behavior. The three lobsters were studied using standard microscopy under low angle light. The lobsters belong to the extinct family of the Eryonidae; further identification was not possible. The organic material of the three small lobsters is preserved more than halfway into the ammonoid body chamber. The lobsters are closely spaced and are positioned with their tails oriented toward each other. The specimens are interpreted to represent corpses rather than molts. The lobsters probably sought shelter in preparation for molting or against predators such as fish that were present in Dotternhausen. Alternatively, the soft tissue of the ammonoid may have been a source of food that attracted the lobsters, or it may have served as a long-term residency for the lobsters (inquilinism). The lobsters represent the oldest known example of gregariousness amongst lobsters and decapods in the fossil record. Gregarious behavior in lobsters, also known for extant lobsters, thus developed earlier in earth's history than previously known. Moreover, this is one of the oldest known examples of decapod crustaceans preserved within cephalopod shells. PMID:22412846
Asymptotic self-restabilization of a continuous elastic structure
NASA Astrophysics Data System (ADS)
Bosi, F.; Misseroni, D.; Dal Corso, F.; Neukirch, S.; Bigoni, D.
2016-12-01
A challenge in soft robotics and soft actuation is the determination of an elastic system that spontaneously recovers its trivial path during postcritical deformation after a bifurcation. The interest in this behavior is that a displacement component spontaneously cycles around a null value, thus producing a cyclic soft mechanism. An example of such a system is theoretically proven through the solution of the elastica and a stability analysis based on dynamic perturbations. It is shown that the asymptotic self-restabilization is driven by the development of a configurational force, of similar nature to the Peach-Koehler interaction between dislocations in crystals, which is derived from the principle of least action. A proof-of-concept prototype of the discovered elastic system is designed, realized, and tested, showing that this innovative behavior can be obtained in a real mechanical apparatus.
Brown, Christopher A; Hurwit, Daniel; Behn, Anthony; Hunt, Kenneth J
2014-02-01
Anatomic repair is indicated for patients who have recurrent lateral ankle instability despite nonoperative measures. There is no difference in repair stiffness, failure torque, or failure angle between specimens repaired with all-soft suture anchors versus the modified Broström-Gould technique with sutures only. Controlled laboratory study. In 10 matched pairs of human cadaveric ankles, the anterior talofibular ligament (ATFL) was incised from its origin on the fibula. After randomization, 1 ankle was repaired to its anatomic insertion using two 1.4-mm JuggerKnot all-soft suture anchors; the other ankle was repaired with a modified Broström-Gould technique using 2-0 FiberWire. All were augmented using the inferior extensor retinaculum. All ankles were mounted to the testing machine in 20° of plantar flexion and 15° of internal rotation and loaded to failure after the repair. Stiffness, failure torque, and failure angle were recorded and compared using a paired Student t test with a significance level set at P < .05. There was no significant difference in failure torque, failure angle, or stiffness. No anchors pulled out of bone. The primary mode of failure was pulling through the ATFL tissue. There was no statistical difference in strength or stiffness between a 1.4-mm all-soft suture anchor and a modified Broström-Gould repair with 2-0 FiberWire. The primary mode of failure was at the tissue level rather than knot failure or anchor pullout. The particular implant choice (suture only, tunnel, anchor) in repairing the lateral ligament complex may not be as important as the time to biological healing. The suture-only construct as described in the Broström-Gould repair was as strong as all-soft suture anchors, and the majority of the ankles failed at the tissue level. For those surgeons whose preference is to use anchor repair, this novel all-soft suture anchor may be an alternative to other larger anchors, as none failed by pullout.
Silva, Fabiana Medeiros de Almeida; Smith-Menezes, Aldemir; Duarte, Maria de Fátima da Silva
2016-01-01
Abstract Objective: To determine the prevalence of consumption of fruits and vegetables and identify the association with low level of physical activity, exposure to sedentary behavior, consumption of soft drinks and overweight/obesity in adolescents. Methods: This is a cross-sectional school-based study with a representative sample of 3992 students aged 14–19 years from the state of Sergipe, Brazil. The outcome was low consumption of fruits and vegetables (<5servings/day). Independent variables were: level of physical activity, sedentary behavior, consumption of soft drinks, and overweight/obesity. Global Student Health Survey questionnaire and body mass and height measurements were used, as well as chi-square test and crude and adjusted binary logistic regression. The significance level adopted was 5%. Results: The prevalence of inadequate consumption of fruits and vegetables was high – 88.6% (95%CI=87.6–89.5). Higher likelihood of low consumption of fruits and vegetables was verified among boys who were exposed to sedentary behavior (OR=1.63; 95%CI=1.18–2.24), who consumed soft drinks (OR=3.04; 95%CI=2.10–4.40), with insufficiently physical activity (OR=1.98; 95%CI=1.43–2.73) and girls who consumed soft drinks (OR=1.88; 95%CI=1.43–2.47) and those with overweight/obesity (OR=1.63; 95%CI=1.19–2.23). Conclusions: There is a need of public policies aimed at encouraging the consumption of healthy foods among adolescents. PMID:27240560
Silva, Fabiana Medeiros de Almeida; Smith-Menezes, Aldemir; Duarte, Maria de Fátima da Silva
2016-09-01
To determine the prevalence of consumption of fruits and vegetables and identify the association with low level of physical activity, exposure to sedentary behavior, consumption of soft drinks and overweight/obesity in adolescents. This is a cross-sectional school-based study with a representative sample of 3992 students aged 14-19 years from the state of Sergipe, Brazil. The outcome was low consumption of fruits and vegetables (<5servings/day). Independent variables were: level of physical activity, sedentary behavior, consumption of soft drinks, and overweight/obesity. Global Student Health Survey questionnaire and body mass and height measurements were used, as well as chi-square test and crude and adjusted binary logistic regression. The significance level adopted was 5%. The prevalence of inadequate consumption of fruits and vegetables was high - 88.6% (95%CI=87.6-89.5). Higher likelihood of low consumption of fruits and vegetables was verified among boys who were exposed to sedentary behavior (OR=1.63; 95%CI=1.18-2.24), who consumed soft drinks (OR=3.04; 95%CI=2.10-4.40), with insufficiently physical activity (OR=1.98; 95%CI=1.43-2.73) and girls who consumed soft drinks (OR=1.88; 95%CI=1.43-2.47) and those with overweight/obesity (OR=1.63; 95%CI=1.19-2.23). There is a need of public policies aimed at encouraging the consumption of healthy foods among adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Hard Thinking about Soft Skills
ERIC Educational Resources Information Center
Claxton, Guy; Costa, Arthur L.; Kallick, Bena
2016-01-01
People use various terms to refer to traits and tendencies connected to social-emotional behavior and ways of thinking or approaching problems--from 21st century skills to mindsets to habits of mind. Such traits are also often called soft skills or non-cognitive skills. The authors contend that these latter terms imply that these traits and…
Learning Soft Skills at Work: An Interview with Annalee Luhman
ERIC Educational Resources Information Center
Davis, Barbara D.; Muir, Clive
2004-01-01
Soft skills are attitudes and behaviors displayed in interactions among individuals that affect the outcomes of such encounters. These differ from hard skills, which are the technical knowledge and abilities required to perform specific job-related tasks more formally stated in job descriptions. In the past, it was felt that managers and employees…
USDA-ARS?s Scientific Manuscript database
Watershed simulation models can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of detailed outputs that some of the calibrated models may not reflect summative actual watershed behavior. Thus, it is necessary to use “soft data” (i....
Special Agents Can Promote Cooperation in the Population
Wang, Xin; Han, Jing; Han, Huawei
2011-01-01
Cooperation is ubiquitous in our real life but everyone would like to maximize her own profits. How does cooperation occur in the group of self-interested agents without centralized control? Furthermore, in a hostile scenario, for example, cooperation is unlikely to emerge. Is there any mechanism to promote cooperation if populations are given and play rules are not allowed to change? In this paper, numerical experiments show that complete population interaction is unfriendly to cooperation in the finite but end-unknown Repeated Prisoner's Dilemma (RPD). Then a mechanism called soft control is proposed to promote cooperation. According to the basic idea of soft control, a number of special agents are introduced to intervene in the evolution of cooperation. They comply with play rules in the original group so that they are always treated as normal agents. For our purpose, these special agents have their own strategies and share knowledge. The capability of the mechanism is studied under different settings. We find that soft control can promote cooperation and is robust to noise. Meanwhile simulation results demonstrate the applicability of the mechanism in other scenarios. Besides, the analytical proof also illustrates the effectiveness of soft control and validates simulation results. As a way of intervention in collective behaviors, soft control provides a possible direction for the study of reciprocal behaviors. PMID:22216202
The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.
Zhao, Yancun; Li, Pengxia; Huang, Kaihong; Wang, Yuning; Hu, Huali; Sun, Ya
2013-03-01
Erwinia carotovora subsp. carotovora (Ecc), the causal agent of bacterial soft rot, is one of the destructive pathogens of postharvest vegetables. In this study, a bacterial isolate (BGP20) from the vegetable farm soil showed strong antagonistic activity against Ecc in vitro, and its twofold cell-free culture filtrate showed excellent biocontrol effect in controlling the postharvest bacterial soft rot of potatoes at 25 °C. The anti-Ecc metabolites produced by the isolate BGP20 had a high resistance to high temperature, UV-light and protease K. Based on the colonial morphology, cellular morphology, sporulation, and partial nucleotide sequences of 16S rRNA and gyrB gene, the isolate BGP20 was identified as Bacillus amyloliquefaciens subsp. plantarum. Further in vivo assays showed that the BGP20 cell culture was more effective in controlling the postharvest bacterial soft rot of green peppers and Chinese cabbages than its twofold cell-free culture filtrate. In contrast, the biocontrol effect and safety of the BGP20 cell culture were very poor on potatoes. In the wounds of potatoes treated with both the antagonist BGP20 and the pathogen Ecc, the viable count of Ecc was 31,746 times that of BGP20 at 48 h of incubation at 25 °C. But in the wounds of green peppers, the viable count of BGP20 increased 182.3 times within 48 h, and that of Ecc increased only 51.3 %. In addition, the treatment with both BGP20 and Ecc induced higher activity of phenylalanine ammonia-lyase (PAL) than others in potatoes. But the same treatment did not induce an increase of PAL activity in green peppers. In conclusion, the present study demonstrated that the isolate BGP20 is a promising candidate in biological control of postharvest bacterial soft rot of vegetables, but its main mode of action is different among various vegetables.
Adhesion and interfacial fracture toughness between hard and soft materials
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Wolf, Kurt; Orana, Argjenta; Fennimore, Roy; Zong, Zong; Meng, Juan; Papandreou, George; Maryanoff, Cynthia; Soboyejo, Wole
2008-11-01
This paper presents the results of a combined experimental and theoretical study of adhesion between hard and soft layers that are relevant to medical devices such as drug-eluting stents and semiconductor applications. Brazil disk specimens were used to measure the interfacial fracture energies between model parylene C and 316L stainless steel over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.
2012-06-01
Military Operational Research , with special theme ‘The use of ‘soft’ methods in OR’. OR52 (7 – 9 September 2010, Royal Holloway University of London...on human judgement. Judgement-based OA applies the methods of ‘Soft Operational Research ’ developed in academia. It has appeared, however, that the...similarity between judgemental methods in operational research practice and a number of other modes of professional analytical practice. The closest
Monte Carlo study of magnetization reversal in the model of a hard/soft magnetic bilayer
NASA Astrophysics Data System (ADS)
Taaev, T. A.; Khizriev, K. Sh.; Murtazaev, A. K.
2017-06-01
Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.
Energy Storage and Dissipation in Random Copolymers during Biaxial Loading
NASA Astrophysics Data System (ADS)
Cho, Hansohl; Boyce, Mary
2012-02-01
Random copolymers composed of hard and soft segments in a glassy and rubbery state at the ambient conditions exhibit phase-separated morphologies which can be tailored to provide hybrid mechanical behaviors of the constituents. Here, phase-separated copolymers with hard and soft contents which form co-continuous structures are explored through experiments and modeling. The mechanics of the highly dissipative yet resilient behavior of an exemplar polyurea are studied under biaxial loading. The hard phase governs the initially stiff response followed by a highly dissipative viscoplasticity where dissipation arises from viscous relaxation as well as structural breakdown in the network structure that still provides energy storage resulting in the shape recovery. The soft phase provides additional energy storage that drives the resilience in high strain rate events. Biaxial experiments reveal the anisotropy and loading history dependence of energy storage and dissipation, validating the three-dimensional predictive capabilities of the microstructurally-based constitutive model. The combination of a highly dissipative and resilient behavior provides a versatile material for a myriad of applications ranging from self-healing microcapsules to ballistic protective coatings.
Damping of quasiparticles in a Bose-Einstein condensate coupled to an optical cavity
NASA Astrophysics Data System (ADS)
Kónya, G.; Szirmai, G.; Domokos, P.
2014-07-01
We present a general theory for calculating the damping rate of elementary density-wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the huge resonant enhancement in the Beliaev damping of a density-wave mode, predicted recently by Kónya et al. [Phys. Rev. A 89, 051601(R) (2014), 10.1103/PhysRevA.89.051601]. The given density-wave mode constitutes the polaritonlike soft mode of the self-organization phase transition. The resonant enhancement takes place, in both the normal and the ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Green's function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density-wave modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Jiang, Daqiang
This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less
Wake topology of under-actuated rajiform batoid robots
NASA Astrophysics Data System (ADS)
Valdivia Y Alvarado, Pablo; Weymouth, Gabriel; Thekoodan, Dilip; Patrikalakis, Nicholas
2011-11-01
Under-actuated continuous soft robots are designed to have modes of vibration that match desired body motions using minimal actuation. The desired modes of vibration are enabled by flexible continuous bodies with heterogenous material distributions. Errors or intentional approximations in the manufactured material distributions alter the achieved body motions and influence the resulting locomotion performance. An under-actuated continuous soft robot designed to mimic rajiform batoids such as stingrays is used to investigate the influence that fin kinematics variations have on wake topology, and the trade-offs that simplifying the body material structure has on achievable swimming performance. Pectoral fin kinematics in rajiform batoids are defined by traveling waves along the fin cord with particular amplitude envelopes along both the fin cord and span. Digital particle image velocimetry (DPIV) analysis of a prototype's wake structure and immersed-boundary numerical simulations are used to clarify the role of traveling wave wavelength, fin flapping frequency, and amplitude envelope characteristics on the resulting wake topology and swimming performance.
Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L
2017-01-01
A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes. PMID:28111478
Shirron, Peter J; Kimball, Mark O; James, Bryan L; Muench, Theo; DiPirro, Michael J; Letmate, Richard V; Sampson, Michael A; Bialas, Tom G; Sneiderman, Gary A; Porter, Frederick S; Kelley, Richard L
2016-03-01
A 3-stage adiabatic demagnetization refrigerator (ADR)[1] is used on the Soft X-ray Spectrometer instrument[2] on Astro-H[3] to cool a 6×6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system[4] consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.;
2015-01-01
A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes
A reaction cell for ambient pressure soft x-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.
2018-05-01
We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.
The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.
Arnold, Thomas; Scheutz, Matthias
2017-06-01
Soft robots promise an exciting design trajectory in the field of robotics and human-robot interaction (HRI), promising more adaptive, resilient movement within environments as well as a safer, more sensitive interface for the objects or agents the robot encounters. In particular, tactile HRI is a critical dimension for designers to consider, especially given the onrush of assistive and companion robots into our society. In this article, we propose to surface an important set of ethical challenges for the field of soft robotics to meet. Tactile HRI strongly suggests that soft-bodied robots balance tactile engagement against emotional manipulation, model intimacy on the bonding with a tool not with a person, and deflect users from personally and socially destructive behavior the soft bodies and surfaces could normally entice.
Sornkarn, Nantachai; Nanayakkara, Thrishantha
2017-01-01
When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.
A burst-mode photon counting receiver with automatic channel estimation and bit rate detection
NASA Astrophysics Data System (ADS)
Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.
2016-04-01
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
Fatigue characteristics of carbon nanotube blocks under compression
NASA Astrophysics Data System (ADS)
Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.
2008-03-01
In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.
Scanning Electrochemical Microscopy in Neuroscience
NASA Astrophysics Data System (ADS)
Schulte, Albert; Nebel, Michaela; Schuhmann, Wolfgang
2010-07-01
This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2003-01-01
The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2003-01-01
The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
Workplace deviance: strategies for modifying employee behavior.
Pulich, Marcia; Tourigny, Louise
2004-01-01
More than ever, today's health care employees must perform their jobs as efficiently and effectively as possible. Job performance must integrate both technical and necessary soft skills. Workplace deviant behaviors are counterproductive to good job performance. Various deviant behaviors are examined. Areas and strategies of managerial intervention are reviewed which will enable the prevention or modification of undesired employee behaviors.
Buckling of paramagnetic chains in soft gels
NASA Astrophysics Data System (ADS)
Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.
We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.
Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments
NASA Astrophysics Data System (ADS)
Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.
2018-06-01
At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.
Extreme ultraviolet and Soft X-ray diagnostic upgrade on the HBT-EP tokamak: Progress and Results
NASA Astrophysics Data System (ADS)
Desanto, S.; Levesque, J. P.; Battey, A.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.; Hansen, C. J.
2017-10-01
In order to understand internal MHD mode structure in a tokamak plasma, it is helpful to understand temperature and density fluctuations within that plasma. In the HBT-EP tokamak, the plasma emits bremsstrahlung radiation in the extreme ultraviolet (EUV) and soft x-ray (SXR) regimes, and the emitted power is primarily related to electron density and temperature. This radiation is detected by photodiode arrays located at several different angular positions near the plasma's edge, each array making several views through a poloidal slice of plasma. From these measurements a 2-d emissivity profile of that slice can be reconstructed with tomographic algorithms. This profile cannot directly tell us whether the emissivity is due to electron density, temperature, line emission, or charge recombination; however, when combined with information from other diagnostics, it can provide strong evidence of the type of internal mode or modes depending on the temporal-spatial context. We present ongoing progress and results on the installation of a new system that will eventually consist of four arrays of 16 views each and a separate two-color, 16-chord tangential system, which will provide an improved understanding of the internal structure of HBT-EP plasmas. Supported by U.S. DOE Grant DE-FG02-86ER5322.
Patient observers and non-perturbative infrared dynamics in inflation
NASA Astrophysics Data System (ADS)
Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S.
2018-02-01
We have previously derived the effect of soft graviton modes on the quantum state of de Sitter using spontaneously broken asymptotic symmetries. In the present paper we prove that this effect can be reinterpreted in terms of Bogoliubov transformations acting on the quantum state. This also enables us to address the much discussed issues regarding the observability of infrared effects in de Sitter from a new perspective. While it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a patient observer who has lived long enough to have a record of the state before the soft mode was created. Though classically there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties may censor the effect. We then apply our methods to find a non-perturbative description of the quantum state pertaining to the Page time of de Sitter, and derive with these new methods the probability distribution for the local quantum states of de Sitter and slow-roll inflation in the presence of long modes. Finally, we show that this formalism reproduces and generalizes the usual criterion for the presence of eternal inflation in general classes of slow-roll inflation.
Micromechanics and constitutive models for soft active materials with phase evolution
NASA Astrophysics Data System (ADS)
Wang, Binglian
Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.
Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert
2013-03-01
Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute
[Experimental investigation of laser plasma soft X-ray source with gas target].
Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin
2003-02-01
This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.
Yield stress materials in soft condensed matter
NASA Astrophysics Data System (ADS)
Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien
2017-07-01
A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.
Is patience a virtue? Cosmic censorship of infrared effects in de Sitter
NASA Astrophysics Data System (ADS)
Ferreira, Ricardo Z.; Sandora, Mccullen; Sloth, Martin S.
While the accumulation of long wavelength modes during inflation wreaks havoc on the large scale structure of spacetime, the question of even observability of their presence by any local observer has lead to considerable confusion. Though, it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a patient observer who has lived long enough to have a record of the state before the soft mode was created. Though classically, there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties censor the effect, rendering the observation of long modes ultimately forbidden.
Power counting and modes in SCET
NASA Astrophysics Data System (ADS)
Goerke, Raymond; Luke, Michael
2018-02-01
We present a formulation of soft-collinear effective theory (SCET) in the two-jet sector as a theory of decoupled sectors of QCD coupled to Wilson lines. The formulation is manifestly boost-invariant, does not require the introduction of ultrasoft modes at the hard matching scale Q, and has manifest power counting in inverse powers of Q. The spurious infrared divergences which arise in SCET when ultrasoft modes are not included in loops disappear when the overlap between the sectors is correctly subtracted, in a manner similar to the familiar zero-bin subtraction of SCET. We illustrate this approach by analyzing deep inelastic scattering in the endpoint region in SCET and comment on other applications.
Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites
Wysocki, Aleksander L.; Antropov, Vladimir P.
2016-12-01
Here, we developed a micromagnetic method for modeling magnetic systems with periodic boundary conditions along an arbitrary number of dimensions. The main feature is an adaptation of the Ewald summation technique for evaluation of long-range dipolar interactions. The method was applied to investigate the hysteresis process in hard-soft magnetic nanocomposites with various geometries. The dependence of the results on different micromagnetic parameters was studied. We found that for layered structures with an out-of-plane hard phase easy axis the hysteretic properties are very sensitive to the strength of the interlayer exchange coupling, as long as the spontaneous magnetization for the hardmore » phase is significantly smaller than for the soft phase. The origin of this behavior was discussed. Additionally, we investigated the soft phase size optimizing the energy product of hard-soft nanocomposites.« less
Soft pair excitations and double-log divergences due to carrier interactions in graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, L. S.
2018-03-01
Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.
Log corrections to entropy of three dimensional black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2017-08-01
We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldon, David; Boivin, Rejean L.; Chrystal, Colin
While operating a magnetic fusion device in H-mode has many advantages, care must be taken to understand and control the release of energy during the H-L back transition, as the extra energy stored within the H-mode transport barrier will have the potential to cause damage to material components of a large future tokamak such as ITER. Examining a scenario where the H-L back transition sequence begins before the E × B shearing layer decays on its own, we identify a long-lived precursor mode that is tied to the events of the H-L sequence and we develop a robust control strategymore » for ensuring gradual release of energy during the transition sequence. Back transitions in this scenario commonly begin with a rapid relaxation of the pedestal, which was previously shown to be inconsistent with ideal peeling-ballooning instability as the trigger, despite being otherwise similar to a large type-I Edge Localized Mode (ELM). Here, this so-called transient occurs when the E × B shearing rate ω E×B is significantly larger than the turbulence decorrelation rate ωT, indicating that this is not the result of runaway turbulence recovery. The transient is always synchronous with amplitude and propagation velocity modulations of the precursor mode, which has been dubbed the Modulating Pedestal Mode (MPM).The MPM is a coherent density fluctuation, which, in our scenario at least, reliably appears in the steep gradient region with f ≈ 70 kHz, k θ ≈ 0.3 cm –1, and it exists for ≳100 ms before the onset of back transitions. The transient may be reliably eliminated by reducing toroidal rotation in the co-current direction by the application of torque from counter-injecting neutral beams. The transient in these “soft” H-L transitions is then replaced by a small type-III ELM, which is also always synchronous with the MPM, and MPM shows the same behavior in both hard and soft cases.« less
Eldon, David; Boivin, Rejean L.; Chrystal, Colin; ...
2015-11-19
While operating a magnetic fusion device in H-mode has many advantages, care must be taken to understand and control the release of energy during the H-L back transition, as the extra energy stored within the H-mode transport barrier will have the potential to cause damage to material components of a large future tokamak such as ITER. Examining a scenario where the H-L back transition sequence begins before the E × B shearing layer decays on its own, we identify a long-lived precursor mode that is tied to the events of the H-L sequence and we develop a robust control strategymore » for ensuring gradual release of energy during the transition sequence. Back transitions in this scenario commonly begin with a rapid relaxation of the pedestal, which was previously shown to be inconsistent with ideal peeling-ballooning instability as the trigger, despite being otherwise similar to a large type-I Edge Localized Mode (ELM). Here, this so-called transient occurs when the E × B shearing rate ω E×B is significantly larger than the turbulence decorrelation rate ωT, indicating that this is not the result of runaway turbulence recovery. The transient is always synchronous with amplitude and propagation velocity modulations of the precursor mode, which has been dubbed the Modulating Pedestal Mode (MPM).The MPM is a coherent density fluctuation, which, in our scenario at least, reliably appears in the steep gradient region with f ≈ 70 kHz, k θ ≈ 0.3 cm –1, and it exists for ≳100 ms before the onset of back transitions. The transient may be reliably eliminated by reducing toroidal rotation in the co-current direction by the application of torque from counter-injecting neutral beams. The transient in these “soft” H-L transitions is then replaced by a small type-III ELM, which is also always synchronous with the MPM, and MPM shows the same behavior in both hard and soft cases.« less
2013-01-01
In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized. Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing the flexible/rigid segments in spacers and organic solvents. Suitable combination of flexible/rigid segments in molecular spacers in the present cholesteryl gelators is favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle and belt to fiber with the change of spacers and solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes, depending on the substituent spacers in molecular skeletons. The present work may give some insight into the design and character of new organogelators and soft materials with special molecular structures. PMID:24083361
NASA Astrophysics Data System (ADS)
Jiao, Tifeng; Gao, Fengqing; Zhang, Qingrui; Zhou, Jingxin; Gao, Faming
2013-10-01
In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized. Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing the flexible/rigid segments in spacers and organic solvents. Suitable combination of flexible/rigid segments in molecular spacers in the present cholesteryl gelators is favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle and belt to fiber with the change of spacers and solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes, depending on the substituent spacers in molecular skeletons. The present work may give some insight into the design and character of new organogelators and soft materials with special molecular structures.
Ferromagnetic Resonance of a Single Magnetochiral Metamolecule of Permalloy
NASA Astrophysics Data System (ADS)
Kodama, Toshiyuki; Tomita, Satoshi; Kato, Takeshi; Oshima, Daiki; Iwata, Satoshi; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Hosoito, Nobuyoshi; Yanagi, Hisao
2016-08-01
We investigate the ferromagnetic resonance (FMR) of a single chiral structure of a ferromagnetic metal—the magnetochiral (MCh) metamolecule. Using a strain-driven self-coiling technique, micrometer-sized MCh metamolecules of metallic permalloy (Py) are fabricated without any residual Py films. The magnetization curves of ten Py MCh metamolecules obtained by an alternating gradient magnetometer show soft magnetic behavior. In cavity FMR with a magnetic-field sweep and coplanar-waveguide (CPW) FMR with a frequency sweep, the Kittel-mode FMR of the single Py metamolecule is observed. The CPW-FMR results, which are consistent with the cavity-FMR results, bring about the effective g factor, effective magnetization, and Gilbert damping of the single metamolecule. Together with calculations using these parameters, the angle-resolved cavity FMR reveals that the magnetization in the Py MCh metamolecule is most likely to be the hollow-bar type of configuration when the external magnetic field is applied parallel to the chiral axis, although the expected magnetization state at remanence is the corkscrew type of configuration.
Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2018-05-01
A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.
Freire, Maria do Carmo Matias; Jordão, Lidia Moraes Ribeiro; Malta, Deborah Carvalho; Andrade, Silvânia Suely Caribé de Araújo; Peres, Marco Aurelio
2015-01-01
OBJECTIVE To analyze oral health behaviors changes over time in Brazilian adolescents concerning maternal educational inequalities. METHODS Data from the Pesquisa Nacional de Saúde do Escolar (Brazilian National School Health Survey) were analyzed. The sample was composed of 60,973 and 61,145 students from 26 Brazilian state capitals and the Federal District in 2009 and 2012, respectively. The analyzed factors were oral health behaviors (toothbrushing frequency, sweets consumption, soft drink consumption, and cigarette experimentation) and sociodemographics (age, sex, race, type of school and maternal schooling). Oral health behaviors and sociodemographic factors in the two years were compared (Rao-Scott test) and relative and absolute measures of socioeconomic inequalities in health were estimated (slope index of inequality and relative concentration index), using maternal education as a socioeconomic indicator, expressed in number of years of study (> 11; 9-11; ≤ 8). RESULTS Results from 2012, when compared with those from 2009, for all maternal education categories, showed that the proportion of people with low toothbrushing frequency increased, and that consumption of sweets and soft drinks and cigarette experimentation decreased. In private schools, positive slope index of inequality and relative concentration index indicated higher soft drink consumption in 2012 and higher cigarette experimentation in both years among students who reported greater maternal schooling, with no significant change in inequalities. In public schools, negative slope index of inequality and relative concentration index indicated higher soft drink consumption among students who reported lower maternal schooling in both years, with no significant change overtime. The positive relative concentration index indicated inequality in 2009 for cigarette experimentation, with a higher prevalence among students who reported greater maternal schooling. There were no inequalities for toothbrushing frequency or sweets consumption. CONCLUSIONS There were changes in the prevalences of oral health behaviors during the analyzed period; however, these changes were not related to maternal education inequalities. PMID:26270015
Long time response of soft magnetorheological gels.
An, Hai-Ning; Sun, Bin; Picken, Stephen J; Mendes, Eduardo
2012-04-19
Swollen physical magnetorheological (MR) gels were obtained by self-assembling of triblock copolymers containing dispersed soft magnetic particles. The transient rheological responses of these systems were investigated experimentally. Upon sudden application of a homogeneous magnetic field step change, the storage modulus of MR gels continued to increase with time. Such increase trend of the storage modulus could be expressed by a double-exponential function with two distinct modes, a fast and a slow one. The result was compared with the transient rheological response of equivalent MR fluids (paraffin oil without copolymer) and a MR elastomer (PDMS) and interpreted as the consequence of strong rearrangement of the original particle network under magnetic field. Similar to the structure evolution of MR fluids, the ensemble of results suggests that "chaining" and "clustering" processes are also happening inside the gel and are responsible for the rheological behavior, provided they are happening on a smaller length scale (long chains and clusters are hindered). We show that response times of several minutes are typical for the slow response of MR gels. The characteristic time t(2) for the slow process is significantly dependent on the magnetic flux density, the matrix viscoelastic property, particle volume fraction, and sample's initial particle distribution. In order to validate our results, the role of dynamic strain history was clarified. We show that, in the linear viscoelastic region, the particle rearrangement of MR gels was not hindered or accelerated by the dynamic strain history.
Vitamin E-coated membrane dialyzer and beta2-microglobulin removal.
Mandolfo, S; Bucci, R; Imbasciati, E
2003-12-01
This study was designed to test the removal of beta2-microglobulin (beta2M) in a vitamin E-modified membrane. We investigated in vivo the dialyzer (Excebrane, series EE, 1.8 m2) with respect to hydraulic permeability (Kuf), maximum ultrafiltration rate (UF max), sieving coefficient (Sc), and solute clearances in hemodialysis (HD) and in soft hemodiafiltration (HDF). Kuf was 18.4 ml/h/mmHg, UF max was 75 ml/min, and Sc for beta2M was 0.45. Clearance values at 400 ml/min of Qb in HD were 258 ml/min for urea, 201 ml/min for creatinine, and 135 ml/min for phosphate. In soft HDF, clearances were slightly higher. beta2M clearance was 26 ml/min in HD and 43 ml/min in soft HDF. In conclusion, Excebrane (series EE) procures a soft HDF with an amount of substitution fluid in post dilution mode of over 60 ml/min. Remarkable small solute clearances were obtained when the blood flow was raised to 400 ml/min. A significant reduction of beta2M is demonstrated by HDF.
Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.
Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan
2018-05-27
Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
Optimization of a superconducting linear levitation system using a soft ferromagnet
NASA Astrophysics Data System (ADS)
Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro
2013-04-01
The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.
Adsorption-desorption kinetics of soft particles onto surfaces
NASA Astrophysics Data System (ADS)
Osberg, Brendan; Gerland, Ulrich
A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.
NASA Astrophysics Data System (ADS)
Skotheim, Jan; Mahadevan, Laksminarayanan
2004-11-01
We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.
Wiers, Corinde E; Stelzel, Christine; Park, Soyoung Q; Gawron, Christiane K; Ludwig, Vera U; Gutwinski, Stefan; Heinz, Andreas; Lindenmeyer, Johannes; Wiers, Reinout W; Walter, Henrik; Bermpohl, Felix
2014-02-01
Behavioral studies have shown an alcohol-approach bias in alcohol-dependent patients: the automatic tendency to faster approach than avoid alcohol compared with neutral cues, which has been associated with craving and relapse. Although this is a well-studied psychological phenomenon, little is known about the brain processes underlying automatic action tendencies in addiction. We examined 20 alcohol-dependent patients and 17 healthy controls with functional magnetic resonance imaging (fMRI), while performing an implicit approach-avoidance task. Participants pushed and pulled pictorial cues of alcohol and soft-drink beverages, according to a content-irrelevant feature of the cue (landscape/portrait). The critical fMRI contrast regarding the alcohol-approach bias was defined as (approach alcohol>avoid alcohol)>(approach soft drink>avoid soft drink). This was reversed for the avoid-alcohol contrast: (avoid alcohol>approach alcohol)>(avoid soft drink>approach soft drink). In comparison with healthy controls, alcohol-dependent patients had stronger behavioral approach tendencies for alcohol cues than for soft-drink cues. In the approach, alcohol fMRI contrast patients showed larger blood-oxygen-level-dependent responses in the nucleus accumbens and medial prefrontal cortex, regions involved in reward and motivational processing. In alcohol-dependent patients, alcohol-craving scores were positively correlated with activity in the amygdala for the approach-alcohol contrast. The dorsolateral prefrontal cortex was not activated in the avoid-alcohol contrast in patients vs controls. Our data suggest that brain regions that have a key role in reward and motivation are associated with the automatic alcohol-approach bias in alcohol-dependent patients.
Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D
2015-07-24
We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.
Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
Jarrett, C; McDaid, A J
2017-07-01
A novel, cable-driven soft joint is presented for use in robotic rehabilitation exoskeletons to provide intrinsic, comfortable human-robot interaction. The torque-displacement characteristics of the soft elastomeric core contained within the joint are modeled. This knowledge is used in conjunction with a dynamic system model to derive a sliding mode controller (SMC) to implement low-level torque control of the joint. The SMC controller is experimentally compared with a baseline feedback-linearised proportional-derivative controller across a range of conditions and shown to be robust to un-modeled disturbances. The torque controller is then tested with six healthy subjects while they perform a selection of activities of daily living, which has validated its range of performance. Finally, a case study with a participant with spastic cerebral palsy is presented to illustrate the potential of both the joint and controller to be used in a physiotherapy setting to assist clinical populations.
Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim
2014-09-01
Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.
Design Optimisation of a Magnetic Field Based Soft Tactile Sensor
Raske, Nicholas; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Culmer, Peter; Hewson, Robert
2017-01-01
This paper investigates the design optimisation of a magnetic field based soft tactile sensor, comprised of a magnet and Hall effect module separated by an elastomer. The aim was to minimise sensitivity of the output force with respect to the input magnetic field; this was achieved by varying the geometry and material properties. Finite element simulations determined the magnetic field and structural behaviour under load. Genetic programming produced phenomenological expressions describing these responses. Optimisation studies constrained by a measurable force and stable loading conditions were conducted; these produced Pareto sets of designs from which the optimal sensor characteristics were selected. The optimisation demonstrated a compromise between sensitivity and the measurable force, a fabricated version of the optimised sensor validated the improvements made using this methodology. The approach presented can be applied in general for optimising soft tactile sensor designs over a range of applications and sensing modes. PMID:29099787
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
Model of a Soft Robotic Actuator with Embedded Fluidic Network
NASA Astrophysics Data System (ADS)
Gamus, Benny; Or, Yizhar; Gat, Amir
2017-11-01
Soft robotics is an emerging bio-inspired concept of actuation, with promising applications for robotic locomotion and manipulation. Focusing on actuation by pressurized embedded fluidic networks, we present analytic formulation and closed-form solutions of an elastic actuator with pressurized fluidic networks. In this work we account for the effects of solid inertia and elasticity, as well as fluid viscosity, which allows modelling the system's step-response and frequency response as well as suggesting mode elimination and isolation techniques. We also present and model the application of viscous-peeling as an actuation mechanism, simplifying the fabrication process by eliminating the need for internal cavities. The theoretical results describing the viscous-elastic-inertial dynamics of the actuator are illustrated by experiments. The approach presented in this work may pave the way for the design and implementation of soft robotic legged locomotion that exploits dynamic effects.
Bite, M G; Berezenko, S; Reed, F J; Derry, L
1988-08-01
Incompressible Macrosorb composite adsorbents, while retaining all the desirable properties of traditional agarose-based hydrogel media, overcome the operational limitations imposed by the use of soft hydrogels: They permit useful application of fast flow rates without restrictions on bed depth and they can be used in fluidized bed mode. Considerations which are important when contemplating scaled-up processing are discussed. A comparative cost estimate for a production process for extracting albumin from bovine serum in column equipment illustrates the various advantages which may be exploited when using a composite adsorbent in place of a conventional soft gel equivalent.
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063
A theoretical analysis of deformation behavior of auxetic plied yarn structure
NASA Astrophysics Data System (ADS)
Zeng, Jifang; Hu, Hong
2018-07-01
This paper presents a theoretical analysis of the auxetic plied yarn (APY) structure formed with two types of single yarns having different diameter and modulus. A model which can be used to predict its deformation behavior under axial extension is developed based on the theoretical analysis. The developed model is first compared with the experimental data obtained in the previous study, and then used to predict the effects of different structural and material parameters on the auxetic behavior of the APY. The calculation results show that the developed model can correctly predict the variation trend of the auxetic behavior of the APY, which first increases and then decrease with the increase of the axial strain. The calculation results also indicate that the auxetic behavior of the APY simultaneously depends on the diameter ratio of the soft yarn and stiff yarn as well as the ratio between the pitch length and stiff yarn diameter. The study provides a way to design and fabricate APYs with the same auxetic behavior by using different soft and stiff yarns as long as these two ratios are kept unchanged.
Measuring information transfer in a soft robotic arm.
Nakajima, K; Schmidt, N; Pfeifer, R
2015-05-13
Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.
Can deformation of a polymer film with a rigid coating model geophysical processes?
NASA Astrophysics Data System (ADS)
Volynskii, A. L.; Bazhenov, S. L.
2007-12-01
The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.
Avazmohammadi, Reza; Li, David S; Leahy, Thomas; Shih, Elizabeth; Soares, João S; Gorman, Joseph H; Gorman, Robert C; Sacks, Michael S
2018-02-01
Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior remains elusive. A major challenge is the complex architecture of soft tissues, such as myocardium, which endows them with strongly anisotropic and heterogeneous mechanical properties. Available experimental approaches for quantifying the 3D mechanical behavior of myocardium are limited to preselected planar biaxial and 3D cuboidal shear tests. These approaches fall short in pursuing a model-driven approach that operates over the full kinematic space. To address these limitations, we took the following approach. First, based on a kinematical analysis and using a given strain energy density function (SEDF), we obtained an optimal set of displacement paths based on the full 3D deformation gradient tensor. We then applied this optimal set to obtain novel experimental data from a 1-cm cube of post-infarcted left ventricular myocardium. Next, we developed an inverse finite element (FE) simulation of the experimental configuration embedded in a parameter optimization scheme for estimation of the SEDF parameters. Notable features of this approach include: (i) enhanced determinability and predictive capability of the estimated parameters following an optimal design of experiments, (ii) accurate simulation of the experimental setup and transmural variation of local fiber directions in the FE environment, and (iii) application of all displacement paths to a single specimen to minimize testing time so that tissue viability could be maintained. Our results indicated that, in contrast to the common approach of conducting preselected tests and choosing an SEDF a posteriori, the optimal design of experiments, integrated with a chosen SEDF and full 3D kinematics, leads to a more robust characterization of the mechanical behavior of myocardium and higher predictive capabilities of the SEDF. The methodology proposed and demonstrated herein will ultimately provide a means to reliably predict tissue-level behaviors, thus facilitating organ-level simulations for efficient diagnosis and evaluation of potential treatments. While applied to myocardium, such developments are also applicable to characterization of other types of soft tissues.
Relaxation Dynamics of Spatiotemporal Chaos in the Nematic Liquid Crystal
NASA Astrophysics Data System (ADS)
Nugroho, Fahrudin; Ueki, Tatsuhiro; Hidaka, Yoshiki; Kai, Shoichi
2011-11-01
We are working on the electroconvection of nematic liquid crystals, in which a kind of spatiotemporal chaos called as a soft-mode turbulence (SMT) is observed. The SMT is caused by the nonlinear interaction between the convective modes and the Nambu--Goldstone (NG) modes. By applying an external magnetic field H, the NG mode is suppressed and an ordered pattern can be observed. By removing the suppression effect the ordered state relax to its original SMT pattern. We revealed two types of instability govern the relaxation process: the zigzag instability and the free rotation of wavevector q(r). This work is partially supported by Grant-in-Aid for Scientific Research (Nos. 20111003, 21340110, and 21540391) from the Ministry of Education, Culture, Sport, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JSPS).
Leveraging M and S in Soft Skills Training for the DoD
NASA Technical Reports Server (NTRS)
Cimino, James D.
2011-01-01
Soft skills, also called "people skills," are typically hard to observe, quantify and measure. These skills have to do with how we relate to each other; communicating, listening, engaging in dialogue, giving feedback, cooperating as a team member, solving problems and resolving conflicts. Most of the soft skills training is scenario based, utilizing written or video-based scenarios. with limited or no branching, as well as quantitative feedback. This paper will outline a game-based approach to configurable, scenario-based, soft skills training. The paper will discuss the application of realistic visual behavior cues (e.g. body language, vocal inflection, facial expressions) and how these can benefit the learner. Using the concept of a "virtual vignette" this paper will discuss a prototype system intended to leach suicide prevention and provide qualitative feedback to the learner. The paper will also explore other soft skills training applications for this technology
Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui
2017-01-01
Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.
Small-scale soft-bodied robot with multimodal locomotion.
Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin
2018-02-01
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.
Bleakley, Chris; McDonough, Suzanne; MacAuley, Domhnall
2004-01-01
There are wide variations in the clinical use of cryotherapy, and guidelines continue to be made on an empirical basis. Systematic review assessing the evidence base for cryotherapy in the treatment of acute soft-tissue injuries. A computerized literature search, citation tracking, and hand searching were carried out up to April 2002. Eligible studies were randomized-controlled trials describing human subjects recovering from acute soft-tissue injuries and employing a cryotherapy treatment in isolation or in combination with other therapies. Two reviewers independently assessed the validity of included trials using the Physiotherapy Evidence Database (PEDro) scale. Twenty-two trials met the inclusion criteria. There was a mean PEDro score of 3.4 out of of 10. There was marginal evidence that ice plus exercise is most effective, after ankle sprain and postsurgery. There was little evidence to suggest that the addition of ice to compression had any significant effect, but this was restricted to treatment of hospital inpatients. Few studies assessed the effectiveness of ice on closed soft-tissue injury, and there was no evidence of an optimal mode or duration of treatment. Many more high-quality trials are needed to provide evidence-based guidelines in the treatment of acute soft-tissue injuries.
Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter
NASA Astrophysics Data System (ADS)
Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing
2018-03-01
Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.
Small-scale soft-bodied robot with multimodal locomotion
NASA Astrophysics Data System (ADS)
Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin
2018-02-01
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.
Solares, Santiago D
2016-01-01
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.
A new ChainMail approach for real-time soft tissue simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-07-03
This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.
NASA Astrophysics Data System (ADS)
Lollino, Piernicola; Andriani, Gioacchino Francesco; Fazio, Nunzio Luciano; Perrotti, Michele
2016-04-01
Strain-softening under low confinement stress, i.e. the drop of strength that occurs in the post-failure stage, represents a key factor of the stress-strain behavior of rocks. However, this feature of the rock behavior is generally underestimated or even neglected in the assessment of boundary value problems of intact soft rock masses. This is typically the case when the stability of intact rock masses is treated by means of limit equilibrium or finite element analyses, for which rigid-plastic or elastic perfectly-plastic constitutive models, generally implementing peak strength conditions of the rock, are respectively used. In fact, the aforementioned numerical techniques are characterized by intrinsic limitations that do not allow to account for material brittleness, either for the method assumptions or due to numerical stability problems, as for the case of the finite element method, unless sophisticated regularization techniques are implemented. However, for those problems that concern the stability of intact soft rock masses at low stress levels, as for example the stability of shallow underground caves or that of rock slopes, the brittle stress-strain response of rock in the post-failure stage cannot be disregarded due to the risk of overestimation of the stability factor. This work is aimed at highlighting the role of post-peak brittleness of soft rocks in the analysis of specific ideal problems by means of the use of a hybrid finite-discrete element technique (FDEM) that allows for the simulation of the rock stress-strain brittle behavior in a proper way. In particular, the stability of two ideal cases, represented by a shallow underground rectangular cave and a vertical cliff, has been analyzed by implementing a post-peak brittle behavior of the rock and the comparison with a non-brittle response of the rock mass is also explored. To this purpose, the mechanical behavior of a soft calcarenite belonging to the Calcarenite di Gravina formation, extensively outcropping in Puglia (Southern Italy), and the corresponding features of the post-peak behavior as measured in the laboratory, have been used as a reference in this work, as well as the typical geometrical features of underground cavities and rock cliffs, as observed in Southern Italy, have been adopted for the simulations. The numerical results indicate the strong impact for the assessment of stability when rock post-peak brittleness is accounted for, if compared with perfectly plastic assumptions, and the need for adopting numerical techniques, as the FDEM approach, to take properly into account this important aspect of the rock behavior is highlighted.
In Planta mutagenesis determines the functional regions of puroindoline proteins.
USDA-ARS?s Scientific Manuscript database
PINA and PINB functionally comprise the wheat (Triticum aestivum L.) Ha locus which controls grain texture and many wheat end-use properties. PINs in their functional forms impart soft texture and a mutation in either PIN is found in all hard wheats. Studies of the PINs mode of action is limited ...
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
Nonlinear mechanics of non-rigid origami: an efficient computational approach
NASA Astrophysics Data System (ADS)
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
Nonlinear mechanics of non-rigid origami: an efficient computational approach.
Liu, K; Paulino, G H
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on 'bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.
2016-03-01
A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.
College Students' Sexual Attitudes and Behaviors, 1974-1985: A Review of the Literature.
ERIC Educational Resources Information Center
Spees, Emil R.
1987-01-01
Reviewed the literature on college students' sexual attitudes and behaviors from 1974 through 1985. Found a rise in sexual activity and in openness to discuss sexual issues, a relationship between soft drugs and sexual activity, greater concern for rape, and greater male student awareness of male responsibility for contraceptive behavior.…
ERIC Educational Resources Information Center
Hou, Su-I
2007-01-01
HIV-related behaviors, self-reported using Web-delivered or paper-pencil modes, were collected from two convenience samples of college students at a major university in the southeastern U.S. To enhance the equivalence of the comparisons, a subset pool of participants from each group, proportionally matched on key demographic variables including…
Lattice dynamics of a rigid-ion model for gadolinium molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, L.L.; Hardy, J.R.
Calculations are presented which support the view that the ferroelectric phase tnnnsition in gadolinium molybdate (GMO) arises from the softening and ultimate instability of a doubly degenerate zone-edge mode of the high- temperature paraelectric phase. A rigid-ion model was used in which the short- range force constants are obtained from a detailed knowledge of the crystal structure together wiih the conditions imposed by the requirement that the crystal must be in static equilibrium under the combined influence of both Coulomb and short-range forces. Results show that this type of approach is very useful when one is dealing with complex structuresmore » such as GMO, which has thirty- four ions per unit cell in the paraelectric phase. In view of the simplicity of the model, a surprisingly good correlation with experimental results was obtained. In particular, the calculated zone-center frequencies reproduce the basic features of the observed Raman spectruna. Dispersion curves are presented which show a pronounced softening of two phonon branches which become doubly degenerate at the M point, in agreement with inelastic neutron scattering. The displacements associated wiih the soft M-point modes correlate with the difference in the structures of the high- and low-temperature phases determined by x-ray diffraction. This provides further evidence that the ferroelectric domains in GMO are to be interpreted as frozen-in'' soft zoneboundary modes of the paraelectric phase. (auth)« less
NASA Astrophysics Data System (ADS)
De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo
2009-02-01
Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).
Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey
NASA Astrophysics Data System (ADS)
Athamnia, B.; Ounis, A.; Abdeddaim, M.
2017-12-01
This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
Trajectory Determination for Chang 'e-3 Probe Soft-landing
NASA Astrophysics Data System (ADS)
Yezhi, S.; Huang, Y.
2017-12-01
On December 2, 2013, The Chang 'e-3 (ce-3) probe was successfully launched from a long march-3b carrier rocket at Xichang satellite launch center. After more than five days of flying, the probe was captured by the moon to 100 km by 100 km. The orbit maneuvered to 15 km by 100 km 4 days later. Finally, at 21:12 Beijing time on December 14, 2013, it landed at the junction of the Sinus Iridum and Mare Imbrium. In the ce-3 project, the combined test mode of the radio ranging measurement and very long baseline interferometry (VLBI) was used. The soft-landing was carried out in ce-3 mission for the sampling .The paper presents a new method of trajectory determination for soft landing and sampling returning for lunar probe by B spline approximation. By simulation and data processing of Chang'E-3(CE-3), it could be assumed that the accuracy of trajectory determination of soft landing is less than 100 meters in CE-3. It appears that the difference between the endpoint of trajectory and the location from image processed by NASA'S LRO is less than 50m .It confirms the method of soft landing trajectory determination provided by the paper is effective. The paper analyzes the dynamics and control characteristics of the sampling returning, provides the preliminary feasible trajectory determination method for soft landing and sampling return of Chang'E-5 (CE - 5).
Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey
2014-09-30
Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.
NASA Astrophysics Data System (ADS)
Guo, San-Dong; Chen, Peng
2018-04-01
Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.
Application of rrm as behavior mode choice on modelling transportation
NASA Astrophysics Data System (ADS)
Surbakti, M. S.; Sadullah, A. F.
2018-03-01
Transportation mode selection, the first step in transportation planning process, is probably one of the most important planning elements. The development of models that can explain the preference of passengers regarding their chosen mode of public transport option will contribute to the improvement and development of existing public transport. Logit models have been widely used to determine the mode choice models in which the alternative are different transport modes. Random Regret Minimization (RRM) theory is a theory developed from the behavior to choose (choice behavior) in a state of uncertainty. During its development, the theory was used in various disciplines, such as marketing, micro economy, psychology, management, and transportation. This article aims to show the use of RRM in various modes of selection, from the results of various studies that have been conducted both in north sumatera and western Java.
Relationship between local structure and relaxation in out-of-equilibrium glassy systems
Schoenholz, Samuel S.; Cubuk, Ekin D.; Kaxiras, Efthimios; ...
2016-12-27
The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field calledmore » “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. We first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.« less
Relationship between local structure and relaxation in out-of-equilibrium glassy systems.
Schoenholz, Samuel S; Cubuk, Ekin D; Kaxiras, Efthimios; Liu, Andrea J
2017-01-10
The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called "softness," a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.
We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon andmore » the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.« less
Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.X.; Kurtz, R.J.; Jones, R.H.
1997-04-01
The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less
NASA Astrophysics Data System (ADS)
Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min
2014-07-01
During laser-arc hybrid welding, the welding direction exerts direct effects on the plasma properties, the transient behavior of the droplet, the weld pool behavior, and the temperature field. Ultimately, it will affect the welding process and the weld quality. However, the behavior of the CO2 laser+GMAW-P hybrid welding process has not been systematically studied. In this paper, the current-voltage characteristics of different welding processes were analyzed and compared. The dynamics of the droplet transfer, the plasma behavior, and the weld pool behavior were observed by using two high-speed camera systems. Moreover, an optical emission spectroscopy was applied to analyze the plasma temperature and the electron number density. The results indicated that the electrical resistance of the arc plasma reduced in the laser leading mode. For the same pulse duration, the metal transfer mode was the spray type with the laser leading arrangement. The temperature and electron density distribution showed bimodal behavior in the case of arc leading mode, while this phenomenon does not exist in the caser of laser leading mode. The double elliptic-planar distribution which conventional simulation process used was not applicable in the laser leading mode.
Lien, Lars; Lien, Nanna; Heyerdahl, Sonja; Thoresen, Magne; Bjertness, Espen
2006-01-01
Objectives. We examined whether high levels of consumption of sugar-containing soft drinks were associated with mental distress, hyperactivity, and conduct problems among adolescents. Methods. A cross-sectional population-based survey was conducted with 10th-grade students in Oslo, Norway (n = 5498). We used the Hopkins Symptom Checklist and the Strengths and Difficulties Questionnaire to assess mental health outcomes. Results. There was a J-shaped dose–response relationship between soft drink consumption and mental distress, conduct problems, and total mental health difficulties score; that is, adolescents who did not consume soft drinks had higher scores (indicating worse symptoms) than those who consumed soft drinks at moderate levels but lower scores than those with high consumption levels. The relationship was linear for hyperactivity. In a logistic regression model, the association between soft drink consumption and mental health problems remained significant after adjustment for behavioral, social, and food-related variables. The highest adjusted odds ratios were observed for conduct problems among boys and girls who consumed 4 or more glasses of sugar-containing soft drinks per day. Conclusions. High consumption levels of sugar-containing soft drinks were associated with mental health problems among adolescents even after adjustment for possible confounders. PMID:17008578
Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write
NASA Astrophysics Data System (ADS)
Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng
2018-01-01
By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; DELPHI Collaboration
2010-06-01
An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.
Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts
NASA Astrophysics Data System (ADS)
Skotheim, J. M.; Mahadevan, L.
2005-09-01
We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.
Evaluation of R-22 alternatives for heat pumps. Report for September 1993-December 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Y.; Judge, J.F.; Radermacher, R.
1996-03-01
The paper reports results of a study investigating three different possibilities for replacing refrigerant R-22 with R-407C in a heat pump. The first and simplest scenario was a retrofit without any hardware modifications. The second possibility was a modification that required altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility was soft optimization, consisting of maximizing the coefficients for performance (COPs) in the heating and cooling modes by optimizing the refrigerant charge and expansion devices.
Emergent propagation modes of ferromagnetic swimmers in constrained geometries
NASA Astrophysics Data System (ADS)
Bryan, M. T.; Shelley, S. R.; Parish, M. J.; Petrov, P. G.; Winlove, C. P.; Gilbert, A. D.; Ogrin, F. Y.
2017-02-01
Magnetic microswimmers, composed of hard and soft ferromagnets connected by an elastic spring, are modelled under low Reynolds number conditions in the presence of geometrical boundaries. Approaching a surface, the magneto-elastic swimmer's velocity increases and its trajectory bends parallel to the surface contour. Further confinement to form a planar channel generates new propagation modes as the channel width narrows, altering the magneto-elastic swimmer's speed, orientation, and direction of travel. Our results demonstrate that constricted geometric environments, such as occuring in microfluidic channels or blood vessels, may influence the functionality of magneto-elastic microswimmers for applications such as drug delivery.
1992-01-01
they are part of the proceedings of FLC-91. The Guest Editors would like to thank the sponsors, administrative assistants, and especially all of the...the soft mode in comparison to the high frequency permittivi- ty, which results in rather low sensitivity of the method especially far from Tc The...elastomers6 and especially LC-elastomers * 7,8with Se-phases ’ can be prepared by crosslinking of LC-polymers. These polymers show the ferroelectric modes
NASA Astrophysics Data System (ADS)
Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.
2017-12-01
This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.
Interactive multi-mode blade impact analysis
NASA Technical Reports Server (NTRS)
Alexander, A.; Cornell, R. W.
1978-01-01
The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinh, Thanh-Hung, E-mail: dinh@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Arai, Goki
2015-09-21
We have characterized the spectral structure and the temporal history of the laser-produced high-Z multi-charged ion plasmas for the efficient water window soft x-ray sources. Strong unresolved transition array emission was observed due to 4d–4f and 4f–5g transitions from Au, Pb, and Bi plasmas in the 280–700 eV photon energy region. The temporal behavior of the emission was essentially similar of that of the laser pulse with a slight delay between different transitions. These results provide feedback for accurate modeling of the atomic processes with the radiative hydrodynamic simulations.
Soft hairy warped black hole entropy
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Hacker, Philip; Merbis, Wout
2018-02-01
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
NASA Astrophysics Data System (ADS)
Cody, Robert B.; Dane, A. John
2013-03-01
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Cody, Robert B; Dane, A John
2013-03-01
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
High pressure superconducting radial magnetic bearing
NASA Technical Reports Server (NTRS)
Eyssa, Y. M.; Huang, X.
1990-01-01
In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.
A Case for Soft Error Detection and Correction in Computational Chemistry.
van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A
2013-09-10
High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.
Controllable helical deformations on printed anisotropic composite soft actuators
NASA Astrophysics Data System (ADS)
Wang, Dong; Li, Ling; Serjouei, Ahmad; Dong, Longteng; Weeger, Oliver; Gu, Guoying; Ge, Qi
2018-04-01
Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.
Wang, Heng; Sang, Yuanjun
2017-10-01
The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.
Resource-Competing Oscillator Network as a Model of Amoeba-Based Neurocomputer
NASA Astrophysics Data System (ADS)
Aono, Masashi; Hirata, Yoshito; Hara, Masahiko; Aihara, Kazuyuki
An amoeboid organism, Physarum, exhibits rich spatiotemporal oscillatory behavior and various computational capabilities. Previously, the authors created a recurrent neurocomputer incorporating the amoeba as a computing substrate to solve optimization problems. In this paper, considering the amoeba to be a network of oscillators coupled such that they compete for constant amounts of resources, we present a model of the amoeba-based neurocomputer. The model generates a number of oscillation modes and produces not only simple behavior to stabilize a single mode but also complex behavior to spontaneously switch among different modes, which reproduces well the experimentally observed behavior of the amoeba. To explore the significance of the complex behavior, we set a test problem used to compare computational performances of the oscillation modes. The problem is a kind of optimization problem of how to allocate a limited amount of resource to oscillators such that conflicts among them can be minimized. We show that the complex behavior enables to attain a wider variety of solutions to the problem and produces better performances compared with the simple behavior.
NASA Astrophysics Data System (ADS)
Leps, Thomas; Hartzell, Christine; Wereley, Norman; Choi, Young
2017-11-01
Jamming soft grippers are excellent universal grippers due to their low dependence on the shape of objects to be grabbed, and low stiffness, mitigating the need for object shape data and expensive force control of a stiff system. These grippers now rely on jamming transitions of dry grains under atmospheric pressure to hold objects. In order to expand their use to space environments, a gripper using magnetic actuation of a magneto-rheological fluid (MR Gripper) is being developed. The MR fluid is a suspension of μm scale iron grains in a silicone oil. When un-magnetized the fluid behaves as a dense suspension with low Bagnold number. When magnetized, it behaves like a jammed granular material, with magnetic forces between the grains dominating. We are simulating the gripper using LIGGGHTS, an open-source soft sphere DEM code. We have modeled both the deformable gripper membrane and the MR fluid itself using the LIGGGHTS framework. To our knowledge, this is the first time that the induced magnetic dipoles required to accurately simulate the jamming behavior of MR fluids have been modeled in LIGGGHTS. This simulation allows the rapid optimization of the hardware and magnetic field geometries, as well as the fluid behavior, without time consuming, and costly prototype revisions.
Acoustic performance of inlet suppressors on an engine generating a single mode
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Rice, E. J.; Homyak, L.
1981-01-01
Three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode in order to evaluate an inlet suppressor design method based on mode cutoff ratio. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data show the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn
2015-12-15
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting modemore » structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.« less
Pardo, Lorena; García, Alvaro; de Espinosa, Francisco Montero; Brebøl, Klaus
2011-03-01
The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.
Further Results of Soft-Inplane Tiltrotor Aeromechanics Investigation Using Two Multibody Analyses
NASA Technical Reports Server (NTRS)
Masarati, Pierangelo; Quaranta, Giuseppe; Piatak, David J.; Singleton, Jeffrey D.
2004-01-01
This investigation focuses on the development of multibody analytical models to predict the dynamic response, aeroelastic stability, and blade loading of a soft-inplane tiltrotor wind-tunnel model. Comprehensive rotorcraft-based multibody analyses enable modeling of the rotor system to a high level of detail such that complex mechanics and nonlinear effects associated with control system geometry and joint deadband may be considered. The influence of these and other nonlinear effects on the aeromechanical behavior of the tiltrotor model are examined. A parametric study of the design parameters which may have influence on the aeromechanics of the soft-inplane rotor system are also included in this investigation.
Exploring soft constraints on effective actions
NASA Astrophysics Data System (ADS)
Bianchi, Massimo; Guerrieri, Andrea L.; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao
2016-10-01
We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order s n ˜ ∂2 n are completely determined in terms of the k-point amplitudes at order s k with k ≤ n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.
Value-Addition for Empowerment and Employability through Intervention of ODL Mode of IGNOU
ERIC Educational Resources Information Center
Kishore, S.
2013-01-01
In the developing country like India, the output of graduates from higher educational institutions is high. But, the major concern is that majority of graduates are not employable, especially from rural areas for want of skills expected by the employer. The soft skills, communication skills and multidisciplinary knowledge are essential to become…
From Hard to Soft Governance in Multi-Level Education Systems
ERIC Educational Resources Information Center
Wilkoszewski, Harald; Sundby, Eli
2016-01-01
Decision-making in educations systems has become more complex: while decentralisation has moved the locus of power to lower governance levels, the central level still is held responsible for the quality of outcomes. As a consequence, new steering strategies have emerged that tend to apply softer modes of governance as opposed to harder ones in the…
An asymptotically consistent approximant method with application to soft- and hard-sphere fluids.
Barlow, N S; Schultz, A J; Weinstein, S J; Kofke, D A
2012-11-28
A modified Padé approximant is used to construct an equation of state, which has the same large-density asymptotic behavior as the model fluid being described, while still retaining the low-density behavior of the virial equation of state (virial series). Within this framework, all sequences of rational functions that are analytic in the physical domain converge to the correct behavior at the same rate, eliminating the ambiguity of choosing the correct form of Padé approximant. The method is applied to fluids composed of "soft" spherical particles with separation distance r interacting through an inverse-power pair potential, φ = ε(σ∕r)(n), where ε and σ are model parameters and n is the "hardness" of the spheres. For n < 9, the approximants provide a significant improvement over the 8-term virial series, when compared against molecular simulation data. For n ≥ 9, both the approximants and the 8-term virial series give an accurate description of the fluid behavior, when compared with simulation data. When taking the limit as n → ∞, an equation of state for hard spheres is obtained, which is closer to simulation data than the 10-term virial series for hard spheres, and is comparable in accuracy to other recently proposed equations of state. By applying a least square fit to the approximants, we obtain a general and accurate soft-sphere equation of state as a function of n, valid over the full range of density in the fluid phase.
Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Yan, Lina; Liu, Yong
2016-06-01
Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.
Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)
ERIC Educational Resources Information Center
Bass, Christopher K.; Apsche, Jack A.
2013-01-01
A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…
Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.
Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia
2015-08-07
Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions.
NASA Astrophysics Data System (ADS)
Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert
2016-04-01
X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.
Magnetization processes in core/shell exchange-spring structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J. S.
2015-03-27
The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less
Glass transition of soft colloids
NASA Astrophysics Data System (ADS)
Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca
2018-04-01
We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.
Ferreira, Nathália Luíza; Claro, Rafael Moreira; Lopes, Aline Cristine Souza
2015-12-01
This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012). Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption.
Ferromagnetic resonance in a topographically modulated permalloy film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklenar, J.; Tucciarone, P.; Lee, R. J.
2015-04-01
A major focus within the field of magnonics involves the manipulation and control spin wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the magnon spectrum. To demonstrate this technique we have performed in-plane, broad-band, ferromagnetic res- onance studies on a 100 nm Permalloy film sputtered unto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, six-fold symmetric underlying colloidal crystal were studied as a function ofmore » the in plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary spin wave modes; the ratio of the amplitude of these two modes exhibits a six-fold dependence. Modeling shows that both modes are fundamental modes that are nodeless in the unit cell but reside in different demagnetized regions of the unit cell. Additionally, modeling suggests the presence of new higher order topographically modified spin wave modes. Our results demonstrate that topographic modification of magnetic thin films opens new directions for manipulating spin wave modes.« less
Cox, Peter; Gherghetta, Tony
2015-02-02
Here, we study the properties of the dilaton in a soft-wall background using two solutions of the Einstein equations. These solutions contain an asymptotically AdS metric with a nontrivial scalar profile that causes both the spontaneous breaking of conformal invariance and the generation of a mass gap in the particle spectrum. We first present an analytic solution, using the superpotential method, that describes a CFT spontaneously broken by a finite dimensional operator in which a light dilaton mode appears in the spectrum. This represents a tuning in the vanishing of the quartic coupling in the effective potential that could bemore » naturally realised from an underlying supersymmetry. Instead, by considering a generalised analytic scalar bulk potential that quickly transitions at the condensate scale from a walking coupling in the UV to an order-one β-function in the IR, we obtain a naturally light dilaton. This provides a simple example for obtaining a naturally light dilaton from nearly-marginal CFT deformations in the more realistic case of a soft-wall background.« less
Renormalization of dijet operators at order 1 /Q 2 in soft-collinear effective theory
NASA Astrophysics Data System (ADS)
Goerke, Raymond; Inglis-Whalen, Matthew
2018-05-01
We make progress towards resummation of power-suppressed logarithms in dijet event shapes such as thrust, which have the potential to improve high-precision fits for the value of the strong coupling constant. Using a newly developed formalism for Soft-Collinear Effective Theory (SCET), we identify and compute the anomalous dimensions of all the operators that contribute to event shapes at order 1 /Q 2. These anomalous dimensions are necessary to resum power-suppressed logarithms in dijet event shape distributions, although an additional matching step and running of observable-dependent soft functions will be necessary to complete the resummation. In contrast to standard SCET, the new formalism does not make reference to modes or λ-scaling. Since the formalism does not distinguish between collinear and ultrasoft degrees of freedom at the matching scale, fewer subleading operators are required when compared to recent similar work. We demonstrate how the overlap subtraction prescription extends to these subleading operators.
Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters
NASA Astrophysics Data System (ADS)
Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui
2018-05-01
To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.
AFM-based micro/nanoscale lithography of poly(dimethylsiloxane): stick-slip on a softpolymer
NASA Astrophysics Data System (ADS)
Watson, Jolanta A.; Myhra, Sverre; Brown, Christopher L.; Watson, Gregory S.
2005-02-01
Silicone rubbers have steadily gained importance in industry since their introduction in the 1960"s. Poly(dimethylsiloxane) (PDMS) is a relatively soft and optically clear, two-part elastomer with interesting and, more importantly, useful physical and electrical properties. Some of its common applications include protective coatings (e.g., against moisture, environmental attack, mechanical and thermal shock and vibrations), and encapsulation (e.g., amplifiers, inductive coils, connectors and circuit boards). The polymer has attracted recent interest for applications in soft lithography. The polymer is now routinely used as a patterned micro-stamp for chemical modification of surfaces, in particular Au substrates. Prominent stick-slip effects, surface relaxation and elastic recovery were found to be associated with micro/nano manipulation of the polymer by an AFM-based contact mode methodology. Those effects provide the means to explore in detail the meso-scale tip-to-surface interactions between a tip and a soft surface. The dependence of scan speed, loading force, attack angle and number of scan lines have been investigated.
Boundary displacement measurements using multi-energy soft x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tritz, K., E-mail: ktritz@pppl.gov; Stutman, D.; Diallo, A.
The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (∼10 kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurementsmore » using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.« less
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios Th.
2016-04-01
The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.
McCallum, Ethan B; Peterson, Zoë D
2015-11-01
Factors related to the research context, such as inquiry mode, setting, and experimenter contact, may affect participants' comfort with and willingness to disclose certain sexual attitudes or admit to engaging in sensitive sexual behaviors. In this study, 255 female undergraduates (42.7 % non-White) completed a survey containing measures of sexual behavior and attitudes. The level of experimenter contact (high vs. low contact), setting (in lab vs. out of lab), and inquiry mode (pencil-and-paper vs. computer) were manipulated and participants were randomly assigned to conditions. We hypothesized that low-contact, out-of-lab, computer conditions would be associated with more liberal sexual attitudes and higher rates of reported sexual behaviors than high-contact, in-lab, and paper-and-pencil conditions, respectively. Further, we hypothesized that effects would be moderated by race, such that differences would be greater for non-White participants because of concerns that reporting socially undesirable behavior might fuel racial stereotypes. For attitudinal measures, White participants endorsed more liberal attitudes toward sex in high-contact conditions and non-White participants endorsed more liberal attitudes in low-contact conditions. For behavioral measures, non-White participants reported more behaviors on pencil-and-paper surveys than on computers. White participants demonstrated no significant mode-related differences or reported more sexual behaviors in computer conditions than paper-and-pencil conditions. Overall, results suggest that experimenter contact and mode significantly impact sexual self-report and this impact is often moderated by race.
Benefit of "Push-pull" Locomotion for Planetary Rover Mobility
NASA Technical Reports Server (NTRS)
Creager, Colin M.; Moreland, Scott Jared; Skonieczny, K.; Johnson, K.; Asnani, V.; Gilligan, R.
2011-01-01
As NASAs exploration missions on planetary terrains become more aggressive, a focus on alternative modes of locomotion for rovers is necessary. In addition to climbing steep slopes, the terrain in these extreme environments is often unknown and can be extremely hard to traverse, increasing the likelihood of a vehicle or robot becoming damaged or immobilized. The conventional driving mode in which all wheels are either driven or free-rolling is very efficient on flat hard ground, but does not always provide enough traction to propel the vehicle through soft or steep terrain. This paper presents an alternative mode of travel and investigates the fundamental differences between these locomotion modes. The methods of push-pull locomotion discussed can be used with articulated wheeled vehicles and are identified as walking or inchinginch-worming. In both cases, the braked non-rolling wheels provide increased thrust. An in-depth study of how soil reacts under a rolling wheel vs. a braked wheel was performed by visually observing the motion of particles beneath the surface. This novel technique consists of driving or dragging a wheel in a soil bin against a transparent wall while high resolution, high-rate photographs are taken. Optical flow software was then used to determine shearing patterns in the soil. Different failure modes were observed for the rolling and braked wheel cases. A quantitative comparison of inching vs. conventional driving was also performed on a full-scale vehicle through a series of drawbar pull tests in the Lunar terrain strength simulant, GRC-1. The effect of tire stiffness was also compared; typically compliant tires provide better traction when driving in soft soil, however its been observed that rigid wheels may provide better thrust when non-rolling. Initial tests indicate up to a possible 40 increase in pull force capability at high slip when inching vs. rolling.
John W. van de Lindt; Pouria Bahmani; Gary Mochizuki; Steven E. Pryor; Mikhail Gershfeld; Jingjing Tian; Michael D. Symans; Douglas Rammer
2016-01-01
Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. The majority of these buildings were constructed from the 1920s to the 1960s and are prone to collapse during moderate to large earthquakes due to a characteristic deficiency in strength and stiffness in their first story. In order to propose and validate retrofit...
Pouria Bahmani; John W. van de Lindt; Mikhail Gershfeld; Gary L. Mochizuki; Steven E. Pryor; Douglas Rammer
2016-01-01
Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multifamily three- and four-story structures throughout California and other parts of the United States. The majority were constructed between 1920 and 1970 and are prevalent in regions such as the San Francisco Bay Area in...
General Biology and Current Management Approaches of Soft Scale Pests (Hemiptera: Coccidae).
Camacho, Ernesto Robayo; Chong, Juang-Horng
We summarize the economic importance, biology, and management of soft scales, focusing on pests of agricultural, horticultural, and silvicultural crops in outdoor production systems and urban landscapes. We also provide summaries on voltinism, crawler emergence timing, and predictive models for crawler emergence to assist in developing soft scale management programs. Phloem-feeding soft scale pests cause direct (e.g., injuries to plant tissues and removal of nutrients) and indirect damage (e.g., reduction in photosynthesis and aesthetic value by honeydew and sooty mold). Variations in life cycle, reproduction, fecundity, and behavior exist among congenerics due to host, environmental, climatic, and geographical variations. Sampling of soft scale pests involves sighting the insects or their damage, and assessing their abundance. Crawlers of most univoltine species emerge in the spring and the summer. Degree-day models and plant phenological indicators help determine the initiation of sampling and treatment against crawlers (the life stage most vulnerable to contact insecticides). The efficacy of cultural management tactics, such as fertilization, pruning, and irrigation, in reducing soft scale abundance is poorly documented. A large number of parasitoids and predators attack soft scale populations in the field; therefore, natural enemy conservation by using selective insecticides is important. Systemic insecticides provide greater flexibility in application method and timing, and have longer residual longevity than contact insecticides. Application timing of contact insecticides that coincides with crawler emergence is most effective in reducing soft scale abundance.
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Long; Zhang, Shu; Chen, YuPeng
We report on a study of GS 1826-238 using all available Rossi X-Ray Timing Explorer observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30-50 keV prompted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 ± 1.2 s. The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of themore » type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.« less
Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting
NASA Astrophysics Data System (ADS)
Yuan, Tian-Chen; Yang, Jian; Chen, Li-Qun
2018-06-01
Nonlinear behaviors are investigated for a vibration-based energy harvester. The harvester consists of a circular composite plate with the clamped boundary, a proof mass and two steel rings. The lumped parameter model of the harvester is established and the parameters are identified from the experiment. The measured nonlinear behaviors can be approximately described by the lumped model. Both the experimental and the numerical results demonstrate that the circular plate harvester has soft characteristics under low excitation and both hard characteristics and soft characteristics under high excitation. The experimental results show that the output voltage can achieve over 35 V (about 50 mW) and more than 14 Hz of bandwidth with 25 kΩ load resistance.
NASA Astrophysics Data System (ADS)
Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan
A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.
NASA Astrophysics Data System (ADS)
Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng
2017-02-01
Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential elastic waves for the ultrasonic non-destructive online SHM to detect interior structural defects or fatigue cracks and for the self-sensing of the actual state of the soft EA tube actuator.
A hard X-ray view of the soft excess in AGN
NASA Astrophysics Data System (ADS)
Boissay, R.; Ricci, C.; Paltani, S.
2017-10-01
A soft X-ray emission in excess of the extrapolation of the hard X-ray continuum is detected in many Seyfert 1 galaxies below 1 keV. To understand the uncertain nature of this soft excess, which could be due to warm Comptonization or to blurred ionized reflection, we consider the different behaviors of these models above 10 keV. We present the results of a study done on 102 Seyfert 1s from the Swift BAT 70-Month Hard X-ray Survey catalog. We have performed the joint spectral analysis of Swift/BAT and XMM-Newton data in order to get a hard X-ray view of the soft excess. We discuss the links between the soft-excess strength and the reflection at high energy, the slope of the continuum and the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. Indeed, we do not find the expected correlation between the reflection and the soft-excess strengths, neither in individual, nor in stacked spectra. We also present our current project of broadband fitting, using different models explaining the soft excess, to simultaneous XMM-Newton and NuSTAR observations of about ten objects of our sample.
A thermo-elastoplastic model for soft rocks considering structure
NASA Astrophysics Data System (ADS)
He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin
2017-11-01
In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.
A mummified duck-billed dinosaur with a soft-tissue cock's comb.
Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M
2014-01-06
Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Warren, Gary
1988-01-01
The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.
Dynamic fracture mechanics analysis for an edge delamination crack
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Doyle, James F.
1994-01-01
A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.
NASA Astrophysics Data System (ADS)
Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah
2018-02-01
The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.
Shahrousvand, Mohsen; Mir Mohamad Sadeghi, Gity; Salimi, Ali
2016-12-01
The cells as a tissue component need to viscoelastic, biocompatible, biodegradable, and wettable extracellular matrix for their biological activity. In this study, in order to prepare biomedical polyurethane elastomers with good mechanical behavior and biodegradability, a series of novel polyester-polyether- based polyurethanes (PUs) were synthesized using a two-step bulk reaction by melting pre-polymer method, taking 1,4-Butanediol (BDO) as chain extender, hexamethylene diisocyanate as the hard segment, and poly (tetramethylene ether) glycol (PTMEG) and poly (ε-caprolactone diol) (PCL-Diol) as the soft segment without a catalyst. The soft to the hard segment ratio was kept constant in all samples. Polyurethane characteristics such as thermal and mechanical properties, wettability and water adsorption, biodegradability, and cellular behavior were changed by changing the ratio of polyether diol to polyester diol composition in the soft segment. Our present work provides a new procedure for the preparation of engineered polyurethanes in surface properties and biodegradability, which could be a good candidate for bone, cartilage, and skin tissue engineering.
A periodic table of effective field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Kampf, Karol; Novotny, Jiri
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
A periodic table of effective field theories
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.
2016-11-01
The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.
Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W
2016-11-01
The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.
Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianchao; Ding, Yonghua, E-mail: yhding@mail.hust.edu.cn; Zhang, Xiaoqing
2014-11-15
A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma coremore » and boundary.« less
Nonportable computed radiography of the chest--radiologists' acceptance
NASA Astrophysics Data System (ADS)
Gennari, Rose C.; Gur, David; Miketic, Linda M.; Campbell, William L.; Oliver, James H., III; Plunkett, Michael B.
1994-04-01
Following a large ROC study to assess diagnostic accuracy of PA chest computed radiography (CR) images displayed in a variety of formats, we asked nine experienced radiologists to subjectively assess their acceptance of and preferences for display modes in primary diagnosis of erect PA chest images. Our results indicate that radiologists felt somewhat less comfortable interpreting CR images displayed on either laser-printed films or workstations as compared to conventional films. The use of four minified images were thought to somewhat decrease diagnostic confidence, as well as to increase the time of interpretation. The reverse mode (black bone) images increased radiologists' confidence level in the detection of soft tissue abnormalities.
Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Jin, W.
2014-11-15
The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan
We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up inmore » the hard X-ray light curve.« less
Liu, Yuhao; Norton, James J S; Qazi, Raza; Zou, Zhanan; Ammann, Kaitlyn R; Liu, Hank; Yan, Lingqing; Tran, Phat L; Jang, Kyung-In; Lee, Jung Woo; Zhang, Douglas; Kilian, Kristopher A; Jung, Sung Hee; Bretl, Timothy; Xiao, Jianliang; Slepian, Marvin J; Huang, Yonggang; Jeong, Jae-Woong; Rogers, John A
2016-11-01
Physiological mechano-acoustic signals, often with frequencies and intensities that are beyond those associated with the audible range, provide information of great clinical utility. Stethoscopes and digital accelerometers in conventional packages can capture some relevant data, but neither is suitable for use in a continuous, wearable mode, and both have shortcomings associated with mechanical transduction of signals through the skin. We report a soft, conformal class of device configured specifically for mechano-acoustic recording from the skin, capable of being used on nearly any part of the body, in forms that maximize detectable signals and allow for multimodal operation, such as electrophysiological recording. Experimental and computational studies highlight the key roles of low effective modulus and low areal mass density for effective operation in this type of measurement mode on the skin. Demonstrations involving seismocardiography and heart murmur detection in a series of cardiac patients illustrate utility in advanced clinical diagnostics. Monitoring of pump thrombosis in ventricular assist devices provides an example in characterization of mechanical implants. Speech recognition and human-machine interfaces represent additional demonstrated applications. These and other possibilities suggest broad-ranging uses for soft, skin-integrated digital technologies that can capture human body acoustics.
Hurrell, Andrew M
2008-06-01
The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.
Liu, Yuhao; Norton, James J. S.; Qazi, Raza; Zou, Zhanan; Ammann, Kaitlyn R.; Liu, Hank; Yan, Lingqing; Tran, Phat L.; Jang, Kyung-In; Lee, Jung Woo; Zhang, Douglas; Kilian, Kristopher A.; Jung, Sung Hee; Bretl, Timothy; Xiao, Jianliang; Slepian, Marvin J.; Huang, Yonggang; Jeong, Jae-Woong; Rogers, John A.
2016-01-01
Physiological mechano-acoustic signals, often with frequencies and intensities that are beyond those associated with the audible range, provide information of great clinical utility. Stethoscopes and digital accelerometers in conventional packages can capture some relevant data, but neither is suitable for use in a continuous, wearable mode, and both have shortcomings associated with mechanical transduction of signals through the skin. We report a soft, conformal class of device configured specifically for mechano-acoustic recording from the skin, capable of being used on nearly any part of the body, in forms that maximize detectable signals and allow for multimodal operation, such as electrophysiological recording. Experimental and computational studies highlight the key roles of low effective modulus and low areal mass density for effective operation in this type of measurement mode on the skin. Demonstrations involving seismocardiography and heart murmur detection in a series of cardiac patients illustrate utility in advanced clinical diagnostics. Monitoring of pump thrombosis in ventricular assist devices provides an example in characterization of mechanical implants. Speech recognition and human-machine interfaces represent additional demonstrated applications. These and other possibilities suggest broad-ranging uses for soft, skin-integrated digital technologies that can capture human body acoustics. PMID:28138529
Cryogen-free operation of the Soft X-ray Spectrometer instrument
NASA Astrophysics Data System (ADS)
Sneiderman, Gary A.; Shirron, Peter J.; Fujimoto, Ryuichi; Bialas, Thomas G.; Boyce, Kevin R.; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Hartz, Leslie; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Caroline A.; Masters, Candace; McCammon, Dan; Mitsuda, Kazuhisa; Noda, Hirofumi; Porter, Frederick S.; Szymkowiak, Andrew E.; Takei, Yoh; Tsujimoto, Masahiro; Yoshida, Seiji
2016-07-01
The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at 1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.
Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-04-01
We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.
Anticancer activity of metal complexes: involvement of redox processes.
Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra
2011-08-15
Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.
Anticancer Activity of Metal Complexes: Involvement of Redox Processes
Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra
2012-01-01
Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772
Dielectric, magnetic and structural properties of novel multiferroic Eu(0.5)Ba(0.5)TiO(3) ceramics.
Goian, V; Kamba, S; Nuzhnyy, D; Vaněk, P; Kempa, M; Bovtun, V; Knížek, K; Prokleška, J; Borodavka, F; Ledinský, M; Gregora, I
2011-01-19
Dielectric properties of Eu(0.5)Ba(0.5)TiO(3) ceramics were investigated between 10 and 300 K in the frequency range of 1 MHz-100 THz. Permittivity exhibits a strong peak near the ferroelectric phase transition at 215 K. This is mainly due to softening of the lowest frequency polar phonon revealed in THz and infrared spectra. Dielectric relaxation was observed also below the ferroelectric soft mode frequency in the whole investigated temperature region, but it is probably caused by some defects such as Eu(3 + ) cations or oxygen vacancies. This implies that the ferroelectric phase transition has predominantly a displacive character. Raman scattering spectra revealed a lowering of crystal symmetry in the ferroelectric phase and XRD analysis indicated orthorhombic A2mm symmetry below 215 K. The magnetic measurements performed at various frequencies in the field cooled and field heating regime after cooling in zero magnetic fields excluded spin glass behavior and proved an antiferromagnetic order below 1.9 K in Eu(0.5)Ba(0.5)TiO(3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
Solares, Santiago D.
2016-04-15
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
NASA Astrophysics Data System (ADS)
Brinkman-Traverse, Casey; Rankin, Joanna M.; Mitra, Dipanjan
2017-01-01
In this paper, we analyze the quirky polarization behavior across different profile modes for the pulsar B0329+54. We have multi-frequency observations in both the normal and abnormal profile modes, and have identified a non-RVM polarization kink in the core component of the emission. Mitra et al initially identified this kink in the normal profile mode of the pulsar in 2007, and a mirror analysis has been done here for abnormal profile modes at three different frequencies. This kink is intensity dependent, showing up only in the abberated/retarded high intensity pulses, and is frequency independent. This parallel between profile modes shows that the same geometric phenomenon—a height dependent amplifier—is responsible for the non-RVM polarization behavior in each. The question then arises: what can be the source of the profile change, which does not change the polarization characteristics of the pulsar. This pulsar gives us a unique opportunity to study the process of pulsar emission by showing what cannot be responsible for switches in profile mode, and thus profile shape.
Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics
Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong
2015-01-01
We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380
NASA Astrophysics Data System (ADS)
Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin
2016-09-01
The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.
Schrider, Daniel R.; Mendes, Fábio K.; Hahn, Matthew W.; Kern, Andrew D.
2015-01-01
Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically, population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective sweeps. This general problem of “soft shoulders” underscores the difficulty in differentiating soft and partial sweeps from hard-sweep scenarios in molecular population genomics data. The soft-shoulder effect also implies that the more common hard sweeps have been in recent evolutionary history, the more prevalent spurious signatures of soft or partial sweeps may appear in some genome-wide scans. PMID:25716978
Schrider, Daniel R; Mendes, Fábio K; Hahn, Matthew W; Kern, Andrew D
2015-05-01
Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically, population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective sweeps. This general problem of "soft shoulders" underscores the difficulty in differentiating soft and partial sweeps from hard-sweep scenarios in molecular population genomics data. The soft-shoulder effect also implies that the more common hard sweeps have been in recent evolutionary history, the more prevalent spurious signatures of soft or partial sweeps may appear in some genome-wide scans. Copyright © 2015 by the Genetics Society of America.
Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability
NASA Astrophysics Data System (ADS)
Sheshadri, A.; Plumb, R. A.
2016-12-01
Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.
USDA-ARS?s Scientific Manuscript database
Grain physical characteristics and milling behavior of a durum wheat line in which both wild-type puroindoline alleles were translocated and stabilized after backcrossing (Svevo-Pin) were compared with the parent line (Svevo). The only observed differences between grain characteristics were the mech...
1993-07-01
dimensions topics such as timing (e.g., Gibbon & Allan, from interresponse-time duration (e.g.. Alle- 1984), numerositv (e.g., Gallistel , 1989), and...Behavior, 51, 145-162. Snapper, A. G., & Inglis, G. B. (1985). SKED-li soft- Gallistel , C. R. (1989). Animal cognition: The repre- ware system. Kalamazoo
The Role Of Food Proximity in Eating Behavior and Body Mass Index Among Air Force Personnel
2009-02-23
evidence that people do not reduce their food intake to compensate for the amount of energy consumed by soft drinks (particularly sugar - sweetened soft...as soda, lattes, and alcohol in the current study. Given the large amount of calories and sugar in certain beverages (Vartanian et al., 2007), it is...carbonated beverages increased over 600% (Vartanian, Schwartz, & Brownell, 2007). Portion Sizes In general, away-from-home foods have larger
Nucleation in Polymers and Soft Matter
NASA Astrophysics Data System (ADS)
Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang
2014-04-01
Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.
TRADOC Service School Reports. ’Soft Skill Areas.’
1979-09-01
situation where Theory Y is appropriate I. Categorize present situation J. Encourage subordinates to participate in planning and decision making activities...soldier I. Assist the soldier in developing a plan for improvement J. Assess extent of the problem K. Define the problem in precise behavioral terms L...THEMSELVES TO THESE CATEGORIES AND SHOULD REPORT ANY AREA WHICH MAY BE PERCEIVED TO FALL WITHIN THE AREA OF SOFT-SKILLS. THE INTENT IS NOT TO CONDUCT A
Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang
2016-05-09
Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.
Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
Demirci, Nagehan; Tönük, Ergin
2014-01-01
During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.
Evaluating Application Resilience with XRay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sui; Bronevetsky, Greg; Li, Bin
2015-05-07
The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection andmore » tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.« less
Phonon thermodynamics of iron and cementite
NASA Astrophysics Data System (ADS)
Mauger, Lisa Mary
The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.