Science.gov

Sample records for soft tissue simulation

  1. Mechanical Behavior of Tissue Simulants and Soft Tissues Under Extreme Loading Conditions

    NASA Astrophysics Data System (ADS)

    Kalcioglu, Zeynep Ilke

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in

  2. Evaluation of the soft tissue treatment simulation module of a computerized cephalometric program

    PubMed Central

    Oz, Aslihan Zeynep; Akcan, Cenk Ahmet; El, Hakan; Ciger, Semra

    2014-01-01

    Objective: The purpose of this study is to compare the accuracy of the treatment simulation module of Quick Ceph Studio (QCS) program to the actual treatment results in Class II Division 1 patients. Design: Retrospective study. Materials and Methods: Twenty-six skeletal Class II patients treated with functional appliances were included. T0 and T1 lateral cephalograms were digitized using QCS. Before applying treatment simulation to the digitized cephalograms, the actual T0-T1 difference was calculated for the SNA, SNB, ANB angles, maxillary incisor inclination, and protrusion and mandibular incisor inclination and protrusion values. Next, using the treatment simulation module, the aforementioned values for the T0 cephalograms were manually entered to match the actual T1 values taking into account the T0-T1 differences. Paired sample t-test were applied to determine the difference between actual and treatment simulation measurements. Results: No significant differences were found for the anteroposterior location of the landmarks. Upper lip, soft tissue A point, soft tissue pogonion, and soft tissue B point measurements showed statistically significant difference between actual and treatment simulation in the vertical plane. Conclusion: Quick Ceph program was reliable in terms of reflecting the sagittal changes that would probably occur with treatment and growth. However, vertical positions of the upper lip, soft tissue pogonion, soft tissue A point, and soft tissue B point were statistically different from actual results. PMID:24966775

  3. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  4. Estimating soft tissue thickness from light-tissue interactions--a simulation study.

    PubMed

    Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2013-07-01

    Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype.

  5. Estimating soft tissue thickness from light-tissue interactions––a simulation study

    PubMed Central

    Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2013-01-01

    Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype. PMID:23847741

  6. Simulation and experiment of soft-tissue deformation in prostate brachytherapy.

    PubMed

    Liang, Dong; Jiang, Shan; Yang, Zhiyong; Wang, Xingji

    2016-06-01

    Soft-tissue deformation is one of the major reasons for the inaccurate positioning of percutaneous needle insertion process. In this article, simulations and experiments of the needle insertion soft-tissue process are both applied to study soft-tissue deformation. A needle deflection model based on the mechanics is used to calculate the needle deflection during the interaction process. The obtained needle deflection data are applied into finite element analysis process as the system input. The uniaxial tensile strength tests, compression tests, and static indentation experiments are used to obtain the soft-tissue parameters and choose the best strain-energy function to model in the simulation. Magnetic resonance imaging is used to reconstruct the prostate, establishing both prostate three-dimensional finite element model and artificial prostate model. The needle-soft tissue interaction simulation results are compared with those of the needle insertion experiment. The displacement data of the mark point in the experiment are comparable to the simulation results. It is concluded that, using this simulation method, the surgeon can predict the deformation of the tissue and the displacement of the target in advance. PMID:27129384

  7. Dynamic simulation of viscoelastic soft tissues in harmonic motion imaging application.

    PubMed

    Shan, Baoxiang; Kogit, Megan L; Pelegri, Assimina A

    2008-10-20

    A finite element model was built to simulate the dynamic behavior of soft tissues subjected to sinusoidal excitation during harmonic motion imaging. In this study, soft tissues and tissue-like phantoms were modeled as isotropic, viscoelastic, and nearly incompressible media. A 3D incompressible mixed u-p element of eight nodes, S1P0, was developed to accurately calculate the stiffness matrix for soft tissues. The finite element equations of motion were solved using the Newmark method. The Voigt description for tissue viscosity was applied to estimate the relative viscous coefficient from the phase shift between the response and excitation in a harmonic case. After validating our model via ANSYS simulation and experiments, a MATLAB finite element program was then employed to explore the effect of excitation location, viscosity, and multiple frequencies on the dynamic displacement at the frequency of interest.

  8. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents. PMID:26530842

  9. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  10. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.

    PubMed

    Fan, Rong; Sacks, Michael S

    2014-06-27

    Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have implemented a structural constitutive model into a finite element framework specialized for membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural simulations were used to set the non-fibrous matrix modulus because fibers have little effects on tissue deformation under three-point bending. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress-strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (Billiar and Sacks, 1997. J. Biomech. 30 (7), 753-756) where we observed that under strip biaxial stretch the simulated fiber splay responses were not in good agreement with the experimental results, suggesting non-affine deformations may have occurred. However, by correctly accounting for the isotropic phase of the measured fiber splay, good agreement was obtained. While not the final word, these simulations suggest that affine fiber kinematics for planar collagenous tissues is a reasonable assumption at the macro level. Simulation tools such as these are

  11. Simulation of soft-tissue tumor excisions: a multimodal interactive approach.

    PubMed

    DiSomma, C; Raposio, E; Fato, M; Schenone, A; Andreucci, L; Beltrame, F; Santi, P

    1997-01-01

    Total 3-D reconstruction of the tumor size, shape, and relations with surrounding structures using CT, MRI, sonography, and angiography images can make simulated radical resection of soft-tissue sarcomas possible, thus sparing normal tissues. With our approach, starting from three MR images for a given patient, a new single image representation of all three parameters is generated by using two different techniques on a workstation in a standard UNIX and X-11 environment. The first one is a transformation linking together the MR parameters and the RGB (red, green, blue) color components. The second one is an unsupervised segmentation method based on a number of neural and fuzzy models. We can dinamically render and update a stereo display using field sequential presentation of left and right eye views on the monitor, with Cristal Eyes LCD shutter eyewear (StereoGraphics Inc., San Rafael, CA) to view it. As 3D locating tool, a 3D locating control system based on low-frequency magnetic fields (Polhemus Fastrak) has been chosen. Simulations of soft-tissues excisions may be performed in this interactive environment with augmented-reality modalities. All this, in our experience, has greatly facilitated the simulation of soft-tissue sarcoma excisions.

  12. Integration of soft tissue model and open haptic device for medical training simulator

    NASA Astrophysics Data System (ADS)

    Akasum, G. F.; Ramdhania, L. N.; Suprijanto; Widyotriatmo, A.

    2016-03-01

    Minimally Invasive Surgery (MIS) has been widely used to perform any surgical procedures nowadays. Currently, MIS has been applied in some cases in Indonesia. Needle insertion is one of simple MIS procedure that can be used for some purposes. Before the needle insertion technique used in the real situation, it essential to train this type of medical student skills. The research has developed an open platform of needle insertion simulator with haptic feedback that providing the medical student a realistic feel encountered during the actual procedures. There are three main steps in build the training simulator, which are configure hardware system, develop a program to create soft tissue model and the integration of hardware and software. For evaluating its performance, haptic simulator was tested by 24 volunteers on a scenario of soft tissue model. Each volunteer must insert the needle on simulator until rearch the target point with visual feedback that visualized on the monitor. From the result it can concluded that the soft tissue model can bring the sensation of touch through the perceived force feedback on haptic actuator by looking at the different force in accordance with different stiffness in each layer.

  13. Three-Dimensional Simulation of Scalp Soft Tissue Expansion Using Finite Element Method

    PubMed Central

    Guan, Qiu; Du, Xiaochen; Shao, Yan; Lin, Lili; Chen, Shengyong

    2014-01-01

    Scalp soft tissue expansion is one of the key medical techniques to generate new skin tissue for correcting various abnormalities and defects of skin in plastic surgery. Therefore, it is very important to work out the appropriate approach to evaluate the increase of expanded scalp area and to predict the shape, size, number, and placement of the expander. A novel method using finite element model is proposed to solve large deformation of scalp expansion in this paper. And the procedure to implement the scalp tissue expansion with finite element method is also described in detail. The three-dimensional simulation results show that the proposed method is effective, and the analysis of simulation experiment shows that the volume and area of the expansion scalp can be accurately calculated and the quantity, location, and size of the expander can also be predicted successfully with the proposed model. PMID:25110514

  14. The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant.

    PubMed

    Wang, Yongjuan; Shi, Xiaoning; Chen, Aijun; Xu, Cheng

    2015-04-01

    Gelatin, a representative simulant for soft tissue of the human body, was used to study the effects of 9 mm pistol bullet's penetration. The behavior of a bullet penetrating gelatin was quantified by the temporary cavity sizes in ballistic gelatin and the pressure values of bullet's impact. A numerical simulation model of a bullet penetrating the soft tissue simulant gelatin was built using the finite element method (FEM). The model was validated by the comparison between the numerical results and the experimental results. During a bullet penetrating ballistic gelatin, four stages were clearly observed in both the experiment and the numerical simulation: a smooth attenuation stage, a rolling stage, a full penetration stage, and a stage of expansion and contraction. The cavity evolution, equivalent stress field and the strain field in gelatin were analyzed by numerical simulation. Moreover, the effects of the bullet's impact velocities and angles of incidence on the temporary cavity in gelatin, its velocity attenuation, and its rolling angle were investigated, as well as the bullet's resistance and energy variation. The physical process and the interactive mechanism during a pistol bullet penetrating gelatin were comprehensively revealed. This may be significant for research in wound ballistics.

  15. The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant.

    PubMed

    Wang, Yongjuan; Shi, Xiaoning; Chen, Aijun; Xu, Cheng

    2015-04-01

    Gelatin, a representative simulant for soft tissue of the human body, was used to study the effects of 9 mm pistol bullet's penetration. The behavior of a bullet penetrating gelatin was quantified by the temporary cavity sizes in ballistic gelatin and the pressure values of bullet's impact. A numerical simulation model of a bullet penetrating the soft tissue simulant gelatin was built using the finite element method (FEM). The model was validated by the comparison between the numerical results and the experimental results. During a bullet penetrating ballistic gelatin, four stages were clearly observed in both the experiment and the numerical simulation: a smooth attenuation stage, a rolling stage, a full penetration stage, and a stage of expansion and contraction. The cavity evolution, equivalent stress field and the strain field in gelatin were analyzed by numerical simulation. Moreover, the effects of the bullet's impact velocities and angles of incidence on the temporary cavity in gelatin, its velocity attenuation, and its rolling angle were investigated, as well as the bullet's resistance and energy variation. The physical process and the interactive mechanism during a pistol bullet penetrating gelatin were comprehensively revealed. This may be significant for research in wound ballistics. PMID:25747327

  16. Three dimensional approach for realistic simulation of facial soft tissue response: a pilot study.

    PubMed

    El-Molla, Mohammed M; El-Beialy, Amr R; Kandil, Ahmed H; El-Bialy, Ahmed M; Mostafa, Yehya A

    2011-01-01

    Facial attractiveness is ranked as a principal priority among patients seeking orthodontic treatment or combined surgical orthodontic therapy. A successful treatment planning process necessitates an accurate prediction of the postoperative facial profile. In this manuscript, the simulation procedure on a real clinical case using virtual volumetric 3D mesh through different scenarios of orthognathic procedures was done. Results depict several facial soft tissue outcomes, with the likelihood of sharing with the patient the most esthetically pleasing end result prior to carrying out the surgical procedure.

  17. Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction.

    PubMed

    Xia, J; Samman, N; Yeung, R W; Wang, D; Shen, S G; Ip, H H; Tideman, H

    2000-08-01

    The purpose of this paper is to report a new technique for three-dimensional facial soft-tissue-change prediction after simulated orthognathic surgical planning. A scheme for soft tissue deformation, "Computer-assisted three-dimensional virtual reality soft tissue planning and prediction for orthognathic surgery (CASP)", is presented. The surgical planning was based on three-dimensional reconstructed CT visualization. Soft tissue changes were predicted by two newly devised algorithms: Surface Normal-based Model Deformation Algorithm and Ray Projection-based Model Deformation Algorithm. A three-dimensional color facial texture-mapping technique was also used for generating the color photo-realistic facial model. As a final result, a predicted and simulated patient's color facial model can be visualized from arbitrary viewing points.

  18. Necrotizing soft tissue infections

    PubMed Central

    Urschel, J.

    1999-01-01

    Necrotizing soft tissue infections are a group of highly lethal infections that typically occur after trauma or surgery. Many individual infectious entities have been described, but they all have similar pathophysiologies, clinical features, and treatment approaches. The essentials of successful treatment include early diagnosis, aggressive surgical debridement, antibiotics, and supportive intensive treatment unit care. The two commonest pitfalls in management are failure of early diagnosis and inadequate surgical debridement. These life-threatening infections are often mistaken for cellulitis or innocent wound infections, and this is responsible for diagnostic delay. Tissue gas is not a universal finding in necrotizing soft tissue infections. This misconception also contributes to diagnostic errors. Incision and drainage is an inappropriate surgical strategy for necrotizing soft tissue infections; excisional debridement is needed. Hyperbaric oxygen therapy may be useful, but it is not as important as aggressive surgical therapy. Despite advances in antibiotic therapy and intensive treatment unit medicine, the mortality of necrotizing soft tissue infections is still high. This article emphasizes common treatment principles for all of these infections, and reviews some of the more important individual necrotizing soft tissue infectious entities.


Keywords: fasciitis; gas gangrene; clostridium infections; streptococcal infections; necrosis; debridement; surgical infections; soft tissue infections PMID:10621873

  19. Real-time simulation of contact and cutting of heterogeneous soft-tissues.

    PubMed

    Courtecuisse, Hadrien; Allard, Jérémie; Kerfriden, Pierre; Bordas, Stéphane P A; Cotin, Stéphane; Duriez, Christian

    2014-02-01

    This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery.

  20. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  1. Permanent soft tissue fillers.

    PubMed

    Wilson, YuShan L; Ellis, David A F

    2011-12-01

    As our youth-oriented society ages, interest in nonsurgical aesthetic techniques has generated a dramatic rise in the use of filling agents for facial rejuvenation. Backed by multiple published studies documenting safety and efficacy, soft tissue fillers are often viewed as treatments with minimal recovery time and limited risk of complications when compared with traditional surgical interventions. This has led to a genuine demand for fillers with similar safety profiles but ever increasing longevity in their aesthetic corrections. This review addresses many of the permanent soft tissue fillers that are commercially available worldwide as well as important concerns regarding their complications.

  2. Soft tissue augmentation.

    PubMed

    Hirsch, Ranella J; Cohen, Joel L

    2006-09-01

    Recent additions to the soft tissue augmentation armamentarium have greatly increased the dermatologic surgeon's choices in optimizing facial contouring and the treatment of acne scars. In this article, we review the science of fillers and look at the future of dermal fillers.

  3. [Soft-tissue fillers].

    PubMed

    Dallara, J-M

    2008-02-01

    Injections of soft-tissue fillers have rapidly become accessible and essential. When dealing with facial aging, it is logical to compensate for the loss of volume, but the optimisation of a younger face involves a 3D strategy as well.

  4. Studies of Hard and Soft Tissue Elemental Compositions in Mice and Rats Subjected to Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Mehta, Rahul; Lane, Ryan A.; Fitch, Hannah M.; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2009-03-01

    Microgravity has profound effects on skeletal as well as other body systems. To investigate the effect of microgravity, we have used a NASA validated Hind-limb suspension (HLS) animal model of simulated weightlessness. Groups of mice and rats were subjected to hind limb suspension between 1 and 14 days while the control groups were maintained without suspension for the same duration. To study the effect of diet, some groups of animals were fed on a special diet with defined composition. At term, the animals were sacrificed and the tibia, femur, and skull bones were collected. In addition, soft tissues from pancreas and muscles were also collected. All of the bones and tissues samples were analyzed for elemental analysis using Energy Dispersive Spectroscopy (EDS) equipped on a Scanning Electron Microscope (SEM). In the EDS, 10-20 keV electrons bombarded the samples and a Si (Li) detector measured K-, L- and M-shell x-rays. Independently, X-Ray Fluorescence (XRF) provided the data for comparison and normalization. Flame software, with Fuzzy Logic, was used to form elemental ratios. Elemental analysis of bone samples indicated a variation in the compositional ratios of calcium, potassium, oxygen and carbon in the leg bones and skulls of the HLS versus control specimens. These variations showed dependence on sample position in the bone.

  5. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  6. Genital soft tissue tumors.

    PubMed

    Schoolmeester, John K; Fritchie, Karen J

    2015-07-01

    Mesenchymal neoplasms of the vulvovaginal and inguinoscrotal regions are among the most diagnostically challenging specimens in the pathology laboratory owing largely to their unique intersection between general soft tissue tumors and relatively genital-specific mesenchymal tumors. Genital stromal tumors are a unique subset of soft tissue tumors encountered at this location, and this group includes fibroepithelial stromal polyp, superficial (cervicovaginal) myofibroblastoma, cellular angiofibroma, mammary-type myofibroblastoma, angiomyofibroblastoma and aggressive angiomyxoma. Aside from the striking morphologic and immunophenotypic similarity that is seen with these entities, there is evidence that a subset of genital stromal tumors may be linked genetically. This review will focus on simplifying this group of tumors and provide the pathologist or dermatopathologist with practical management information. Smooth muscle tumors of the external genitalia will also be discussed.

  7. Reptile Soft Tissue Surgery.

    PubMed

    Di Girolamo, Nicola; Mans, Christoph

    2016-01-01

    The surgical approach to reptiles can be challenging. Reptiles have unique physiologic, anatomic, and pathologic differences. This may result in frustrating surgical experiences. However, recent investigations provided novel, less invasive, surgical techniques. The purpose of this review was to describe the technical aspects behind soft tissue surgical techniques that have been used in reptiles, so as to provide a general guideline for veterinarians working with reptiles.

  8. Injectable tissue-engineered soft tissue for tissue augmentation.

    PubMed

    Rhee, Sung-Mi; You, Hi-Jin; Han, Seung-Kyu

    2014-11-01

    Soft tissue augmentation is a process of implanting tissues or materials to treat wrinkles or soft tissue defects in the body. Over the years, various materials have evolved to correct soft tissue defects, including a number of tissues and polymers. Autogenous dermis, autogenous fat, autogenous dermis-fat, allogenic dermis, synthetic implants, and fillers have been widely accepted for soft tissue augmentations. Tissue engineering technology has also been introduced and opened a new venue of opportunities in this field. In particular, a long-lasting filler consisting of hyaluronic acid filler and living human mesenchymal cells called "injectable tissue-engineered soft tissue" has been created and applied clinically, as this strategy has many advantages over conventional methods. Fibroblasts and adipose-derived stromal vascular fraction cells can be clinically used as injectable tissue-engineered soft tissue at present. In this review, information on the soft tissue augmentation method using the injectable tissue-engineered soft tissue is provided.

  9. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    PubMed

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  10. The evaluation of new multi-material human soft tissue simulants for sports impact surrogates.

    PubMed

    Payne, Thomas; Mitchell, Séan; Bibb, Richard; Waters, Mark

    2015-01-01

    Previous sports impact reconstructions have highlighted the inadequacies in current measures to evaluate the effectiveness of personal protective equipment (PPE) and emphasised the need for improved impact surrogates that provide a more biofidelic representation of human impact response. The skin, muscle and subcutaneous adipose tissues were considered to constitute the structures primarily governing the mechanical behaviour of the human body segment. A preceding study by Payne et al. (in press) investigated the formulation and characterisation of muscle tissue simulants. The present study investigates the development of bespoke blends of additive cure polydimethysiloxane (PDMS) silicones to represent both skin and adipose tissues using the same processes previously reported. These simulants were characterised mechanically through a range of strain rates and a range of hyperelastic and viscoelastic constitutive models were evaluated to describe their behaviour. To explore the worth of the silicone simulants, finite element (FE) models were developed using anthropometric parameters representative of the human thigh segment, derived from the Visible Human Project. The multi-material silicone construction was validated experimentally and compared with both organic tissue data from literature and commonly used single material simulants: Dow Corning Silastic 3480 series silicones and ballistics gelatin when subject to a representative sports specific knee impact. Superior biofidelic performance is reported for the PDMS silicone formulations and surrogate predictions. PMID:25448686

  11. The evaluation of new multi-material human soft tissue simulants for sports impact surrogates.

    PubMed

    Payne, Thomas; Mitchell, Séan; Bibb, Richard; Waters, Mark

    2015-01-01

    Previous sports impact reconstructions have highlighted the inadequacies in current measures to evaluate the effectiveness of personal protective equipment (PPE) and emphasised the need for improved impact surrogates that provide a more biofidelic representation of human impact response. The skin, muscle and subcutaneous adipose tissues were considered to constitute the structures primarily governing the mechanical behaviour of the human body segment. A preceding study by Payne et al. (in press) investigated the formulation and characterisation of muscle tissue simulants. The present study investigates the development of bespoke blends of additive cure polydimethysiloxane (PDMS) silicones to represent both skin and adipose tissues using the same processes previously reported. These simulants were characterised mechanically through a range of strain rates and a range of hyperelastic and viscoelastic constitutive models were evaluated to describe their behaviour. To explore the worth of the silicone simulants, finite element (FE) models were developed using anthropometric parameters representative of the human thigh segment, derived from the Visible Human Project. The multi-material silicone construction was validated experimentally and compared with both organic tissue data from literature and commonly used single material simulants: Dow Corning Silastic 3480 series silicones and ballistics gelatin when subject to a representative sports specific knee impact. Superior biofidelic performance is reported for the PDMS silicone formulations and surrogate predictions.

  12. On the dynamic behavior of three readily available soft tissue simulants

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Wilgeroth, J. M.; Shepherd, C. J.; Wood, D. C.; Roberts, A.

    2011-04-01

    Plate-impact experiments have been employed to investigate the dynamic response of three readily available tissue simulants for ballistic purposes: gelatin, ballistic soap (both subdermal tissue simulants), and lard (adipose layers). All three materials exhibited linear Hugoniot equations-of-state in the US-uP plane. While gelatin behaved hydrodynamically under shock, soap and lard appeared to strengthen under increased loading. Interestingly, the simulants under test appeared to strengthen in a material-independent manner on shock arrival (tentatively attributed to a rearrangement of the amorphous molecular chains under loading). However, material-specific behavior was apparent behind the shock. This behavior appeared to correlate with microstructural complexity, suggesting a steric hindrance effect.

  13. Solitary fibrous tumor of the perithyroid soft tissue. Report of a case simulating a thyroid nodule.

    PubMed

    Villaschi, S; Macciomei, M C

    1996-01-01

    A case of solitary fibrous tumor (SFT) of the perithyroidal soft tissue is reported. Due to its proximity to the upper aspect of the right thyroid lobe, its slow growth and its ultrasound features, the tumor was confused with a thyroid nodule. Two fine needle aspirations (FNA) gave only scant non diagnostic material. For these and cosmetic reasons together with the fact that ultrasound exam detected two solid nodules in the left lobe, a thyroidectomy was decided. Examination of the surgical specimen showed a nodule that was well demarcated and, although entirely extrathyroidal, bulged from the thyroid profile in a niche of the upper medial aspect of the right lobe. On histologic, immunohistochemical, and ultrastructural examination the tumor fulfilled the criteria for a diagnosis of solitary fibrous tumor. Thus, SFT must be considered in the differential diagnosis of suspected thyroid nodules mainly when FNA gives only scanty non diagnostic material which is unusual in thyroid hyperplastic nodules.

  14. Validity of wax and acrylic as soft-tissue simulation materials used in in vitro radiographic studies

    PubMed Central

    Schropp, L; Alyass, N S; Wenzel, A; Stavropoulos, A

    2012-01-01

    Objective To determine the thickness of wax and acrylic that provides a radiographic density similar to that of the human cheek. Methods An intraoral film radiograph of the human cheek including a 40 × 30 × 3 mm reference aluminium block was recorded under standardized conditions in 61 subjects. Radiographic density was measured by a densitometer in ten randomly selected sites of the film to serve as the gold standard for density values of the cheek soft tissues. Thereafter, the density of series of radiographs of two tissue-simulating materials—wax and acrylic—in systematically increasing thicknesses (wax, 1.5–30 mm; acrylic, 2–40 mm) plus the reference block were measured and compared with the gold-standard values. Results The radiographic density of wax with a thickness of 13–17 mm or acrylic with a thickness of 14.5 mm corresponded to the average density of the human cheek. Conclusion The soft tissues of the average human cheek can be simulated with 13–17 mm wax or 14.5 mm acrylic in in vitro radiographic studies. PMID:22933536

  15. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    NASA Technical Reports Server (NTRS)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  16. Drugs Approved for Soft Tissue Sarcoma

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Soft Tissue Sarcoma This page lists ... soft tissue sarcoma that are not listed here. Drugs Approved for Soft Tissue Sarcoma Cosmegen (Dactinomycin) Dactinomycin ...

  17. Soft tissue augmentation using Restylane.

    PubMed

    Biesman, Brian

    2004-05-01

    Soft tissue augmentation plays an important role in facial rejuvenation. To accomplish this goal, numerous materials have been used. Hyaluronic acids represent the latest family of products to become available in the United States. This article provides an introduction to the proper use of Restylane, the first hyaluronic acid product to be approved by the United States Food and Drug Administration for soft tissue augmentation.

  18. [Soft tissue rheumatism in erderly].

    PubMed

    Szczepański, Leszek

    2008-01-01

    Disorders of soft, peri-articular tissues are a common cause of musculoskeletal pain in elderly patients. Nevertheless, most physicians underestimate the role of soft tissue rheumatism in the pathomechanism of the pain. The impairments of soft tissue can not be diagnosed by X-rays examinations, whereas degenerative lesions of joints are easy diagnosed using this method even despite of their uncertain role in producing the symptoms. The incidence of pain syndromes originated from soft tissues differ regarding to the age of patients. In young subjects the incidence of all of them is generally low. Syndromes provoked by overloading during work: repetitive strain syndrome, canal tunnel syndrome, tennis elbow, golfers elbow, shoulder tendon coin disorders and myofascial pain syndrome are common in middle-aged patients. The morbidity of fibromialgia syndrome is also lower in old people probably as the result of diminished numbers and degenerative changes in nociceptive fibers. The syndromes prevailing in elderly patients include trochanteric syndrome and the pain syndromes provoked by muscle spasm depended on posture abnormalities. In the soft tissue pain syndrome prevention adapted to old age kinesitherapy and avoiding muscle overloading are recommended. Soft tissue pain syndromes are usually treated with non steroidal anti inflammatory drugs. In local pain syndromes better results can be obtained by local treatment. Local injections of glikocorticosteroids are usually very effective and safe.

  19. Comparison of structural anisotropic soft tissue models for simulating Achilles tendon tensile behaviour.

    PubMed

    Khayyeri, Hanifeh; Longo, Giacomo; Gustafsson, Anna; Isaksson, Hanna

    2016-08-01

    The incidence of tendon injury (tendinopathy) has increased over the past decades due to greater participation in sports and recreational activities. But little is known about the aetiology of tendon injuries because of our limited knowledge in the complex structure-function relationship in tendons. Computer models can capture the biomechanical behaviour of tendons and its structural components, which is essential for understanding the underlying mechanisms of tendon injuries. This study compares three structural constitutive material models for the Achilles tendon and discusses their application on different biomechanical simulations. The models have been previously used to describe cardiovascular tissue and articular cartilage, and one model is novel to this study. All three constitutive models captured the tensile behaviour of rat Achilles tendon (root mean square errors between models and experimental data are 0.50-0.64). They further showed that collagen fibres are the main load-bearing component and that the non-collagenous matrix plays a minor role in tension. By introducing anisotropic behaviour also in the non-fibrillar matrix, the new biphasic structural model was also able to capture fluid exudation during tension and high values of Poisson׳s ratio that is reported in tendon experiments. PMID:27108350

  20. Complications of soft tissue augmentation.

    PubMed

    Hirsch, Ranella J; Stier, Meghan

    2008-09-01

    The wide variety of dermal fillers presently available has revolutionized treatment options for patients seeking a refreshed appearance. Soft tissue fillers include both bovine and human collagens, the hyaluronans, calcium hydroxyapatite, poly-L-lactic acid, and synthetic polymers. However, soft tissue augmentation is never risk-free, and as these procedures have increased in prevalence, complications have been more frequently reported. This article describes a range of complications resulting from dermal filler injections, reviews key case studies, and discusses possible treatment options for adverse effects. While biodegradable fillers offer the least risk for the patient, location, allergic reactions, granulomas, necrosis, and infection are all serious complications that must be considered before performing soft tissue augmentation with any approved dermal filler.

  1. Soft tissue application of lasers.

    PubMed

    Holt, Timothy L; Mann, Fred A

    2002-05-01

    Despite increasing numbers of veterinarians incorporating lasers into their clinical practices, little information has been published about laser clinical applications in soft tissue surgery. This article reviews soft tissue interaction, describes laser equipment and accessories commonly marketed to veterinarians, and discusses clinical applications of the carbon dioxide laser in a systems-based approach. A table of recommended laser tips and settings based on the authors' experiences using a carbon dioxide laser (AccuVet Novapulse LX-20SP, Bothell, WA) is provided. PMID:12064042

  2. A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images.

    PubMed

    Hogea, Cosmina; Biros, George; Abraham, Feby; Davatzikos, Christos

    2007-12-01

    We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid-fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases. PMID:18029982

  3. [Electroroentgenography in the diagnosis of soft tissue tumors].

    PubMed

    Vintergal'ter, S F; Vishevnik, B I

    1989-01-01

    Clinical, electroroentgenographic and X-ray studies of soft tissues were carried out in 425 patients with malignant (75), benign (246) soft tissue tumors and in cases of such soft tissue pathologies of the extremities and body (104) as bursitis, hematoma, cyst and ganglia which may clinically simulate tumors. The paper discusses the technicalities of electroroentgenography which produces on one roentgenogram separate images of all components of soft tissues and bones in a given segment. A comparison of image quality assured by electroroentgeno- and roentgenography did not establish any significant difference in soft tissue tumor semiotics. Electroroentgenography of soft tissues is relatively less sophisticated, time-consuming and cheaper; it does not require special medical facilities for examining patients bearing soft tissue tumor or suspect lesions.

  4. [Radiotherapy of adult soft tissue sarcoma].

    PubMed

    Le Péchoux, C; Moureau-Zabotto, L; Llacer, C; Ducassou, A; Sargos, P; Sunyach, M P; Thariat, J

    2016-09-01

    Incidence of soft tissue sarcoma is low and requires multidisciplinary treatment in specialized centers. The objective of this paper is to report the state of the art regarding indications and treatment techniques of main soft tissue sarcoma localisations.

  5. General Information about Adult Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Adult Soft Tissue Sarcoma Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  6. General Information about Childhood Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Childhood Soft Tissue Sarcoma Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  7. Childhood Soft Tissue Sarcoma: Treatment Information

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  8. [Radiotherapy of adult soft tissue sarcoma].

    PubMed

    Le Péchoux, C; Moureau-Zabotto, L; Llacer, C; Ducassou, A; Sargos, P; Sunyach, M P; Thariat, J

    2016-09-01

    Incidence of soft tissue sarcoma is low and requires multidisciplinary treatment in specialized centers. The objective of this paper is to report the state of the art regarding indications and treatment techniques of main soft tissue sarcoma localisations. PMID:27523415

  9. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  10. Validation of new soft tissue software in orthognathic surgery planning.

    PubMed

    Marchetti, C; Bianchi, A; Muyldermans, L; Di Martino, M; Lancellotti, L; Sarti, A

    2011-01-01

    This study tests computer imaging software (SurgiCase-CMF(®), Materialise) that enables surgeons to perform virtual orthognathic surgical planning using a three dimensional (3D) utility that previews the final shape of hard and soft tissues. It includes a soft tissue simulation module that has created images of soft tissues altered through bimaxillary orthognathic surgery to correct facial deformities. Cephalometric radiographs and CT scans were taken of each patient before and after surgery. The surgical planning system consists of four stages: CT data reconstruction; 3D model generation of facial hard and soft tissue; different virtual surgical planning and simulation modes; and various preoperative previews of the soft tissues. Surgical planning and simulation is based on a 3D CT reconstructed bone model and soft tissue image generation is based on physical algorithms. The software rapidly follows clinical options to generate a series of simulations and soft tissue models; to avoid TMJ functional problems, pre-surgical plans were evaluated by an orthodontist. Comparing simulation results with postoperative CT data, the reliability of the soft tissues preview was >91%. SurgiCase(®) software can provide a realistic, accurate forecast of the patient's facial appearance after surgery.

  11. Fibre-Matrix Interaction in Soft Tissue

    SciTech Connect

    Guo, Zaoyang

    2010-05-21

    Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.

  12. Skin and Soft Tissue Infections.

    PubMed

    Ramakrishnan, Kalyanakrishnan; Salinas, Robert C; Agudelo Higuita, Nelson Ivan

    2015-09-15

    Skin and soft tissue infections result from microbial invasion of the skin and its supporting structures. Management is determined by the severity and location of the infection and by patient comorbidities. Infections can be classified as simple (uncomplicated) or complicated (necrotizing or nonnecrotizing), or as suppurative or nonsuppurative. Most community-acquired infections are caused by methicillin-resistant Staphylococcus aureus and beta-hemolytic streptococcus. Simple infections are usually monomicrobial and present with localized clinical findings. In contrast, complicated infections can be mono- or polymicrobial and may present with systemic inflammatory response syndrome. The diagnosis is based on clinical evaluation. Laboratory testing may be required to confirm an uncertain diagnosis, evaluate for deep infections or sepsis, determine the need for inpatient care, and evaluate and treat comorbidities. Initial antimicrobial choice is empiric, and in simple infections should cover Staphylococcus and Streptococcus species. Patients with complicated infections, including suspected necrotizing fasciitis and gangrene, require empiric polymicrobial antibiotic coverage, inpatient treatment, and surgical consultation for debridement. Superficial and small abscesses respond well to drainage and seldom require antibiotics. Immunocompromised patients require early treatment and antimicrobial coverage for possible atypical organisms. PMID:26371732

  13. Hyperthermia in soft tissue sarcoma.

    PubMed

    Lindner, Lars H; Issels, Rolf D

    2011-03-01

    Patients with high-risk soft tissue sarcomas (STS)-FNCLCC grade 2-3, size >5 cm, deep to the fascia-are at risk for developing local recurrence and distant metastasis despite surgical tumor resection. Therefore, the management of high-risk STS requires a multidisciplinary approach. Besides surgery, radiotherapy, and chemotherapy, regional hyperthermia (RHT) has the potential to become the fourth standard treatment modality for the treatment of these patients. RHT means non-invasive selective heating of the tumor area to temperatures within the range of 40-43°C for 60 min by the use of an electromagnetic heating device. Thereby RHT is always applied in addition to radiotherapy or chemotherapy or both but is not effective as a single treatment. Beside direct cytotoxicity, RHT in combination with chemotherapy enhances the drug cytotoxicity mainly by increased chemical reaction and intratumoral drug accumulation. For the neoadjuvant setting, RHT in combination with a doxorubicin- and ifosfamide-based chemotherapy has been shown to dramatically improve the tumor response rate but also prevents from early disease progression as compared to chemotherapy alone. The addition of RHT to a multimodal treatment of high-risk STS consisting of surgery, radiotherapy, and chemotherapy either in the neoadjuvant setting but also after incomplete or marginal tumor resection has been shown to significantly improve local recurrence- and disease-free survival. Based on these results and in conjunction with the low RHT-related toxicity, RHT combined with preoperative or postoperative chemotherapy should be considered as an additional standard treatment option for the multidisciplinary treatment of locally advanced high-grade STS.

  14. Injectable fillers for facial soft tissue enhancement.

    PubMed

    Sclafani, A P; Romo, T

    2000-01-01

    Soft tissue augmentation materials have been advocated for correction of post-surgical or post-traumatic facial defects, as well as for age-related folds and wrinkles. While autogenous tissues may be the safest option, they require a second operative site. Animal-derived or synthetic materials have been advocated since the late 19th century, and have waxed and waned in popularity. In recent years, we have gained a better understanding of the physical events that occur when material is placed within or below the skin. With this knowledge, we stand at the threshold of a new era, where soft tissue fillers can be designed and customized to suit the individual patient. This article will review the major materials that have been or are now advocated for use as soft tissue fillers, and will detail their relative strengths and weaknesses in order to give the clinician a better perspective when considering a material for soft tissue augmentation.

  15. Mixed tumor of deep soft tissue.

    PubMed

    Adachi, Toshisada; Oda, Yoshinao; Sakamoto, Akio; Saito, Tsuyoshi; Tamiya, Sadafumi; Hachitanda, Yoichi; Masuda, Sachio; Tsuneyoshi, Masazumi

    2003-01-01

    Mixed tumors of the salivary gland and skin are relatively common but are quite rare in soft tissue. It is believed that, as in the salivary gland form, most of these lesions are benign, but that a small subset behave in an aggressive fashion. We report here a patient with recurrent mixed tumor of soft tissue with infiltrative growth. The primary tumor arose in deep subfascial soft tissue of the right lower leg and was adjacent to the surface of the fibula. An open biopsy and complete resection were performed. Upon histological examination of the resected specimen, neoplastic cell infiltration at the tumor/soft tissue interface was not obvious; local recurrence, however, was observed 1 year later. The patient was treated with wide resection. Histological examination confirmed that the recurrent tumor with an extensive chondroid area invaded the osseous tissue of the fibula. At present, 1 year after the second resection surgery, there is no evidence of disease.

  16. Flexible adult flatfoot: soft tissue procedures.

    PubMed

    Walters, Jeremy L; Mendicino, Samuel S

    2014-07-01

    Classically, adult posterior tibial tendon dysfunction (PTTD) was considered primarily a tendon rupture and was treated as such with soft tissue repair alone. The understanding that PTTD involves more than simply an inflammatory condition or tendon rupture but also a muscle imbalance, leading to a flatfoot, osteoarthritis, and peritalar subluxation, led to surgeons advocating osseous procedures as well. The advancements in knowledge of the pathomechanics of the deformity have modified the role that soft tissue repair plays in surgical treatment, but the importance of soft tissue restoration in flatfoot repair should not be overlooked.

  17. New Soft Tissue Implants Using Organic Elastomers

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.

  18. Flexible adult flatfoot: soft tissue procedures.

    PubMed

    Walters, Jeremy L; Mendicino, Samuel S

    2014-07-01

    Classically, adult posterior tibial tendon dysfunction (PTTD) was considered primarily a tendon rupture and was treated as such with soft tissue repair alone. The understanding that PTTD involves more than simply an inflammatory condition or tendon rupture but also a muscle imbalance, leading to a flatfoot, osteoarthritis, and peritalar subluxation, led to surgeons advocating osseous procedures as well. The advancements in knowledge of the pathomechanics of the deformity have modified the role that soft tissue repair plays in surgical treatment, but the importance of soft tissue restoration in flatfoot repair should not be overlooked. PMID:24980925

  19. Soft tissue balancing in total shoulder replacement.

    PubMed

    Mueller, Maike; Hoy, Gregory

    2014-03-01

    Total shoulder arthroplasty is now capable of recreating near anatomic reproduction of native bony shoulder anatomy, but the function and longevity of anatomic shoulder replacement is dependent on a competent soft tissue envelope and adequate motoring of all musculo-tendinous units about the shoulder. Balancing the soft tissues requires understanding of the anatomy and pathology, as well as technical skills. The advent of reverse shoulder biomechanics has brought with it special requirements of understanding of the soft tissue elements still left in the shoulder despite major rotator cuff deficiency.

  20. Malignant soft tissue tumors in children.

    PubMed

    Thacker, Mihir M

    2013-10-01

    Soft tissue masses are frequently seen in children. Although most are benign or reactive, soft tissue sarcomas (STS)-both rhabdomyosarcoma (most common) and non-rhabdo STS, do occur in the extremities. Appropriate evaluation of extremity soft tissue tumors often includes a biopsy as the clinical and imaging features may not be enough to establish a definitive diagnosis. Much needs to be done for improving the treatment of these rare but often devastating sarcomas. Given the small numbers of these cases seen at various centers, collaborative efforts should be made to further our understanding and improve the management of these challenging cases. PMID:24095080

  1. Microwave soft tissue ablation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Clegg, Peter J.; Cronin, Nigel J.

    2005-04-01

    Microsulis, in conjunction with the University of Bath have developed a set of novel microwave applicators for the ablation of soft tissues. These interstitial applicators have been designed for use in open surgical, laparoscopic and percutaneous settings and range in diameter from 2.4 to 7 mm. A 20 mm diameter flat faced interface applicator was developed as an adjunct to the open surgical interstitial applicator and has been applied to the treatment of surface breaking lesions in hepatobiliary surgery. Taken as a complete tool set the applicators are capable of treating a wide range of conditions in a safe and efficacious manner. The modality employs a radiated electromagnetic field at the allocated medical frequency of 2.45 GHz and powers between 30 and 150 Watts. Computer simulations, bench testing, safety and efficacy testing, ex-vivo and in-vivo work plus clinical trials have demonstrated that these systems are capable of generating large volumes of ablation in short times with favourable ablation geometries. Clinical studies have shown very low complication rates with minimal local recurrence. It is considered that this modality offers major advantages over currently marketed products. The technique is considered to be particularly safe as it is quick and there is no passage of current obviating the requirement for grounding pads. Since the microwave field operates primarily on water and all soft tissues with the exception of fat are made up of approximately 70% water the heating pattern is highly predictable making repeatability a key factor for this modality.

  2. Soft Tissue Sarcomas and Agent Orange

    MedlinePlus

    ... survivors' benefits . Research on soft tissue sarcoma and herbicides The Health and Medicine Division (formally known as ... report " Veterans and Agent Orange: Health Effects of Herbicides Used in Vietnam " and other updates that there ...

  3. Dermal fillers for facial soft tissue augmentation.

    PubMed

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  4. Imaging spectrum in soft tissue sarcomas.

    PubMed

    Aga, Pallavi; Singh, Ragini; Parihar, Anit; Parashari, Umesh

    2011-12-01

    Imaging plays an important role in detection, diagnosis as well as pre and post operative management of patients with soft tissue sarcomas. Soft tissue sarcomas are generally a diagnostic dilemma needing the complimentary use of both radiology and pathology for their accurate diagnosis. In this review article, we have tried to highlight the important facts about the various imaging modalities available as well as the recent advances in the field of radiology. PMID:23204782

  5. Injectable silk foams for soft tissue regeneration.

    PubMed

    Bellas, Evangelia; Lo, Tim J; Fournier, Eric P; Brown, Joseph E; Abbott, Rosalyn D; Gil, Eun S; Marra, Kacey G; Rubin, J Peter; Leisk, Gary G; Kaplan, David L

    2015-02-18

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow the implant and/or grafted tissue to be placed closer to existing vasculature. Here, the feasibility of an injectable silk foam for soft tissue regeneration is demonstrated. Adipose-derived stem cells survive and migrate through the foam over a 10-d period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3-month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure is applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate.

  6. Injectable Silk Foams for Soft Tissue Regeneration

    PubMed Central

    Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L.

    2015-01-01

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow for the implant and/or grafted tissue to be placed closer to existing vasculature. Here, we demonstrate the feasibility of an injectable silk foam for soft tissue regeneration. Adipose derived stem cells survive and migrate through the foam over a 10 day period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3 month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure was applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. PMID:25323438

  7. Heterogeneous genetic profiles in soft tissue myoepitheliomas.

    PubMed

    Hallor, Karolin H; Teixeira, Manuel R; Fletcher, Christopher D M; Bizarro, Susana; Staaf, Johan; Domanski, Henryk A; von Steyern, Fredrik Vult; Panagopoulos, Ioannis; Mandahl, Nils; Mertens, Fredrik

    2008-11-01

    Myoepithelioma, mixed tumor and parachordoma are uncommon soft tissue tumors thought to represent morphological variants of a single tumor type. The genetic basis of these neoplasms is poorly understood. However, they morphologically resemble mixed tumor of the salivary glands (also known as pleomorphic adenoma), a tumor characterized by deregulated expression of PLAG1 or HMGA2. To evaluate a possible genetic relationship between these soft tissue and salivary gland tumors, PLAG1 expression levels and the genomic status of PLAG1 and HMGA2 were investigated in five soft tissue myoepitheliomas and one pleomorphic adenoma. In addition, all tumors were cytogenetically investigated and whole genome DNA copy number imbalances were studied in five of them. The genetic profiles were heterogeneous and the only aberration common to all soft tissue myoepitheliomas was a minimally deleted region of 3.55 Mb in chromosome band 19p13. Recurrent deletion of CDKN2A suggests that inactivation of this tumor suppressor gene is pathogenetically important in a subset. Furthermore, PLAG1 rearrangement was found in a soft tissue tumor from a patient previously treated for a salivary pleomorphic adenoma, indicating either metastasis of the salivary gland lesion or that some soft tissue tumors develop through the same mechanisms as their salivary gland counterparts. PMID:18604193

  8. Radionuclide imaging of soft tissue neoplasms

    SciTech Connect

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-10-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone.

  9. Soft tissue engineering in craniomaxillofacial surgery

    PubMed Central

    Kim, Roderick Y; Fasi, Anthony C; Feinberg, Stephen E

    2014-01-01

    Craniofacial soft tissue reconstruction may be required following trauma, tumor resection, and to repair congenital deformities. Recent advances in the field of tissue engineering have significantly widened the reconstructive armamentarium of the surgeon. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signaling molecules has enabled the surgeon to design, recreate the missing tissue in its near natural form. This has resolved the issues like graft rejection, wound dehiscence, or poor vascularity. Successfully reconstructed tissue through soft tissue engineering protocols would help surgeon to restore the form and function of the lost tissue in its originality. This manuscript intends to provide a glimpse of the basic principle of tissue engineering, contemporary, and future direction of this field as applied to craniofacial surgery. PMID:24987591

  10. Soft tissue adaptation to modified titanium surfaces.

    PubMed

    Lee, Shermin; Goh, Bee Tin; Wolke, Joop; Tideman, Henk; Stoelinga, Paul; Jansen, John

    2010-11-01

    Surface modification of titanium alloy implants to enhance soft tissue adherence is important to minimize soft tissue dehiscence. This study aimed to confirm if a dual acid etched "Osseotite®" titanium surface contributes to soft tissue adherence in muscle. It also aims to explore if a radio frequency magnetron sputtered hydroxyapatite (HA)/bioglass (BG) coating can serve this purpose and provides soft tissue adherence in mucosal tissue. The study was carried out in 18 Macaca fascicularis animals, 14 Osseotite® coated Ti6Al4V bullets inserted intramuscularly and 12 HA/BG coated Ti6Al4V plates inserted into the submucosa. These were compared with machined Ti6Al4V surfaces as controls. The histological and histomorphometrical results revealed that no significant difference existed in muscle tissue response between machined and Osseotite® surfaces. On the other hand, the HA/BG coated submucosal plates showed statistically significant differences with a thinner capsule quantity (p < 0.0001), an increased capsule quality (p < 0.0001) and interface quality score (p < 0.05). In conclusion, the deposited HA/BG coatings facilitated soft tissue (mucosa) adaptation at 1 month of implant installation, whereas the acid etched Osseotite® surface did not enhance muscular adaptation. PMID:20725967

  11. Phase contrast imaging of cochlear soft tissue

    NASA Astrophysics Data System (ADS)

    Shintani Smith, Stephanie; Hwang, Margaret; Rau, Christoph; Fishman, Andrew J.; Lee, Wah-Keat; Richter, Claus-Peter

    2011-03-01

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imaging and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.

  12. The Italian registry of soft tissue tumors.

    PubMed

    Clemente, C; Orazi, A; Rilke, F

    1988-01-01

    After a review of the incidence data on malignant soft-tissue tumors in Italy (Registro dei Tumori della Regione Lombardia, provincia di Varese), Europe (nine European Cancer Registries considered representative of various geographical areas) and extra-European countries (data of ten World Cancer Registries), the aim and the organization of the Italian Malignant Soft-Tissue Tumor Registry are described. The collection system is based on dedicated forms prepared for the computerization of all data. From 1.1.1985 to 31.3.1987, 207 cases of malignant and potentially malignant soft-tissue tumors entered the Registry, with exclusion of those sarcomas arising in viscera. The distribution, categorized by histologic type, sex and site, and the preliminary results on relapses and metastases are reported.

  13. Necrotizing Soft Tissue Infections: Surgeon's Prospective

    PubMed Central

    Mishra, Shashi Prakash; Gupta, Sanjeev Kumar

    2013-01-01

    Necrotizing soft tissue infections (NSTIs) are fulminant infections of any layer of the soft tissue compartment associated with widespread necrosis and systemic toxicity. Delay in diagnosing and treating these infections increases the risk of mortality. Early and aggressive surgical debridement with support for the failing organs significantly improves the survival. Although there are different forms of NSTIs like Fournier's gangrene or clostridial myonecrosis, the most important fact is that they share common pathophysiology and principles of treatment. The current paper summarizes the pathophysiology, clinical features, the diagnostic workup required and the treatment principles to manage these cases. PMID:24455410

  14. Systemic Therapy for Advanced Soft Tissue Sarcoma.

    PubMed

    Sheng, Jennifer Y; Movva, Sujana

    2016-10-01

    Soft tissue sarcomas are rare tumors that present with distant metastasis in up to 10% of patients. Survival has improved significantly because of advancements in histologic classification and improved management approaches. Older agents such as doxorubicin, ifosfamide, gemcitabine, and paclitaxel continue to demonstrate objective response rates from 18% to 25%. Newer agents such as trabectedin, eribulin, aldoxorubicin, and olaratumab have demonstrated improvements in progression-free survival, overall survival, or toxicity profiles. Future studies on treatment of advanced soft tissue sarcoma will continue to concentrate on reducing toxicity, personalization of therapy, and targeting novel pathways. PMID:27542647

  15. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  16. Equine model for soft-tissue regeneration.

    PubMed

    Bellas, Evangelia; Rollins, Amanda; Moreau, Jodie E; Lo, Tim; Quinn, Kyle P; Fourligas, Nicholas; Georgakoudi, Irene; Leisk, Gary G; Mazan, Melissa; Thane, Kristen E; Taeymans, Olivier; Hoffman, A M; Kaplan, D L; Kirker-Head, C A

    2015-08-01

    Soft-tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft-tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft-tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over 6 months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation.

  17. Equine Model for Soft Tissue Regeneration

    PubMed Central

    Moreau, J.E.; Lo, T.; Quinn, K.P.; Fourligas, N.; Georgakoudi, I.; Leisk, G.G.; Mazan, M.; Thane, K.E.; Taeymans, O.; Hoffman, A.M.; Kaplan, D. L.; Kirker-Head, C.A.

    2016-01-01

    Soft tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over six months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation. PMID:25350377

  18. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration.

  19. Volumizing the face with soft tissue fillers.

    PubMed

    Jones, Derek

    2011-07-01

    This article discusses the role of injectable soft-tissue fillers in the aging face, and their clinical and chemical behavior. Temporary and permanent fillers are discussed, namely hyaluronic acids, calcium hydroxylapatite, poly-l-lactic acid, liquid silicone, and polymethylmethacrylate. Techniques and outcomes are presented.

  20. Lasers in soft tissue dental surgery

    NASA Astrophysics Data System (ADS)

    Pick, Robert M.

    1990-06-01

    In the field of periodontics and oral surgery, the laser is a relatively new, but rapidly emerging, surgical tool. In the new area of soft tissue surgery, i.e., benign lesion and growths, the laser can completely replace the scalpel and offer the periodontist and the oral and maxillofacial surgeon a new and exciting alternative.

  1. Common benign oral soft tissue masses.

    PubMed

    Esmeili, Tara; Lozada-Nur, Francina; Epstein, Joel

    2005-01-01

    This article reviews some of the more common benign oral soft tissue masses with emphasis on their etiology, epidemiology, clinical presentation, histopathology, and treatment. These lesions include traumatic fibroma, mucocele, warts/papilloma, pyogenic granuloma, peripheral giant cell granuloma, generalized gingival hyperplasia, gingival fibromatosis, lateral periodontal cyst, lipoma, and denture-induced hyperplasia.

  2. Thermomechanical analysis of soft-tissue thermotherapy.

    PubMed

    Aksan, Alptekin; McGrath, John J

    2003-10-01

    Soft-tissue thermotherapy based on sub-ablative heating of collagenous tissues finds wide-spread application in medicine such as tissue welding, thermokeratoplasty, skin resurfacing, elimination of discogenic pain in the spine and treatment of joint instability. In this paper, heat-induced thermomechanical response characteristics of collagenous tissues are quantified by means of in vitro experimentation with a representative model tissue (New Zealand white rabbit patellar tendon). Three distinct heat-induced thermomechanical response regimes (defined by the rate of deformation and the variation of material properties) are identified. Arrhenius damage integral representation of collagenous tissue thermal history is shown to be adequate in establishing the master response curves for quantification of thermomechanical response for modeling purposes. The trade-off between the improved kinematical stability and compromised mechanical stability of the heated collagenous tissue is shown to be the major challenge hindering the success of subablative thermotherapies.

  3. Multiscale mechanical modeling of soft biological tissues

    NASA Astrophysics Data System (ADS)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  4. Biocompatibility of microparticles into soft tissue fillers.

    PubMed

    Laeschke, Klaus

    2004-12-01

    The increasing need for long-lasting injectable soft tissue fillers for the treatment of wrinkles and folds requires a critical discussion of the biocompatibility on a scientific background. Since biological fillers made of collagen and hyaluronic acid will be resorbed over time, copolymer biomaterials with microparticles have been developed in recent years. The microparticles followed special and essential demands because of the interaction with the tissue. In search of an ideal soft tissue filler substance, a variety of biomaterials with microparticles suspended have been created for injecting into dermal defects, into the urethra of patients with urinary incontinence, and in patients with vocal cord insufficiency. The particles differ in chemical composition, surface structure, surface charge, and particle size and evoke different host reactions, accordingly.

  5. Hard-Soft Tissue Interface Engineering.

    PubMed

    Armitage, Oliver E; Oyen, Michelle L

    2015-01-01

    The musculoskeletal system is comprised of three distinct tissue categories: structural mineralized tissues, actuating muscular soft tissues, and connective tissues. Where connective tissues - ligament, tendon and cartilage - meet with bones, a graded interface in mechanical properties occurs that allows the transmission of load without creating stress concentrations that would cause tissue damage. This interface typically occurs over less than 1 mm and contains a three order of magnitude difference in elastic stiffness, in addition to changes in cell type and growth factor concentrations among others. Like all engineered tissues, the replication of these interfaces requires the production of scaffolds that will provide chemical and mechanical cues, resulting in biologically accurate cellular differentiation. For interface tissues however, the scaffold must provide spatially graded chemical and mechanical cues over sub millimetre length scales. Naturally, this complicates the manufacture of the scaffolds and every stage of their subsequent cell seeding and growth, as each region has different optimal conditions. Given the higher degree of difficulty associated with replicating interface tissues compared to surrounding homogeneous tissues, it is likely that the development of complex musculoskeletal tissue systems will continue to be limited by the engineering of connective tissues interfaces with bone.

  6. Mechanics of Flexible Needles Robotically Steered through Soft Tissue

    PubMed Central

    Misra, S.; Reed, K. B.; Schafer, B. W.; Ramesh, K. T.; Okamura, A. M.

    2010-01-01

    The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of needle-tissue interaction. Previous kinematic models required empirical observations of each needle and tissue combination in order to fit model parameters. This study describes a mechanics-based model of robotic needle steering, which can be used to predict needle behavior and optimize system design based on fundamental mechanical and geometrical properties of the needle and tissue. We first present an analytical model for the loads developed at the tip, based on the geometry of the bevel edge and material properties of soft-tissue simulants (gels). We then present a mechanics-based model that calculates the deflection of a bevel-tipped needle inserted through a soft elastic medium. The model design is guided by microscopic observations of needle-gel interactions. The energy-based formulation incorporates tissue-specific parameters, and the geometry and material properties of the needle. Simulation results follow similar trends (deflection and radius of curvature) to those observed in experimental studies of robotic needle insertion. PMID:21170164

  7. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions.

  8. Supervised autonomous robotic soft tissue surgery.

    PubMed

    Shademan, Azad; Decker, Ryan S; Opfermann, Justin D; Leonard, Simon; Krieger, Axel; Kim, Peter C W

    2016-05-01

    The current paradigm of robot-assisted surgeries (RASs) depends entirely on an individual surgeon's manual capability. Autonomous robotic surgery-removing the surgeon's hands-promises enhanced efficacy, safety, and improved access to optimized surgical techniques. Surgeries involving soft tissue have not been performed autonomously because of technological limitations, including lack of vision systems that can distinguish and track the target tissues in dynamic surgical environments and lack of intelligent algorithms that can execute complex surgical tasks. We demonstrate in vivo supervised autonomous soft tissue surgery in an open surgical setting, enabled by a plenoptic three-dimensional and near-infrared fluorescent (NIRF) imaging system and an autonomous suturing algorithm. Inspired by the best human surgical practices, a computer program generates a plan to complete complex surgical tasks on deformable soft tissue, such as suturing and intestinal anastomosis. We compared metrics of anastomosis-including the consistency of suturing informed by the average suture spacing, the pressure at which the anastomosis leaked, the number of mistakes that required removing the needle from the tissue, completion time, and lumen reduction in intestinal anastomoses-between our supervised autonomous system, manual laparoscopic surgery, and clinically used RAS approaches. Despite dynamic scene changes and tissue movement during surgery, we demonstrate that the outcome of supervised autonomous procedures is superior to surgery performed by expert surgeons and RAS techniques in ex vivo porcine tissues and in living pigs. These results demonstrate the potential for autonomous robots to improve the efficacy, consistency, functional outcome, and accessibility of surgical techniques. PMID:27147588

  9. What's New in Soft Tissue Sarcomas Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for soft tissue sarcoma What`s new in soft tissue sarcoma research and treatment? Research ... develop. This information is already being applied to new tests to diagnose and classify sarcomas. This is ...

  10. Physical Agents for Soft Tissue Injury.

    PubMed

    2016-07-01

    The clinical management of soft tissue injuries of the lower limb commonly includes physical agents such as electrotherapy or ultrasound. However, the evidence about the effectiveness of physical agents varies, and their use remains controversial. A systematic review of randomized clinical trials (RCTs), published in the July 2016 issue of JOSPT, examined the benefits and safety risks of various physical agents for soft tissue injuries of the lower limb. Importantly, the review looked closely at the quality of the RCTs and focused on studies with low risk of bias. In this Perspectives for Practice, the authors explain the impact of their findings for clinicians treating patients with such musculoskeletal conditions. J Orthop Sports Phys Ther 2016;46(7):555. doi:10.2519/jospt.2016.0503. PMID:27363571

  11. Soft tissue problems in older adults.

    PubMed

    Holland, N W; Gonzalez, E B

    1998-08-01

    This article describes common soft tissue problems encountered in older adults, including fibromyalgia, selected bursitis/tendinitis syndromes, nerve entrapment syndromes, and miscellaneous topics such as Dupuytren's contractures, trigger fingers, palmar fasciitis, and reflex-sympathetic dystrophy. Clinical presentations, diagnosis, and treatment are emphasized. These are conditions that are frequently encountered but are generally diagnosed as arthritis or normal age-related problems. This article will hopefully enlighten the reader in distinguishing between these conditions.

  12. Imaging in Soft Tissue Sarcomas: Current Updates.

    PubMed

    Jagannathan, Jyothi P; Tirumani, Sree Harsha; Ramaiya, Nikhil H

    2016-10-01

    Soft tissue sarcomas (STS) are heterogeneous malignant tumors that have nonspecific imaging features. A combination of clinical, demographic, and imaging characteristics can aid in the diagnosis. Imaging provides important information regarding the tumor extent, pretreatment planning, and surveillance of patients with STS. In this article, we illustrate the pertinent imaging characteristics of the commonly occurring STS and some uncommon sarcomas with unique imaging characteristics. PMID:27591491

  13. [Surgical treatment of malignant soft tissue tumors].

    PubMed

    Amino, K; Kawaguchi, N; Matsumoto, S; Manabe, J; Furuya, K; Isobe, Y

    1987-05-01

    The ultimate survival of patients with soft tissue sarcoma is determined by a number of factors. Radical removal by adequate surgery is one of the most important factors together with early treatment and chemotherapy. We usually select curative wide resection, amputation, or resection after radiotherapy as forms of radical surgery for soft tissue sarcomas according to each clinical stage. The method of curative wide resection is based on biological barrier effects. In this report we discuss the operative results obtained in 148 cases of soft tissue sarcoma which we have treated over the past ten years, and also discuss the causes of recurrence after radical operation. Among 55 primary NoMo which were treated by the curative wide resection cases, the recurrence rate was 5.5%, the metastatic rate was 21.8%, and 5-year survival was 79.3%. These results were better than those for 30 recurrent and additional NoMo cases. Of cases involving the extremities, 81% were controlled by limb-saving operations. PMID:3592703

  14. The Genetics of Soft Connective Tissue Disorders.

    PubMed

    Vanakker, Olivier; Callewaert, Bert; Malfait, Fransiska; Coucke, Paul

    2015-01-01

    Over the last few years, the field of hereditary connective tissue disorders has changed tremendously. This review highlights exciting insights into three prototypic disorders affecting the soft connective tissue: Ehlers-Danlos syndrome, pseudoxanthoma elasticum, and cutis laxa. For each of these disorders, the identification and characterization of several novel but related conditions or subtypes have widened the phenotypic spectrum. In parallel, the vast underlying molecular network connecting these phenotypes is progressively being uncovered. Identification and characterization (both clinical and molecular) of new phenotypes within the connective tissue disorder spectrum are often key to further unraveling the pathways involved in connective tissue biology and delineating the clinical spectrum and pathophysiology of the disorders. Although difficult challenges remain, recent findings have expanded our pathophysiological understanding and may lead to targeted therapies in the near future. PMID:26002060

  15. Soft tissue cutting with ultrasonic mechanical waveguides

    NASA Astrophysics Data System (ADS)

    Wylie, Mark. P.; McGuinness, Garrett; Gavin, Graham P.

    2012-05-01

    The use of ultrasonic vibrations transmitted via small diameter wire waveguides represents a technology that has potential for minimally invasive procedures in surgery. This form of energy delivery results in distal tip mechanical vibrations with amplitudes of vibration of up to 50 μm and at frequencies between 20-50 kHz commonly reported. This energy can then be used by micro-cutting surgical tools and end effectors for a range of applications such as bone cutting, cement removal in joint revision surgery and soft tissue cutting. One particular application which has gained regulatory approval in recent years is in the area of cardiovascular surgery in the removal of calcified atherosclerotic plaques and chronic total occlusions. This paper builds on previous work that was focused on the ultrasonic perforation of soft vascular tissue using ultrasonically activated mechanical waveguides and the applied force required to initiate failure in soft tissue when compared with non-ultrasonic waveguides. An ultrasonic device and experimental rig was developed that can deliver ultrasonic vibrations to the distal tip of 1.0 mm diameter nickel-titanium waveguides. The operation of the ultrasonic device has been characterized at 22.5 kHz with achievable amplitudes of vibration in the range of 16 - 40μm. The experimental rig allows the ultrasonically activated waveguide to be advanced through a tissue sample over a range of feedrates and the waveguide-tissue interaction force can be measured during perforation into the tissue. Preliminary studies into the effects of feedrate on porcine aortic arterial tissue perforation forces are presented as part of this work. A range of amplitudes of vibration at the wire waveguide distal tip were examined. The resulting temperature increase when perforating artery wall when using the energized wire waveguides is also examined. Results show a clear multistage failure of the tissue. The first stage involves a rise in force up to some

  16. Tissue pharmacokinetics of levofloxacin in human soft tissue infections

    PubMed Central

    Bellmann, Romuald; Kuchling, Gerald; Dehghanyar, Pejman; Zeitlinger, Markus; Minar, Erich; Mayer, Bernhard X; Müller, Markus; Joukhadar, Christian

    2004-01-01

    Aims The present study addressed the ability of levofloxacin to penetrate into subcutaneous adipose tissues in patients with soft tissue infection. Methods Tissue concentrations of levofloxacin in inflamed and healthy subcutaneous adipose tissue were measured in six patients by microdialysis after administration of a single intravenous dose of 500 mg. Levofloxacin was assayed by high-performance liquid chromatography. Results The mean concentration vs time profile of free levofloxacin in plasma was identical to that in inflamed and healthy tissues. The ratios of the mean area under the free levofloxacin concentration vs time curve from 0 to 10 h (AUC(0,10 h)) in tissue to that in plasma were 1.2 ± 1.0 for inflamed and 1.1 ± 0.6 for healthy subcutaneous adipose tissue (mean ± SD). The mean difference in the ratio of the AUCtissue : AUCplasma for inflamed and healthy tissue was 0.09 (95% confidence interval −0.58, 0.759, P > 0.05). Interindividual variability in tissue penetration was high, as indicated by a coefficient of variation of approximately 82% for AUCtissue : AUCplasma ratios. Conclusions The penetration of levofloxacin into tissue appears to be unaffected by local inflammation. Our plasma and tissue data suggest that an intravenous dose of 500 mg levofloxacin provides effective antibacterial concentrations at the target site. However, in treatment resistant patients, tissue concentrations may be sub-therapeutic. PMID:15089808

  17. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-09-23

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  18. Studying Genes in Tissue Samples From Younger and Adolescent Patients With Soft Tissue Sarcomas

    ClinicalTrials.gov

    2016-05-13

    Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Soft Tissue Sarcoma

  19. Surface and interfacial creases in a bilayer tubular soft tissue.

    PubMed

    Razavi, Mir Jalil; Pidaparti, Ramana; Wang, Xianqiao

    2016-08-01

    Surface and interfacial creases induced by biological growth are common types of instability in soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial creases as well as their morphological evolution in a growing bilayer soft tube within a confined environment. Critical growth ratios for triggering surface and interfacial creases are investigated both analytically and numerically. Analytical interpretations provide preliminary insights into critical stretches and growth ratios for the onset of instability and formation of both surface and interfacial creases. However, the analytical approach cannot predict the evolution pattern of the model after instability; therefore nonlinear finite element simulations are carried out to replicate the poststability morphological patterns of the structure. Analytical and computational simulation results demonstrate that the initial geometry, growth ratio, and shear modulus ratio of the layers are the most influential factors to control surface and interfacial crease formation in this soft tubular bilayer. The competition between the stretch ratios in the free and interfacial surfaces is one of the key driving factors to determine the location of the first crease initiation. These findings may provide some fundamental understanding in the growth modeling of tubular biological tissues such as esophagi and airways as well as offering useful clues into normal and pathological functions of these tissues. PMID:27627333

  20. Surface and interfacial creases in a bilayer tubular soft tissue

    NASA Astrophysics Data System (ADS)

    Razavi, Mir Jalil; Pidaparti, Ramana; Wang, Xianqiao

    2016-08-01

    Surface and interfacial creases induced by biological growth are common types of instability in soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial creases as well as their morphological evolution in a growing bilayer soft tube within a confined environment. Critical growth ratios for triggering surface and interfacial creases are investigated both analytically and numerically. Analytical interpretations provide preliminary insights into critical stretches and growth ratios for the onset of instability and formation of both surface and interfacial creases. However, the analytical approach cannot predict the evolution pattern of the model after instability; therefore nonlinear finite element simulations are carried out to replicate the poststability morphological patterns of the structure. Analytical and computational simulation results demonstrate that the initial geometry, growth ratio, and shear modulus ratio of the layers are the most influential factors to control surface and interfacial crease formation in this soft tubular bilayer. The competition between the stretch ratios in the free and interfacial surfaces is one of the key driving factors to determine the location of the first crease initiation. These findings may provide some fundamental understanding in the growth modeling of tubular biological tissues such as esophagi and airways as well as offering useful clues into normal and pathological functions of these tissues.

  1. Surface and interfacial creases in a bilayer tubular soft tissue.

    PubMed

    Razavi, Mir Jalil; Pidaparti, Ramana; Wang, Xianqiao

    2016-08-01

    Surface and interfacial creases induced by biological growth are common types of instability in soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial creases as well as their morphological evolution in a growing bilayer soft tube within a confined environment. Critical growth ratios for triggering surface and interfacial creases are investigated both analytically and numerically. Analytical interpretations provide preliminary insights into critical stretches and growth ratios for the onset of instability and formation of both surface and interfacial creases. However, the analytical approach cannot predict the evolution pattern of the model after instability; therefore nonlinear finite element simulations are carried out to replicate the poststability morphological patterns of the structure. Analytical and computational simulation results demonstrate that the initial geometry, growth ratio, and shear modulus ratio of the layers are the most influential factors to control surface and interfacial crease formation in this soft tubular bilayer. The competition between the stretch ratios in the free and interfacial surfaces is one of the key driving factors to determine the location of the first crease initiation. These findings may provide some fundamental understanding in the growth modeling of tubular biological tissues such as esophagi and airways as well as offering useful clues into normal and pathological functions of these tissues.

  2. Nonlinear noise waves in soft biological tissues

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.; Demin, I. Yu.

    2013-09-01

    The study of intense waves in soft biological tissues is necessary both for diagnostics and therapeutic aims. Tissue represents an inherited medium with frequency-dependent dissipative properties, in which waves are described by nonlinear integro-differential equations. The equations for such waves are well known. Their group analysis has been performed, and a number of exact solutions have been found. However, statistical problems for nonlinear waves in tissues have hardly been studied. As well, for medical applications, both intense noise waves and waves with fluctuating parameters can be used. In addition, statistical solutions are simpler in structure than regular solutions; they are useful for understanding the physics of processes. Below a general approach is described for solving nonlinear statistical problems applied to the considered mathematical models of biological tissues. We have calculated the dependences of the intensities of the narrowband noise harmonics on distance. For wideband noise, we have calculated the dependence of the spectral integral intensity on distance. In all cases, wave attenuation is determined both by the specific dissipative properties of the tissue and the nonlinearity of the medium.

  3. Modelling soft tissue for kinematic analysis of multi-segment human body models.

    PubMed

    Benham, M P; Wright, D K; Bibb, R

    2001-01-01

    Traditionally biomechanical models represent the musculoskeletal system by a series of rigid links connected by rigidly defined rotational joints. More recently though the mechanics of joints and the action of soft tissues has come under closer scrutiny: biomechanical models might now include a full range of physiological structures. However, soft tissue representation, within multi-segment human body models, presents significant problems; not least in computational speed. We present a method for representing soft tissue physiology which provides for soft tissue wrapping around multiple bony objects; while showing forces at the insertion points, as well as normal reactions due to contact between the soft and bony tissues. These soft tissue representations may therefore be used to constrain the joint, as ligaments would, or to generate motion, like a muscle, so that joints may be modelled which more accurately simulate musculoskeletal motion in all degrees of freedom--rotational and translational. This method produces soft tissues that do not need to be tied to a certain path or route between the bony structures, but may move with the motion of the model; demonstrating a more realistic analysis of soft tissue activity in the musculoskeletal system. The combination of solid geometry models of the skeletal structure, and these novel soft tissue representations, may also provide a useful approach to synthesised human motion.

  4. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  5. Soft-tissue rheumatism: diagnosis and treatment.

    PubMed

    Reveille, J D

    1997-01-27

    Soft tissue rheumatism is one of the most common and most misunderstood categories of disorders facing the primary care physician. Among the more common types are subacromial bursitis, epicondylitis, trochanteric bursitis, anserine bursitis, and fibromyalgia. The keys to the diagnosis of soft-tissue rheumatism are the history and, more importantly, the physical examination. Extensive laboratory testing and radiographs are not as helpful in evaluating patients with these complaints. Treatment consists of nonsteroidal anti-inflammatory drugs (NSAIDs) and nonnarcotic analgesics. Especially in patients with localized disorders, intralesional injections of corticosteroids are particularly effective and safe and should be part of the armamentarium of the primary care practitioner. Fibromyalgia is a particularly challenging form of nonarticular rheumatism. The clinical presentation is rather characteristic, with the patient typically being a woman 30-60 years of age who presents with diffuse somatic pain. Patients often give a history of sleep disturbance, may be depressed, and show characteristic tender areas, or trigger points. Laboratory findings are normal. Management includes reassurance, correction of the underlying sleep disturbance with low doses of a tricyclic antidepressant, treatment with muscle relaxants and nonnarcotic analgesics or NSAIDs, and an exercise program with a strong aerobic component.

  6. Soft Tissue Injections in the Athlete

    PubMed Central

    Nepple, Jeffrey J.; Matava, Matthew J.

    2009-01-01

    Background: Injections into or adjacent to soft tissue structures, including muscle, tendon, bursa, and fascia, for pain relief and an earlier return to play have become common in the field of sports medicine. Study Design: Clinical review. Results: Corticosteroids, local anesthetics, and ketorolac tromethamine (Toradol) are the most commonly used injectable agents in athletes. The use of these injectable agents have proven efficacy in some disorders, whereas the clinical benefit for others remain questionable. All soft tissue injections performed for pain control and/or an anti-inflammatory effect have potentially serious side effects, which must be considered, especially in the pregame setting. Conclusions: The primary concern regarding corticosteroid and local anesthetic injections is an increased risk of tendon rupture associated with the direct injection into the tendon. Intramuscular Toradol injections provide significant analgesia, as well as an anti-inflammatory effect via its inhibitory effect on the cyclooxygenase pathway. The risk of bleeding associated with Toradol use is recognized but not accurately quantified. PMID:23015899

  7. Esthetic soft tissue ridge augmentation around dental implant: Case report

    PubMed Central

    Al-Hamdan, Khalid S.

    2011-01-01

    The aim of this case report is to present a method to correct soft tissue ridge deformity around dental implant using acellular dermal matrix (ADM). A 25-year-old female patient presented with a missing maxillary first left premolar, which had class I soft tissue defect. The missing tooth was replaced with single implant supported prosthesis and the soft tissue defect was corrected using ADM utilizing the envelop technique. A 5-years follow-up is presented showing the long-term stability of this technique and the predictability of using the ADM as an alternative method to connective tissue graft to correct the soft tissue defect around dental implant. PMID:23960518

  8. The therapeutic challenges of degloving soft-tissue injuries

    PubMed Central

    Latifi, Rifat; El-Hennawy, Hany; El-Menyar, Ayman; Peralta, Ruben; Asim, Mohammad; Consunji, Rafael; Al-Thani, Hassan

    2014-01-01

    Background: Degloving soft-tissue injuries are serious and debilitating conditions. Deciding on the most appropriate treatment is often difficult. However, their impact on patients’ outcomes is frequently underestimated. Objectives: We aimed to study the incidence, clinical presentation, management and outcome of degloving soft-tissue injuries. Materials and Methods: We conducted a narrative traditional review using the key words; degloving injury and soft-tissue injuries through search engines PubMed, Science Direct, and Scopus. Results: There are several therapeutic options for treating degloving soft-tissue injuries; however, no evidence-based guidelines have been published on how to manage degloving soft-tissue injuries, although numerous articles outline the management of such injuries. Conclusion: Degloving soft-tissue injuries are underreported and potentially devastating. They require early recognition, and early management. A multidisciplinary approach is usually needed to ensure the effective rehabilitation of these patients. PMID:25114435

  9. Soft Tissue Surgical Procedures for Optimizing Anterior Implant Esthetics

    PubMed Central

    Ioannou, Andreas L.; Kotsakis, Georgios A.; McHale, Michelle G.; Lareau, Donald E.; Hinrichs, James E.; Romanos, Georgios E.

    2015-01-01

    Implant dentistry has been established as a predictable treatment with excellent clinical success to replace missing or nonrestorable teeth. A successful esthetic implant reconstruction is predicated on two fundamental components: the reproduction of the natural tooth characteristics on the implant crown and the establishment of soft tissue housing that will simulate a healthy periodontium. In order for an implant to optimally rehabilitate esthetics, the peri-implant soft tissues must be preserved and/or augmented by means of periodontal surgical procedures. Clinicians who practice implant dentistry should strive to achieve an esthetically successful outcome beyond just osseointegration. Knowledge of a variety of available techniques and proper treatment planning enables the clinician to meet the ever-increasing esthetic demands as requested by patients. The purpose of this paper is to enhance the implant surgeon's rationale and techniques beyond that of simply placing a functional restoration in an edentulous site to a level whereby an implant-supported restoration is placed in reconstructed soft tissue, so the site is indiscernible from a natural tooth. PMID:26124837

  10. Development of a Soft Tissue Elastography Robotic Arm (STiERA).

    PubMed

    Dargar, Saurabh; Akyildiz, Ali Cagdas; De, Suvranu

    2016-01-01

    High fidelity surgical simulations must rely upon accurate soft tissue models to ensure realism of the simulations. Simulating multi-layer tissue becomes increasingly complex due to the specific mechanical properties of each individual layer. We have developed a Soft Tissue Elastography Robotic Arm (STiERA) system capable of identifying layer specific properties of multi-layer constructs while maintaining the integrity of each layer. The system was validated using tissue mimicking agar gel phantoms and showed great promise by identifying the layer specific properties with accuracy of greater than 80% when compared to known ground truth values from a commercial material testing system. PMID:27046557

  11. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed.

  12. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed. PMID:27384333

  13. CT of soft-tissue neoplasms

    SciTech Connect

    Weekes, R.G.; McLeod, R.A.; Reiman, H.M.; Pritchard, D.J.

    1985-02-01

    The computed tomographic scans (CT) of 84 patients with untreated soft-tissue neoplasms were studied, 75 with primary and nine with secondary lesions. Each scan was evaluated using several criteria: homogeneity and density, presence and type of calcification, presence of bony destruction, involvement of multiple muscle groups, definition of adjacent fat, border definition, and vessel or nerve involvement. CT demonstrated the lesion in all 84 patients and showed excellent anatomic detail in 64 of the 75 patients with primary neoplasms. The CT findings were characteristic enough to suggest the histology of the neoplasm in only 13 lesions (nine lipomas, three hemangiomas, one neurofibroma). No malignant neoplasm had CT characteristics specific enough to differentiate it from any other malignant tumor. However, malignant neoplasms could be differentiated from benign neoplasms in 88% of the cases.

  14. Adverse reactions to injectable soft tissue fillers.

    PubMed

    Requena, Luis; Requena, Celia; Christensen, Lise; Zimmermann, Ute S; Kutzner, Heinz; Cerroni, Lorenzo

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable agents may induce severe complications, but they will normally disappear spontaneously in a few months. Slowly biodegradable or nonresorbable fillers may give rise to severe reactions that show little or no tendency to spontaneous improvement. They may appear several years after the injection, when the patient does not remember which product was injected, and treatment is often insufficient. In this review, we discuss the most commonly used fillers, their most frequent adverse reactions as well as the characteristic histopathologic findings that allow the identification of the injected filler agent. In conclusion, histopathologic study remains as the gold standard technique to identify the responsible filler.

  15. Soft tissue infections in parenteral drug abusers.

    PubMed Central

    Orangio, G R; Pitlick, S D; Della Latta, P; Mandel, L J; Marino, C; Guarneri, J J; Giron, J A; Margolis, I B

    1984-01-01

    Thirty-four parenteral drug abusers admitted with soft tissue infections underwent bacteriologic and immunologic evaluation. Staphylococcus aureus and beta hemolytic streptococci were the most common organisms recovered. Enteric gram negative aerobes and oral flora were common and enteric anaerobes rare. Absolute lymphopenia and elevations in the IgA, IgG and IgM fractions of the immunoglobulins were common as were false positive VDRL examinations. Cutaneous anergy was found in 83% of the group and 70% of a simultaneously noninfected addict group. Staphylococcal carriage was frequent. Because of variation in the flora between this and other reported groups, ongoing bacteriologic surveillance could be a useful guide to initial antibiotic therapy. Differences in the pattern of immune reaction in this group when compared to different addict groups suggest a difference in antigenic stimulation, possibly as a result of differences in bacteriologic exposure. PMID:6691735

  16. Reconstruction of periorbital soft tissue defects.

    PubMed

    Berli, Jens U; Merbs, Shannath L; Grant, Michael P

    2014-10-01

    Because of the complex anatomy and fine mechanics of the periorbital soft tissues, the reconstruction of this region can be particularly daunting. Through a structured assessment of the defect, based on subunit analysis and thorough understanding of the surgical layers, we believe to allow the reconstructive surgeon to develop an algorithmic approach to these complex problems. The sequela of a suboptimal reconstruction do not only result in an inferior aesthetic result, but also have the potential for long-term functional problems such as epiphora, dry eye, ptosis, eyelid retraction, and thus requiring secondary surgery. There is no better time to aim for a perfect reconstruction than at the time of the initial surgery. In this chapter, we hope to encourage the reader to strengthen and recapitulate these analytical skills and present the most commonly used and studied techniques to help achieve a reproducible functional and aesthetically appealing result. PMID:25397712

  17. Sarcomas of Soft Tissue and Bone.

    PubMed

    Ferrari, Andrea; Dirksen, Uta; Bielack, Stefan

    2016-01-01

    The definition of soft tissue and bone sarcomas include a large group of several heterogeneous subtypes of mesenchymal origin that may occur at any age. Among the different sarcomas, rhabdomyosarcoma, synovial sarcoma, Ewing sarcoma and osteosarcoma are aggressive high-grade malignancies that often arise in adolescents and young adults. Managing these malignancies in patients in this age bracket poses various clinical problems, also because different therapeutic approaches are sometimes adopted by pediatric and adult oncologists, even though they are dealing with the same condition. Cooperation between pediatric oncologists and adult medical oncologists is a key step in order to assure the best treatment to these patients, preferably through their inclusion into international clinical trials. PMID:27595362

  18. Contemporary Management of Retroperitoneal Soft Tissue Sarcomas.

    PubMed

    Olimpiadi, Yuliya; Song, Suisui; Hu, James S; Matcuk, George R; Chopra, Shefali; Eisenberg, Burton L; Sener, Stephen F; Tseng, William W

    2015-08-01

    Management of retroperitoneal soft tissue sarcomas (RP STS) can be very challenging. In contrast to the more common extremity STS, the two predominant histologic subtypes encountered in the retroperitoneum are well-differentiated/dedifferentiated liposarcoma and leiomyosarcoma. Surgery remains the mainstay of treatment for RP STS. Preoperative planning and anticipation of the need for resection of adjacent organs/structures are critical. The extent of surgery, including the role of compartmental resection, is still controversial. Radiation therapy may be an important adjunct to surgery to provide locoregional disease control; this is currently being evaluated in the preoperative setting in the EORTC STRASS trial. Systemic therapy, tailored to the specific histologic subtype, may also be of benefit for the management of RP STS. Further investigation of novel therapies (e.g., targeted therapies, immunotherapy) is needed. Overall, multi-institutional collaboration is important moving forward, to continue to better understand and optimize management of this disease.

  19. Soft tissue sarcoma and occupational exposures

    SciTech Connect

    Wingren, G.; Fredrikson, M.; Brage, H.N.; Nordenskjoeld, B.A.; Axelson, O. )

    1990-08-15

    The associations between soft tissue sarcoma (STS) and occupational exposures were studied in a case-referent study in the southeast of Sweden. Exposure information was obtained through mailed questionnaires to 96 cases, 450 randomly selected population referents, and 200 cancer referents. Odds ratios (OR), were calculated for various occupational groups, and particularly, for occupations with potential exposure to chlorinated phenoxy herbicides and chlorophenols. In the analyses based on population referents, increased risks for soft tissue sarcoma were seen for especially gardeners (OR = 4.1), but also railroad workers (OR = 3.1); construction workers with exposure to impregnating agents (OR = 2.3), asbestos (OR = 1.8), or pressure impregnating agents (OR = 1.7); and unspecified chemical workers with potential exposure to phenoxy herbicides and/or chlorophenols (OR = 1.6). A similar pattern appeared when cancer referents were used although the numerical values of the odds ratios became different. A grouping of jobs resulted in Mantel-Haensel OR from 1.5 to 1.9 for farmers and forestry workers, dependent on referents used and even more increased OR for railroad workers and unspecified chemical workers with potential exposure to phenoxy herbicides and chlorophenols. The results of the study confirm rather than refute that phenoxy herbicides and chlorophenols could be of etiologic importance for STS; the high risk for gardeners, although based on a small number of individuals, was unexpected and remains unclear. Also, since other cancers were used as referents, no definite problems of recall bias should obtain in this material. None of the exposed groups had a higher proportion of smokers than the unexposed group.

  20. Ciprofloxacin versus ceftazidime in skin and soft tissue infections.

    PubMed

    Thadepalli, H; Mathai, D; Chuah, S K; Bansal, M B

    1989-02-01

    Intravenous ciprofloxacin therapy was evaluated in comparison with i.v. ceftazidime in the treatment of skin and soft tissue infections and were found to be comparable. Intravenous or peroral forms of ciprofloxacin may be used instead of intravenously given third generation cephalosporins or aminoglycosides in the treatment of even severe infections of the skin and soft tissue.

  1. Soft Tissue Augmentation with Silk Composite Graft

    PubMed Central

    Park, Yong-Tae; Kweon, Hae Yong; Kim, Seong-Gon

    2014-01-01

    Purpose: The objective of this study was to evaluate the interaction between 4-hexylresorcinol (4HR) and antibody as that affects the performance of a silk-4HR combination graft for soft tissue augmentation in an animal model. Methods: The silk graft materials consisted of four types: silk+10% tricalcium phosphate (TCP) (ST0), silk+10% TCP+1% 4HR (ST1), silk+10% TCP+3% 4HR (ST3), and silk+10% TCP+6% 4-HR (ST6). The antibody binding assay tested the 4HR effect and scanning electron microscopic (SEM) exam was done for silk grafts. The animal experiment used a subcutaneous pocket mouse model. The graft – SH0 or SH1 or SH3 or SH6 – was placed in a subcutaneous pocket. The animals were killed at one, two, and four weeks, postoperatively. The specimens were subjected to histological analysis and lysozyme assay. Results: Groups with 4HR applied showed lower antibody binding affinity to antigen compared to groups without 4HR. In the SEM examination, there was no significant difference among groups. Histological examinations revealed many foreign body giant cells in ST0 and ST1 group at four weeks postoperatively. Both ST3 and ST6 groups developed significantly lower levels of giant cell values compared to ST0 and ST1 groups (P <0.001) at four weeks postoperatively. In the lysozyme assay, the ST1 and ST3 groups showed denser signals than the other groups. Conclusion: 4HR combined silk implants resulted in high levels of vascular and connective tissue regeneration. PMID:27489833

  2. [Soft tissues, hormones and the skeleton].

    PubMed

    Zofková, I

    2012-02-01

    Mechanical load activates bone modeling and increases bone strength. Thus physical activity is extremely important for overall bone health. Muscle volume and muscle contraction are closely related to bone mineral density in men and women, although these relationships are more significat in men. The muscle-bone unit has been defined as a functional system, in which both components are under control of the somatotropin-IGF-I system, androgens and D hormone. These endocrine systems play, via the muscle-bone unit, an important role in development of the skeleton and its stability in adulthood. That is why deficiency of any of these hormonal systems, or reduced physical activity (mainly in childhood) could seriously affect bone density and quality. Bone is also under control of adipose tissue, which modulates its metabolism via mechanical load and more importantly via adipocytokines (leptin, adiponectin and rezistin). Leptin increases bone formation by activation of osteoblasts. This direct effect of leptin is amplified by stimulation of the β-1 adrenergic system, which inhibits the negative osteotropic effects of neuropeptide Y. On the other hand, leptin also activates β-2 adrenergic receptors, which increase bone resorption. In humans, the overall osteo-anabolic effect of leptin tends to be dominant. Furthermore, leptin has a principal role in the start of puberty in girls and maturation, remodeling and development of the female skeleton. Adiponectin (and probably rezistin) has an unambiguous deteriorating effect on the skeleton. Further studies are needed to confirm the clinical importance of soft tissues relative to the integrity of the skeleton.

  3. Soft tissue damage after minimally invasive THA

    PubMed Central

    2010-01-01

    Background and purpose Minimally invasive surgery (MIS) for hip replacement is thought to minimize soft tissue damage. We determined the damage caused by 4 different MIS approaches as compared to a conventional lateral transgluteal approach. Methods 5 surgeons each performed a total hip arthroplasty on 5 fresh frozen cadaver hips, using either a MIS anterior, MIS anterolateral, MIS 2-incision, MIS posterior, or lateral transgluteal approach. Postoperatively, the hips were dissected and muscle damage color-stained. We measured proportional muscle damage relative to the midsubstance cross-sectional surface area (MCSA) using computerized color detection. The integrity of external rotator muscles, nerves, and ligaments was assessed by direct observation. Results None of the other MIS approaches resulted in less gluteus medius muscle damage than the lateral transgluteal approach. However, the MIS anterior approach completely preserved the gluteus medius muscle in 4 cases while partial damage occurred in 1 case. Furthermore, the superior gluteal nerve was transected in 4 cases after a MIS anterolateral approach and in 1 after the lateral transgluteal approach. The lateral femoral cutaneous nerve was transected once after both the MIS anterior approach and the MIS 2-incision approach. Interpretation The MIS anterior approach may preserve the gluteus medius muscle during total hip arthroplasty, but with a risk of damaging the lateral femoral cutaneous nerve. PMID:21110702

  4. Adjuvant chemotherapy for soft tissue sarcoma.

    PubMed

    Casali, Paolo G

    2015-01-01

    Adjuvant chemotherapy is not standard treatment in soft tissue sarcoma (STS). However, when the risk of relapse is high, it is an option for shared decision making with the patient in conditions of uncertainty. This is because available evidence is conflicting, even if several randomized clinical trials have been performed for 4 decades and also have been pooled into meta-analyses. Indeed, available meta-analyses point to a benefit in the 5% to 10% range in terms of survival and distant relapse rate. Some local benefit also was suggested by some trials. Placing chemotherapy in the preoperative setting may help gain a local advantage in terms of the quality of surgical margins or decreased sequelae. This may be done within a personalized approach according to the clinical presentation. Attempts to personalize treatment on the basis of the variegated pathology and molecular biology of STS subgroups are ongoing as well, according to what is done in the medical treatment of advanced STS. Thus, decision making for adjuvant and neoadjuvant indications deserves personalization in clinical research and in clinical practice, taking profit from all multidisciplinary clinical skills available at a sarcoma reference center, though with a degree of subjectivity because of the limitations of available evidence. PMID:25993233

  5. Multiscale simulation of soft matter systems.

    PubMed

    Peter, Christine; Kremer, Kurt

    2010-01-01

    This paper gives a short introduction to multiscale simulation approaches in soft matter science. This paper is based on and extended from a previous review. (1. C. Peter and K. Kremer, Soft Matter, 2009, DOI:10.1039/b912027k.) It also includes a discussion of aspects of soft matter in general and a short account of one of the historically underlying concepts, namely renormalization group theory. Some different concepts and several typical problems are shortly addressed, including a (more personal) view on challenges and chances.

  6. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  7. Prediction of soft tissue deformations after CMF surgery with incremental kernel ridge regression.

    PubMed

    Pan, Binbin; Zhang, Guangming; Xia, James J; Yuan, Peng; Ip, Horace H S; He, Qizhen; Lee, Philip K M; Chow, Ben; Zhou, Xiaobo

    2016-08-01

    Facial soft tissue deformation following osteotomy is associated with the corresponding biomechanical characteristics of bone and soft tissues. However, none of the methods devised to predict soft tissue deformation after osteotomy incorporates population-based statistical data. The aim of this study is to establish a statistical model to describe the relationship between biomechanical characteristics and soft tissue deformation after osteotomy. We proposed an incremental kernel ridge regression (IKRR) model to accomplish this goal. The input of the model is the biomechanical information computed by the Finite Element Method (FEM). The output is the soft tissue deformation generated from the paired pre-operative and post-operative 3D images. The model is adjusted incrementally with each new patient's biomechanical information. Therefore, the IKRR model enables us to predict potential soft tissue deformations for new patient by using both biomechanical and statistical information. The integration of these two types of data is critically important for accurate simulations of soft-tissue changes after surgery. The proposed method was evaluated by leave-one-out cross-validation using data from 11 patients. The average prediction error of our model (0.9103mm) was lower than some state-of-the-art algorithms. This model is promising as a reliable way to prevent the risk of facial distortion after craniomaxillofacial surgery. PMID:27213920

  8. Treatment Options for Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  9. Treatment Option Overview (Adult Soft Tissue Sarcoma)

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  10. Stages of Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  11. Isolated Limb Perfusion of Melphalan With or Without Tumor Necrosis Factor in Treating Patients With Soft Tissue Sarcoma of the Arm or Leg

    ClinicalTrials.gov

    2012-03-14

    Stage IVB Adult Soft Tissue Sarcoma; Stage IIB Adult Soft Tissue Sarcoma; Stage IIC Adult Soft Tissue Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Stage IVA Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma

  12. Predictors of Monomicrobial Necrotizing Soft Tissue Infections

    PubMed Central

    Guidry, Christopher A.; Horn, Christopher B.; Gilsdorf, Daniel; Davies, Stephen W.; Dietch, Zachary C.; Sawyer, Robert G.

    2015-01-01

    Abstract Background: Broad-spectrum antibiotic therapy is critical in the management of necrotizing soft tissue infections (NSTI) in the emergency setting. Clindamycin often is included empirically to cover monomicrobial gram-positive pathogens but probably is of little value for polymicrobial infections and is associated with significant side effects, including the induction of Clostridium difficile colitis. However, there have been no studies predicting monomicrobial infections prior to obtaining cultures. The purpose of this study was to identify independent predictors of monomicrobial NSTI where the use of clindamycin would be most beneficial. We hypothesized that monomicrobial infections are characterized by involvement of the upper extremities and fewer co-morbid diseases. Methods: We reviewed all cases of potential NSTI occurring between 1996 and 2013 in a single tertiary-care center. The infection was diagnosed by the finding of rapidly progressing necrotic fascia during debridement with positive cultures of tissue. Univariable analysis was performed using the Student t-, Wilcoxon rank sum, χ2, and Fisher exact tests as appropriate. Multivariable logistic regression was used to identify independent variables associated with outcomes. Results: A group of 151 patients with confirmed NSTI with complete data was used. Of the monomicrobial infections, 61.8% were caused by Group A streptococci, 20.1% by Staphylococcus aureus, and 12.7% by Escherichia coli. Of the polymicrobial infections, E. coli was involved 13.7% of the time, followed by Candida spp. at 12.9%, and Bacteroides fragilis at 11.3%. On univariable analysis, immunosuppression, upper extremity infection, and elevated serum sodium concentration were associated with monomicrobial infection, whereas morbid obesity and a perineal infection site were associated with polymicrobial infection. On multivariable analysis, the strongest predictor of monomicrobial infection was immunosuppression (odds ratio [OR

  13. The importance of soft tissues in certain skeletal traumatic lesions.

    PubMed

    Harris, J H

    1981-12-01

    Soft tissue aspects of skeletal trauma are discussed according to two categories: (1) those injuries in which the significance of the soft tissue in the pathophysiology of the skeletal lesion is indicated by the characteristics of the skeletal injury (such as extension teardrop fracture, little leaguer's elbow, "baseball fracture," and Bennett's fracture); and (2) those injuries in which the associated soft tissue injury, or complication, may be reasonably inferred by the location and nature of the skeletal injury (such as major facial fractures, posterior sternoclavicular dislocations, fractures of the lower rib and lumbar transverse processes, and pelvic disruptions).

  14. Optical-Based Analysis of Soft Tissue Structures.

    PubMed

    Goth, Will; Lesicko, John; Sacks, Michael S; Tunnell, James W

    2016-07-11

    Fibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues' condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information. Recent advances in optical modalities can provide higher resolution, less invasive imaging capabilities, and more quantitative measurements. Here we describe contemporary optical imaging techniques with respect to their suitability in the imaging of tissue structure, with a focus on characterization and implementation into subsequent modeling efforts. We outline the applications and limitations of each modality and discuss the overall shortcomings and future directions for optical imaging of soft tissue structure. PMID:27420574

  15. Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.

    PubMed

    Palmeri, Mark L; Frinkley, Kristin D; Nightingale, Kathryn R

    2004-04-01

    Many groups are studying acoustic radiation force-based imaging modalities to determine the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one of these modalities that uses standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation force in tissue. This radiation force generates tissue displacements that are tracked using conventional correlation-based ultrasound methods. The dynamic response of tissue to this impulsive radiation force provides information about the mechanical properties of the tissue. The generation of micron-scale displacements using acoustic radiation force in tissue requires the use of high-intensity acoustic beams, and the soft tissue heating associated with these high-intensity beams must be evaluated to ensure safety when performing ARFI imaging in vivo. Experimental studies using thermocouples have validated Finite Element Method (FEM) models that simulate the heating of soft tissue during ARFI imaging. Spatial maps of heating measured with the thermocouples are in good agreement with FEM model predictions, with cooling time constants measured and modeled to be on the order of several seconds. Transducer heating during ARFI imaging has been measured to be less than 1 degrees C for current clinical implementations. These validated FEM models can now be used to simulate soft tissue heating associated with different transducers, beam spacing, focal configurations and thermal material properties. These experiments confirm that ARFI imaging of soft tissue is safe, although thermal response must be monitored when developing ARFI beam sequences for specific tissue types and organsystems.

  16. Modeling elastic waves in coupled media: Estimate of soft tissue influence and application to quantitative ultrasound.

    PubMed

    Chen, Jiangang; Cheng, Li; Su, Zhongqing; Qin, Ling

    2013-02-01

    The effect of medium coupling on propagation of elastic waves is a general concern in a variety of engineering and bio-medical applications. Although some theories and analytical models are available for describing waves in multi-layered engineering structures, they do not focus on canvassing ultrasonic waves in human bones with coupled soft tissues, where the considerable differences in acoustic impedance between bone and soft tissue may pose a challenge in using these models (the soft tissues having an acoustic impedance around 80% less than that of a typical bone). Without proper treatment of this coupling effect, the precision of quantitative ultrasound (QUS) for clinical bone assessment can be compromised. The coupling effect of mimicked soft tissues on the first-arriving signal (FAS) and second-arriving signal (SAS) in a series of synthesized soft-tissue-bone phantoms was investigated experimentally and calibrated quantitatively. Understanding of the underlying mechanism of the coupling effect was supplemented by a dedicated finite element analysis. As revealed, the medium coupling impacts influence on different wave modes to different degrees: for FAS and SAS, the most significant changes take place when the soft tissues are initially introduced, and the decrease in signal peak energy continues with increase in the thickness or elastic modulus of the soft tissues, but the changes in propagation velocity fluctuate within 5% regardless of further increase in the thickness or elastic modulus of the soft tissues. As an application, the calibrated effects were employed to enhance the precision of SAS-based QUS when used for predicting the simulated healing status of a mimicked bone fracture, to find prediction of healing progress of bone fracture based on changes in velocity of the FAS or the SAS is inaccurate without taking into account the effect of soft tissue coupling, entailing appropriate compensation for the coupling effect.

  17. Doxorubicin With Upfront Dexrazoxane for the Treatment of Advanced or Metastatic Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-07-11

    Sarcoma, Soft Tissue; Soft Tissue Sarcoma; Undifferentiated Pleomorphic Sarcoma; Leiomyosarcoma; Liposarcoma; Synovial Sarcoma; Myxofibrosarcoma; Angiosarcoma; Fibrosarcoma; Malignant Peripheral Nerve Sheath Tumor; Epithelioid Sarcoma

  18. New Treatment Approved for Soft-Tissue Cancers

    MedlinePlus

    ... pain. Lartruvo's maker, Indianapolis-based Eli Lilly and Company, is conducting a larger study to further evaluate the drug's effectiveness among numerous types of soft-tissue sarcoma, the agency said. HealthDay ...

  19. Do We Know What Causes Soft Tissue Sarcomas?

    MedlinePlus

    ... that some of these risk factors affect the DNA of cells in the soft tissues. Researchers have ... great progress in understanding how certain changes in DNA can cause normal cells to become cancerous. Our ...

  20. What Are the Risk Factors for Soft Tissue Sarcoma?

    MedlinePlus

    ... soft tissue sarcoma. Exposure to dioxin and to herbicides that contain phenoxyacetic acid at high doses (such ... known for certain. There is no evidence that herbicides (weed killers) or insecticides, at levels encountered by ...

  1. A case of Apophysomyces trapeziformis necrotizing soft tissue infection.

    PubMed

    Echaiz, Jose F; Burnham, Carey-Ann D; Bailey, Thomas C

    2013-12-01

    Mucormycosis is a rare and devastating disease. Apophysomyces trapeziformis is an environmental mold that was recently implicated in several cases of cutaneous and soft tissue mucormycosis in victims of a tornado in Joplin, Missouri. Here, we report a case of Apophysomyces trapeziformis necrotizing soft tissue infection in a resident of Joplin 10 months after the disaster and without preceding trauma. Aspects of histological and microbiological diagnosis are also reviewed. PMID:23891642

  2. [Fourth edition of WHO classification tumours of soft tissue].

    PubMed

    Karanian, Marie; Coindre, Jean-Michel

    2015-01-01

    The new World Health Organization (WHO) classification of soft tissue tumours was published in 2013, 11years after the previous edition. This new classification includes several changes: newly included sections (gastrointestinal stromal tumors…), newly recognized entities (pseudomiogenic haemangioendothelioma, haemosiderotic fibrolipomatous tumour…), and new genetic and molecular data leading to better understanding and definition of tumours, and are useful as diagnostic tools. This brief review summarizes changes in this new edition of the WHO classification of tumours of soft tissue.

  3. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex.

    PubMed

    Schweitzer, Mary H; Wittmeyer, Jennifer L; Horner, John R; Toporski, Jan K

    2005-03-25

    Soft tissues are preserved within hindlimb elements of Tyrannosaurus rex (Museum of the Rockies specimen 1125). Removal of the mineral phase reveals transparent, flexible, hollow blood vessels containing small round microstructures that can be expressed from the vessels into solution. Some regions of the demineralized bone matrix are highly fibrous, and the matrix possesses elasticity and resilience. Three populations of microstructures have cell-like morphology. Thus, some dinosaurian soft tissues may retain some of their original flexibility, elasticity, and resilience.

  4. Overview of Nasal Soft Tissue Reconstruction: Keeping It Simple

    PubMed Central

    Weathers, William M.; Koshy, John C.; Wolfswinkel, Erik M.; Thornton, James F.

    2013-01-01

    The authors provide an overview of nasal soft tissue reconstruction and of the senior author's practice. Nasal soft tissue reconstruction is a challenging endeavor as the nose is one of the most prominent and complex facial features. A multitude of surgical repair options exist, which can make the decision-making process unnecessarily complicated. It is advisable that the reconstructive surgeon become facile with a handful of surgical techniques versus trying to master many techniques. PMID:24872747

  5. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics

    PubMed Central

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380

  6. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.

    PubMed

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery.

  7. How to use PRICE treatment for soft tissue injuries.

    PubMed

    Norton, Cormac

    2016-08-24

    Rationale and key points This article assists nurses to use the acronym PRICE (protection, rest, ice, compression and elevation) to guide the treatment of patients with uncomplicated soft tissue injuries to their upper or lower limbs. » Treatment of soft tissue injuries to limbs is important to reduce complications following injury, alleviate pain and ensure normal limb function is restored promptly. » Nurses should have an understanding of the rationale and evidence base supporting PRICE treatment of soft tissue injuries. » Providing accurate information to patients and carers about the management of soft tissue injuries and anticipated recovery time is an important aspect of treatment. » Further research is required to develop best practice in the treatment of soft tissue injuries. Reflective activity 'How to' articles can help you update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when managing patients with soft tissue injuries to upper or lower limbs. 2. Positive elements of your current practice and those that could be enhanced. Subscribers can upload their reflective accounts at: rcni.com/portfolio.

  8. How to use PRICE treatment for soft tissue injuries.

    PubMed

    Norton, Cormac

    2016-08-24

    Rationale and key points This article assists nurses to use the acronym PRICE (protection, rest, ice, compression and elevation) to guide the treatment of patients with uncomplicated soft tissue injuries to their upper or lower limbs. » Treatment of soft tissue injuries to limbs is important to reduce complications following injury, alleviate pain and ensure normal limb function is restored promptly. » Nurses should have an understanding of the rationale and evidence base supporting PRICE treatment of soft tissue injuries. » Providing accurate information to patients and carers about the management of soft tissue injuries and anticipated recovery time is an important aspect of treatment. » Further research is required to develop best practice in the treatment of soft tissue injuries. Reflective activity 'How to' articles can help you update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when managing patients with soft tissue injuries to upper or lower limbs. 2. Positive elements of your current practice and those that could be enhanced. Subscribers can upload their reflective accounts at: rcni.com/portfolio. PMID:27641592

  9. Special segment: soft tissue matrices--soft-tissue augmentation of the foot and ankle using an acellular regenerative tissue scaffold.

    PubMed

    Brigido, Stephen A

    2009-10-01

    Surgical treatment of damaged soft-tissue structures in the young and physically active patient requires keen understanding of biomechanical forces that are placed on the repair during rehabilitation. Over the years, several materials have been evaluated to mechanically augment suture repair. Autograft tissues such as the gastrocnemius fascia, flexor hallicus longus, peroneus brevis, fascia lata, and plantaris have been implemented successfully. Concerns over donor site morbidity have limited the use of these autologous tissues. Allografts such as fascia lata and tendon have been used successfully but are plagued with practical issues such as inflammatory reaction and suture retention weakness. Acellular regenerative tissue scaffolds have gained in popularity in recent years because of the limited host inflammatory response, ease of use, and high tensile strength.

  10. Talimogene Laherparepvec and Radiation Therapy in Treating Patients With Newly Diagnosed Soft Tissue Sarcoma That Can Be Removed by Surgery

    ClinicalTrials.gov

    2016-10-04

    Leiomyosarcoma; Liposarcoma; Sarcoma Differentiation Score 2; Sarcoma Differentiation Score 3; Stage IA Soft Tissue Sarcoma; Stage IB Soft Tissue Sarcoma; Stage IIA Soft Tissue Sarcoma; Stage IIB Soft Tissue Sarcoma; Undifferentiated Pleomorphic Sarcoma

  11. Tissue-Simulating Gel For Medical Research

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    Nonhardening, translucent gel more nearly simulates soft human or animal tissue. Modified to be softer or harder by altering proportions of ingredients. Fillers added to change electrical, mechanical, heat-conducting, or sound-conducting/scattering properties. Molded to any desired shape and has sufficient mechanical strength to maintain shape without supporting shell. Because of its thermal stability, gel especially useful for investigation of hyperthermia as treatment for cancer.

  12. Soft tissues store and return mechanical energy in human running.

    PubMed

    Riddick, R C; Kuo, A D

    2016-02-01

    During human running, softer parts of the body may deform under load and dissipate mechanical energy. Although tissues such as the heel pad have been characterized individually, the aggregate work performed by all soft tissues during running is unknown. We therefore estimated the work performed by soft tissues (N=8 healthy adults) at running speeds ranging 2-5 m s(-1), computed as the difference between joint work performed on rigid segments, and whole-body estimates of work performed on the (non-rigid) body center of mass (COM) and peripheral to the COM. Soft tissues performed aggregate negative work, with magnitude increasing linearly with speed. The amount was about -19 J per stance phase at a nominal 3 m s(-1), accounting for more than 25% of stance phase negative work performed by the entire body. Fluctuations in soft tissue mechanical power over time resembled a damped oscillation starting at ground contact, with peak negative power comparable to that for the knee joint (about -500 W). Even the positive work from soft tissue rebound was significant, about 13 J per stance phase (about 17% of the positive work of the entire body). Assuming that the net dissipative work is offset by an equal amount of active, positive muscle work performed at 25% efficiency, soft tissue dissipation could account for about 29% of the net metabolic expenditure for running at 5 m s(-1). During running, soft tissue deformations dissipate mechanical energy that must be offset by active muscle work at non-negligible metabolic cost. PMID:26806689

  13. Coherent X-ray diffraction from collagenous soft tissues

    SciTech Connect

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  14. The role of radiology in paediatric soft tissue sarcomas

    PubMed Central

    van Rijn, R.; McHugh, K.

    2008-01-01

    Abstract Paediatric soft tissue sarcomas (STS) are a group of malignant tumours that originate from primitive mesenchymal tissue and account for 7% of all childhood tumours. Rhabdomyosarcomas (RMS) and undifferentiated sarcomas account for approximately 50% of soft tissue sarcomas in children and non-rhabdomyomatous soft tissue sarcomas (NRSTS) the remainder. The prognosis and biology of STS tumours vary greatly depending on the age of the patient, the primary site, tumour size, tumour invasiveness, histologic grade, depth of invasion, and extent of disease at diagnosis. Over recent years, there has been a marked improvement in survival rates in children and adolescents with soft tissue sarcoma and ongoing international studies continue to aim to improve these survival rates whilst attempting to reduce the morbidity associated with treatment. Radiology plays a crucial role in the initial diagnosis and staging of STS, in the long term follow-up and in the assessment of many treatment related complications. We review the epidemiology, histology, clinical presentation, staging and prognosis of soft tissue sarcomas and discuss the role of radiology in their management. PMID:18442956

  15. Estimating patient-specific soft-tissue properties in a TKA knee.

    PubMed

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. PMID:26291455

  16. Revisiting peri-implant soft tissue – histopathological study of the peri-implant soft tissue

    PubMed Central

    Silva, Eduarda; Félix, Sérgio; Rodriguez-Archilla, Alberto; Oliveira, Pedro; Martins dos Santos, José

    2014-01-01

    Peri-implant soft tissues are essential for osseointegration. The peri-implant mucosa may lack vascular supply, and histological observation, even without plaque, shows the presence of inflammatory cells. The objectives of this study were to assess the histopathological changes of the epithelium and connective tissue around the implant. Twenty patients of both genders were studied. Twelve weeks after implant placement, fragments of peri-implant gingival sulcus were harvested and processed for light microscopy. Group I (10): without clinical inflammatory signs (control); Group II (10): with clinical inflammatory signs. Histopathological parameters were analyzed and classified in 3 grades: mild, moderate or severe (grade 1, 2 or 3). Control group showed only slight changes, grade 1. In group II we found edema with moderate to severe cellular and nuclear changes. There are more women than men with all grades of inflammation. All patients with moderate edema are male and all patients with severe edema are female. A significant association (p=0.007) exists between these two variables. Significant differences were found when comparing the degree of inflammation with nuclear alterations (p=0.001) and the same results when comparing the degree of edema and nuclear changes (p<0.001). This study demonstrates that clinical examination can be used, with a small margin of error, to monitor and control the state of the peri-implant mucosa. In clinics the predisposition of female patients to greater degree of edema and inflammation should be accounted for. PMID:24551281

  17. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  18. Electrosurgical management of soft tissues and restorative dentistry.

    PubMed

    Flocken, J E

    1980-04-01

    Proper use of oral electrosurgery permits rapid, full management of soft-tissue problems related to mouth preparation for fixed and removable prosthodontics. The ability to control precisely the zone of coagulation enables the dentist to carve, sculpture, or modify the soft-tissue contours with or without hemorrhage. Restorative dentists possess a high degree of artistic sculpturing skills that can be effectively utilized to harmonize restorative and soft-tissue contours. The life expectancy and function of all fixed and removable restorations depend upon optimal health of the supporting tissues for biomechanical compatibility. Modern electrosurgical techniques and equipment make it possible for the general practitioner, as well as the specialist, to deliver more timely and more comfortable improved fixed and removable appliance therapy to their patients. PMID:6928834

  19. Ultrasound of soft tissue masses of the hand

    PubMed Central

    2012-01-01

    Most soft tissue mass lesions of the hand are benign. Ganglia are the commonest lesions encountered, followed by giant cell tumors of the tendon sheath. Malignant tumors are rare. Often a specific diagnosis can be achieved on imaging by considering the location and anatomical relations of the lesion within the hand or wrist, and assessing its morphology. Magnetic resonance imaging is an excellent modality for evaluating soft tissue tumors with its multiplanar capability and ability to characterize tissue. Ultrasound plays a complementary role to MRI. It is often the initial modality used for assessing masses as it is cheap and available, and allows reliable differentiation of cystic from solid lesions, along with a real time assessment of vascularity. This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate. PMID:26673615

  20. A microchannel flow model for soft tissue elasticity

    NASA Astrophysics Data System (ADS)

    Parker, K. J.

    2014-08-01

    A number of advances, including imaging of tissue displacements, have increased our ability to make measurements of tissue elastic properties of animal and human tissues. Accordingly, the question is increasingly asked, ‘should our data be fit to a viscoelastic model, and if so which one?’ In this paper we focus solely on soft tissues in a functional (non-pathological) state, and develop a model of elastic behavior that is based on the flow of viscous fluids through the extensive network of tissue microchannels in response to applied stress. This behavior can be captured in a 2-parameter model, and the model appears to predict the stress-relaxation behavior and the dispersive shear wave behavior of bovine liver specimens and other soft tissues and phantoms. The relationship of the microchannel flow model to more traditional models is also examined.

  1. Bioimpedance of soft tissue under compression.

    PubMed

    Dodde, R E; Bull, J L; Shih, A J

    2012-06-01

    In this paper compression-dependent bioimpedance measurements of porcine spleen tissue are presented. Using a Cole-Cole model, nonlinear compositional changes in extracellular and intracellular makeup; related to a loss of fluid from the tissue, are identified during compression. Bioimpedance measurements were made using a custom tetrapolar probe and bioimpedance circuitry. As the tissue is increasingly compressed up to 50%, both intracellular and extracellular resistances increase while bulk membrane capacitance decreases. Increasing compression to 80% results in an increase in intracellular resistance and bulk membrane capacitance while extracellular resistance decreases. Tissues compressed incrementally to 80% show a decreased extracellular resistance of 32%, an increased intracellular resistance of 107%, and an increased bulk membrane capacitance of 64% compared to their uncompressed values. Intracellular resistance exhibits double asymptotic curves when plotted against the peak tissue pressure during compression, possibly indicating two distinct phases of mechanical change in the tissue during compression. Based on these findings, differing theories as to what is happening at a cellular level during high tissue compression are discussed, including the possibility of cell rupture and mass exudation of cellular material.

  2. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    PubMed Central

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S.; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  3. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    PubMed

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  4. Radiation Therapy for Soft Tissue Sarcomas

    MedlinePlus

    ... called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, radiation delivered from ... impact on healthy tissue. In some centers, proton beam radiation is an option. This uses streams of ...

  5. Containment-enhanced Ho:YAG photofragmentation of soft tissues

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Guarnieri, Michael; Carson, Benjamin S.

    1998-01-01

    Laser surgery of soft tissue can exploit the power of brief, intense pulses of light to cause localized disruption of tissue with minimal effect upon surrounding tissue. In particular, studies of Ho:YAG laser surgery have shown that the effects of cavitation upon tissues and bone depend upon the physical composition of structures in the vicinity of the surgical site. For photofragmentation of occluding structures within catheters and other implant devices, it is possible to exploit the particular geometry of the catheter to amplify the effects of photofragmentation beyond those seen in bulk tissue. A Ho:YAG laser was used to photofragment occlusive material (tissue and tissue analogs) contained in glass capillary tubing and catheter tubing of the kind used in ventricular shunt implants for the management of hydrocephalus. Occluded catheters obtained from patient explants were also employed. Selection of operational parameters used in photoablation and photofragmentation of soft tissue must consider the physical composition and geometry of the treatment site. In the present case, containment of the soft tissue within relatively inelastic catheters dramatically alters the extent of photofragmentation relative to bulk (unconstrained) material. Our results indicate that the disruptive effect of cavitation bubbles is increased in catheters, due to the rapid displacement of material by cavitation bubbles comparable in size to the inner diameter of the catheter. The cylindrical geometry of the catheter lumen may additionally influence the propagation of acoustic shock waves that result from the collapse of the condensing cavitation bubbles.

  6. Allografts in Soft Tissue Reconstructive Procedures

    PubMed Central

    Giedraitis, Andrius; Arnoczky, Steven P.; Bedi, Asheesh

    2014-01-01

    Context Allografts offer several important advantages over autografts in musculoskeletal reconstructive procedures, such as anterior cruciate ligament reconstruction. Despite growing widespread use of allograft tissue, serious concerns regarding safety and functionality remain. We discuss the latest knowledge of the potential benefits and risks of allograft use and offer a critical review of allograft tissue regulation, management, and sterilization to enable the surgeon to better inform athletes considering reconstructive surgery options. Evidence Acquisition A review of sources published in the past 10 years is the primary basis of this research. Study Design: Observational analysis (cohort study). Level of Evidence: Level 3. Results Comparable outcome data for autografts and allografts do not support universal standards for anterior cruciate ligament reconstruction, and physician recommendation and bias appear to significantly influence patient preference and satisfaction. Sterilization by gamma and electron-beam irradiation diminishes the biomechanical integrity of allograft tissue, but radioprotective agents such as collagen cross-linking and free radical scavengers appear to have potential in mitigating the deleterious effects of irradiation and preserving tissue strength and stability. Conclusion Allografts offer greater graft availability and reduced morbidity in orthopaedic reconstructive procedures, but greater expansion of their use by surgeons is challenged by the need to maintain tissue sterility and biomechanical functionality. Advances in the radioprotection of irradiated tissue may lessen concerns regarding allograft safety and structural stability. PMID:24790696

  7. Gunshot wounds: epidemiology, wound ballistics, and soft-tissue treatment.

    PubMed

    Dougherty, Paul J; Najibi, Soheil; Silverton, Craig; Vaidya, Rahul

    2009-01-01

    The extremities are the most common anatomic location for gunshot wounds. Because of the prevalence of gunshot injuries, it is important that orthopaedic surgeons are knowledgeable about caring for them. The most common injuries seen with gunshot wounds are those of the soft tissues. Nonsurgical management of patients who have gunshot wounds with minimal soft-tissue disruption has been successfully accomplished in emergency departments for several years; this includes extremity wounds without nerve, intra-articular, or vascular injury. Stable, nonarticular fractures of an extremity have also been successfully treated with either minimal surgical or nonsurgical methods in the emergency department. Indications for surgical treatment include unstable fractures, intra-articular injuries, a significant soft-tissue injury (especially with skin loss), vascular injury, and/or a large or expanding hematoma.

  8. Shear wave propagation in anisotropic soft tissues and gels.

    PubMed

    Namani, Ravi; Bayly, Philip V

    2009-01-01

    The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987

  9. Modified soft tissue cast for fixed partial denture: a technique

    PubMed Central

    2011-01-01

    In process of fabrication of a fixed partial denture, dies are trimmed to expose margins of the preparations. The need for the soft tissue cast is quite evident as the soft tissue emergence profile that surrounds the prepared tooth is destroyed in the process of fabrication. This article describes a modified technique to fabricate the soft tissue cast for the conventional fixed partial denture. The impression made with the polyvinylsiloxane was first poured to prepare the die cast. After retrieval of the cast, the same impression was poured second time with the resin based resilient material to cover the facial and proximal gingival areas. The remaining portion of the impression was poured with the gypsum material. This technique does not require additional clinical appointment, second impression procedure, technique sensitive manipulations with impression, or cumbersome laboratory procedures. The simplicity of this technique facilitates and justifies its routine use in fabrication of the fixed partial denture. PMID:21503191

  10. Gunshot wounds: epidemiology, wound ballistics, and soft-tissue treatment.

    PubMed

    Dougherty, Paul J; Najibi, Soheil; Silverton, Craig; Vaidya, Rahul

    2009-01-01

    The extremities are the most common anatomic location for gunshot wounds. Because of the prevalence of gunshot injuries, it is important that orthopaedic surgeons are knowledgeable about caring for them. The most common injuries seen with gunshot wounds are those of the soft tissues. Nonsurgical management of patients who have gunshot wounds with minimal soft-tissue disruption has been successfully accomplished in emergency departments for several years; this includes extremity wounds without nerve, intra-articular, or vascular injury. Stable, nonarticular fractures of an extremity have also been successfully treated with either minimal surgical or nonsurgical methods in the emergency department. Indications for surgical treatment include unstable fractures, intra-articular injuries, a significant soft-tissue injury (especially with skin loss), vascular injury, and/or a large or expanding hematoma. PMID:19385526

  11. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    PubMed

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  12. Soft-tissue calcification after subcutaneus emphysema in a neonate

    SciTech Connect

    Naidech, H.J.; Chawla, H.S.

    1982-08-01

    Bilateral, almost symmetric, calcifications of the soft tissues after subcutaneous emphysema have not, to our knowledge, been described. Because of the close clinical and radiographic evaluation in our case, the finding of calcinosis was not a diagnostic problem. Several 1.5 mm computed tomographic (CT) sections of the thorax were scanned and they were confirmatory in showing the distribution of the calcifications. Since subcutaneous emphysema is commonplace, and calcification after it is apparently unknown, the literature was reviewed and an additional cause of soft-tissue calcinosis is presented.

  13. [Molecular targeted drugs for soft tissue sarcoma and neuroendocrine tumor].

    PubMed

    Kato, Shunsuke

    2015-08-01

    Both the soft tissue sarcomas and the neuroendocrine tumors are rare diseases. Therefore the recruiting of these patients was more difficult than other cancer species, and the development of the new therapy for these diseases did not readily advance. However, the identification of driver molecules for each sub-type enabled us to the development of the molecular targeted drugs. As for the GIST, several TKIs are used, but in late years it is found that susceptibility of TKIs varies according to difference in second mutation. In this chapter, the molecular target drug for the soft tissue sarcoma and the neuroendocrine tumor is reviewed. PMID:26281696

  14. Multimodality Management of Soft Tissue Tumors in the Extremity.

    PubMed

    Crago, Aimee M; Lee, Ann Y

    2016-10-01

    Most extremity soft tissue sarcomas present as a painless mass. Work-up should generally involve cross-sectional imaging with MRI and a core biopsy for pathologic diagnosis. Limb-sparing surgery is the standard of care, and may be supplemented with radiation for histologic subtypes at higher risk for local recurrence and chemotherapy for those at higher risk for distant metastases. This article reviews the work-up and surgical approach to extremity soft tissue sarcomas, and the role for radiation and chemotherapy, with particular attention given to the distinguishing characteristics of some of the most common subtypes. PMID:27542637

  15. Soft tissue fillers for management of the aging perioral complex.

    PubMed

    Sclafani, Anthony P

    2005-02-01

    Rejuvenative therapy of the lower face has traditionally been surgical in nature, with office-based treatments such as soft tissue fillers relegated to "second tier" status. However, traditional rhytidectomy does not significantly affect the perioral complex and leaves the central lower face unaltered and unimproved. If it is left untreated, there is a clear disparity between the rejuvenated neck and aged perioral area. Soft tissue augmentation of the perioral area can provide rapid aesthetic improvement. Careful analysis of this area and appropriate treatment can harmonize these areas and produce a globally aesthetic result.

  16. Porcine dermis implants in soft-tissue reconstruction: current status

    PubMed Central

    Smart, Neil J; Bryan, Nicholas; Hunt, John A; Daniels, Ian R

    2014-01-01

    Soft-tissue reconstruction for a variety of surgical conditions, such as abdominal wall hernia or pelvic organ prolapse, remains a challenge. There are numerous meshes available that may be simply categorized as either synthetic or biologic. Within biologic meshes, porcine dermal meshes have come to dominate the market. This review examines the current evidence for their use and the limitations of knowledge. Although there is increasing evidence to support their safety, long-term follow-up studies that support their efficacy are lacking. Numerous clinical trials that remain ongoing may help elucidate their precise role in soft-tissue reconstruction. PMID:24648721

  17. The compressive material properties of the plantar soft tissue.

    PubMed

    Ledoux, William R; Blevins, Joanna J

    2007-01-01

    The plantar soft tissue is the primary means of physical interaction between a person and the ground during locomotion. Dynamic loads greater than body weight are borne across the entire plantar surface during each step. However, most testing of these tissues has concentrated on the structural properties of the heel pad. The purpose of this study was to determine the material properties of the plantar soft tissue from six locations beneath: the great toe (subhallucal), the 1st, 3rd and 5th metatarsal heads (submetatarsal), the lateral midfoot (lateral submidfoot) and the heel (subcalcaneal). We obtained specimens from these locations from 11 young, non-diabetic donors; the tissue was cut into 2 cm x 2 cm blocks and the skin was removed. Stress relaxation experiments were conducted and the data were fit using the quasi-linear viscoelastic (QLV) theory. To determine tissue modulus, energy loss and the effect of test frequency, we also conducted displacement controlled triangle waves at five frequencies ranging from 0.005 to 10 Hz. The subcalcaneal tissue was found to have an increased relaxation time compared to the other areas. The subcalcaneal tissue was also found to have an increased modulus and decreased energy loss compared to the other areas. Across all areas, the modulus and energy loss increased for the 1 and 10 Hz tests compared to the other testing frequencies. This study is the first to generate material properties for all areas of the plantar soft tissue, demonstrating that the subcalcaneal tissue is different than the other plantar soft tissue areas. These data will have implications for foot computational modeling efforts and potentially for orthotic pressure reduction devices.

  18. Soft Tissue Mineralization in Captive 2-Toed Sloths.

    PubMed

    Han, S; Garner, M M

    2016-05-01

    Soft tissue mineralization was diagnosed in 19 captive 2-toed sloths (Choloepus didactylusandCholoepus hoffmanni) ranging from 2 months to 41 years of age. Gross mineralization was evident at necropsy in 6 of 19 sloths and was prominent in the aorta and arteries. Histologically, 11 sloths had arterial mineralization, including mural osseous and chondroid metaplasia and smooth muscle hyperplasia consistent with arteriosclerosis. Visceral mineralization most commonly involved the gastric mucosa (17 sloths), kidneys (17 sloths), and lungs (8 sloths). Eleven sloths ranging in age from 5 to 41 years old had moderate to severe renal disease, which may be an important underlying cause of soft tissue mineralization in adult sloths. However, 5 sloths (juveniles and adults) had severe soft tissue mineralization with histologically normal kidneys or only mild interstitial inflammation or fibrosis, suggesting other causes of calcium and phosphorus imbalance. Degenerative cardiac disease was a common finding in 10 sloths with vascular mineralization and varied from mild to severe with fibrosis and acute noninflammatory myocardial necrosis. Although the prevalence of cardiac disease in adult sloths has not been documented, disease may be exacerbated by hypertension from degenerative arteriosclerosis as noted in this study group. Although renal disease likely contributed substantially to mineralization of tissues in most sloths in this study, nutritional causes of soft tissue mineralization-such as imbalances in dietary vitamin D or calcium and phosphorus-may be an important contributing factor.

  19. Soft Tissue Mineralization in Captive 2-Toed Sloths.

    PubMed

    Han, S; Garner, M M

    2016-05-01

    Soft tissue mineralization was diagnosed in 19 captive 2-toed sloths (Choloepus didactylusandCholoepus hoffmanni) ranging from 2 months to 41 years of age. Gross mineralization was evident at necropsy in 6 of 19 sloths and was prominent in the aorta and arteries. Histologically, 11 sloths had arterial mineralization, including mural osseous and chondroid metaplasia and smooth muscle hyperplasia consistent with arteriosclerosis. Visceral mineralization most commonly involved the gastric mucosa (17 sloths), kidneys (17 sloths), and lungs (8 sloths). Eleven sloths ranging in age from 5 to 41 years old had moderate to severe renal disease, which may be an important underlying cause of soft tissue mineralization in adult sloths. However, 5 sloths (juveniles and adults) had severe soft tissue mineralization with histologically normal kidneys or only mild interstitial inflammation or fibrosis, suggesting other causes of calcium and phosphorus imbalance. Degenerative cardiac disease was a common finding in 10 sloths with vascular mineralization and varied from mild to severe with fibrosis and acute noninflammatory myocardial necrosis. Although the prevalence of cardiac disease in adult sloths has not been documented, disease may be exacerbated by hypertension from degenerative arteriosclerosis as noted in this study group. Although renal disease likely contributed substantially to mineralization of tissues in most sloths in this study, nutritional causes of soft tissue mineralization-such as imbalances in dietary vitamin D or calcium and phosphorus-may be an important contributing factor. PMID:26333294

  20. Immune response to nonspecific and altered tissue antigens in soft tissue allografts.

    PubMed

    Pinkowski, J L; Rodrigo, J J; Sharkey, N A; Vasseur, P B

    1996-05-01

    Soft tissue allografts have many uses in orthopaedic surgery, including knee ligament reconstruction, hand tendon surgery, shoulder instability, and rotator cuff reconstruction. The predictable biologic incorporation of soft tissue allografts without rejection or fear of disease transmission continues to be a goal of basic science researchers. A review of the current knowledge if the immune system response to donor specific, nonspecific, and altered tissue antigens in soft tissue or tendon allografts is presented. An in vitro study was done in an attempt to decrease immunogenicity of a frozen bone-ligament graft by adding irrigation with Betadine scrub solution and hydrogen peroxide to the conventional storage process of freezing. Although the irrigation with cytotoxic agents would undoubtedly further decrease immunogenicity, it also decreased stiffness and maximum load by 15%. Whether this decreased strength and stiffness would compromise the incorporation and long term success of soft tissue allografts would need to be studied by in vitro experiments.

  1. Extracellular matrix as a bioactive material for soft tissue reconstruction.

    PubMed

    Hodde, Jason

    2006-12-01

    The extracellular matrix (ECM) directs all phases of healing following trauma or disease and is therefore a natural source of prosthetic mesh material that can be used strategically to induce the repair and restoration of soft tissues following surgery. Biomaterials such as Surgisis (Cook Biotech Incorporated, West Lafayette, IN, USA), which are derived from natural ECM, provide the extracellular components necessary to direct the healing response, allow for the proliferation of new, healthy tissue and restore tissue integrity to the damaged site. The 3-D organization of these extracellular components distinguishes the Surgisis mesh from synthetic materials and is associated with constructive tissue remodelling instead of scar tissue. Common features of this ECM-assisted tissue remodelling include angiogenesis, recruitment of circulating progenitor cells and constructive remodelling of damaged tissue structures. The tissue response to this biologic mesh is discussed in the context of recent reports on clinical hernia repair.

  2. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  3. Soft Tissue Coverage of the Lower Limb following Oncological Surgery

    PubMed Central

    Radtke, Christine; Panzica, Martin; Dastagir, Khaled; Krettek, Christian; Vogt, Peter M.

    2016-01-01

    The treatment of lower limb tumors has been shifted by advancements in adjuvant treatment protocols and microsurgical reconstruction from limb amputation to limb salvage. Standard approaches include oncological surgery by a multidisciplinary team in terms of limb sparing followed by soft tissue reconstruction and adjuvant therapy when indicated. For the development of a comprehensive surgical plan, the identity of the tumor should first be determined by histology after biopsy. Then the surgical goal and comprehensive treatment concept should be developed by a multidisciplinary tumor board and combined with soft tissue reconstruction. In this article, plastic surgical reconstruction options for soft coverage of the lower extremity following oncological surgery will be described along with the five clinical cases. PMID:26793620

  4. Soft tissue attenuation in middle ear on HRCT: Pictorial review

    PubMed Central

    Anbarasu, Arangasamy; Chandrasekaran, Kiruthika; Balakrishnan, Sivasubramanian

    2012-01-01

    Middle ear disease is a common clinical entity; imaging, especially High resolution Computed Tomography (HRCT), plays a crucial role in diagnosis and assessing the disease extent, helping to decide appropriate management. Temporal bone imaging is challenging and involves thorough understanding of the anatomy, especially in relation to HRCT imaging. Most of the middle ear pathologies appear as “soft tissue” on imaging. Careful analysis of the soft tissue on the HRCT is crucial in achieving the right diagnosis; clinical information is essential and the imaging findings need correlation with clinical presentation and otoscopic findings. The purpose of this pictorial essay is to enlist the pathologies that present as soft tissue in middle ear and to provide a structured and practical imaging approach that will serve as a guide for confident reporting in daily practice. PMID:23833422

  5. Injectable macroporous microparticles for soft tissue augmentation.

    PubMed

    Corrin, Abigail A; Ngai, Matthew; Walthers, Christopher M; Dunn, James C Y; Wu, Benjamin M

    2012-01-01

    Macroporous polymeric microparticles have been fabricated using a combination of particulate leaching and gas foaming techniques. Controlling the concentration of ammonium bicarbonate particles and the spin speed of the microemulsion in poly (ε-caprolactone) (PCL) yields a range of macroporous microparticles with interconnected pores (10-50 µm) that may promote cell and tissue ingrowth in vivo when implanted subcutaneously. This fabrication technique introduces a novel template which can be modified to meet a diverse set of material and biological specifications. PMID:23366415

  6. Unusual soft tissue manifestations of Neisseria meningitidis infections.

    PubMed

    Gupta, Ruchi; Levent, Fatma; Healy, C Mary; Edwards, Morven S

    2008-05-01

    Soft tissue involvement is an unusual presenting feature for children with meningococcal infection. We describe 2 children, 1 with conjunctivitis and another with a thyroglossal duct cyst abscess associated with Neisseria meningitidis, and review previous reports of these entities to emphasize the broad spectrum of meningococcal disease and pertinent aspects of treatment and of prophylaxis of contacts.

  7. Treatment of oral soft tissues benign tumors using laser

    NASA Astrophysics Data System (ADS)

    Crisan, Bogdan; Baciut, Mihaela; Crisan, Liana; Bran, Simion; Rotar, Horatiu; Dinu, Cristian; Moldovan, Iuliu; Baciut, Grigore

    2014-01-01

    The present study aimed to assess the efficacy and indications of surgical laser therapy in the treatment of oral soft tissues benign tumors compared to classic surgery. A controlled clinical study was conducted in a group of 93 patients presenting various forms of oral soft tissues benign tumors. These patients were examined pre-and postoperatively and the oral benign tumors were measured linearly and photographed. The surgery of laser-assisted biopsy excision of oral benign tumors was carried out using a diode laser device of 980 nm. In patients who received surgical laser treatment, therapeutic doses of laser to biostimulate the operated area were administered on the first day after the surgery. The interventions of conventional excision of oral soft tissues benign tumors consisted in removing them using scalpel. In patients who have received therapeutic doses of laser for biostimulation of the operated area, a faster healing of wound surfaces and tumor bed was observed during the first days after surgery. Two weeks after the surgical treatment, good healing without scarring or discomfort in the area of excision was documented. Surgical treatment of oral soft tissues benign tumors with laser assisted postoperative therapy confirms the benefits of this surgical procedure. A faster healing process of the excision area due to laser biostimulation of low intensity has been observed in patients with surgical laser assisted treatment in the postoperative period.

  8. Cutaneous soft tissue tumors that make you say, "oh $*&%!".

    PubMed

    Patel, Rajiv M; Billings, Steven D

    2012-09-01

    Subsets of cutaneous soft tissue tumors present morphologic features which are diagnostically challenging in part because of their ability to obscure the ultimate nature of the underlying neoplastic process. This review discusses entities, which in the authors' experience, present such challenges. The clinical, histologic, immunohistochemical, and where appropriate, molecular features of these entities are discussed along with their prognosis and differential diagnosis.

  9. Ultrasound elastography assessment of bone/soft tissue interface

    NASA Astrophysics Data System (ADS)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  10. A psychosocial intervention for patients with soft tissue sarcoma.

    PubMed

    Payne, D K; Lundberg, J C; Brennan, M F; Holland, J C

    1997-03-01

    Support groups have increasingly been demonstrated to be an effective intervention in reducing psychological difficulties and emotional problems in patients with cancer. This report describes a pilot support group intervention based upon a modified version of Cain and colleagues' (1986) thematic counseling model for patients who have been treated for soft tissue sarcoma and are free of disease. The modified thematic counseling model consisted of eight group sessions that focused on providing information about soft tissue sarcoma, management of stress, relaxation techniques, and coping skills. In addition, time was set aside for general discussion of personal concerns. Common themes reported by patients were: communication with family, friends and physicians, anxiety about lack of information about soft tissue sarcoma, and major financial disruption because of their illness. At the conclusion of the eighth session, patients were given an informal survey and asked to rate the value of different aspects of the program for them. They reported that feelings of isolation, anger, depression, and anxiety significantly decreased; and their level of self-confidence increased dramatically. This pilot support group intervention is recommended as a model for enhancing the quality of life of patients with soft tissue sarcoma. PMID:9126716

  11. Soft Tissue Cephalometric Norms for Central India (Malwa) Female Population

    PubMed Central

    Raghav, Shweta; Baheti, Kamalshikha; Hansraj, Varun; Rishad, Mohamed; Kanungo, Himanshu; Bejoy, Pulayampatt Unni

    2014-01-01

    Background: The various soft tissue traits that contribute to an aesthetically pleasing face. This should be considered during orthodontic treatment. The aim of the present study was to propose soft tissue norms for Central Indian (Malwa) female population. Materials and Methods: Facial photographs of 78 patients of age group 18-26 years were taken in Department of Orthodontics, Rau, Indore, which were then subjected to a selection process and 30 top scorers (30 females) were selected. Lateral cephalograms of individuals were taken and soft tissue profile as well as related osseous and dental structures standard tracing were made on the acetate matte tracing paper. Then eighteen soft tissue traits were studied as described by Bergman. Results: The present study showed that, a mild convexity of the face and the resulting tendency toward Class II in females is acceptable esthetically. A fuller upper lip is considered balanced and esthetic. Increase in lip incompetency is considered unaesthetic. Conclusion: A mild convexity of the face and the resulting tendency toward Class II in females is acceptable esthetically. Individual norms are necessary for a population in order to plan and deliver quality treatment. PMID:25395794

  12. Hard and soft tissue surgical complications in dental implantology.

    PubMed

    Aziz, Shahid R

    2015-05-01

    This article discusses surgical complications associated with the placement of dental implants, specifically focusing on how they occur (etiology), as well as their management and prevention. Dental implant surgical complications can be classified into those of hard and soft tissues. In general, complications can be avoided with thorough preoperative treatment planning and proper surgical technique.

  13. Skin and Soft Tissue Infections (Patera Foot) in Immigrants, Spain

    PubMed Central

    Ternavasio-de la Vega, Hugo-Guillermo; Ángel-Moreno, Alfonso; Hernández-Cabrera, Michele; Pisos-Álamo, Elena; Bolaños-Rivero, Margarita; Carranza-Rodriguez, Cristina; Calderín-Ortega, Antonio; Pérez-Arellano, José-Luis

    2009-01-01

    An unusual skin and soft tissue infection of the lower limbs has been observed in immigrants from sub-Saharan Africa who cross the Atlantic Ocean crowded on small fishing boats (pateras). Response to conventional treatment is usually poor. Extreme extrinsic factors (including new pathogens) may contribute to the etiology of the infection and its pathogenesis. PMID:19331742

  14. Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2014-01-01

    Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the local distribution of the mechanical properties of the tissue. In this study, a finite element (FE) model is developed to investigate the effect of global boundary conditions on the dynamic response of a soft tissue during HMI. The direct-solution steady-state dynamic analysis procedure is used to compute the harmonic displacement amplitude in FE simulations. The model is parameterised in terms of boundary conditions and viscoelastic properties, and the corresponding raster-scan displacement amplitudes are captured to examine its response. The effect of the model's global dimensions on the harmonic response is also investigated. It is observed that the dynamic response of soft tissue with high viscosity is independent of the global boundary conditions for regions remote to the boundary; thus, it can be subjected to local analysis to estimate the underlying mechanical properties. However, the dynamic response is sensitive to global boundary conditions for tissue with low viscosity or regions located near to the boundary.

  15. Mimicking Biological Tissues and Probing Soft Surfaces

    NASA Astrophysics Data System (ADS)

    Sengupta, Kheya; Schilling, Joerg; Marx, Stefanie; Fischer, Markus; Sackmann, Erich

    2003-03-01

    Hyaluronic acid (HA) is a linear anionic polysaccharide and is the major component of the extra cellular matrix. It plays an important role as structural constituent of tissues, is attached through receptors to migrating cells and has been found recently to play an important role inside cells. We have developed a bio-mimetic system by anchoring HA films to solid supported membranes through an intracellular HA-binding protein p32. This protein was modified by genetic-engineering so that it could be specifically anchored to fluid supported lipid bilayers. The local HA-film thickness and the surface viscoelastic moduli were measured by analyzing the Brownian motion of colloidal probes hovering over the film. A novel dual-wave reflection interference contrast microscopic technique was developed that enables the measurement of the absolute film thickness with 4 nm resolution and thus allows the establishment of correlations between surface viscoelastic parameters and the film thickness. This technique was applied to study the influence of excess salt and cross-linkers on the film thickness and viscoelasticity of the HA layer. The dual-wave method was also applied to the study of adhesion of vesicles on the ultra-thin HA-layers.

  16. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  17. Medical ultrasound: imaging of soft tissue strain and elasticity.

    PubMed

    Wells, Peter N T; Liang, Hai-Dong

    2011-11-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques-low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)-are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.

  18. [Progress on cervical muscle strength and soft tissue stiffness testing].

    PubMed

    Ma, Ming; Zhang, Shi-min

    2015-08-01

    Biomechanical evaluation of neck muscles has important significance in the diagnosis and treatment for cervical spondylosis, the neck muscle strength and soft tissue stiffness test is two aspects of biomechanical testing. Isometric muscle testing operation is relatively simple, the cost is lower, which can evaluate the muscle force below grade 3. However, isokinetic muscle strength testing can assess the muscle strength of joint motion in any position. It is hard to distinguish stiffness difference in different soft tissues when the load-displacement curve is used to evaluate the local soft tissue stiffness. Elasticity imaging technique can not only show the elastic differences of different tissues by images, but also quantify the elastic modulus of subcutaneous tissues and muscles respectively. Nevertheless, it is difficult to observe the flexibility of the cervical spine by means of the analysis of the whole neck stiffness. In a word, a variety of test method will conduce not only the biomechanical evaluation of neck muscles, but also making an effective biomechanics mathematical model of neck muscles. Besides, isokinetic muscle testing and the elasticity imaging technology still need further validation and optimization before they are better applied to neck muscles biomechanical testing.

  19. The Measurement of Temperature Gradients in a Soft Tissue Phantom using PVDF arrays: A Simulation Case Using the Finite Element Method (FEM)

    NASA Astrophysics Data System (ADS)

    Acevedo, Pedro; Vázquez, Mónica; Durán, Joel; Petrearce, Rodolfo

    A simulation case is presented using the Finite Element Method (FEM) to simulate the performance of PVDF arrays to measure temperature gradients through the determination of phase shifts, i.e. time shifts of the waveform of the echo due to a change in the speed of propagation of ultrasound as a result of a change in temperature, they can be interpreted as phase shifts in the frequency domain. Making it possible to determine the change in temperature from the phase shifts; in a medium of propagation previously characterized.

  20. Soft tissue imaging with photon counting spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  1. Analysis of mechanical interaction between human gluteal soft tissue and body supports.

    PubMed

    Then, C; Menger, J; Benderoth, G; Alizadeh, M; Vogl, T J; Hübner, F; Silber, G

    2008-01-01

    Pressure sores are the most common complication associated with patient immobilization. They develop through sustained localized tissue strain and stress, primarily caused by body supports. Modifying support design can reduce the risk and extent of pressure sore development with computational simulations helping to provide insight into tissue stress-strain distribution. Appropriate material parameters for human soft tissue and support material, as well as precise anatomical modelling, are indispensable in this process. A finite element (FE) model of the human gluteal region based on magnetic resonance imaging (MRI) data has been developed. In vivo human gluteal skin/fat and muscle long-term material parameters as well as open-cell polyurethane foam support long-term material parameters have been characterised. The Ogden form for slightly compressible materials was employed to describe human gluteal soft tissue behaviour. Altering support geometries and support materials, effects on human gluteal soft tissue could be quantified. FE-analysis indicated maximal tissue stress at the muscle-bone interface, not at the skin. Shear strain maxima were found in the muscle layer near the fat-muscle interface. Maximum compressive stress magnitude at the sacral bone depended strongly on the behaviour of the pelvic diaphragm musculature. We hypothesize that the compliance of the muscles forming the pelvic diaphragm govern the relative motion of the buttock tissue to the adjacent bone structure under compression, thus influencing tissue stress magnitudes.

  2. Injectable PolyMIPE Scaffolds for Soft Tissue Regeneration.

    PubMed

    Moglia, Robert S; Robinson, Jennifer L; Muschenborn, Andrea D; Touchet, Tyler J; Maitland, Duncan J; Cosgriff-Hernandez, Elizabeth

    2014-01-14

    Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20-200 kPa) and strengths (4-60 kPa) as well as high recovery after the first conditioning cycle (97-99%). The resultant pore architecture was highly interconnected with large voids (0.5-2 mm) from carbon dioxide generation surrounded by water-templated pores (50-300 μm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair. PMID:24563552

  3. Sorafenib in Treating Patients With Soft Tissue Sarcomas (Extremity Sarcoma Closed to Entry as of 5/30/07)

    ClinicalTrials.gov

    2014-04-01

    Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Osteosarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  4. [Research progress in peri-implant soft tissue engineering augmentation method].

    PubMed

    Pei, Tingting; Yu, Hongqiang; Wen, Chaoju; Guo, Tianqi; Zhou, Yanmin; Peng, Huimin

    2016-05-01

    The sufficiency of hard and soft tissue at the implant site is the guarantee of long-term function, health and the appearance of implant denture. Problem of soft tissue recession at the implant site has always been bothering dentists. Traditional methods for augmentation of soft tissue such as gingival transplantation have disadvantages of instability of the increased soft-tissue and more trauma. Lately the methods that base on tissue engineering to increase the soft tissue of peri-implant sites have drawn great attention. This review focuses on the current methods of peri-implant restoration through tissue engineering, seed cells, biological scaffolds and cytokines. PMID:27220393

  5. [Microbiological diagnosis of infections of the skin and soft tissues].

    PubMed

    Burillo, Almudena; Moreno, Antonio; Salas, Carlos

    2007-11-01

    Skin and soft tissue infections are often seen in clinical practice, yet their microbiological diagnosis is among the most complex of laboratory tasks. The diagnosis of a skin and a soft tissue infection is generally based on clinical criteria and not microbiological results. A microbiological diagnosis is reserved for cases in which the etiology of infection is required, e.g., when the infection is particularly severe, when less common microorganisms are suspected as the causative agent (e.g. in immunocompromised patients), when response to antimicrobial treatment is poor, or when a longstanding wound does not heal within a reasonable period of time. We report the indications, sampling and processing techniques, and interpretation criteria for various culture types, including quantitative cultures from biopsy or tissue specimens and semiquantitative and qualitative cultures performed on all types of samples. For non-invasive samples taken from open wounds, application of the Q index to Gram stains is a cost-effective way to standardize sample quality assessment and interpretation of the pathogenic involvement of the different microorganisms isolated from cultures. All these issues are covered in the SEIMC microbiological procedure number 22: Diagnóstico microbiológico de las infecciones de piel y tejidos blandos (Microbiological diagnosis of infections of the skin and soft tissues) (2nd ed., 2006, www.seimc.org/protocolos/microbiologia).

  6. Micromechanics and constitutive modeling of connective soft tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. PMID:26807767

  7. Micromechanics and constitutive modeling of connective soft tissues.

    PubMed

    Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M

    2016-07-01

    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints.

  8. A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues.

    PubMed

    Comellas, Ester; Gasser, T Christian; Bellomo, Facundo J; Oller, Sergio

    2016-03-01

    Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data. PMID:27009177

  9. [Shockwave treatment of therapy refractory soft tissue pain].

    PubMed

    Boxberg, W; Perlick, L; Giebel, G

    1996-11-01

    Extracorporal shock-wave application (ESWA) has been used in the treatment of stones located in the kidneys, bile, pancreas and the glandula parotis. In the last 2 years several studies have shown the benefit of ESWA in the treatment of soft-tissue disorders and tendinosis calcarea. To date, the exact mechanism is unknown. Local hyperemia following damage or afferent inhibition is discussed. The possibilities and indications of ESWA with respect to several syndromes are presented. The results show the benefit of ESWA in the treatment of chronic soft-tissue disorders without severe side effects. Some patients showed small subcutaneous hematomas and erosion of the skin when energies about 20 mJ were used. Forty-seven of 84 of the patients obtained complete relief; 24 patients showed a marked reduction in their complaints. In only 13 of 84 cases was the treatment unsuccessful.

  10. Radiographic features of osseous metastases of soft-tissue sarcomas

    SciTech Connect

    Wong, W.S.; Kaiser, L.R.; Gold, R.H.; Fon, G.T.

    1982-04-01

    In contrast to most other neoplastic processes of bone, in our study osseous metastases from soft-tissue sarcomas (STS) were more reliably detected by radiography than by scintigraphy. The radiographic manifestations of 65 skeletal metastases in 23 patients with STS were reveiwed. Although most metastases (88%) were osteolytic, eight (12%) lesions were osteoblastic. The destructive patterns were geographic in 29%, moth-eaten in 55%, and permeative in 12% of the lesions. The axial skeleton was most commonly involved. In the long bones the diaphyses were the predominant sites of involvement. The bony cortex was frequently breached, with resultant soft-tissue swelling and pathologic fractures. Noteworthy features included subarticular location, involvement of the sarcoiliac joint, and an expansile appearance.

  11. Delayed phlegmon with gallstone fragments masquerading as soft tissue sarcoma

    PubMed Central

    Goodman, Laura F.; Bateni, Cyrus P.; Bishop, John W.; Canter, Robert J.

    2016-01-01

    Complications from lost gallstones after cholecystectomy are rare but varied from simple perihepatic abscess to empyema and expectoration of gallstones. Gallstone complications have been reported in nearly every organ system, although reports of malignant masquerade of retained gallstones are few. We present the case of an 87-year-old woman with a flank soft tissue tumor 4 years after laparoscopic cholecystectomy. The initial clinical, radiographic and biopsy findings were consistent with soft tissue sarcoma (STS), but careful review of her case in multidisciplinary conference raised the suspicion for retained gallstones rather than STS. The patient was treated with incisional biopsy/drainage of the mass, and gallstones were retrieved. The patient recovered completely without an extensive resectional procedure, emphasizing the importance of multidisciplinary sarcoma care to optimize outcomes for potential sarcoma patients. PMID:27333918

  12. Roentgen Examination of Soft Tissues of the Pelvis

    PubMed Central

    Noonan, Charles D.

    1964-01-01

    With meticulous preparation of the patient and with careful technique, the soft tissues of the pelvis are identifiable in most cases. Search should be made for the traces of abnormal pelvic structures on plain-film studies. Once the normal is recognized, any variations are easily identified. The fundamental differences between various radiologic densities—air, fat, fluid, muscle, calcium, bone and metal—should be observed. Special procedures can be used to enhance the contrasts after adequate evaluation of the simplest and, on many occasions, the invaluable, plain-film study of the soft tissues of the pelvis. ImagesFigure 2.Figure 3.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8. PMID:14232160

  13. [Metastasis and progression mechanisms of soft tissue tumors].

    PubMed

    Steinestel, K; Wardelmann, E

    2015-11-01

    Invasion and metastatic dissemination of tumor cells defines prognosis not only in patients with epithelial, but also mesenchymal neoplasms. Early and clinically inapparent micrometastases occur in many patients, and the risk for metastasis correlates with the tumor subtype and histologic tumor grade. In recent years and analogous to the situation in epithelial tumors, mechanisms of tumor cell dissemination in soft tissue tumors have been increasingly understood, and it has been shown that reorganization of the actin cytoskeleton plays a key role in these processes. This review summarizes current knowledge on the mechanisms of progression and metastasis of soft tissue tumors and points out possible targets for novel anti-invasive and anti-metastatic therapies. PMID:26324521

  14. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    PubMed Central

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  15. Magnetic resonance imaging of benign soft tissue neoplasms in adults.

    PubMed

    Walker, Eric A; Fenton, Michael E; Salesky, Joel S; Murphey, Mark D

    2011-11-01

    This article reviews a spectrum of benign soft tissue tumors found in adults. Rather than presenting a complete review, the focus of this article is on benign tumors for which the diagnosis may be confidently made or strongly suggested on the basis of imaging. Diagnoses presented include nodular fasciitis, superficial and deep fibromatosis, elastofibroma, lipomatous lesions, giant cell tumor of the tendon sheath, pigmented villonodular synovitis, peripheral nerve sheath tumors, Morton neuroma, hemangioma, and myxoma.

  16. Injectable carboxymethylcellulose hydrogels for soft tissue filler applications.

    PubMed

    Varma, Devika M; Gold, Gittel T; Taub, Peter J; Nicoll, Steven B

    2014-12-01

    Disease, trauma and aging all lead to deficits in soft tissue. As a result, there is a need to develop materials that safely and effectively restore areas of deficiency. While autogenous fat is the current gold standard, hyaluronic acid (HA) fillers are commonly used. However, the animal and bacterial origin of HA-based materials can induce adverse reactions in patients. With the aim of developing a safer and more affordable alternative, this study characterized the properties of a plant-derived, injectable carboxymethylcellulose (CMC) soft tissue filler. Specifically, methacrylated CMC was synthesized and crosslinked to form stable hydrogels at varying macromer concentrations (2-4% w/v) using an ammonium persulfate and ascorbic acid redox initiation system. The equilibrium Young's modulus was shown to vary with macromer concentration (ranging from ∼2 to 9.25kPa), comparable to values of native soft tissue and current surgical fillers. The swelling properties were similarly affected by macromer concentration, with 4% gels exhibiting the lowest swelling ratio and mesh size, and highest crosslinking density. Rheological analysis was performed to determine gelation onset and completion, and was measured to be within the ISO standard for injectable materials. In addition, hydrolytic degradation of these gels was sensitive to macromer concentration, while selective removal using enzymatic treatment was also demonstrated. Moreover, favorable cytocompatibility of the CMC hydrogels was exhibited by co-culture with human dermal fibroblasts. Taken together, these findings demonstrate the tunability of redox-crosslinked CMC hydrogels by varying fabrication parameters, making them a versatile platform for soft tissue filler applications.

  17. Injectable carboxymethylcellulose hydrogels for soft tissue filler applications.

    PubMed

    Varma, Devika M; Gold, Gittel T; Taub, Peter J; Nicoll, Steven B

    2014-12-01

    Disease, trauma and aging all lead to deficits in soft tissue. As a result, there is a need to develop materials that safely and effectively restore areas of deficiency. While autogenous fat is the current gold standard, hyaluronic acid (HA) fillers are commonly used. However, the animal and bacterial origin of HA-based materials can induce adverse reactions in patients. With the aim of developing a safer and more affordable alternative, this study characterized the properties of a plant-derived, injectable carboxymethylcellulose (CMC) soft tissue filler. Specifically, methacrylated CMC was synthesized and crosslinked to form stable hydrogels at varying macromer concentrations (2-4% w/v) using an ammonium persulfate and ascorbic acid redox initiation system. The equilibrium Young's modulus was shown to vary with macromer concentration (ranging from ∼2 to 9.25kPa), comparable to values of native soft tissue and current surgical fillers. The swelling properties were similarly affected by macromer concentration, with 4% gels exhibiting the lowest swelling ratio and mesh size, and highest crosslinking density. Rheological analysis was performed to determine gelation onset and completion, and was measured to be within the ISO standard for injectable materials. In addition, hydrolytic degradation of these gels was sensitive to macromer concentration, while selective removal using enzymatic treatment was also demonstrated. Moreover, favorable cytocompatibility of the CMC hydrogels was exhibited by co-culture with human dermal fibroblasts. Taken together, these findings demonstrate the tunability of redox-crosslinked CMC hydrogels by varying fabrication parameters, making them a versatile platform for soft tissue filler applications. PMID:25152355

  18. Soft Tissue Esthetic Norms for Mahabubnagar Population of Southern India

    PubMed Central

    Sinojiya, Jay; Aileni, Kaladhar Reddy; Rachala, Madhukar Reddy; Pyata, Jaipal Reddy; Mallikarjun, Vankre; Reddy, C. Manjunatha

    2014-01-01

    Aims: The Aim of the study was to establish Soft Tissue Cephalometric Norms for skeletal and dental relationships amongst the Mahabubnagar adult population. Materials and Methods: Sixty subjects (30 Males & 30 Females) subjects from different part of Mahabubnagar in the age group 18-25 Years (Mean age 21.3 Years) were selected at random for the study and lateral cephalograms were taken. All the cephalograms were traced by two operators using conventional hand tracing. The parameters used in the study were taken from Arnett and Bergman soft tissue cephalometric analysis (STCA). Overall 46 measurements including 40 linear, 6 angular parameters were used. Mean and standard deviation values were calculated. The difference between males and females were evaluated using student t-test. Results: The values obtained from the study showed significant difference in most of the parameters from that of Arnett et al., norms and between males and females within Mahabubnagar population. Conclusion: Males had thicker soft tissue structures, acute nasolabial angle, increased facial lengths and heights, increased midface deficiency, recessive lower face, more convex profile and less upright mandibular incisors than females within Mahabubnagar population. PMID:24596789

  19. Sorafenib in advanced, heavily pretreated patients with soft tissue sarcomas.

    PubMed

    Brämswig, Kira; Ploner, Ferdinand; Martel, Alexandra; Bauernhofer, Thomas; Hilbe, Wolfgang; Kühr, Thomas; Leitgeb, Clemens; Mlineritsch, Brigitte; Petzer, Andreas; Seebacher, Veronika; Stöger, Herbert; Girschikofsky, Michael; Hochreiner, Gerhard; Ressler, Sigrun; Romeder, Franz; Wöll, Ewald; Brodowicz, Thomas

    2014-08-01

    Therapeutic options for patients with advanced pretreated soft tissue sarcomas are limited. However, in this setting, sorafenib has shown promising results. We reviewed the data of 33 patients with soft tissue sarcoma treated with sorafenib within a named patient program in Austria. Twelve physicians from eight different hospitals provided records for the analysis of data. Among the 33 patients, the predominant histological subtype of sarcoma was leiomyosarcoma (n=18, 55%). Other subtypes were represented by only one or two cases. Fifteen patients presented with metastases at the time of diagnosis. Another 17 patients developed metastases later in the course of the disease (data on one patient are missing). Most of the 33 patients had undergone resection of the primary (n=29, 88%) and half of the patients had received radiotherapy (n=17, 52%). Chemotherapy for metastatic disease had been administered to 30 patients (91%). The majority had received two or more regimens of chemotherapy (n=25, 76%) before sorafenib treatment. The use of sorafenib resulted in a median time to treatment failure of 92 days in patients with leiomyosarcoma and 45 days in patients with other histological subtypes. One-third of the patients derived benefits from treatment: four patients were documented with partial response and six with stabilized disease. In terms of treatment-related toxicity, skin problems of various degrees and gastrointestinal disturbances were frequently reported. In this retrospective analysis of heavily pretreated patients with advanced soft tissue sarcomas, sorafenib was associated with some antitumor activity and an acceptable toxicity profile. PMID:24667659

  20. Pazopanib in the management of advanced soft tissue sarcomas

    PubMed Central

    Cranmer, Lee D; Loggers, Elizabeth T; Pollack, Seth M

    2016-01-01

    Therapy of soft tissue sarcomas represents an area of significant unmet need in oncology. Angiogenesis has been explored as a potential target both preclinically and clinically, with suggestions of activity. Pazopanib is a multitargeted tyrosine kinase inhibitor with prominent antiangiogenic effects. In a Phase II study, pazopanib demonstrated activity in strata enrolling patients with leiomyosarcomas, synovial sarcomas, or other sarcomas but not those enrolling adipocytic sarcomas. PALETTE, the pivotal Phase III trial, demonstrated improved progression-free survival versus placebo in pazopanib-treated patients previously treated for advanced soft tissue sarcomas. No survival benefit was observed, and adipocytic sarcomas were excluded. Health-related quality-of-life assessments indicated significant decrements in several areas affected by pazopanib toxicities, but no global deterioration. Cost-effectiveness analyses indicate that pazopanib therapy may or may not be cost-effective in different geographic settings. Pazopanib provides important proof-of-concept for antiangiogenic therapy in soft tissue sarcomas. Its use can be improved by further biological studies of its activity profile in sarcomas, studies of biological rational combinations, and clinicopathologic/biological correlative studies of activity to allow better drug targeting. PMID:27354810

  1. Palliation of Soft Tissue Cancer Pain With Radiofrequency Ablation

    PubMed Central

    Locklin, Julia K.; Mannes, Andrew; Berger, Ann; Wood, Bradford J.

    2008-01-01

    The purpose of this study was to analyze the feasibility, safety, and efficacy of radiofrequency ablation (RFA) to treat pain from soft tissue neoplasms. RFA was performed on 15 painful soft tissue tumors in 14 patients. Tumors varied in histology and location and ranged in size from 2 to 20 cm. Patient pain was assessed using the Brief Pain Inventory (BPI) at baseline and 1 day, 1 week, 1 month, and 3 months post RFA. All patients had unresectable tumors or were poor operative candidates whose pain was poorly controlled by conventional treatment methods. BPI scores were divided into two categories: pain severity and interference of pain. Although not all scores were statistically significant, all mean scores trended down with increased time post ablation. Based on these outcomes, RFA appears to be a low-risk and well-tolerated procedure for pain palliation in patients with unresectable, painful soft tissue neoplasms. RFA is effective for short-term local pain control and may provide another option for failed chemotherapy or radiation therapy in patients with cancer. However, pain may transiently worsen, and relief is often temporary. PMID:15524075

  2. [Systemic therapy and hyperthermia for locally advanced soft tissue sarcoma].

    PubMed

    Lindner, L H; Angele, M; Dürr, H R; Rauch, J; Bruns, C

    2014-05-01

    Patients with high-risk soft tissue sarcomas (FNCLCC grades 2-3, > 5 cm and deep lying) are at a high risk of local recurrence or distant metastases despite optimal surgical tumor resection. Therefore, multimodal treatment should be considered for this difficult to treat patient group. Besides surgery, radiation therapy and chemotherapy, hyperthermia has become a valid, complementary treatment option within multimodal treatment concepts. Hyperthermia in this context means the selective heating of the tumor region to temperatures of 40-43 °C for 60 min by microwave radiation in addition to simultaneous chemotherapy or radiation therapy. A randomized phase III study demonstrated that the addition of hyperthermia to neoadjuvant chemotherapy improved tumor response and was associated with a minimal risk of early disease progression as compared to chemotherapy alone. The addition of hyperthermia to a multimodal treatment regimen for high-risk soft tissue sarcoma consisting of surgery, radiation therapy and chemotherapy, either in the neoadjuvant or adjuvant setting after incomplete or marginal tumor resection, significantly improved local progression-free and disease-free survival. Based on these results and due to the generally good tolerability of hyperthermia, this treatment method in combination with chemotherapy should be considered as a standard treatment option within multimodal treatment approaches for locally advanced high-risk soft tissue sarcoma.

  3. Extremity Soft Tissue Sarcoma: Tailoring Resection to Histologic Subtype.

    PubMed

    Cable, Matthew G; Randall, R Lor

    2016-10-01

    Soft tissue sarcomas comprise tumors originating from mesenchymal or connective tissue. Histologic grade is integral to prognosis. Because sarcoma management is multimodal, histologic subtype should inform optimum treatment. Appropriate biopsy and communication between surgeon and pathologist can help ensure a correct diagnosis. Treatment often involves surgical excision with wide margins and adjuvant radiotherapy. There is no consensus on what constitutes an adequate margin for histologic subtypes. An appreciation of how histology corresponds with tumor biology and surgical anatomic constraints is needed for management of this disease. Even with the surgical goal of wide resection being obtained, many patients do not outlive their disease. PMID:27591492

  4. Extremity Soft Tissue Sarcoma: Tailoring Resection to Histologic Subtype.

    PubMed

    Cable, Matthew G; Randall, R Lor

    2016-10-01

    Soft tissue sarcomas comprise tumors originating from mesenchymal or connective tissue. Histologic grade is integral to prognosis. Because sarcoma management is multimodal, histologic subtype should inform optimum treatment. Appropriate biopsy and communication between surgeon and pathologist can help ensure a correct diagnosis. Treatment often involves surgical excision with wide margins and adjuvant radiotherapy. There is no consensus on what constitutes an adequate margin for histologic subtypes. An appreciation of how histology corresponds with tumor biology and surgical anatomic constraints is needed for management of this disease. Even with the surgical goal of wide resection being obtained, many patients do not outlive their disease.

  5. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VIII. Soft Tissue Injuries.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on soft tissue injuries is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Six units of study are presented: (1) anatomy and physiology of the skin; (2) patient assessment for soft-tissue injuries; (3) pathophysiology and management of soft tissue injuries;…

  6. AZD0530 in Treating Patients With Recurrent Locally Advanced or Metastatic Soft Tissue Sarcoma

    ClinicalTrials.gov

    2015-07-02

    Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Rhabdomyosarcoma; Dermatofibrosarcoma Protuberans; Endometrial Stromal Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma; Uterine Carcinosarcoma; Uterine Leiomyosarcoma

  7. Plantar soft tissue thickness during ground contact in walking

    NASA Technical Reports Server (NTRS)

    Cavanagh, P. R.

    1999-01-01

    A technique is introduced for the measurement of plantar soft tissue thickness during barefoot walking. Subjects stepped into an adjustable Plexiglas frame which ensured that the required bony landmarks were appropriately positioned relative to a linear ultrasound probe connected to a conventional 7.5 MHz ultrasound scanner. Clear images of the metatarsal condyles or other foot bones were obtained throughout ground contact. Subsequent analysis of the video taped images using a motion analysis system allowed the tissue displacement to be calculated as a function of time. The tissue underneath the second metatarsal head was shown to undergo an average maximum compression of 45.7% during the late stages of ground contact during first step gait in a group of five normal subjects with a mean unloaded tissue thickness of 15.2 mm. The technique has a number of applications, including use in the validation of deformation predicted by finite element models of the soft tissue of the foot, and the study of alterations in the cushioning properties of the heel by devices which constrain the displacement of the heel pad.

  8. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  9. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy. PMID:27446642

  10. Photothermal lesions in soft tissue induced by optical fiber microheaters

    PubMed Central

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-01-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy. PMID:27446642

  11. Development of stable peri-implant soft tissue and mentolabial sulcus depth with an implant-retained soft tissue conformer after osteocutaneous flap reconstruction.

    PubMed

    Dhima, Matilda; Rieck, Kevin L; Arce, Kevin; Salinas, Thomas J

    2013-01-01

    Excessive soft tissue bulk, movement, chronic inflammation, and hypertrophy in periimplant areas pose challenges for long-term management of peri-implant soft tissues surrounding osteocutaneous flap reconstructions. A case history report is presented on the predictable establishment of stable peri-implant soft tissue and improved mentolabial sulcus depth in a patient treated for high-grade osteosarcoma of the mandible. Following surgical resection, reconstruction with osteocutaneous fibula free flap, and endosseous implant placement, a combined surgical and prosthetic approach was used through a lip switch vestibuloplasty and an implant-retained soft tissue conformer.

  12. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    NASA Astrophysics Data System (ADS)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

  13. Multimodal noninvasive monitoring of soft tissue wound healing.

    PubMed

    Bodo, Michael; Settle, Timothy; Royal, Joseph; Lombardini, Eric; Sawyer, Evelyn; Rothwell, Stephen W

    2013-12-01

    Here we report results of non-invasive measurements of indirect markers of soft tissue healing of traumatic wounds in an observational swine study and describe the quantification of analog physiological signals. The primary purpose of the study was to measure bone healing of fractures with four different wound treatments. A second purpose was to quantify soft tissue wound healing by measuring the following indirect markers: (1) tissue oxygenation, (2) fluid content, and (3) blood flow, which were all measured by non-invasive modalities, measured with available devices. Tissue oxygenation was measured by near infrared spectroscopy; fluid content was measured by bipolar bio-impedance; and blood flow was measured by Doppler ultrasound. Immediately after comminuted femur fractures were produced in the right hind legs of thirty anesthetized female Yorkshire swine, one of four wound treatments was instilled into each wound. The four wound treatments were as follows: salmon fibrinogen/thrombin-n = 8; commercial bone filler matrix-n = 7; bovine collagen-n = 8; porcine fibrinogen/thrombin-n = 7. Fractures were stabilized with an external fixation device. Immediately following wound treatments, measurements were made of tissue oxygenation, fluid content and blood flow; these measurements were repeated weekly for 3 weeks after surgery. Analog signals of each modality were recorded on both the wounded (right) hind leg and the healthy (left) hind leg, for comparison purposes. Data were processed off-line. The mean values of 10-s periods were calculated for right-left leg comparison. ANOVA was applied for statistical analysis. Results of the bone healing studies are published separately (Rothwell et al. in J Spec Oper Med 13:7-18, 2013). For soft tissue wounds, healing did not differ significantly among the four wound treatments; however, regional oxygenation of wounds treated with salmon fibrinogen/thrombin showed slightly different time trends. Further studies are

  14. Ultrasonic characterization of soft tissue vibrations based on the two-dimensional Fourier transform

    NASA Astrophysics Data System (ADS)

    Sikdar, Siddhartha; Kim, Yongmin; Beach, Kirk W.

    2005-09-01

    It has recently been demonstrated that soft tissue vibrations in the body, traditionally associated with vascular bruits and cardiac murmurs, can potentially be used for the ultrasonic diagnosis of coronary artery disease and vascular trauma. In this paper, the ultrasonic spectrum of soft tissue vibrations is formulated using the two-dimensional Fourier transform, making full use of the information present in the backscattered ultrasound echoes from vibrating tissue. Parametric simulation studies show that vibrations with amplitude 1 μm may be detected even with tissue velocity of 20 cm/s and acceleration of 5 m/s2, e.g., during peak cardiac motion. Vibrations with amplitude as low as 0.1 μm may be detected when the tissue acceleration is negligible, e.g., during mid-diastole. Also, it was found that tissue vibrations in a direction transverse to the ultrasound beam can be detected. In vivo examples of cardiac wall vibrations in patients with coronary artery disease are presented. Tissue vibrations can provide improved sensitivity over conventional duplex ultrasound since the scattering strength from tissue is significantly higher than that from blood. In addition, detection of tissue vibrations has reduced angle dependency and does not require visualization of the vessel lumen, making the exam less dependent on operator skill.

  15. Modeling of Nonlinear Elastic Tissues for Surgical Simulation

    PubMed Central

    Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.

    2010-01-01

    Realistic modeling of the interaction between surgical instruments and human organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Primarily due to computational considerations, most of the past real-time surgical simulation research has assumed linear elastic behavior for modeling tissues, even though human soft tissues generally possess nonlinear properties. For a nonlinear model, the well-known Poynting effect developed during shearing of the tissue results in normal forces not seen in a linear elastic model. Using constitutive equations of nonlinear tissue models together with experiments, we show that the Poynting effect results in differences in force magnitude larger than the absolute human perception threshold for force discrimination in some tissues (e.g. myocardial tissues) but not in others (e.g. brain tissue simulants). PMID:20503126

  16. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  17. Navigation in endoscopic soft tissue surgery: perspectives and limitations.

    PubMed

    Baumhauer, Matthias; Feuerstein, Marco; Meinzer, Hans-Peter; Rassweiler, J

    2008-04-01

    Despite rapid developments in the research areas of medical imaging, medical image processing, and robotics, the use of computer assistance in surgical routine is still limited to diagnostics, surgical planning, and interventions on mostly rigid structures. In order to establish a computer-aided workflow from diagnosis to surgical treatment and follow-up, several proposals for computer-assisted soft tissue interventions have been made in recent years. By means of different pre- and intraoperative information sources, such as surgical planning, intraoperative imaging, and tracking devices, surgical navigation systems aim to support surgeons in localizing anatomical targets, observing critical structures, and sparing healthy tissue. Current research in particular addresses the problem of organ shift and tissue deformation, and obstacles in communication between navigation system and surgeon. In this paper, we review computer-assisted navigation systems for soft tissue surgery. We concentrate on approaches that can be applied in endoscopic thoracic and abdominal surgery, because endoscopic surgery has special needs for image guidance due to limitations in perception. Furthermore, this paper informs the reader about new trends and technologies in the area of computer-assisted surgery. Finally, a balancing of the key challenges and possible benefits of endoscopic navigation refines the perspectives of this increasingly important discipline of computer-aided medical procedures. PMID:18366319

  18. Navigation in endoscopic soft tissue surgery: perspectives and limitations.

    PubMed

    Baumhauer, Matthias; Feuerstein, Marco; Meinzer, Hans-Peter; Rassweiler, J

    2008-04-01

    Despite rapid developments in the research areas of medical imaging, medical image processing, and robotics, the use of computer assistance in surgical routine is still limited to diagnostics, surgical planning, and interventions on mostly rigid structures. In order to establish a computer-aided workflow from diagnosis to surgical treatment and follow-up, several proposals for computer-assisted soft tissue interventions have been made in recent years. By means of different pre- and intraoperative information sources, such as surgical planning, intraoperative imaging, and tracking devices, surgical navigation systems aim to support surgeons in localizing anatomical targets, observing critical structures, and sparing healthy tissue. Current research in particular addresses the problem of organ shift and tissue deformation, and obstacles in communication between navigation system and surgeon. In this paper, we review computer-assisted navigation systems for soft tissue surgery. We concentrate on approaches that can be applied in endoscopic thoracic and abdominal surgery, because endoscopic surgery has special needs for image guidance due to limitations in perception. Furthermore, this paper informs the reader about new trends and technologies in the area of computer-assisted surgery. Finally, a balancing of the key challenges and possible benefits of endoscopic navigation refines the perspectives of this increasingly important discipline of computer-aided medical procedures.

  19. Long-term stability and prediction of soft tissue changes after LeFort I surgery.

    PubMed

    Hack, G A; de Mol van Otterloo, J J; Nanda, R

    1993-12-01

    Many evaluations of soft tissue changes after orthognathic surgery have been undertaken, and many correlations of soft tissue to hard tissue movements have been established. These studies have not, however, specifically discussed the long-term stability or characteristics of the soft tissue changes. The objectives of this study were (1) to determine the long term stability of soft tissue changes 5 years after LeFort I osteotomy, (2) to determine reliable correlations, if any, of soft tissue changes to bony movements effected in surgery, and (3) to determine the predictability of soft tissue changes as an aid to orthodontic treatment planning. Cephalometric data from 25 patients who were treated with LeFort I osteotomy with or without a concurrent mandibular procedure were analyzed retrospectively. Cases were selected from the patient records of the Department of Oral Surgery of the Vrije Universiteit in Amsterdam, the Netherlands. These patients were followed up at four time points, the last being a mean of 6.1 years after surgery. Analysis of stability data revealed that most horizontal and vertical soft tissue change after LeFort I surgery occurred in the first year after surgery. Significant (> 10%) change continued to occur for subnasale, labrale inferius, upper lip protrusion, lower lip protrusion, and soft tissue convexity during the subsequent 5 years. Hard tissue to soft tissue correlations were calculated and ratios of soft tissue to hard tissue movement were determined for appropriate hard and soft tissue landmarks at four time intervals. Reliable correlations of hard tissue change at surgery to 5-year soft tissue change could be made for 10 variables, which was considerably less frequently than for 1-year soft tissue change. The relatively low reliability of long-term prediction correlations suggests that soft tissue movements may be more independent of hard tissue over time. One-year prediction values were similar to 5-year values and thus could be used

  20. Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping

    2016-11-01

    A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.

  1. Depsipeptide (Romidepsin) in Treating Patients With Metastatic or Unresectable Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-09-12

    Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Gastrointestinal Stromal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  2. Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers.

    PubMed

    Lanir, Yoram

    2015-04-01

    A new mechanistic theory was developed for soft tissues growth and remodeling (G&R). The theory considers tissues with unidirectional fibers. It is based on the loading-dependent local turnover events of each constituent and on the resulting evolution of the tissue micro-structure, the tissue dimensions and its mechanical properties. The theory incorporates the specific mechanical properties and turnover kinetics of each constituent, thereby establishing a general framework which can serve for future integration of additional mechanisms involved in G&R. The feasibility of the theory was examined by considering a specific realization of tissues with one fibrous constituent (collagen fibers), assuming a specific loading-dependent first-order fiber's turnover kinetics and the fiber's deposition characteristics. The tissue was subjected to a continuous constant rate growth. Model parameters were adopted from available data. The resulting predictions show qualitative agreement with a number of well-known features of tissues including the fibers' non-uniform recruitment density distribution, the associated tissue convex nonlinear stress-stretch relationship, and the development of tissue pre-stretch and pre-stress states. These results show that mechanistic micro-structural modeling of soft tissue G&R based on first principles can successfully capture the evolution of observed tissues' structure and size, and of their associated mechanical properties.

  3. Facial Soft Tissue Measurement in Microgravity-induces Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Pavela, James; Garcia, Kathleen; Sargsyan, Ashot

    2014-01-01

    Fluid shifts are a well-known phenomenon in microgravity, and one result is facial edema. Objective measurement of tissue thickness in a standardized location could provide a correlate with the severity of the fluid shift. Previous studies of forehead tissue thickness (TTf) suggest that when exposed to environments that cause fluid shifts, including hypergravity, head-down tilt, and high-altitude/lowpressure, TTf changes in a consistent and measurable fashion. However, the technique in past studies is not well described or standardized. The International Space Station (ISS) houses an ultrasound (US) system capable of accurate sub-millimeter measurements of TTf. We undertook to measure TTf during long-duration space flight using a new accurate, repeatable and transferable technique. Methods: In-flight and post-flight B-mode ultrasound images of a single astronaut's facial soft tissues were obtained using a Vivid-q US system with a 12L-RS high-frequency linear array probe (General Electric, USA). Strictly mid-sagittal images were obtained involving the lower frontal bone, the nasofrontal angle, and the osseo-cartilaginous junction below. Single images were chosen for comparison that contained identical views of the bony landmarks and identical acoustical interface between the probe and skin. Using Gingko CADx DICOM viewing software, soft tissue thickness was measured at a right angle to the most prominent point of the inferior frontal bone to the epidermis. Four independent thickness measurements were made. Conclusions: Forehead tissue thickness measurement by ultrasound in microgravity is feasible, and our data suggest a decrease in tissue thickness upon return from microgravity environment, which is likely related to the cessation of fluid shifts. Further study is warranted to standardize the technique with regard to the individual variability of the local anatomy in this area.

  4. Images of Soft-bodied Animals with External Hard Shell: 3D Visualization of the Embedded Soft Tissue

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Images of soft-bodied animals (snails) of various types with external hard shell are obtained for 25, 27 and 29 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The interior properties of the embedded soft tissue are analysed utilizing the software. From the reconstructed images, the soft tissue distribution, void spaces associated with the soft tissue and external hard shell are identified. 3D images are reconstructed at these energies and optimum energy is chosen based on the quality of the image for further analysis. The optimum energy allowed us to visualize the visibility of low absorbing details and interior microstructure of the embedded soft tissue.

  5. Differential accumulation of lead by soft tissues of rabbit

    SciTech Connect

    Villarreal-Trevino, C.M.; Villegas-Navarro, A.

    1987-08-01

    In studies on retention of lead by soft tissues, it is reported that, in acute and chronic intoxications, the concentration of Pb decrease in the following order: liver, kidney, heart and brain. The liver contains more lead than the other soft tissues; this might be due to the volume of blood that stays within the organ. Several parameters like age, temperature, perfusion, vascularity and residual blood volume could be important factors in the movement and differential accumulation of lead in blood and tissues. However, these parameters do not completely explain the quantitative differences in the retention of Pb between organs, and it is possible that other factors like the dose and the time between the administration of lead and the killing (exposure time), would have considerable importance in this process that so far has not been satisfactorily explained. The relationships between the size of a dose of lead given intravenously and the retention of this metal by some organs, as well as the effect of the duration of exposure of an intravenously administered dose of lead on accumulation were studied in this work. The possible relationships between accumulation and the values reported for perfusion and residual blood volumes were also studied.

  6. Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ

    PubMed Central

    Yang, Tsung-Lin

    2011-01-01

    Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications. PMID:21673932

  7. Scalp Rotation Flap for Reconstruction of Complex Soft Tissue Defects.

    PubMed

    Costa, Dary J; Walen, Scott; Varvares, Mark; Walker, Ronald

    2016-02-01

    Importance Scalp reconstructions may be required after tumor resection or trauma. The inherent anatomy of the scalp presents challenges and may limit reconstructive options. Objective To describe and investigate the scalp rotation flap as a reconstructive technique for complex soft tissue defects. Design Retrospective case series with a mean follow-up of 13 months. Setting Tertiary academic center. Participants A total of 22 patients with large scalp soft tissue defects undergoing scalp rotation flap reconstruction. Interventions The flap is designed adjacent to the defect and elevated in the subgaleal plane. The flap is rotated into the defect, and a split-thickness skin graft is placed over the donor site periosteum. Main Outcomes and Measure Data points collected included defect size, operative time, hospital stay, and patient satisfaction with cosmetic outcome. Results Mean patient age was 71 years. Mean American Society of Anesthesiologist classification was 2.8. Mean defect size was 41 cm(2) (range: 7.8-120 cm(2)), and 19 of 22 defects resulted from a neoplasm resection. Mean operative time was 181 minutes, and mean hospital stay was 2.4 days. There were no intraoperative complications. Three patients with previous radiation therapy had distal flap necrosis. Twenty-one patients (95%) reported an acceptable cosmetic result. Conclusions and Relevance The scalp rotation flap is an efficient and reliable option for reconstructing complex soft tissue defects. This can be particularly important in patients with significant medical comorbidities who cannot tolerate a lengthy operative procedure. PMID:26949586

  8. Scalp Rotation Flap for Reconstruction of Complex Soft Tissue Defects.

    PubMed

    Costa, Dary J; Walen, Scott; Varvares, Mark; Walker, Ronald

    2016-02-01

    Importance Scalp reconstructions may be required after tumor resection or trauma. The inherent anatomy of the scalp presents challenges and may limit reconstructive options. Objective To describe and investigate the scalp rotation flap as a reconstructive technique for complex soft tissue defects. Design Retrospective case series with a mean follow-up of 13 months. Setting Tertiary academic center. Participants A total of 22 patients with large scalp soft tissue defects undergoing scalp rotation flap reconstruction. Interventions The flap is designed adjacent to the defect and elevated in the subgaleal plane. The flap is rotated into the defect, and a split-thickness skin graft is placed over the donor site periosteum. Main Outcomes and Measure Data points collected included defect size, operative time, hospital stay, and patient satisfaction with cosmetic outcome. Results Mean patient age was 71 years. Mean American Society of Anesthesiologist classification was 2.8. Mean defect size was 41 cm(2) (range: 7.8-120 cm(2)), and 19 of 22 defects resulted from a neoplasm resection. Mean operative time was 181 minutes, and mean hospital stay was 2.4 days. There were no intraoperative complications. Three patients with previous radiation therapy had distal flap necrosis. Twenty-one patients (95%) reported an acceptable cosmetic result. Conclusions and Relevance The scalp rotation flap is an efficient and reliable option for reconstructing complex soft tissue defects. This can be particularly important in patients with significant medical comorbidities who cannot tolerate a lengthy operative procedure.

  9. Soft soap as a tissue simulant medium for wound ballistic studies investigated by comparative firings with assault rifles Ak 4 and M16A1 into live, anesthetized animals.

    PubMed

    Janzon, B

    1982-01-01

    For the purpose of comparing the properties of a particular soft soap with those of live muscle tissue, a comparative study was carried out, involving firings into live, anesthetized pigs and into blocks of soft soap. The weapon - ammunition combinations utilized were Ak 4 - sk ptr 10 prj - the Swedish version of 7.62 mm NATO assault rifle M16A1- M. 193 - the U.S. standard weapon, calibre 5.56 mm. The registrations were done by flash X-ray units of 105 and 150 kilovolts, mounted in an orthogonal stereo set-up with 8-11 units, making it possible to obtain 4 to 6 measurements of bullet position, yaw angle etc. during the penetration of the target in one shot. By evaluation of these firings, and by "pooling" of the data for each series it was possible to calculate retardation force on the bullet as a function of penetration depth for the soap targets, and for the live targets. The results show that no significant difference can be discerned between the soft soap and animal tissue as regards their influence on the behaviour of the bullet.

  10. Skin and soft tissue infections in the military.

    PubMed

    Lamb, Lucy; Morgan, M

    2013-09-01

    Skin and soft tissue infections (SSTI) are common in military populations regularly living and training in close contact with each other. The majority of such infections are simple and can be easily treated with antibiotics and appropriate infection control practices. Some, however, can progress to become complex and even life threatening, such as Panton-Valentine Leukocidin (PVL)-associated staphylococcus aureus pneumonia, or Streptococcus pyogenes necrotising fasciitis, which carry a mortality rate of up to 65% and 30%, respectively. This review focuses on the most important SSTIs and those more commonly affecting military personnel with advice on how they are best managed. PMID:24109144

  11. Targeted Chemotherapy in Bone and Soft-Tissue Sarcoma.

    PubMed

    Harwood, Jared L; Alexander, John H; Mayerson, Joel L; Scharschmidt, Thomas J

    2015-10-01

    Historically surgical intervention has been the mainstay of therapy for bone and soft-tissue sarcomas, augmented with adjuvant radiation for local control. Although cytotoxic chemotherapy revolutionized the treatment of many sarcomas, classic treatment regimens are fraught with side effects while outcomes have plateaued. However, since the approval of imatinib in 2002, research into targeted chemotherapy has increased exponentially. With targeted therapies comes the potential for decreased side effects and more potent, personalized treatment options. This article reviews the evolution of medical knowledge regarding sarcoma, the basic science of sarcomatogenesis, and the major targets and pathways now being studied.

  12. New and emerging concepts in soft tissue fillers: roundtable discussion.

    PubMed

    Sundaram, Hema; Flynn, Timothy; Cassuto, Daniel; Lorenc, Z Paul

    2012-08-01

    In the years since the U.S. FDA approval in 2003 of the first hyaluronic acid (HA) filler, a number of other HA products have become available for use in the U.S., in addition to products composed of calcium hydroxylapatite (CaHA), poly-L lactic acid (PLLA) and polymethyl methacrylate (PMMA). This roundtable discussion between two US-based dermatologists, a European plastic surgeon, and a US-based plastic surgeon provides an overview of commonly used alloplastic filler products and examines how new strategies for soft tissue augmentation are developing as filler options continue to expand.

  13. The evolution of soft tissue fillers in clinical practice.

    PubMed

    Murray, Christian A; Zloty, David; Warshawski, Laurence

    2005-04-01

    To remain experts in skin care and treatment, every dermatologist must be aware of the evolving role of soft tissue fillers in dermatology. Patients with facial scarring, lipodystrophy, contour abnormalities, and age- and sun-induced rhytids can be successfully treated. A literature review, industry recommendations, and the authors' experience serve to highlight fillers most appropriate for each patient's complaint. Newer agents, including the hyaluronic acids and human collagens, and long-lasting materials, such as polymethlymethracrylate and calcium hydroxlyapatite, are reviewed. This discussion of the specific risks, indications, and technical pearls for the various fillers will allow clinicians to accurately advise or treat patients.

  14. Soft Tissue Tumours: Their Natural History and Treatment

    PubMed Central

    Cade, Stanford

    1951-01-01

    A series of 153 patients, the largest yet recorded from a single source, suffering from soft tissue sarcoma is discussed. References to the literature show the rarity of such tumours, the vagueness of the nomenclature and the disappointing results of treatment. Of the 153 patients only 7 have no histological confirmation of the diagnosis. In 146, sections and histological reports are available. 148 patients have been followed up either to death or to date. ImagesFig. 1Fig. 2Fig. 3Fig. 4 PMID:14808223

  15. Denoised and texture enhanced MVCT to improve soft tissue conspicuity

    SciTech Connect

    Sheng, Ke Qi, Sharon X.; Gou, Shuiping; Wu, Jiaolong

    2014-10-15

    Purpose: MVCT images have been used in TomoTherapy treatment to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation, and adaptive radiation therapy is limited due to insignificant photoelectric interaction components and the presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. Algebraic reconstruction with sparsity regularizers as well as local denoising methods has not significantly improved the soft tissue conspicuity. The authors aim to utilize a nonlocal means denoising method and texture enhancement to recover the soft tissue information in MVCT (DeTECT). Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. Following imaging denoising, a saliency map was created to further enhance visual conspicuity of low contrast structures. In this study, BM3D and saliency maps were applied to MVCT images of a CT imaging quality phantom, a head and neck, and four prostate patients. Following these steps, the contrast-to-noise ratios (CNRs) were quantified. Results: By applying BM3D denoising and saliency map, postprocessed MVCT images show remarkable improvements in imaging contrast without compromising resolution. For the head and neck patient, the difficult-to-see lymph nodes and vein in the carotid space in the original MVCT image became conspicuous in DeTECT. For the prostate patients, the ambiguous boundary between the bladder and the prostate in the original MVCT was clarified. The CNRs of phantom low contrast inserts were improved from 1.48 and 3.8 to 13.67 and 16.17, respectively. The CNRs of two regions-of-interest were improved from 1.5 and 3.17 to 3.14 and 15.76, respectively, for the head and neck patient. DeTECT also increased the CNR of prostate from 0.13 to 1.46 for the four prostate patients. The results are substantially better than a local denoising method using anisotropic diffusion

  16. Skin and soft tissue infections in the military.

    PubMed

    Lamb, Lucy; Morgan, M

    2013-09-01

    Skin and soft tissue infections (SSTI) are common in military populations regularly living and training in close contact with each other. The majority of such infections are simple and can be easily treated with antibiotics and appropriate infection control practices. Some, however, can progress to become complex and even life threatening, such as Panton-Valentine Leukocidin (PVL)-associated staphylococcus aureus pneumonia, or Streptococcus pyogenes necrotising fasciitis, which carry a mortality rate of up to 65% and 30%, respectively. This review focuses on the most important SSTIs and those more commonly affecting military personnel with advice on how they are best managed.

  17. Electrospun nanofibrous scaffolds for engineering soft connective tissues.

    PubMed

    James, Roshan; Toti, Udaya S; Laurencin, Cato T; Kumbar, Sangamesh G

    2011-01-01

    Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft connective tissues such as skin, ligament, muscle, and tendon, as well as vascular and neural tissue. Bioactive versions of these materials have been produced by encapsulating molecules such as drugs and growth factors during fabrication. The fibers comprising these scaffolds can be designed to match the structure of the native extracellular matrix (ECM) closely by mimicking the dimensions of the collagen fiber bundles evident in soft connective tissues. These nanostructured implants show improved biological performance over the bulk materials in aspects of cellular infiltration and in vivo integration, and the topography of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical steps in engineering complex functional tissues and crucial to improved biocompatibility and functional performance. Nanofiber matrices can be fabricated using a variety of techniques, including drawing, molecular self-assembly, freeze-drying, phase separation, and electrospinning. Among these processes, electrospinning has emerged as a simple, elegant, scalable, continuous, and reproducible technique to produce polymeric nanofiber matrices from solutions and their melts. We have shown the ability of this technique to be used to fabricate matrices composed of fibers from a few hundred nanometers to several microns in diameter by simply altering the polymer solution concentration. This chapter will discuss the use of the electrospinning technique in the fabrication of ECM-mimicking scaffolds. Furthermore, selected scaffolds will be seeded with primary adipose-derived stromal cells, imaged using scanning electron microscopy and confocal microscopy, and evaluated in terms

  18. The Nanomechanics of Biomineralized Soft-Tissues and Organic Matrices

    NASA Astrophysics Data System (ADS)

    Bezares-Chavez, Jiddu

    The research reported on in this dissertation is concerned with the macro-molecular constitution and geometrical organization of the soft-tissue comprising the matrix of the nacreous portion of the shell of Haliotis rufescens, the Red abalone. Nacre is one of literally legions of intricate biomineralized structures that exist in nature and has long served as a paradigm for elegant and optimized structural de-sign. Biomineralization involves, inter alia, the uptake and synthesis of elements and compounds from the environment and their incorporation into highly optimized functional structures. Nacre has a structure described as a brick wall like with a matrix of biopolymer layers that are preformed and serve as a template into which nanocrystalline tiles of CaCO3 precipitate. The matrix, or what are known as inter-lamellar layers, are of particular interest as they impart both toughness and strength to the composite ceramic nacre structure. The work first involved a histochemical mapping of the macromolecular structure of the interlamellar layers; this revealed the locations of proteins and functional molecular groups that serve as nucleation sites for the ceramic tiles. Parallel studies on the nacre of Nautilus pompilius, the Chambered Nautilus, revealed the generality of the findings. Of particular interest was determining both the content and layout of chitin within these layers. In fact it was determined that chitin was organized as mostly unidirectional architecture of fibrils, with a certain fraction of fibrils laying at cross directions. Most remarkably, it was found that the fibrils possessed a very long range connectivity that spanned many tiles. This was determined by systematic atomic force (afm) and analytical optical histochemical microscopy. These findings were further verified by a unique form of mechanical testing whereby tensile testing was conducted on groups of interlamellar layers extracted from nacre. Mechanical testing led to a quantitative

  19. Soft tissue decomposition of submerged, dismembered pig limbs enclosed in plastic bags.

    PubMed

    Pakosh, Caitlin M; Rogers, Tracy L

    2009-11-01

    This study examines underwater soft tissue decomposition of dismembered pig limbs deposited in polyethylene plastic bags. The research evaluates the level of influence that disposal method has on underwater decomposition processes and details observations specific to this scenario. To our knowledge, no other study has yet investigated decomposing, dismembered, and enclosed remains in water environments. The total sample size consisted of 120 dismembered pig limbs, divided into a subsample of 30 pig limbs per recovery period (34 and 71 days) for each treatment. The two treatments simulated non-enclosed and plastic enclosed disposal methods in a water context. The remains were completely submerged in Lake Ontario for 34 and 71 days. In both recovery periods, the non-enclosed samples lost soft tissue to a significantly greater extent than their plastic enclosed counterparts. Disposal of remains in plastic bags therefore results in preservation, most likely caused by bacterial inhibition and reduced oxygen levels.

  20. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus. PMID:25830209

  1. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  2. Enhancing Aesthetic Outcomes of Soft Tissue Coverage of the Hand

    PubMed Central

    Rehim, Shady A.; Kowalski, Evan; Chung, Kevin C.

    2016-01-01

    Hand aesthetics in general and aesthetic refinements of soft-tissue coverage of the hand in particular have been increasingly considered over the past few years. Advancements of microsurgery together with the traditional methods of tissue transfer have expanded the armamentarium of the reconstructive surgeon, thus shifting the reconstructive paradigm from simply ‘filling the defect’ to reconstructive refinement to provide the best functional and aesthetic results. However, drawing the boundary between what does and what does not constitute ‘aesthetic’ reconstruction of the hand is not straightforward. The selection amongst the vast amount of currently available reconstructive methods and the difficulties in objectively measuring or quantifying aesthetics has made this task complex and rather arbitrary. In this article we divide the hand into several units and subunits to simplify our understanding of the basic functional and aesthetic requirements of these regions that may ultimately bring order to complexity. PMID:25626826

  3. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters.

  4. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. PMID:26255624

  5. Linear elastic properties of the facial soft tissues using an aspiration device: towards patient specific characterization.

    PubMed

    Luboz, V; Promayon, E; Payan, Y

    2014-11-01

    Biomechanical modeling of the facial soft tissue behavior is needed in aesthetic or maxillo-facial surgeries where the simulation of the bone displacements cannot accurately predict the visible outcome on the patient's face. Because these tissues have different nature and elastic properties across the face, depending on their thickness, and their content in fat or muscle, individualizing their mechanical parameters could increase the simulation accuracy. Using a specifically designed aspiration device, the facial soft tissues deformation is measured at four different locations (cheek, cheekbone, forehead, and lower lip) on 16 young subjects. The stiffness is estimated from the deformations generated by a set of negative pressures using an inverse analysis based on a Neo Hookean model. The initial Young's modulus of the cheek, cheekbone, forehead, and lower lip are respectively estimated to be 31.0 kPa±4.6, 34.9 kPa±6.6, 17.3 kPa±4.1, and 33.7 kPa±7.3. Significant intra-subject differences in tissue stiffness are highlighted by these estimations. They also show important inter-subject variability for some locations even when mean stiffness values show no statistical difference. This study stresses the importance of using a measurement device capable of evaluating the patient specific tissue stiffness during an intervention.

  6. Observation, Radiation Therapy, Combination Chemotherapy, and/or Surgery in Treating Young Patients With Soft Tissue Sarcoma

    ClinicalTrials.gov

    2014-09-08

    Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Synovial Sarcoma; Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Dermatofibrosarcoma Protuberans; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  7. The role of vitamin K in soft-tissue calcification.

    PubMed

    Theuwissen, Elke; Smit, Egbert; Vermeer, Cees

    2012-03-01

    Seventeen vitamin K-dependent proteins have been identified to date of which several are involved in regulating soft-tissue calcification. Osteocalcin, matrix Gla protein (MGP), and possibly Gla-rich protein are all inhibitors of soft-tissue calcification and need vitamin K-dependent carboxylation for activity. A common characteristic is their low molecular weight, and it has been postulated that their small size is essential for calcification inhibition within tissues. MGP is synthesized by vascular smooth muscle cells and is the most important inhibitor of arterial mineralization currently known. Remarkably, the extrahepatic Gla proteins mentioned are only partly carboxylated in the healthy adult population, suggesting vitamin K insufficiency. Because carboxylation of the most essential Gla proteins is localized in the liver and that of the less essential Gla proteins in the extrahepatic tissues, a transport system has evolved ensuring preferential distribution of dietary vitamin K to the liver when vitamin K is limiting. This is why the first signs of vitamin K insufficiency are seen as undercarboxylation of the extrahepatic Gla proteins. New conformation-specific assays for circulating uncarboxylated MGP were developed; an assay for desphospho-uncarboxylated matrix Gla protein and another assay for total uncarboxylated matrix Gla protein. Circulating desphospho-uncarboxylated matrix Gla protein was found to be predictive of cardiovascular risk and mortality, whereas circulating total uncarboxylated matrix Gla protein was associated with the extent of prevalent arterial calcification. Vitamin K intervention studies have shown that MGP carboxylation can be increased dose dependently, but thus far only 1 study with clinical endpoints has been completed. This study showed maintenance of vascular elasticity during a 3-y supplementation period, with a parallel 12% loss of elasticity in the placebo group. More studies, both in healthy subjects and in patients at risk

  8. Prevalence of oral soft tissue lesions in Vidisha

    PubMed Central

    2010-01-01

    Background The purpose of this study was to determine the prevalence of oral soft tissue lesions in patients and to assess their clinicopathological attributes. 3030 subjects belonging to a semi-urban district of Vidisha in Central India were screened. Patients were examined with an overhead examination light and those who were identified with a questionable lesion underwent further investigations. Statistical analysis was done using the SPSS software. Findings 8.4 percent of the population studied had one or more oral lesions, associated with prosthetic use, trauma and tobacco consumption. With reference to the habit of tobacco use, 635(21%) were smokers, 1272(42%) tobacco chewers, 341(11%) smokers and chewers, while 1464(48%) neither smoked nor chewed. 256 patients were found to have significant mucosal lesions. Of these, 216 cases agreed to undergo scalpel biopsy confirmation. 88 had leukoplakia, 21 had oral submucous fibrosis, 9 showed smoker's melanosis, 6 patients had lichen planus, 17 had dysplasia, 2 patients had squamous cell carcinoma while there was 1 patient each with lichenoid reaction, angina bullosa hemorrhagica, allergic stomatitis and nutritional stomatitis. Conclusions The findings in this population reveal a high prevalence of oral soft tissue lesions and a rampant misuse of variety of addictive substances in the community. Close follow up and systematic evaluation is required in this population. There is an urgent need for awareness programs involving the community health workers, dentists and allied medical professionals. PMID:20181008

  9. Skin and soft tissue infections in immunocompetent patients.

    PubMed

    Breen, James Owen

    2010-04-01

    The increasing incidence of skin and soft tissue infections requires family physicians to be familiar with the management of these conditions. Evidence of systemic infection, such as fever, tachycardia, and hypotension, is an indication for inpatient management. Urgent surgical referral is imperative for those with life-threatening or rapidly advancing infections. In patients with uncomplicated abscesses measuring less than 5 cm in diameter, surgical drainage alone is the primary therapeutic intervention. Wound irrigation using tap water has similar outcomes as irrigation using sterile water. When antimicrobials are indicated, choice of agents depends on local resistance and susceptibility patterns. In settings where suspicion of methicillin-resistant Staphylococcus aureus (MRSA) is low, beta-lactam antibiotics are the first-line treatments for uncomplicated skin and soft tissue infections without focal coalescence or trauma. When empiric coverage for MRSA is indicated and the infection is uncomplicated, oral agents, such as tetracyclines, trimethoprim/sulfamethoxazole, and clindamycin, are preferred. Vancomycin is the first-line agent for MRSA in hospitalized patients, and newer agents, such as linezolid, daptomycin, and tigecycline, should be reserved for patients who do not respond to or cannot tolerate vancomycin therapy. There are insufficient data to support eradicating the carrier state in patients with MRSA or their contacts with nasal mupirocin or antibacterial body washes. Standard infection-control precautions, including proper and frequent handwashing, are a mainstay of MRSA prevention.

  10. Satisfying patient expectations with soft-tissue augmentation.

    PubMed

    Mandy, Stephen H

    2009-01-01

    The popularity of cosmetic procedures for rejuvenating the face has undergone enormous growth over the past few years, such that at least one in four cosmetic procedures involves the use of soft-tissue augmentation. Of note is the trend away from surgical interventions and toward noninvasive cosmetic procedures, which now account for the majority of all cosmetic procedures performed in the United States. Adult patients of all ages are selecting soft-tissue augmentation, either as a precursor to or a substitute for surgery; there is a trend toward the use of injectable devices in younger patients (aged 35 - 50 years). Patients in different age groups have diverse treatment needs ranging from the correction of fine lines and wrinkles in younger patients to volume restoration in older patients. Thus, the treatment needs will dictate the treatment approach, particularly with injectable filler treatments. The aesthetic physician needs to help the patient understand and select the most appropriate rejuvenating treatment based on a variety of factors, specifically, patient age, motivating factors, timing, cosmetic area to be addressed, and desired outcome. This article suggests a series of steps to help determine the most appropriate approach for volume restoration with injectable devices for satisfying patient treatment expectations.

  11. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  12. Soft tissue strain measurement using an optical method

    NASA Astrophysics Data System (ADS)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  13. Soft tissue facial anthropometry in Down syndrome subjects.

    PubMed

    Ferrario, Virgilio F; Dellavia, Claudia; Zanotti, Gianfranco; Sforza, Chiarella

    2004-05-01

    The three-dimensional coordinates of 50 selected soft tissue facial landmarks were digitized on 28 white Italian subjects with Down syndrome (17 male and 11 female subjects aged 12 to 45 years) and 429 healthy controls of comparable ages by an electromechanical instrument. From the landmarks, 16 facial dimensions were calculated. Data were compared with those collected in healthy individuals by computing z-scores. Overall, most variables were smaller in subjects with Down syndrome than in their normal controls selected for sex, age, and ethnicity (negative z-scores), even if not all of them reached statistical significance. Independently of sex, subjects with Down syndrome had faces that were significantly (P <0.05, paired Student t test) narrower (skull base and mandible), less deep (upper, middle, and lower face), and shorter (face and nose height) than the faces of normal subjects. Additionally, ear width and length were significantly reduced on both sides of the face. Only facial height was significantly different between sexes (P = 0.023, unpaired Student t test), with a female z-score that was more than two times the relevant male value. The present investigation represents the first detailed quantitative analysis of the facial soft tissue characteristics of Italian white subjects with Down syndrome.

  14. Updates on the cytogenetics and molecular cytogenetics of benign and intermediate soft tissue tumors

    PubMed Central

    NISHIO, JUN

    2013-01-01

    Soft tissue tumors are classified according to their histological resemblance to normal adult tissues and can be grouped into the following categories based on metastatic potential: benign, intermediate (locally aggressive), intermediate (rarely metastasizing) and malignant. Over the past two decades, considerable progress has been made in our understanding of the genetic background of soft tissue tumors. Traditional laboratory techniques, such as cytogenetic analysis and fluorescence in situ hybridization (FISH), can be used for diagnostic purposes in soft tissue pathology practice. Moreover, cytogenetic and molecular studies are often necessary for prognostics and follow-up of soft tissue sarcoma patients. This review provides updated information on the applicability of laboratory genetic testing in the diagnosis of benign and intermediate soft tissue tumors. These tumors include nodular fasciitis, chondroid lipoma, collagenous fibroma (desmoplastic fibroblastoma), giant cell tumor of tendon sheath (GCTTS)/pigmented villonodular synovitis (PVNS), angiofibroma of soft tissue, myxoinflammatory fibroblastic sarcoma (MIFS) and ossifying fibromyxoid tumor (OFMT). PMID:23255885

  15. [An observation on the histological structure of Oncomelania hupensis soft tissue by agar-paraffin double-embedding method].

    PubMed

    Tan, Ping; Zhang, Jie; Li, Qing; Yu, Zhi-jun

    2014-12-01

    In order to study the histological structure of Oncomelania hupensis soft tissue, the fixed soft tissues of O. hupensis were pre-embedded in the agar and made blocks, then dehydrated, transparentized, immersed in paraffin, sectioned, and stained with haematoxylin-eosin (HE). Permanent slides of O. hupensis soft tissue were obtained. The histological structure of soft tissues was clear under the microscope.

  16. Dynamic simulations of tissue welding

    SciTech Connect

    Maitland, D.J.; Eder, D.C.; London, R.A.; Glinsky, M.E.

    1996-02-01

    The exposure of human skin to near-infrared radiation is numerically simulated using coupled laser, thermal transport and mass transport numerical models. The computer model LATIS is applied in both one-dimensional and two-dimensional geometries. Zones within the skin model are comprised of a topical solder, epidermis, dermis, and fatty tissue. Each skin zone is assigned initial optical, thermal and water density properties consistent with values listed in the literature. The optical properties of each zone (i.e. scattering, absorption and anisotropy coefficients) are modeled as a kinetic function of the temperature. Finally, the water content in each zone is computed from water diffusion where water losses are accounted for by evaporative losses at the air-solder interface. The simulation results show that the inclusion of water transport and evaporative losses in the model are necessary to match experimental observations. Dynamic temperature and damage distributions are presented for the skin simulations.

  17. Multiple-Image Radiography for Human Soft Tissue

    SciTech Connect

    Muehleman,C.; Li, J.; Zhong, Z.; Brankov, J.; Wernick, M.

    2006-01-01

    Conventional radiography only provides a measure of the X-ray attenuation caused by an object; thus, it is insensitive to other inherent informative effects, such as refraction. Furthermore, conventional radiographs are degraded by X-ray scatter that can obscure important details of the object being imaged. The novel X-ray technology diffraction-enhanced imaging (DEI) has recently allowed the visualization of nearly scatter-free images displaying both attenuation and refraction properties. A new method termed multiple-image radiography (MIR) is a significant improvement over DEI, corrects errors in DEI, is more robust to noise and produces an additional image that is entirely new to medical imaging. This new image, which portrays ultra-small-angle X-ray scattering (USAXS) conveys the presence of microstructure in the object, thus differentiating homogeneous tissues from tissues that are irregular on a scale of micrometers. The aim of this study was to examine the use of MIR for evaluation of soft tissue, and in particular to conduct a preliminary investigation of the USAXS image, which has not previously been used in tissue imaging.

  18. Biofilm in group A streptococcal necrotizing soft tissue infections

    PubMed Central

    Siemens, Nikolai; Chakrakodi, Bhavya; Shambat, Srikanth Mairpady; Morgan, Marina; Bergsten, Helena; Skrede, Steinar; Madsen, Martin B.; Johansson, Linda; Juarez, Julius; Bosnjak, Lidija; Mörgelin, Matthias; Svensson, Mattias

    2016-01-01

    Necrotizing fasciitis caused by group A streptococcus (GAS) is a life-threatening, rapidly progressing infection. At present, biofilm is not recognized as a potential problem in GAS necrotizing soft tissue infections (NSTI), as it is typically linked to chronic infections or associated with foreign devices. Here, we present a case of a previously healthy male presenting with NSTI caused by GAS. The infection persisted over 24 days, and the surgeon documented the presence of a “thick layer biofilm” in the fascia. Subsequent analysis of NSTI patient tissue biopsies prospectively included in a multicenter study revealed multiple areas of biofilm in 32% of the patients studied. Biopsies associated with biofilm formation were characterized by massive bacterial load, a pronounced inflammatory response, and clinical signs of more severe tissue involvement. In vitro infections of a human skin tissue model with GAS NSTI isolates also revealed multilayered fibrous biofilm structures, which were found to be under the control of the global Nra gene regulator. The finding of GAS biofilm formation in NSTIs emphasizes the urgent need for biofilm to be considered as a potential complicating microbiological feature of GAS NSTI and, consequently, emphasizes reconsideration of antibiotic treatment protocols.

  19. Biofilm in group A streptococcal necrotizing soft tissue infections

    PubMed Central

    Siemens, Nikolai; Chakrakodi, Bhavya; Shambat, Srikanth Mairpady; Morgan, Marina; Bergsten, Helena; Skrede, Steinar; Madsen, Martin B.; Johansson, Linda; Juarez, Julius; Bosnjak, Lidija; Mörgelin, Matthias; Svensson, Mattias

    2016-01-01

    Necrotizing fasciitis caused by group A streptococcus (GAS) is a life-threatening, rapidly progressing infection. At present, biofilm is not recognized as a potential problem in GAS necrotizing soft tissue infections (NSTI), as it is typically linked to chronic infections or associated with foreign devices. Here, we present a case of a previously healthy male presenting with NSTI caused by GAS. The infection persisted over 24 days, and the surgeon documented the presence of a “thick layer biofilm” in the fascia. Subsequent analysis of NSTI patient tissue biopsies prospectively included in a multicenter study revealed multiple areas of biofilm in 32% of the patients studied. Biopsies associated with biofilm formation were characterized by massive bacterial load, a pronounced inflammatory response, and clinical signs of more severe tissue involvement. In vitro infections of a human skin tissue model with GAS NSTI isolates also revealed multilayered fibrous biofilm structures, which were found to be under the control of the global Nra gene regulator. The finding of GAS biofilm formation in NSTIs emphasizes the urgent need for biofilm to be considered as a potential complicating microbiological feature of GAS NSTI and, consequently, emphasizes reconsideration of antibiotic treatment protocols. PMID:27699220

  20. Characterisation and modelling of brain tissue for surgical simulation.

    PubMed

    Mendizabal, A; Aguinaga, I; Sánchez, E

    2015-05-01

    Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data. PMID:25676499

  1. Large Osteoarthritic Cyst Presenting as Soft Tissue Tumour – A Case Report

    PubMed Central

    Kosuge, DD; Park, DH; Cannon, SR; Briggs, TW; Pollock, RC; Skinner, JA

    2007-01-01

    Large osteoarthritic cysts can sometimes be difficult to distinguish from primary osseous and soft tissue tumours. We present such a case involving a cyst arising from the hip joint and eroding the acetabulum which presented as a soft tissue malignancy referred to a tertiary bone and soft tissue tumour centre. We discuss the diagnostic problems it may pose, and present a literature review of the subject. PMID:17535605

  2. High-performance soft-tissue imaging in extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  3. Suction based mechanical characterization of superficial facial soft tissues.

    PubMed

    Weickenmeier, J; Jabareen, M; Mazza, E

    2015-12-16

    The present study is aimed at a combined experimental and numerical investigation of the mechanical response of superficial facial tissues. Suction based experiments provide the location, time, and history dependent behavior of skin and SMAS (superficial musculoaponeurotic system) by means of Cutometer and Aspiration measurements. The suction method is particularly suitable for in vivo, multi-axial testing of soft biological tissue including a high repeatability in subsequent tests. The campaign comprises three measurement sites in the face, i.e. jaw, parotid, and forehead, using two different loading profiles (instantaneous loading and a linearly increasing and decreasing loading curve), multiple loading magnitudes, and cyclic loading cases to quantify history dependent behavior. In an inverse finite element analysis based on anatomically detailed models an optimized set of material parameters for the implementation of an elastic-viscoplastic material model was determined, yielding an initial shear modulus of 2.32kPa for skin and 0.05kPa for SMAS, respectively. Apex displacements at maximum instantaneous and linear loading showed significant location specificity with variations of up to 18% with respect to the facial average response while observing variations in repeated measurements in the same location of less than 12%. In summary, the proposed parameter sets for skin and SMAS are shown to provide remarkable agreement between the experimentally observed and numerically predicted tissue response under all loading conditions considered in the present study, including cyclic tests. PMID:26584965

  4. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold

    PubMed Central

    Kucińska-Lipka, Justyna; Janik, Helena

    2013-01-01

    Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617

  5. Meningeal hemangiopericytomas and hemangiopericytoma/solitary fibrous tumors of extracranial soft tissues: a comparison.

    PubMed

    Ambrosini-Spaltro, Andrea; Eusebi, Vincenzo

    2010-04-01

    The current World Health Organization (WHO) classification of central nervous system tumors lists meningeal hemangiopericytomas (HPC) and meningeal solitary fibrous tumors (SFT) as separate entities. On the contrary, SFT and HPC of soft tissues are regarded in the WHO soft tissue fascicle as features of the same entity. The clinical data, histology, and immunohistochemistry of 18 cases of meningeal HPC and 12 cases of peripheral soft tissue HPC-SFT were compared. Both intracranial and soft tissue lesions had significant similarities that included staghorn vasculature, necrotic areas, cytologic atypia, and positivities for CD99, collagen IV, and reticulin. Nevertheless, intracranial tumors were more cellular than HPC-SFT of soft tissues and had fewer collagen bands. Meningeal HPC in addition had more mitoses, higher Ki67 index, stained less intensely for CD34 and B-cell lymphoma 2 (BCL2) than HPC-SFT of soft tissues. Meningeal HPCs recurred in 13 out of 14 cases (92.9%). One of the patients died in the postoperative period for a recurrent lesion 5 years after the diagnosis, and another patient developed an extracranial metastasis 13 years after surgery. None of the six cases of HPC-SFT of soft tissues available for follow-up recurred. Both meningeal and soft tissue tumors appear to represent different features of the same entity. A more aggressive phenotype of the tumor together with incomplete surgical resection of intracranial lesions might explain the noticeable clinical difference between HPC of the meninges and HPC-SFT of soft tissues.

  6. Facial soft tissue thicknesses: Noise, signal, and P.

    PubMed

    Stephan, Carl N; Munn, Lachlan; Caple, Jodi

    2015-12-01

    Facial soft tissue thicknesses (FSTTs) hold an important role in craniofacial identification, forming the underlying quantitative basis of craniofacial superimposition and facial approximation methods. It is, therefore, important that patterns in FSTTs be correctly described and interpreted. In prior FSTT literature, small statistically significant differences have almost universally been overemphasized and misinterpreted to reflect sex and ancestry effects when they instead largely encode nuisance statistical noise. Here we examine FSTT data and give an overview of why P-values do not mean everything. Scientific inference, not mechanical evaluation of P, should be awarded higher priority and should form the basis of FSTT analysis. This hinges upon tempered consideration of many factors in addition to P, e.g., study design, sampling, measurement errors, repeatability, reproducibility, and effect size. While there are multiple lessons to be had, the underlying message is foundational: know enough statistics to avoid misinterpreting background noise for real biological effects. PMID:26295929

  7. [Soft tissue tumors - the view of the molecular biologist].

    PubMed

    Krsková, Lenka; Mrhalová, Marcela; Kalinová, Markéta; Campr, Vít; Capková, Linda; Grega, Marek; Háček, Jaromír; Hornofová, Ludmila; Chadimová, Mária; Chmelová, Renata; Kodetová, Daniela; Zámečník, Josef; Kodet, Roman

    2014-07-01

    Soft tissue tumors (SSTs) constitute a broad spectrum of neoplasms with diverse biological properties. Rare or unusual types are often difficult to classify. Recent studies show, that a significant subset of SSTs including many types of sarcomas are associated with specific genetic changes such as chromosomal translocations producing chimeric genes, which play a role in the pathogenesis of SSTs. Because SSTs represent a diagnostically challenging group of tumors, molecular-genetic techniques (FISH or PCR) are useful as supplementary and/or confirmatory diagnostic tools. In the present paper we demonstrate the usefulness of a combined diagnostic approach using the tools of classical histopathology and immunohistochemistry together with the molecular diagnostic approach in selected nosologic entites. PMID:25186594

  8. An Augmented Lagrangian Method for Sliding Contact of Soft Tissue

    PubMed Central

    Guo, Hongqiang; Nickel, Jeffrey C.; Iwasaki, Laura R.; Spilker, Robert L.

    2012-01-01

    Despite the importance of sliding contact in diarthrodial joints, only a limited number of studies have addressed this type of problem, with the result that mechanical behavior of articular cartilage in daily life remains poorly understood. In this paper, a finite element formulation is developed for the sliding contact of biphasic soft tissues. The Augmented Lagrangian method is used to enforce the continuity of contact traction and fluid pressure across the contact interface. The resulting method is implemented in the commercial software COMSOL Multiphysics. The accuracy of the new implementation is verified using an example problem of sliding contact between a rigid, impermeable indenter and a cartilage layer for which analytical solutions have been obtained. The new implementation’s capability to handle a complex loading regime is verified by modeling plowing tests of the temporomandibular joint (TMJ) disc. PMID:22938363

  9. Facial soft tissue thicknesses in the present Czech Population.

    PubMed

    Drgáčová, Anna; Dupej, Ján; Velemínská, Jana

    2016-03-01

    The aim of this study was to find any relation between soft facial tissue thickness (FSTT) and sex, age and asymmetry in the contemporary Czech population. The studied sample consisted of head CT scans of 102 adult Czech individuals between the ages of 21 and 83. Forty FSTTs were evaluated and analysed using PCA, Hotelling's T(2) test, LDA, the Kolmogorov-Smirnov test, MANOVA, the Kruskal-Wallis test and Wilcoxon's paired test. The greatest sexual dimorphism was detected in the lower part of the face, which had discriminant power almost the same as the entire faces (approximately 80%). On the other hand, a significant influence of aging was shown, mostly in the area of the upper face (In females, twice as many landmarks displayed a significant influence, compared with males). The influence of asymmetry was confirmed in seven bilateral landmarks, five of them favouring the right side.

  10. Soft Tissue Myoepithelial Carcinoma of the Neck with Spinal Invasion

    PubMed Central

    Moussaly, Elias; Nazha, Bassel; Kedia, Shiksha; Chang, Qing; Forte, Frank

    2016-01-01

    Soft tissue myoepithelial neoplasms are a rare yet diverse group of tumors, ranging from benign to malignant lesions. Their presentation in the head and neck region is uncommon and represents a challenging diagnosis. Early identification of myoepithelial carcinoma is crucial given its more aggressive course compared to its benign counterpart, although the histopathological distinction between the two can be difficult. EWSR1 gene rearrangement is found in half the cases and has a speculative role in pathogenesis. Complete excision remains the treatment of choice. The roles of chemotherapy and radiation are unclear. We report the hospital course of a 33-year-old female who presented to our institution with a posterior neck mass with spinal invasion, diagnosed as myoepithelial cancer. A literature review of these rare tumors is discussed here. PMID:27746887

  11. Fractures and Soft Tissue Injuries of the Feet and Ankle

    PubMed Central

    English, Edward

    1985-01-01

    An accurate clinical diagnosis of foot and ankle pain can be made by a history, physical examination and routine X-rays of the affected part. Each problem has a specific treatment; however, fractures and dislocations around the foot and ankle can be thought of in an organized fashion by proper physical examination and then the appropriate treatment. Fractures and soft tissue injuries can be treated rationally by understanding the mechanism of injury and the possibility of subsequent deformity. This article classifies specific injuries as a group and indicates a treatment program for each problem. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7aFig. 7bFig. 8Fig. 9Fig. 10 PMID:21274230

  12. The classification and management of skin and soft tissue infections.

    PubMed

    Cross, Louise

    2013-04-01

    Skin and soft tissue infections (SSTIs) are a common problem in patients presenting to the emergency department, varying from mild local inflammation to necrotizing fasciitis. SSTI were the 2nd most common indication for antibiotic use in Europe in 2006. Currently, the National Institute of Clinical Excellence (a UK based independent organization responsible for providing national guidance on the promotion of good health and the prevention and treatment of ill health) has not published any guidelines for the classification and management of these patients. This is a review of the evidence around attempts at developing classification systems for SSTI and their management. It also considers the financial implications for both the patient and the healthcare system and the personal ramifications for patients.

  13. Head and Neck Soft Tissue Sarcomas Treated with Radiation Therapy

    PubMed Central

    Vitzthum, Lucas K.; Brown, Lindsay C.; Rooney, Jessica W.; Foote, Robert L.

    2016-01-01

    Head and neck soft tissue sarcomas (HNSTSs) are rare and heterogeneous cancers in which radiation therapy (RT) has an important role in local tumor control (LC). The purpose of this study was to evaluate outcomes and patterns of treatment failure in patients with HNSTS treated with RT. A retrospective review was performed of adult patients with HNSTS treated with RT from January 1, 1998, to December 31, 2012. LC, locoregional control (LRC), disease-free survival (DFS), overall survival (OS), and predictors thereof were assessed. Forty-eight patients with HNSTS were evaluated. Five-year Kaplan-Meier estimates of LC, LRC, DFS, and OS were 87, 73, 63, and 83%, respectively. Angiosarcomas were found to be associated with worse LC, LRC, DFS, and OS. Patients over the age of 60 had lower rates of DFS. HNSTSs comprise a diverse group of tumors that can be managed with various treatment regimens involving RT. Angiosarcomas have higher recurrence and mortality rates. PMID:27441072

  14. Soft tissue tumors of the head and neck.

    PubMed

    Katenkamp, D

    1987-01-01

    From the tumor register of the Institute of Pathology of Jena all soft tissue tumors of the head and neck collected between 1959 and 1984 were retrieved and reclassified. 562 out of 646 tumors (87%) were benign. Three quarter of these growths could be diagnosed as nerve sheath tumors (schwannomas and neurofibromas), hemangiomas, fibrohistiocytic tumors and lipomas. 84 tumors were malignant (13%). As the most frequent subtypes we found fibrohistiocytic sarcomas (malignant fibrous histiocytomas and atypical fibroxanthomas), muscularly differentiated sarcomas (rhabdo- and leiomyosarcomas) and unclassified sarcomas. The age and sex distribution as well as the localization and histologic peculiarities were analysed and compared with findings reported in the literature. The significance of knowing such data for diagnostic and differential diagnostic considerations is stressed and exemplified. PMID:3592924

  15. Increase of Microcirculatory Blood Flow Enhances Penetration of Ciprofloxacin into Soft Tissue

    PubMed Central

    Joukhadar, Christian; Dehghanyar, Pejman; Traunmüller, Friederike; Sauermann, Robert; Mayer-Helm, Bernhard; Georgopoulos, Apostolos; Müller, Markus

    2005-01-01

    The present study addressed the effect of microcirculatory blood flow on the ability of ciprofloxacin to penetrate soft tissues. Twelve healthy male volunteers were enrolled in an analyst-blinded, clinical pharmacokinetic study. A single intravenous dose of 200 mg of ciprofloxacin was administered over a period of approximately 20 min. The concentrations of ciprofloxacin were measured in plasma and in the warmed and contralateral nonwarmed lower extremities. The microdialysis technique was used for the assessment of unbound ciprofloxacin concentrations in subcutaneous adipose tissue. Microcirculatory blood flow was measured by use of laser Doppler flowmetry. Warming of the extremity resulted in an increase of microcirculatory blood flow by approximately three- to fourfold compared to that at the baseline (P < 0.05) in subcutaneous adipose tissue. The ratio of the maximum concentration (Cmax) of ciprofloxacin for the warmed thigh to the Cmax for the nonwarmed thigh was 2.10 ± 0.90 (mean ± standard deviation; P < 0.05). A combined in vivo pharmacokinetic (PK)-in vitro pharmacodynamic (PD) simulation based on tissue concentration data indicated that killing of Pseudomonas aeruginosa (ATCC 27853 and two clinical isolates) was more effective by about 2 log10 CFU/ml under the warmed conditions than under the nonwarmed conditions (P < 0.05). The improvement of microcirculatory blood flow due to the warming of the extremity was paralleled by an increased ability of ciprofloxacin to penetrate soft tissue. Subsequent PK-PD simulations based on tissue PK data indicated that this increase in tissue penetration was linked to an improved antimicrobial effect at the target site. PMID:16189092

  16. CT-Based Assessment of Relative Soft-Tissue Alteration in Different Types of Ancient Mummies.

    PubMed

    Sydler, Christina; Öhrström, Lena; Rosendahl, Wilfried; Woitek, Ulrich; Rühli, Frank

    2015-06-01

    Mummification leads to alteration of soft-tissue morphology. No research has focused specifically on differences in soft-tissue shrinkage depending on mummification type. This study evaluated whether soft-tissue alteration is dependent on type of mummification. A total of 17 human mummies have been investigated by computed tomography (CT). Samples included artificially embalmed ancient Egyptian mummies, naturally mummified South American corpses, ice mummies (including the Iceman, South Tyrol Museum of Archeology, Bolzano, Italy, ca. 3,300 BC), bog bodies and a desiccated mummy of possibly Asian provenance. The acquired data were compared to four contemporary bodies. The extent of soft-tissue shrinkage was evaluated using CT data. Shrinkage was defined as soft-tissue relative to area of bone (in number of voxels). Measurements were taken at 13 anatomically defined locations. Ice mummies show the highest degree of preservation. This finding is most likely explained due to frozen water within tissues. All other types of mummies show significantly (at P < 0.05) smaller relative area of preserved soft-tissue. Variation between different anatomical structures (e.g., upper lip vs. mid-femur) is significant, unlike variation within one compartment (e.g., proximal vs. distal humerus). Mummification type strongly affects the degree of soft-tissue alteration, surprisingly mostly independent of overall historical age. These results highlight the unique morphological impact of taphonomy on soft-tissue preservation and are of particular interest in tissue research as well as in forensics. PMID:25998649

  17. CT-Based Assessment of Relative Soft-Tissue Alteration in Different Types of Ancient Mummies.

    PubMed

    Sydler, Christina; Öhrström, Lena; Rosendahl, Wilfried; Woitek, Ulrich; Rühli, Frank

    2015-06-01

    Mummification leads to alteration of soft-tissue morphology. No research has focused specifically on differences in soft-tissue shrinkage depending on mummification type. This study evaluated whether soft-tissue alteration is dependent on type of mummification. A total of 17 human mummies have been investigated by computed tomography (CT). Samples included artificially embalmed ancient Egyptian mummies, naturally mummified South American corpses, ice mummies (including the Iceman, South Tyrol Museum of Archeology, Bolzano, Italy, ca. 3,300 BC), bog bodies and a desiccated mummy of possibly Asian provenance. The acquired data were compared to four contemporary bodies. The extent of soft-tissue shrinkage was evaluated using CT data. Shrinkage was defined as soft-tissue relative to area of bone (in number of voxels). Measurements were taken at 13 anatomically defined locations. Ice mummies show the highest degree of preservation. This finding is most likely explained due to frozen water within tissues. All other types of mummies show significantly (at P < 0.05) smaller relative area of preserved soft-tissue. Variation between different anatomical structures (e.g., upper lip vs. mid-femur) is significant, unlike variation within one compartment (e.g., proximal vs. distal humerus). Mummification type strongly affects the degree of soft-tissue alteration, surprisingly mostly independent of overall historical age. These results highlight the unique morphological impact of taphonomy on soft-tissue preservation and are of particular interest in tissue research as well as in forensics.

  18. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  19. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    PubMed

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  20. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    PubMed

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications. PMID:26611112

  1. Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants.

    PubMed

    Kalcioglu, Z Ilke; Mrozek, Randy A; Mahmoodian, Roza; VanLandingham, Mark R; Lenhart, Joseph L; Van Vliet, Krystyn J

    2013-05-31

    Solvent-swollen polymer gels can be utilized as mechanical simulants of biological tissues to evaluate protective systems and assess injury mechanisms. However, a key challenge in this application of synthetic materials is mimicking the rate-dependent mechanical response of complex biological tissues. Here, we characterize the mechanical behavior of tissue simulant gel candidates comprising a chemically crosslinked polydimethylsiloxane (PDMS) network loaded with a non-reactive PDMS solvent, and compare this response with that of tissue from murine heart and liver under comparable loading conditions. We first survey the rheological properties of a library of tissue simulant candidates to investigate the effects of solvent loading percentage, reactive functional group stoichiometry, and solvent molecular weight. We then quantify the impact resistance, energy dissipation capacities, and energy dissipation rates via impact indentation for the tissue simulant candidates, as well as for the murine heart and liver. We demonstrate that by tuning these variables the silicone gels can be engineered to match the impact response of biological tissues. These experiments inform the design principles required for synthetic polymer gels that are optimized to predict the response of specific biological tissues to impact loading, providing insight for further tuning of this gel system to match the impact response of other "soft tissues". PMID:23623681

  2. Scaling model for laser-produced bubbles in soft tissue

    SciTech Connect

    London, R. A., LLNL

    1998-03-12

    The generation of vapor-driven bubbles is common in many emerging laser-medical therapies involving soft tissues. To successfully apply such bubbles to processes such as tissue break-up and removal, it is critical to understand their physical characteristics. To complement previous experimental and computational studies, an analytic mathematical model for bubble creation and evolution is presented. In this model, the bubble is assumed to be spherically symmetric, and the laser pulse length is taken to be either very short or very long compared to the bubble expansion timescale. The model is based on the Rayleigh cavitation bubble model. In this description, the exterior medium is assumed to be an infinite incompressible fluid, while the bubble interior consists of a mixed liquid-gas medium which is initially heated by the laser. The heated interior provides the driving pressure which expands the bubble. The interior region is assumed to be adiabatic and is described by the standard water equation-of-state, available in either tabular, or analytic forms. Specifically, we use adiabats from the equation-of-state to describe the evolution of the interior pressure with bubble volume. Analytic scaling laws are presented for the maximum size, the duration, and the energy of bubbles as functions of the laser energy and initially heated volume. Of particular interest, is the efficiency of converting laser energy into bubble motion.

  3. Laser surgery for selected small animal soft-tissue conditions

    NASA Astrophysics Data System (ADS)

    Bartels, Kenneth E.

    1991-05-01

    With the acquisition of a Nd:YAG and a CO2 laser in the College of Veterinary Medicine at Oklahoma State University in 1989, over 100 small animal clinical cases have been managed with these modern modalities for surgical excision and tissue vaporization. Most procedures have been for oncologic problems, but inflammatory, infectious, or congenital conditions including vaporization of acral lick 'granulomas,' excision/vaporization of foreign body induced, infected draining tracts, and resection of elongated soft palates have been successfully accomplished. Laser excision or vaporization of both benign and malignant neoplasms have effectively been performed and include feline nasal squamous cell carcinoma, mast cell tumors, and rectal/anal neoplasms. Results to date have been excellent with animals exhibiting little postoperative pain, swelling, and inflammation. Investigations involving application of laser energy for tissue welding of esophageal lacerations and hepatitic interstitial hyperthermia for metastatic colorectal cancer have also shown potential. A review of cases with an emphasis on survival time and postoperative morbidity suggests that carefully planned laser surgical procedures in clinical veterinary practice done with standardized protocols and techniques offer an acceptable means of treating conditions that were previously considered extremely difficult or virtually impossible to perform.

  4. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography

    PubMed Central

    Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.

    2010-01-01

    Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864

  5. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  6. Lasers in esthetic dentistry: soft tissue photobiomodulation, hard tissue decontamination, and ceramics conditioning.

    PubMed

    Ramalho, Karen Müller; de Freitas, Patrícia Moreira; Correa-Aranha, Ana Cecília; Bello-Silva, Marina Stella; Lopes, Roberta Marques da Graça; Eduardo, Carlos de Paula

    2014-01-01

    The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm) for dentin decontamination, diode (660 nm) for soft tissue biomodulation, and Er:YAG laser (2,940 nm) for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success.

  7. A technique for managing and accurate registration of periimplant soft tissues.

    PubMed

    Ntounis, Athanasios; Petropoulou, Aikaterini

    2010-10-01

    This article describes an indirect impression technique that accurately captures the soft tissue contours around an implant-supported provisional restoration. Customized impression copings are used to transfer the soft tissue architecture created by the interim prosthesis. The definitive restoration is shaped like the provisional restoration, maintaining the emergence profile and optimizing esthetics.

  8. Bacillary angiomatosis presenting as a soft-tissue tumor without skin involvement.

    PubMed

    Schinella, R A; Greco, M A

    1990-05-01

    A patient with human immunodeficiency virus infection presented with a soft-tissue mass which histologically and clinically mimicked an angiosarcoma. Ultrastructural study, however, revealed bacteria identical to those seen in cutaneous bacillary angiomatosis, but the patient had no skin lesions. To our knowledge, this represents the first report of soft tissue involvement by bacillary angiomatosis without the presence of skin lesions.

  9. Effects of energy drinks on soft tissue healing.

    PubMed

    Tek, Mustafa; Toptas, Orcun; Akkas, Ismail; Kazancioglu, Hakki Oguz; Firat, Tulin; Ezirganli, Seref; Ozan, Fatih

    2014-11-01

    The aim of the present study was to investigate the effects of an energy drink (ED) on soft tissue wound healing in the rat model. Thirty-six male Wistar albino rats were randomly divided into 2 groups. A full-thickness paravertebral linear incision wound model was created. The experimental group (EG) received an ED (Red Bull), and the control group (CG) received water. Red Bull (3.57 mL/kg/d) was administered to the rats by the oral gavage method on the day before the skin incision and continued for 14 days. The rats were sacrificed (n = 6 in each group) on the 3rd, 7th, and 14th day of the study. Sections were obtained from excised linear wound healing site and stained with hematoxylin-eosin and Masson trichrome for morphological analysis. To assess angiogenesis on the sections, immunohistochemical studies were carried out using vascular endothelial growth factor antibody and alpha smooth muscle actin Ab-1. The breaking strength of the wound healing site was measured in Newtons using a tensiometer. Morphological analysis showed that collagen deposition in the wound areas was statistically higher in the EG compared with that of the CG at both the third and seventh days (P < 0.05). Re-epithelialization on healing sites in the EG was statistically higher than in the CG on the seventh day (P < 0.05). The results of the immunohistochemical studies indicated that the numbers of new blood vessels in the wound healing sites of the EG were significantly higher at the 7th and 14th days when compared with the CG (P < 0.05). The breaking strength of the wound healing sites was also significantly higher on the 7th and 14th days in the EG (P < 0.05). The results demonstrate that ED accelerates soft tissue wound healing and that its effect may be due to increased collagen deposition, re-epithelialization, and new blood vessel formation in the wound.

  10. Dehydration effect on the mechanical behaviour of biological soft tissues: observations on kidney tissues.

    PubMed

    Nicolle, S; Palierne, J-F

    2010-11-01

    This paper deals with the effects of dehydration on the mechanical properties of biological soft tissues and with the validity of methods used in previous works such as a coat of petroleum jelly or silicon oil to minimise the drying of the tissue during mechanical testing. We find that the samples get stiffer as they dry but that this phenomenon is wholly reversible upon re-hydrating the samples. A bath of saline solution is the best hydration method but a coat of low-viscosity silicon oil around the free edge of the sample also proves to be a good anti-drying method. However, using petroleum jelly to prevent tissue dehydration should be banned because the jelly largely contributes to the measured mechanical moduli.

  11. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation⋆,⋆⋆,★

    PubMed Central

    Gao, Zhan; Desai, Jaydev P.

    2009-01-01

    This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676

  12. Cixutumumab and Doxorubicin Hydrochloride in Treating Patients With Unresectable, Locally Advanced, or Metastatic Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-05-16

    Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Undifferentiated High Grade Pleomorphic Sarcoma of Bone; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Malignant Peripheral Nerve Sheath Tumor; Childhood Pleomorphic Rhabdomyosarcoma; Childhood Rhabdomyosarcoma With Mixed Embryonal and Alveolar Features; Childhood Synovial Sarcoma; Dermatofibrosarcoma Protuberans; Malignant Adult Hemangiopericytoma; Malignant Childhood Hemangiopericytoma; Metastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Untreated Childhood Rhabdomyosarcoma

  13. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of

  14. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    PubMed

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  15. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    PubMed

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  16. Tool/tissues interaction modeling for transluminal angioplasty simulation.

    PubMed

    Le Fol, T; Haigron, P; Lucas, A

    2007-01-01

    In this paper, a simulation environment is described for balloon dilation during percutaneous transluminal angioplasty. It means simulating tool/tissues interactions involved in the inflation of a balloon by considering patient specific data. In this context, three main behaviors have been identified: soft tissues, crush completely under the effect of the balloon, calcified plaques, do not admit any deformation but could move in deformable structures and blood vessel wall and organs, try to find their original forms. A deformable soft tissue model is proposed, based on the Enhanced ChainMail method to take into account tissues deformation during dilatation. We improved the original ChainMail method with a "forbidden zone" step to facilitate tool/tissues interactions. The simulation was implemented using five key steps: 1) initialization of balloon parameters; 2) definition of the data structure; 3) dilatation of the balloon and displacement approximation; 4) final position estimation by an elastic relaxation; and 5) interpolation step for visualization. Preliminary results obtained from patient CT data are reported. PMID:18002311

  17. A Novel Esthetic Approach using Connective Tissue Graft for Soft Tissue Defect Following Surgical Excision of Gingival Fibrolipoma.

    PubMed

    Balasundaram, Aruna; Parthasarathy, Harinath; Kumar, Praveenkrishna; Gajendran, Priyalochana; Appukuttan, Devapriya

    2014-11-01

    The aim of the present case report is to evaluate the adjunctive use of a connective tissue graft to overcome soft tissue defects following excision of a gingival fibrolipoma in the aesthetic region. Connective tissue graft has been well documented for treating defects of esthetic concern. However, the literature does not contain many reports on the esthetic clinical outcome following the use of connective tissue graft secondary to excision of soft tissue tumours. A 28-year-old male patient reported with a complaint of a recurrent growth in relation to his lower front tooth region. The lesion which was provisionally diagnosed as fibroma was treated with a complete surgical excision, following which a modified coronally advanced flap and connective tissue graft was adopted to overcome the soft tissue defect. The excised growth was diagnosed histologically as fibrolipoma. One year follow up showed no recurrence of the lesion and good esthetics.The adjunctive use of the connective tissue graft and modified coronally advanced flap predictably yields optimal soft tissue fill and excellent esthetics. Hence, routine use of this procedure may be recommended for surgical excision of soft tissue growths in esthetically sensitive areas.

  18. Evaluation of finite-element-based simulation model of photoacoustics in biological tissues

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Ha, Seunghan; Kim, Kang

    2012-03-01

    A finite element (FE)-based simulation model for photoacoustic (PA) has been developed incorporating light propagation, PA signal generation, and sound wave propagation in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. The developed simulation model is evaluated by comparing with other known simulation models such as Monte Carlo method and heat-pressure model. In this in silico simulation, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) target tissue inclusion (or PA contrast agents), and 3) short pulsed laser source (pulse length of 5-10 ns). The laser point source is placed right above the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation is compared with Monte Carlo solution. Photoacoustic signal generation by the target tissue inclusion is simulated using bioheat equation for temperature change, and resultant stress and strain. With stress-strain model, the process of the PA signal generation can be simulated further in details step by step to understand and analyze the photothermal properties of the target tissues or PA contrast agents. The created wide-band acoustic pressure (band width > 150 MHz) propagates through the background tissues to the ultrasound detector located at the tissue surface, governed by sound wave equation. Acoustic scattering and absorption in soft tissues also have been considered. Accuracy and computational time of the developed FE-based simulation model of photoacoustics have been quantitatively analyzed.

  19. Skin and soft tissue necrosis from calcium chloride in a deicer.

    PubMed

    Kim, Min P; Raho, Vittorio J; Mak, John; Kaynar, A Murat

    2007-01-01

    Calcium chloride salt is the principle ingredient of many commercially available deicers. Calcium chloride melts snow and ice by its osmotic action. We present a case of skin and soft tissue necrosis associated with the use of a calcium chloride-containing deicer. Although calcium chloride is known to produce soft tissue necrosis if it extravasates during intravenous administration, necrosis and skin sloughing has rarely been described after topical exposure to this salt. Calcium chloride likely produces tissue injury from the heat liberated by mixing calcium chloride with water (exothermic reaction) and from direct calcium deposits in the skin (calcinosis cutis) and soft tissue.

  20. Skin and soft-tissue infections caused by Aeromonas species.

    PubMed

    Chao, C M; Lai, C C; Tang, H J; Ko, W C; Hsueh, P-R

    2013-04-01

    This study investigated the clinical characteristics of patients with skin and soft-tissue infections (SSTIs) due to Aeromonas species. Patients with SSTIs caused by Aeromonas species during the period from January 2009 to December 2011 were identified from a computerized database of a regional hospital in southern Taiwan. The medical records of these patients were retrospectively reviewed. A total of 129 patients with SSTIs due to Aeromonas species were identified. A. hydrophila (n = 77, 59.7 %) was the most common pathogen, followed by A. veronii biovar sobria (n = 22, 17.1 %), A. veronii biovar veronii (n = 20, 15.5 %), A. caviae (n = 9, 7.0 %), and A. schubertii (n = 1, 0.8 %). The most common isolates obtained from patients with polymicrobial infections were Klebsiella species (n = 33), followed by Enterococcus spp. (n = 24), Enterobacter spp. (n = 21), Escherichia coli (n = 17), Staphylococcus spp. (n = 17), Streptococcus spp. (n = 17), and Acinetobacter spp. (n = 15). Liver cirrhosis and concomitant bacteremia were more common among patients with monomicrobial Aeromonas SSTIs than among patients with polymicrobial SSTIs. Nine (7 %) patients required limb amputations. The in-hospital mortality rate was 1.6 %. In conclusion, Aeromonas species should be considered as important causative pathogens of SSTIs, and most infections are polymicrobial. In addition, the clinical presentation differs markedly between patients with monomicrobial and those with polymicrobial Aeromonas SSTIs.

  1. [Target volume in soft tissue sarcoma of the extremities].

    PubMed

    Faivre, J-C; Le Péchoux, C

    2013-10-01

    Soft tissue sarcoma is a rare entity and heterogeneous disease and its management therefore requires an experienced multidisciplinary team in an expert center. Standard treatment for grade 2 and 3 sarcomas is a conservative, extended surgery planned according to the results of the biopsy, and radiotherapy usually administered postoperatively (or pre-operatively). The indications for preoperative radiotherapy are discussed in a multidisciplinary meeting for locally advanced tumours. The definition of target volumes for conformal radiation therapy requires a good knowledge of the patient record, radioanatomy, as well as a careful reading of surgical and histological reports. The definitions of target volumes combine anatomical and geometrical approach. The gross tumour volume is the visible tumour on MRI preoperatively. The corresponding clinical target volume is defined by a larger longitudinal automatic extension than the radial extension. It is manually corrected taking into account the anatomical barriers to tumour spread. The planning target volume is a concentric automatic margin that may vary from one institution to another, depending on the immobilisation devices and verification of repositioning. Innovative radiotherapy techniques may be used to reduce the size of the margins around target volumes and better protect the organs at risk.

  2. Soft-Tissue Loop for Medial Patellofemoral Ligament Reconstruction.

    PubMed

    Miswan, Mohd Fairudz Bin Mohd; Al-Fayyadh, Mohamed Zubair Mohamed; Seow Hui, Teo; Mohamed Ali, Mohamed Razif Bin; Ng, Wuey Min

    2016-04-01

    A patient with patellar instability frequently presents with anterior knee pain, patellar subluxation, or dislocation. Medial patellofemoral ligament (MPFL) has a key role for normal patella tracking and stability. Reconstruction of the MPFL using a hamstring graft is a commonly used procedure for the treatment of chronic lateral subluxation of patella. Anchor sutures and bony tunnels are used for the patellar attachment of the graft. This can be associated with complications such as patella fracture; besides, it does not produce an anatomical reconstruction for the native MPFL that can alter the direction of tension applied on the patella. To overcome these problems, a soft-tissue loop technique is used for MPFL reconstruction. During this procedure, a semitendinosus graft was passed through the prepatellar extensor retinaculum and secured with sutures. The free ends of the graft were then passed between the second and third layers of the medial patellofemoral retinaculum and fixed to a femoral tunnel on the medial femoral condyle with an interference screw. The desired amount of tension on the graft is achieved under direct vision of patella tracking arthroscopically. We found this method to be relatively safe and fast. It is more anatomical and can avoid the complications during the conventional bony procedures. PMID:27354953

  3. Diagnosis and Percutaneous Treatment of Soft-Tissue Hydatid Cysts

    SciTech Connect

    Akhan, Okan Gumus, Burcak; Akinci, Devrim; Karcaaltincaba, Musturay; Ozmen, Mustafa

    2007-06-15

    The purpose of this study is to demonstrate and discuss the radiological features of four patients with muscular hydatid disease and to evaluate the results of percutaneous treatment in these patients. Four patients (three female and one male) with six muscular hydatid cysts underwent percutaneous treatment and were followed up. The mean age of patients was 35 years (range: 12-60 years). Type I (n = 2), type II (n = 1), and type III (n = 3) hydatid cysts were observed in the thigh (n = 3) and gluteal (n = 1) region on radiologic examination. All interventions were performed under sonographic and fluoroscopic guidance. According to the type of the cyst, the procedure was carried out by either a 'catheterization technique with hypertonic saline and alcohol' or a 'modified catheterization technique.' The mean cathaterization time was 13.7 days, ranging from 1 to 54 days. The dimensions of the residual cavity were noted at every sonographic control, and an average of 96.1% volume reduction was obtained in six cysts of four patients. No sign of viability was observed during the follow-up period. Cavity infection and cellulitis were observed as complications, which resolved after medical therapy. Percutaneous treatment is a safe and effective procedure in patients with soft-tissue hydatid cysts and should be considered as a serious alternative to surgery.

  4. Combining Targeted Agents With Modern Radiotherapy in Soft Tissue Sarcomas

    PubMed Central

    Wong, Philip; Houghton, Peter; Kirsch, David G.; Finkelstein, Steven E.; Monjazeb, Arta M.; Xu-Welliver, Meng; Dicker, Adam P.; Ahmed, Mansoor; Vikram, Bhadrasain; Teicher, Beverly A.; Coleman, C. Norman; Machtay, Mitchell; Curran, Walter J.

    2014-01-01

    Improved understanding of soft-tissue sarcoma (STS) biology has led to better distinction and subtyping of these diseases with the hope of exploiting the molecular characteristics of each subtype to develop appropriately targeted treatment regimens. In the care of patients with extremity STS, adjunctive radiation therapy (RT) is used to facilitate limb and function, preserving surgeries while maintaining five-year local control above 85%. In contrast, for STS originating from nonextremity anatomical sites, the rate of local recurrence is much higher (five-year local control is approximately 50%) and a major cause of death and morbidity in these patients. Incorporating novel technological advancements to administer accurate RT in combination with novel radiosensitizing agents could potentially improve local control and overall survival. RT efficacy in STS can be increased by modulating biological pathways such as angiogenesis, cell cycle regulation, cell survival signaling, and cancer-host immune interactions. Previous experiences, advancements, ongoing research, and current clinical trials combining RT with agents modulating one or more of the above pathways are reviewed. The standard clinical management of patients with STS with pretreatment biopsy, neoadjuvant treatment, and primary surgery provides an opportune disease model for interrogating translational hypotheses. The purpose of this review is to outline a strategic vision for clinical translation of preclinical findings and to identify appropriate targeted agents to combine with radiotherapy in the treatment of STS from different sites and/or different histology subtypes. PMID:25326640

  5. Light ion irradiation for unfavorable soft tissue sarcoma

    SciTech Connect

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.

  6. Soft tissue facial morphometry in subjects with Moebius syndrome.

    PubMed

    Sforza, Chiarella; Grandi, Gaia; Pisoni, Luca; Di Blasio, Chiara; Gandolfini, Mauro; Ferrario, Virgilio F

    2009-12-01

    Moebius syndrome is a congenital facial palsy associated with the impairment of ocular abduction. The three-dimensional characteristics of the facial soft tissues of 12 male and 14 female subjects [3-52 yr of age (mean age + standard deviation: 17 + 14 yr)] were measured using a non-invasive, computerized system; facial volumes, areas, angles, and distances were computed and compared with those obtained in reference subjects of the same age and gender. When compared with reference subjects, patients with Moebius syndrome had a more prominent and hyperdivergent face in the sagittal plane, a smaller and more prominent upper facial third; a smaller middle facial width; a smaller nose; smaller mandibular volume, depth, corpus length, and ramus height; and a more posterior positioned mandible, with a less prominent chin. In conclusion, patients with Moebius syndrome had a tendency towards a skeletal Class II pattern. These morphological variations may be the combined effect of a general alteration of the motor and sensitive facial nerves, including the trigeminal nerve, and of a maldevelopment of the brainstem.

  7. The use of drotrecogin alpha for necrotizing soft tissue infections.

    PubMed

    Rosing, David K; Malepati, Sarath; Yaghoubian, Arezou; Putnam, Brant A; Neville, Angela; Kaji, Amy H; De Virgilio, Christian

    2010-10-01

    The use of Drotrecogin alfa (DAA) (Xigris) in select patients with sepsis has had demonstrable improvement in survival, though its benefit in necrotizing soft tissue infections (NSTI) is unclear. A retrospective review of NSTI patients receiving DAA at our institution from 2006 to 2009 was performed. Our previously derived mortality prediction model, based on classification and regression tree analysis, was applied to patients and the predicted mortality was compared with the actual mortality rate. Ten patients with severe NSTI received DAA. The median admission values were: white blood cell count of 27,000/mm3, serum lactate of 4.0 mmol/L, and serum sodium of 128 mEq/L. Four (40%) patients had systemic complications, five (50%) patients required amputation, and one died (10%). Median time to DAA administration was 12 hours after debridement. There were no bleeding complications attributed to DAA use. Mortality in this series of severe NSTI was only 10 per cent, which compares favorably with the predicted mortality of 18 per cent based on classification and regression tree analysis (P = 0.2). A prospective, randomized study is warranted to determine if the use of DAA should be part of the standard therapy for NSTI patients with a predicted high mortality. PMID:21105620

  8. Prosthetic soft tissue management following two periimplant graft failures: a clinical report.

    PubMed

    Issarayangkul, Charinthorn; Schoenbaum, Todd R; McLaren, Edward A

    2013-09-01

    A 53-year-old man experienced 2 soft tissue graft failures resulting in sizable hard and soft tissue defects in the esthetic zone following implant placement. A third connective tissue graft surgery was successful in repairing the defect and significantly improving soft tissue quality. A screw-retained, interim implant prosthesis was instrumental in gradually shaping the soft tissue over the course of the 3 surgeries. The interim prosthesis was modified numerous times to achieve a balance of esthetics, surgical protection, and gingival contours. The initial form of the prosthesis was designed to protect the surgical site and allow space for postsurgical edema. In its final form, the tissue side of the interim prosthesis pontic was designed to mimic the cross-sectional profile of a natural central incisor root but modified to deliver gentle pressure until maximum papilla height was achieved. The definitive restoration was fabricated to mimic the final design of the interim restoration and gingival architecture.

  9. Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues

    PubMed Central

    McKee, Clayton T.; Last, Julie A.

    2011-01-01

    In this review, we compare the reported values of Young's modulus (YM) obtained from indentation and tensile deformations of soft biological tissues. When the method of deformation is ignored, YM values for any given tissue typically span several orders of magnitude. If the method of deformation is considered, then a consistent and less ambiguous result emerges. On average, YM values for soft tissues are consistently lower when obtained by indentation deformations. We discuss the implications and potential impact of this finding. PMID:21303220

  10. Comparative pathology of canine soft tissue sarcomas: possible models of human non-rhabdomyosarcoma soft tissue sarcomas.

    PubMed

    Milovancev, M; Hauck, M; Keller, C; Stranahan, L W; Mansoor, A; Malarkey, D E

    2015-01-01

    Comparative analyses of canine and human soft tissue sarcomas (STSs) are lacking. This study compared the histological and immunohistochemical (labelling for desmin, smooth muscle actin [SMA], CD31, pancytokeratin, S100 and CD34) appearance of 32 archived, formalin-fixed, paraffin wax-embedded canine STS tumour specimens by board-certified veterinary and medical pathologists, both blinded to the other's interpretations. Comparison between the veterinary and human diagnoses revealed a generally consistent pattern of interpretation with few notable variations. Most tumours (13/32) were judged to display similar histomorphological appearance to human low-grade spindle cell sarcomas, appearing non-distinctive and morphologically of a fibroblastic/myofibroblastic type. Five canine cases resembled human liposarcoma, but with atypical desmin-positive epithelioid cells present. Five canine cases resembled human spindle cell sarcoma with myxoid features and two additional cases resembled human myxofibrosarcoma. Seven canine cases were noted to resemble human undifferentiated sarcoma. Findings in the present study demonstrate that canine STSs display histological and immunohistochemical features similar to their human equivalents. Because of these cross-species similarities, a particular opportunity exists to understand the biology and treatment of human STS by potentially including dogs as clinical models. PMID:25435513

  11. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.

    PubMed

    Sun, Wei; Sacks, Michael S

    2005-11-01

    Numerical simulations of the anisotropic mechanical properties of soft tissues and tissue-derived biomaterials using accurate constitutive models remain an important and challenging research area in biomechanics. While most constitutive modeling efforts have focused on the characterization of experimental data, only limited studies are available on the feasibility of utilizing those models in complex computational applications. An example is the widely utilized exponential constitutive model proposed by Fung. Although present in the biomechanics literature for several decades, implementation of this model into finite element (FE) simulations has been limited. A major reason for limited numerical implementations are problems associated with inherent numerical instability and convergence. To address this issue, we developed and applied two restrictions for a generalized Fung-elastic constitutive model necessary to achieve numerical stability. These are (1) convexity of the strain energy function, and (2) the condition number of material stiffness matrix set lower than a prescribed value. These constraints were implemented in the nonlinear regression used for constitutive model parameter estimation to the experimental biaxial mechanical data. We then implemented the generalized Fung-elastic model into a commercial FE code (ABAQUS, Pawtucket, RI, USA). Single element and multi-element planar biaxial test simulations were conducted to verify the accuracy and robustness of the implementation. Results indicated that numerical convergence and accurate FE implementation were consistently obtained. The present study thus presents an integrated framework for accurate and robust implementation of pseudo-elastic constitutive models for planar soft tissues. Moreover, since our approach is formulated within a general FE code, it can be straightforwardly adopted across multiple software platforms.

  12. Fatal skin and soft tissue infection of multidrug resistant Acinetobacter baumannii: A case report

    PubMed Central

    Ali, Aqsa; Botha, John; Tiruvoipati, Ravindranath

    2014-01-01

    INTRODUCTION Acinetobacter baumannii is usually associated with respiratory tract, urinary tract and bloodstream infections. Recent reports suggest that it is increasingly causing skin and soft tissue infections. It is also evolving as a multidrug resistant organism that can be difficult to treat. We present a fatal case of multidrug resistant A. baumannii soft tissue infection and review of relevant literature. PRESENTATION OF CASE A 41 year old morbidly obese man, with history of alcoholic liver disease presented with left superficial pre-tibial abrasions and cellulitis caused by multidrug resistant (MDR) A. baumannii. In spite of early antibiotic administration he developed extensive myositis and fat necrosis requiring extensive and multiple surgical debridements. He deteriorated despite appropriate antibiotic therapy and multiple surgical interventions with development of multi-organ failure and died. DISCUSSION Managing Acinetobacter infections remains difficult due to the array of resistance and the pathogens ability to develop new and ongoing resistance. The early diagnosis of necrotizing soft tissue infection may be challenging, but the key to successful management of patients with necrotizing soft tissue infection are early recognition and complete surgical debridement. CONCLUSION A. baumannii is emerging as an important cause of severe, life-threatening soft tissue infections. Multidrug resistant A. baumannii soft tissue infections may carry a high mortality in spite of early and aggressive treatment. Clinicians need to consider appropriate early empirical antibiotic coverage or the use of combination therapy to include MDR A. baumannii as a cause of skin and soft tissue infections. PMID:25016080

  13. A soft panel based simulator for man machine research

    SciTech Connect

    Nagata, Katsumi; Uchiyama, Kenji; Unneberg, H.

    1996-11-01

    This paper describes the first research Man Machine simulator in the nuclear field in Japan. The simulator was developed during 1993-1995. Since late 1995 the simulator is used for both Man Machine research and research of operator training. The simulator is installed at TEPCO Nuclear Power R&D Center in Yokohama. Man Machine studies by the Japanese BWR group have been performed on training simulators in Japan since 1984. Training simulators have certain limitations, it is difficult to reconfigure panel instrumentation, therefore TEPCO decided during 1992 to develop a special purpose simulator. The developed simulator was a collaborative effort between TEPCO, TEC and EuroSim AB. The Man Machine simulator models an 1100 MWe nuclear power plant in TEPCO. The Man Machine interface consists of emulated soft panels (CRT based) of real plant panels. The soft panel displays can also produce non-replica images such as process diagrams, logic diagrams and core images such as process diagrams, logic diagrams and core images that are not accessible in the actual plant or a traditional full scope replica simulator. The panel hardware is fully flexible, thus allowing changes to CRT height, position and viewing arrangements.

  14. Evaluation of motion compensation approaches for soft tissue navigation

    NASA Astrophysics Data System (ADS)

    Krücker, Jochen; Xu, Sheng; Glossop, Neil; Pritchard, William F.; Karanian, John; Chiesa, Alberto; Wood, Bradford J.

    2008-03-01

    Organ motion was quantified and motion compensation strategies for soft-tissue navigation were evaluated in a porcine model. Organ motion due to patient repositioning, and respiratory motion during ventilated breathing were quantified. Imaging was performed on a 16-slice CT scanner. Organ motion due to repositioning was studied by attaching 7 external skin fiducials and inserting 7 point fiducials in the livers of ventilated pigs. The pigs were imaged repeatedly in supine and decubitus positions. Registrations between the images were obtained using either all external fiducials or 6 of the 7 internal fiducials. Target registration errors (TRE) were computed by using the leave-one-out technique. Respiratory organ motion was studied by inserting 7 electromagnetically (EM) tracked needles in the livers of 2 pigs. One needle served as primary target, the remaining six served as reference needles. In addition, 6 EM tracked skin fiducials, 5 passive skin fiducials, and one dynamic reference tracker were attached. Registrations were obtained using three different methods: Continuous registration with the tracking data from internal and external tracked fiducials, and one-time registration using the passive skin fiducials and a tracked pointer with dynamic reference tracking. The TRE for registering images obtained in supine position after an intermittent decubitus position ranged from 3.3 mm to 24.6 mm. Higher accuracy was achieved with internal fiducials (mean TRE = 6.4 mm) than with external fiducials (mean TRE = 16.7 mm). During respiratory motion, the FRE and TRE were shown to be correlated and were used to demonstrate automatic FRE-based gating. Tracking of target motion relative to a reference time point was achieved by registering nearby reference trackers with rigid and affine transformations. Linear motion models based on external and internal reference trackers were shown to reduce the target motion by up to 63% and 90%, respectively.

  15. Soft and Hard Tissue Management in Implant Therapy—Part II: Prosthetic Concepts

    PubMed Central

    Manicone, Paolo Francesco; Raffaelli, Luca; Ghassemian, Marjan; D'Addona, Antonio

    2012-01-01

    The ongoing pursuit of aesthetic excellence in the field of implant therapy has incorporated prosthetic concepts in the early treatment-planning phase, as well as the previously discussed surgical concepts. The literature has addressed these prosthetic and laboratory approaches required to enhance and perfect the soft and hard tissue management (SHTM). After surgically providing an acceptable hard tissue architecture and adequate timing of loading of the implant, the prosthetic phase is responsible for the soft tissue modeling, through correctly planned and executed procedures, which induce a satisfactory soft tissue profile by considering the microvasculature, the abutment connection and positioning, and the implementation of an adequate provisional phase. The objectives are the modeling of the soft tissues through the use of a conforming periorestorative interface which will produce desired and stable results. PMID:22811712

  16. Gaussian process prediction of the stress-free configuration of pre-deformed soft tissues: Application to the human cornea.

    PubMed

    Businaro, Elena; Studer, Harald; Pajic, Bojan; Büchler, Philippe

    2016-04-01

    Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. One constraint of this technique is that the shape of soft tissues acquired in-vivo is deformed by the physiological loads. Accurate simulations require determining the existing stress in the tissues or their stress-free configurations. This process is time consuming, which is a limitation to the dissemination of numerical planning solutions to clinical practice. In this study, we propose a method to determine the stress-free configuration of soft tissues using a Gaussian process (GP) regression. The prediction relies on a database of pre-calculated results to enable real time predictions. The application of this technique to the human cornea showed a level of accuracy five to ten times higher than the accuracy of the topographic device used to obtain the patients' anatomy; results showed that for almost all optical indices, the predicted curvature error did not exceed 0.025 D, while the wavefront aberration percentage error did not overcome 5%. In this context, we believe that GP models are suitable for predicting the stress free configuration of the cornea and can be used in planning tools based on patient-specific finite element simulations. Due to the high level of accuracy required in ophthalmology, this approach is likely to be appropriate for other applications requiring the definition of the relaxed shape of soft tissues. PMID:26920075

  17. Simultaneous reconstruction of cervical soft tissue and esophagus with a gastro-omental free flap

    SciTech Connect

    Mixter, R.C.; Rao, V.K.; Katsaros, J.; Noon, J.; Tan, E. )

    1990-11-01

    A microvascular transfer of gastric tube and omentum was used to simultaneously reconstruct cervical soft-tissue and esophageal defects in five patients. All patients had previous high-dose radiation and multiple flap reconstructions. The largest esophageal and soft-tissue defects were 10 cm and 160 cm2, respectively. All wounds healed primarily except for one orocutaneous fistula. There was one death from an intraoperative stroke. The gastro-omental flap is useful in cases where the reconstructive surgeon is faced with both esophageal and soft-tissue defects--particularly in heavily irradiated patients who have few reconstructive options.

  18. EF5 to Evaluate Tumor Hypoxia in Patients With High-Grade Soft Tissue Sarcoma or Mouth Cancer

    ClinicalTrials.gov

    2013-01-15

    Stage I Adult Soft Tissue Sarcoma; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Adult Soft Tissue Sarcoma; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Adult Soft Tissue Sarcoma; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity

  19. [Soft tissues volumes changing in malar and cheek area after fat grafting].

    PubMed

    Nadtochiy, A G; Grischenko, S V; Malitskaya, O A

    2016-01-01

    To improve the predictability of facial soft tissues fat grafting results tissue thickness dynamics before and 1 year postoperatively was assessed by means of ultrasonic method in 58 patients under standardized position of the ultrasonic transducer, physical and technical scanning conditions. The study revealed direct correlation of soft tissues thickness increase after fat grafting with the initial thickness of recipient area tissues. One year after fat grafting 60-65% of additional thickness remained in the lower regions of malar-cheek area (with the greatest soft tissues thickness), and only 25-27% preserved in the upper regions with the minimal initial thickness of soft tissues. I.e. to achieve necessary correction volume in a zone with small initial soft tissues thickness it is necessary to increase the amount of fat grafting stages. As the rates of soft tissues thickness in correction area change during 3-4 months after fat grafting remaining stable after this period it is expedient to assess postoperative results and to carry out repeated fat grafting not earlier than 4 months after operation.

  20. SU-E-J-231: Comparison of Delineation Variability of Soft Tissue Volume and Position in Head-And-Neck Between Two T1-Weighted Pulse Sequences Using An MR-Simulator with Immobilization

    SciTech Connect

    Wong, O; Lo, G; Yuan, J; Law, M; Ding, A; Cheng, K; Chan, K; Cheung, K; Yu, S

    2015-06-15

    Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest. Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed

  1. Comparison of two imaging programs in predicting the soft tissue changes with mandibular advancement surgery.

    PubMed

    Ravindranath, Sneha; Krishnaswamy, Nathamuni Rengarajan; Sundaram, Venkateswaran

    2011-01-01

    Establishing common objectives and expectations concerning the outcome of proposed surgical orthodontic therapy is a crucial part of the treatment planning process, which has been greatly simplified by imaging software. The purpose of this study was to investigate the reliability of two surgical imaging programs--Dolphin Imaging 10 and Vistadent OC--in simulating the actual outcome of mandibular advancement surgery by using a visual analog scale (VAS) judged by a panel of orthodontists, oral surgeons, and laypersons. The predictions were also analyzed with soft tissue cephalometric evaluation. The results of the study showed that in predicting the surgical outcome evaluated by the VAS, both programs received a mean rating of fair. One was marginally superior for the overall assessment among all three panelist groups. Region-wise, rating indicated the lower lip region to be the least accurate, and the submental region received the highest scores. The soft tissue cephalometric parameters showed minimal differences except for the lower lip parameters. Thus, Dolphin Imaging 10 and Vistadent OC are reliable in predicting mandibular advancement surgical outcomes with inaccuracies chiefly in the lower lip region. PMID:22299108

  2. Network anticorrelations, global regression, and phase-shifted soft tissue correction.

    PubMed

    Anderson, Jeffrey S; Druzgal, T Jason; Lopez-Larson, Melissa; Jeong, Eun-Kee; Desai, Krishnaji; Yurgelun-Todd, Deborah

    2011-06-01

    Synchronized low-frequency BOLD fluctuations are observed in dissociable large-scale, distributed networks with functional specialization. Two such networks, referred to as the task-positive network (TPN) and the task-negative network (TNN) because they tend to be active or inactive during cognitively demanding tasks, show reproducible anticorrelation of resting BOLD fluctuations after removal of the global brain signal. Because global signal regression mandates that anticorrelated regions to a given seed region must exist, it is unclear whether such anticorrelations are an artifact of global regression or an intrinsic property of neural activity. In this study, we demonstrate from simulated data that spurious anticorrelations are introduced during global regression for any two networks as a linear function of their size. Using actual resting state data, we also show that both the TPN and TNN become anticorrelated with the orbits when soft tissues are included in the global regression algorithm. Finally, we propose a technique using phase-shifted soft tissue regression (PSTCor) that allows improved correction of global physiological artifacts without global regression that shows improved anatomic specificity to global regression but does not show significant network anticorrelations. These results imply that observed anticorrelations between TNN and TPN may be largely or entirely artifactual in the resting state. These results also imply that differences in network anticorrelations attributed to pathophysiological or behavioral states may be due to differences in network size or recruitment rather than actual anticorrelations.

  3. The examination of soft tissue compliance in the thoracic region for the development of a spinal manipulation training mannequin

    PubMed Central

    Starmer, David J.; Duquette, Sean A.; Stainsby, Brynne E.; Giuliano, Anthony M.

    2015-01-01

    Purpose: To determine if the soft tissue compliance of the thoracic paraspinal musculature differs based on gender and body type to help create a foam human analogue mannequin to assist in the training of spinal manipulative therapy. Methods: 54 volunteers were grouped based on their gender and body types. In the prone position, thoracic paraspinal soft tissue compliance was measured at T1, T3 T6, T9 and T12 vertebrae levels bilaterally using a tissue compliance meter. Results: There was no significant difference in tissue compliance when comparing the genders except at T1 (p=0.026). When comparing body types, significantly higher tissue compliance was found between endomorphs and the other groups. No significant difference was found between ectomorphs and mesomorphs. The compliance for the participants in this study ranged from 0.122 mm/N to 0.420 mm/N. Conclusion: There are significant differences in thoracic spine soft tissue compliance in healthy asymptomatic patients between genders in the upper thoracic spine, and between different body types throughout the thoracic spine. It may be beneficial to create multiple versions of practice mannequins to simulate variations amongst different patients. PMID:26136607

  4. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686

  5. Comparison of soft tissue profile changes in serial extraction and late premolar extraction.

    PubMed

    Wilson, J R; Little, R M; Joondeph, D R; Doppel, D M

    1999-04-01

    To assess soft tissue profile changes through time, a comparison was made of patients treated by serial extraction without subsequent orthodontic treatment (n=28), patients treated with serial extraction and orthodontic treatment (n=30), and patients treated orthodontically with late extraction (n=30). Cephalometric radiographs were traced and digitized; linear and angular measurements were made with a custom computer program that allowed digitization of specific soft tissue points. Maxillary, mandibular, and overall cephalometric superimpositions and linear measurements of change from the superimpositions were done by hand. Statistical analyses were made to determine if significant differences existed within each group at each time period and between groups at each time period, as well as between males and females at each time period. Data were also analyzed to determine if significant correlations existed between any hard tissue variable and any soft tissue variable, or between any soft tissue variable and any other soft tissue variable. It was found that in those patients treated with late premolar extraction, the most labial point of the mandibular incisor was more posterior from pretreatment to posttreatment than in the serial extraction group. While a great number of associations existed between variables, no significant differences were found between the soft tissue profiles of these three groups of patients. The gender differences that were found to exist were most likely due to normal maturational changes, not the treatment itself.

  6. Comparison of violet diode laser with CO II laser in surgical performance of soft tissues

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Inoue, A.; Akashi, G.; Hirai, Y.

    2007-02-01

    The violet diode laser (405nm) has recently begun to be studied for surgical use and authors reported the soft tissue could be effectively incised by irradiation power of even less than 1W. The wavelength of this laser is highly absorbed by hemoglobin, myoglobin or melanin pigment. Cutting or ablating soft tissues by lower irradiation power might be preferable for wound healing. The CO II laser is known to be preferable for low invasive treatment of soft tissues and widely used. The CO II laser light (10.6μm) is highly absorbed by water and proper for effective ablation of soft tissues. In this paper, we report the comparison of the violet diode laser with the CO II laser in surgical performance of soft tissues. Tuna tissue was used as an experimental sample. In the case of the violet diode laser, extensive vaporization of tissue was observed after the expansion of coagulation. Carbonization of tissue was observed after the explosion. On the other hand, consecutive vaporization and carbonization were observed immediately after irradiation in the case of CO II laser. The violet diode laser could ablate tissue equivalently with the CO II laser and coagulate larger area than the CO II laser. Therefore the violet diode laser might be expectable as a surgical tool which has excellent hemostatis.

  7. The clinical value of bone and gallium scintigraphy for soft-tissue sarcomas of the extremities

    SciTech Connect

    Kirchner, P.T.; Simon, M.A.

    1984-03-01

    In a prospective study of forty-five patients, we evaluated the usefulness of bone and gallium scintigraphy prior to definitive surgery for a soft-tissue sarcoma in an extremity. Bone scintigraphy provides a baseline for staging and often reveals periosteal invasion that is not detected by routine radiographs. Blood-pool scintigraphy with bone tracers is very sensitive for a diagnosis of malignant disease. Gallium scintigraphy appeared to be a reliable preoperative indicator of malignant disease of soft tissue (sensitivity, 85 per cent; specificity, 92 per cent) and was useful for detecting the infrequent occult, non-pulmonary metastasis. Combined gallium and bone scintigraphy with blood-pool imaging provided a reliable prediction of the presence or absence of a malignant lesion in patients with a soft-tissue mass in an extremity. We recommend that bone and gallium scintigraphy be routinely used in the initial clinical staging of soft-tissue sarcomas.

  8. Poly-L-lactic acid: a temporary filler for soft tissue augmentation.

    PubMed

    Woerle, Birgit; Hanke, C William; Sattler, Gerhard

    2004-01-01

    A number of soft tissue filling agents are available in the U.S. and Europe. In Europe, poly-L-lactic acid was approved for soft tissue augmentation and correction of wrinkles in 1999. The clinical results from this synthetic implant may last up to two years. In this article, we report our experience using poly-L-lactic acid for correction of facial lipoatrophy and wrinkles in 300 patients since 1999. Poly-L-lactic acid is an ideal, resorbable filler material for soft tissue augmentation, especially in the lower one-half of the face. The aesthetic results are excellent and long-lasting. Clinical results and side effects are generally technique-dependent. The clinical results using poly-L-lactic acid for soft tissue augmentation are comparable to autologous fat grafting. However, surgical fat harvesting is not necessary, and treatment can be extended to elderly individuals and patients with infectious diseases who have little body fat.

  9. Combined treatment for skin rejuvenation and soft-tissue augmentation of the aging face.

    PubMed

    Beer, Kenneth R

    2011-02-01

    Multiple types of anti-aging treatments are required to address the various etiologies of facial aging. Soft-tissue augmentation provides a minimally invasive option for patients seeking to look younger. However, due to changes in facial skin, musculature, fat and bone, anti-aging treatment requires a multifaceted approach. Injectable fillers may be combined with neurotoxins to resolve superficial wrinkles and restore facial volume. These modalities may be used with laser resurfacing or chemical peels to address epidermal and superficial dermal problems. Combining injectable soft-tissue augmentation treatments allows clinicians and patients to take advantage of the benefits of each modality and to address the multiple effects of facial aging. This review is based on clinical experience and a MEDLINE search for articles about volume replacement and soft-tissue augmentation. It provides a rationale that supports the use of combination techniques/products for soft-tissue augmentation.

  10. Vertical Ridge Augmentation and Soft Tissue Reconstruction of the Anterior Atrophic Maxillae: A Case Series.

    PubMed

    Urban, Istvan A; Monje, Alberto; Wang, Hom-Lay

    2015-01-01

    Severe vertical ridge deficiency in the anterior maxilla represents one of the most challenging clinical scenarios in the bone regeneration arena. As such, a combination of vertical bone augmentation using various biomaterials and soft tissue manipulation is needed to obtain successful outcomes. The present case series describes a novel approach to overcome vertical deficiencies in the anterior atrophied maxillae by using a mixture of autologous and anorganic bovine bone. Soft tissue manipulation including, but not limited to, free soft tissue graft was used to overcome the drawbacks of vertical bone augmentation (eg, loss of vestibular depth and keratinized mucosa). By combining soft and hard tissue grafts, optimum esthetic and long-term implant prosthesis stability can be achieved and sustained.

  11. NIH scientists map gene changes driving tumors in common pediatric soft-tissue cancer

    Cancer.gov

    Scientists have mapped the genetic changes that drive tumors in rhabdomyosarcoma, a pediatric soft-tissue cancer, and found that the disease is characterized by two distinct genotypes. The genetic alterations identified in this malignancy could be useful

  12. Soft-tissue abnormalities of the external auditory canal: Subject review of CT findings

    SciTech Connect

    Chakeres, D.W.; Kapila, A.; LaMasters, D.

    1985-07-01

    The authors review the normal anatomy and discuss characteristic findings of soft-tissue abnormalities of the external auditory canal (EAC). The indications for computed tomography (CT) of the temporal bone have been significantly expanded with the inclusion of soft-tissue abnormalities of the external ear and the auditory canal. CT scans of 25 patients who had soft-tissue abnormalities of the EAC were reviewed. The clinical data were correlated with the radiographic findings. They conclude that CT is the best overall radiographic modality for evaluating the extent and character of soft-tissue abnormalities of the EAC. Significant clinical information that is helpful in patient management decisions is added by this technique.

  13. Multisegment Kinematics of the Spinal Column: Soft Tissue Artifacts Assessment.

    PubMed

    Mahallati, Sara; Rouhani, Hossein; Preuss, Richard; Masani, Kei; Popovic, Milos R

    2016-07-01

    A major challenge in the assessment of intersegmental spinal column angles during trunk motion is the inherent error in recording the movement of bony anatomical landmarks caused by soft tissue artifacts (STAs). This study aims to perform an uncertainty analysis and estimate the typical errors induced by STA into the intersegmental angles of a multisegment spinal column model during trunk bending in different directions by modeling the relative displacement between skin-mounted markers and actual bony landmarks during trunk bending. First, we modeled the maximum displacement of markers relative to the bony landmarks with a multivariate Gaussian distribution. In order to estimate the distribution parameters, we measured these relative displacements on five subjects at maximum trunk bending posture. Then, in order to model the error depending on trunk bending angle, we assumed that the error grows linearly as a function of the bending angle. Second, we applied our error model to the trunk motion measurement of 11 subjects to estimate the corrected trajectories of the bony landmarks and investigate the errors induced into the intersegmental angles of a multisegment spinal column model. For this purpose, the trunk was modeled as a seven-segment rigid-body system described using 23 reflective markers placed on various bony landmarks of the spinal column. Eleven seated subjects performed trunk bending in five directions and the three-dimensional (3D) intersegmental angles during trunk bending were calculated before and after error correction. While STA minimally affected the intersegmental angles in the sagittal plane (<16%), it considerably corrupted the intersegmental angles in the coronal (error ranged from 59% to 551%) and transverse (up to 161%) planes. Therefore, we recommend using the proposed error suppression technique for STA-induced error compensation as a tool to achieve more accurate spinal column kinematics measurements. Particularly, for intersegmental

  14. Cardiac dysfunction among soft tissue sarcoma patients in Denmark

    PubMed Central

    Shantakumar, Sumitra; Olsen, Morten; Vo, Thao T; Nørgaard, Mette; Pedersen, Lars

    2016-01-01

    Purpose Soft tissue sarcoma (STS) patients may experience post-treatment cardiotoxicity, yet no population-based data exist. We examined the incidence of left ventricular ejection fraction (LVEF) decline, heart failure, and cardiac death following STS diagnosis among adults, using Danish patient registries and medical record review. Patients and methods LVEF decline was examined in a regional cohort of STS patients diagnosed during 1997–2011 in Western Denmark for whom cardiac imaging data were available. LVEF decline was defined as an absolute decline from baseline to follow-up of 10% or more, or, where baseline imaging was not available, a decline below the lower limit of normal (or 40%) for a follow-up LVEF. Heart failure and cardiac death were investigated in a national Danish cohort of all STS patients diagnosed from 2000 to 2009. We followed patients from STS diagnosis until heart failure, cardiac death, emigration or December 31, 2012 (whichever occurred first). Results The incidence rate of LVEF decline for the regional cohort with follow-up data (N=100, five events) or baseline and follow-up measurements (N=75, 19 events) was 16.8 (95% confidence interval [CI]: 7.0–40.3) and 108 (95% CI: 69–170), respectively, per 1,000 person-years. In the national cohort (N=1,187), the incidence of heart failure (40 events) and cardiac death (15 events) was 7.3 (95% CI: 5.4–10.0) and 2.7 (95% CI: 1.6–4.5), respectively, per 1,000 person-years. The strongest predictors of heart failure were doxorubicin treatment (hazard ratio [HR] =2.2, 95% CI: 0.5–10.2) and pre-existing cardiovascular disease (HR=6.3, 95% CI: 0.98–40.6). Conclusion LVEF decline occurred more frequently compared to heart failure or cardiac death in a nationally representative cohort of Danish STS patients. PMID:27186077

  15. Epithelial-connective tissue boundary in the oral part of the human soft palate

    PubMed Central

    PAULSEN, FRIEDRICH; THALE, ANDREAS

    1998-01-01

    The papillary layer of the oral part of the human soft palate was studied in 31 subjects of different age by means of histological, immunohistochemical and scanning electron microscopical methods. For scanning electron microscopy a new maceration method was introduced. Results determine epithelial thickness, height and density of connective tissue papillae and their 3-dimensional architecture inside the lining epithelium as well as the collagenous arrangement of the openings of the glandular ducts. The individual connective tissue papillae of the soft palate are compared with the connective tissue boundary on the other side of the oral cavity. The connective tissue plateaux carrying a variable number of connective tissue papillae were found to be the basic structural units of the papillary body. The function of the epithelial-connective tissue interface and the extracellular matrix arrangement in the lamina propria are discussed in order to promote the comparability of normal with pathologically altered human soft palates. PMID:9877301

  16. Soft-Tissue Masses and Masslike Conditions: What Does CT Add to Diagnosis and Management?

    PubMed Central

    Subhawong, Ty K.; Fishman, Elliot K.; Swart, Jennifer E.; Carrino, John A.; Attar, Samer; Fayad, Laura M.

    2010-01-01

    OBJECTIVE Although MRI is the technique of choice for evaluating most soft-tissue masses, CT often provides valuable complementary information. Specifically, there are distinguishing CT characteristics that can suggest a specific diagnosis, including the lesion’s mineralization pattern, density, pattern of adjacent bone involvement, and degree and pattern of vascularity. CONCLUSION This article provides an overview of the CT evaluation of soft-tissue masses, emphasizing a differential diagnosis based on these CT features. PMID:20489097

  17. Acoustical Registration of Shear Modulus Variation under HIFU in Soft Tissues

    NASA Astrophysics Data System (ADS)

    Konopatskaya, I. I.; Mironov, M. A.; Pyatakov, P. A.

    2006-05-01

    New method for noncontact measurements of shear elasticity and viscosity variations of soft materials with microstructure is proposed in the report. This method based on the analysis of amplitude-frequency response of a specially designed active tuning fork. A simple theoretical model is developed. Experimental researches were carried out on samples of biological tissues (bovine heart and liver) in vitro. The results demonstrate sensitive of the method to shear elasticity and viscosity changes, which arise in soft tissues under influence of ultrasound.

  18. Bone and soft tissue sarcomas during pregnancy: A narrative review of the literature.

    PubMed

    Zarkavelis, George; Petrakis, Dimitrios; Fotopoulos, George; Mitrou, Sotirios; Pavlidis, Nicholas

    2016-07-01

    Bone or soft tissue sarcomas are rarely diagnosed during pregnancy. Until today 137 well documented cases have been reported in the English literature between 1963 and 2014. Thirty-eight pregnant mothers were diagnosed with osteosarcoma, Ewing's sarcoma or chondrosarcoma, whereas 95 other cases of soft tissue sarcomas of various types have been documented. We present the clinical picture and therapeutic management of this coexistence. PMID:27408761

  19. Modern surgical techniques for management of soft tissue sarcomas involving the spine: outcomes and complications.

    PubMed

    Mattei, Tobias A; Teles, Alisson R; Mendel, Ehud

    2015-04-01

    Several types of soft tissue sarcomas may locally extend to the spine. The best therapeutic strategy for such lesions strongly depends on the histological diagnosis. In this article the authors provide an up-to-date review of current guidelines regarding the management of soft tissue sarcomas involving the spine. Special attention is given to outcomes and complications of modern surgical series in order to highlight current challenges in the management of such lesions.

  20. ON THE BIOMECHANICAL FUNCTION OF SCAFFOLDS FOR ENGINEERING LOAD BEARING SOFT TISSUES

    PubMed Central

    Stella, John A.; D’Amore, Antonio; Wagner, William R.; Sacks, Michael S.

    2010-01-01

    Replacement or regeneration of load bearing soft tissues has long been the impetus for the development bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. PMID:20060509

  1. Ultrastructural characterization of soft tissues surrounding implanted hip prosthesis by complementary PIXE and TEM methods

    NASA Astrophysics Data System (ADS)

    Jallot, E.; Benhayoune, H.; Kilian, L.; Balossier, G.; Bonhomme, P.; Oudadesse, H.; Irigaray, J. L.

    We study soft tissues surrounding hip prostheses from three different patients. We evaluate the elemental composition of different fragments. The tissues are examined by means of two complementary methods in such analysis: Particle Induced X-ray Emission (PIXE) and Scanning Transmission Electron Microscopy (STEM) coupled with X-ray microanalysis (Energy Dispersive X-ray, EDX). These methods allow to determine locally at `macro' and `micro' level the chemistry of soft tissues. The findings confirmed the presence of metal in soft tissue near the three different hips. The tissues' composition undergoes important modifications with a systematic elevation of trace metal in patients with failed implants. We observe a corrosion which causes the continual release of particles into the tissues. Corrosion alters the shape size and chemical composition of wear particles embedded in soft tissue around the failed hip. EDX analysis showed that the wear particles contained varying quantities of titanium and aluminium. This phenomenon may be related with the variation of time of contact with soft tissues for each particle and Ti solubility.

  2. Effective elastic properties for lower limb soft tissues from manual indentation experiment.

    PubMed

    Zheng, Y; Mak, A F

    1999-09-01

    Quantitative assessment of the biomechanical properties of limb soft tissues has become more important during the last decade because of the introduction of computer-aided design and computer-aided manufacturing (CAD/CAM) and finite element analysis to the prosthetic socket design. Because of the lack of a clinically easy-to-use apparatus, the site and posture dependences of the material properties of lower limb soft tissues have not been fully reported in the literature. In this study, an ultrasound indentation system with a pen-size hand-held probe developed earlier by the authors was used to obtain the indentation responses of lower limb soft tissues. Indentation tests were conducted on normal young subjects with four females and four males at four sites with three body postures. A linear elastic indentation solution was used to extract the effective Young's modulus from the indentation responses. The determined modulus ranged from 10.4 to 89.2 kPa for the soft tissues tested. These results were in a similar range as those reported in the literature. The thickness of the lower limb soft tissues varied slightly with body posture changes. The Young's modulus determined was demonstrated to be significantly dependent on site, posture, subject and gender. The overall mean modulus of male subjects was 40% larger than that of female subjects. No significant correlation was established between the effective Young's modulus and the thickness of entire soft tissue layers.

  3. Use of synchrotron based diffraction enhanced imaging for visualization of soft tissues in invertebrates

    SciTech Connect

    Rao, D.; Zhong, Z.; Swapna, M.; Cesareo, R.; Brunetti, A.; Akatsuka, T.; Yuasa, T.; Takeda, T.; Gigante, G.

    2010-04-04

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  4. [Genetic Aberration and Pathological Diagnosis in Bone and Soft-Tissue Tumors].

    PubMed

    Iura, Kunio; Oda, Yoshinao

    2016-03-01

    Bone and soft-tissue sarcomas comprise a rare, complex, and heterogeneous group of tumors for which it is difficult for even experienced pathologists to provide a conclusive diagnosis. The number of diagnoses made using genetic analysis has increased since the detection of fusion genes in several soft-tissue tumors in the 1990s. Moreover, other specific genetic aberrations have been reported in various bone and soft-tissue tumors. In addition, molecular therapeutic targets have been sought in advanced cases of soft-tissue and bone tumors similar to other organ malignancies. To enable the pathological diagnosis of bone and soft-tissue tumors, it is necessary to combine histological diagnosis with immunohistochemistry and gene analysis findings including fusion gene or other genetic aberrations. In this review, we describe the fusion genes recently reported in bone and soft-tissue tumors such as solitary fibrous tumor, aneurysmal bone cyst, nodular fasciitis, CIC-DUX4 fusion gene-positive small round cell tumors, or BCOR-CCNB3-positive sarcoma as well as other genetic aberrations in dedifferentiated liposarcoma, malignant rhabdoid tumor, cartilaginous tumor, Langerhans cell histiocytosis chondroblastoma, or giant cell tumor of the bone. We also demonstrate their association with pathological diagnosis. PMID:27067846

  5. A mummified duck-billed dinosaur with a soft-tissue cock's comb.

    PubMed

    Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M

    2014-01-01

    Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs.

  6. Esthetic solution to malpositioned implants with remodeling of soft tissue: a case report.

    PubMed

    Valente, Mariana Lima da Costa; Marcantonio, Elcio; Faeda, Rafael Silveira; de Paula, Wagner Nunes; Dos Reis, Andréa Cândido

    2016-01-01

    This article describes a clinical case of gingival conditioning with provisional fixed prostheses to improve the esthetics of the soft tissues adjacent to fixed prostheses placed on malpositioned implants. Gradual application of pressure to the tissues is an easy, nontraumatic technique for inducing formation of papillae and reestablishing the appropriate shape and contour of the gingival tissues, thereby improving esthetics and phonetics. The proposed treatment proved to be effective in remodeling the surrounding soft tissues, providing suitable contours, and restoring esthetics and function lost due to surgical treatment with malpositioned implants. PMID:27599283

  7. Use of the 810 nm diode laser: soft tissue management and orthodontic applications of innovative technology.

    PubMed

    Sarver, David M

    2006-10-01

    Innovative technologies such as the diode laser have provided considerable benefit to dental patients and professionals. Facilitating efficient cutting of tissue and subsequent coagulation, the soft tissue laser enhances tissue healing and can reduce postsurgical complications. Due to the conservative nature of treatment accomplished with the laser this technology is very useful in orthodontic procedures. The diode laser is utilized in both esthetic enhancement of the smile, and treatment management of soft tissue issues that impede efficient orthodontic treatment. Its clinical application will be illustrated in a series of orthodontic cases.

  8. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  9. Soft x-ray virtual diagnostics for tokamak simulations

    SciTech Connect

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-15

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  10. Myoepitheliomas of the skin and soft tissues. Report of 12 cases.

    PubMed

    Michal, M; Miettinen, M

    1999-05-01

    We describe 12 cutaneous and soft tissue myoepitheliomas, most of them in elderly patients. Morphologically the cutaneous and soft tissue myoepitheliomas revealed the same spectrum as their salivary gland counterparts. They were composed of a mixture of spindle, epithelioid and clear myoepithelial cells. Immunohistochemically they were positive to keratins and S-100 protein and reacted inconsistently with antibodies to smooth muscle actin. Morphologically they lacked any folliculo-sebaceous or apocrine differentiation. We believe that they are related to the eccrine type of cutaneous mixed tumours. Most cases had a benign behaviour, but 1 tumour metastasized, and the patient died of the tumour. Myoepitheliomas of soft tissues should be distinguished from other neoplasms with epithelial differentiation and from ossifying fibromyxoid tumour of soft parts, parachordoma and extraskeletal myxoid chondrosarcoma.

  11. Pose-independent surface matching for intra-operative soft-tissue marker-less registration.

    PubMed

    dos Santos, Thiago Ramos; Seitel, Alexander; Kilgus, Thomas; Suwelack, Stefan; Wekerle, Anna-Laura; Kenngott, Hannes; Speidel, Stefanie; Schlemmer, Heinz-Peter; Meinzer, Hans-Peter; Heimann, Tobias; Maier-Hein, Lena

    2014-10-01

    One of the main challenges in computer-assisted soft tissue surgery is the registration of multi-modal patient-specific data for enhancing the surgeon's navigation capabilities by observing beyond exposed tissue surfaces. A new approach to marker-less guidance involves capturing the intra-operative patient anatomy with a range image device and doing a shape-based registration. However, as the target organ is only partially visible, typically does not provide salient features and underlies severe non-rigid deformations, surface matching in this context is extremely challenging. Furthermore, the intra-operatively acquired surface data may be subject to severe systematic errors and noise. To address these issues, we propose a new approach to establishing surface correspondences, which can be used to initialize fine surface matching algorithms in the context of intra-operative shape-based registration. Our method does not require any prior knowledge on the relative poses of the input surfaces to each other, does not rely on the detection of prominent surface features, is robust to noise and can be used for overlapping surfaces. It takes into account (1) similarity of feature descriptors, (2) compatibility of multiple correspondence pairs, as well as (3) the spatial configuration of the entire correspondence set. We evaluate the algorithm on time-of-flight (ToF) data from porcine livers in a respiratory liver motion simulator. In all our experiments the alignment computed from the established surface correspondences yields a registration error below 1cm and is thus well suited for initializing fine surface matching algorithms for intra-operative soft-tissue registration. PMID:25038492

  12. A nonlinear-elastic constitutive model for soft connective tissue based on a histologic description: Application to female pelvic soft tissue.

    PubMed

    Brieu, Mathias; Chantereau, Pierre; Gillibert, Jean; de Landsheere, Laurent; Lecomte, Pauline; Cosson, Michel

    2016-05-01

    To understand the mechanical behavior of soft tissues, two fields of science are essential: biomechanics and histology. Nonetheless, those two fields have not yet been studied together often enough to be unified by a comprehensive model. This study attempts to produce such model. Biomechanical uniaxial tension tests were performed on vaginal tissues from 7 patients undergoing surgery. In parallel, vaginal tissue from the same patients was histologically assessed to determine the elastic fiber ratio. These observations demonstrated a relationship between the stiffness of tissue and its elastin content. To extend this study, a mechanical model, based on an histologic description, was developed to quantitatively correlate the mechanical behavior of vaginal tissue to its elastic fiber content. A satisfactory single-parameter model was developed assuming that the mechanical behavior of collagen and elastin was the same for all patients and that tissues are only composed of collagen and elastin. This single-parameter model showed good correlation with experimental results. The single-parameter mechanical model described here, based on histological description, could be very useful in helping to understand and better describe soft tissues with a view to their characterization. The mechanical behavior of a tissue can thus be determined thanks to its elastin content without introducing too many unidentified parameters.

  13. Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults

    PubMed Central

    Fu, Xiao-Yu; Zelik, Karl E.; Board, Wayne J.; Browning, Raymond C.; Kuo, Arthur D.

    2014-01-01

    Obesity not only adds to the mass that must be carried during walking, but also changes body composition. Although extra mass causes roughly proportional increases in musculoskeletal loading, less well understood is the effect of relatively soft and mechanically compliant adipose tissue. Purpose To estimate the work performed by soft tissue deformations during walking. The soft tissue would be expected to experience damped oscillations, particularly from high force transients following heel strike, and could potentially change the mechanical work demands for walking. Method We analyzed treadmill walking data at 1.25 m/s for 11 obese (BMI > 30 kg/m2) and 9 non-obese (BMI < 30 kg/m2) adults. The soft tissue work was quantified with a method that compares the work performed by lower extremity joints as derived using assumptions of rigid body segments, with that estimated without rigid body assumptions. Results Relative to body mass, obese and non-obese individuals perform similar amounts of mechanical work. But negative work performed by soft tissues was significantly greater in obese individuals (p= 0.0102), equivalent to about 0.36 J/kg vs. 0.27 J/kg in non-obese individuals. The negative (dissipative) work by soft tissues occurred mainly after heel strike, and for obese individuals was comparable in magnitude to the total negative work from all of the joints combined (0.34 J/kg vs. 0.33 J/kg for obese and non-obese adults, respectively). Although the joints performed a relatively similar amount of work overall, obese individuals performed less negative work actively at the knee. Conclusion The greater proportion of soft tissues in obese individuals results in substantial changes in the amount, location, and timing of work, and may also impact metabolic energy expenditure during walking. PMID:25380475

  14. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    PubMed Central

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  15. Self-reported incidence of skin and soft tissue infections among deployed US military.

    PubMed

    May, Larissa; Porter, Chad; Tribble, David; Armstrong, Adam; Mostafa, Manal; Riddle, Mark

    2011-07-01

    The incidence of skin and soft tissue infections has steadily increased over the past decade, and military populations, particularly recruits, have been affected. However, the epidemiology of skin and soft tissue infections in deployed personnel has not previously been described. We conducted a cross-sectional study of United States military personnel in mid-deployment using self-reported questionnaire data containing 11 demographic questions and 20 questions related to skin and soft tissue infections. The primary outcome was self-reported incident SSTI. Descriptive analyses were conducted and incidence estimates calculated. Multivariable regression models were developed to evaluate the association between SSTI and important covariates. Self-reported treatment modalities and effect on work performance were also assessed. The study was approved by the Institutional Review Board. 2125 questionnaires were completed over 12 months using convenience sampling. 110 personnel (5%) reported one or more skin and soft tissue infection during their most recent employment, for an incidence of 52 cases per 100,000 person-days. The majority reported a single infection. A higher proportion of individuals reporting skin and soft tissue infection were female, reported antibiotic use in the 6 months prior to completing the survey, had a family member in the healthcare occupation, and were senior enlisted or officers. 40 (36%) were treated with antibiotics and 24 (22%) underwent incision and drainage. Less than 5% (3 patients) required admission. Eighty eight respondents (81%), reported no days of lost job performance. There is a higher than expected incidence of skin and soft tissue infections in deployed military personnel. Although fewer than 20% of patients report missing at least one day of work, this can have a significant impact on the military mission. Further study should be conducted into how to prevent skin and soft tissue infections in military populations. PMID:21917525

  16. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation.

    PubMed

    Antonescu, Cristina R; Zhang, Lei; Shao, Sung Yun; Mosquera, Juan-Miguel; Weinreb, Ilan; Katabi, Nora; Fletcher, Christopher D M

    2013-07-01

    A subset of cutaneous and superficial soft tissue myoepithelial (ME) tumors displays a distinct ductal component and closely resembles mixed tumors/pleomorphic adenomas of salivary gland. As PLAG1 and HMGA2 rearrangements are the most common genetic events in pleomorphic adenomas, we sought to investigate if these abnormalities are also present in the skin/soft tissue ME lesions. In contrast, half of the deep-seated soft tissue ME tumors lacking ductal differentiation are known to be genetically unrelated, showing EWSR1 rearrangements. FISH analysis to detect PLAG1 and HMGA2 abnormalities was performed in 35 ME tumors, nine skin and 26 soft tissue, lacking EWSR1 and FUS rearrangements. For the PLAG1-rearranged tumors, FISH and RACE were performed to identify potential fusion partners, including CTNNB1 (beta-catenin) on 3p21 and LIFR (leukemia inhibitory factor receptor) on 5p13. Recurrent PLAG1 rearrangement by FISH was detected in 13 (37%) lesions, including three (33%) in the skin and 10 (38%) in the soft tissue. All were classified as benign and all except one showed abundant tubulo-ductal differentiation (comprising 12/24 [50%] of all tumors with ductal structures). A LIFR-PLAG1 fusion was detected by RACE and then confirmed by FISH in one soft tissue ME tumor with tubular formation. No CTNNB1 or LIFR abnormalities were detected in any of the remaining PLAG1-rearranged tumors. No structural HMGA2 abnormalities were detected in any of the 22 ME lesions tested. A subset of cutaneous and soft tissue ME tumors appears genetically linked to their salivary gland counterparts, displaying frequent PLAG1 gene rearrangements and occasionally LIFR-PLAG1 fusion.

  17. Evaluation of soft tissue injury by Tc-99m bone agent scintigraphy

    SciTech Connect

    Delpassand, E.S.; Dhekne, R.D.; Barron, B.J.; Moore, W.H. )

    1991-05-01

    Six patients with soft tissue injury secondary to different etiologic factors are presented. The degree and extent of tissue necrosis was precisely identified by scintigraphy. In two of these, radionuclide imaging helped to establish accurately the level of amputation that resulted in appropriate wound healing.

  18. Scaffold Sheet Design Strategy for Soft Tissue Engineering †

    PubMed Central

    Tran, Richard T.; Thevenot, Paul; Zhang, Yi; Gyawali, Dipendra; Tang, Liping; Yang, Jian

    2010-01-01

    Creating heterogeneous tissue constructs with an even cell distribution and robust mechanical strength remain important challenges to the success of in vivo tissue engineering. To address these issues, we are developing a scaffold sheet tissue engineering strategy consisting of thin (∼200 μm), strong, elastic, and porous crosslinked urethane-doped polyester (CUPE) scaffold sheets that are bonded together chemically or through cell culture. Suture retention of the tissue constructs (four sheets) fabricated by the scaffold sheet tissue engineering strategy is close to the surgical requirement (1.8 N) rendering their potential for immediate implantation without a need for long cell culture times. Cell culture results using 3T3 fibroblasts show that the scaffold sheets are bonded into a tissue construct via the extracellular matrix produced by the cells after 2 weeks of in vitro cell culture. PMID:21113339

  19. Cross polarization optical coherence tomography for diagnosis of oral soft tissues

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia; Karabut, Maria; Kiseleva, Elena; Robakidze, Natalia; Muraev, Alexander; Fomina, Julia

    2011-03-01

    We consider the capabilities of cross-polarization OCT (CP OCT) focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously for diagnosis of oral soft tissues. CP OCT was done for 35 patients with dental implants and 30 patients with inflammatory intestine diseases. Our study showed good diagnostic capabilities of CP OCT for detecting soft tissue pathology in the oral cavity. The cross-polarized images demonstrate the ability of tissue to depolarize. CP OCT demonstrates clinical capabilities for early diagnosis of inflammatory intestine diseases by the state of oral cavity mucosa and for early detection of gingivitis in patients above implant.

  20. In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre

    Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.

  1. Breakthroughs in US dermal fillers for facial soft-tissue augmentation.

    PubMed

    Goldberg, David J

    2009-12-01

    Over the last 20 years, developments in injectable dermal fillers have led to a revolution in facial soft-tissue augmentation. The demand for dermal fillers for facial soft-tissue augmentation procedures has increased due in part to the less invasive nature of these products compared with surgical procedures. Available options in the United States have expanded from autologous tissues and animal-derived collagens to bacterially fermented biopolymers and synthetic implants. Beyond their physical composition, currently available products are further differentiated by their recommended depth of injection, suitability for different facial areas, and duration of aesthetic improvement. While older dermal fillers rely on the integrity of the injected material to achieve their clinical effects, some newer products are postulated to act by stimulating the patient's own biological and cellular processes. This article examines breakthroughs in facial soft-tissue augmentation that have expanded the palette of options available to physicians.

  2. Proportion of soft tissue in selected bone cuts fed primarily as enrichments to large carnivores.

    PubMed

    Felicetti, Laura; Kearney, Celeste C; Woodward, Lloyd; Dierenfeld, Ellen S

    2008-03-01

    Zoos often offer large bones or cuts of meat containing bone (bone cuts) to carnivores to provide oral stimulation and behavioral enrichment. Because of its abrasive action, the act of chewing on a bone can increase the oral health of large felids as well as provide an enriching activity. Unfortunately, because the quantity of edible tissue on the bones is usually unknown, when feeding these cuts one can easily miscalculate an animal's caloric and nutrient intake. To fully comprehend the contribution of bones as a dietary item as opposed to an enrichment item, we removed the soft tissue from a total of 70 samples, representing 14 types of bone cuts commonly used in managed carnivore feeding programs. Across types of cuts, soft tissue averaged 50% of wet weight, with pork knuckles averaging the lowest (23%) and horse shanks the greatest (74%) percent soft tissue. Zoo Biol 27:154-158, 2008. (c) 2008 Wiley-Liss, Inc.

  3. Basic Concepts in Molecular Cytogenetics of Soft Tissue Tumors for the Clinician.

    PubMed

    Rubin, Brian P.; Fetcher, Jonathan A.

    1999-01-01

    Over the past several years, cytogenetic and molecular analyses have played a growing adjunct role in the clinicopathological evaluation of soft tissue tumors. Recent technological advances, especially in fluorescence in situ hybridization and polymerase chain reaction, have enabled the analysis of frozen and paraffin-embedded tissue as well as fresh tumor samples. Many characteristic genetic abnormalities have been identified that are of diagnostic utility in the analysis of soft tissue tumors. Additionally, certain genetic aberrations have been found to be of potential prognostic value. With the abundance of useful tools that are available, molecular cytogenetic analyses are likely to become an integral part of the analysis of soft tissue tumors. These analyses can be performed readily using small amounts of tumor (e.g., from sonographically or computed tomographic guided percutaneous biopsy specimens).

  4. Emergency Soft Tissue Reconstruction Algorithm in Patients With Open Tibia Fractures

    PubMed Central

    Ivanov, P.A.; Shibaev, E.U.; Nevedrov, A.V.; Vlasov, A.P.; Lasarev, M.P.

    2016-01-01

    Introduction: Tactic of emergency closing of soft tissue defect allows to significantly improve the treatment results concerning patients with severe open fractures. However, a number of certain factors make the implementation of this tactic rather difficult. Injured people’s unstable conditions are mong these crucial factors which include, polytrauma in lots of cases, absence of exact recommendations for recovery terms, choice of definite tissue flaps and a type of circulation. The Aim of Study: is to develop exact, usable and in practice algorithm of emergency reconstruction of leg soft tissues in patients with severe open tibia fractures, based on the usage of the most foolproof and simple methods. Data (Patients) and Methods: 85 patients with open tibia fractures complicated by soft tissue defects were included in our study. Patients were divided into two groups. The control group consisted of 56 patients. Soft tissue reconstruction in this group was provided without an exact algorithm, after continuous attempts on local healing. After analyzing the treatment process and the treatment results we have developed the algorithm of emergency soft tissue reconstruction. It was used in 29 patients (the study group). This algorithm allows choosing optimal timing for tissue reconstruction and appropriate method to be applied, depending on the patient’s condition, the mechanism of soft tissue defect formation, and its square and localization. Results: We observed a statistical decrease in deep wound infection frequency, partial tibia necrosis frequency, chronic osteomyelitis frequency, duration of hospitalization in patients with severe open tibia fractures because of using our algorithm. PMID:27583057

  5. Soft tissue facial morphometry before and after total oral rehabilitation with implant-supported prostheses.

    PubMed

    Tartaglia, Gianluca M; Dolci, Claudia; Sidequersky, Fernanda V; Ferrario, Virgilio F; Sforza, Chiarella

    2012-11-01

    The objective of the current study was to assess a low-cost, noninvasive facial morphometric digitizer to assist the practitioner in three-dimensional soft-tissue changes before and after oral rehabilitation. Twenty-two patients aged 45 to 82 years, all with edentulous maxilla and mandible, were assessed both before and after receiving their definitive complete implant-supported prostheses (each received 4-11 implants in each dental arch; full-arch fixed prostheses were made). The three-dimensional coordinates of 50 soft-tissue facial landmarks were collected with a noninvasive digitizer; labial and facial areas, volumes, angles, and distances were compared without and with the prostheses. Dental prostheses induced significant reductions in the nasolabial, mentolabial, and interlabial angles, with increased labial prominence (P < 0.05, Wilcoxon test). Lip vermilion area and volume significantly increased; significant increments were found in the vertical and anteroposterior labial dimensions. The presence of the dental prostheses significantly (P < 0.001) modified the three-dimensional positions of several soft-tissue facial landmarks. In conclusion, the current approach enabled quantitative evaluation of the final soft-tissue results of oral rehabilitation with implant-supported prostheses, without submitting the patients to invasive procedures. The method could assess the three-dimensional appearance of the facial soft tissues of the patient while planning the provisional prosthetic restoration, providing quantitative information to prepare the best definitive prosthesis. PMID:23147286

  6. Palaeoneurological clues to the evolution of defining mammalian soft tissue traits

    PubMed Central

    Benoit, J.; Manger, P. R.; Rubidge, B. S.

    2016-01-01

    A rich fossil record chronicles the distant origins of mammals, but the evolution of defining soft tissue characters of extant mammals, such as mammary glands and hairs is difficult to interpret because soft tissue does not readily fossilize. As many soft tissue features are derived from dermic structures, their evolution is linked to that of the nervous syutem, and palaeoneurology offers opportunities to find bony correlates of these soft tissue features. Here, a CT scan study of 29 fossil skulls shows that non-mammaliaform Prozostrodontia display a retracted, fully ossified, and non-ramified infraorbital canal for the infraorbital nerve, unlike more basal therapsids. The presence of a true infraorbital canal in Prozostrodontia suggests that a motile rhinarium and maxillary vibrissae were present. Also the complete ossification of the parietal fontanelle (resulting in the loss of the parietal foramen) and the development of the cerebellum in Probainognathia may be pleiotropically linked to the appearance of mammary glands and having body hair coverage since these traits are all controlled by the same homeogene, Msx2, in mice. These suggest that defining soft tissue characters of mammals were already present in their forerunners some 240 to 246 mya. PMID:27157809

  7. A device for characterising the mechanical properties of the plantar soft tissue of the foot.

    PubMed

    Parker, D; Cooper, G; Pearson, S; Crofts, G; Howard, D; Busby, P; Nester, C

    2015-11-01

    The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo. PMID:26343227

  8. New soft tissue correction factors for stature estimation: results from magnetic resonance imaging.

    PubMed

    Bidmos, Mubarak Ariyo; Manger, Paul Robert

    2012-01-10

    In stature reconstruction using Fully's method, it is essential that a soft tissue correction factor be added to skeletal height in order to obtain an estimate of living stature. While some anthropologists consider Fully's method to be the most reliable for stature estimation, others consider it to be inadequate as it seems to be underestimating living stature, possibly due to an error in the magnitude of Fully's soft tissue factors. A recent study by Raxter and co-workers revised Fully's technique and also presented a new "universally applicable" soft tissue correction factor. The present study examines the reliability of soft tissue correction factors of Fully and Raxter et al. on a living sample of indigenous South African males. The current study is based on data collected from 28 indigenous South African (ISA) male volunteers. Standing height of each subject was measured using a stadiometer. Fully's method was used in the calculation of total skeletal height from a full body MRI scan of each subject. Subsequent analyses of the acquired data revealed that the previously derived soft tissue correction factors are not applicable to the studied sample, and why they are not applicable. The correction factors of Fully and Raxter et al. both significantly underestimate living stature in a living sample of indigenous South African males. Consequently, a new correction factor was calculated based on the prediction of living stature from TSH using regression analysis.

  9. Spectrum of Radiological Manifestations in Lymphoproliferative Malignancies with Unusual Extra Nodal Soft Tissue Involvement

    PubMed Central

    Prasad, Kahila; Upreti, Lalendra; Garga, Umesh Chandra

    2016-01-01

    Lymphoproliferative malignancies constitute a wide spectrum of haematological malignancies and their prevalence is widely increasing. Non-Hodgkin lymphomas and Hodgkin disease, frequently involve extranodal soft tissue structures in the head and neck, thorax and abdomen. These malignancies may involve virtually any type of soft tissues to any extent; hence many different imaging manifestations are possible which may mimic other disorders. The imaging characteristics of extranodal lymphomatous soft tissue involvement are described and classified here according to the site of involvement in 6 cases (primary diseases with orbital, muscle, extra testicular, scalp, sinonasal and pachymeningeal/dural involvement). In majority of these cases at presentation we found a predominantly homogeneous soft tissue mass with mildly high attenuation on CT and a T2 intermediate signal on MRI at these sites without any manifestation of disease elsewhere but on follow-up two out of these six cases developed systemic disease elsewhere. Few consistent patterns were noticed on CT and MRI which might help to include lymphomas as an important differential diagnosis of soft tissue masses. Though a definitive diagnosis requires a biopsy (bone marrow, lymph node, or mass), and other laboratory tests, imaging primarily aims at staging of the disease and identification of new or recurrent disease. PMID:27630925

  10. Spectrum of Radiological Manifestations in Lymphoproliferative Malignancies with Unusual Extra Nodal Soft Tissue Involvement

    PubMed Central

    Prasad, Kahila; Upreti, Lalendra; Garga, Umesh Chandra

    2016-01-01

    Lymphoproliferative malignancies constitute a wide spectrum of haematological malignancies and their prevalence is widely increasing. Non-Hodgkin lymphomas and Hodgkin disease, frequently involve extranodal soft tissue structures in the head and neck, thorax and abdomen. These malignancies may involve virtually any type of soft tissues to any extent; hence many different imaging manifestations are possible which may mimic other disorders. The imaging characteristics of extranodal lymphomatous soft tissue involvement are described and classified here according to the site of involvement in 6 cases (primary diseases with orbital, muscle, extra testicular, scalp, sinonasal and pachymeningeal/dural involvement). In majority of these cases at presentation we found a predominantly homogeneous soft tissue mass with mildly high attenuation on CT and a T2 intermediate signal on MRI at these sites without any manifestation of disease elsewhere but on follow-up two out of these six cases developed systemic disease elsewhere. Few consistent patterns were noticed on CT and MRI which might help to include lymphomas as an important differential diagnosis of soft tissue masses. Though a definitive diagnosis requires a biopsy (bone marrow, lymph node, or mass), and other laboratory tests, imaging primarily aims at staging of the disease and identification of new or recurrent disease.

  11. Soft tissue facial morphometry before and after total oral rehabilitation with implant-supported prostheses.

    PubMed

    Tartaglia, Gianluca M; Dolci, Claudia; Sidequersky, Fernanda V; Ferrario, Virgilio F; Sforza, Chiarella

    2012-11-01

    The objective of the current study was to assess a low-cost, noninvasive facial morphometric digitizer to assist the practitioner in three-dimensional soft-tissue changes before and after oral rehabilitation. Twenty-two patients aged 45 to 82 years, all with edentulous maxilla and mandible, were assessed both before and after receiving their definitive complete implant-supported prostheses (each received 4-11 implants in each dental arch; full-arch fixed prostheses were made). The three-dimensional coordinates of 50 soft-tissue facial landmarks were collected with a noninvasive digitizer; labial and facial areas, volumes, angles, and distances were compared without and with the prostheses. Dental prostheses induced significant reductions in the nasolabial, mentolabial, and interlabial angles, with increased labial prominence (P < 0.05, Wilcoxon test). Lip vermilion area and volume significantly increased; significant increments were found in the vertical and anteroposterior labial dimensions. The presence of the dental prostheses significantly (P < 0.001) modified the three-dimensional positions of several soft-tissue facial landmarks. In conclusion, the current approach enabled quantitative evaluation of the final soft-tissue results of oral rehabilitation with implant-supported prostheses, without submitting the patients to invasive procedures. The method could assess the three-dimensional appearance of the facial soft tissues of the patient while planning the provisional prosthetic restoration, providing quantitative information to prepare the best definitive prosthesis.

  12. Spectrum of Radiological Manifestations in Lymphoproliferative Malignancies with Unusual Extra Nodal Soft Tissue Involvement.

    PubMed

    Sanyal, Shantiranjan; Prasad, Kahila; Upreti, Lalendra; Garga, Umesh Chandra

    2016-07-01

    Lymphoproliferative malignancies constitute a wide spectrum of haematological malignancies and their prevalence is widely increasing. Non-Hodgkin lymphomas and Hodgkin disease, frequently involve extranodal soft tissue structures in the head and neck, thorax and abdomen. These malignancies may involve virtually any type of soft tissues to any extent; hence many different imaging manifestations are possible which may mimic other disorders. The imaging characteristics of extranodal lymphomatous soft tissue involvement are described and classified here according to the site of involvement in 6 cases (primary diseases with orbital, muscle, extra testicular, scalp, sinonasal and pachymeningeal/dural involvement). In majority of these cases at presentation we found a predominantly homogeneous soft tissue mass with mildly high attenuation on CT and a T2 intermediate signal on MRI at these sites without any manifestation of disease elsewhere but on follow-up two out of these six cases developed systemic disease elsewhere. Few consistent patterns were noticed on CT and MRI which might help to include lymphomas as an important differential diagnosis of soft tissue masses. Though a definitive diagnosis requires a biopsy (bone marrow, lymph node, or mass), and other laboratory tests, imaging primarily aims at staging of the disease and identification of new or recurrent disease. PMID:27630925

  13. Three-dimensional soft tissue change after paranasal augmentation with porous polyethylene.

    PubMed

    Kwon, T-G; Kang, S-M; Hwang, H-D

    2014-07-01

    The aim of this study was to investigate the effect of porous polyethylene (PPE) in paranasal augmentation on midfacial soft tissue architecture. This retrospective study recruited patients with midface retrusion and mandibular prognathism. Twenty adult patients who had undergone bilateral PPE augmentation (ready-made type, thickness 4.5mm, Medpor) to the piriform aperture and simultaneous mandibular setback surgery were included in this study. The soft tissue morphology and thickness of the midface were evaluated using three-dimensional reformatted images from cone beam computed tomography done before and 6 months after surgery. The soft tissue outline of the midface was augmented 1-4mm. The average increase in soft tissue outline near the peri-alar region was 3.1-3.4mm, which comprised 68-74% of the PPE thickness (P<0.01). The nasolabial angle and columellar inclination were increased significantly (2.2° and 1.4°, respectively; both P<0.05), whereas the nasal tip angle, nasal tip protrusion, columellar length, and bilateral nostril axis angle did not change. The alar base became wider on average by 2.2mm (P<0.01). The results showed that paranasal augmentation with PPE significantly increased the overlying soft tissue outline without influencing the nasal projection and could enhance paranasal aesthetics with minimal morbidity.

  14. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    PubMed

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues.

  15. Optimization of Method to Extract Collagen from "Emperor" Tissue of Soft-shelled Turtles.

    PubMed

    Yamamoto, Tetsushi; Uemura, Kentaro; Sawashi, Yuki; Mitamura, Kuniko; Taga, Atsushi

    2016-01-01

    Soft-shelled turtles (Pelodiscus sinensis) are widely distributed in some Asian countries, and parts of this turtle contain abundant collagen. In this study, we optimized a method for extracting collagen from the soft-shelled turtle. We used three types of solvent and four extraction conditions to determine an effective collagen extraction method, which was extraction at 37°C with acetic acid after hydrochloric acid pretreatment. Next, we extracted collagen from three regions in the soft-shelled turtle: muscle, skin, and an area of soft tissue in the periphery of the turtle shell known in Japan and China as the "emperor." We determined that emperor tissue yielded the highest concentration and purity of collagen. We then optimized the pretreatment method for extraction from emperor tissue by using formic acid instead of hydrochloric acid, and the amount of extracted collagen increased by approximately 1.3-fold. Finally, we identified the optimal solvent out of four types of organic acid for collagen extraction from emperor tissue; the amount of extracted collagen from emperor tissue increased approximately 3-fold when citric acid was used as the extraction solvent instead of acetic acid. Emperor tissue can regenerate; thus, it is possible to obtain collagen from the emperor repeatedly without killing the turtle. Our findings suggest that the emperor tissue of softshelled turtles may be a good source of collagen for pharmaceutical and cosmetic applications.

  16. Critical soft-tissue dimensions with dental implants and treatment concepts.

    PubMed

    Thoma, Daniel S; Mühlemann, Sven; Jung, Ronald E

    2014-10-01

    Dental implants have proven to be a successful treatment option in fully and partially edentulous patients, rendering long-term functional and esthetic outcomes. Various factors are crucial for predictable long-term peri-implant tissue stability, including the biologic width; the papilla height and the mucosal soft-tissue level; the amounts of soft-tissue volume and keratinized tissue; and the biotype of the mucosa. The biotype of the mucosa is congenitally set, whereas many other parameters can, to some extent, be influenced by the treatment itself. Clinically, the choice of the dental implant and the position in a vertical and horizontal direction can substantially influence the establishment of the biologic width and subsequently the location of the buccal mucosa and the papilla height. Current treatment concepts predominantly focus on providing optimized peri-implant soft-tissue conditions before the start of the prosthetic phase and insertion of the final reconstruction. These include refined surgical techniques and the use of materials from autogenous and xenogenic origins to augment soft-tissue volume and keratinized tissue around dental implants, thereby mimicking the appearance of natural teeth.

  17. Haptics-assisted Virtual Planning of Bone, Soft Tissue, and Vessels in Fibula Osteocutaneous Free Flaps

    PubMed Central

    Nysjö, Fredrik; Rodríguez-Lorenzo, Andrés; Thor, Andreas; Hirsch, Jan-Michaél; Carlbom, Ingrid B.

    2015-01-01

    Background: Virtual surgery planning has proven useful for reconstructing head and neck defects by fibula osteocutaneous free flaps (FOFF). Benefits include improved healing, function, and aesthetics, as well as cost savings. But available virtual surgery planning systems incorporating fibula in craniomaxillofacial reconstruction simulate only bone reconstruction without considering vessels and soft tissue. Methods: The Haptics-Assisted Surgery Planning (HASP) system incorporates bone, vessels, and soft tissue of the FOFF in craniomaxillofacial defect reconstruction. Two surgeons tested HASP on 4 cases they had previously operated on: 3 with composite mandibular defects and 1 with a composite cervical spine defect. With the HASP stereographics and haptic feedback, using patient-specific computed tomography angiogram data, the surgeons planned the 4 cases, including bone resection, fibula design, recipient vessels selection, pedicle and perforator location selection, and skin paddle configuration. Results: Some problems encountered during the actual surgery could have been avoided as they became evident with HASP. In one case, the fibula reconstruction was incomplete because the fibula had to be reversed and thus did not reach the temporal fossa. In another case, the fibula had to be rotated 180 degrees to correct the plate and screw placement in relation to the perforator. In the spinal case, difficulty in finding the optimal fibula shape and position required extra ischemia time. Conclusions: The surgeons found HASP to be an efficient planning tool for FOFF reconstructions. The testing of alternative reconstructions to arrive at an optimal FOFF solution preoperatively potentially improves patient function and aesthetics and reduces operating room time. PMID:26495192

  18. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    PubMed Central

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338

  19. Strain elastography features of epidermoid tumours in superficial soft tissue: differences from other benign soft-tissue tumours and malignant tumours

    PubMed Central

    Park, H J; Lee, S M; Kim, W T; Lee, S; Ahn, K S

    2015-01-01

    Objective: We evaluated ultrasonographic features of superficial epidermoid tumour with a focus on strain elastography (SE) features that will help in the differential diagnosis of epidermoid tumour from other benign and malignant soft-tissue tumours. Methods: We retrospectively evaluated ultrasonographic and SE data of 103 surgically confirmed superficial soft-tissue tumours and tumour-like lesions: 29 cases of epidermoid tumour, 46 cases of other benign tumours and 28 cases of malignant tumour. SE and B-mode imaging were performed at the same time. SE characteristics were assigned into four grades (1–4) according to their elasticity. Interobserver agreement for the four SE scores between the two radiologists was analysed using kappa statistics. We classified each SE finding as a hard lesion (SE Score 3–4) or soft lesion (SE Score 1–2) and compared these findings using the χ2 test to identify whether a significant difference in mass hardness existed among epidermoid tumour, other benign tumour and malignant tumour. Results: Overall interobserver agreement according to the four SE scores was moderate (κ = 0.540), and overall agreement for the hardness [soft (Score 1–2) or hard (Score 3–4)] was almost perfect (κ = 0.825). Malignant tumours showed higher SE scores (3–4, hard nature) than did epidermoid tumour or other benign soft-tissue tumours. There were no differences in SE score between epidermoid tumour and other benign tumours. Conclusion: Superficial epidermoid tumour exhibits a softer nature than does malignant tumour but does not have a different SE pattern from other benign tumours. Advances in knowledge: SE features of epidermoid tumour might be helpful in differentiating from other benign and malignant tumours. PMID:25827206

  20. Computer-Aided Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds For Craniofacial Soft Tissue Reconstruction

    PubMed Central

    Zopf, David A.; Mitsak, Anna G.; Flanagan, Colleen L.; Wheeler, Matthew; Green, Glenn E.; Hollister, Scott J.

    2016-01-01

    Objectives To determine the potential of integrated image-based Computer Aided Design (CAD) and 3D printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Study Design Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Setting Multidisciplinary effort encompassing two academic institutions. Subjects and Methods DICOM CT images are segmented and utilized in image-based computer aided design to create porous, anatomic structures. Bioresorbable, polycaprolactone scaffolds with spherical and random porous architecture are produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months duration. Results Auricular and nasal constructs with several microporous architectures were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in excellent appearance and complete soft tissue ingrowth. Histologic analysis of in vitro scaffolds demonstrated native appearing cartilaginous growth respecting the boundaries of the scaffold. Conclusions Integrated image-based computer-aided design (CAD) and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. PMID:25281749

  1. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers.

    PubMed

    Gattringer, Rainer; Urbauer, Eleonora; Traunmüller, Friederike; Zeitlinger, Markus; Dehghanyar, Pejman; Zeleny, Petra; Graninger, Wolfgang; Müller, Markus; Joukhadar, Christian

    2004-12-01

    By use of microdialysis we assessed the concentrations of telithromycin in muscle and adipose tissue to test its ability to penetrate soft tissues. The ratios of the area under the concentration-versus-time curve from 0 to 24 h to the MIC indicated that free concentrations of telithromycin in tissue and plasma might be effective against Streptococcus pyogenes but not against staphylococci and human and animal bite pathogens. PMID:15561839

  2. Pharmacokinetics of Telithromycin in Plasma and Soft Tissues after Single-Dose Administration to Healthy Volunteers

    PubMed Central

    Gattringer, Rainer; Urbauer, Eleonora; Traunmüller, Friederike; Zeitlinger, Markus; Dehghanyar, Pejman; Zeleny, Petra; Graninger, Wolfgang; Müller, Markus; Joukhadar, Christian

    2004-01-01

    By use of microdialysis we assessed the concentrations of telithromycin in muscle and adipose tissue to test its ability to penetrate soft tissues. The ratios of the area under the concentration-versus-time curve from 0 to 24 h to the MIC indicated that free concentrations of telithromycin in tissue and plasma might be effective against Streptococcus pyogenes but not against staphylococci and human and animal bite pathogens. PMID:15561839

  3. The biological seal of the implant–soft tissue interface evaluated in a tissue-engineered oral mucosal model

    PubMed Central

    Chai, Wen L.; Brook, Ian M.; Palmquist, Anders; van Noort, Richard; Moharamzadeh, Keyvan

    2012-01-01

    For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant–soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant–soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different. PMID:22915635

  4. Soft tissue hemangioma with osseous extension: a case report and review of the literature.

    PubMed

    Daoud, Alexander; Olivieri, Brandon; Feinberg, Daniel; Betancourt, Michel; Bockelman, Brian

    2015-04-01

    Soft tissue hemangiomas are commonly encountered lesions, accounting for 7-10 % of all benign soft tissue masses (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010). While the literature describes the great majority of hemangiomas as asymptomatic and discovered only as incidental findings, they do have the potential to induce reactive changes in neighboring structures (Pastushyn et al. Surg Neurol 50(6):535-47, 1998). When these variants occur in close proximity to bone, they may elicit a number of well-documented reactive changes in osseous tissue (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010; DeFilippo et al. Skelet Radiol 25(2):174-7, 1996; Ly et al. AJR Am J Roentgenol 180(6):1695-700, 2003; Sung et al. Skelet Radiol 27(4):205-10, 1998). However, instances of direct extension into bone by soft tissue hemangiomas--that is, infiltration of the mass's vascular components into nearby osseous tissue--are currently undocumented in the literature. In these cases, imaging plays an important role in differentiating hemangiomas from malignant lesions (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010; Sung et al. Skelet Radiol 27(4):205-10, 1998; Pourbagher, Br J Radiol 84(1008):1100-8, 2011). In this article, we present such a case that involved the sacral spine. Imaging revealed a soft tissue mass with direct extension of vascular components into osseous tissue of the adjacent sacral vertebrae. Biopsy and subsequent histopathologic examination led to definitive diagnosis of soft tissue hemangioma. While MRI is widely regarded as the gold standard imaging modality for evaluating hemangiomas, in this report we describe how CT can aid in narrowing the differential diagnosis when one encounters a vascular lesion with adjacent osseous changes. Furthermore, we review the literature as it pertains to the imaging of soft tissue hemangiomas that occur in proximity to osseous tissue, as well as correlate this case to current theories on the pathogenesis of hemangiomas

  5. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  6. Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis

    PubMed Central

    Eisinger-Mathason, T. S. Karin; Mucaj, Vera; Biju, Kevin M.; Nakazawa, Michael S.; Gohil, Mercy; Cash, Timothy P.; Yoon, Sam S.; Skuli, Nicolas; Park, Kyung Min; Gerecht, Sharon; Simon, M. Celeste

    2015-01-01

    Genetic aberrations responsible for soft-tissue sarcoma formation in adults are largely unknown, with targeted therapies sorely needed for this complex and heterogeneous family of diseases. Here we report that that the Hippo pathway is deregulated in many soft-tissue sarcomas, resulting in elevated expression of the effector molecule Yes-Associated Protein (YAP). Based on data gathered from human sarcoma patients, a novel autochthonous mouse model, and mechanistic analyses, we determined that YAP-dependent expression of the transcription factor forkhead box M1 (FOXM1) is necessary for cell proliferation/tumorigenesis in a subset of soft-tissue sarcomas. Notably, FOXM1 directly interacts with the YAP transcriptional complex via TEAD1, resulting in coregulation of numerous critical pro-proliferation targets that enhance sarcoma progression. Finally, pharmacologic inhibition of FOXM1 decreases tumor size in vivo, making FOXM1 an attractive therapeutic target for the treatment of some sarcoma subtypes. PMID:26080399

  7. Subcutaneous Rhinosporidiosis Masquerading as Soft Tissue Tumor: Diagnosed by Fine-Needle Aspiration Cytology

    PubMed Central

    Kishan Prasad, HL; Rao, Chandrika; Girisha, BS; Shetty, Vikram; Permi, Harish S; Jayakumar, Meera; Kiran, HS

    2015-01-01

    Rhinosporidiosis is a chronic granulomatous lesion caused by Rhinosporidium seeberi. It frequently involves nasopharynx and ocular region. Presenting as cutaneous and subcutaneous mass is extremely rare. This report describes the FNA cytology of rhinosporidiosis occurring as a soft tissue mass in the right mid thigh region. We present a rare case of a 71-year-old male, who presented with multiple subcutaneous soft tissue mass lesions in the posteromedial aspect of mid right thigh region since 2 weeks. Local examination revealed multiple firm to hard mass with skin over the swelling was unremarkable. CT of the right thigh showed a heterogeneous lesion with infiltrative margins in the thigh. Clinically soft tissue sarcoma was considered. Diagnostic FNAC was performed showing numerous mature and immature sporangias with giant cell reaction. Hence, an excision biopsy confirmed the rhinosporidiosis. To conclude, the FNAC diagnosis of rhinosporidiosis is specific. Preoperative diagnosis is possible even in cases with unusual clinical presentations. PMID:25814750

  8. First experiences with simultaneous skeletal and soft tissue reconstruction of noma-related facial defects.

    PubMed

    Giessler, Goetz A; Borsche, André; Lim, Paul K; Schmidt, Andreas B; Cornelius, C-Peter

    2012-02-01

    Noma victims suffer from a three-dimensional facial soft-tissue loss. Some may also develop complex viscerocranial defects, due to acute osteitis, chronic exposure, or arrested skeletal growth. Reconstruction has mainly focused on soft tissue so far, whereas skeletal restoration was mostly avoided. After successful microvascular soft tissue free flap reconstruction, we now included skeletal restoration and mandibular ankylosis release into the initial step of complex noma surgery. One free rib graft and parascapular flap, one microvascular osteomyocutaneous flap from the subscapular system, and two sequential chimeric free flaps including vascularized bone were used as the initial steps for facial reconstruction. Ankylosis release could spare the temporomandibular joint. Complex noma reconstruction should include skeletal restoration. Avascular bone is acceptable in cases with complete vascularized graft coverage. Microsurgical chimeric flaps are preferable as they can reduce the number and complexity of secondary operations and provide viable, infection-resistant bone supporting facial growth.

  9. Hamstring tendon harvesting--Effect of harvester on tendon characteristics and soft tissue disruption; cadaver study.

    PubMed

    Charalambous, C P; Alvi, F; Phaltankar, P; Gagey, O

    2009-06-01

    The purpose of this study was to determine whether the type of hamstring tendon harvester used can influence harvested tendon characteristics and soft tissue disruption. We compared two different types of tendon harvesters with regard to the length of tendon obtained and soft tissue disruption during hamstring tendon harvesting. Thirty six semitendinosus and gracilis tendons were harvested using either a closed stripper or a blade harvester in 18 paired knees from nine human fresh cadavers. Use of the blade harvester gave longer lengths of usable tendon whilst minimising the stripping of muscle and of any non-usable tendon. Our results suggest that the type of harvester per se can influence the length of tendon harvested as well as soft tissue disruption. Requesting such data from the industry prior to deciding which harvester to use seems desirable.

  10. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L.; Crosby, Jessi R.; Meyer, Marcin; Su, Yewang; Chad Webb, R.; Tedesco, Andrew S.; Slepian, Marvin J.; Huang, Yonggang; Rogers, John A.

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.

  11. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics.

    PubMed

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L; Crosby, Jessi R; Meyer, Marcin; Su, Yewang; Chad Webb, R; Tedesco, Andrew S; Slepian, Marvin J; Huang, Yonggang; Rogers, John A

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties. PMID:25985458

  12. Some retinoblastomas, osteosarcomas, and soft tissue sarcomas may share a common etiology

    SciTech Connect

    Weichselbaum, R.R.; Beckett, M.; Diamond, A. )

    1988-04-01

    DNA and RNA were extracted from primary human osteosarcomas and soft tissue sarcomas obtained from patients without retinoblastoma and were analyzed by hybridization with a cDNA probe for RB mRNA; absence or alterations of the RB gene are associated with development of retinoblastoma. Most of the osteosarcomas or soft tissue sarcomas examined by the authors did not express detectable levels of RB mRNA, whereas normal cells and epithelial tumor cells did. One osteosarcoma expressed a 2.4-kilobase transcript in addition to a normal 4.7-kilobase species. The data suggest that transcriptional inactivation or post-transcriptional down-regulation of the RB gene may be important in the etiology of some osteosarcomas and soft tissue sarcomas as well as retinoblastomas.

  13. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.

    PubMed

    Zhu, Yilin; Kang, Guozheng; Yu, Chao; Poh, Leong Hien

    2016-08-01

    Based on the logarithmic rate and piecewise linearization theory, a thermodynamically consistent elasto-viscoplastic constitutive model is developed in the framework of finite deformations to describe the nonlinear time-dependent biomechanical performances of soft biological tissues, such as nonlinear anisotropic monotonic stress-strain responses, stress relaxation, creep and ratchetting. In the proposed model, the soft biological tissue is assumed as a typical composites consisting of an isotropic matrix and anisotropic fiber aggregation. Accordingly, the free energy function and stress tensor are divided into two parts related to the matrix and fiber aggregation, respectively. The nonlinear biomechanical responses of the tissues are described by the piecewise linearization theory with hypo-elastic relations of fiber aggregation. The evolution equations of viscoplasticity are formulated from the dissipation inequalities by the co-directionality hypotheses. The anisotropy is considered in the hypo-elastic relations and viscoplastic flow rules by introducing some material parameters dependent on the loading direction. Then the capability of the proposed model to describe the nonlinear time-dependent deformation of soft biological tissues is verified by comparing the predictions with the corresponding experimental results of three tissues. It is seen that the predicted monotonic stress-strain responses, stress relaxation, creep and ratchetting of soft biological tissues are in good agreement with the corresponding experimental ones. PMID:27108349

  14. Platform switching and abutment emergence profile modification on peri-implant soft tissue.

    PubMed

    Dornbush, Jeffrey R; Reiser, Gary M; Ho, Daniel K

    2014-01-01

    Although the peri-implant hard tissue advantages of platform switching abutments have been well documented by many authors, the peri-implant soft tissue advantages of platform switching abutments has had limited mention. This article illustrates how the amount of peri-implant soft tissue volume is influenced by the dimensional extent of platform switching and the degree that an abutment's sulcular emergence profile has been modified. This article also introduces the term "abutment sulcular emergence profile enhancement" (ASEPE) to describe the combined effect of platform switching and abutment emergence profile modification. Three unrecognized clinical advantages of ASEPE are described by different clinical cases. First, elimination of excessive abutment impingement on gingival tissue adjacent to implants is achieved. Second, allowance for sufficient interproximal space between implant and adjacent tooth/implant for the entry of interproximal toothbrush is made possible. Third, excessive soft tissue blanching during abutment seating at prosthesis delivery is eliminated. Together, the combined application of platform switching and abutment emergence profile modification represents the opening of a new realm for managing soft tissue around implants to resolve dimensional problems. PMID:25269220

  15. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.

    PubMed

    Zhu, Yilin; Kang, Guozheng; Yu, Chao; Poh, Leong Hien

    2016-08-01

    Based on the logarithmic rate and piecewise linearization theory, a thermodynamically consistent elasto-viscoplastic constitutive model is developed in the framework of finite deformations to describe the nonlinear time-dependent biomechanical performances of soft biological tissues, such as nonlinear anisotropic monotonic stress-strain responses, stress relaxation, creep and ratchetting. In the proposed model, the soft biological tissue is assumed as a typical composites consisting of an isotropic matrix and anisotropic fiber aggregation. Accordingly, the free energy function and stress tensor are divided into two parts related to the matrix and fiber aggregation, respectively. The nonlinear biomechanical responses of the tissues are described by the piecewise linearization theory with hypo-elastic relations of fiber aggregation. The evolution equations of viscoplasticity are formulated from the dissipation inequalities by the co-directionality hypotheses. The anisotropy is considered in the hypo-elastic relations and viscoplastic flow rules by introducing some material parameters dependent on the loading direction. Then the capability of the proposed model to describe the nonlinear time-dependent deformation of soft biological tissues is verified by comparing the predictions with the corresponding experimental results of three tissues. It is seen that the predicted monotonic stress-strain responses, stress relaxation, creep and ratchetting of soft biological tissues are in good agreement with the corresponding experimental ones.

  16. Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms.

    PubMed

    Davis, Frances M; Luo, Yuanming; Avril, Stéphane; Duprey, Ambroise; Lu, Jia

    2015-10-01

    In this manuscript, we present a combined experimental and computational technique that can identify the heterogeneous elastic properties of planar soft tissues. By combining inverse membrane analysis, digital image correlation, and bulge inflation tests, we are able to identify a tissue's mechanical properties locally. To show how the proposed method could be implemented, we quantified the heterogeneous material properties of a human ascending thoracic aortic aneurysm (ATAA). The ATAA was inflated at a constant rate using a bulge inflation device until it ruptured. Every 3 kPa images were taken using a stereo digital image correlation system. From the images, the three-dimensional displacement of the sample surface was determined. A deforming NURBS mesh was derived from the displacement data, and the local strains were computed. The wall stresses at each pressure increment were determined using inverse membrane analysis. The local material properties of the ATAA were then identified using the pointwise stress and strain data. To show that it is necessary to consider the heterogeneous distribution of the mechanical properties in the ATAA, three different forward finite element simulations using pointwise, elementwise, and homogeneous material properties were compared. The forward finite element predictions revealed that heterogeneous nature of the ATAA must be accounted for to accurately reproduce the stress-strain response.

  17. Investigation of soft tissue movement during level walking: translations and rotations of skin markers.

    PubMed

    Gao, Bo; Zheng, Naiquan Nigel

    2008-11-14

    Skin marker-based stereophotogrammetry is the most widely used technique for human motion analysis but its accuracy is mainly limited by soft tissue artifact (STA) which reflects the non-rigidity of human body segments during activities. To compensate for the effects of STA and improve the accuracy of motion analysis, it is critical to understand the behavior and characteristics of soft tissue movement. By using a non-invasive approach, this study investigated the soft tissue movement on the thigh and shank of twenty healthy subjects during level walking which is one of the most important human daily activities and the basic content of clinical gait analysis. With the measurement of inter-marker translations and rotations on each segment, a 4D picture (3D space and time) of soft tissue deformation on the thigh and shank during walking was quantified in terms of the positional and orientational change between different skin locations. Soft tissue deformation showed nonuniform distribution at different locations as well as along different directions. The range of inter-marker movement was found to be up to 19.1mm/19.6 degrees on the thigh and 9.3mm/8.6 degrees on the shank. Results in this study provide useful information for understanding soft tissue movement behavior and exploring better marker configurations. Inter-marker movement exhibited similar patterns across subjects. This finding suggests the possibility that STA has inter-subject similarity, which is contrary to the prevailing opinion. This new insight may lead to more effective STA compensation strategies for skin marker-based motion analysis.

  18. Soft tissue waxup and mock-up as key factors in a treatment plan: case presentation.

    PubMed

    Viana, Pedro Couto; Correia, André; Neves, Manuel; Kovacs, Zsolt; Neugbauer, Rudiger

    2012-01-01

    Rehabilitation of edentulous spaces in esthetic areas is a challenge to the clinician due to the loss of soft tissues. In these clinical situations, it would be desirable to evaluate and predict the gingival architecture to recover in the oral rehabilitation. To fulfill this need, the diagnostic wax should anticipate the final rehabilitation with the integration of hard and soft tissue. Thus, it is essential to produce a diagnostic waxup that integrates these two components that are simultaneously seeking to recreate the harmony of white and pink esthetic. This diagnostic waxup will be the basis for the creation of the provisional prosthesis and a soft tissue mock-up. After placing the provisional prosthesis in the mouth, the soft tissue mock-up can be applied to assess its esthetic impact at facial and intraoral level. Dentist and patient should objectively assess the appearance of the final result. After approval of this rehabilitation concept, the virtual surgical planning can be performed and the surgical guide can be designed, allowing the treatment to take place. This protocol allows the development of a rigorous treatment plan based on the integration of teeth and gingiva component. The waxup and the soft tissue mock-up play a significant role, since they allow an earlier evaluation of the esthetic result, better prosthetic and surgical planning, and it allows us to anticipate the need for gingiva-colored ceramics use. The authors present a clinical case report of the importance of the wax-up and soft tissue mock-up in the treatment plan.

  19. Intrinsic variability in shell and soft tissue growth of the freshwater mussel Lampsilis siliquoidea

    USGS Publications Warehouse

    Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle

    2014-01-01

    Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1-66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ~145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident

  20. Intrinsic Variability in Shell and Soft Tissue Growth of the Freshwater Mussel Lampsilis siliquoidea

    PubMed Central

    Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle R.

    2014-01-01

    Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1–66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ∼145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident

  1. Long-term evaluation of porous PEGT/PBT implants for soft tissue augmentation.

    PubMed

    Lamme, Evert N; Druecke, Daniel; Pieper, Jeroen; May, Paul S; Kaim, Peter; Jacobsen, Frank; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2008-01-01

    Porous PEGT/PBT implants with different physico-chemical characteristics were evaluated to identify its potential as biodegradable and biofunctional soft tissue filler. Implants (50 x 10 x 5 mm3) were implanted subcutaneously in mini-pigs and tissue response, tissue volume generated and its consistency were assessed quantitatively with a 52 weeks follow-up. The absence of wound edema, skin irritation, and chronic inflammation demonstrated biocompatibility of all implants evaluated. The hydrophobic implants induced the mildest foreign body response, generated highest amount of connective tissue and demonstrated a decrease in copolymer MW of 34-37% compared to 90% decrease of the hydrophilic implants. The rate and extent of copolymer fragmentation seems to be the determining factor of success of soft tissue augmentation using porous PEGT/PBT copolymer implants. PMID:18089674

  2. [Skin and soft tissue infections in children: consensus on diagnosis and treatment].

    PubMed

    2014-02-01

    Skin and soft tissue infections are a common reason for consultation in primary health care centers. Data from the local epidemiology of these infections are rare, but Staphylococcus aureus and Streptococcus pyogenes are known to be the major etiologic agents. The appearance in recent years of community-originated strains of methicillin-resistant S. aureus and erythromycin-resistant pyogenes raises controversy in the choice of initial empirical treatment. This national consensus is for pediatricians, dermatologists, infectiologists and other health professionals. It is about clinical management, especially the diagnosis and treatment of community-originated skin and soft tissue infections in immunocompetent patients under the age of 19. PMID:24566790

  3. Case presentation of soft tissue parapharyngeal chondroma in a pediatric patient.

    PubMed

    Smith, Erin J; Rezeanu, Luminita; Carron, Jeffrey

    2013-01-01

    Soft tissue chondromas are uncommon benign tumors found mostly in the hands and feet and rarely reported in the pediatric population. In this case presentation we describe a 10 year old boy who had an MRI for facial paralysis due to Ramsey Hunt Syndrome, which incidentally revealed a parapharyngeal mass. He underwent transoral resection of the mass without complication, and histopathology confirmed the diagnosis of soft tissue chondroma. This case is unique due to the unusual location of the tumor and its presentation in a child.

  4. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery

    PubMed Central

    Miga, Michael I.

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications. PMID:26354118

  5. Radiographic Patterns of Soft Tissue Calcinosis in Juvenile Dermatomyositis and its Clinical Implications

    PubMed Central

    Atwal, Swapndeep Singh; Mondal, Debopriyo; Garga, Umesh Chandra

    2014-01-01

    Juvenile Dermatomyositis (JDM) is a rare autoimmune inflammatory disease of muscles affecting children and adolescents with soft tissue calcification and varying systemic involvement. Though diagnosis is primarily by clinical, biochemical and histopathological tests, Imaging has unique significance from characterizing the calcinosis, detecting early changes in muscle in active phase of the disease, diagnosing potential complications,rule out other important differentials, guide biopsies ,and assessing the progress on follow up. Four distinct patterns of calcinosis have been described in relation to dermatomyositis which need to be differentiated from other aetiologies of soft tissue calcification and myopathies. PMID:25654011

  6. Diagnostic Imaging of Fetal and Neonatal Abdominal and Soft Tissue Tumors.

    PubMed

    Nagaraj, Usha D; Kline-Fath, Beth M

    2015-01-01

    Imaging plays a key role in the diagnosis and staging of prenatal and neonatal tumors, and is essential in treatment planning. Though obstetrical ultrasound is the first choice prenatally, fetal MRI continues to play an increasing role as experience with this imaging modality increases. In the neonate, in addition to ultrasound and MRI, CT and nuclear medicine studies can also play an important role. We describe the prenatal and neonatal imaging findings of some of the most common congenital abdominal and soft tissue neoplasms including neuroblastoma, renal, liver and soft tissue tumors. PMID:26168940

  7. [Soft tissue enhancement with injectable fillers for correction of age related folds and wrinkles].

    PubMed

    Hönig, J; Fricke, M

    2005-12-01

    Injectable fillers for facial soft tissue enhancement have been developed and used for decades for the correction of age related folds and wrinkles. Many of the disadvantages of xenogenic and prior exogenous materials have been overcome with the advent of autologous and synthetic alternative materials. Autologous and synthetic injectable fillers herald a new era in the treatment of the aging face. Therefore this article will give an in-depth look at the implant choice, surgical approach, and possible complications and will provide a review of current injectable fillers for age related facial soft tissue augmentation.

  8. Role of radiation therapy in the treatment of sarcoma of soft tissue

    SciTech Connect

    Tepper, J.E.; Suit, H.D.

    1985-01-01

    The data presented indicate that the combination of function-preserving surgery and radiation therapy is of value in the treatment of soft tissue sarcomas of the extremity. Local control is obtained in approximately 85% of patients and with survival results comparable to those obtained in patients treated with radical surgery. The one randomized series of patients treated with conservative resection and radiation compared to amputation has shown no difference in overall survival. These local control results have been obtained while maintaining good functional results. Combined local resection and radiation is an appropriate treatment option in a large proportion of patients with soft tissue sarcomas.

  9. Prediction of acute renal failure following soft-tissue injury using the venous bicarbonate concentration.

    PubMed

    Muckart, D J; Moodley, M; Naidu, A G; Reddy, A D; Meineke, K R

    1992-12-01

    Sixty-four patients with soft-tissue injuries were studied prospectively to determine whether an initial venous bicarbonate concentration (VBC) of less than 17 mmol/L would predict the development of myoglobin-induced acute renal failure. The VBC was > 17 mmol/L in 59 patients, seven of whom had myoglobinuria. All recovered without renal complications. The remaining five patients all had VBC < 17 mmol/L and four had myoglobinuria. Acute renal failure developed in four patients (p < 0.001). The VBC on hospital arrival was the most accurate predictor of these patients' risk for the development of acute renal failure following soft-tissue injury. PMID:1474620

  10. [Skin and soft tissue infections in children: consensus on diagnosis and treatment].

    PubMed

    Moyano, Mónica; Peuchot, Agustina; Giachetti, Ana Claudia; Moreno, Rina; Cancellara, Aldo; Falaschi, Andrea; Chiarelli, Gloria; Villasboas, Rosa Mabel; Corazza, Rosana; Magneres, Cecilia; Calvari, Miriam; Roldán, Daniela

    2014-04-01

    Skin and soft tissue infections are a common reason for consultation in primary health care centers. Data from the local epidemiology of these infections are rare, but Staphylococcus aureus and Streptococcus pyogenes are known to be the major etiologic agents. The appearance in recent years of community-originated strains of methicillin-resistant S. aureus and erythromycin-resistant pyogenes raises controversy in the choice of initial empirical treatment. This national consensus is for pediatricians, dermatologists, infectologists and other health professionals. It is about clinical management, especially the diagnosis and treatment of community-originated skin and soft tissue infections in immunocompetent patients under the age of 19.

  11. [Skin and soft tissue infections in children: consensus on diagnosis and treatment].

    PubMed

    2014-02-01

    Skin and soft tissue infections are a common reason for consultation in primary health care centers. Data from the local epidemiology of these infections are rare, but Staphylococcus aureus and Streptococcus pyogenes are known to be the major etiologic agents. The appearance in recent years of community-originated strains of methicillin-resistant S. aureus and erythromycin-resistant pyogenes raises controversy in the choice of initial empirical treatment. This national consensus is for pediatricians, dermatologists, infectiologists and other health professionals. It is about clinical management, especially the diagnosis and treatment of community-originated skin and soft tissue infections in immunocompetent patients under the age of 19.

  12. Advanced soft-tissue sarcoma and treatment options: critical appraisal of trabectedin

    PubMed Central

    Desar, Ingrid M E; Constantinidou, Anastasia; Kaal, Suzanne E J; Jones, Robin L; van der Graaf, Winette T A

    2016-01-01

    Soft-tissue sarcomas (STS) are a heterogeneous group of rare solid tumors of mesenchymal origin. This paper reviews the current status of systemic treatment in advanced and metastatic soft tissue sarcomas, with an emphasis on trabectedin. Trabectedin is a unique type of chemotherapeutic agent with multiple potential mechanisms of action. We discuss the putative mechanisms, as well as the toxicity and administration schedules of trabectedin, followed by its efficacy in first-line systemic therapy and beyond first-line systemic therapy. PMID:27574465

  13. EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report.

    PubMed

    Flucke, Uta; Mentzel, Thomas; Verdijk, Marian A; Slootweg, Pieter J; Creytens, David H; Suurmeijer, Albert J H; Tops, Bastiaan B J

    2012-05-01

    Soft tissue myoepithelial tumors, a recently defined entity, include benign and malignant lesions showing a considerable morphological and immunohistochemical heterogeneity. EWSR1 rearrangements are well recognized in this tumor type, and some of the partner genes have been identified. Herein we describe a soft tissue myoepithelioma arising in the pelvis with an EWSR1-ATF1 fusion, therefore extending the spectrum of partner genes of EWSR1. In addition, this case indicates that there are overlapping genetic features of myoepithelial tumors, clear cell sarcoma, angiomatoid fibrous histiocytoma, and hyalinizing clear-cell carcinoma of the salivary gland.

  14. MRI manifestations of soft-tissue haemangiomas and accompanying reactive bone changes

    PubMed Central

    Pourbagher, A; Pourbagher, M A; Karan, B; Ozkoc, G

    2011-01-01

    Objectives Soft tissue haemangiomas are common benign vascular lesions that can be accompanied by reactive changes in the adjacent bone structure. This study aimed to discuss the MRI features of soft-tissue haemangiomas with an emphasis on changes in bone. Methods The radiographic and MRI findings of 23 patients (9 males, 14 females; mean age 25 years; age range 2–46 years) with soft-tissue haemangiomas were analysed retrospectively. MR images were evaluated for location of the lesion, size, configuration, signal features, contrast patterns, proximity to adjacent bone and changes in the accompanying bone. Excisional biopsy was performed in 15 patients. Results Radiographs demonstrated phleboliths in 8 patients (34%) and reactive bone changes in 4 (19%). On MRI, T1 weighted images showed that most of the lesions were isointense or isohyperintense, as compared with muscle tissue; however, on T2 weighted images all lesions appeared as hyperintense. Following intravenous gadolinium-diethylene triamine pentaacetic acid (DTPA) administration, homogeneous enhancement was observed in 3 lesions and heterogeneous enhancement was seen in 19. No enhancement was observed in one patient. Bone atrophy adjacent to the lesion was observed in four patients. Conclusion MRI is the most valuable means of diagnosing deep soft-tissue haemangiomas. Bone changes can accompany deeply situated haemangiomas; in four of our patients, we found atrophy of the bone adjacent to the lesion. To our knowledge, this is the first report in the literature regarding atrophy of the bone adjacent to a lesion. PMID:21123304

  15. Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation.

    PubMed

    Palacio-Torralba, Javier; Hammer, Steven; Good, Daniel W; Alan McNeill, S; Stewart, Grant D; Reuben, Robert L; Chen, Yuhang

    2015-01-01

    Although palpation has been successfully employed for centuries to assess soft tissue quality, it is a subjective test, and is therefore qualitative and depends on the experience of the practitioner. To reproduce what the medical practitioner feels needs more than a simple quasi-static stiffness measurement. This paper assesses the capacity of dynamic mechanical palpation to measure the changes in viscoelastic properties that soft tissue can exhibit under certain pathological conditions. A diagnostic framework is proposed to measure elastic and viscous behaviors simultaneously using a reduced set of viscoelastic parameters, giving a reliable index for quantitative assessment of tissue quality. The approach is illustrated on prostate models reconstructed from prostate MRI scans. The examples show that the change in viscoelastic time constant between healthy and cancerous tissue is a key index for quantitative diagnostics using point probing. The method is not limited to any particular tissue or material and is therefore useful for tissue where defining a unique time constant is not trivial. The proposed framework of quantitative assessment could become a useful tool in clinical diagnostics for soft tissue.

  16. Soft tissue expansion before vertical ridge augmentation: Inflatable silicone balloons or self-filling osmotic tissue expanders?

    PubMed Central

    Dhadse, Prasad Vijayrao; Yeltiwar, Ramareddy Krishnarao; Bhongade, Manohar Laxmanrao; Pendor, Sunil Dattuji

    2014-01-01

    Recent advances in periodontal plastic surgical procedures allow the clinician to reconstruct deficient alveolar ridges in more predictable ways than previously possible. Placement of implant/s in resorbed ridges poses numerous challenges to the clinician for successful esthetic and functional rehabilitation. The reconstruction frequently utilizes one or combination of periodontal plastic surgical procedures in conjunction with autogenous bone grafting, allogenic bone block grafting, ridge split techniques, distraction osteogenesis, or guided bone regeneration (GBR) for most predictable outcomes. Current surgical modalities used in reconstruction of alveolar ridge (horizontal and/or vertical component) often involve the need of flap transfer. Moreover, there is compromise in tissue integrity and color match owing to different surgical site and the tissue utilized is insufficient in quantity leading to post surgical graft exposition and/or loss of grafted bone. Soft tissue expansion (STE) by implantation of inflatable silicone balloon or self filling osmotic tissue expanders before reconstructive surgery can overcome these disadvantages and certainly holds a promise for effective method for generation of soft tissue thereby achieving predictable augmentation of deficient alveolar ridges for the implant success. This article focuses and compares these distinct tissue expanders for their clinical efficacy of achieving excess tissue that predominantly seems to be prerequisite for ridge augmentation which can be reasonably followed by successful placement of endosseous fixtures. PMID:25210255

  17. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    SciTech Connect

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M.; Chang, T.D.; Neev, J.

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  18. [Anatomy typological and clinical parallels in case of disturbance of soft tissue formations of shoulder girdle].

    PubMed

    Volkov, A V; Shutov, Iu M; Shutova, M Z

    2012-01-01

    The influence of anthropology on topographical anatomical structure peculiarities of soft tissue formations of shoulder girdle has been investigated. The dependence of anatomical structure and topography of muscles, ligaments, tendon sheaths, synovial bursae, rotator cuffs on patient's body constitution type has been examined. The influence of a somatotype on topical damage of soft tissue structures of shoulder girdle has been proved. The so-called "holes" or weak areas, joint capsules, places where ligaments attach to bones and cartilages, where vascular formations also take place have been revealed. It is in these areas that degenerative inflammatory process begins. First of all this process influences hemolymph circulation, then it results in disturbance in production and resorption of synovial fluid and causes destructive processes in ligaments, tendons and osteochondral tissue. Due to research the ability to conduct differential diagnosis has been determined, methods of modality treatment and prevention of periarticular tissue diseases have been optimized.

  19. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications.

    PubMed

    Tsai, Henry P; Holliday, Casey M

    2015-06-01

    Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and

  20. Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times.

    PubMed

    Anssari-Benam, Afshin; Bucchi, Andrea; Bader, Dan L

    2015-09-18

    Discrete element models have often been the primary tool in investigating and characterising the viscoelastic behaviour of soft tissues. However, studies have employed varied configurations of these models, based on the choice of the number of elements and the utilised formation, for different subject tissues. This approach has yielded a diverse array of viscoelastic models in the literature, each seemingly resulting in different descriptions of viscoelastic constitutive behaviour and/or stress-relaxation and creep functions. Moreover, most studies do not apply a single discrete element model to characterise both stress-relaxation and creep behaviours of tissues. The underlying assumption for this disparity is the implicit perception that the viscoelasticity of soft tissues cannot be described by a universal behaviour or law, resulting in the lack of a unified approach in the literature based on discrete element representations. This paper derives the constitutive equation for different viscoelastic models applicable to soft tissues with two characteristic times. It demonstrates that all possible configurations exhibit a unified and universal behaviour, captured by a single constitutive relationship between stress, strain and time as: σ+Aσ̇+Bσ¨=Pε̇+Qε¨. The ensuing stress-relaxation G(t) and creep J(t) functions are also unified and universal, derived as [Formula: see text] and J(t)=c2+(ε0-c2)e(-PQt)+σ0Pt, respectively. Application of these relationships to experimental data is illustrated for various tissues including the aortic valve, ligament and cerebral artery. The unified model presented in this paper may be applied to all tissues with two characteristic times, obviating the need for employing varied configurations of discrete element models in preliminary investigation of the viscoelastic behaviour of soft tissues.

  1. Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times.

    PubMed

    Anssari-Benam, Afshin; Bucchi, Andrea; Bader, Dan L

    2015-09-18

    Discrete element models have often been the primary tool in investigating and characterising the viscoelastic behaviour of soft tissues. However, studies have employed varied configurations of these models, based on the choice of the number of elements and the utilised formation, for different subject tissues. This approach has yielded a diverse array of viscoelastic models in the literature, each seemingly resulting in different descriptions of viscoelastic constitutive behaviour and/or stress-relaxation and creep functions. Moreover, most studies do not apply a single discrete element model to characterise both stress-relaxation and creep behaviours of tissues. The underlying assumption for this disparity is the implicit perception that the viscoelasticity of soft tissues cannot be described by a universal behaviour or law, resulting in the lack of a unified approach in the literature based on discrete element representations. This paper derives the constitutive equation for different viscoelastic models applicable to soft tissues with two characteristic times. It demonstrates that all possible configurations exhibit a unified and universal behaviour, captured by a single constitutive relationship between stress, strain and time as: σ+Aσ̇+Bσ¨=Pε̇+Qε¨. The ensuing stress-relaxation G(t) and creep J(t) functions are also unified and universal, derived as [Formula: see text] and J(t)=c2+(ε0-c2)e(-PQt)+σ0Pt, respectively. Application of these relationships to experimental data is illustrated for various tissues including the aortic valve, ligament and cerebral artery. The unified model presented in this paper may be applied to all tissues with two characteristic times, obviating the need for employing varied configurations of discrete element models in preliminary investigation of the viscoelastic behaviour of soft tissues. PMID:26232814

  2. Confinement of conjugated polymers into soft nanoparticles: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary S.

    2013-03-01

    The structure and dynamics of conjugated polymers confined into soft nanoparticles (SNPs) have been studies by molecular dynamic simulations. This new class of tunable luminescent SNPs exhibits an immense potential as bio-markers as well as targeted drug delivery agents where tethering specific groups to the surface particles offers a means to target specific applications. Of particular interest are SNPs that consist of non- crosslinked polymers, decorated with polar groups. These SNPs are potentially tunable through the dynamics of the polymer chains, whereas the polar entity serves as internal stabilizer and surface encore. Confinement of a polymer whose inherent conformation is extended impacts not only their dynamics and as a result their optical properties. Here we will present insight into the structure and dynamics of dialkyl poly para phenylene ethynylene (PPE), decorated by a carboxylate groups, confined into a soft particle. The conformation and dynamics of polymer within SNP will be discussed and compared with that of the linear chain in solution. This work in partially supported by DOE grant DE-FG02-12ER46843

  3. [Surgery for soft-tissue sarcomas of the limbs and trunk wall].

    PubMed

    Stoeckle, E; Michot, A; Henriques, B; Sargos, P; Honoré, C; Ferron, G; Meeus, P; Babre, F; Bonvalot, S

    2016-10-01

    Soft-tissue sarcoma of the limbs or the trunk wall determine a heterogeneous group of tumours that tends to receive a more individualized approach. The surgeon in charge with soft-tissue sarcoma has to be familiar with these tumours in order to deliver an adequate treatment. Most important is the initial diagnostic procedure, comprising imaging with MRI, a core needle biopsy, and in France, referral to a centre of expertise within the clinical network NETSARC. Prior to surgery, a multidisciplinary conference determines its moment and the extent of surgical resection within the frame of a multidisciplinary approach, and also plans reconstructive surgery, when needed. A standardized operative report summarizes items necessary to describe the resection quality (i.e. tumour seen, tumour infiltrated?). In multidisciplinary staff meetings, they are compared to margins measured by the pathologist on the operative specimen. Hence, resection quality is determined collegially and defined by resection type R (R0, R1, R2) as a qualitative result. The quality of resection directly determines the 5-year risk of local recurrence, estimated between 10 and 20% in specialized centres, with the objective to attain 10%. Early rehabilitation favours better functional outcome. The surgeon's experience with soft-tissue sarcoma, as part of a multidisciplinary treatment, is key in achieving the best adequacy between oncological resection and favourable functional outcome. In France, a specific university course for soft-tissue sarcoma will be set-up.

  4. Cell-assisted lipotransfer in the clinical treatment of facial soft tissue deformity.

    PubMed

    Ma, Li; Wen, Huicai; Jian, Xueping; Liao, Huaiwei; Sui, Yunpeng; Liu, Yanping; Xu, Guizhen

    2015-01-01

    Cosmetic surgeons have experimented with a variety of substances to improve soft tissue deformities of the face. Autologous fat grafting provides significant advantages over other modalities because it leaves no scar, is easy to use and is well tolerated by most patients. Autologous fat grafting has become one of the most popular techniques in the field of facial plastic surgery. Unfortunately, there are still two major problems affecting survival rate and development: revascularization after transplantion; and cell reservation proliferation and survival. Since Zuk and Yosra developed a technology based on adipose-derived stem cells and cell-assisted lipotrophy, researchers have hoped that this technology would promote the survival and reduce the absorption of grafted fat cells. Autologous adipose-derived stem cells may have great potential in skin repair applications, aged skin rejuvenation and other aging-related skin lesion treatments. Recently, the study of adipose-derived stem cells has gained increased attention. More researchers have started to adopt this technology in the clinical treatment of facial soft tissue deformity. The present article reviews the history of facial soft tissue augmentation and the advent of adipose-derived stem cells in the area of the clinical treatment of facial soft tissue deformity.

  5. Radiotherapy for Management of Extremity Soft Tissue Sarcomas: Why, When, and Where?

    SciTech Connect

    Haas, Rick L.M.; DeLaney, Thomas F.; O'Sullivan, Brian; Keus, Ronald B.; Le Pechoux, Cecile; Olmi, Patricia; Poulsen, Jan-Peter; Seddon, Beatrice; Wang, Dian

    2012-11-01

    This critical review will focus on published data on the indications for radiotherapy in patients with extremity soft tissue sarcomas and its role in local control, survival, and treatment complications. The differences between pre- and postoperative radiotherapy will be discussed and consensus recommendations on target volume delineation proposed.

  6. Community-acquired soft-tissue infections caused by Flavimonas oryzihabitans.

    PubMed

    Lam, S; Isenberg, H D; Edwards, B; Hilton, E

    1994-05-01

    Flavimonas oryzihabitans has rarely been implicated in human infections. Previously reported cases of infections caused by this bacterium were nosocomially acquired. We report two cases of community-acquired soft-tissue infections due to F. oryzihabitans. It remains unclear how the patients were exposed to the organism.

  7. Maxillofacial trauma with emphasis on soft-tissue injuries in Malaysia.

    PubMed

    Hussaini, H M; Rahman, N A; Rahman, R A; Nor, G M; Ai Idrus, S M; Ramli, R

    2007-09-01

    Soft-tissue injuries with or without facial bone involvement are the most common presentation following maxillofacial trauma. The objective of this study was to look at the distribution, pattern and type of soft-tissue injury in relation to aetiology. Records of patients over a period of 5 years (1998-2002), who sustained maxillofacial injuries and were treated at Kajang Hospital, a secondary referral hospital, were reviewed. Out of 313 patients with maxillofacial injuries, 295 patients sustained soft-tissue injuries. Males (79%) between 21 and 30 years old (34%) were the majority of patients. Road-traffic accident was the main cause of soft-tissue injuries (75%) with motorcycle accident being the most frequent (40%). The upper lips (23%) and the lower lips (18%) were the most common extraoral site involved, while the labial mucosa and sulcular areas, both accounting for 21%, were the most common intraoral sites. Stringent road-traffic regulations should be practiced in developing countries, as morbidity arising from road-traffic accidents poses a national economic and social problem.

  8. Deep Soft Tissue Leiomyoma of Forearm: A Case Report and Review of Literature.

    PubMed

    Bommireddy, Babulreddy; Gurram, Vijay

    2016-06-01

    Leiomyomas are benign tumours of smooth-muscle origin representing 4.4% of all benign soft-tissue neoplasms. They are classified as cutaneous, vascular and leiomyomas of deep soft tissues. Leiomyomas rarely occur in extremities and are more common in the lower limb than in the upper extremity. Deep soft tissue leiomyomas are even rare with a very few reported cases so far in the literature. A 25-year-old female presented to us with an atraumatic slowly enlarging mass in the right forearm from 6 months with mild erosion of cortex of radius. She was otherwise healthy, MRI revealed a soft tissue lesion involving the interosseous space, isointense on T1, slightly hyperintense on T2 and hyperintense on STIR images. The tumour was excised intoto. The case is presented due to its rarity and the risk of tumor misdiagnosis. It should be considered in the differential diagnosis of any solitary painful slow growing mass of the extremities. If adequate margins are obtained recurrence of this tumour is very rare. PMID:27504364

  9. Do we need keratinized mucosa for a healthy peri-implant soft tissue?

    PubMed

    Esfahanizadeh, Nasrin; Daneshparvar, Niloufar; Motallebi, Sara; Akhondi, Nasrin; Askarpour, Farinaz; Davaie, Sotudeh

    2016-01-01

    The presence of keratinized mucosa plays a fundamental role in peri-implant soft tissue health. This study assessed the impact of the width of keratinized mucosa (WKM) on peri-implant soft tissue parameters. A cross-sectional study was conducted on 110 bone-level implants in 36 patients. A minimum of 6 months had passed since the loading of implants, and the patients had at least 1 implant in 1 quadrant at the molar or premolar site restored with a single crown or fixed partial denture. The health of peri-implant soft tissue was assessed with a modified bleeding index (MBI), modified plaque index (MPI), and modified gingival index (MGI). Probing depth (PD), gingival recession (GR), and WKM were also measured. History of smoking and oral hygiene methods were recorded. A significant inverse correlation existed between WKM and the parameters MBI, MPI, MGI, and GR (P < 0.05). Values of MBI, MPI, MGI, and GR were significantly lower in areas with WKM ≥ 2 mm and higher in areas with WKM < 2 mm (P < 0.05). The WKM was greatest in subjects using the vibratory toothbrushing technique and narrowest in those using the horizontal toothbrushing technique (P < 0.05). The mean WKM was significantly greater in smokers than in nonsmokers (P < 0.05). Results of this study indicate that an association exists between WKM and peri-implant soft tissue health. A minimum of 2 mm of keratinized mucosa around implants is recommended. PMID:27367634

  10. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans

    PubMed Central

    Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia; David, Nathaniel; Mori, Susumu; Taube, Janis M.; Elisseeff, Jennifer H.

    2015-01-01

    Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal light exposure. Modulating the ratio of synthetic to biological polymer allowed us to tune implant elasticity and volume persistence. In a small-animal model, implanted photocrosslinked PEG-HA showed a dose-dependent relationship between increasing PEG concentration and enhanced implant volume persistence. In direct comparison with commercial HA injections, the PEG-HA implants maintained significantly greater average volumes and heights. Reversibility of the implant volume was achieved with hyaluronidase injection. Pilot clinical testing in human patients confirmed the feasibility of the transdermal photocrosslinking approach for implantation in abdomen soft tissue, although an inflammatory response was observed surrounding some of the materials. PMID:21795587

  11. Phenoxy herbicides and chlorophenols as risk factors for soft tissue sarcoma and non-Hodgkin's lymphoma

    SciTech Connect

    Woods, J.; Polissar, L.; Severson, R.; Heuser, L.

    1986-09-01

    A population-based case-control study evaluated the relationship between soft tissue sarcoma and non-Hodgkin's lymphoma and past exposure to phenoxy herbicides and chlorophenols in western Washington state. A major purpose of the study was to determine if the risk of cancer was elevated in relation to chemicals potentially contaminated with 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD). A total of 160 men with soft tissue sarcoma and 581 men with non-Hodgkin's lymphoma were group-matched with 694 randomly selected controls and were interviewed in person. Among the general population, no increased risks for either cancer were seen in relation to intensity or duration of past exposure to phenoxy herbicides or chlorophenols. Preliminary risk estimates for specific occupations that involve phenoxy herbicide or chlorophenol exposure included: farmer, herbicide formulator, applicator, forest sprayer, farmland sprayer, work in sprayed area, and work with or manufacture chlorophenyls. In addition, the risks of both soft tissue sarcoma and non-Hodgkin's lymphoma were elevated among men with past exposure to various insecticides, organic solvents and metals, and among those with preexisting compromise of the immune system. Multivariate studies are in progress to ascertain the contribution of diverse factors to the risks of soft tissue sarcoma or non-Hodgkin's lymphoma in association with phenoxy herbicides, chlorophenols, and/or TCDD.

  12. Staged Soft Tissue Reconstruction Following Sarcoma Excision with Anticipated Large Cutaneous Defects: An Oncologically Safe Alternative

    PubMed Central

    Siegel, Geoffrey W; Kuzon, William M.; Hasen, Jill M; Biermann, J. Sybil

    2016-01-01

    Background We hypothesized that select patients undergoing planned soft tissue sarcoma (STS) excision with anticipated skin and soft tissue deficits could be treated with a two stage surgical procedure which would allow some flexibility in coverage options while not significantly increasing local recurrence rate or wound complication rate. Methods A retrospective review was undertaken in a series of consecutive patients with a minimum 2-year follow-up treated by a single orthopedic oncologist and a single reconstructive plastic surgeon who were managed with a staged approach STS excision and reconstruction. Results There were 73 patients identified over a ten-year period that underwent staged STS excision and soft tissue reconstruction. There were 12 (16%) initial positive margins resected to negative final margins, and a variety of coverage procedures performed. Wound complication rate was 21%. Local recurrence rate was 11%. Conclusion Staged STS excision and reconstruction is an acceptable tool in the armamentarium of the orthopedic oncologist for managing major soft tissue deficits without an increase in local recurrence rates. PMID:27528845

  13. Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings.

    PubMed

    Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko

    2012-06-01

    Although metal hypersensitivity or pseudotumors are concerns for metal-on-metal (MoM) bearings, detailed pathologies of patterns, severity, and incidence of periprosthetic soft tissue lesions are incompletely understood. We examined the potential of ultrasound for screening of periarticular soft tissue lesions around MoM bearings. Ultrasound examinations were conducted in 88 hips (79 patients) with MoM hip resurfacings or MoM total hip arthroplasties with a large femoral head. Four qualitative ultrasound patterns were shown, including normal pattern in 69 hips, joint-expansion pattern in 11 hips, cystic pattern in 5 hips, and mass pattern in 3 hips. Hips with the latter 3 abnormal patterns showed significantly higher frequency of clinical symptoms, without significant differences of sex, duration of implantation, head sizes, and cup abduction/anteversion angles, compared with hips with normal pattern. Ultrasound examination provides sensitive screening of soft tissue reactions around MoM bearings and may be useful in monitoring progression and defining treatment for periarticular soft tissue abnormalities. PMID:22047978

  14. NIH researchers use gene therapy to treat a soft tissue tumor

    Cancer.gov

    Results of an intermediate stage clinical trial of several dozen people provides evidence that a method that has worked for treating patients with metastatic melanoma can also work for patients with metastatic synovial cell sarcoma, one of the most common soft tissue tumors in adolescents and young adults.

  15. Maxillofacial trauma with emphasis on soft-tissue injuries in Malaysia.

    PubMed

    Hussaini, H M; Rahman, N A; Rahman, R A; Nor, G M; Ai Idrus, S M; Ramli, R

    2007-09-01

    Soft-tissue injuries with or without facial bone involvement are the most common presentation following maxillofacial trauma. The objective of this study was to look at the distribution, pattern and type of soft-tissue injury in relation to aetiology. Records of patients over a period of 5 years (1998-2002), who sustained maxillofacial injuries and were treated at Kajang Hospital, a secondary referral hospital, were reviewed. Out of 313 patients with maxillofacial injuries, 295 patients sustained soft-tissue injuries. Males (79%) between 21 and 30 years old (34%) were the majority of patients. Road-traffic accident was the main cause of soft-tissue injuries (75%) with motorcycle accident being the most frequent (40%). The upper lips (23%) and the lower lips (18%) were the most common extraoral site involved, while the labial mucosa and sulcular areas, both accounting for 21%, were the most common intraoral sites. Stringent road-traffic regulations should be practiced in developing countries, as morbidity arising from road-traffic accidents poses a national economic and social problem. PMID:17630250

  16. Deep Soft Tissue Leiomyoma of Forearm: A Case Report and Review of Literature

    PubMed Central

    Gurram, Vijay

    2016-01-01

    Leiomyomas are benign tumours of smooth-muscle origin representing 4.4% of all benign soft-tissue neoplasms. They are classified as cutaneous, vascular and leiomyomas of deep soft tissues. Leiomyomas rarely occur in extremities and are more common in the lower limb than in the upper extremity. Deep soft tissue leiomyomas are even rare with a very few reported cases so far in the literature. A 25-year-old female presented to us with an atraumatic slowly enlarging mass in the right forearm from 6 months with mild erosion of cortex of radius. She was otherwise healthy, MRI revealed a soft tissue lesion involving the interosseous space, isointense on T1, slightly hyperintense on T2 and hyperintense on STIR images. The tumour was excised intoto. The case is presented due to its rarity and the risk of tumor misdiagnosis. It should be considered in the differential diagnosis of any solitary painful slow growing mass of the extremities. If adequate margins are obtained recurrence of this tumour is very rare. PMID:27504364

  17. Different effects of bleeding and soft-tissue trauma on pulmonary platelet trapping in pigs

    SciTech Connect

    Blomquist, S.; Thoerne, J.E.; Elmer, O.

    1989-06-01

    Immediate reactions to different types of trauma have been the object of several studies recently. It has been shown that pulmonary platelet trapping (PPT) occurs within minutes after both septic shock and soft-tissue trauma. The purpose of this study was to investigate whether hypovolemia induced by hypoperfusion might trigger platelet trapping in the lungs in the same way as soft-tissue trauma. Platelets labelled with indium-oxine were reinfused in anesthetized and mechanically ventilated pigs 4 hours before either induction of standardized hypovolemia caused by bleeding to the amount of 20% of the estimated blood volume (n = 6) or a standardized soft-tissue trauma to the hind limbs (n = 7). Platelet sequestration in the lungs was recorded dynamically by means of scintigraphy for 15 minutes before and 90 min after the start of the trauma and bleeding episodes. Central hemodynamics were recorded using a Swan-Ganz catheter. Soft-tissue trauma induced a marked PPT; in the animals subjected to bleeding alone there was no such effect despite a hemodynamic deterioration of greater magnitude than in the trauma group. The PPT was accompanied by a reduction in the number of platelets and leukocytes in peripheral blood. Our results indicate that immediate trapping of platelets in the lungs after trauma occurs as a response to factors other than those related to simple hypovolemic hypoperfusion.

  18. Community-acquired soft-tissue infections caused by Flavimonas oryzihabitans.

    PubMed

    Lam, S; Isenberg, H D; Edwards, B; Hilton, E

    1994-05-01

    Flavimonas oryzihabitans has rarely been implicated in human infections. Previously reported cases of infections caused by this bacterium were nosocomially acquired. We report two cases of community-acquired soft-tissue infections due to F. oryzihabitans. It remains unclear how the patients were exposed to the organism. PMID:8075277

  19. Soft tissue facial angles in Down's syndrome subjects: a three-dimensional non-invasive study.

    PubMed

    Ferrario, Virgilio F; Dellavia, Claudia; Serrao, Graziano; Sforza, Chiarella

    2005-08-01

    The aim of the present study was to obtain quantitative information concerning the three-dimensional (3D) arrangement of the facial soft tissues of subjects with Down's syndrome. The 3D co-ordinates of 50 soft tissue facial landmarks were recorded by an electromechanical digitizer in 17 male and 11 female subjects with Down's syndrome aged 12-45 years, and in 429 healthy individuals of the same age, ethnicity and gender. From the landmark co-ordinates, geometric calculations were obtained of several 3D facial angles: facial convexity in the horizontal plane (upper facial convexity, mid facial convexity including the nose, and lower facial convexity), mandibular corpus convexity in the horizontal plane, facial convexity including the nose, facial convexity excluding the nose, interlabial angle, nasolabial angle, angle of nasal convexity, left and right soft tissue gonial angles. Data were compared with that collected for the normal subjects by computing the z-scores. Facial convexity in the horizontal plane (both in the upper and mid facial third), facial convexity in the sagittal plane and the angle of nasal convexity were significantly (P < 0.05) increased (flatter) in subjects with Down's syndrome than in the normal controls. Both left and right soft tissue gonial angles were significantly reduced (more acute) in the Down's syndrome subjects. Subjects with Down's syndrome had a more hypoplastic facial middle third with reduced nasal protrusion, and a reduced lower facial third (mandible) than reference, normal subjects.

  20. Myoepithelial neoplasms of soft tissue: an updated review of the clinicopathologic, immunophenotypic, and genetic features.

    PubMed

    Jo, Vickie Y; Fletcher, Christopher D M

    2015-03-01

    Myoepithelial tumors in skin and soft tissue are uncommon but have been increasingly characterized over the past decade. Men and women are equally affected across all age groups and lesions arise most frequently on the extremities and limb girdles. Approximately 20 % of cases occur in pediatric patients, in whom they are frequently malignant. Similar to their salivary gland counterparts, myoepithelial tumors of soft tissue demonstrate heterogeneous morphologic and immunophenotypic features. Tumors are classified as mixed tumor/chondroid syringoma, myoepithelioma, and myoepithelial carcinoma; in soft tissue, tumors having at least moderate cytologic atypia are classified as malignant. Mixed tumor and myoepithelioma show a benign clinical course, with recurrence in up to 20 % (typically secondary to incomplete excision), and do not metastasize. In contrast, myoepithelial carcinoma shows more aggressive behavior with recurrence and metastasis in up to 40-50 % of cases. The majority of myoepithelial neoplasms typically coexpress epithelial antigens (cytokeratin and/or EMA) and S-100 protein; GFAP and p63 are frequently positive and a subset of malignant neoplasms lose INI1 expression. Up to 45 % of myoepitheliomas and myoepithelial carcinomas harbor EWSR1 gene rearrangements, unlike mixed tumor/chondroid syringoma which is characterized by PLAG1 gene rearrangement. While mixed tumor/chondroid syringoma are likely related to primary salivary myoepithelial tumors, soft tissue myoepithelioma and myoepithelial carcinoma appear to be pathologically distinct neoplasms.

  1. Microablation of collagen-based substrates for soft tissue engineering

    PubMed Central

    Kumar, Vivek A.; Martinez, Adam W.; Caves, Jeffrey M.; Naik, Nisarga; Haller, Carolyn A.; Chaikof, Elliot L.

    2015-01-01

    Noting the abundance and importance of collagen as a biomaterial, we have developed a facile method for the production of dense fibrillar extracellular matrix mimicking collagen-elastin hybrids with tunable mechanical properties. Through the use of excimer laser technology, we have optimized conditions for the ablation of collagen lamellae without denaturation of protein, maintenance of fibrillar ultrastructure and preservation of native D-periodicity. Strengths of collagen-elastin hybrids ranged from 0.6 - 13 MPa, elongation at break from 9 - 70 %, and stiffness from 2.9 - 94 MPa, allowing for the design of a wide variety of tissue specific scaffolds. Further, large (centimeter scale) lamellae can be fabricated and embedded with recombinant elastin to generate collagen-elastin hybrids. Exposed collagen in hybrids act as cell adhesive sites for rat mesenchymal stem cells that conform to ablate waveforms. The ability to modulate these features allows for the generation of a class of biopolymers that can architecturally and physiologically replicate native tissue. PMID:24457193

  2. Benefits of low-power lasers on oral soft tissue

    NASA Astrophysics Data System (ADS)

    de Paula Eduardo, Carlos; Cecchini, Silvia C.; Cecchini, Renata C.

    1996-04-01

    The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.

  3. Histomorphological Evaluation of Diabetic and Non-Diabetic Plantar Soft Tissue

    PubMed Central

    Wang, Yak-Nam; Lee, Kara; Ledoux, William R.

    2014-01-01

    Background Diabetic foot ulceration has a complex and multi-factorial etiology and can involve changes in the pathophysiology of the plantar soft tissue. In the current study, histomorphological analyses of diabetic and non-diabetic plantar tissue were performed. It was hypothesized that the diabetic tissue would have thicker skin (epidermis and dermis), less interdigitation between the dermis and epidermis, thicker elastic septa and decreased adipose cell size. Materials and Methods Two locations of the foot (the heel and the first metatarsal) were examined, both of which have been reported to be locations with a high incidence of ulceration. Stereological methods and quantitative morphological techniques were used to evaluate the skin thickness, interdigitation index, elastic septae thickness and adipocyte cell size. Results The diabetic donors had a greater body mass index (BMI) than the non-diabetic donors. The diabetic tissue had significantly thicker elastic septae and dermis. However, no significant difference was observed in the interdigitation index or adipocyte size. Conclusion These findings demonstrate that morphological changes can be evaluated histologically to give a better understanding of the pathological changes in the plantar soft tissue with diabetes. These evaluations can then be associated with biomechanical changes that occur in diabetes to provide new insight into how microstructural changes can alter macroscopic properties. Clinical Relevance An understanding of the histomorphological changes in the soft tissue in relationship to the location on the foot could help to explain the biomechanical changes that occur in diabetes and the subsequent increase in susceptibility to breakdown. PMID:22049867

  4. Carpal Tunnel Cross-Sectional Area Affected by Soft Tissues Abutting the Carpal Bones.

    PubMed

    Gabra, Joseph N; Li, Zong-Ming

    2013-02-01

    The carpal tunnel accommodates free movement of its contents, and the tunnel's cross-sectional area is a useful morphological parameter for the evaluation of the space available for the carpal tunnel contents and of potential nerve compression in the tunnel. The osseous boundary of the carpal bones as the dorsal border of the carpal tunnel is commonly used to determine the tunnel area, but this boundary contains soft tissues such as numerous intercarpal ligaments and the flexor carpi radialis tendon. The aims of this study were to quantify the thickness of the soft tissues abutting the carpal bones and to investigate how this soft tissue influences the calculation of the carpal tunnel area. Magnetic resonance images were analyzed for eight cadaveric specimens. A medical balloon with a physiological pressure was inserted into an evacuated tunnel to identify the carpal tunnel boundary. The balloon-based (i.e. true carpal tunnel) and osseous-based carpal tunnel boundaries were extracted and divided into regions corresponding to the hamate, capitate, trapezoid, trapezium, and transverse carpal ligament (TCL). From the two boundaries, the overall and regional soft tissue thicknesses and areas were calculated. The soft tissue thickness was significantly greater for the trapezoid (3.1±1.2mm) and trapezium (3.4±1.0mm) regions than for the hamate (0.7±0.3mm) and capitate (1.2±0.5mm) regions. The carpal tunnel area using the osseous boundary (243.0±40.4mm(2)) was significantly larger than the balloon-based area (183.9±29.7mm(2)) with a ratio of 1.32. In other words, the carpal tunnel area can be estimated as 76% (= 1/1.32) of the osseous-based area. The abundance of soft tissue in the trapezoid and trapezium regions can be attributed mainly to the capitate-trapezium ligament and the flexor carpi radialis tendon. Inclusion of such soft tissue leads to overestimations of the carpal tunnel area. Correct quantification of the carpal tunnel area aids in examining carpal

  5. A K-BKZ Formulation for Soft-Tissue Viscoelasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Diethelm, Kai

    2005-01-01

    A viscoelastic model of the K-BKZ (Kaye 1962; Bernstein et al. 1963) type is developed for isotropic biological tissues, and applied to the fat pad of the human heel. To facilitate this pursuit, a class of elastic solids is introduced through a novel strain-energy function whose elements possess strong ellipticity, and therefore lead to stable material models. The standard fractional-order viscoelastic (FOV) solid is used to arrive at the overall elastic/viscoelastic structure of the model, while the elastic potential via the K-BKZ hypothesis is used to arrive at the tensorial structure of the model. Candidate sets of functions are proposed for the elastic and viscoelastic material functions present in the model, including a regularized fractional derivative that was determined to be the best. The Akaike information criterion (AIC) is advocated for performing multi-model inference, enabling an objective selection of the best material function from within a candidate set.

  6. On ultrasound waves guided by bones with coupled soft tissues: a mechanism study and in vitro calibration.

    PubMed

    Chen, Jiangang; Su, Zhongqing

    2014-07-01

    The influence of soft tissues coupled with cortical bones on precision of quantitative ultrasound (QUS) has been an issue in the clinical bone assessment in conjunction with the use of ultrasound. In this study, the effect arising from soft tissues on propagation characteristics of guided ultrasound waves in bones was investigated using tubular Sawbones phantoms covered with a layer of mimicked soft tissue of different thicknesses and elastic moduli, and an in vitro porcine femur in terms of the axial transmission measurement. Results revealed that presence of soft tissues can exert significant influence on the propagation of ultrasound waves in bones, leading to reduced propagation velocities and attenuated wave magnitudes compared with the counterparts in a free bone in the absence of soft tissues. However such an effect is not phenomenally dependent on the variations in thickness and elastic modulus of the coupled soft tissues, making it possible to compensate for the coupling effect regardless of the difference in properties of the soft tissues. Based on an in vitro calibration, this study proposed quantitative compensation for the effect of soft tissues on ultrasound waves in bones, facilitating development of high-precision QUS.

  7. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Zhang, Deyuan

    2016-11-01

    Soft tissue adhesion on the electrosurgical instruments can induce many serious complications, such as failure of hemostasis and damage to the surrounding soft tissue. The soft tissue adhesion is mainly caused by the high temperature on the instrument surface generally made of stainless steel. Nepenthes inspired liquid-infused surfaces (LIS), highly promising for anti-adhesion, have attracted considerable interests. In this paper, we investigated the anti-adhesion effects of LIS on high-temperature stainless steel for soft tissue for the first time, aiming to develop a new approach to solve the soft tissue adhesion problem. The textured surface, acting as the holding structures, was fabricated by photolithography-assisted chemical etching. Silicone oil, with good biocompatibility and high-temperature resistance, was chosen as the infused liquid. The adhesion force measurements for soft tissue on the LIS at high temperatures indicated that the soft tissue adhesion force was decreased by approximately 80% at 250 °C. Besides, the cycle tests of soft tissue adhesion force demonstrated the excellent stability of prepared LIS. We anticipate that LIS will be of great promise for practical applications on the electrosurgical instruments.

  8. Ultrasound and clinical evaluation of soft-tissue versus hardware biceps tenodesis: is hardware tenodesis worth the cost?

    PubMed

    Elkousy, Hussein; Romero, Jose A; Edwards, T Bradley; Gartsman, Gary M; O'Connor, Daniel P

    2014-02-01

    This study assesses the failure rate of soft-tissue versus hardware fixation of biceps tenodesis by ultrasound to determine if the expense of a hardware tenodesis technique is warranted. Seventy-two patients that underwent arthroscopic biceps tenodesis over a 3-year period were evaluated using postoperative ultrasonography and clinical examination. The tenodesis technique employed was either a soft-tissue technique with sutures or an interference screw technique using hardware based on surgeon preference. Patient age was 57.9 years on average with ultrasound and clinical examination done at an average of 9.3 months postoperatively. Thirty-one patients had a hardware technique and 41 a soft-tissue technique. Overall, 67.7% of biceps tenodesis done with hardware were intact, compared with 75.6% for the soft-tissue technique by ultrasound (P = .46). Clinical evaluation indicated that 80.7% of hardware techniques and 78% of soft-tissue techniques were intact. Average material cost to the hospital for the hardware technique was $514.32, compared with $32.05 for the soft-tissue technique. Biceps tenodesis success, as determined by clinical deformity and ultrasound, was not improved using hardware as compared to soft-tissue techniques. Soft-tissue techniques are equally efficacious and more cost effective than hardware techniques.

  9. Epidemiology and survivorship of soft tissue sarcomas in adults: a national cancer database reporta

    PubMed Central

    Corey, Robert M; Swett, Katrina; Ward, William G

    2014-01-01

    The National Cancer Data Base (NCDB) of the American College of Surgeons gather demographic and survival data on ∼70% of cancers in the USA. We wanted to investigate the demographic and survivorship data on this potentially more representative cohort of patients with soft tissue sarcomas. We selected 34 of the most commonly encountered soft tissue sarcomas reported to the NCDB, provided that each entity contained a minimum of 50 cases. This report summarizes the demographic and survivorship data on 63,714 patients with these 34 histologically distinct soft tissue sarcomas reported to the NCDB from 1998 to 2010. The overall survivorships of these sarcomas were near the lower limits of many prior reports due to the all-inclusive, minimally biased inclusion criteria. The overall best prognosis was Dermatofibrosarcoma NOS (not otherwise specified). (5-year survivorship 92%). The worst prognosis was Dedifferentiated Chondrosarcoma (5-year survivorship 19%). New observations included Biphasic Synovial Sarcoma demonstrating a better 5-year survivorship (65%) compared to spindle-cell synovial sarcoma (56%, P < 0.031) and Synovial Sarcoma, NOS (52%, P < 0.001). The demographic and 2- and 5-year survivorship data for all 34 soft tissue sarcomas are presented herein. This extent of demographic and survival data in soft tissue sarcomas is unprecedented. Because of the large number of cases and the inclusive nature of the NCDB, without restriction to certain stages, categories, or treatments, it is less subject to selection bias. Therefore, these data are thought to be more reflective of the true overall prognosis given the current management of sarcoma across the NCDB contributing sites. PMID:25044961

  10. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  11. Computer-aided diagnosis of peripheral soft tissue masses based on ultrasound imaging.

    PubMed

    Chiou, Hong-Jen; Chen, Chih-Yen; Liu, Tzu-Chiang; Chiou, See-Ying; Wang, Hsin-Kai; Chou, Yi-Hong; Chiang, Huihua Kenny

    2009-07-01

    Medical ultrasound (US) has been widely used for distinguishing benign from malignant peripheral soft tissue tumors. However, diagnosis by US is subjective and depends on the experience of the radiologists. The rarity of peripheral soft tissue tumors can make them easily neglected and this frequently leads to delayed diagnosis, which results in a much higher death rate than with other tumors. In this paper, we developed a computer-aided diagnosis (CAD) system to diagnose peripheral soft tissue masses on US images. We retrospectively evaluated 49 cases of pathologically proven peripheral soft tissue masses (32 benign, 17 malignant). The proposed CAD system includes three main procedures: image pre-processing and region-of-interest (ROI) segmentation, feature extraction and statistics-based discriminant analysis (DA). We developed a depth-normalization factor (DNF) to compensate for the influence of the depth setting on the apparent size of the ROI. After image pre-processing and normalization, five features, namely area (A), boundary transition ratio (T), circularity (C), high intensity spots (H) and uniformity (U), were extracted from the US images. A DA function was then employed to analyze these features. A CAD algorithm was then devised for differentiating benign from malignant masses. The CAD system achieved an accuracy of 87.8%, a sensitivity of 88.2%, a specificity of 87.5%, a positive predictive value (PPV) 78.9% and a negative predictive value (NPV) 93.3%. These results indicate that the CAD system is valuable as a means of providing a second diagnostic opinion when radiologists carry out peripheral soft tissue mass diagnosis.

  12. Coarse-grained rigid blob model for soft matter simulations

    NASA Astrophysics Data System (ADS)

    Chao, Sheng D.; Kress, Joel D.; Redondo, Antonio

    2005-06-01

    We have developed a coarse-grained multiscale molecular simulation method for soft matter systems that directly incorporates stereochemical information. We divide the material into disjoint groups of atoms or particles that move as separate rigid bodies; we call these groups "rigid blobs," hence the name coarse-grained rigid blob model. The method is enabled by the construction of transferable interblob potentials that approximate the net intermolecular interactions, as obtained from ab initio electronic structure calculations, other all-atom empirical potentials, experimental data, or any combination of the above. We utilize a multipolar expansion to obtain the interblob potential-energy functions. The series, which contains controllable approximations that allow us to estimate the errors, approaches the original intermolecular potential as the number of terms increases. Using a novel numerical algorithm, we can calculate the interblob potentials very efficiently in terms of a few interaction moment tensors. This reduces the labor well beyond what is required in standard molecular-dynamics calculations and allows large-scale simulations for temporal scales commensurate with characteristic times of nano- and mesoscale systems. A detailed derivation of the formulas is presented, followed by illustrative applications to several systems showing that the method can effectively capture realistic microscopic details and can easily extend to large-scale simulations.

  13. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    PubMed Central

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-01-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods. PMID:25427880

  14. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    NASA Astrophysics Data System (ADS)

    He, Yong; Xue, Guang-Huai; Fu, Jian-Zhong

    2014-11-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  15. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.

    PubMed

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-01-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  16. Responses of the pulp, periradicular and soft tissues following trauma to the permanent teeth.

    PubMed

    Yu, C Y; Abbott, P V

    2016-03-01

    Trauma to the permanent teeth involves not only the teeth but also the pulp, the periodontal ligament, alveolar bone, gingiva and other associated structures. There are many variations in the types of injuries with varying severity and often a tooth may sustain more than one injury at the same time. In more severe trauma cases, there are many different cellular systems of mineralized hard and unmineralized soft tissues involved, each with varying potential for healing. Furthermore, the responses of the different tissues may be interrelated and dependent on each other. Hence, healing subsequent to dental trauma has long been known to be very complex. Because of this complexity, tissue responses and the consequences following dental trauma have been confusing and puzzling for many clinicians. In this review, the tissue responses are described under the tissue compartments typically involved following dental trauma: the pulp, periradicular and associated soft tissues. The factors involved in the mechanisms of trauma are analysed for their effects on the tissue responses. A thorough understanding of the possible tissue responses is imperative for clinicians to overcome the confusion and manage dental trauma adequately and conservatively in order to minimize the consequences following trauma. PMID:26923447

  17. Rod-based Fabrication of Customizable Soft Robotic Pneumatic Gripper Devices for Delicate Tissue Manipulation.

    PubMed

    Low, Jin-Huat; Yeow, Chen-Hua

    2016-01-01

    Soft compliant gripping is essential in delicate surgical manipulation for minimizing the risk of tissue grip damage caused by high stress concentrations at the point of contact. It can be achieved by complementing traditional rigid grippers with soft robotic pneumatic gripper devices. This manuscript describes a rod-based approach that combined both 3D-printing and a modified soft lithography technique to fabricate the soft pneumatic gripper. In brief, the pneumatic featureless mold with chamber component is 3D-printed and the rods were used to create the pneumatic channels that connect to the chamber. This protocol eliminates the risk of channels occluding during the sealing process and the need for external air source or related control circuit. The soft gripper consists of a chamber filled with air, and one or more gripper arms with a pneumatic channel in each arm connected to the chamber. The pneumatic channel is positioned close to the outer wall to create different stiffness in the gripper arm. Upon compression of the chamber which generates pressure on the pneumatic channel, the gripper arm will bend inward to form a close grip posture because the outer wall area is more compliant. The soft gripper can be inserted into a 3D-printed handling tool with two different control modes for chamber compression: manual gripper mode with a movable piston, and robotic gripper mode with a linear actuator. The double-arm gripper with two actuatable arms was able to pick up objects of sizes up to 2 mm and yet generate lower compressive forces as compared to elastomer-coated and non-coated rigid grippers. The feasibility of having other designs, such as single-arm or hook gripper, was also demonstrated, which further highlighted the customizability of the soft gripper device, and it's potential to be used in delicate surgical manipulation to reduce the risk of tissue grip damage. PMID:27584722

  18. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle

    PubMed Central

    Moore, Stephanie N.; Hawley, Gregory D.; Smith, Emily N.; Mignemi, Nicholas A.; Ihejirika, Rivka C.; Yuasa, Masato; Cates, Justin M. M.; Liu, Xulei; Schoenecker, Jonathan G.

    2016-01-01

    Introduction Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Methods Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary

  19. Tungiasis presenting as a soft tissue oral lesion

    PubMed Central

    2014-01-01

    Background The sand flea Tunga penetrans usually infects the feet and affects primary school-age children and elderly persons in rural Uganda. Tungiasis occurs nationwide but disease outbreaks have been reported in the Busoga sub-Region of eastern Uganda, associated with poor sanitation and proximity between humans and domestic animals. Ectopic tungiasis, usually seen with extensive infection and at weight-bearing body surfaces often follows exposure in highly infested environments. For patients who present abroad treatment may be surgical excision or amputation. Case presentation An adult female Musoga by tribe, resident in a Kampala City suburb presented at Mulago National Referral and Teaching Hospital’s Oral Surgery and Jaw Injuries Unit with a discoloured swollen tongue, facial cellulitis and submandibular lymphadenopathy. A swelling palpable in the body of her tongue was excised and sent for histology. Tungiasis of the tongue was diagnosed after microscopic examination of formalin-fixed paraffin-embedded Haematoxylin and Eosin-stained tissue sections. Conclusion Lingual tungiasis is a rare diagnosis that was made on histological examination. Atypical presentation outside an endemic area predisposed the patient to partial glossectomy instead of the less invasive flea enucleation. Ectopic disease in a city-resident highlights the plight not only of visitors to infested areas but also of the communities and their domestic animals. PMID:25186303

  20. Serious soft tissue infections of the head and neck

    SciTech Connect

    Herr, R.D.; Murdock, R.T.; Davis, R.K. )

    1991-09-01

    The head and neck contain a number of spaces that can be invaded by organisms of the mouth or by spread of cervical osteomyelitis. Infection in these spaces may progress from superficial infection to cellulitis to the formation of an abscess requiring immediate drainage. Spread of infection between spaces depends on anatomic location. Most patients require hospitalization and intravenous antibiotic therapy. Because a deep space infection may be occult, a high index of suspicion is required for diagnosis. Early recognition is necessary to avoid tissue damage, bacteremia or airway compromise. The possibility of deep space infection should be considered in any patient who does not respond to the usual treatment of an abscessed tooth or tonsillitis. This type of infection also should be considered in a toxic patient who has a fever of unknown origin, with or without blood cultures that show anaerobic organisms. Computed tomography or magnetic resonance imaging is usually necessary to locate the infection and to detect suppuration that will be amenable to surgical exploration and drainage. 25 references.

  1. Interactions of hard tissues, soft tissues, and growth over time, and their impact on orthodontic diagnosis and treatment planning.

    PubMed

    Sarver, David M

    2015-09-01

    The approach to orthodontic diagnosis has changed gradually but steadily over the past 2 decades. The shift away from diagnosis based entirely on hard tissue evaluations has been a result of a broadened recognition of the importance of facial and smile appearance to our patients, and how they change over time. The purpose of this article is to describe and illustrate the integration of the new soft tissue paradigm into long-term treatment planning, with a focus on the esthetic goals of treatment.

  2. Maximizing Outcomes While Minimizing Morbidity: An Illustrated Case Review of Elbow Soft Tissue Reconstruction

    PubMed Central

    Ooi, Adrian; Ng, Jonathan; Chui, Christopher; Goh, Terence; Tan, Bien Keem

    2016-01-01

    Background. Injuries to the elbow have led to consequences varying from significant limitation in function to loss of the entire upper limb. Soft tissue reconstruction with durable and pliable coverage balanced with the ability to mobilize the joint early to optimize rehabilitation outcomes is paramount. Methods. Methods of flap reconstruction have evolved from local and pedicled flaps to perforator-based flaps and free tissue transfer. Here we performed a review of 20 patients who have undergone flap reconstruction of the elbow at our institution. Discussion. 20 consecutive patients were identified and included in this study. Flap types include local (n = 5), regional pedicled (n = 7), and free (n = 8) flaps. The average size of defect was 138 cm2 (range 36–420 cm2). There were no flap failures in our series, and, at follow-up, the average range of movement of elbow flexion was 100°. Results. While the pedicled latissimus dorsi flap is the workhorse for elbow soft tissue coverage, advancements in microvascular knowledge and surgery have brought about great benefit, with the use of perforator flaps and free tissue transfer for wound coverage. Conclusion. We present here our case series on elbow reconstruction and an abbreviated algorithm on flap choice, highlighting our decision making process in the selection of safe flap choice for soft tissue elbow reconstruction. PMID:27313886

  3. Minimally Invasive Holographic Surface Scanning for Soft-Tissue Image Registration

    PubMed Central

    Hackworth, Douglas M.; Webster, Robert J.

    2014-01-01

    Recent advances in registration have extended intra-surgical image guidance from its origins in bone-based procedures to new applications in soft tissues, thus enabling visualization of spatial relationships between surgical instruments and subsurface structures before incisions begin. Preoperative images are generally registered to soft tissues through aligning segmented volumetric image data with an intraoperatively sensed cloud of organ surface points. However, there is currently no viable noncontact minimally invasive scanning technology that can collect these points through a single laparoscopic port, which limits wider adoption of soft-tissue image guidance. In this paper, we describe a system based on conoscopic holography that is capable of minimally invasive surface scanning. We present the results of several validation experiments scanning ex vivo biological and phantom tissues with a system consisting of a tracked, off-the-shelf, relatively inexpensive conoscopic holography unit. These experiments indicate that conoscopic holography is suitable for use with biological tissues, and can provide surface scans of comparable quality to existing clinically used laser range scanning systems that require open surgery. We demonstrate experimentally that conoscopic holography can be used to guide a surgical needle to desired subsurface targets with an average tip error of less than 3 mm. PMID:20659823

  4. Forced orthodontic eruption for augmentation of soft and hard tissue prior to implant placement

    PubMed Central

    de Molon, Rafael Scaf; de Avila, Érica Dorigatti; de Souza, João Antonio Chaves; Nogueira, Andressa Vilas Boas; Cirelli, Carolina Chan; Margonar, Rogerio; Cirelli, Joni Augusto

    2013-01-01

    Forced orthodontic eruption (FOE) is a non-surgical treatment option that allows modifying the osseous and gingival topography. The aim of this article is to present a clinical case of a FOE, which resulted in an improvement of the amount of available bone and soft-tissues for implant site development. Patient was referred for treatment of mobility and unesthetic appearance of their maxillary incisors. Clinical and radiographic examination revealed inflamed gingival tissue, horizontal and vertical tooth mobility and interproximal angular bone defects. It was chosen a multidisciplinary treatment approach using FOE, tooth extraction, and immediate implant placement to achieve better esthetic results. The use of FOE, in periodontally compromised teeth, promoted the formation of a new bone and soft-tissue in a coronal direction, without additional surgical procedures, enabling an esthetic, and functional implant-supported restoration. PMID:24015019

  5. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing.

    PubMed

    Buchanan, Ruaridh; Stoesser, Nicole; Crook, Derrick; Bowler, Ian C J W

    2014-10-19

    A 45-year-old man with dilated cardiomyopathy presented with acute leg pain and erythema suggestive of necrotising fasciitis. Initial surgical exploration revealed no necrosis and treatment for a soft tissue infection was started. Blood and tissue cultures unexpectedly grew a Gram-negative bacillus, subsequently identified by an automated broth microdilution phenotyping system as an extended-spectrum β-lactamase producing Escherichia coli. The patient was treated with a 3-week course of antibiotics (ertapenem followed by ciprofloxacin) and debridement for small areas of necrosis, followed by skin grafting. The presence of E. coli triggered investigation of both host and pathogen. The patient was found to have previously undiagnosed liver disease, a risk factor for E. coli soft tissue infection. Whole genome sequencing of isolates from all specimens confirmed they were clonal, of sequence type ST131 and associated with a likely plasmid-associated AmpC (CMY-2), several other resistance genes and a number of virulence factors.

  6. Using uniaxial pseudorandom stress stimuli to develop soft tissue constitutive equations.

    PubMed

    Hoffman, Allen H; Grigg, Peter

    2002-01-01

    A nonlinear systems identification method was used to develop constitutive equations for soft tissue specimens under uniaxial tension. The constitutive equations are developed from a single test by applying a pseudorandom Gaussian (PGN) stress input to the specimen, measuring the resulting strain, and calculating the Volterra-Wiener kernels. First and second order kernels were developed for two tissues with widely different properties, rat medial collateral knee ligaments, and rat skin. These kernels were used to predict the strain response to a variety of sinusoidal stress inputs. These predicted strains were compared with the measured strain response using the normalized mean squared error (NMSE). Results showed NMSEs in the range of 0.01-0.08 provided that the magnitudes of the applied stresses were present in the original PGN stress input. Overall, the method provides a means to develop soft tissue constitutive equations that can predict both nonlinear and viscoelastic behavior over a wide range of stress inputs.

  7. New uses of fluorescence in the surgical management of necrotizing soft tissue infection.

    PubMed

    Bongard, F S; Elings, V B; Markison, R E

    1985-08-01

    The planning of incisions in the management of necrotizing soft tissue infections has largely been carried out by subjective methods. Because of disruption of the fasciocutaneous circulation, the perfusion of randomly based flaps is frequently tenuous. A method that provides safe, rapid, and accurate evaluation of tissue perfusion would therefore prove invaluable in the preoperative planning, as well as in the postoperative management of these infections. The digital dermofluorometer is a recently introduced instrument that objectively evaluates skin blood flow based on the cutaneous delivery of sodium fluorescein. We have used the technique successfully and without incident in patients who presented with necrotizing soft tissue infections. The theory, methods, and application of the test have been presented along with two case reports.

  8. Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results

    SciTech Connect

    Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej

    2010-03-09

    Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm{sup 2}, duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between

  9. Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results

    NASA Astrophysics Data System (ADS)

    Kujawska, Tamara; Wójcik, Janusz; Nowicki, Andrzej

    2010-03-01

    Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm2, duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between the

  10. In vitro and in vivo evaluation of orthopedic interface repair using a tissue scaffold with a continuous hard tissue-soft tissue transition

    PubMed Central

    2013-01-01

    Tendon tears produce pain and decrease joint stability; each year, over 1.1 million rotator cuff tendon surgical procedures are performed worldwide. However, surgical success is highly variable, and the inability of the procedure to drive the regeneration of the normal tendon-bone interface has been identified as a key factor in surgical failure. This study focuses on the development, in vitro evaluation, and in vivo assessment of a tissue scaffold derived from bovine cancellous bone with the potential to direct regeneration of a bone-soft tissue interface. The scaffold is a highly porous scaffold with a continuous hard tissue-soft tissue transition that facilitates load transfer across the interface and contains all of the extracellular matrix components of the orthopedic interface. This study demonstrated the in vitro characterization of the mechanical properties and successful in vivo assessment using an ovine model. PMID:23782505

  11. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography

    SciTech Connect

    Colston, Bill W.; Everett, Mathew J.; Da Silva, Luiz B. Otis, Linda L. Stroeve, Pieter Nathel, Howard

    1998-06-01

    We have developed a prototype optical coherent tomography (OCT) system for the imaging of hard and soft tissue in the oral cavity. High-resolution images of {ital in vitro} porcine periodontal tissues have been obtained with this system. The images clearly show the enamel{endash}cementum and the gingiva{endash}tooth interfaces, indicating OCT is a potentially useful technique for diagnosis of periodontal diseases. To our knowledge, this is the first application of OCT for imaging biologic hard tissue. {copyright} 1998 Optical Society of America

  12. PROLONGED FEVER WITHOUT OBVIOUS ETIOLOGY FINALLY DIAGNOSED AS HIGH-GRADE SOFT TISSUE SARCOMA.

    PubMed

    Doroftei, Nicoleta Alina; de Visscher, Nathalie

    2016-01-01

    Sarcomas represent a challenge t clinicians as they are rare and diagnosis is often delayed. Soft tissue sarcomas are relatively uncommon cancers, the incidence is estimated about 1% from all malignant tumors. Due to aggressive biological behavior of pleomorphic undifferentiated sarcoma diagnosis must hi made as quickly as possible. MRI is the standard imaging modality for investigating possibl3 malignant masses. Excisional biopsy appears to be necessary for differentiating soft tissus sarcoma from expanding hematoma. FDG PET scans may be helpful in specific circum. stances (as was the situation in our case, because the lesion is composed from two components: an area without precise edges and a necrotic-cystic area).

  13. The effect of mechanical strains in soft tissues of the shoulder during load carriage.

    PubMed

    Hadid, Amir; Belzer, Noa; Shabshin, Nogah; Zeilig, Gabi; Gefen, Amit; Epstein, Yoram

    2015-11-26

    Soldiers and recreational backpackers are often required to carry heavy loads during military operations or hiking. Shoulder strain appears to be one of the limiting factors of load carriage due to skin and underlying soft tissue deformations, trapped nerves, or obstruction of blood vessels. The present study was aimed to determine relationships between backpack weights and the state of loads in the shoulder׳s inner tissues, with a special focus on the deformations in the brachial plexus. Open-MRI scans were used for developing and then verifying a three-dimensional, non-linear, large deformation, finite element model of the shoulder. Loads were applied at the strap-shoulder contact surfaces of the model by pulling the strap towards the shoulder until the desired load was reached. Increasing the strap tensile forces up to a load that represents 35kg backpack resulted in gradual increase in strains within the underlying soft tissues: the maximal tensile strain in the brachial plexus for a 25kg backpack was 12%, and while carrying 35kg, the maximal tensile strain increased to 16%. The lateral aspect of the brachial plexus was found to be more vulnerable to deformation-inflicted effects than the medial aspect. This is due to the anatomy of the clavicle that poorly shields the plexus from compressive loads applied during load carriage, while the neural tissue in the medial aspect of the shoulder is better protected by the clavicle. The newly developed model can serve as a tool to estimate soft tissue deformations in the brachial plexus for heavy backpack loads, up to 35kg. This method will allow further development of new strap structures and materials for alleviating the strains applied on the shoulder soft tissues. PMID:26542788

  14. Estimation of soft- and hard-tissue thickness at implant sites

    PubMed Central

    Kumar, Anil; Mascarenhas, Rohan; Husain, Akhter

    2014-01-01

    Introduction: Anchorage control is a critical consideration when planning treatment for patients with dental and skeletal malocclusions. To obtain sufficient stability of implants, the thickness of the soft tissue and the cortical-bone in the placement site must be considered; so as to provide an anatomical map in order to assist the clinician in the placement of the implants. Objective: The aim of this study is to evaluate the thickness of soft- and hard-tissue. Materials and Methods: To measure soft tissue and cortical-bone thicknesses, 12 maxillary cross-sectional specimens were obtained from the cadavers, which were made at three maxillary mid-palatal suture areas: The interdental area between the first and second premolars (Group 1), the second premolar and the first molar (Group 2), and the first and second molars (Group 3). Sectioned samples along with reference rulers were digitally scanned. Scanned images were calibrated and measurements were made with image-analysis software. We measured the thickness of soft and hard-tissues at five sectional areas parallel to the buccopalatal cementoenamel junction (CEJ) line at 2-mm intervals and also thickness of soft tissue at the six landmarks including the incisive papilla (IP) on the palate. The line perpendicular to the occlusal plane was made and measurement was taken at 4-mm intervals from the closest five points to IP. Results: (1) Group 1:6 mm from CEJ in buccal side and 2 mm from CEJ in palatal side. (2) Group 2:8 mm from CEJ in buccal side and 4 mm from CEJ in palatal side. (3) Group 3:8 mm from CEJ in buccal side and 8 mm from CEJ in palatal side. Conclusions: The best site for placement of implant is with thinnest soft tissue and thickest hard tissue, which is in the middle from CEJ in buccal side and closest from CEJ in palatal side in Group 1 and faraway from CEJ in buccal side and closest from CEJ in palatal side in Group 2 and faraway from CEJ in buccal side and faraway from CEJ in palatal side in

  15. Penetration of Linezolid into Soft Tissues of Healthy Volunteers after Single and Multiple Doses

    PubMed Central

    Dehghanyar, Pejman; Bürger, Cornelia; Zeitlinger, Markus; Islinger, Florian; Kovar, Florian; Müller, Markus; Kloft, Charlotte; Joukhadar, Christian

    2005-01-01

    The present study tested the ability of linezolid to penetrate soft tissues in healthy volunteers. Ten healthy volunteers were subjected to linezolid drug intake at a dose of 600 mg twice a day for 3 to 5 days. The first dose was administered intravenously. All following doses were self-administered orally. The tissue penetration of linezolid was assessed by use of in vivo microdialysis. In the single-dose experiments the ratios of the area under the concentration-time curve from 0 to 8 h (AUC0-8) for tissue to the AUC0-8 for free plasma were 1.4 ± 0.3 (mean ± standard deviation) and 1.3 ± 0.4 for subcutaneous adipose and muscle tissue, respectively. After multiple doses, the corresponding mean ratios were 0.9 ± 0.2 and 1.0 ± 0.5, respectively. The ratios of the AUC from 0 to 24 h (AUC0-24) for free linezolid in tissues to the MIC were between 50 and 100 for target pathogens with MICs between 2 and 4 mg/liter. In conclusion, the present study showed that linezolid penetrates rapidly into the interstitial space fluid of subcutaneous adipose and skeletal muscle tissues in healthy volunteers. On the basis of pharmacokinetic-pharmacodynamic calculations, we suggest that linezolid concentrations in soft tissues can be considered sufficient to inhibit the growth of many clinically relevant bacteria. PMID:15917535

  16. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    SciTech Connect

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia; Rozhkova, Elena A.

    2015-08-31

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.

  17. Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants; Morgan, Kaye S.; Marathe, Shashidhara; Xiao, Xianghui; Assoufid, Lahsen; Anderson, Rebecca A.; Topczewski, Jacek; Bryson-Richardson, Robert J.

    2015-04-01

    X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve the same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.

  18. A Systematic Approach to the Application of Soft Tissue Histopathology in Paleopathology

    PubMed Central

    Grove, Christina; Peschel, Oliver; Nerlich, Andreas G.

    2015-01-01

    The application of histology to soft tissue remains offers an important technique to obtain diagnostically important information on various physiological and pathological conditions in paleopathology. In a series of 29 cases with mummified tissue ranging between 16 months and c. 5.200 years of postmortem time interval, we systematically investigated paleohistology and the preservation of various tissues. We established a reproducible histological ranking system for the evaluation of mummified tissue preservation. The application of this scheme to the series showed good tissue preservation of tissues with high connective tissue content but also fat tissue and connective tissue rich organs, such as lung tissue, while most other internal organs were less well preserved despite highly different postmortem time intervals. There are some organs with only poor conservation even in short term periods such as the kidneys and CNS. Artificial mummification does not provide better conservation than naturally mummified tissues; “cold” mummies may be much better conserved than those from desert areas. The identification of specific pathologies underlines the potential power of paleohistology. PMID:26346981

  19. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues

    PubMed Central

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0

  20. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.

    PubMed

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0