Romanos, Georgios E
2013-01-01
Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.
Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan
2018-05-30
Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.
Soft Tissue Sarcoma—Health Professional Version
Soft tissue sarcomas are malignant tumors that arise in any of the mesodermal tissues of the extremities, trunk and retroperitoneum, or head and neck. Soft tissue sarcomas may be heterogeneous. Find evidence-based information on soft tissue sarcoma treatment and research.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Dynamic soft tissue deformation estimation based on energy analysis
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Yao, Bin
2016-10-01
The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful for compensating the needle-targeting error in the rigid needle insertion procedure, especially for percutaneous needle insertion into organs.
[Fitting of the reconstructed craniofacial hard and soft tissues based on 2-D digital radiographs].
Feng, Yao-Pu; Qiao, Min; Zhou, Hong; Zhang, Yan-Ning; Si, Xin-Qin
2017-02-01
In this study, we reconstructed the craniofacial hard and soft tissues based on the data from digital cephalometric radiographs and laser scanning. The effective fitting of the craniofacial hard and soft tissues was performed in order to increase the level of orthognathic diagnosis and treatment, and promote the communication between doctors and patients. A small lead point was put on the face of a volunteer and frontal and lateral digital cephalometric radiographs were taken. 3-D reconstruction system of the craniofacial hard tissue based on 2-D digital radiograph was used to get the craniofacial hard tissue model by means of hard tissue deformation modeling. 3-D model of facial soft tissue was obtained by using laser scanning data. By matching the lead point coordinate, the hard tissue and soft tissue were fitted. The 3-D model of the craniofacial hard and soft tissues was rebuilt reflecting the real craniofacial tissue structure, and effective fitting of the craniofacial hard and soft tissues was realized. The effective reconstruction and fitting of the 3-D craniofacial structures have been realized, which lays a foundation for further orthognathic simulation and facial appearance prediction. The fitting result is reliable, and could be used in clinical practice.
Gerges, Irini; Tamplenizza, Margherita; Martello, Federico; Recordati, Camilla; Martelli, Cristina; Ottobrini, Luisa; Tamplenizza, Mariacaterina; Guelcher, Scott A; Tocchio, Alessandro; Lenardi, Cristina
2018-06-01
Reconstructive treatment after trauma and tumor resection would greatly benefit from an effective soft tissue regeneration. The use of cell-free scaffolds for adipose tissue regeneration in vivo is emerging as an attractive alternative to tissue-engineered constructs, since this approach avoids complications due to cell manipulation and lack of synchronous vascularization. In this study, we developed a biodegradable polyurethane-based scaffold for soft tissue regeneration, characterized by an exceptional combination between softness and resilience. Exploring the potential as a cell-free scaffold required profound understanding of the impact of its intrinsic physico-chemical properties on the biological performance in vivo. We investigated the effect of the scaffold's hydrophilic character, degradation kinetics, and internal morphology on (i) the local inflammatory response and activation of MGCs (foreign body response); (ii) its ability to promote rapid vascularisation, cell infiltration and migration through the scaffold over time; and (iii) the grade of maturation of the newly formed tissue into vascularized soft tissue in a murine model. The study revealed that soft tissue regeneration in vivo proceeded by gradual infiltration of undifferentiated mesenchymal cells though the periphery toward the center of the scaffold, where the rapid formation of a functional and well-formed vascular network supported cell viability overtime. Exploring the potential of polyurethane-based soft foam as cell-free scaffold for soft tissue regeneration. In this work, we address the unmet need for synthetic functional soft tissue substitutes that provide adequate biological and mechanical support to soft tissue. We developed a series of flexible cross-linked polyurethane copolymer scaffolds with remarkable fatigue-resistance and tunable physico-chemical properties for soft tissue regeneration in vivo. Accordingly, we could extend the potential of this class of biomaterials, which was so far confined for bone and osteochondral tissue regeneration, to other types of connective tissue. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics
Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong
2015-01-01
We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380
Kayani, Babar; Konan, Sujith; Pietrzak, Jurek R T; Haddad, Fares S
2018-03-27
The objective of this study was to compare macroscopic bone and soft tissue injury between robotic-arm assisted total knee arthroplasty (RA-TKA) and conventional jig-based total knee arthroplasty (CJ-TKA) and create a validated classification system for reporting iatrogenic bone and periarticular soft tissue injury after TKA. This study included 30 consecutive CJ-TKAs followed by 30 consecutive RA-TKAs performed by a single surgeon. Intraoperative photographs of the femur, tibia, and periarticular soft tissues were taken before implantation of prostheses. Using these outcomes, the macroscopic soft tissue injury (MASTI) classification system was developed to grade iatrogenic bone and soft tissue injuries. Interobserver and Intraobserver validity of the proposed classification system was assessed. Patients undergoing RA-TKA had reduced medial soft tissue injury in both passively correctible (P < .05) and noncorrectible varus deformities (P < .05); more pristine femoral (P < .05) and tibial (P < .05) bone resection cuts; and improved MASTI scores compared to CJ-TKA (P < .05). There was high interobserver (intraclass correlation coefficient 0.92 [95% confidence interval: 0.88-0.96], P < .05) and intraobserver agreement (intraclass correlation coefficient 0.94 [95% confidence interval: 0.92-0.97], P < .05) of the proposed MASTI classification system. There is reduced bone and periarticular soft tissue injury in patients undergoing RA-TKA compared to CJ-TKA. The proposed MASTI classification system is a reproducible grading scheme for describing iatrogenic bone and soft tissue injury in TKA. RA-TKA is associated with reduced bone and soft tissue injury compared with conventional jig-based TKA. The proposed MASTI classification may facilitate further research correlating macroscopic soft tissue injury during TKA to long-term clinical and functional outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V
2012-12-15
We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.
Cell-based regenerative approaches to the treatment of oral soft tissue defects.
Bates, Damien; Kampa, Peggy
2013-01-01
Oral soft tissue plays an important role in the structure and function of the oral cavity by protecting against exogenous substances, pathogens, and mechanical stresses. Repair of oral soft tissue defects that arise as a result of disease, trauma, or congenital abnormalities is often accomplished via transplantation or transfer of autologous mucosal tissue. However, this method of treatment can be complicated by the relatively small amount of autologous mucosal tissue that is available, as well as by the morbidity that may be associated with the donor site and patient reluctance to have oral (eg, palatal) surgery. To circumvent these problems, clinicians have turned to the fields of tissue engineering and regenerative medicine to develop acellular and cellular strategies for regenerating oral soft tissue. This review focuses on the efficacy and safety of cell-based investigational approaches to the regeneration of oral soft tissue.
Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi
2018-01-01
Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.
Direct microCT imaging of non-mineralized connective tissues at high resolution.
Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve
2014-01-01
The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.
Lim, Glendale; Lin, Guo-Hao; Monje, Alberto; Chan, Hsun-Liang; Wang, Hom-Lay
The rate of developing soft tissue complications that accompany guided bone regeneration (GBR) procedures varies widely, from 0% to 45%. The present review was conducted to investigate the rate for resorbable versus nonresorbable membranes and the timing of soft tissue complications. Electronic and manual literature searches were conducted by two independent reviewers using several databases, including MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Cochrane Oral Health Group Trials Register, for articles published through July 2015, with no language restriction. Articles were included if they were clinical trials aimed at demonstrating the incidence of soft tissue complications following GBR procedures. Overall, 21 and 15 articles were included in the qualitative and quantitative synthesis, respectively. The weighted complication rate of the overall soft tissue complications, including membrane exposure, soft tissue dehiscence, and acute infection/abscess, into the calculation was 16.8% (95% CI = 10.6% to 25.4%). When considering the complication rate based on membrane type used, resorbable membrane was associated with a weighted complication rate of 18.3% (95% CI: 10.4% to 30.4%) and nonresorbable membrane with a rate of 17.6% (95% CI: 10.0% to 29.3%). Moreover, soft tissue lesions were reported as early as 1 week and as late as 6 months based on the included studies. Soft tissue complications after GBR are common (16.8%). Membrane type did not appear to significantly affect the complication rate, based on the limited number of data retrieved in this study. Technique sensitivity (ie, soft tissue management) may still be regarded as the main component to avoid soft tissue complications and, hence, to influence the success of bone regenerative therapy.
Giannobile, William V; Jung, Ronald E; Schwarz, Frank
2018-03-01
The goal of Working Group 1 at the 2nd Consensus Meeting of the Osteology Foundation was to comprehensively assess the effects of soft tissue augmentation procedures on peri-implant health or disease. A systematic review and meta-analysis on the effects of soft tissue augmentation procedures included a total of 10 studies (mucosal thickness: n = 6; keratinized tissue: n = 4). Consensus statements, clinical recommendations, and implications for future research were based on structured group discussions and a plenary session approval. Soft tissue grafting to increase the width of keratinized tissue around implants was associated with greater reductions in gingival and plaque indices when compared to non-augmented sites. Statistically significant differences were noted for final marginal bone levels in favor of an apically positioned flap plus autogenous graft vs. all standard-of-care control treatments investigated. Soft tissue grafting (i.e., autogenous connective tissue) to increase the mucosal thickness around implants in the aesthetic zone was associated with significantly less marginal bone loss over time, but no significant changes in bleeding on probing, probing depths, or plaque scores when compared to sites without grafting. The limited evidence available supports the use of soft tissue augmentation procedures to promote peri-implant health. © 2018 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Local deformation for soft tissue simulation
Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-01-01
ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482
Soft tissue modelling through autowaves for surgery simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Alici, Gursel; Smith, Julian
2006-09-01
Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves and soft tissue deformation. The potential energy stored in a soft tissue as a result of a deformation caused by an external force is propagated among mass points of the soft tissue by non-linear autowaves. The novelty of the methodology is that (i) autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal forces, and (ii) non-linear materials are modelled with non-linear autowaves other than geometric non-linearity. Integration with a haptic device has been achieved to simulate soft tissue deformation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply changing diffusion coefficients.
How to use PRICE treatment for soft tissue injuries.
Norton, Cormac
2016-08-24
Rationale and key points This article assists nurses to use the acronym PRICE (protection, rest, ice, compression and elevation) to guide the treatment of patients with uncomplicated soft tissue injuries to their upper or lower limbs. » Treatment of soft tissue injuries to limbs is important to reduce complications following injury, alleviate pain and ensure normal limb function is restored promptly. » Nurses should have an understanding of the rationale and evidence base supporting PRICE treatment of soft tissue injuries. » Providing accurate information to patients and carers about the management of soft tissue injuries and anticipated recovery time is an important aspect of treatment. » Further research is required to develop best practice in the treatment of soft tissue injuries. Reflective activity 'How to' articles can help you update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when managing patients with soft tissue injuries to upper or lower limbs. 2. Positive elements of your current practice and those that could be enhanced. Subscribers can upload their reflective accounts at: rcni.com/portfolio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani
Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less
Tissue Anisotropy Modeling Using Soft Composite Materials.
Chanda, Arnab; Callaway, Christian
2018-01-01
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.
Tissue Anisotropy Modeling Using Soft Composite Materials
Callaway, Christian
2018-01-01
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996
Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui
2017-01-01
Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.
Soft Tissue Alterations in Esthetic Postextraction Sites: A 3-Dimensional Analysis.
Chappuis, V; Engel, O; Shahim, K; Reyes, M; Katsaros, C; Buser, D
2015-09-01
Dimensional alterations of the facial soft and bone tissues following tooth extraction in the esthetic zone play an essential role to achieve successful outcomes in implant therapy. This prospective study is the first to investigate the interplay between the soft tissue dimensions and the underlying bone anatomy during an 8-wk healing period. The analysis is based on sequential 3-dimensional digital surface model superimpositions of the soft and bone tissues using digital impressions and cone beam computed tomography during an 8-wk healing period. Soft tissue thickness in thin and thick bone phenotypes at extraction was similar, averaging 0.7 mm and 0.8 mm, respectively. Interestingly, thin bone phenotypes revealed a 7-fold increase in soft tissue thickness after an 8-wk healing period, whereas in thick bone phenotypes, the soft tissue dimensions remained unchanged. The observed spontaneous soft tissue thickening in thin bone phenotypes resulted in a vertical soft tissue loss of only 1.6 mm, which concealed the underlying vertical bone resorption of 7.5 mm. Because of spontaneous soft tissue thickening, no significant differences were detected in the total tissue loss between thin and thick bone phenotypes at 2, 4, 6, and 8 wk. More than 51% of these dimensional alterations occurred within 2 wk of healing. Even though the observed spontaneous soft tissue thickening in thin bone phenotypes following tooth extraction conceals the pronounced underlying bone resorption pattern by masking the true bone deficiency, spontaneous soft tissue thickening offers advantages for subsequent bone regeneration and implant therapies in sites with high esthetic demand (Clinicaltrials.gov NCT02403700). © International & American Associations for Dental Research.
In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre
Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.
Rodriguez, María J.; Brown, Joseph; Giordano, Jodie; Lin, Samuel J.; Omenetto, Fiorenzo G.; Kaplan, David L.
2016-01-01
In the field of soft tissue reconstruction, custom implants could address the need for materials that can fill complex geometries. Our aim was to develop a material system with optimal rheology for material extrusion, that can be processed in physiological and non-toxic conditions and provide structural support for soft tissue reconstruction. To meet this need we developed silk based bioinks using gelatin as a bulking agent and glycerol as a non-toxic additive to induce physical crosslinking. We developed these inks optimizing printing efficacy and resolution for patient-specific geometries that can be used for soft tissue reconstruction. We demonstrated in vitro that the material was stable under physiological conditions and could be tuned to match soft tissue mechanical properties. We demonstrated in vivo that the material was biocompatible and could be tuned to maintain shape and volume up to three months while promoting cellular infiltration and tissue integration. PMID:27940389
Rodriguez, María J; Brown, Joseph; Giordano, Jodie; Lin, Samuel J; Omenetto, Fiorenzo G; Kaplan, David L
2017-02-01
In the field of soft tissue reconstruction, custom implants could address the need for materials that can fill complex geometries. Our aim was to develop a material system with optimal rheology for material extrusion, that can be processed in physiological and non-toxic conditions and provide structural support for soft tissue reconstruction. To meet this need we developed silk based bioinks using gelatin as a bulking agent and glycerol as a non-toxic additive to induce physical crosslinking. We developed these inks optimizing printing efficacy and resolution for patient-specific geometries that can be used for soft tissue reconstruction. We demonstrated in vitro that the material was stable under physiological conditions and could be tuned to match soft tissue mechanical properties. We demonstrated in vivo that the material was biocompatible and could be tuned to maintain shape and volume up to three months while promoting cellular infiltration and tissue integration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bouxsein, Mary L; Szulc, Pawel; Munoz, Fracoise; Thrall, Erica; Sornay-Rendu, Elizabeth; Delmas, Pierre D
2007-06-01
We compared trochanteric soft tissue thickness, femoral aBMD, and the ratio of fall force to femoral strength (i.e., factor of risk) in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Reduced trochanteric soft tissue thickness, low femoral aBMD, and increased ratio of fall force to femoral strength (i.e., factor of risk) were associated with increased risk of hip fracture. The contribution of trochanteric soft tissue thickness to hip fracture risk is incompletely understood. A biomechanical approach to assessing hip fracture risk that compares forces applied to the hip during a sideways fall to femoral strength may by improved by incorporating the force-attenuating effects of trochanteric soft tissues. We determined the relationship between femoral areal BMD (aBMD) and femoral failure load in 49 human cadaveric specimens, 53-99 yr of age. We compared femoral aBMD, trochanteric soft tissue thickness, and the ratio of fall forces to bone strength (i.e., the factor of risk for hip fracture, phi), before and after accounting for the force-attenuating properties of trochanteric soft tissue in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Femoral aBMD correlated strongly with femoral failure load (r2 = 0.73-0.83). Age, height, and weight did not differ; however, women with hip fracture had lower total femur aBMD (OR = 2.06; 95% CI, 1.19-3.56) and trochanteric soft tissue thickness (OR = 1.82; 95% CI, 1.01, 3.31). Incorporation of trochanteric soft tissue thickness measurements reduced the estimates of fall forces by approximately 50%. After accounting for force-attenuating properties of trochanteric soft tissue, the ratio of fall forces to femoral strength was 50% higher in cases than controls (0.92 +/- 0.44 versus 0.65 +/- 0.50, respectively; p = 0.04). It is possible to compute a biomechanically based estimate of hip fracture risk by combining estimates of femoral strength based on an empirical relationship between femoral aBMD and bone strength in cadaveric femora, along with estimates of loads applied to the hip during a sideways fall that account for thickness of trochanteric soft tissues. Our findings suggest that trochanteric soft tissue thickness may influence hip fracture risk by attenuating forces applied to the femur during a sideways fall and provide rationale for developing improved measurements of trochanteric soft tissue and for studying a larger cohort to determine whether trochanteric soft tissue thickness contributes to hip fracture risk independently of aBMD.
Ariizumi, Takashi; Kawashima, Hiroyuki; Ogose, Akira; Sasaki, Taro; Hotta, Tetsuo; Hatano, Hiroshi; Morita, Tetsuro; Endo, Naoto
2018-01-01
The value of routine blood tests in malignant soft tissue tumors remains uncertain. To determine if these tests can be used for screening, the routine pretreatment blood test findings were retrospectively investigated in 359 patients with benign and malignant soft tissue tumors. Additionally, the prognostic potential of pretreatment blood abnormalities was evaluated in patients with soft tissue sarcomas. We compared clinical factors and blood tests findings between patients with benign and malignant soft tissue tumors using univariate and multivariate analysis. Subsequently, patients with malignant tumors were divided into two groups based on blood test reference values, and the prognostic significance of each parameter was evaluated. In the univariate analysis, age, tumor size, and tumor depth were significant clinical diagnostic factors. Significant increases in the granulocyte count, C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), and γ-glutamyl transpeptidase (γ-GTP) levels were found in patients with malignant soft tissue tumors. Multiple logistic regression showed that tumor size and ESR were independent factors that predicted malignant soft tissue tumors. The Kaplan-Meier survival analysis revealed that granulocyte counts, γ-GTP levels, and CRP levels correlated significantly with overall survival. Thus, pretreatment routine blood tests are useful diagnostic and prognostic markers for diagnosing soft tissue sarcoma. © 2018 by the Association of Clinical Scientists, Inc.
Cuéllar, Vanessa G.; Ghiassi, Alidad; Sharpe, Frances
2016-01-01
Introduction: In the upper extremity, the latissimus dorsi muscle can be used as an ipsilateral rotational muscle flap for soft-tissue coverage or functional reconstruction of arm and elbow. Patients who have both major soft-tissue loss and functional deficits can be successfully treated with a single-stage functional latissimus dorsi rotational muscle transfer that provides simultaneous soft-tissue coverage and functional reconstruction. Methods: Our data base was queried for all patients undergoing a rotational latissimus dorsi muscle transfer for simultaneous soft-tissue coverage and functional reconstruction of elbow flexion. Four patients were identified. A chart review documented the mechanism of injury, associated injuries, soft-tissue defect size, number of surgical procedures, length of follow-up, last elbow range of motion, and flexion strength. Results: Four patients with loss of elbow flexion due to traumatic loss of the anterior compartment muscles and the overlying soft tissue underwent simultaneous soft-tissue coverage and elbow flexorplasty using the ipsilateral latissimus dorsi as a bipolar muscle rotational tissue transfer. All flaps survived and had a recovery of Medical Research Council Grade 4/5 elbow flexion strength. No additional procedures were required for elbow flexion. The surgical technique is described and supplemented with surgical technique video and patient outcome. Conclusions: This patient series augments the data provided in other series supporting the safety and efficacy of this procedure which provides both soft-tissue coverage and functional restoration of elbow flexion as a single-stage procedure in the setting of massive traumatic soft-tissue loss of the arm. PMID:27757363
Stevanovic, Milan V; Cuéllar, Vanessa G; Ghiassi, Alidad; Sharpe, Frances
2016-09-01
In the upper extremity, the latissimus dorsi muscle can be used as an ipsilateral rotational muscle flap for soft-tissue coverage or functional reconstruction of arm and elbow. Patients who have both major soft-tissue loss and functional deficits can be successfully treated with a single-stage functional latissimus dorsi rotational muscle transfer that provides simultaneous soft-tissue coverage and functional reconstruction. Our data base was queried for all patients undergoing a rotational latissimus dorsi muscle transfer for simultaneous soft-tissue coverage and functional reconstruction of elbow flexion. Four patients were identified. A chart review documented the mechanism of injury, associated injuries, soft-tissue defect size, number of surgical procedures, length of follow-up, last elbow range of motion, and flexion strength. Four patients with loss of elbow flexion due to traumatic loss of the anterior compartment muscles and the overlying soft tissue underwent simultaneous soft-tissue coverage and elbow flexorplasty using the ipsilateral latissimus dorsi as a bipolar muscle rotational tissue transfer. All flaps survived and had a recovery of Medical Research Council Grade 4/5 elbow flexion strength. No additional procedures were required for elbow flexion. The surgical technique is described and supplemented with surgical technique video and patient outcome. This patient series augments the data provided in other series supporting the safety and efficacy of this procedure which provides both soft-tissue coverage and functional restoration of elbow flexion as a single-stage procedure in the setting of massive traumatic soft-tissue loss of the arm.
Facial soft-tissue fillers conference: assessing the state of the science.
Rohrich, Rod J; Hanke, C William; Busso, Mariano; Carruthers, Alastair; Carruthers, Jean; Fagien, Steven; Fitzgerald, Rebecca; Glogau, Richard; Greenberger, Phyllis E; Lorenc, Z Paul; Marmur, Ellen S; Monheit, Gary D; Pusic, Andrea; Rubin, Mark G; Rzany, Berthold; Sclafani, Anthony; Taylor, Susan; Weinkle, Susan; McGuire, Michael F; Pariser, David M; Casas, Laurie A; Collishaw, Karen J; Dailey, Roger A; Duffy, Stephen C; Edgar, Elizabeth Jan; Greenan, Barbara L; Haenlein, Kelly; Henrichs, Ronald A; Hume, Keith M; Lum, Flora; Nielsen, David R; Poulsen, Lisle; Shoaf, Lori; Schoaf, Lori; Seward, William; Begolka, Wendy Smith; Stanton, Robert G; Svedman, Katherine J; Thomas, J Regan; Sykes, Jonathan M; Wargo, Carol; Weiss, Robert A
2011-04-01
: The American Society of Plastic Surgeons and the American Academy of Dermatology, with the support of other sister societies, conducted the Facial Soft-Tissue Fillers: Assessing the State of the Science conference in December of 2009. The American Society of Plastic Surgeons and the American Academy of Dermatology established a panel of leading experts in the field of soft-tissue fillers-from researchers to clinicians-and other stakeholders for the conference to examine and discuss issues of patient safety, efficacy, and effectiveness in relation to the approved and off-label use of soft-tissue fillers, and other factors, including the training and level of experience of individuals administering fillers. This report represents the systematic literature review that examines comprehensively the available evidence and gaps in the evidence related to soft-tissue fillers, to inform and support the work of the state-of-the-science conference panel. This evidence-based medicine review will serve as the foundation for future evidence-based medicine reports in this growing field.
Song, Kyung-Jin; Kim, Gyu-Hyung; Lee, Kwang-Bok
2008-07-01
To classify comprehensively the severity of soft tissue injury for extension injuries of the lower cervical spine by magnetic resonance imaging (MRI). To investigate severity of extension injuries using a modified classification system for soft tissue injury by MRI, and to determine the possibility of predicting cord injury by determining the severity of soft tissue injury. It is difficult to diagnose extension injuries by plain radiography and computed tomography. MRI is considered to be the best method of diagnosing soft tissue injuries. The authors examined whether an MRI based diagnostic standard could be devised for extension injuries of the cervical spine. MRI was performed before surgery in 81 patients that had experienced a distractive-extension injury during the past 5 years. Severities of soft tissue injury were subdivided into 5 stages. The retropharyngeal space and the retrotracheal space were measured, and their correlations with the severity of soft tissue injury were examined, as was the relation between canal stenosis and cord injury. Cord injury developed in injuries greater than Grade III (according to our devised system) accompanied by posterior longitudinal ligament rupture (P < 0.01). As the severity of soft tissue injury increased, the cord signal change increased (P < 0.01), the retropharyngeal space and the retrotracheal space increased, and swelling severity in each stage were statistically significant (P < 0.01). In canal stenosis patients, soft tissue damage and cord injury were not found to be associated (P = 0.45). In cases of distractive-extension injury, levels of soft tissue injury were determined accurately by MRI. Moreover, the severity of soft tissue injury was found to be closely associated with the development of cord injury.
Chao, Clare Y L; Zheng, Yong-Ping; Huang, Yan-Ping; Cheing, Gladys L Y
2010-07-01
The forefoot medial plantar area withstand high plantar pressure during locomotion, and is a common site that develops foot lesion problems among elderly people. The aims of the present study were to (1) determine the correlation between the biomechanical properties of forefoot medial plantar soft tissue measured by a newly developed optical coherence tomography-based air-jet indentation system and by tissue ultrasound palpation system, and (2) to compare the biomechanical properties of plantar soft tissues of medial forefoot between a young and old adult group. Thirty healthy subjects were classified as the young or older group. The biomechanical properties of plantar soft tissues measured at the forefoot by the air-jet indentation system and tissue ultrasound palpation system were performed, and the correlation of the findings obtained in the two systems were compared. A strong positive correlation was obtained from the findings in the two systems (r=0.88, P<0.001). The forefoot plantar soft tissue of the older group was significantly stiffer at the second metatarsal head and thinner at both metatarsal heads than that of the young group (all P<0.05). The stiffness coefficient at the second metatarsal head was 28% greater than that at the first metatarsal head in both study groups. Older subjects showed a loss of elasticity and reduced thickness in their forefoot plantar soft tissue, with the second metatarsal head displaying stiffer and thicker plantar tissue than the first metatarsal head. The air-jet indentation system is a useful instrument for characterizing the biomechanical properties of soft tissue. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Shape-based approach for the estimation of individual facial mimics in craniofacial surgery planning
NASA Astrophysics Data System (ADS)
Gladilin, Evgeny; Zachow, Stefan; Deuflhard, Peter; Hege, Hans-Christian
2002-05-01
Besides the static soft tissue prediction, the estimation of basic facial emotion expressions is another important criterion for the evaluation of craniofacial surgery planning. For a realistic simulation of facial mimics, an adequate biomechanical model of soft tissue including the mimic musculature is needed. In this work, we present an approach for the modeling of arbitrarily shaped muscles and the estimation of basic individual facial mimics, which is based on the geometrical model derived from the individual tomographic data and the general finite element modeling of soft tissue biomechanics.
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
Comparative anatomy and histology of xenarthran osteoderms.
Hill, Robert V
2006-12-01
Reconstruction of soft tissues in fossil vertebrates is an enduring challenge for paleontologists. Because inferences must be based on evidence from hard tissues (typically bones or teeth), even the most complete fossils provide only limited information about certain organ systems. Osteoderms ("dermal armor") are integumentary bones with high fossilization potential that hold information about the anatomy of the skin in many extant and fossil amniotes. Their importance for functional morphology and phylogenetic research has recently been recognized, but studies have focused largely upon reptiles, in which osteoderms are most common. Among mammals, osteoderms occur only in members of the clade Xenarthra, which includes armadillos and their extinct relatives: glyptodonts, pampatheres, and, more distantly, ground sloths. Here, I present new information on the comparative morphology and histology of osteoderms and their associated soft tissues in 11 extant and fossil xenarthrans. Extinct mylodontid sloths possessed simple, isolated ossicles, the presence of which is likely plesiomorphic for Xenarthra. More highly derived osteoderms of glyptodonts, pampatheres, and armadillos feature complex articulations and surface ornamentation. Osteoderms of modern armadillos are physically associated with a variety of soft tissues, including nerve, muscle, gland, and connective tissue. In some cases, similar osteological features may be caused by two or more different tissue types, rendering soft-tissue inferences for fossil osteoderms equivocal. Certain osteological structures, however, are consistently associated with specific soft-tissue complexes and therefore represent a relatively robust foundation upon which to base soft-tissue reconstructions of extinct xenarthrans. Copyright 2006 Wiley-Liss, Inc.
Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen
2015-08-01
This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao D.; Grazier, John Mark; Boyce, Brad Lee
Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue inmore » the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.« less
Sicilia, Alberto; Quirynen, Marc; Fontolliet, Alain; Francisco, Helena; Friedman, Anton; Linkevicius, Tomas; Lutz, Rainer; Meijer, Henny J; Rompen, Eric; Rotundo, Roberto; Schwarz, Frank; Simion, Massimo; Teughels, Wim; Wennerberg, Ann; Zuhr, Otto
2015-09-01
Several surgical techniques and prosthetic devices have been developed in the last decades, aiming to improve aesthetic, hygienic and functional outcomes that may affect the peri-implant tissues, such as procedures of bone and soft tissue augmentation and the use of custom-made abutments of titanium and zirconium. Three systematic reviews, based on randomized clinical trials and prospective studies covering the above reported topics were analysed, and the detected evidence was exposed to interactive experts' discussion during the group's and general assembly's meetings of the 4th EAO Consensus Conference. The results are reported using the following abbreviations: S-T: short-term evidence, M-T: medium-term evidence; L-T: long-term evidence; LE: limited evidence. Soft tissue augmentation procedures may be indicated for the increase of soft tissue thickness and keratinized tissue, the reduction of interproximal peri-implant bone loss, and the coverage of shallow peri-implant soft tissue recessions (S-T, LE), L-T is lacking. Guided bone regeneration approaches (GBR) showed efficacy when used for ridge reconstruction after the complete healing of the soft tissues (S-T & L-T), and the stability of the augmented bone may play a role in the maintenance of the soft tissue position and dimensions (LE). No significant differences were observed between titanium and zirconia abutments when evaluating probing pocket depth, bleeding on probing, marginal bone levels and mucosal recessions. Zirconia abutments were associated with more biological complications but demonstrated superiority in terms of achieving natural soft tissue colour (S-T). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Moore, Stephanie N; Hawley, Gregory D; Smith, Emily N; Mignemi, Nicholas A; Ihejirika, Rivka C; Yuasa, Masato; Cates, Justin M M; Liu, Xulei; Schoenecker, Jonathan G
2016-01-01
Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification.
Moore, Stephanie N.; Hawley, Gregory D.; Smith, Emily N.; Mignemi, Nicholas A.; Ihejirika, Rivka C.; Yuasa, Masato; Cates, Justin M. M.; Liu, Xulei; Schoenecker, Jonathan G.
2016-01-01
Introduction Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Methods Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Results Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Conclusions Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification. PMID:27438007
Clinical applications of perforator-based propeller flaps in upper limb soft tissue reconstruction.
Ono, Shimpei; Sebastin, Sandeep J; Yazaki, Naoya; Hyakusoku, Hiko; Chung, Kevin C
2011-05-01
A propeller flap is an island flap that moves from one orientation to another by rotating around its vascular axis. The vascular axis is stationary, and flap movement is achieved by revolving on this axis. Early propeller flaps relied on a thick, subcutaneous pedicle to maintain vascularity, and this limited the flap rotation to 90°. With increasing awareness of the location and the vascular territory perfused by cutaneous perforators, it is now possible to design propeller flaps based on a single perforator, so-called "perforator-based propeller flaps." These flaps permit flap rotation up to 180°. We present the results of upper limb soft tissue reconstruction using perforator-based propeller flaps. We constructed a treatment strategy based on the location of the soft tissue defect and the perforator anatomy for expedient wound coverage in 1 stage. All perforator-based propeller flaps derived from 3 institutions that were used for upper limb soft tissue reconstruction were retrospectively analyzed. The parameters studied included the size and location of the defect, the perforator that was used, the size and shape of the flap, the direction (ie, clockwise or counter-clockwise) of flap rotation, the degree of twisting of the perforator, the management of the donor site (ie, linear closure or skin grafting), and flap survival (recorded as the percentage of the flap area that survived). Twelve perforator-based propeller flaps were used to reconstruct upper limb soft tissue defects in 12 patients. Six different perforators were used as vascular pedicles. The donor defects of 11 flaps could be closed primarily. One flap was partially lost in a patient with electrical burns. Perforator-based propeller flaps provide a reliable option for covering small- to medium-size upper limb soft tissue defects. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
2017-12-11
Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Gao, Zhan; Desai, Jaydev P.
2009-01-01
This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676
Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials.
Seifi, Massoud; Matini, Negin-Sadat
2017-01-01
Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed.
Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials
Seifi, Massoud; Matini, Negin-Sadat
2017-01-01
Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed. PMID:29263776
Panzer, Stephanie; Pernter, Patrizia; Piombino-Mascali, Dario; Jankauskas, Rimantas; Zesch, Stephanie; Rosendahl, Wilfried; Hotz, Gerhard; Zink, Albert R
2017-12-01
Purpose Soft tissues make a skeleton into a mummy and they allow for a diagnosis beyond osteology. Following the approach of structured reporting in clinical radiology, a recently developed checklist was used to evaluate the soft tissue preservation status of the Tyrolean Iceman using computed tomography (CT). The purpose of this study was to apply the "Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies" to the Tyrolean Iceman, and to compare the Iceman's soft tissue preservation score to the scores calculated for other mummies. Materials and Methods A whole-body (CT) (SOMATOM Definition Flash, Siemens, Forchheim, Germany) consisting of five scans, performed in January 2013 in the Department of Radiodiagnostics, Central Hospital, Bolzano, was used (slice thickness 0.6 mm; kilovolt ranging from 80 to 140). For standardized evaluation the "CT Checklist and Scoring System for the Assessment of Soft Tissue Preservation in Human Mummies" was used. Results All checkpoints under category "A. Soft Tissues of Head and Musculoskeletal System" and more than half in category "B. Organs and Organ Systems" were observed. The scoring system accounted for a total score of 153 (out of 200). The comparison of the scores between the Iceman and three mummy collections from Vilnius, Lithuania, and Palermo, Sicily, as well as one Egyptian mummy resulted in overall higher soft tissue preservation scores for the Iceman. Conclusion Application of the checklist allowed for standardized assessment and documentation of the Iceman's soft tissue preservation status. The scoring system allowed for a quantitative comparison between the Iceman and other mummies. The Iceman showed remarkable soft tissue preservation. Key Points · The approach of structured reporting can be transferred to paleoradiology.. · The checklist allowed for standardized soft tissue assessment and documentation.. · The scoring system facilitated a quantitative comparison among mummies.. · Based on CT, the Tyrolean Iceman demonstrated remarkable soft tissue preservation.. Citation Format · Panzer S, Pernter P, Piombino-Mascali D et al. Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies: Application to the Tyrolean Iceman. Fortschr Röntgenstr 2017; 189: 1152 - 1160. © Georg Thieme Verlag KG Stuttgart · New York.
Soft tissue remodeling technique as a non-invasive alternative to second implant surgery.
Vela, Xavier; Méndez, Víctor; Rodríguez, Xavier; Segalà, Maribel; Gil, Jaime A
2012-01-01
It is currently accepted that success in implant-supported restorations is based not only on osseointegration, but also on achieving the esthetic outcome of natural teeth and healthy soft tissues. The socalled "pink esthetic" has become the main challenge with implant-supported rehabilitations in the anterior area. This is especially difficult in the cases with two adjacent implants. Two components affect the final periimplant gingiva: a correct bone support, and a sufficient quantity and quality of soft tissues. Several papers have emphasized the need to regenerate and preserve the bone after extractions, or after the exposure of the implants to the oral environment. The classical implantation protocol entails entering the working area several times and always involves the surgical manipulation of peri-implant tissues. Careful surgical handling of the soft tissues when exposing the implants and placing the healing abutments (second surgery) helps the clinician to obtain the best possible results, but even so there is a loss of volume of the tissues as they become weaker and more rigid after each procedure. The present study proposes a new protocol that includes the connective tissue graft placement and the soft tissues remodeling technique, which is based on the use of the ovoid pontics. This technique may help to minimize the logical scar reaction after the second surgery and to improve the final emergence profile.
2012-03-14
Stage IVB Adult Soft Tissue Sarcoma; Stage IIB Adult Soft Tissue Sarcoma; Stage IIC Adult Soft Tissue Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Stage IVA Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma
Clinical Presentation of Soft-tissue Infections and its Management: A Study of 100 Cases.
Singh, Baldev; Singh, Sukha; Khichy, Sudhir; Ghatge, Avinash
2017-01-01
Soft-tissue infections vary widely in their nature and severity. A clear approach to the management must allow their rapid identification and treatment as they can be life-threatening. Clinical presentation of soft-tissue infections and its management. A prospective study based on 100 patients presenting with soft-tissue infections was done. All the cases of soft-tissue infections were considered irrespective of age, sex, etiological factors, or systemic disorders. The findings were evaluated regarding the pattern of soft-tissue infections in relation to age and sex, clinical presentation, complications, duration of hospital stay, management, and mortality. The most commonly involved age group was in the range of 41-60 years with male predominance. Abscess formation (45%) was the most common clinical presentation. Type 2 diabetes mellitus was the most common associated comorbid condition. Staphylococcus aureus was the most common culture isolate obtained. The most common complication seen was renal failure. Patients with surgical site infections had maximum duration of stay in the hospital. About 94% of the cases of soft-tissue infections were managed surgically. Mortality was mostly encountered in the cases of complications of cellulitis. Skin and soft-tissue infections are among the most common infections encountered by the emergency physicians. Ignorance, reluctance to treatment, economic constraints, and illiteracy delay the early detection and the initiation of proper treatment. Adequate and timely surgical intervention in most of the cases is of utmost importance to prevent the complications and reduce the mortality.
Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M
2015-01-01
Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be applied as soft tissue scaffolds of the cardiovascular system. Copyright © 2014. Published by Elsevier B.V.
Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies
Martin, Caitlin; Sun, Wei
2017-01-01
Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007
Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.
Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-01-02
Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.
Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation
Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-01-01
ABSTRACT Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model. PMID:27690290
[Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].
Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir
2006-01-01
Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.
Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni
2018-01-01
In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006
Bosc, Romain; Tijou, Antoine; Rosi, Giuseppe; Nguyen, Vu-Hieu; Meningaud, Jean-Paul; Hernigou, Philippe; Flouzat-Lachaniette, Charles-Henri; Haiat, Guillaume
2018-06-01
The acetabular cup (AC) implant primary stability is an important determinant for the success of cementless hip surgery but it remains difficult to assess the AC implant fixation in the clinic. A method based on the analysis of the impact produced by an instrumented hammer on the ancillary has been developed by our group (Michel et al., 2016a). However, the soft tissue thickness present around the acetabulum may affect the impact response, which may hamper the robustness of the method. The aim of this study is to evaluate the influence of the soft tissue thickness (STT) on the acetabular cup implant primary fixation evaluation using impact analyses. To do so, different AC implants were inserted in five bovine bone samples. For each sample, different stability conditions were obtained by changing the cavity diameter. For each configuration, the AC implant was impacted 25 times with 10 and 30 mm of soft tissues positioned underneath the sample. The averaged indicator I m was determined based on the amplitude of the signal for each configuration and each STT and the pull-out force was measured. The results show that the resonance frequency of the system increases when the value of the soft tissue thickness decreases. Moreover, an ANOVA analysis shows that there was no significant effect of the value of soft tissue thickness on the values of the indicator I m (F = 2.33; p-value = 0.13). This study shows that soft tissue thickness does not appear to alter the prediction of the acetabular cup implant primary fixation obtained using the impact analysis approach, opening the path towards future clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhou, Jianyong; Luo, Zu; Li, Chunquan; Deng, Mi
2018-01-01
When the meshless method is used to establish the mathematical-mechanical model of human soft tissues, it is necessary to define the space occupied by human tissues as the problem domain and the boundary of the domain as the surface of those tissues. Nodes should be distributed in both the problem domain and on the boundaries. Under external force, the displacement of the node is computed by the meshless method to represent the deformation of biological soft tissues. However, computation by the meshless method consumes too much time, which will affect the simulation of real-time deformation of human tissues in virtual surgery. In this article, the Marquardt's Algorithm is proposed to fit the nodal displacement at the problem domain's boundary and obtain the relationship between surface deformation and force. When different external forces are applied, the deformation of soft tissues can be quickly obtained based on this relationship. The analysis and discussion show that the improved model equations with Marquardt's Algorithm not only can simulate the deformation in real-time but also preserve the authenticity of the deformation model's physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair
Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A.D.T.G.
2012-01-01
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented. PMID:22697475
Strategies to improve regeneration of the soft palate muscles after cleft palate repair.
Carvajal Monroy, Paola L; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A D T G; Von den Hoff, Johannes W
2012-12-01
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented.
Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan
2011-01-01
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.
2010-01-01
Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227
Peterson, Joseph E; Lenczewski, Melissa E; Scherer, Reed P
2010-10-12
Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.
Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert
2009-01-01
The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Sterling, D; Higgins, P
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less
Soft tissue-based surgical techniques for treatment of posterior shoulder instability.
Castagna, Alessandro; Conti, Marco; Garofalo, Raffaele
2017-01-01
Posterior shoulder instability is a rare clinical condition that encompasses different degrees of severity including various possible pathologies involving the labrum, capsule, bony lesions, and even locked posterior dislocation. When focusing on soft tissue involvement, the diagnosis of posterior instability may be difficult to make because frequently patients report vague symptoms not associated with a clear history of traumatic shoulder dislocation. Pathological soft tissue conditions associated with posterior instability in most cases are related to posterior labral tear and/or posterior capsular detensioning/tear. The diagnosis can be facilitated by physical examination using specific clinical tests (i. e., jerk test, Kim test, and reinterpreted O'Brien test) together with appropriate imaging studies (i. e., magnetic resonance arthrography). Arthroscopy may help in a complete evaluation of the joint and allows for the treatment of soft tissue lesions in posterior instability. Caution is warranted in the case of concomitant posterior glenoid chondral defect as a potential cause of poor outcome after soft tissue repair in posterior instability.
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity
Park, Dae Woo
2016-01-01
Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476
Surgical Removal of Neglected Soft Tissue Foreign Bodies by Needle-Guided Technique
Ebrahimi, Ali; Radmanesh, Mohammad; Rabiei, Sohrab; kavoussi, Hossein
2013-01-01
Introduction: The phenomenon of neglected foreign bodies is a significant cause of morbidity in soft tissue injuries and may present to dermatologists as delayed wound healing, localized cellulitis and inflammation, abscess formation, or foreign body sensation. Localization and removal of neglected soft tissue foreign bodies (STFBs) is complex due to possible inflammation, indurations, granulated tissue, and fibrotic scar. This paper describes a simple method for the quick localization and (surgical) removal of neglected STFBs using two 23-gauge needles without ultrasonographic or fluoroscopic guidance. Materials and Methods: A technique based on the use of two 23-gauge needles was used in 41 neglected STFBs in order to achieve proper localization and fixation of foreign bodies during surgery. Results: Surgical removal was successful in 38 of 41 neglected STFBs (ranging from 2–13mm in diameter). Conclusion: The cross-needle-guided technique is an office-based procedure that allows the successful surgical removal of STFBs using minimal soft tissue exploration and dissection via proper localization, fixation, and propulsion of the foreign body toward the surface of the skin. PMID:24303416
2018-05-23
FNCLCC Sarcoma Grade 2; FNCLCC Sarcoma Grade 3; Leiomyosarcoma; Liposarcoma; Stage I Soft Tissue Sarcoma AJCC v7; Stage IA Soft Tissue Sarcoma AJCC v7; Stage IB Soft Tissue Sarcoma AJCC v7; Stage II Soft Tissue Sarcoma AJCC v7; Stage IIA Soft Tissue Sarcoma AJCC v7; Stage IIB Soft Tissue Sarcoma AJCC v7; Undifferentiated Pleomorphic Sarcoma
Soft tissue sealing around dental implants based on histological interpretation.
Atsuta, Ikiru; Ayukawa, Yasunori; Kondo, Ryosuke; Oshiro, Wakana; Matsuura, Yuri; Furuhashi, Akihiro; Tsukiyama, Yoshihiro; Koyano, Kiyoshi
2016-01-01
The aim of this study was to provide an overview on the biology and soft tissue sealing around dental implants and teeth. This is a narrative review performed through scientific articles published between 1977 and 2014, indexed in MEDLINE and PubMed databases. The study selected articles that focused on epithelial sealing around dental implant or teeth with cell biology and histology of soft tissue. Implant therapy has been widely applied in dental rehabilitation for many years, with predictable long-term results. The longevity and functionality of dental implants is dependent on both osseointegration around the implant body and the establishment of a soft tissue barrier that protects the underlying hard tissue structures and the implant itself. The health and stability of the peri-implant mucosa also affects the esthetics of the implant. The healing and maintenance of the epithelial and connective tissues around implants are increasingly recognized as being fundamental to implant success. However, there has been little research into the function or formation of the soft tissue seal around dental implants, and the roles of this unique mucosal interface remain unclear. This narrative review explores the extent of the current knowledge of soft tissue barriers around implants from both a basic and clinical perspective, and aims to consolidate this knowledge and highlight the most pertinent questions relating to this area of research. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Bleakley, Chris; McDonough, Suzanne; MacAuley, Domhnall
2004-01-01
There are wide variations in the clinical use of cryotherapy, and guidelines continue to be made on an empirical basis. Systematic review assessing the evidence base for cryotherapy in the treatment of acute soft-tissue injuries. A computerized literature search, citation tracking, and hand searching were carried out up to April 2002. Eligible studies were randomized-controlled trials describing human subjects recovering from acute soft-tissue injuries and employing a cryotherapy treatment in isolation or in combination with other therapies. Two reviewers independently assessed the validity of included trials using the Physiotherapy Evidence Database (PEDro) scale. Twenty-two trials met the inclusion criteria. There was a mean PEDro score of 3.4 out of of 10. There was marginal evidence that ice plus exercise is most effective, after ankle sprain and postsurgery. There was little evidence to suggest that the addition of ice to compression had any significant effect, but this was restricted to treatment of hospital inpatients. Few studies assessed the effectiveness of ice on closed soft-tissue injury, and there was no evidence of an optimal mode or duration of treatment. Many more high-quality trials are needed to provide evidence-based guidelines in the treatment of acute soft-tissue injuries.
2014-04-01
Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Osteosarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Regeneration of soft and hard tissue periodontal defects.
Caffesse, Raúl G; de la Rosa, Manuel; Mota, Luis F
2002-10-01
Periodontitis is characterized by the formation of periodontal pockets and bone loss. Although the basic treatment emphasizes the control of bacterial plaque, the clinician is confronted with the need to correct soft and/or hard tissue defects that develop as a consequence of the disease. This article reviews the current status of regenerative approaches in treating soft and hard tissue defects (based mainly on findings from our own laboratory) and assessed the global applicability of these procedures. Many different techniques have been suggested to treat those defects with, in general, a high degree of success. From the present knowledge it can be concluded that periodontal soft and hard tissue regeneration is possible. Treatment of areas with localized gingival recession or insufficient keratinized gingiva can be achieved with soft tissue grafts or pedicle flaps, as well as with the use of dermal allografts. The treatment of hard tissue defects around teeth and implants can be approached using different types of bone grafts, guided tissue or bone regeneration, or a combination of these. The predictability of many of these therapies, however, still needs to be improved. Since most of these techniques are sensitive, specific, and expensive, their present universal application is limited.
2017-09-07
Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Synovial Sarcoma; Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Dermatofibrosarcoma Protuberans; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Mithraratne, K; Ho, H; Hunter, P J; Fernandez, J W
2012-10-01
A coupled computational model of the foot consisting of a three-dimensional soft tissue continuum and a one-dimensional (1D) transient blood flow network is presented in this article. The primary aim of the model is to investigate the blood flow in major arteries of the pathologic foot where the soft tissue stiffening occurs. It has been reported in the literature that there could be up to about five-fold increase in the mechanical stiffness of the plantar soft tissues in pathologic (e.g. diabetic) feet compared with healthy ones. The increased stiffness results in higher tissue hydrostatic pressure within the plantar area of the foot when loaded. The hydrostatic pressure acts on the external surface of blood vessels and tend to reduce the flow cross-section area and hence the blood supply. The soft tissue continuum model of the foot was modelled as a tricubic Hermite finite element mesh representing all the muscles, skin and fat of the foot and treated as incompressible with transversely isotropic properties. The details of the mechanical model of soft tissue are presented in the companion paper, Part 1. The deformed state of the soft tissue continuum because of the applied ground reaction force at three foot positions (heel-strike, midstance and toe-off) was obtained by solving the Cauchy equations based on the theory of finite elasticity using the Galerkin finite element method. The geometry of the main arterial network in the foot was represented using a 1D Hermite cubic finite element mesh. The flow model consists of 1D Navier-Stokes equations and a nonlinear constitutive equation to describe vessel radius-transmural pressure relation. The latter was defined as the difference between the fluid and soft tissue hydrostatic pressure. Transient flow governing equations were numerically solved using the two-step Lax-Wendroff finite difference method. The geometry of both the soft tissue continuum and arterial network is anatomically-based and was developed using the data derived from visible human images and magnetic resonance images of a healthy male volunteer. Simulation results reveal that a two-fold increase in tissue stiffness leads to about 28% reduction in blood flow to the affected region. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X; Yang, Y; Jack, N
Purpose: On-board MRI provides superior soft-tissue contrast, allowing patient alignment using tumor or nearby critical structures. This study aims to study H&N MRI-guided IGRT to analyze inter-fraction patient setup variations using soft-tissue targets and design appropriate CTV-to-PTV margin and clinical implication. Methods: 282 MR images for 10 H&N IMRT patients treated on a ViewRay system were retrospectively analyzed. Patients were immobilized using a thermoplastic mask on a customized headrest fitted in a radiofrequency coil and positioned to soft-tissue targets. The inter-fraction patient displacements were recorded to compute the PTV margins using the recipe: 2.5∑+0.7σ. New IMRT plans optimized on themore » revised PTVs were generated to evaluate the delivered dose distributions. An in-house dose deformation registration tool was used to assess the resulting dosimetric consequences when margin adaption is performed based on weekly MR images. The cumulative doses were compared to the reduced margin plans for targets and critical structures. Results: The inter-fraction displacements (and standard deviations), ∑ and σ were tabulated for MRI and compared to kVCBCT. The computed CTV-to-PTV margin was 3.5mm for soft-tissue based registration. There were minimal differences between the planned and delivered doses when comparing clinical and the PTV reduced margin plans: the paired t-tests yielded p=0.38 and 0.66 between the planned and delivered doses for the adapted margin plans for the maximum cord and mean parotid dose, respectively. Target V95 received comparable doses as planned for the reduced margin plans. Conclusion: The 0.35T MRI offers acceptable soft-tissue contrast and good spatial resolution for patient alignment and target visualization. Better tumor conspicuity from MRI allows soft-tissue based alignments with potentially improved accuracy, suggesting a benefit of margin reduction for H&N radiotherapy. The reduced margin plans (i.e., 2 mm) resulted in improved normal structure sparing and accurate dose delivery to achieve intended treatment goal under MR guidance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Y; Crane, C; Krishnan, S
Purpose An IGRT modality for pancreatic cancer treatment with dose escalation at our institution is in-room daily CT imaging. The purpose of this study is to assess the difference between soft tissue alignment and bony alignment for pancreatic tumor localization. Methods Eighteen patients with pancreatic tumors who underwent IMRT treatment with an inspiration breath-hold technique between July 2012 and February 2015 are included in this study. Prior to each treatment, a CT scan was acquired. The CT image guidance started with auto-alignment to either the bony anatomy (vertebral bodies) or fiducials (for the six patients with the stent in/near themore » tumor) and then, when necessary, manual adjustments were made based on soft tissue alignment using clinical software (CT-Assisted Targeting system). The difference between soft tissue alignment and bony/fiducial alignment was evaluated. Results Of all 380 treatments, manual adjustment was made in 225 treatments, ranging from 11% (3 treatments out of 28) to 96% (27 treatments out of 28) per patient. The mean of the difference between soft tissue alignment and bony/fiducial alignment per patient ranged from −3.6 to 0.3 mm, −1.5 to 2.8 mm, and −3.3 to 3.4 mm in the AP, SI, and RL directions, respectively. The maximum difference over all treatments was −9.5, −14.6, and −14.6 mm in the AP, SI, and RL directions, respectively. Conclusion About 60% of the time, manual adjustment based on soft tissue alignment was required. The extent of manual adjustment was usually small but varied significantly from patient to patient. The ultimate goal of the IGRT modality using daily CT imaging is not to fully cover the target but to spare organs-at-risk as much as possible to avoid them moving into higher dose gradients than accepted in the treatment plan. To this end, manual adjustment based on soft tissue alignment is critically important.« less
Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R
2017-01-01
Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.
Influence of Abutment Color and Mucosal Thickness on Soft Tissue Color.
Ferrari, Marco; Carrabba, Michele; Vichi, Alessandro; Goracci, Cecilia; Cagidiaco, Maria Crysanti
Zirconia (ZrO₂) and titanium nitride (TiN) implant abutments were introduced mainly for esthetic purposes, as titanium's gray color can be visible through mucosal tissues. This study was aimed at assessing whether ZrO₂ and TiN abutments could achieve better esthetics in comparison with titanium (Ti) abutments, regarding the appearance of soft tissues. Ninety patients were included in the study. Each patient was provided with an implant (OsseoSpeed, Dentsply Implant System). A two-stage surgical technique was performed. Six months later, surgical reentry was performed. After 1 week, provisional restorations were screwed onto the implants. After 8 weeks, implant-level impressions were taken and soft tissue thickness was recorded, ranking thin (≤ 2 mm) or thick (≥ 2 mm). Patients were randomly allocated to three experimental groups, based on abutment type: (1) Ti, (2) TiN, and (3) ZrO₂. After 15 weeks, the final restorations were delivered. The mucosal area referring to each abutment was measured for color using a clinical spectrophotometer (Easyshade, VITA); color measurements of the contralateral areas referring to natural teeth were performed at the same time. The data were collected using the Commission Internationale de l'Eclairage (CIE) L*a*b* color system, and ΔE was calculated between peri-implant and contralateral soft tissues. A critical threshold of ΔE = 3.7 was selected. The chi-square test was used to identify statistically significant differences in ΔE between thin and thick mucosal tissues and among the abutment types. Three patients were lost at follow-up. No statistically significant differences were noticed as to the abutment type (P = .966). Statistically significant differences in ΔE were recorded between thick and thin peri-implant soft tissues (P < .001). Only 2 out of 64 patients with thick soft tissues showed a ΔE higher than 3.7: 1 in the TiN group and 1 in the ZrO₂ group. All the patients with thin soft tissues reported color changes that exceeded the critical threshold. The different abutment materials showed comparable results in terms of influence on soft tissue color. Regarding peri-implant soft tissue thickness, the influence of the tested abutments on soft tissue color became clinically relevant for values ≤ 2 mm.
Willbold, Elmar; Reebmann, Mattias; Jeffries, Richard; Witte, Frank
2013-11-01
Solid metallic implants in soft or hard tissues are serious challenges for histological processing. However, metallic implants are more frequently used in e.g. cardiovascular or orthopaedic therapies. Before clinical use, these devices need to be tested thoroughly in a biological environment and histological analysis of their biocompatibility is a major requirement. To allow the histological analysis of metallic implants in tissues especially in calcified hard tissues, we describe a method for embedding these tissues in the resin Technovit 9100 New and removing the metallic implants by electrochemical dissolution. With the combination of these two processes, we are able to achieve 5 μm thick sections from soft or hard tissues with a superior preservation of tissue architecture and especially the implant-tissue interface. These sections can be stained by classical stainings, immunohistochemical and enzymehistochemical as well as DNA-based staining methods.
Anssari-Benam, Afshin; Bucchi, Andrea; Bader, Dan L
2015-09-18
Discrete element models have often been the primary tool in investigating and characterising the viscoelastic behaviour of soft tissues. However, studies have employed varied configurations of these models, based on the choice of the number of elements and the utilised formation, for different subject tissues. This approach has yielded a diverse array of viscoelastic models in the literature, each seemingly resulting in different descriptions of viscoelastic constitutive behaviour and/or stress-relaxation and creep functions. Moreover, most studies do not apply a single discrete element model to characterise both stress-relaxation and creep behaviours of tissues. The underlying assumption for this disparity is the implicit perception that the viscoelasticity of soft tissues cannot be described by a universal behaviour or law, resulting in the lack of a unified approach in the literature based on discrete element representations. This paper derives the constitutive equation for different viscoelastic models applicable to soft tissues with two characteristic times. It demonstrates that all possible configurations exhibit a unified and universal behaviour, captured by a single constitutive relationship between stress, strain and time as: σ+Aσ̇+Bσ¨=Pε̇+Qε¨. The ensuing stress-relaxation G(t) and creep J(t) functions are also unified and universal, derived as [Formula: see text] and J(t)=c2+(ε0-c2)e(-PQt)+σ0Pt, respectively. Application of these relationships to experimental data is illustrated for various tissues including the aortic valve, ligament and cerebral artery. The unified model presented in this paper may be applied to all tissues with two characteristic times, obviating the need for employing varied configurations of discrete element models in preliminary investigation of the viscoelastic behaviour of soft tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Skin and Soft Tissue Infections Due to Corynebacterium ulcerans - Case Reports].
Jenssen, Christian; Schwede, Ilona; Neumann, Volker; Pietsch, Cristine; Handrick, Werner
2017-10-01
History and clinical findings We report on three patients suffering from skin and soft tissue infections of the legs due to toxigenic Corynebacterium ulcerans strains. In all three patients, there was a predisposition due to chronic diseases. Three patients had domestic animals (cat, dog) in their households. Investigations and diagnosis A mixed bacterial flora including Corynebacterium ulcerans was found in wound swab samples. Diphtheric toxin was produced by the Corynebacterium ulcerans strains in all three cases. Treatment and course In all three patients, successful handling of the skin and soft tissue infections was possible by combining local treatment with antibiotics. Diphtheria antitoxin was not administered in any case. Conclusion Based on a review of the recent literature pathogenesis, clinical symptoms and signs, diagnostics and therapy of skin and soft tissue infections due to Corynebacterium ulcerans are discussed. Corynebacterium ulcerans should be considered as a potential cause of severe skin and soft tissue infections. Occupational or domestic animal contacts should be evaluated. © Georg Thieme Verlag KG Stuttgart · New York.
Hämmerle, Christoph H F; Giannobile, William V
2014-04-01
The scope of this consensus was to review the biological processes of soft tissue wound healing in the oral cavity and to histologically evaluate soft tissue healing in clinical and pre-clinical models. To review the current knowledge regarding the biological processes of soft tissue wound healing at teeth, implants and on the edentulous ridge. Furthermore, to review soft tissue wound healing at these sites, when using barrier membranes, growth and differentiation factors and soft tissue substitutes. Searches of the literature with respect to recessions at teeth and soft tissue deficiencies at implants, augmentation of the area of keratinized tissue and soft tissue volume were conducted. The available evidence was collected, categorized and summarized. Oral mucosal and skin wound healing follow a similar pattern of the four phases of haemostasis, inflammation, proliferation and maturation/matrix remodelling. The soft connective tissue determines the characteristics of the overlaying oral epithelium. Within 7-14 days, epithelial healing of surgical wounds at teeth is completed. Soft tissue healing following surgery at implants requires 6-8 weeks for maturation. The resulting tissue resembles scar tissue. Well-designed pre-clinical studies providing histological data have been reported describing soft tissue wound healing, when using barrier membranes, growth and differentiation factors and soft tissue substitutes. Few controlled clinical studies with low numbers of patients are available for some of the treatments reviewed at teeth. Whereas, histological new attachment has been demonstrated in pre-clinical studies resulting from some of the treatments reviewed, human histological data commonly report a lack of new attachment but rather long junctional epithelial attachment and connective tissue adhesion. Regarding soft tissue healing at implants human data are very scarce. Oral soft tissue healing at teeth, implants and the edentulous ridge follows the same phases as skin wound healing. Histological studies in humans have not reported new attachment formation at teeth for the indications studied. Human histological data of soft tissue wound healing at implants are limited. The use of barriers membranes, growth and differentiation factors and soft tissue substitutes for the treatment of localized gingival/mucosal recessions, insufficient amount of keratinized tissue and insufficient soft tissue volume is at a developing stage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A new ChainMail approach for real-time soft tissue simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-07-03
This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.
Aggarwal, Ankush
2017-08-01
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.
Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki
2004-05-01
We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.
A multi-physics model for ultrasonically activated soft tissue.
Suvranu De, Rahul
2017-02-01
A multi-physics model has been developed to investigate the effects of cellular level mechanisms on the thermomechanical response of ultrasonically activated soft tissue. Cellular level cavitation effects have been incorporated in the tissue level continuum model to accurately determine the thermodynamic states such as temperature and pressure. A viscoelastic material model is assumed for the macromechanical response of the tissue. The cavitation model based equation-of-state provides the additional pressure arising from evaporation of intracellular and cellular water by absorbing heat due to structural and viscoelastic heating in the tissue, and temperature to the continuum level thermomechanical model. The thermomechanical response of soft tissue is studied for the operational range of frequencies of oscillations and applied loads for typical ultrasonically activated surgical instruments. The model is shown to capture characteristics of ultrasonically activated soft tissue deformation and temperature evolution. At the cellular level, evaporation of water below the boiling temperature under ambient conditions is indicative of protein denaturation around the temperature threshold for coagulation of tissues. Further, with increasing operating frequency (or loading), the temperature rises faster leading to rapid evaporation of tissue cavity water, which may lead to accelerated protein denaturation and coagulation.
Weickenmeier, J; Jabareen, M
2014-11-01
The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery. Copyright © 2014 John Wiley & Sons, Ltd.
Liu, Yiyang; Zhang, Chun; Guo, Qiaofeng; Huang, Wenhua; Wong, Kelvin Kian Loong; Chang, Shimin
2017-01-01
Objective To describe the characteristics of the perforator vessel in the peroneal artery of the lower leg and to explore the use of perforator pedicle propeller flaps to repair soft tissue defects in the lower leg, heel and foot. Methods This retrospective study enrolled patients with soft tissue defects of the distal lower leg, heel and foot who underwent surgery using peroneal perforator-based propeller flaps. The peroneal artery perforators were identified preoperatively by colour duplex Doppler ultrasound. The flap was designed based on the preoperatively-identified perforator location, with the posterior border of the fibula employed as an axis, and the perforator vessel as the pivot point of rotation. Patients were followed-up to determine the outcomes. Results The study analysed 36 patients (mean age, 39.7 years). The majority of the soft tissue defects were on the heel (20; 55.6%). The donor-site of the flap was closed in 11 patients by direct suturing and skin grafting was undertaken in 25 patients. Postoperative complications included venous congestion (nine patients), which was managed with delayed wound coverage and bleeding therapy. All wounds were eventually cured and the flaps were cosmetically acceptable. Conclusions The peroneal perforator pedicle propeller flap is an appropriate choice to repair soft tissue defects of the distal limbs. PMID:28345420
Shen, Lifeng; Liu, Yiyang; Zhang, Chun; Guo, Qiaofeng; Huang, Wenhua; Wong, Kelvin Kian Loong; Chang, Shimin
2017-06-01
Objective To describe the characteristics of the perforator vessel in the peroneal artery of the lower leg and to explore the use of perforator pedicle propeller flaps to repair soft tissue defects in the lower leg, heel and foot. Methods This retrospective study enrolled patients with soft tissue defects of the distal lower leg, heel and foot who underwent surgery using peroneal perforator-based propeller flaps. The peroneal artery perforators were identified preoperatively by colour duplex Doppler ultrasound. The flap was designed based on the preoperatively-identified perforator location, with the posterior border of the fibula employed as an axis, and the perforator vessel as the pivot point of rotation. Patients were followed-up to determine the outcomes. Results The study analysed 36 patients (mean age, 39.7 years). The majority of the soft tissue defects were on the heel (20; 55.6%). The donor-site of the flap was closed in 11 patients by direct suturing and skin grafting was undertaken in 25 patients. Postoperative complications included venous congestion (nine patients), which was managed with delayed wound coverage and bleeding therapy. All wounds were eventually cured and the flaps were cosmetically acceptable. Conclusions The peroneal perforator pedicle propeller flap is an appropriate choice to repair soft tissue defects of the distal limbs.
Zhang, Man; Castaneda, Benjamin; Wu, Zhe; Nigwekar, Priya; Joseph, Jean V.; Rubens, Deborah J.; Parker, Kevin J.
2007-01-01
Biomechanical properties of soft tissues are important for a wide range of medical applications, such as surgical simulation and planning and detection of lesions by elasticity imaging modalities. Currently, the data in the literature is limited and conflicting. Furthermore, to assess the biomechanical properties of living tissue in vivo, reliable imaging-based estimators must be developed and verified. For these reasons we developed and compared two independent quantitative methods – crawling wave estimator (CRE) and mechanical measurement (MM) for soft tissue characterization. The CRE method images shear wave interference patterns from which the shear wave velocity can be determined and hence the Young’s modulus can be obtained. The MM method provides the complex Young’s modulus of the soft tissue from which both elastic and viscous behavior can be extracted. This article presents the systematic comparison between these two techniques on the measurement of gelatin phantom, veal liver, thermal-treated veal liver, and human prostate. It was observed that the Young’s moduli of liver and prostate tissues slightly increase with frequency. The experimental results of the two methods are highly congruent, suggesting CRE and MM methods can be reliably used to investigate viscoelastic properties of other soft tissues, with CRE having the advantages of operating in nearly real time and in situ. PMID:17604902
Soft tissue waxup and mock-up as key factors in a treatment plan: case presentation.
Viana, Pedro Couto; Correia, André; Neves, Manuel; Kovacs, Zsolt; Neugbauer, Rudiger
2012-01-01
Rehabilitation of edentulous spaces in esthetic areas is a challenge to the clinician due to the loss of soft tissues. In these clinical situations, it would be desirable to evaluate and predict the gingival architecture to recover in the oral rehabilitation. To fulfill this need, the diagnostic wax should anticipate the final rehabilitation with the integration of hard and soft tissue. Thus, it is essential to produce a diagnostic waxup that integrates these two components that are simultaneously seeking to recreate the harmony of white and pink esthetic. This diagnostic waxup will be the basis for the creation of the provisional prosthesis and a soft tissue mock-up. After placing the provisional prosthesis in the mouth, the soft tissue mock-up can be applied to assess its esthetic impact at facial and intraoral level. Dentist and patient should objectively assess the appearance of the final result. After approval of this rehabilitation concept, the virtual surgical planning can be performed and the surgical guide can be designed, allowing the treatment to take place. This protocol allows the development of a rigorous treatment plan based on the integration of teeth and gingiva component. The waxup and the soft tissue mock-up play a significant role, since they allow an earlier evaluation of the esthetic result, better prosthetic and surgical planning, and it allows us to anticipate the need for gingiva-colored ceramics use. The authors present a clinical case report of the importance of the wax-up and soft tissue mock-up in the treatment plan.
Studying Genes in Tissue Samples From Younger and Adolescent Patients With Soft Tissue Sarcomas
2016-05-13
Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Soft Tissue Sarcoma
Fakheran Esfahani, Omid; Pouraboutaleb, Mohammad Fazel; Khorami, Behnam
2015-01-01
Prolonged numbness following routine dental treatments can cause difficulties in speaking and swallowing and may result in inadvertent biting of soft tissues. Local injection of vasodilator agents may represent a solution to this problem. The aim of this study was to evaluate the effect of submucosal injection of hydralazine hydrochloride (HCl) on the duration of oral soft tissue anesthesia after routine dental treatment. This randomized, single-blinded, controlled clinical trial included 50 patients who received inferior alveolar nerve block (2% lidocaine with 1:100,000 epinephrine) for simple restorative treatment. Upon completion of the dental treatment, patients randomly received a hydralazine HCl or sham injection in the same site as the local anesthetic injection. The reversal time to normal sensation of soft tissues (lips, tongue, and perioral skin) was evaluated and reported every 5 minutes by the patients, who followed an assessment protocol that they were taught in advance of treatment. Median recovery times in the hydralazine group and the sham group were 81.4 (SD, 3.6) and 221.8 (SD, 6.3) minutes, respectively. Based on Kaplan-Meier survival analysis, the duration of soft tissue anesthesia in the 2 groups was significantly different (P < 0.0001). By 1 hour after the reversal injection, 76% of subjects receiving hydralazine HCl had returned to normal intraoral and perioral sensation, but none of the subjects in the sham group reported normal sensation. Based on these results, submucosal injection of hydralazine HCl can be considered a safe and effective method to reduce the duration of local anesthetic-induced soft tissue numbness and the related functional problems.
Sornkarn, Nantachai; Nanayakkara, Thrishantha
2017-01-01
When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.
Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan
2018-06-01
Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Stiller, Michael; Mengel, Rainer; Becher, Sebastian; Brinkmann, Bernhard; Peleska, Barbara; Kluk, Esther
2015-12-01
This retrospective study evaluated soft-tissue grafting as a surgical treatment option for peri-implantitis in case of unsuitable basic skeletal morphology of the alveolar bone and lack of keratinized mucosa. Twenty-eight patients (21 females, 7 males, at a mean age 59.4 years) were included with a total of 54 implants. All implants showed peri-implantitis and attached keratinized buccal mucosa of ≤2 mm. A surgical procedure of soft-tissue grafting (STG) was made by inserting an inlay and inlay-onlay transplant. Clinical investigations were made prior to the STG (baseline) and after 9-180 months (Ø 43 months) including the following parameters: soft-tissue biotype, skeletal basic morphology of the alveolar bone, width of the peri-implant keratinized mucosa (KM), mobility of the KM, pocket probing depth (PPD), and bleeding on probing (BOP). Nearly all patients showed a thin soft-tissue biotype. The analysis of the skeletal basic morphology of the alveolar bone revealed a narrow apical base in 18 patients, middle base in 7 patients, and broad base in 3 patients. Width of the KM increased significantly (p < 0.01) from 0.4 ± 0,5 mm to 4.3 ± 1.5 mm after STG and PPD was significantly (p < 0,01) reduced from 6.3 ± 2,3 mm to 4.1 ± 1.9 mm. A significant reduction (p < 0.01) in BOP was recorded. All patients reported a clinical improvement of the inflammatory symptoms at follow-up. The results of this study showed that the STG can be applied successfully as a surgical treatment of peri-implantitis. It remains unclear whether soft-tissue biotype or the skeletal basic morphology of the alveolar bone affects the outcome of this surgical treatment.
Grating-based tomography applications in biomedical engineering
NASA Astrophysics Data System (ADS)
Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert
2017-10-01
For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.
Soft tissue modelling with conical springs.
Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan
2015-01-01
This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.
Multicellular Streaming in Solid Tumours
NASA Astrophysics Data System (ADS)
Kas, Josef
As early as 400 BCE, the Roman medical encyclopaedist Celsus recognized that solid tumours are stiffer than surrounding tissue. However, cancer cell lines are softer, and softer cells facilitate invasion. This paradox raises several questions: Does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumour? If the latter, how can a more rigid tissue contain more soft cells? Here we show that in primary tumour samples from patients with mammary and cervix carcinomas, cells do exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissue. Mechanical modelling based on patient data reveals that, surprisingly, tumours with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.
Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering
Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank
2017-01-01
In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000
Real-Time Vision-Based Stiffness Mapping †.
Faragasso, Angela; Bimbo, João; Stilli, Agostino; Wurdemann, Helge Arne; Althoefer, Kaspar; Asama, Hajime
2018-04-26
This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.
Zhou, Renpeng; Wang, Chen; Qian, Yunliang; Wang, Danru
2015-09-01
Facial defects are multicomponent deficiencies rather than simple soft-tissue defects. Based on different branches of the superficial temporal vascular system, various tissue components can be obtained to reconstruct facial defects individually. From January 2004 to December 2013, 31 patients underwent reconstruction of facial defects with composite flaps based on the superficial temporal vascular system. Twenty cases of nasal defects were repaired with skin and cartilage components, six cases of facial defects were treated with double island flaps of the skin and fascia, three patients underwent eyebrow and lower eyelid reconstruction with hairy and hairless flaps simultaneously, and two patients underwent soft-tissue repair with auricular combined flaps and cranial bone grafts. All flaps survived completely. Donor-site morbidity is minimal, closed primarily. Donor areas healed with acceptable cosmetic results. The final outcome was satisfactory. Combined flaps based on the superficial temporal vascular system are a useful and versatile option in facial soft-tissue reconstruction. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.
Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando
2016-08-01
Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.
Palacio-Torralba, Javier; Hammer, Steven; Good, Daniel W; Alan McNeill, S; Stewart, Grant D; Reuben, Robert L; Chen, Yuhang
2015-01-01
Although palpation has been successfully employed for centuries to assess soft tissue quality, it is a subjective test, and is therefore qualitative and depends on the experience of the practitioner. To reproduce what the medical practitioner feels needs more than a simple quasi-static stiffness measurement. This paper assesses the capacity of dynamic mechanical palpation to measure the changes in viscoelastic properties that soft tissue can exhibit under certain pathological conditions. A diagnostic framework is proposed to measure elastic and viscous behaviors simultaneously using a reduced set of viscoelastic parameters, giving a reliable index for quantitative assessment of tissue quality. The approach is illustrated on prostate models reconstructed from prostate MRI scans. The examples show that the change in viscoelastic time constant between healthy and cancerous tissue is a key index for quantitative diagnostics using point probing. The method is not limited to any particular tissue or material and is therefore useful for tissue where defining a unique time constant is not trivial. The proposed framework of quantitative assessment could become a useful tool in clinical diagnostics for soft tissue. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R.
2017-01-01
Abstract. Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)–based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed. PMID:28180134
Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian
2017-10-01
Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soft tissue recurrence of giant cell tumor of the bone: Prevalence and radiographic features.
Xu, Leilei; Jin, Jing; Hu, Annan; Xiong, Jin; Wang, Dongmei; Sun, Qi; Wang, Shoufeng
2017-11-01
Recurrence of giant cell tumor of bone (GCTB) in the soft tissue is rarely seen in the clinical practice. This study aims to determine the prevalence of soft tissue recurrence of GCTB, and to characterize its radiographic features. A total of 291 patients treated by intralesional curettage for histologically diagnosed GCTB were reviewed. 6 patients were identified to have the recurrence of GCTB in the soft tissue, all of whom had undergone marginal resection of the lesion. Based on the x-ray, CT and MRI imaging, the radiographic features of soft tissue recurrence were classified into 3 types. Type I was defined as soft tissue recurrence with peripheral ossification, type II was defined as soft tissue recurrence with central ossification, and type III was defined as pure soft tissue recurrence without ossification. Demographic data including period of recurrence and follow-up duration after the second surgery were recorded for these 6 patients. Musculoskeletal Tumor Society (MSTS) scoring system was used to evaluate functional outcomes. The overall recurrence rate was 2.1% (6/291). The mean interval between initial surgery and recurrence was 11.3 ± 4.1 months (range, 5-17). The recurrence lesions were located in the thigh of 2 patients, in the forearm of 2 patients and in the leg of the other 2 patients. According to the classification system mentioned above, 2 patients were classified with type I, 1 as type II and 3 as type III. After the marginal excision surgery, all patients were consistently followed up for a mean period of 13.4 ± 5.3 months (range, 6-19), with no recurrence observed at the final visit. All the patients were satisfied with the surgical outcome. According to the MSTS scale, the mean postoperative functional score was 28.0 ± 1.2 (range, 26-29). The classification of soft tissue recurrence of GCTB may be helpful for the surgeon to select the appropriate imaging procedure to detect the recurrence. In addition, the marginal resection can produce a favorable outcome for the patients.
Thoma, Daniel S; Naenni, Nadja; Figuero, Elena; Hämmerle, Christoph H F; Schwarz, Frank; Jung, Ronald E; Sanz-Sánchez, Ignacio
2018-03-01
To review the dental literature in terms of soft tissue augmentation procedures and their influence on peri-implant health or disease in partially and fully edentulous patients. A MEDLINE search from 1966 to 2016 was performed to identify controlled clinical studies comparing soft tissue grafting versus no soft tissue grafting (maintenance) or two types of soft tissue grafting procedures at implant sites. The soft tissue grafting procedures included either an increase of keratinized tissue or an increase of the thickness of the peri-implant mucosa. Studies reporting on the peri-implant tissue health, as assessed by bleeding or gingival indices, were included in the review. The search was complemented by an additional hand search of all selected full-text articles and reviews published between 2011 and 2016. The initial search yielded a total number of 2,823 studies. Eligible studies were selected based on the inclusion criteria (finally included: four studies on gain of keratinized tissue; six studies on gain of mucosal thickness) and quality assessments conducted. Meta-analyses were applied whenever possible. Soft tissue grafting procedures for gain of keratinized tissue resulted in a significantly greater improvement of gingival index values compared to maintenance groups (with or without keratinized tissue) [n = 2; WMD = 0.863; 95% CI (0.658; 1.067); p < .001]. For final marginal bone levels, statistically significant differences were calculated in favor of an apically positioned flap (APF) plus autogenous grafts versus all control treatments (APF alone; APF plus a collagen matrix; maintenance without intervention [with or without residual keratinized tissue]) [n = 4; WMD = -0.175 mm; 95% CI: (-0.313; -0.037); p = .013]. Soft tissue grafting procedures for gain of mucosal thickness did not result in significant improvements in bleeding indices over time, but in significantly less marginal bone loss over time [WMD = 0.110; 95% CI: 0.067; 0.154; p < .001] and a borderline significance for marginal bone levels at the study endpoints compared to sites without grafting. Within the limitations of this review, it was concluded that soft tissue grafting procedures result in more favorable peri-implant health: (i) for gain of keratinized mucosa using autogenous grafts with a greater improvement of bleeding indices and higher marginal bone levels; (ii) for gain of mucosal thickness using autogenous grafts with significantly less marginal bone loss. © 2018 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Extraskeletal Ewing sarcoma of the abdominal wall
Farhat, L. Ben; Ghariani, B.; Rabeh, A.; Dali, N.; Said, W.; Hendaoui, L.
2008-01-01
Abstract Ewing sarcoma is most commonly a bone tumour which has usually extended into the soft tissues at the time of diagnosis. Exceptionally, this tumour can have an extraskeletal origin. Clinical or imaging findings are non-specific and diagnosis is based on histology. We report a case of an extraskeletal Ewing sarcoma developed in the soft tissues of the abdominal wall in a 35-year-old woman who presented a painful abdominal wall tumefaction. Ultrasongraphy and computed tomography showed a large, well-defined soft tissue mass developed in the left anterolateral muscle group of the abdominal wall. Surgical biopsy was performed and an extraskeletal Ewing sarcoma was identified histologically. PMID:18818133
A biphasic model for bleeding in soft tissue
NASA Astrophysics Data System (ADS)
Chang, Yi-Jui; Chong, Kwitae; Eldredge, Jeff D.; Teran, Joseph; Benharash, Peyman; Dutson, Erik
2017-11-01
The modeling of blood passing through soft tissues in the body is important for medical applications. The current study aims to capture the effect of tissue swelling and the transport of blood under bleeding or hemorrhaging conditions. The soft tissue is considered as a non-static poro-hyperelastic material with liquid-filled voids. A biphasic formulation effectively, a generalization of Darcy's law-is utilized, treating the phases as occupying fractions of the same volume. The interaction between phases is captured through a Stokes-like friction force on their relative velocities and a pressure that penalizes deviations from volume fractions summing to unity. The soft tissue is modeled as a hyperelastic material with a typical J-shaped stress-strain curve, while blood is considered as a Newtonian fluid. The method of Smoothed Particle Hydrodynamics is used to discretize the conservation equations based on the ease of treating free surfaces in the liquid. Simulations of swelling under acute hemorrhage and of draining under gravity and compression will be demonstrated. Ongoing progress in modeling of organ tissues under injuries and surgical conditions will be discussed.
Leonida, Alessandro; Todeschini, Giovanni; Lomartire, Giovanni; Cinci, Lorenzo; Pieri, Laura
2016-11-01
To histologically assess the effectiveness of a socket-preservation technique using enzyme-treated equine bone granules as a bone-graft material in combination with an equine collagen matrix as a scaffold for soft-tissue regeneration. Enzyme-treated equine bone granules and equine collagen matrix recently have been developed to help overcome alveolar bone deficiencies that develop in the wake of edentulism. The patient had one mandibular molar extracted and the socket grafted with equine bone granules. The graft was covered with the equine collagen matrix, placed in a double layer. No flap was prepared, and the gingival margins were stabilized with a single stitch, leaving the matrix partially exposed and the site to heal by secondary intention. The adjacent molar was extracted 1 month later, and that socket was left to heal by secondary intention without any further treatment. Three months after each surgery, an implant was placed and a biopsy was collected. The two biopsies underwent histological processing and qualitative evaluation. Histomorphometric analysis was also performed to calculate the percentage of newly formed bone (NFB) in the two cores. Healing at both sites was uneventful, and no inflammation or other adverse reactions were observed in the samples. Soft-tissue healing by secondary intention appeared to occur faster at the grafted site. The corresponding core showed a marked separation between soft and hard tissue that was not observed in the core from the nongrafted site, where soft-tissue hypertrophy could be observed. Newly formed bone at the grafted and nongrafted sites was not significantly different (27.2 ± 7.1 and 29.4 ± 6.2% respectively, p = 0.45). The surgical technique employed in this case appeared to facilitate postextraction soft-tissue healing by second intention and simplify soft-tissue management. Using a collagen-based matrix to cover a postextraction grafted site may facilitate second intention soft-tissue healing and proper soft-tissue growth.
Necrotizing soft tissue infection
Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...
Vignoletti, Fabio; Nunez, Javier; Sanz, Mariano
2014-04-01
To review the biological processes of wound healing following periodontal and periimplant plastic surgery when different technologies are used in a) the coverage of root and implant dehiscences, b) the augmentation of keratinized tissue (KT) and c) the augmentation of soft tissue volume. An electronic search from The National Library of Medicine (MEDLINE-PubMed) was performed: English articles with research focus in oral soft tissue regeneration, providing histological outcomes, either from animal experimental studies or human biopsy material were included. Barrier membranes, enamel matrix derivatives, growth factors, allogeneic and xenogeneic soft tissue substitutes have been used in soft tissue regeneration demonstrating different degrees of regeneration. In root coverage, these technologies were able to improve new attachment, although none has shown complete regeneration. In KT augmentation, tissue-engineered allogenic products and xenogeneic collagen matrixes demonstrated integration within the host connective tissue and promotion of keratinization. In soft tissue augmentation and peri-implant plastic surgery there are no histological data currently available. Soft tissue substitutes, growth differentiation factors demonstrated promising histological results in terms of soft tissue regeneration and keratinization, whereas there is a need for further studies to prove their added value in soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads.
Chen, Huawei; Zhang, Liwen; Zhang, Deyuan; Zhang, Pengfei; Han, Zhiwu
2015-07-01
Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.
Cell-assisted lipotransfer in the clinical treatment of facial soft tissue deformity
Ma, Li; Wen, Huicai; Jian, Xueping; Liao, Huaiwei; Sui, Yunpeng; Liu, Yanping; Xu, Guizhen
2015-01-01
Cosmetic surgeons have experimented with a variety of substances to improve soft tissue deformities of the face. Autologous fat grafting provides significant advantages over other modalities because it leaves no scar, is easy to use and is well tolerated by most patients. Autologous fat grafting has become one of the most popular techniques in the field of facial plastic surgery. Unfortunately, there are still two major problems affecting survival rate and development: revascularization after transplantion; and cell reservation proliferation and survival. Since Zuk and Yosra developed a technology based on adipose-derived stem cells and cell-assisted lipotrophy, researchers have hoped that this technology would promote the survival and reduce the absorption of grafted fat cells. Autologous adipose-derived stem cells may have great potential in skin repair applications, aged skin rejuvenation and other aging-related skin lesion treatments. Recently, the study of adipose-derived stem cells has gained increased attention. More researchers have started to adopt this technology in the clinical treatment of facial soft tissue deformity. The present article reviews the history of facial soft tissue augmentation and the advent of adipose-derived stem cells in the area of the clinical treatment of facial soft tissue deformity. PMID:26361629
NASA Astrophysics Data System (ADS)
Guo, Z. Y.; Peng, X. Q.; Moran, B.
2006-09-01
This paper presents a composites-based hyperelastic constitutive model for soft tissue. Well organized soft tissue is treated as a composite in which the matrix material is embedded with a single family of aligned fibers. The fiber is modeled as a generalized neo-Hookean material in which the stiffness depends on fiber stretch. The deformation gradient is decomposed multiplicatively into two parts: a uniaxial deformation along the fiber direction and a subsequent shear deformation. This permits the fiber-matrix interaction caused by inhomogeneous deformation to be estimated by using effective properties from conventional composites theory based on small strain linear elasticity and suitably generalized to the present large deformation case. A transversely isotropic hyperelastic model is proposed to describe the mechanical behavior of fiber-reinforced soft tissue. This model is then applied to the human annulus fibrosus. Because of the layered anatomical structure of the annulus fibrosus, an orthotropic hyperelastic model of the annulus fibrosus is developed. Simulations show that the model reproduces the stress-strain response of the human annulus fibrosus accurately. We also show that the expression for the fiber-matrix shear interaction energy used in a previous phenomenological model is compatible with that derived in the present paper.
Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples
Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia
2015-01-01
X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638
Medved, Fabian; Medesan, Raluca; Rothenberger, Jens Martin; Schaller, Hans-Eberhard; Schoeller, Thomas; Manoli, Theodora; Weitgasser, Lennart; Naumann, Aline; Weitgasser, Laurenz
2016-07-01
Reconstruction of soft tissue defects of the ear with burns remains one of the most difficult tasks for the reconstructive surgeon. Although numerous reconstructive options are available, the results are often unpredictable and worse than expected. Besides full and split skin grafting, local random pattern flaps and pedicled flaps are frequently utilized to cover soft tissue defects of the outer auricle. Because of the difficulty and unpredictable nature of outer ear reconstruction after burn injury, a case-control study was conducted to determine the best reconstructive approach. The microcirculatory properties of different types of soft tissue reconstruction of the outer ear with burns in six severely burned Caucasian patients (three men and three women; mean age, 46 years (range, 22-70)) were compared to those in the healthy tissue of the outer ear using the O2C device (Oxygen to See; LEA Medizintechnik, Gießen, Germany). The results of this study revealed that the investigated microcirculation parameters such as the median values of blood flow (control group: 126 AU), relative amount of hemoglobin (control group: 59.5 AU), and tissue oxygen saturation (control group: 73%) are most similar to those of normal ear tissue when pedicled flaps based on the superficial temporal artery were used. These findings suggest that this type of reconstruction is superior for soft tissue reconstruction of the outer ear with burns in contrast to random pattern flaps and full skin grafts regarding the microcirculatory aspects. These findings may improve the knowledge on soft tissue viability and facilitate the exceptional and delicate process of planning the reconstruction of the auricle with burns. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
A continuum mechanics constitutive framework for transverse isotropic soft tissues
NASA Astrophysics Data System (ADS)
Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.
2018-03-01
In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.
Kaminaka, Akihiro; Nakano, Tamaki; Ono, Shinji; Kato, Tokinori; Yatani, Hirofumi
2015-10-01
This study evaluated changes in the horizontal and vertical dimensions of the buccal alveolar bone and soft tissue over a 1-year period following implant prosthesis. Thirty-three participants with no history of guided bone regeneration or soft tissue augmentation underwent dental implant placement with different types of connections. The dimensions of the buccal alveolar bone and soft tissue were evaluated immediately and at 1 year after prosthesis from reconstructions of cross-sectional cone-beam computed tomography images. The vertical and horizontal loss of buccal bone and soft tissue around implants with conical connections were lower than around those with external or internal connections. Statistically significant negative correlations were observed between initial horizontal bone thickness and changes in vertical bone and soft tissue height (p < .05), and between initial horizontal soft tissue thickness and the change in vertical soft tissue height (p < .05). Implants with a conical connection preserve peri-implant alveolar bone and soft tissue more effectively than other connection types. Furthermore, the initial buccal alveolar bone and soft tissue thickness around the implant platform may influence their vertical dimensional changes at 1 year after implant prosthesis. © 2014 Wiley Periodicals, Inc.
Morrison, Stephanie M; Blaesing, Carl R; Millar, Eugene V; Chukwuma, Uzo; Schlett, Carey D; Wilkins, Kenneth J; Tribble, David R; Ellis, Michael W
2013-08-01
Military trainees are at high risk for skin and soft-tissue infections (SSTIs), especially those caused by methicillin-resistant Staphylococcus aureus (MRSA). A multicomponent hygiene-based SSTI prevention strategy was implemented at a military training center. After implementation, we observed 30% and 64% reductions in overall and MRSA-associated SSTI rates, respectively.
A Necrotizing Fasciitis Fake Out on Point-of-Care Ultrasound-Watch the Shadow.
Thom, Christopher; Warlaumont, Mary
2017-04-01
Point-of-care ultrasound has an increasing role in characterizing soft-tissue infections and has been described previously in the evaluation of necrotizing fasciitis (NF). The identification of air within the soft tissues can be very suggestive of NF in the correct clinical context. A 78-year-old male presented to the emergency department with extensive lower-extremity redness and edema. A point-of-care ultrasound revealed hyperechoic areas within the soft tissues consistent with air, and the patient was taken to surgery and found to have NF. A 60-year-old female presented to the emergency department with physical examination findings consistent with severe cellulitis and associated sepsis. A point-of-care ultrasound revealed hyperechoic areas within the soft tissue that were very similar to the prior case. An emergent surgical consultation was placed due to concern for soft-tissue air and NF. However, these hyperechoic areas were found to be subcutaneous calcifications on subsequent imaging. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Air within the soft tissue is easy to identify on point-of-care ultrasound and can expedite surgical evaluation in cases of suspected NF. Calcifications can mimic the appearance of air on ultrasound and the distinction between these objects can often be made based on the echotexture of the posterior acoustic shadow. Attention to the posterior acoustic shadow can facilitate correct identification of various structures and pathologies in a variety of clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P
2018-06-01
Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
GPU-based real-time soft tissue deformation with cutting and haptic feedback.
Courtecuisse, Hadrien; Jung, Hoeryong; Allard, Jérémie; Duriez, Christian; Lee, Doo Yong; Cotin, Stéphane
2010-12-01
This article describes a series of contributions in the field of real-time simulation of soft tissue biomechanics. These contributions address various requirements for interactive simulation of complex surgical procedures. In particular, this article presents results in the areas of soft tissue deformation, contact modelling, simulation of cutting, and haptic rendering, which are all relevant to a variety of medical interventions. The contributions described in this article share a common underlying model of deformation and rely on GPU implementations to significantly improve computation times. This consistency in the modelling technique and computational approach ensures coherent results as well as efficient, robust and flexible solutions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, Marian; Fior, Gabriel; Marschner, Mathias
X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less
Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples
Willner, Marian; Fior, Gabriel; Marschner, Mathias; ...
2015-08-31
X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aouadi, S; McGarry, M; Hammoud, R
Purpose: To develop and validate a 4 class tissue segmentation approach (air cavities, background, bone and soft-tissue) on T1 -weighted brain MRI and to create a pseudo-CT for MRI-only radiation therapy verification. Methods: Contrast-enhanced T1-weighted fast-spin-echo sequences (TR = 756ms, TE= 7.152ms), acquired on a 1.5T GE MRI-Simulator, are used.MRIs are firstly pre-processed to correct for non uniformity using the non parametric, non uniformity intensity normalization algorithm. Subsequently, a logarithmic inverse scaling log(1/image) is applied, prior to segmentation, to better differentiate bone and air from soft-tissues. Finally, the following method is enrolled to classify intensities into air cavities, background, bonemore » and soft-tissue:Thresholded region growing with seed points in image corners is applied to get a mask of Air+Bone+Background. The background is, afterward, separated by the scan-line filling algorithm. The air mask is extracted by morphological opening followed by a post-processing based on knowledge about air regions geometry. The remaining rough bone pre-segmentation is refined by applying 3D geodesic active contours; bone segmentation evolves by the sum of internal forces from contour geometry and external force derived from image gradient magnitude.Pseudo-CT is obtained by assigning −1000HU to air and background voxels, performing linear mapping of soft-tissue MR intensities in [-400HU, 200HU] and inverse linear mapping of bone MR intensities in [200HU, 1000HU]. Results: Three brain patients having registered MRI and CT are used for validation. CT intensities classification into 4 classes is performed by thresholding. Dice and misclassification errors are quantified. Correct classifications for soft-tissue, bone, and air are respectively 89.67%, 77.8%, and 64.5%. Dice indices are acceptable for bone (0.74) and soft-tissue (0.91) but low for air regions (0.48). Pseudo-CT produces DRRs with acceptable clinical visual agreement to CT-based DRR. Conclusion: The proposed approach makes it possible to use T1-weighted MRI to generate accurate pseudo-CT from 4-class segmentation.« less
Grating-based tomography of human tissues
NASA Astrophysics Data System (ADS)
Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm
2012-07-01
The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.
Real-Time Vision-Based Stiffness Mapping †
Althoefer, Kaspar; Asama, Hajime
2018-01-01
This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness. PMID:29701704
Walczak, Brian E; Johnson, Christopher N; Howe, B Matthew
2015-10-01
Myositis ossificans is a self-limiting, benign ossifying lesion that can affect any type of soft tissue, including subcutaneous fat, tendons, and nerves. It is most commonly found in muscle as a solitary lesion. Ossifying soft-tissue lesions historically have been inconsistently classified. Fundamentally, myositis ossificans can be categorized into nonhereditary and hereditary types, with the latter being a distinct entity with a separate pathophysiology and treatment approach. The etiology of myositis ossificans is variable; however, clinical presentation generally is characterized by an ossifying soft-tissue mass. Advanced cross-sectional imaging alone can be nonspecific and may appear to be similar to more sinister etiologies. Therefore, the evaluation of a suspicious soft-tissue mass often necessitates multiple imaging modalities for accurate diagnosis. When imaging is indeterminate, biopsy may be required for a histologic diagnosis. However, histopathology varies based on stage of evolution. The treatment of myositis ossificans is complex and is often made in a multidisciplinary fashion because accurate diagnosis is fundamental to a successful outcome. Copyright 2015 by the American Academy of Orthopaedic Surgeons.
Intra-articular fractures of the distal tibia
Sitnik, Alexandre; Beletsky, Aleksander; Schelkun, Steven
2017-01-01
Results of the treatment of intra-articular fractures of the distal tibia have improved significantly during the last two decades. Recognition of the role of soft tissues has led to the development of a staged treatment strategy. At the first stage, joint-bridging external fixation and fibular fixation are performed. This leads to partial reduction of the distal tibial fracture and allows time for the healing of soft tissues and detailed surgical planning. Definitive open reduction and internal fixation of the tibial fracture is performed at a second stage, when the condition of the soft tissues is safe. The preferred surgical approach(es) is chosen based on the fracture morphology as determined from standard radiographic views and computed tomography. Meticulous atraumatic soft-tissue handling and the use of modern fixation techniques for the metaphyseal component such as minimally invasive plate osteosynthesis further facilitate healing. Cite this article: EFORT Open Rev 2017;2:352-361. DOI: 10.1302/2058-5241.2.150047 PMID:28932487
Combination Chemotherapy in Treating Patients With Previously Untreated Rhabdomyosarcoma
2013-06-13
Adult Malignant Mesenchymoma; Adult Rhabdomyosarcoma; Alveolar Childhood Rhabdomyosarcoma; Childhood Malignant Mesenchymoma; Embryonal Childhood Rhabdomyosarcoma; Embryonal-botryoid Childhood Rhabdomyosarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma
Supersoft lithography: Candy-based fabrication of soft silicone microstructures
Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi
2015-01-01
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893
Supersoft lithography: candy-based fabrication of soft silicone microstructures.
Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi
2015-01-01
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
Poskevicius, Lukas; Sidlauskas, Antanas; Galindo-Moreno, Pablo; Juodzbalys, Gintaras
2017-01-01
To systematically review changes in mucosal soft tissue thickness and keratinised mucosa width after soft tissue grafting around dental implants. An electronic literature search was conducted of the MEDLINE database published between 2009 and 2014. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported changes in soft tissue thickness or keratinised mucosa width after soft tissue grafting at implant placement or around a present implant at 6-month follow-up or longer were included. The search resulted in fourteen articles meeting the inclusion criteria: Six of them reported connective tissue grafting around present dental implants, compared to eight at the time of implant placement. Better long-term soft tissue thickness outcomes were reported for soft tissue augmentation around dental implants (0.8-1.4 mm), compared with augmentation at implant placement (-0.25-1.43 mm). Both techniques were effective in increasing keratinised tissue width: at implant placement (2.5 mm) or around present dental implants (2.33-2.57 mm). The present systematic review discovered that connective tissue grafts enhanced keratinised mucosa width and soft tissue thickness for an observation period of up to 48 months. However, some shrinkage may occur, resulting in decreases in soft tissue, mostly for the first three months. Further investigations using accurate evaluation methods need to be done to evaluate the appropriate time for grafting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Soft-tissue tension total knee arthroplasty.
Asano, Hiroshi; Hoshino, Akiho; Wilton, Tim J
2004-08-01
It is far from clear how best to define the proper strength of soft-tissue tensioning in total knee arthroplasty (TKA). We attached a torque driver to the Monogram balancer/tensor device and measured soft-tissue tension in full extension and 90 degrees flexion during TKA. In our surgical procedure, when we felt proper soft-tissue tension was being applied, the mean distraction force was noted to be 126N in extension and 121N in flexion. There was no significant correlation between soft-tissue tension and the postoperative flexion angle finally achieved. To the best of our knowledge, this is the first study to assess the actual distraction forces in relation to soft-tissue tension in TKA. Further study may reveal the most appropriate forces to achieve proper soft-tissue tension in the wide variety of circumstances presenting at knee arthroplasty.
Intra-oral soft tissue expansion and volume stability of onlay bone grafts.
Abrahamsson, Peter
2011-01-01
Insufficient regeneration of missing bone and soft-tissue may present aesthetic or functional problems in patients indicated for dental implant surgery. Several techniques such as bone grafts, bone substitutes and guided tissue regeneration (GTR) have been described to rebuild a compromised alveolar ridge. Adequate soft-tissue coverage of grafted bone and titanium-mesh is important to avoid exposure which may result in loss of the bone graft. The general aim of this thesis was to evaluate use of an osmotic tissue expander for expanding intra-oral soft tissue--creating a surplus of soft tissue-- in preparation for onlay bone grafting. An experimental rabbit model was used in studies (I), (II) and (III). In (I) an osmotic soft-tissue expander was placed bilaterally on the lateral wall of the mandible via an extra-oral approach. After two weeks of expansion the rabbits were killed and specimens were collected for histology. No inflammatory reaction and no resorbtion of the cortical bone occured. The periosteum was expanded and new bone formation was seen in the edges of the expander. In (II) and (III) the expander was placed under the periosteum in the same way as in (I): bilaterally in 13 rabbits in (II) and unilaterally in 11 rabbits in (III). After two weeks of expansion the expander was identified and removed. In (II) particulated bone was placed at the recipient site protected by a titanium mesh in one site and a bio-resorbable mesh on the other site. In (III), DBBM particles and bone particles collected from the lateral border of the mandible separated by a collagen membrane was placed at the recipient site. The graft was protected by a pre-bent titanium mesh covered by a collagen membrane. After a healing period of 3 months specimens were collected for histological and SEM examination. New bone was growing in direct contact with the titanium mesh and bio resorbable mesh. The newly formed bone had the same calcium content as the mature bone in the base of the mandible. In the clinical study (IV) 20 patients were consecutively recruited and randomised into two groups. The experimental group (ten patients) had an osmotic soft tissue expander implanted. After two weeks of expansion the expander was removed and a particulated bone graft protected by a titanium mesh and a collagen membrane was fixed to the recipient site. Titanium implants were installed after a healing period of 6 months. The patients in the reference group had a bone block grafted from the anterior ramus fixated to the recipient site with one or two titanium mini screws. Implants were installed after a healing period of 6 months. A three dimensional optical measuring device was used to measure alterations in the soft tissue profile before each surgical procedure. The three-dimensional changes were then analysed on a PC. The results from the clinical study in patients confirmed the results from the experimental rabbit studies. The osmotic tissue expander expanded the soft tissue. Expander perforations of the soft tissue occurred in two patients. The optical measurements demonstrated a positive volume gain after soft tissue expansion and bone grafting. The expanded tissue could be used to cover a bone graft. There still was a risk of mesh exposure, even after soft tissue expansion, which occurred in two patients. In both groups, implants could be installed in the grafted bone in positions that would allow the crowns to fit aesthetically into the dental arch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maspero, M.; Meijer, G.J.; Lagendijk, J.J.W.
2015-06-15
Purpose: To develop an image processing method for MRI-based generation of electron density maps, known as pseudo-CT (pCT), without usage of model- or atlas-based segmentation, and to evaluate the method in the pelvic and head-neck region against CT. Methods: CT and MRI scans were obtained from the pelvic region of four patients in supine position using a flat table top only for CT. Stratified CT maps were generated by classifying each voxel based on HU ranges into one of four classes: air, adipose tissue, soft tissue or bone.A hierarchical region-selective algorithm, based on automatic thresholding and clustering, was used tomore » classify tissues from MR Dixon reconstructed fat, In-Phase (IP) and Opposed-Phase (OP) images. First, a body mask was obtained by thresholding the IP image. Subsequently, an automatic threshold on the Dixon fat image differentiated soft and adipose tissue. K-means clustering on IP and OP images resulted in a mask that, via a connected neighborhood analysis, allowing the user to select the components corresponding to bone structures.The pCT was estimated through assignment of bulk HU to the tissue classes. Bone-only Digital Reconstructed Radiographs (DRR) were generated as well. The pCT images were rigidly registered to the stratified CT to allow a volumetric and voxelwise comparison. Moreover, pCTs were also calculated within the head-neck region in two volunteers using the same pipeline. Results: The volumetric comparison resulted in differences <1% for each tissue class. A voxelwise comparison showed a good classification, ranging from 64% to 98%. The primary misclassified classes were adipose/soft tissue and bone/soft tissue. As the patients have been imaged on different table tops, part of the misclassification error can be explained by misregistration. Conclusion: The proposed approach does not rely on an anatomy model providing the flexibility to successfully generate the pCT in two different body sites. This research is founded by ZonMw IMDI Programme, project name: “RASOR sharp: MRI based radiotherapy planning using a single MRI sequence”, project number: 10-104003010.« less
Morrison, Stephanie M.; Blaesing, Carl R.; Millar, Eugene V.; Chukwuma, Uzo; Schlett, Carey D.; Wilkins, Kenneth J.; Tribble, David R.; Ellis, Michael W.
2018-01-01
Military trainees are at high risk for skin and soft-tissue infections (SSTIs), especially those caused by methicillin-resistant Staphylococcus aureus (MRSA). A multicomponent hygiene-based SSTI prevention strategy was implemented at a military training center. After implementation, we observed 30% and 64% reductions in overall and MRSA-associated SSTI rates, respectively. PMID:23838227
Soft Tissue Sarcoma—Patient Version
Soft tissue sarcoma is a cancer that starts in soft tissues like muscle, tendons, fat, lymph vessels, blood vessels, and nerves. These cancers can develop anywhere in the body but are found mostly in the arms, legs, chest, and abdomen. Start here to find information on soft tissue sarcoma treatment and research.
2017-06-27
Adult Malignant Mesenchymoma; Adult Rhabdomyosarcoma; Childhood Alveolar Rhabdomyosarcoma; Childhood Botryoid-Type Embryonal Rhabdomyosarcoma; Childhood Embryonal Rhabdomyosarcoma; Childhood Malignant Mesenchymoma; Non-Metastatic Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Untreated Childhood Rhabdomyosarcoma
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
Soft-tissue coverage of the neural elements after myelomeningocele repair.
Seidel, S B; Gardner, P M; Howard, P S
1996-09-01
We retrospectively reviewed all newborns with a diagnosis of myelomeningocele (MMC) admitted to our hospital between January 1990 and September 1994 to determine methods of soft tissue coverage, complication rates, and results. Sixty-five patients underwent repair of thoracic, lumbar, or sacral MMCs. The average size of defect repaired measured 21.3 cm2 (range, 2-80 cm2). Methods of repair included direct approximation of soft tissues with or without undermining (N = 48), Romberg Limberg flaps (N = 8), gluteus maximus or latissimus dorsi musculocutaneous flaps (N = 5), fascioutaneous flaps (N = 3), and V-gamma advancement (N = 1). A total of 18 complications were recorded (27.7%). There were 5 major complications (7.7%) and 13 minor ones (20.0%). Major complications were defined as midline wound dehiscence overlying the neural elements or wound infection leading to meningitis or ventriculitis. All 5 major and 9 minor complications arose in patients undergoing direct soft-tissue approximation. Additionally, all major complications were recorded in defects > 18 cm2. Based on this series, it appears that MMC defects < 18 cm2 can be closed by direct approximation of soft tissues without significant risk or major wound complication. Larger wounds may be successfully closed in this manner, but the risk of major complication is substantial.
Soft-Tissue Grafting Techniques Associated With Immediate Implant Placement.
Bishara, Mark; Kurtzman, Gregori M; Khan, Waji; Choukroun, Joseph; Miron, Richard J
2018-02-01
Immediate implant placement often presents challenges in terms of predictably obtaining soft-tissue coverage over the implant site. While delayed implant placement offers the ability for soft tissues to grow and invade the extraction socket making their attachment around implants more predictable, immediate implant placement poses a significant risk of bacterial invasion towards the implant surface as a result of insignificant soft-tissue volume. Soft-tissue grafting techniques have often been proposed for use during immediate implant placement to augment soft-tissue deficiencies, including the use of either palatal connective tissue grafts (CTGs) or collagen-derived scaffolds. However, both of these approaches have significant drawbacks in that CTGs are harvested with high patient morbidity and collagen scaffolds remain avascular and acelluar posing a risk of infection/implant contamination. More recently, platelet-rich fibrin (PRF) has been proposed as an economical and biological means to speed soft-tissue wound healing. In combination with immediate implant placement, PRF offers an easily procurable low-cost regenerative modality that offers an efficient way to improve soft-tissue attachment around implants. Furthermore, the supra-physiological concentration of defense-fighting leukocytes in PRF, combined with a dense fibrin meshwork, is known to prevent early bacterial contamination of implant surfaces, and the biological concentrations of autologous growth factors in PRF is known to increase tissue regeneration. This article discusses soft-tissue grafting techniques associated with immediate implant placement, presents several cases demonstrating the use of PRF in routine immediate implant placement, and further discusses the biological and economic advantages of PRF for the management of soft-tissue grafting during immediate implant placement.
Huang, Yan-Ping; Zheng, Yong-Ping; Wang, Shu-Zhe; Chen, Zhong-Ping; Huang, Qing-Hua; He, Yong-Hong
2010-01-01
A novel noncontact indentation system with the combination of an air jet and optical coherence tomography (OCT) was presented in this paper for the quantitative measurement of the mechanical properties of soft tissues. The key idea of this method is to use a pressure-controlled air jet as an indenter to compress the soft tissue in a noncontact way and utilize the OCT signals to extract the deformation induced. This indentation system provides measurement and mapping of tissue elasticity for small specimens with high scanning speed. Experiments were performed on 27 silicone tissue-mimicking phantoms with different Young’s moduli, which were also measured by uniaxial compression tests. The regression coefficient of the indentation force to the indentation depth (N mm−1) was used as an indicator of the stiffness of tissue under air jet indentation. Results showed that the stiffness coefficients measured by the current system correlated well with the corresponding Young’s moduli obtained by conventional mechanical testing (r = 0.89, p < 0.001). Preliminary in vivo tests also showed that the change of soft tissue stiffness with and without the contraction of the underlying muscles in the hand could be differentiated by the current measurement. This system may have broad applications in tissue assessment and characterization where alterations of mechanical properties are involved, in particular with the potential of noncontact micro-indentation for tissues. PMID:20463843
Melorheostosis with recurrent soft-tissue components: a histologically confirmed case.
Hasegawa, Shoichi; Kanda, Shotaro; Imada, Hiroki; Yamaguchi, Takehiko; Akiyama, Toru
2017-03-01
Melorheostosis is a very rare disorder characterized by irregular cortical thickening seen on radiographs. In this paper, we present a case of melorheostosis with microscopically confirmed soft-tissue components. The patient was a 51-year-old man who complained of severe pain in the lateral aspect of his right knee. The excision of an ossified soft-tissue lesion relieved intractable pain that had lasted 20 years. Microscopically, the cortex of the affected fibula was composed of thick compact bone and the soft-tissue component consisted of dense compact bone without endochondral ossification. The presence of soft-tissue osseous nodules around the joints is one of the specific conditions for melorheostosis and should be differentiated from synovial chondromatosis. The ossified soft-tissue lesion in our patient is to our knowledge the first reported case of the histologically confirmed soft-tissue component of melorheostosis, which differs from that of synovial chondromatosis.
Fiber-reinforced scaffolds in soft tissue engineering
Wang, Wei; Fan, Yubo; Wang, Xiumei; Watari, Fumio
2017-01-01
Abstract Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine. PMID:28798872
Ken, Yukawa; Noriko, Tachikawa; Furuichi, Akiko; Shohei, Kasugai
2016-12-01
This study investigated the biological reaction to porous poly-DL-lactic acid (PDLLA) scaffolds with holes for soft tissue augmentation. The control group was porous PDLLA with a diameter of 5.0 mm and a height of 2.0 mm. For the 2 test groups, 7 holes were drilled from the upper to the lower base of the scaffolds; the holes had diameters of 0.5 and 1.0 mm. A scaffold was placed in the periosteum of the cranium. The height and molecular weight (Mw) of the scaffolds were measured at 4 and 8 weeks. Hematoxylin and eosin staining was used to measure the connective tissue and blood vessel areas. All groups had similar scaffold heights, but the Mw decreased significantly over time. There were significant differences in the connective tissue and blood vessel areas among the control, 0.5-mm, and 1.0-mm groups at the same time point. The soft tissue was increased by drilling holes in the scaffolds. Porous poly-DL-lactic acid (PDLLA) contributed favorable prognosis for soft tissue. A wider hole was associated with increased connective tissue and blood vessel areas. The scaffold height and Mw were not impacted by size of the holes.
Hing, James T; Brooks, Ari D; Desai, Jaydev P
2007-02-01
A methodology for modeling the needle and soft-tissue interaction during needle insertion is presented. The approach consists of the measurement of needle and tissue motion using a dual C-arm fluoroscopy system. Our dual C-arm fluoroscopy setup allows real time 3-D extraction of the displacement of implanted fiducials in the soft tissue during needle insertion to obtain the necessary parameters for accurate modeling of needle and soft-tissue interactions. The needle and implanted markers in the tissue are tracked during the insertion and withdrawal of the needle at speeds of 1.016 mm/s, 12.7 mm/s and 25.4 mm/s. Both image and force data are utilized to determine important parameters such as the approximate cutting force, puncture force, the local effective modulus (LEM) during puncture, and the relaxation of tissue. We have also validated the LEM computed from our finite element model with arbitrary needle puncture tasks. Based on these measurements, we developed a model for needle insertion and withdrawal that can be used to generate a 1-DOF force versus position profile that can be experienced by a user operating a haptic device. This profile was implemented on a 7-DOf haptic device designed in our laboratory.
[Soft tissue defects treated with perforator flaps].
Weum, Sven; de Weerd, Louis; Klein, Steven; Hage, J Joris
2008-01-31
Treatment of soft tissue defects caused by trauma, tumour surgery or pressure sores is a challenge to the reconstructive surgeon. Although contour and function may be restored by tissue transposition, traditional methods often cause significant donor site morbidity. This article describes how increased understanding of vascular anatomy has led to the development of new techniques. The article is based on textbooks of plastic surgery, selected articles and own clinical experience. Pedicled and free perforator flaps represent the latest development in surgical treatment of soft tissue defects. The use of perforator flaps can considerably reduce the disadvantages that are associated with other surgical methods. The use of perforator flaps demands microsurgical skills, but has many advantages. Reliable vascular supply and a good aesthetical result can be combined with minimal donor site morbidity. In many cases this technique may even give sensibility to the reconstructed area.
Macció, Laura; Vallés, Diego; Cantera, Ana Maria
2013-12-01
A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.
Reddy, Aileni Amarender; Kumar, P. Anoop; Sailaja, Sistla; Chakravarthy, Yshs
2015-01-01
Soft tissue deficiencies and defects around dental implants have been observed frequently. Soft-tissue defects after implant procedures originate from the process of modelling of periimplant mucosa and often cause aesthetic disharmony, food debris accumulation and soft tissue shrinkage. Periimplant mucogingival surgery focuses on creating an optimum band of keratinized tissue resulting in soft tissue architecture similar to the gingiva around natural teeth. A 23-year-old male reported to the Department of Periodontology with a complaint of gum soreness, foul smell and food accumulation at a site where a 3.75 x 11.5mm implant was placed previously. On clinical examination, fenestration of tissue above the cover screw was observed and there appeared to be a keratinized tissue of 1mm surrounding the implant. The case was managed by use of a rotated double-pedicle flap during second-stage implant surgery to correct the soft-tissue fenestration defect and to obtain a keratinized periimplant soft tissue. A periosteal bed was prepared by giving a horizontal incision at the mucogingival junction to a depth of 4 mm. Two split-thickness keratinized pedicles were dissected from the mesial and distal interproximal tissues near the implant. After rotation, both the pedicles were sutured to each other mid-buccally and the pedicles were rigidly immobilized with sutures. At 1 month, there was a 3mm band of stable and firm keratinized tissue over the underlying tissues. The procedure resulted in an aesthetic improvement due to enhanced soft tissue architecture and optimum integration between the peri-implant soft tissue and the final prosthesis. PMID:26816998
Epidemiology and survivorship of soft tissue sarcomas in adults: a national cancer database reporta
Corey, Robert M; Swett, Katrina; Ward, William G
2014-01-01
The National Cancer Data Base (NCDB) of the American College of Surgeons gather demographic and survival data on ∼70% of cancers in the USA. We wanted to investigate the demographic and survivorship data on this potentially more representative cohort of patients with soft tissue sarcomas. We selected 34 of the most commonly encountered soft tissue sarcomas reported to the NCDB, provided that each entity contained a minimum of 50 cases. This report summarizes the demographic and survivorship data on 63,714 patients with these 34 histologically distinct soft tissue sarcomas reported to the NCDB from 1998 to 2010. The overall survivorships of these sarcomas were near the lower limits of many prior reports due to the all-inclusive, minimally biased inclusion criteria. The overall best prognosis was Dermatofibrosarcoma NOS (not otherwise specified). (5-year survivorship 92%). The worst prognosis was Dedifferentiated Chondrosarcoma (5-year survivorship 19%). New observations included Biphasic Synovial Sarcoma demonstrating a better 5-year survivorship (65%) compared to spindle-cell synovial sarcoma (56%, P < 0.031) and Synovial Sarcoma, NOS (52%, P < 0.001). The demographic and 2- and 5-year survivorship data for all 34 soft tissue sarcomas are presented herein. This extent of demographic and survival data in soft tissue sarcomas is unprecedented. Because of the large number of cases and the inclusive nature of the NCDB, without restriction to certain stages, categories, or treatments, it is less subject to selection bias. Therefore, these data are thought to be more reflective of the true overall prognosis given the current management of sarcoma across the NCDB contributing sites. PMID:25044961
Prevalence of Soft Tissue Calcifications in CBCT Images of Mandibular Region.
Khojastepour, Leila; Haghnegahdar, Abdolaziz; Sayar, Hamed
2017-06-01
Most of the soft tissue calcifications within the head and neck region might not be accompanied by clinical symptoms but may indicate some pathological conditions. The aim of this research was to determine the prevalence of soft tissue calcifications in cone beam computed tomography (CBCT) images of mandibular region. In this cross sectional study the CBCT images of 602 patients including 294 men and 308 women with mean age 41.38±15.18 years were evaluated regarding the presence, anatomical location; type (single or multiple) and size of soft tissue calcification in mandibular region. All CBCT images were acquired by NewTom VGi scanner. Odds ratio and chi-square tests were used for data analysis and p < 0.05 was considered to be statistically significant. 156 out of 602 patients had at least one soft tissue calcification in their mandibular region (25.9%. of studied population with mean age 51.7±18.03 years). Men showed significantly higher rate of soft tissue calcification than women (30.3% vs. 21.8%). Soft tissue calcification was predominantly seen at posterior region of the mandible (88%) and most of them were single (60.7%). The prevalence of soft tissue calcification increased with age. Most of the detected soft tissue calcifications were smaller than 3mm (90%). Soft tissue calcifications in mandibular area were a relatively common finding especially in posterior region and more likely to happen in men and in older age group.
Integration of parts in the facial skeleton and cervical vertebrae.
McCane, Brendan; Kean, Martin R
2011-01-01
The purpose of this study was to undertake an exploratory analysis of the relationship among parts in the facial skeleton and cervical vertebrae and their integration as 2-dimensional shapes by determining their individual variations and covariations. The study was motivated by considerations applicable to clinical orthodontics and maxillofacial surgery, in which such relationships bear directly on pretreatment analysis and assessment of posttreatment outcome. Lateral radiographs of 61 adolescents of both sexes without major malocclusions were digitized and marked up by using continuous outline spline curves for 8 defined parts in the facial skeleton, including the cervical vertebrae. Individual part variation was analyzed by using principal components analysis, and paired part covariation was analyzed by using 2-block partial least squares analysis in 2 modes: relative size, position, and shape; and shape only. For individual part variations, cranial base, soft-tissue profile, and mandible had the largest variations across the sample. For covariation of relative size, position, and shape, the cervical vertebrae were highly correlated with the cranial base (r = 0.80), nasomaxillary complex (r = 0.70), mandible (r = 0.74), maxillary dentition (r = 0.70), and mandibular dentition (r = 0.74); the maxillary dentition and mandibular dentition were highly correlated (r = 0.70); the mandible was highly correlated with the bony profile (r = 0.72), soft-tissue profile (r = 0.79), and, to a lesser extent, the cranial base (r = 0.67); the bony profile was highly correlated with the cranial base (r = 0.70) and soft-tissue profile (r = 0.80); the soft-tissue profile was highly correlated with the nasomaxillary dentition (r = 0.81). Covariation of shape only was much weaker with significant covariations found between bony profile and mandible (r = 0.53), bony profile and mandibular dentition (r = 0.65), mandibular dentition and soft-tissue profile (r = 0.54), mandibular dentition and maxillary dentition (r = 0.55), and bony profile and soft-tissue profile (r = 0.69). We found that integration of the shape of parts in the facial skeleton and cervical vertebrae is weak; it is the relative size, position, and orientation of parts that form the strongest correlations. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Liu, J; Chen, Y; Bao, X M; Ling, X L; Ding, J P; Zhang, Z K
2017-05-23
Objective: To explore the diagnostic performance of susceptibility weighted imaging (SWI)in distinguishing benign or malignant soft tissue tumor, and to study pathological observation. Methods: Sixty-eight patients with soft tissue tumor, who received no previous treatment or invasive examination, received routine preoperative MRI examination and SWI scanning. The graduation and distribution of intratumoral susceptibility signal intensity(ITSS) and proportion of tumor volume were observed.The pathological results were also included for comparative analysis. Results: Fourty of 68 patients were benign and 28 were malignant. 72.5% (29/40) patients with benign soft tissue tumors were ITSS grade 1 and ITSS grade 3 (hemangioma). 89.3%(25/28) patients with malignant soft tissue tumors were ITSS grade 2 and ITSS grade 3. The difference was statistically significant ( P <0.01). The distribution of ITSS in patients with benign soft tissue tumors was dominated by peripheral distribution and diffuse distribution (hemangioma), accounting for 90.0% (36/40). The distribution of ITSS in patients with malignant soft tissue tumors mainly distributed in the central region, accounting for 78.6% (22 /28). The difference was statistically significant ( P <0.01). The proportion of tumor volume occupied by ITSS in benign soft tissue tumors was <1/3 and> 2/3 (hemangioma), accounting for 90.0% (36/40). The volume of malignant soft tissue tumors were predominantly <1/3 , accounting for 82.1% (23/28). The difference was statistically significant ( P <0.01). Conclusion: SWI is sensitive in displaying the vein and blood metabolites in soft tissue lesions, which is helpful for the differential diagnosis of benign and malignant tumors in soft tissue.
Fadeju, A D; Otuyemi, O D; Ngom, P I; Newman-Nartey, M
2013-03-01
Since the introduction of cephalometry, numerous studies have established normal values for Caucasian populations. In Africa, most investigations have established norms and ethnic variations associated with the skeletal pattern. To date, there has been no study comparing soft tissue patterns among adolescents in the West African sub-region. The objective of this investigation was to determine and compare soft tissue patterns among 12- to 16-year-old Nigerian, Ghanaian and Senegalese adolescents, establish any gender dimorphism and compare them with published Caucasian norms. Lateral cephalometric radiographs of adolescents with a normal incisor relationship aged between 12 and 16 years from Nigeria, Ghana, and Senegal were taken under standardized conditions and traced to determine soft tissue patterns. Data obtained were subjected to statistical analysis. The total sample consisted of 165 females and 135 males with a mean age of 13·96 (1·58) years. A number of soft tissue parameters showed significant differences (P<0·05). These included comparison between males and females, and Nigerian, Ghanaian and Senegalese, including lip separation, upper lip length, upper lip exposure, Li-esthetic line, lower lip-NP, nasal tip angle, N-Pr-Pg, Pg-Ls, B-N pogonion and pogonion-mandibular angle. Differences also existed between these West African soft tissue values and published Caucasian norms, including nasolabial angle, mentolabial angle, nasal depth, nose tip, total soft tissue facial convexity and nasal depth angle. The comparative analysis of soft tissue patterns among 12- to 16-year-old adolescents from Nigeria, Ghana and Senegal demonstrated statistically significant differences in soft tissue value between these West African adolescents and published Caucasian soft tissue norms. This study provides useful data in relation to soft tissue parameters for subjects originating from the West African sub-region.
Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound
Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.
2013-01-01
The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529
Acoustic radiation force elasticity imaging in diagnostic ultrasound.
Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L
2013-04-01
The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.
Kermavnar, Tjaša; Power, Valerie; de Eyto, Adam; O'Sullivan, Leonard W
2018-02-01
In this article, we review the literature on quantitative sensory testing of deep somatic pain by means of computerized cuff pressure algometry (CPA) in search of pressure-related safety guidelines for wearable soft exoskeleton and robotics design. Most pressure-related safety thresholds to date are based on interface pressures and skin perfusion, although clinical research suggests the deep somatic tissues to be the most sensitive to excessive loading. With CPA, pain is induced in deeper layers of soft tissue at the limbs. The results indicate that circumferential compression leads to discomfort at ∼16-34 kPa, becomes painful at ∼20-27 kPa, and can become unbearable even below 40 kPa.
Photoacoustic imaging in both soft and hard biological tissue
NASA Astrophysics Data System (ADS)
Li, T.; Dewhurst, R. J.
2010-03-01
To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.
Lee, Hyeonjong; Paek, Janghyun; Noh, Kwantae; Kwon, Kung-Rock
2017-08-21
Reproducing soft tissue contours around a pontic area is important for the fabrication of an esthetic prosthesis, especially in the anterior area. A gingival model that precisely replicates the soft tissue structure around the pontic area can be easily obtained by taking a pick-up impression of an interim fixed dental prosthesis. After a working cast is fabricated using the customary technique, the pick-up model is superimposed onto the working model for the pontic area using computer-aided design and manufacturing (CAD/CAM). A definitive restoration using this technique would be well adapted to the pontic base, which is formed by the interim prosthesis. © 2017 by the American College of Prosthodontists.
Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney
2014-01-01
Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623
Pediatric Benign Soft Tissue Oral and Maxillofacial Pathology.
Glickman, Alexandra; Karlis, Vasiliki
2016-02-01
Despite the many types of oral pathologic lesions found in infants and children, the most commonly encountered are benign soft tissue lesions. The clinical features, diagnostic criteria, and treatment algorithms of pathologies in the age group from birth to 18 years of age are summarized based on their prevalence in each given age distribution. Treatment modalities include both medical and surgical management. Copyright © 2016 Elsevier Inc. All rights reserved.
Melorheostosis of the axial skeleton with associated fibrolipomatous lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garver, P.; Resnick, D.; Haghighi, P.
1982-11-01
Two patients with melorheostotic-like lesions of the axial skeleton are described. In each case adjacent soft tissue masses containing both fatty and fibrous tissues were evident. The presence of such soft tissue tumors as well as other soft tissue abnormalities in melorheostosis emphasizes that the diesease should not be regarded as one confined to bone. The precise pathogenesis of the osseous and soft tissue abnormalities in melorheostosis remains obscure.
Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants.
Zhao, Desheng; Moritz, Niko; Vedel, Erik; Hupa, Leena; Aro, Hannu T
2008-07-01
Soft-tissue attachment is a desired feature of many clinical biomaterials. The aim of the current study was to design a suitable experimental method for tensile testing of implant incorporation with soft-tissues. Conical implants were made of three compositions of bioactive glass (SiO(2)-P(2)O(5)-B(2)O(3)-Na(2)O-K(2)O-CaO-MgO) or titanium fiber mesh (porosity 84.7%). The implants were surgically inserted into the dorsal subcutaneous soft-tissue or back muscles in the rat. Soft-tissue attachment was evaluated by pull-out testing using a custom-made jig 8 weeks after implantation. Titanium fiber mesh implants had developed a relatively high pull-out force in subcutaneous tissue (12.33+/-5.29 N, mean+/-SD) and also measurable attachment with muscle tissue (2.46+/-1.33 N). The bioactive glass implants failed to show mechanically relevant soft-tissue bonding. The experimental set-up of mechanical testing seems to be feasible for verification studies of soft-tissue attachment. The inexpensive small animal model is beneficial for large-scale in vivo screening of new biomaterials.
Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging
NASA Technical Reports Server (NTRS)
Heyser, R. C.; Le Croissette, D. H.
1973-01-01
Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.
X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants
Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.
2015-01-01
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123
2017-11-01
Adult Alveolar Soft Part Sarcoma; Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Hemangioendothelioma; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Undifferentiated Pleomorphic Sarcoma; Malignant Adult Hemangiopericytoma; Recurrent Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Depsipeptide (Romidepsin) in Treating Patients With Metastatic or Unresectable Soft Tissue Sarcoma
2017-05-18
Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Gastrointestinal Stromal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Prevalence of Soft Tissue Calcifications in CBCT Images of Mandibular Region
Khojastepour, Leila; Haghnegahdar, Abdolaziz; Sayar, Hamed
2017-01-01
Statement of the Problem: Most of the soft tissue calcifications within the head and neck region might not be accompanied by clinical symptoms but may indicate some pathological conditions. Purpose: The aim of this research was to determine the prevalence of soft tissue calcifications in cone beam computed tomography (CBCT) images of mandibular region. Materials and Method: In this cross sectional study the CBCT images of 602 patients including 294 men and 308 women with mean age 41.38±15.18 years were evaluated regarding the presence, anatomical location; type (single or multiple) and size of soft tissue calcification in mandibular region. All CBCT images were acquired by NewTom VGi scanner. Odds ratio and chi-square tests were used for data analysis and p< 0.05 was considered to be statistically significant. Results: 156 out of 602 patients had at least one soft tissue calcification in their mandibular region (25.9%. of studied population with mean age 51.7±18.03 years). Men showed significantly higher rate of soft tissue calcification than women (30.3% vs. 21.8%). Soft tissue calcification was predominantly seen at posterior region of the mandible (88%) and most of them were single (60.7%). The prevalence of soft tissue calcification increased with age. Most of the detected soft tissue calcifications were smaller than 3mm (90%). Conclusion: Soft tissue calcifications in mandibular area were a relatively common finding especially in posterior region and more likely to happen in men and in older age group. PMID:28620632
Chua, Hannah Daile P; Cheung, Lim Kwong
2012-07-01
The objective of this randomized controlled clinical trial was to compare the soft tissue changes after maxillary advancement using conventional orthognathic surgery (CO) and distraction osteogenesis (DO) in patients with cleft lip and palate (CLP). The study group of 39 CLP patients with maxillary hypoplasia underwent either CO or DO with 4 to 10 mm of maxillary advancement. Lateral cephalographs were taken preoperatively and postoperatively at regular intervals. A series of skeletal, dental, and soft tissue landmarks was used to evaluate the changes in the soft tissue and the correlation of hard and soft tissue changes and ratios. Significant differences were found between the CO and DO patients at A point in both maxillary advancement and downgrafting in the early follow-up period. On soft tissue landmarks of pronasale, subnasale, and labial superius, significant differences were found between the 2 groups at 6 months postoperatively only with maxillary advancement. There was better correlation of hard and soft tissue changes with maxillary advancement. The nasal projection was significantly different between the 2 groups at the early and intermediate period. There was much more consistent hard to soft tissue ratios in maxillary advancement with DO than with CO. Both CO and DO can induce significant soft tissue changes of the upper lip and nose, particularly with maxillary advancement. DO generates more consistent hard to soft tissue ratios. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
2018-06-25
Adrenal Cortex Carcinoma; Adult Alveolar Soft Part Sarcoma; Adult Clear Cell Sarcoma of Soft Parts; Adult Hepatocellular Carcinoma; Adult Rhabdomyosarcoma; Adult Soft Tissue Sarcoma; Childhood Alveolar Soft Part Sarcoma; Childhood Central Nervous System Neoplasm; Childhood Clear Cell Sarcoma of Soft Parts; Childhood Hepatocellular Carcinoma; Childhood Rhabdomyosarcoma; Childhood Soft Tissue Sarcoma; Childhood Solid Neoplasm; Ewing Sarcoma; Hepatoblastoma; Hepatocellular Carcinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adult Hepatocellular Carcinoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Alveolar Soft Part Sarcoma; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Childhood Hepatocellular Carcinoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma; Recurrent Hepatoblastoma; Recurrent Malignant Solid Neoplasm; Recurrent Osteosarcoma; Recurrent Renal Cell Carcinoma; Recurrent Rhabdomyosarcoma; Refractory Osteosarcoma; Renal Cell Carcinoma; Thyroid Gland Medullary Carcinoma; Wilms Tumor
Quantitative morphology in canine cutaneous soft tissue sarcomas.
Simeonov, R; Ananiev, J; Gulubova, M
2015-12-01
Stained cytological specimens from 24 dogs with spontaneous soft tissue sarcomas [fibrosarcoma (n = 8), liposarcoma (n = 8) and haemangiopericytoma (n = 8)], and 24 dogs with reactive connective tissue lesions [granulation tissue (n = 12) and dermal fibrosis (n = 12)] were analysed by computer-assisted nuclear morphometry. The studied morphometric parameters were: mean nuclear area (MNA; µm(2)), mean nuclear perimeter (MNP; µm), mean nuclear diameter (MND mean; µm), minimum nuclear diameter (Dmin; µm) and maximum nuclear diameter (Dmax; µm). The study aimed to evaluate (1) possibility for quantitative differentiation of soft tissue sarcomas from reactive connective tissue lesions and (2) by using cytomorphometry, to differentiate the various histopathological soft tissue sarcomas subtypes in dogs. The mean values of all nuclear cytomorphometric parameters (except for Dmax) were statistically significantly higher in reactive connective tissue processes than in soft tissue sarcomas. At the same time, however, there were no considerable differences among the different sarcoma subtypes. The results demonstrated that the quantitative differentiation of reactive connective tissue processes from soft tissue sarcomas in dogs is possible, but the same was not true for the different canine soft tissue sarcoma subtypes. Further investigations on this topic are necessary for thorough explication of the role of quantitative morphology in the diagnostics of mesenchymal neoplasms and tumour-like fibrous lesions in dogs. © 2014 John Wiley & Sons Ltd.
Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography
Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.
2010-01-01
Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864
2018-06-20
Adult Fibrosarcoma; Alveolar Soft Part Sarcoma; Angiomatoid Fibrous Histiocytoma; Atypical Fibroxanthoma; Clear Cell Sarcoma of Soft Tissue; Epithelioid Malignant Peripheral Nerve Sheath Tumor; Epithelioid Sarcoma; Extraskeletal Myxoid Chondrosarcoma; Extraskeletal Osteosarcoma; Fibrohistiocytic Neoplasm; Glomus Tumor of the Skin; Inflammatory Myofibroblastic Tumor; Intimal Sarcoma; Leiomyosarcoma; Liposarcoma; Low Grade Fibromyxoid Sarcoma; Low Grade Myofibroblastic Sarcoma; Malignant Cutaneous Granular Cell Tumor; Malignant Peripheral Nerve Sheath Tumor; Malignant Triton Tumor; Mesenchymal Chondrosarcoma; Myxofibrosarcoma; Myxoid Chondrosarcoma; Myxoinflammatory Fibroblastic Sarcoma; Nerve Sheath Neoplasm; PEComa; Pericytic Neoplasm; Plexiform Fibrohistiocytic Tumor; Sclerosing Epithelioid Fibrosarcoma; Stage IB Soft Tissue Sarcoma AJCC v7; Stage IIB Soft Tissue Sarcoma AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Synovial Sarcoma; Undifferentiated (Embryonal) Sarcoma; Undifferentiated High Grade Pleomorphic Sarcoma of Bone
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This instructor's lesson plan guide on soft tissue injuries is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Six units of study are presented: (1) anatomy and physiology of the skin; (2) patient assessment for soft-tissue injuries; (3) pathophysiology and management of soft tissue injuries;…
EF5 to Evaluate Tumor Hypoxia in Patients With High-Grade Soft Tissue Sarcoma or Mouth Cancer
2013-01-15
Stage I Adult Soft Tissue Sarcoma; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Adult Soft Tissue Sarcoma; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Adult Soft Tissue Sarcoma; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity
Modern Soft Tissue Pathology | Center for Cancer Research
This book comprehensively covers modern soft tissue pathology and includes both tumors and non-neoplastic entities. Soft tissues make up a large bulk of the human body, and they are susceptible to a wide range of diseases. Many soft-tissue tumors are biologically very aggressive, and the chance of them metastasizing to vital organs is quite high. In recent years, the outlook
A finite nonlinear hyper-viscoelastic model for soft biological tissues.
Panda, Satish Kumar; Buist, Martin Lindsay
2018-03-01
Soft tissues exhibit highly nonlinear rate and time-dependent stress-strain behaviour. Strain and strain rate dependencies are often modelled using a hyperelastic model and a discrete (standard linear solid) or continuous spectrum (quasi-linear) viscoelastic model, respectively. However, these models are unable to properly capture the materials characteristics because hyperelastic models are unsuited for time-dependent events, whereas the common viscoelastic models are insufficient for the nonlinear and finite strain viscoelastic tissue responses. The convolution integral based models can demonstrate a finite viscoelastic response; however, their derivations are not consistent with the laws of thermodynamics. The aim of this work was to develop a three-dimensional finite hyper-viscoelastic model for soft tissues using a thermodynamically consistent approach. In addition, a nonlinear function, dependent on strain and strain rate, was adopted to capture the nonlinear variation of viscosity during a loading process. To demonstrate the efficacy and versatility of this approach, the model was used to recreate the experimental results performed on different types of soft tissues. In all the cases, the simulation results were well matched (R 2 ⩾0.99) with the experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection.
Sultan, Assem A; Piuzzi, Nicolas; Khlopas, Anton; Chughtai, Morad; Sodhi, Nipun; Mont, Michael A
2017-12-01
Despite the well-established success of total knee arthroplasty (TKA), iatrogenic ligamentous and soft tissue injuries are infrequent, but potential complications that can have devastating impact on clinical outcomes. These injuries are often related to technical errors and excessive soft tissue manipulation, particularly during bony resections. Recently, robotic-arm assisted TKA was introduced and demonstrated promising results with potential technical advantages over manual surgery in implant positioning and mechanical accuracy. Furthermore, soft tissue protection is an additional potential advantage offered by these systems that can reduce inadvertent human technical errors encountered during standard manual resections. Therefore, due to the relative paucity of literature, we attempted to answer the following questions: 1) does robotic-arm assisted TKA offer a technical advantage that allows enhanced soft tissue protection? 2) What is the available evidence about soft tissue protection? Recently introduced models of robotic-arm assisted TKA systems with advanced technology showed promising clinical outcomes and soft tissue protection in the short- and mid-term follow-up with results comparable or superior to manual TKA. In this review, we attempted to explore this dimension of robotics in TKA and investigate the soft tissue related complications currently reported in the literature.
Incidental Findings on Cone Beam Computed Tomography Studies outside of the Maxillofacial Skeleton
2016-01-01
Objective. To define the presence and prevalence of incidental findings in and around the base of skull from large field-of-view CBCT of the maxillofacial region and to determine their clinical importance. Methods. Four hundred consecutive large fields of view CBCT scans viewed from January 1, 2007, to January 1, 2014, were retrospectively evaluated for incidental findings of the cervical vertebrae and surrounding structures. Findings were categorized into cervical vertebrae, intracranial, soft tissue, airway, carotid artery, lymph node, and skull base findings. Results. A total of 653 incidental findings were identified in 309 of the 400 CBCT scans. The most prevalent incidental findings were soft tissue calcifications (29.71%), followed by intracranial calcifications (27.11%), cervical vertebrae (20.06%), airway (11.49%), external carotid artery calcification (10.41%), lymph node calcification (0.77%), subcutaneous tissue calcification and calcified tendonitis of the longus colli muscle (0.3%), and skull base finding (0.15%). A significant portion of the incidental findings (31.24%) required referral, 17.76% required monitoring, and 51% did not require either. Conclusion. A comprehensive review of the CBCT images beyond the region of interest, especially incidental findings in the base of skull, cervical vertebrae, pharyngeal airway, and soft tissue, is necessary to avoid overlooking clinically significant lesions. PMID:27462350
Bioglass® 45S5-based composites for bone tissue engineering and functional applications.
Rizwan, M; Hamdi, M; Basirun, W J
2017-11-01
Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass ® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass ® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017. © 2017 Wiley Periodicals, Inc.
Evidence-based dentistry on laser paediatric dentistry: review and outlook.
Olivi, G; Genovese, M D; Caprioglio, C
2009-03-01
The goal of paediatric dentistry is to provide preventive education to parents and patients as well as interception and therapy of dental diseases in a minimally invasive way using a stress-free approach. Different laser wavelengths are used for different applications following these minimally invasive concepts: argon, KTP, diode, Nd:YAG, and CO2 lasers are used for soft tissue applications and the erbium family is used for both soft and hard tissue procedures. This paper offers a revision and a discussion of the international literature, showing also some clinical procedures. related to these scientific studies. Soft tissues laser applications in Pediatric Dentistry include application in oral surgery as well as in periodontics and orthodontics. Laser applications on hard tissues include caries prevention and detection and application for sealing of pits and fissures. Also application for cavity preparation, carious removal and pulp therapy are discussed.
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography
NASA Astrophysics Data System (ADS)
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella
2017-08-01
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella
2017-07-12
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
van der Zee, Caroline W; Moerman, Esther; Haverlag, Robert; Schepers, Tim
2015-01-01
The treatment of soft tissue defects of the ankle, combined with an implant-related infection, remains a challenge. The present case report illustrates the use of a pedicled perforator flap for soft tissue reconstruction to cover a postoperative defect at the lateral malleolus after an ankle fracture. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Wesley; Sattarivand, Mike
Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknessesmore » range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.« less
Gopinath, Deepa; McGreevy, Paul D; Zuber, Richard M; Klupiec, Corinna; Baguley, John; Barrs, Vanessa R
2012-01-01
This article discusses recent developments in soft-tissue surgery teaching at the University of Sydney, Faculty of Veterinary Science. An integrated teaching program was developed for Bachelor of Veterinary Science (BVSc) students with the aim of providing them with optimal learning opportunities to meet "Day One" small-animal soft-tissue surgical competencies. Didactic lectures and tutorials were introduced earlier into the curriculum to prepare students for live-animal surgery practical. In addition to existing clinics, additional spay/neuter clinics were established in collaboration with animal welfare organizations to increase student exposure to live-animal surgery. A silicon-based, life-like canine ovariohysterectomy model was developed with the assistance of a model-making and special effects company. The model features elastic ovarian pedicles and suspensory ligaments, which can be stretched and broken like those of an actual dog. To monitor the volume and type of student surgical experience, an E-portfolio resource was established. This resource allows for the tracking of numbers of live, student-performed desexing surgeries and incorporates competency-based assessments and reflective tasks to be completed by students. Student feedback on the integrated surgical soft-tissue teaching program was assessed. Respondents were assessed in the fourth year of the degree and will have further opportunities to develop Day One small-animal soft-tissue surgical competencies in the fifth year. Ninety-four percent of respondents agreed or strongly agreed that they were motivated to participate in all aspects of the program, while 78% agreed or strongly agreed that they received an adequate opportunity to develop their skills and confidence in ovariohysterectomy or castration procedures through the fourth-year curriculum.
Borghi, Alessandro; Ruggiero, Federica; Badiali, Giovanni; Bianchi, Alberto; Marchetti, Claudio; Rodriguez-Florez, Naiara; Breakey, Richard W. F.; Jeelani, Owase; Dunaway, David J.; Schievano, Silvia
2018-01-01
Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face. PMID:29742139
Knoops, Paul G M; Borghi, Alessandro; Ruggiero, Federica; Badiali, Giovanni; Bianchi, Alberto; Marchetti, Claudio; Rodriguez-Florez, Naiara; Breakey, Richard W F; Jeelani, Owase; Dunaway, David J; Schievano, Silvia
2018-01-01
Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face.
Kim, Hyong-Nyun; Suh, Dong-Hyun; Hwang, Pil-Sung; Yu, Sun-O; Park, Yong-Wook
2011-04-01
The purpose of this study was to evaluate the clinical results of distal chevron osteotomy performed in conjunction with selective lateral soft tissue release. The criterion for doing a lateral soft tissue release was assessed by determining the ease and completeness of passive hallux valgus correction at the time of surgery. Between August 2005 and November 2007, 48 feet in 43 patients classified as having mild to moderate hallux valgus were retrospectively studied. Distal chevron osteotomy without lateral soft tissue release was performed in 26 cases (Group 1) when passive correction of the hallux valgus deformity was possible. Distal chevron osteotomy with lateral soft tissue release was performed in 22 cases (Group 2) when passive correction was not possible. Average followup was 23 (range, 12 to 28) months. Clinical results were assessed using radiographic parameters [hallux valgus angle (HVA), first and second intermetatarsal angle (1,2 IMA)], AOFAS scale and patient's subjective satisfaction. For Group 1: the average correction of HVA was 12.8 degrees, the average correction of IMA was 4.7 degrees, and the AOFAS score improved an average of 29.2 points at the last followup. Thirteen patients were very satisfied and ten patients were satisfied with the results. No patient was dissatisfied. For Group 2: the average correction of HVA was 19.1 degrees, the average correction of IMA was 7 degrees and AOFAS score improved at an average of 31.8 points at the last followup. Twelve patients were very satisfied, seven patients were satisfied and one patient, who had stiffness of the first metatarsophalangeal joint, was dissatisfied with the result. Distal chevron osteotomy with selective lateral soft tissue release based on the ability to passively correct the hallux valgus deformity lead to safe and stable correction.
Thoma, Daniel S; Hämmerle, Christoph H F; Cochran, David L; Jones, Archie A; Görlach, Christoph; Uebersax, Lorenz; Mathes, Stephanie; Graf-Hausner, Ursula; Jung, Ronald E
2011-11-01
The aim was to test, whether or not soft tissue volume augmentation with a specifically designed collagen matrix (CM), leads to ridge width gain in chronic ridge defects similar to those obtained by an autogenous subepithelial connective tissue graft (SCTG). In six dogs, soft tissue volume augmentation was performed by randomly allocating three treatment modalities to chronic ridge defects [CM, SCTG and sham-operated control (Control)]. Dogs were sacrificed at 28 (n = 3) and 84 days (n = 3). Descriptive histology and histomorphometric measurements were performed on non-decalcified sections. SCTG and CM demonstrated favourable tissue integration, and subsequent re-modelling over 84 days. The overall mean amount of newly formed soft tissue (NMT) plus bone (NB) amounted to 3.8 ± 1.2 mm (Control), 6.4 ± 0.9 mm (CM) and 7.2 ± 1.2 mm (SCTG) at 28 days. At 84 days, the mean NMT plus NB reached 2.4 ± 0.9 mm (Control), 5.6 ± 1.5 mm (CM) and 6.0 ± 2.1 mm (SCTG). Statistically significant differences were observed between CM/SCTG and Control at both time-points (p < 0.05). Within the limits of this animal model, the CM performed similar to the SCTG, based on histomorphometric outcomes combining NB and NMT. © 2011 John Wiley & Sons A/S.
Kempińska-Podhorodecka, Agnieszka; Knap, Oktawian; Parafiniuk, Mirosław
2007-01-01
During excavation works carried in the Old Town by the Archaeological Museum in Gdańsk, human remains were found which date back to the turn of the 12th and 13th centuries. On the basis of Gdańsk townsmen's skulls, Forensic Medicine Department, Pomeranian Medical University (PAM) performed the skull based face reconstruction of 8 individuals. In this study, we wanted to present possibilities of using Gierasimow reconstruction method for museum goals. Reconstruction is an anthropological method which aims at reconstructing bony elements of a skull and head soft tissue. The most commonly employed modern way of reconstruction is Gierasimow's method which is based on the observation of soft tissue thickness and its dependence on the form and level of development of different skull areas. Standards for tissue thickness were elaborated for various points (along the profile and transverse sections); they were based on the examination of soft tissue thickness performed on the corpse (for each sex separately). Deviations from the standards result from racial affiliation, age, and the level of development of adequate skull areas. The research scheme includes determination of sex and age, and collection of the detailed craniometrical and cranioscopic data with comprehensive description of the features which can affect the appearance of soft parts. After relevant measurements are done, the muscles are modeled. During the following stage, soft tissue thickness is marked in particular points as stalks and ridges. Next they are joined together to achieve the final effect of reconstruction. From this moment, finishing works are continued by a sculptor in cooperation with an anthropologist. The results of research conducted by anthropologists, anatomists, morphologists, physicians and criminologists are of great importance and they convey both cognitive and practical meaning. Reconstructions appeal to human imagination, and for that reason they are also addressed to non-professional audience.
Thoma, Daniel S; Buranawat, Borvornwut; Hämmerle, Christoph H F; Held, Ulrike; Jung, Ronald E
2014-04-01
To review the dental literature in terms of efficacy of soft tissue augmentation procedures around dental implants and in partially edentulous sites. A Medline search was performed for human studies augmenting keratinized mucosa (KM) and soft tissue volume around implants and in partially edentulous areas. Due to heterogeneity in between the studies, no meta-analyses could be performed. Nine (KM) and eleven (volume) studies met the inclusion criteria. An apically positioned flap/vestibuloplasty (APF/V) plus a graft material [free gingival graft (FGG)/subepithelial connective tissue graft (SCTG)/collagen matrix (CM)] resulted in an increase of keratinized tissue (1.4-3.3 mm). Statistically significantly better outcomes were obtained for APF/V plus FGG/SCTG compared with controls (APF/V alone; no treatment) (p < 0.05). For surgery time and patient morbidity, statistically significantly more favourable outcomes were reported for CM compared to SCTGs (p < 0.05) in two randomized controlled clinical trials (RCTs), even though rendering less keratinized tissue. SCTGs were the best-documented method for gain of soft tissue volume at implant sites and partially edentulous sites. Aesthetically at immediate implant sites, better papilla fill and higher marginal mucosal levels were obtained using SCTGs compared to non-grafted sites. An APF/V plus FGG/SCTG was the best-documented and most successful method to increase the width of KM. APF/V plus CM demonstrated less gain in KM, but also less patient morbidity and surgery time compared to APF/V plus SCTG based on two RCTs. Autogenous grafts (SCTG) rendered an increase in soft tissue thickness and better aesthetics compared to non-grafted sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2018-02-08
Sarcoma, Soft Tissue; Soft Tissue Sarcoma; Undifferentiated Pleomorphic Sarcoma; Leiomyosarcoma; Liposarcoma; Synovial Sarcoma; Myxofibrosarcoma; Angiosarcoma; Fibrosarcoma; Malignant Peripheral Nerve Sheath Tumor; Epithelioid Sarcoma
X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants
Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...
2015-10-20
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less
Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto
2011-03-01
Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.
Parthasarathy, Harinath; Kumar, Praveenkrishna; Gajendran, Priyalochana; Appukuttan, Devapriya
2014-01-01
The aim of the present case report is to evaluate the adjunctive use of a connective tissue graft to overcome soft tissue defects following excision of a gingival fibrolipoma in the aesthetic region. Connective tissue graft has been well documented for treating defects of esthetic concern. However, the literature does not contain many reports on the esthetic clinical outcome following the use of connective tissue graft secondary to excision of soft tissue tumours. A 28-year-old male patient reported with a complaint of a recurrent growth in relation to his lower front tooth region. The lesion which was provisionally diagnosed as fibroma was treated with a complete surgical excision, following which a modified coronally advanced flap and connective tissue graft was adopted to overcome the soft tissue defect. The excised growth was diagnosed histologically as fibrolipoma. One year follow up showed no recurrence of the lesion and good esthetics.The adjunctive use of the connective tissue graft and modified coronally advanced flap predictably yields optimal soft tissue fill and excellent esthetics. Hence, routine use of this procedure may be recommended for surgical excision of soft tissue growths in esthetically sensitive areas. PMID:25584336
Lu, Yuhua; Liu, Qian
2018-01-01
We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870
Xu, Lang; Lu, Yuhua; Liu, Qian
2018-02-01
We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.
NASA Technical Reports Server (NTRS)
Bailey, Michael R. (Inventor); Simon, Julianna C. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Vera A. (Inventor); Wang, Yak-Nam (Inventor); Sapozhnikov, Oleg A. (Inventor); Khokhlova, Tatiana D. (Inventor)
2016-01-01
The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
D’Onofrio, Michael J.; Schlett, Carey D.; Millar, Eugene V.; Cui, Tianyuan; Lanier, Jeffrey B.; Law, Natasha N.; Tribble, David R.; Ellis, Michael W.
2018-01-01
Military personnel in congregate settings are at increased risk for acute gastroenteritis.1,2 Personal hygiene (eg, frequent hand washing, hand sanitizers, etc.) remains a central strategy. A skin and soft tissue infection (SSTI) prevention trial was conducted among military trainees.3 Trainees were randomized to 1 of 3 groups with incrementally increasing education- and hygiene-based measures. The principal components were promotion of hand washing in addition to a once-weekly application of a chlorhexidine-based body wash. Herein, we report the trial’s impact on acute gastroenteritis. PMID:25695181
2016-05-16
Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Undifferentiated High Grade Pleomorphic Sarcoma of Bone; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Malignant Peripheral Nerve Sheath Tumor; Childhood Pleomorphic Rhabdomyosarcoma; Childhood Rhabdomyosarcoma With Mixed Embryonal and Alveolar Features; Childhood Synovial Sarcoma; Dermatofibrosarcoma Protuberans; Malignant Adult Hemangiopericytoma; Malignant Childhood Hemangiopericytoma; Metastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Untreated Childhood Rhabdomyosarcoma
Cronfalk, Berit Seiger; Strang, Peter; Ternestedt, Britt-Marie
2009-08-01
This article explores relatives' experiences of receiving soft tissue massage as a support supplement while caring for a dying family member at home. In palliative home care, relatives play an important role as carers to seriously ill and dying family members. To improve their quality of life, different support strategies are of importance. Complementary methods, such as soft tissue massage have become an appreciated supplement for these patients. However, only few studies focus on relatives experiences of receiving soft tissue massage as a supplemental support. Qualitative design Nineteen relatives received soft tissue massage (hand or foot) nine times (25 minutes) in their homes. Open-ended semi-structured tape-recorded interviews were conducted once per relative after the nine times of massage, using qualitative content analysis. Soft tissue massage gave the relatives' feelings of 'being cared for', 'body vitality' and 'peace of mind'. For a while, they put worries of daily life aside as they just experienced 'being'. During massage, it became apparent that body and mind is constituted of an indestructible completeness. The overarching theme was 'inner power, physical strength and existential well-being in their daily lives'. All relatives experienced soft tissue massage positively, although they were under considerable stress. Soft tissue massage could be an option to comfort and support relatives in palliative home care. In palliative nursing care, soft tissue massage could present a worthy supplement in supporting caring relatives.
Singh, G D; McNamara, J A; Lozanoff, S
1999-01-01
The purpose of this study was to assess soft tissue facial matrices in subjects of diverse ethnic origins with underlying dentoskeletal malocclusions. Pre-treatment lateral cephalographs of 71 Korean and 70 European-American children aged between 5 and 11 years with Angle's Class III malocclusions were traced, and 12 homologous, soft tissue landmarks digitized. Comparing mean Korean and European-American Class III soft tissue profiles, Procrustes analysis established statistical difference (P < 0.001) between the configurations, and this difference was also true at all seven age groups tested (P < 0.001). Comparing the overall European-American and Korean transformation, thin-plate spline analysis indicated that both affine and non-affine transformations contribute towards the total spline (deformation) of the averaged Class III soft tissue configurations. For non-affine transformations, partial warp (PW) 8 had the highest magnitude, indicating large-scale deformations visualized as labio-mental protrusion, predominantly. In addition, PW9, PW4, and PW5 also had high magnitudes, demonstrating labio-mental vertical compression and antero-posterior compression of the lower labio-mental soft tissues. Thus, Korean children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the labio-mental soft tissue complex with respect to their European-American counterparts. Morphological heterogeneity of the soft tissue integument in subjects of diverse ethnic origin may obscure the underlying skeletal morphology, but the soft tissue integument appears to have minimal ontogenetic association with Class III malocclusions.
Improved Rubin-Bodner Model for the Prediction of Soft Tissue Deformations
Zhang, Guangming; Xia, James J.; Liebschner, Michael; Zhang, Xiaoyan; Kim, Daeseung; Zhou, Xiaobo
2016-01-01
In craniomaxillofacial (CMF) surgery, a reliable way of simulating the soft tissue deformation resulted from skeletal reconstruction is vitally important for preventing the risks of facial distortion postoperatively. However, it is difficult to simulate the soft tissue behaviors affected by different types of CMF surgery. This study presents an integrated bio-mechanical and statistical learning model to improve accuracy and reliability of predictions on soft facial tissue behavior. The Rubin-Bodner (RB) model is initially used to describe the biomechanical behavior of the soft facial tissue. Subsequently, a finite element model (FEM) computers the stress of each node in soft facial tissue mesh data resulted from bone displacement. Next, the Generalized Regression Neural Network (GRNN) method is implemented to obtain the relationship between the facial soft tissue deformation and the stress distribution corresponding to different CMF surgical types and to improve evaluation of elastic parameters included in the RB model. Therefore, the soft facial tissue deformation can be predicted by biomechanical properties and statistical model. Leave-one-out cross-validation is used on eleven patients. As a result, the average prediction error of our model (0.7035mm) is lower than those resulting from other approaches. It also demonstrates that the more accurate bio-mechanical information the model has, the better prediction performance it could achieve. PMID:27717593
Potential for Imaging Engineered Tissues with X-Ray Phase Contrast
Appel, Alyssa; Anastasio, Mark A.
2011-01-01
As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604
Alveolar soft part sarcoma causing perianal abscess.
Sullivan, Niall; McCulloch, Tom; Leverton, David
2011-07-01
A 34-year-old woman presented with a perianal abscess that communicated with the vagina. There was a background of a one-year history of a conservatively treated, traumatic, paravaginal haematoma. Histology of the fistula tract showed alveolar soft part sarcoma and subsequent imaging identified a large soft tissue mass in the pelvis with lung metastases. Alveolar soft part sarcoma is a rare soft tissue sarcoma of unknown cellular origin affecting predominantly young women, often in deep soft tissues and lower extremities.
Late revision or correction of facial trauma-related soft-tissue deformities.
Rieck, Kevin L; Fillmore, W Jonathan; Ettinger, Kyle S
2013-11-01
Surgical approaches used in accessing the facial skeleton for fracture repair are often the same as or similar to those used for cosmetic enhancement of the face. Rarely does facial trauma result in injuries that do not in some way affect the facial soft-tissue envelope either directly or as sequelae of the surgical repair. Knowledge of both skeletal and facial soft-tissue anatomy is paramount to successful clinical outcomes. Facial soft-tissue deformities can arise that require specific evaluation and management for correction. This article focuses on revision and correction of these soft-tissue-related injuries secondary to facial trauma. Copyright © 2013. Published by Elsevier Inc.
General Information about Childhood Soft Tissue Sarcoma
... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Childhood Soft Tissue Sarcoma Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...
General Information about Adult Soft Tissue Sarcoma
... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Adult Soft Tissue Sarcoma Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...
[Reconstruction of facial soft tissue defects with pedicled expanded flaps].
Yangqun, Li; Yong, Tang; Wen, Chen; Zhe, Yang; Muxin, Zhao; Lisi, Xu; Chunmei, Hu; Yuanyuan, Liu; Ning, Ma; Jun, Feng; Weixin, Wang
2014-09-01
To investigate the application of pedicled expanded flaps for the reconstruction of facial soft tissue defects. The expanded skin flaps, pedicled with orbicularis oculi muscle, submental artery, the branch of facial artery, superficial temporal artery, interior upper arm artery, had similar texture and color as facial soft tissue. The pedicled expanded flaps have repaired the facial soft tissue defects. Between Jan. 2003 to Dec. 2013, 157 cases with facial soft tissue defects were reconstructed by pedicled expanded flaps. Epidermal necrosis happened at the distal end of 8 expanded flaps, pedicled with interior upper arm artery(4 cases), orbicularis oculi muscle(3 cases) and submental artery(1 case), which healed spontaneously after dressing. All the other flaps survived completely with similar color and inconspicuous scar. 112 cases were followed up for 8 months to 8 years. Satisfactory results were achieved in 75 cases. 37 cases with hypertrophic scar at incisions need secondary operation. Island pedicled expanded flap with similar texture and color as facial soft tissue is suitable for facial soft tissue defects. The facial extra-incision and large dog-ear deformity could be avoided.
Reliability of implant surgical guides based on soft-tissue models.
Maney, Pooja; Simmons, David E; Palaiologou, Archontia; Kee, Edwin
2012-12-01
The purpose of this study was to determine the accuracy of implant surgical guides fabricated on diagnostic casts. Guides were fabricated with radiopaque rods representing implant positions. Cone beam computerized tomograms were taken with guides in place. Accuracy was evaluated using software to simulate implant placement. Twenty-two sites (47%) were considered accurate (13 of 24 maxillary and 9 of 23 mandibular sites). Soft-tissue models do not always provide sufficient accuracy for fabricating implant surgical guides.
NASA Astrophysics Data System (ADS)
Forrester, Paul; Bol, Kieran; Lilge, Lothar; Marjoribanks, Robin
2006-09-01
Energy absorption and heat transfer are important factors for regulating the effects of ablation of biological tissues. Heat transfer to surrounding material may be desirable when ablating hard tissue, such as teeth or bone, since melting can produce helpful material modifications. However, when ablating soft tissue it is important to minimize heat transfer to avoid damage to healthy tissue - for example, in eye refractive surgery (e.g., Lasik), nanosecond pulses produce gross absorption and heating in tissue, leading to shockwaves, which kill and thin the non-replicating epithelial cells on the inside of the cornea; ultrafast pulses are recognized to reduce this effect. Using a laser system that delivers 1ps pulses in 10μs pulsetrains at 133MHz we have studied a range of heat- and energy-transfer effects on hard and soft tissue. We describe the ablation of tooth dentin and enamel under various conditions to determine the ablation rate and chemical changes that occur. Furthermore, we characterize the impact of pulsetrain-burst treatment of collagen-based tissue to determine more efficient methods of energy transfer to soft tissues. By studying the optical science of laser tissue interaction we hope to be able to make qualitative improvements to medical treatments using lasers.
Chong, Chew-Wei; Lin, Cheng-Hung; Lin, Yu-Te; Hsu, Chung-Chen; Chen, Shih-Heng
2018-04-01
We described a laterally based cross-finger flap for reconstruction of soft tissue defects in the fingers. This modification enables coverage of volar or dorsal soft tissue defects at the distal, middle or proximal phalanx. From March 2015 to January 2017, a total of 12 patients (13 fingers) underwent soft tissue reconstruction of the fingers with a laterally based cross-finger flap. The flap dimensions ranged from 13 ×7 mm to 43 ×13 mm. Eleven of the 13 flaps survived completely. The two flap failures were attributed to injuries in the donor fingers, rendering the blood supply of the flaps unreliable. All donor sites were closed primarily without the need for skin grafting, negating the problem of donor site morbidity that is associated with skin graft harvesting. The laterally based cross-finger flap is a versatile flap with less donor site morbidity and better aesthetics than a conventional cross-finger flap. We described the design of the flap, as well as the advantages and disadvantages, in doing a laterally based cross-finger flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Wang, L; Turaka, A; Meyer, J; Spoka, D; Jin, L; Fan, J; Ma, C
2012-06-01
To assess the reliability of soft tissue alignment by comparing pre- and post-treatment cone-beam CT (CBCT) for image guidance in stereotactic body radiotherapy (SBRT) of lung cancers. Our lung SBRT procedures require all patients undergo 4D CT scan in order to obtain patient-specific target motion information through reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. The internal target volume (ITV) was outlined directly from the MIP images and a 3-5 mm margin expansion was then applied to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was used for image guidance by comparing with the simulation CT and for patient relocalization based on the bony anatomy. Any displacement of the patient bony structure would be considered as setup errors and would be corrected by couch shifts. Theoretically, as the PTV definition included target internal motion, no further shifts other than setup corrections should be made. However, it is our practice to have treating physicians further check target localization within the PTV. Whenever the shifts based on the soft-tissue alignment (that is, target alignment) exceeded a certain value (e.g. 5 mm), a post-treatment CBCT was carried out to ensure that the tissue alignment is reliable by comparing between pre- and post-treatment CBCT. Pre- and post-CBCT has been performed for 7 patients so far who had shifts beyond 5 mm despite bony alignment. For all patients, post CBCT confirmed that the visualized target position was kept in the same position as before treatment after adjusting for soft-tissue alignment. For the patient population studied, it is shown that soft-tissue alignment is necessary and reliable in the lung SBRT for individual cases. © 2012 American Association of Physicists in Medicine.
Childhood Soft Tissue Sarcoma Treatment (PDQ®)—Health Professional Version
Pediatric soft tissue sarcomas are a heterogenous group of malignant tumors that originate from primitive mesenchymal tissue and account for 7% of all childhood tumors. Get detailed information about clinical presentation, diagnosis, prognosis, and treatment of newly diagnosed and recurrent soft tissue sarcoma in this summary for clinicians.
Alisertib in Treating Patients With Advanced or Metastatic Sarcoma
2017-11-29
Myxofibrosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Leiomyosarcoma; Recurrent Liposarcoma; Recurrent Malignant Peripheral Nerve Sheath Tumor; Recurrent Undifferentiated Pleomorphic Sarcoma; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7
Large Osteoarthritic Cyst Presenting as Soft Tissue Tumour – A Case Report
Kosuge, DD; Park, DH; Cannon, SR; Briggs, TW; Pollock, RC; Skinner, JA
2007-01-01
Large osteoarthritic cysts can sometimes be difficult to distinguish from primary osseous and soft tissue tumours. We present such a case involving a cyst arising from the hip joint and eroding the acetabulum which presented as a soft tissue malignancy referred to a tertiary bone and soft tissue tumour centre. We discuss the diagnostic problems it may pose, and present a literature review of the subject. PMID:17535605
[Soft tissue melanoma: a clinical case].
Frikh, Rachid; Oumakhir, Siham; Chahdi, Hafsa; Oukabli, Mohammed; Albouzidi, Abderrahmane; Baba, Noureddine; Hjira, Naoufal; Boui, Mohammed
2017-01-01
Soft tissue melanoma was first described by Enzinger in 1965 under the name of clear cell sarcoma. In 1983, Chung and Enzinger renamed it soft tissue melanoma due to its immunohistochemical similarities with melanoma. We here report the case of a 22-year old young man with this rare type of melanoma, presenting with molluscoid lesion on his ankle without any clinical sign of malignancy. Histology examination confirmed the diagnosis of soft tissue melanoma.
Soft-Tissue Injuries Associated With High-Energy Extremity Trauma: Principles of Management.
Norris; Kellam
1997-01-01
The management of high-energy extremity trauma has evolved over the past several decades, and appropriate treatment of associated soft-tissue injuries has proved to be an important factor in achieving a satisfactory outcome. Early evaluation of the severely injured extremity is crucial. Severe closed injuries require serial observation of the soft tissues and early skeletal stabilization. Open injuries require early aggressive debridement of the soft tissues followed by skeletal stabilization. Temporary wound dressings should remain in place until definitive soft-tissue coverage has been obtained. Definitive soft-tissue closure will be expedited by serial debridements performed every 48 to 72 hours in a sterile environment. Skeletal union is facilitated by early bone grafting and/or modification of the stabilizing device. Aggressive rehabilitation, includ-ing early social reintegration, are crucial for a good functional outcome. Adherence to protocols is especially beneficial in the management of salvageable severely injured extremities.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2018-06-01
The present study aims to predict the temperature rise induced by high intensity focused ultrasound (HIFU) in soft tissues to assess tissue damage during HIFU thermal therapies. With the help of a MATLAB-based software package developed for HIFU simulation, the HIFU field was simulated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective, and the HIFU-induced temperature rise in a tissue-mimicking phantom was simulated by solving Pennes' bioheat transfer (BHT) equation. In order to verify the simulation results, we performed in-vitro heating experiments on a tissue-mimicking phantom by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The temperature rise near the focal spot obtained from the HIFU simulator was in good agreement with that from the in-vitro experiments. This confirms that the HIFU simulator based on the KZK and the BHT equations captures the HIFU-induced temperature rise in soft tissues well enough to make it suitable for HIFU treatment planning.
Utilizing collagen membranes for guided tissue regeneration-based root coverage.
Wang, Hom-Lay; Modarressi, Marmar; Fu, Jia-Hui
2012-06-01
Gingival recession is a common clinical problem that can result in hypersensitivity, pain, root caries and esthetic concerns. Conventional soft tissue procedures for root coverage require an additional surgical site, thereby causing additional trauma and donor site morbidity. In addition, the grafted tissues heal by repair, with formation of long junctional epithelium with some connective tissue attachment. Guided tissue regeneration-based root coverage was thus developed in an attempt to overcome these limitations while providing comparable clinical results. This paper addresses the biologic foundation of guided tissue regeneration-based root coverage, and describes the indications and contraindications for this technique, as well as the factors that influence outcomes. The step-by-step clinical techniques utilizing collagen membranes are also described. In comparison with conventional soft tissue procedures, the benefits of guided tissue regeneration-based root coverage procedures include new attachment formation, elimination of donor site morbidity, less chair-time, and unlimited availability and uniform thickness of the product. Collagen membranes, in particular, benefit from product biocompatibility with the host, while promoting chemotaxis, hemostasis, and exchange of gas and nutrients. Such characteristics lead to better wound healing by promoting primary wound coverage, angiogenesis, space creation and maintenance, and clot stability. In conclusion, collagen membranes are a reliable alternative for use in root coverage procedures. © 2012 John Wiley & Sons A/S.
Effect of antipronation foot orthosis geometry on compression of heel and arch soft tissues.
Sweeney, Declan; Nester, Christopher; Preece, Stephen; Mickle, Karen
2015-01-01
This study aimed to understand how systematic changes in arch height and two designs of heel wedging affect soft tissues under the foot. Soft tissue thickness under the heel and navicular was measured using ultrasound. Heel pad thickness was measured when subjects were standing on a flat surface and standing on an orthosis with 4 and 8 degree extrinsic wedges and 4 mm and 8 mm intrinsic wedges (n = 27). Arch soft tissue thickness was measured when subjects were standing and when standing on an orthosis with -6 mm, standard, and +6 mm increments in arch height (n = 25). Extrinsic and intrinsic heel wedges significantly increased soft tissue thickness under the heel compared with no orthosis. The 4 and 8 degree extrinsic wedges increased tissue thickness by 28% and 27.6%, respectively, while the 4 mm and 8 mm intrinsic wedges increased thickness by 23% and 14.6%, respectively. Orthotic arch height significantly affected arch soft tissue thickness. Compared with the no orthosis condition, the -6 mm, standard, and +6 mm arch heights decreased arch tissue thickness by 9%, 10%, and 11.8%, respectively. This study demonstrates that change in orthotic geometry creates different plantar soft tissue responses that we expect to affect transmission of force to underlying foot bones.
Finite element dynamic analysis of soft tissues using state-space model.
Iorga, Lucian N; Shan, Baoxiang; Pelegri, Assimina A
2009-04-01
A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed 'u-p' element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the 'forward' simulation and 'inverse' estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.
Soft-tissue reactions following irradiation of primary brain and pituitary tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglan, R.J.; Marks, J.E.
1981-04-01
One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less
Duffy, Rebecca M; Feinberg, Adam W
2014-01-01
Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.
Puisys, Algirdas; Vindasiute, Egle; Linkevciene, Laura; Linkevicius, Tomas
2015-04-01
To evaluate the efficiency of acellular dermal matrix membrane to augment vertical peri-implant soft tissue thickness during submerged implant placement. Forty acellular dermal matrix-derived allogenic membranes (AlloDerm, BioHorizons, Birmingham, AL, USA) and 42 laser-modified surface internal hex implants (BioHorizons Tapered Laser Lok, Birmingham, AL, USA) were placed in submerged approach in 40 patients (15 males and 25 females, mean age 42.5 ± 1.7) with a thin vertical soft tissue thickness of 2 mm or less. After 3 months, healing abutments were connected to implants, and the augmented soft tissue thickness was measured with periodontal probe. The gain in vertical soft tissue volume was calculated. Mann-Whitney U-test was applied and significance was set to 0.05. All 40 allografts healed successfully. Thin soft tissue before augmentation had an average thickness of 1.54 ± 0.51 mm SD (range, 0.5-2.0 mm, median 1.75 mm), and after soft tissue augmentation with acellular dermal matrix, thickness increased to 3.75 ± 0.54 mm SD (range, 3.0-5.0 mm, median 4.0 mm) at 3 months after placement. This difference between medians was found to be statistically significant (P < 0.001). Mean increase in soft tissue thickness was 2.21 ± 0.85 mm SD (range, 1.0-4.5 mm, median 2.0 mm). It can be concluded that acellular dermal matrix membrane can be successfully used for vertical soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Theerasopon, Pornpat; Wangsrimongkol, Tasanee; Sattayut, Sajee
2017-03-31
Although surgical treatment protocols for cleft lip and palate patients have been established, many patients still have some soft tissue defects after complete healing from surgical interventions. These are excess soft tissue, high attached fraena and firmed tethering scares. These soft tissue defects resulted shallowing of vestibule, restricted tooth movement, compromised periodontal health and trended to limit the maxillary growth. The aim of this case report was to present a method of correcting soft tissue defects after conventional surgery in cleft lip and palate patient by using combined laser surgery and orthodontic appliance. A bilateral cleft lip and palate patient with a clinical problem of shallow upper anterior vestibule after alveolar bone graft received a vestibular extension by using CO 2 laser with ablation and vaporization techniques at 4 W and continuous wave. A customized orthodontic appliance, called a buccal shield, was placed immediately after surgery and retained for 1 month to 3 months until complete soft tissue healing. The procedures were performed 2 episodes. Both interventions used the same CO 2 laser procedure. The first treatment resulted in partial re-attachment of soft tissue at surgical area. The second laser operation with the proper design of buccal shield providing passive contact with more extended flange resulting in a favorable outcome from 1 year follow up. Then the corrective orthodontic treatment could be continued effectively. The CO 2 laser surgery was a proper treatment for correcting soft tissue defects and the design of buccal shield was a key for success in molding surgical soft tissue.
Dragan, Irina F; Hotlzman, Lucrezia Paterno; Karimbux, Nadeem Y; Morin, Rebecca A; Bassir, Seyed Hossein
2017-12-01
This systematic review and meta-analysis aimed to compare clinical outcomes and width of keratinized tissue (KT) around teeth, following the soft tissue alter- natives and free gingival graft (FGG) procedures. The specific graft materials that were explored were extracellular matrix membrane, bilayer collagen membrane, living cellular construct, and acellular dermal matrix. Four different databases were queried to identify human controlled clinical trials and randomized controlled clinical trials that fulfilled the eligibility criteria. Relevant studies were identified by 3 independent reviewers, compiling the results of the electronic and handsearches. Studies identified through electronic and handsearches were reviewed by title, abstract, and full text using Covidence Software. Primary outcome in the present study was change in the width of KT. Results of the included studies were pooled to estimate the effect size, expressed as weighted mean differences and 95% confidence interval. A random-effects model was used to perform the meta-analyses. Six hundred thirty-eight articles were screened by title, 55 articles were screened by abstracts, and 34 full-text articles were reviewed. Data on quantitative changes in width of KT were provided in 7 studies. Quantitative analyses revealed a significant difference in changes in width of KT between patients treated with soft tissue alternatives and patients treated with FGGs (P < .001). The weighted mean difference of changes in the width of KT was 21.39 (95% confidence interval: 21.82 to 20.96; heterogeneity I 5 70.89%), indicating patients who were treated with soft tissue alternatives gained 1.39 mm less KT width compared with the patients who received free gingival graft. Based on the clinical outcomes, the results of this systematic review and meta-analysis showed that soft tissue alternatives result in an increased width of KT. Patients in the soft tissue alternatives group obtained 1.39 mm less KT compared with those in the FGGs group. Copyright © 2017 Elsevier Inc. All rights reserved.
Huber, Samuel; Zeltner, Marco; Hämmerle, Christoph H F; Jung, Ronald E; Thoma, Daniel S
2018-04-01
To assess peri-implant soft tissue dimensions at implant sites, previously augmented with a collagen matrix (VCMX) or an autogenous subepithelial connective tissue graft (SCTG), between crown insertion and 1 year. Twenty patients with single-tooth implants received soft tissue augmentation prior to abutment connection randomly using VCMX or SCTG. Following abutment connection 3 months later, final reconstructions were fabricated and inserted (baseline). Patients were recalled at 6 months (6M) and at 1 year (FU-1). Measurements included clinical data, soft tissue thickness, volumetric outcomes and patient-reported outcome measures (PROMs). The buccal soft tissue thickness showed a median decrease of -0.5 mm (-1.0;0.3) (VCMX) and 0.0 mm (-0.5;1.0) (SCTG) (p = .243) up to FU-1. The soft tissue volume demonstrated a median decrease between BL and FU-1 of -0.1 mm (-0.2;0.0) (p = .301) for VCMX and a significant decrease of -0.2 mm (-0.4; -0.1) (p = .002) for SCTG, respectively. Intergroup comparisons did not reveal any significant differences between the groups for peri-implant soft tissue dimensions and changes up to FU-1 (p > .05). PROMs did not show any significant changes over time nor differences between the groups. Between crown insertion and 1 year, the buccal peri-implant soft tissue dimensions remained stable without relevant differences between sites that had previously been grafted with VCMX or SCTG. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Maetevorakul, Suhatcha; Viteporn, Smorntree
2016-01-01
Several studies have shown soft tissue profile changes after orthodontic treatment in Class II Division 1 patients. However, a few studies have described factors influencing the soft tissue changes. The purpose of this study was to investigate the factors influencing the soft tissue profile changes following orthodontic treatment in Class II Division 1 patients. The subjects comprised 104 Thai patients age 8-16 years who presented Class II Division 1 malocclusions and were treated with different orthodontic modalities comprising cervical headgear, Class II traction and extraction of the four first premolars. The profile changes were evaluated from the lateral cephalograms before and after treatment by means of the X-Y coordinate system. Significant soft tissue profile changes were evaluated by paired t test at a 0.05 significance level. The correlations among significant soft tissue changes and independent variables comprising treatment modality, age, sex, pretreatment skeletal, dental and soft tissue morphology were evaluated by stepwise multiple regression analysis at a 0.05 significance level. The multiple regression analysis indicated that different treatment modalities, age, sex, pretreatment skeletal, dental and soft tissue morphology were related to the profile changes. The predictive power of these variables on the soft tissue profile changes ranged from 9.9 to 40.3%. Prediction of the soft tissue profile changes following treatment of Class II Division 1 malocclusion from initial patient morphology, age, sex and types of treatment was complicated and required several variables to explain their variations. Upper lip change in horizontal direction could be found only at the stomion superius and was less predictable than those of the lower lip. Variations in upper lip retraction at the stomion superius were explained by types of treatment (R(2) = 0.099), whereas protrusion of the lower lip at the labrale inferius was correlated with initial inclination of the lower incisor (L1 to NB), jaw relation (ANB angle), lower lip thickness and sex (R(2) = 0.403). Prediction of chin protrusion at the soft tissue pogonion was also low predictable (R(2) = 0.190) depending upon sex, age and initial mandibular plane angle (SN-GoGn). Additionally, age and sex also had mainly effect on change of the soft tissue profile in the vertical direction.
[Microbiological diagnosis of infections of the skin and soft tissues].
Burillo, Almudena; Moreno, Antonio; Salas, Carlos
2007-11-01
Skin and soft tissue infections are often seen in clinical practice, yet their microbiological diagnosis is among the most complex of laboratory tasks. The diagnosis of a skin and a soft tissue infection is generally based on clinical criteria and not microbiological results. A microbiological diagnosis is reserved for cases in which the etiology of infection is required, e.g., when the infection is particularly severe, when less common microorganisms are suspected as the causative agent (e.g. in immunocompromised patients), when response to antimicrobial treatment is poor, or when a longstanding wound does not heal within a reasonable period of time. We report the indications, sampling and processing techniques, and interpretation criteria for various culture types, including quantitative cultures from biopsy or tissue specimens and semiquantitative and qualitative cultures performed on all types of samples. For non-invasive samples taken from open wounds, application of the Q index to Gram stains is a cost-effective way to standardize sample quality assessment and interpretation of the pathogenic involvement of the different microorganisms isolated from cultures. All these issues are covered in the SEIMC microbiological procedure number 22: Diagnóstico microbiológico de las infecciones de piel y tejidos blandos (Microbiological diagnosis of infections of the skin and soft tissues) (2nd ed., 2006, www.seimc.org/protocolos/microbiologia).
Sen, Hasan Tutkun; Bell, Muyinatu A Lediju; Zhang, Yin; Ding, Kai; Boctor, Emad; Wong, John; Iordachita, Iulian; Kazanzides, Peter
2017-07-01
We are developing a cooperatively controlled robot system for image-guided radiation therapy (IGRT) in which a clinician and robot share control of a 3-D ultrasound (US) probe. IGRT involves two main steps: 1) planning/simulation and 2) treatment delivery. The goals of the system are to provide guidance for patient setup and real-time target monitoring during fractionated radiotherapy of soft tissue targets, especially in the upper abdomen. To compensate for soft tissue deformations created by the probe, we present a novel workflow where the robot holds the US probe on the patient during acquisition of the planning computerized tomography image, thereby ensuring that planning is performed on the deformed tissue. The robot system introduces constraints (virtual fixtures) to help to produce consistent soft tissue deformation between simulation and treatment days, based on the robot position, contact force, and reference US image recorded during simulation. This paper presents the system integration and the proposed clinical workflow, validated by an in vivo canine study. The results show that the virtual fixtures enable the clinician to deviate from the recorded position to better reproduce the reference US image, which correlates with more consistent soft tissue deformation and the possibility for more accurate patient setup and radiation delivery.
Prediction of treatment outcome in soft tissue sarcoma based on radiologically defined habitats
NASA Astrophysics Data System (ADS)
Farhidzadeh, Hamidreza; Chaudhury, Baishali; Zhou, Mu; Goldgof, Dmitry B.; Hall, Lawrence O.; Gatenby, Robert A.; Gillies, Robert J.; Raghavan, Meera
2015-03-01
Soft tissue sarcomas are malignant tumors which develop from tissues like fat, muscle, nerves, fibrous tissue or blood vessels. They are challenging to physicians because of their relative infrequency and diverse outcomes, which have hindered development of new therapeutic agents. Additionally, assessing imaging response of these tumors to therapy is also difficult because of their heterogeneous appearance on magnetic resonance imaging (MRI). In this paper, we assessed standard of care MRI sequences performed before and after treatment using 36 patients with soft tissue sarcoma. Tumor tissue was identified by manually drawing a mask on contrast enhanced images. The Otsu segmentation method was applied to segment tumor tissue into low and high signal intensity regions on both T1 post-contrast and T2 without contrast images. This resulted in four distinctive subregions or "habitats." The features used to predict metastatic tumors and necrosis included the ratio of habitat size to whole tumor size and components of 2D intensity histograms. Individual cases were correctly classified as metastatic or non-metastatic disease with 80.55% accuracy and for necrosis ≥ 90 or necrosis <90 with 75.75% accuracy by using meta-classifiers which contained feature selectors and classifiers.
Paolone, Maria Giacinta; Kaitsas, Roberto
2018-06-01
Orthodontics is a periodontal treatment. "Guided orthodontic regeneration" (GOR) procedures use orthodontic movements in perio-restorative patients. The GOR technique includes a guided orthodontic "soft tissue" regeneration (GOTR) and a guided orthodontic "bone" regeneration (GOBR) with a plastic soft tissue approach and a regenerating reality. The increased amount of soft tissue gained with orthodontic movement can be used for subsequent periodontal regenerative techniques. The increased amount of bone can as well improve primary implant stability and, eventually, simplify a GTR technique to regenerate soft tissues, to restore tooth with external resorption in aesthetic zone or to extract a tooth to create new hard-soft tissue for adjacent teeth. Copyright © 2018. Published by Elsevier Masson SAS.
Warren, L M; Halling-Brown, M D; Looney, P T; Dance, D R; Wallis, M G; Given-Wilson, R M; Wilkinson, L; McAvinchey, R; Young, K C
2017-09-01
To investigate the effect of image processing on cancer detection in mammography. An observer study was performed using 349 digital mammography images of women with normal breasts, calcification clusters, or soft-tissue lesions including 191 subtle cancers. Images underwent two types of processing: FlavourA (standard) and FlavourB (added enhancement). Six observers located features in the breast they suspected to be cancerous (4,188 observations). Data were analysed using jackknife alternative free-response receiver operating characteristic (JAFROC) analysis. Characteristics of the cancers detected with each image processing type were investigated. For calcifications, the JAFROC figure of merit (FOM) was equal to 0.86 for both types of image processing. For soft-tissue lesions, the JAFROC FOM were better for FlavourA (0.81) than FlavourB (0.78); this difference was significant (p=0.001). Using FlavourA a greater number of cancers of all grades and sizes were detected than with FlavourB. FlavourA improved soft-tissue lesion detection in denser breasts (p=0.04 when volumetric density was over 7.5%) CONCLUSIONS: The detection of malignant soft-tissue lesions (which were primarily invasive) was significantly better with FlavourA than FlavourB image processing. This is despite FlavourB having a higher contrast appearance often preferred by radiologists. It is important that clinical choice of image processing is based on objective measures. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Mardinger, Ofer; Vered, Marilena; Chaushu, Gavriel; Nissan, Joseph
2012-06-01
Intrasocket reactive soft tissue can be used for primary closure during augmentation of infected extraction sites exhibiting severe bone loss prior to implant placement. The present study evaluated the histological characteristics of the initially used intrasocket reactive soft tissue, the overlying soft tissue, and the histomorphometry of the newly formed bone during implant placement. Thirty-six consecutive patients (43 sites) were included in the study. Extraction sites demonstrating extensive bone loss on preoperative periapical and panoramic radiographs served as inclusion criteria. Forty-three implants were inserted after a healing period of 6 months. Porous bovine xenograft bone mineral was used as a single bone substitute. The intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Biopsies of the intrasocket reactive soft tissue at augmentation, healed mucosa, and bone cores at implant placement were retrieved and evaluated. The intrasocket reactive soft tissue demonstrated features compatible with granulation tissue and long junctional epithelium. The mucosal samples at implant placement demonstrated histopathological characteristics of keratinized mucosa with no residual elements of granulation tissue. Histomorphometrically, the mean composition of the bone cores was - vital bone 40 ± 19% (13.7-74.8%); bone substitute 25.7 ± 13% (0.6-51%); connective tissue 34.3 ± 15% (13.8-71.9%). Intrasocket reactive soft tissue used for primary closure following ridge augmentation is composed of granulation tissue and long junctional epithelium. At implant placement, clinical and histological results demonstrate its replacement by keratinized gingiva. The histomorphometrical results reveal considerable bone formation. Fresh extraction sites of hopeless teeth demonstrating chronic infection and severe bone loss may be grafted simultaneously with their removal. © 2010 Wiley Periodicals, Inc.
Segmentation of bone and soft tissue regions in digital radiographic images of extremities
NASA Astrophysics Data System (ADS)
Pakin, S. Kubilay; Gaborski, Roger S.; Barski, Lori L.; Foos, David H.; Parker, Kevin J.
2001-07-01
This paper presents an algorithm for segmentation of computed radiography (CR) images of extremities into bone and soft tissue regions. The algorithm is a region-based one in which the regions are constructed using a growing procedure with two different statistical tests. Following the growing process, tissue classification procedure is employed. The purpose of the classification is to label each region as either bone or soft tissue. This binary classification goal is achieved by using a voting procedure that consists of clustering of regions in each neighborhood system into two classes. The voting procedure provides a crucial compromise between local and global analysis of the image, which is necessary due to strong exposure variations seen on the imaging plate. Also, the existence of regions whose size is large enough such that exposure variations can be observed through them makes it necessary to use overlapping blocks during the classification. After the classification step, resulting bone and soft tissue regions are refined by fitting a 2nd order surface to each tissue, and reevaluating the label of each region according to the distance between the region and surfaces. The performance of the algorithm is tested on a variety of extremity images using manually segmented images as gold standard. The experiments showed that our algorithm provided a bone boundary with an average area overlap of 90% compared to the gold standard.
Evaluation of clinical utility of BTC-2000 for measuring soft tissue fibrosis.
Davis, Aileen M; Gerrand, Craig; Griffin, Anthony; O'Sullivan, Brian; Hill, Richard P; Wunder, Jay S; Abudu, Adesegun; Bell, Robert S
2004-09-01
To evaluate whether mechanical tissue parameters, specifically laxity (in millimeters) and energy absorption (millimeters of mercury multiplied by millimeters) as measured by the BTC-2000, could discriminate levels of fibrosis severity among patients treated for extremity soft tissue sarcoma by surgery alone; preoperative radiotherapy (RT) and surgery; and surgery followed by postoperative RT. A total of 41 patients were treated for extremity soft tissue sarcoma by surgery alone (n = 11); preoperative RT (50 Gy in 2-Gy daily fractions) and surgery (n = 15); and surgery followed by postoperative RT (66 Gy in 2-Gy daily fractions; n = 15). Serial fibrosis measurements were evaluated at equal intervals from the midpoint of the surgical incision along the length of the incision. On the basis of the average of these measurements, differences among the three groups were analyzed using analysis of variance. Pair-wise statistically significant differences were found among the three treatment groups for both laxity and energy absorption as determined by the average of all measurements. The treatment difference remained statistically significant even after adjusting for differences based on the untreated contralateral limb and anatomic site (p <0.001 and p = 0.002 for laxity and energy absorption, respectively). The biomechanical tissue parameters of laxity and energy absorption discriminated fibrosis severity in patients treated with different RT doses. The BTC-2000 may provide a useful quantitative measure of soft tissue fibrosis.
Effects of osmotic pressure in the extracellular matrix on tissue deformation.
Lu, Y; Parker, K H; Wang, W
2006-06-15
In soft tissues, large molecules such as proteoglycans trapped in the extracellular matrix (ECM) generate high levels of osmotic pressure to counter-balance external pressures. The semi-permeable matrix and fixed negative charges on these molecules serve to promote the swelling of tissues when there is an imbalance of molecular concentrations. Structural molecules, such as collagen fibres, form a network of stretch-resistant matrix, which prevents tissue from over-swelling and keeps tissue integrity. However, collagen makes little contribution to load bearing; the osmotic pressure in the ECM is the main contributor balancing external pressures. Although there have been a number of studies on tissue deformation, there is no rigorous analysis focusing on the contribution of the osmotic pressure in the ECM on the viscoelastic behaviour of soft tissues. Furthermore, most previous works were carried out based on the assumption of infinitesimal deformation, whereas tissue deformation is finite under physiological conditions. In the current study, a simplified mathematical model is proposed. Analytic solutions for solute distribution in the ECM and the free-moving boundary were derived by solving integro-differential equations under constant and dynamic loading conditions. Osmotic pressure in the ECM is found to contribute significantly to the viscoelastic characteristics of soft tissues during their deformation.
Changes of the peri-implant soft tissue thickness after grafting with a collagen matrix.
Zafiropoulos, Gregory-George; Deli, Giorgio; Hoffmann, Oliver; John, Gordon
2016-01-01
The aim of this study was to determine the treatment outcome of the use of a porcine monolayer collagen matrix (mCM) to increase soft-tissue volume as a part of implant site development. Implants were placed in single sites in 27 patients. In the test group, mCM was used for soft-tissue augmentation. No graft was placed in the control group. Soft-tissue thickness (STTh) was measured at the time of surgery (T0) and 6 months postoperatively (T1) at two sites (STTh 1, 1 mm below the gingival margin; STTh 2, 3 mm below the mucogingival margin). Significant increases ( P < 0.001) in STTh (STTh 1 = 1.06 mm, 117%; STTh 2 = 0.89 mm, 81%) were observed in the test group. Biopsy results showed angiogenesis and mature connective tissue covered by keratinized epithelium. Within the limitations of this study, it could be concluded that mCM leads to a significant increase of peri-implant soft-tissue thickness, with good histological integration and replacement by soft tissue and may serve as an alternative to connective tissue grafting.
Epidemiologic study of soft tissue rheumatism in Shantou and Taiyuan, China.
Zeng, Qing-yu; Zang, Chang-hai; Lin, Ling; Chen, Su-biao; Li, Xiao-feng; Xiao, Zheng-yu; Dong, Hai-yuan; Zhang, Ai-lian; Chen, Ren
2010-08-05
Soft tissue rheumatism is a group of common rheumatic disorders reported in many countries. For investigating the prevalence rate of soft tissue rheumatism in different population in China, we carried out a population study in Shantou rural and Taiyuan urban area. Samples of 3915 adults in an urban area of Taiyuan, Shanxi Province, and 2350 in a rural area of Shantou, Guangdong Province were surveyed. Modified International League of Association for Rheumatology (ILAR)-Asia Pacific League of Association for Rheumatology (APLAR) Community Oriented Program for Control of Rheumatic Diseases (COPCORD) core questionnaire was implemented as screening tool. The positive responders were then all examined by rheumatologists. Prevalence rate of soft tissue rheumatism was 2.0% in Taiyuan, and 5.3% in Shantou. Rotator cuff (shoulder) tendinitis, adhesive capsulitis (frozen shoulder), lateral epicondylitis (tennis elbow), and digital flexor tenosynovitis (trigger finger) were the commonly seen soft tissue rheumatism in both areas. Tatarsalgia, plantar fasciitis, and De Quervain's tenosynovitis were more commonly seen in Shantou than that in Taiyuan. Only 1 case of fibromyalgia was found in Taiyuan and 2 cases in Shantou. The prevalence of soft tissue rheumatism varied with age, sex and occupation. Soft tissue rheumatism is common in Taiyuan and Shantou, China. The prevalence of soft tissue rheumatism was quite different with different geographic, environmental, and socioeconomic conditions; and varying with age, sex, and occupation. The prevalence of fibromyalgia is low in the present survey.
Factors influencing on retro-odontoid soft-tissue thickness: analysis by magnetic resonance imaging.
Tojo, Shinjiro; Kawakami, Reina; Yonenaga, Takenori; Hayashi, Daichi; Fukuda, Kunihiko
2013-03-01
A retrospective, consecutive case series. To analyze the relationship between retro-odontoid soft-tissue thickness and patients' age, sex, and degenerative changes of cervical spine and to investigate the effect these factors have on retro-odontoid soft-tissue thickness. Thickening of the soft tissue posterior to the odontoid process can form a retro-odontoid pseudotumor causing symptoms of spinal cord compression. Rheumatoid arthritis and long-term dialysis have been reported as possible causes for this. However, there have been reports of retro-odontoid pseudotumors without coexisting diseases. Findings from a total of 503 cases of cervical spine magnetic resonance images were reviewed, and retro-odontoid soft-tissue thickness was measured. The values were matched for age, sex, presence of degenerative changes, rheumatoid arthritis, and dialysis and were analyzed for significance. Retro-odontoid soft tissue thickened with age, and this was also seen in male patients and patients with degenerative changes. Significant increase in thickness was also observed in patients undergoing dialysis and further increased with prolonged dialysis. There was no significant association with presence of rheumatoid arthritis. There is association between age, sex, degenerative cervical spine changes, and dialysis with retro-odontoid soft-tissue thickness. With dialysis, retro-odontoid soft-tissue thickness increases with increasing duration. Thus, reviewing magnetic resonance image from daily practice indicates that cervical spine degeneration is associated with the development of retro-odontoid pseudotumors.
[Inconformity between soft tissue defect and bony defect in incomplete cleft palate].
Zhou, Xia; Ma, Lian
2014-12-01
To evaluate the inconformity between soft tissue defect and bony defect by observing the cleft extent of palate with complete secondary palate bony cleft in incomplete cleft palate patient. The patients with incomplete cleft palate treated in Hospital of Stomatology Peking University from July 2012 to June 2013 were reviewed, of which 75 cases with complete secondary palate bony cleft were selected in this study. The CT scan and intraoral photograph were taken before operation. The patients were classified as four types according to the extent of soft tissue defect. Type 1: soft tissue defect reached incisive foremen region, Type 2 was hard and soft cleft palate, Type 3 soft cleft palate and Type 4 submucous cleft palate. Type 1 was defined as conformity group (CG). The other three types were defined as inconformity group (ICG) and divided into three subgroups (ICG-I), (ICG-II) and (ICG-III). Fifty-seven patients were in ICG group, and the rate of inconformity was 76% (57/75). The percentage of ICG-I, ICG-II and ICG-III was 47% (27/57), 23% (13/57) and 30% (17/57), respevtively. There are different types of soft tissue deformity with complete secondary palate bony cleft. The inconformity between soft tissue and hard tissue defect exits in 3/4 of isolated cleft palate patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C., E-mail: htvinwu@polyu.edu.hk; Tse, Teddy K.H.; Ho, Cola L.M.
2013-07-01
Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each casemore » by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.« less
Childhood Soft Tissue Sarcoma Treatment (PDQ®)—Patient Version
Childhood soft tissue sarcoma treatment options include surgery, radiation therapy, chemotherapy, observation, targeted therapy, immunotherapy and other medications. Learn more about the diagnosis and treatment of the many types of childhood soft tissue sarcoma in this expert-reviewed summary.
Hard and soft tissue augmentation in a postorthodontic patient: a case report.
Bonacci, Fred J
2011-02-01
A combination of hard and soft tissue grafting is used to augment a thin biotype. A 26-year-old woman with mandibular anterior flaring and Miller Class I and III recessions requested interceptive treatment. Surgery included a full-thickness buccal flap, intramarrow penetrations, bone graft placement, and primary flap closure. Postoperative visits were at 2 and 4 weeks and 2, 3, and 6 months. Stage-two surgery consisted of submerged connective tissue graft placement. Postoperative visits were completed at 2, 4, 6, and 8 weeks and 1 year. Follow-up was completed 3 years after the initial surgery. Interradicular concavities were resolved and gingival biotype was augmented. Soft tissue recession remained at 6 months. Reentry revealed clinical labial plate augmentation; 2 mm was achieved at the lateral incisors and the left central incisor and 3 mm was achieved at the right canine. No bone augmentation was achieved on the left canine and right central incisor. The dehiscence at the right central incisor appeared narrower. Overall, a 2- to 3-mm gain in alveolar bone thickness/height was observed. Two months after stage-two surgery, near complete root coverage was achieved; 1 mm of recession remained on the left central incisor. There was a soft tissue thickness gain of 2 mm without any visual difference in keratinized tissue height. Interradicular concavities were eliminated; the soft tissue was augmented and the gingival biotype was altered. Interdental soft tissue craters remained. One year after connective tissue graft placement, there was near complete root coverage at the left central incisor, which at 2 months experienced residual recession. Interradicular concavities and interdental soft tissue craters were eliminated with soft tissue augmentation, including clinical reestablishment of the mucogingival junction. Clinical stability remained 3 years after the initial surgery, with the patient noting comfort during mastication and routine oral hygiene. A clinical increase in labial plate thickness, in conjunction with soft tissue augmentation, appears to provide for continued stability and decreased potential for future clinical attachment loss.
Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly
Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.
2015-01-01
Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638
Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E
2017-09-01
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amiri, Shahram; Wilson, David R.
2012-01-01
Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty. PMID:23082090
Health, Maintenance, and Recovery of Soft Tissues around Implants.
Wang, Yulan; Zhang, Yufeng; Miron, Richard J
2016-06-01
The health of peri-implant soft tissues is one of the most important aspects of osseointegration necessary for the long-term survival of dental implants. To review the process of soft tissue healing around osseointegrated implants and discuss the maintenance requirements as well as the possible short-comings of peri-implant soft tissue integration. Literature search on the process involved in osseointegration, soft tissue healing and currently available treatment modalities was performed and a brief description of each process was provided. The peri-implant interface has been shown to be less effective than natural teeth in resisting bacterial invasion because gingival fiber alignment and reduced vascular supply make it more vulnerable to subsequent peri-implant disease and future bone loss around implants. And we summarized common procedures which have been shown to be effective in preventing peri-implantitis disease progression as well as clinical techniques utilized to regenerate soft tissues with bone loss in advanced cases of peri-implantitis. Due to the difference between peri-implant interface and natural teeth, clinicians and patients should pay more attention in the maintenance and recovery of soft tissues around implants. © 2015 Wiley Periodicals, Inc.
Bezrukov, Ilja; Schmidt, Holger; Mantlik, Frédéric; Schwenzer, Nina; Brendle, Cornelia; Schölkopf, Bernhard; Pichler, Bernd J
2013-10-01
Hybrid PET/MR systems have recently entered clinical practice. Thus, the accuracy of MR-based attenuation correction in simultaneously acquired data can now be investigated. We assessed the accuracy of 4 methods of MR-based attenuation correction in lesions within soft tissue, bone, and MR susceptibility artifacts: 2 segmentation-based methods (SEG1, provided by the manufacturer, and SEG2, a method with atlas-based susceptibility artifact correction); an atlas- and pattern recognition-based method (AT&PR), which also used artifact correction; and a new method combining AT&PR and SEG2 (SEG2wBONE). Attenuation maps were calculated for the PET/MR datasets of 10 patients acquired on a whole-body PET/MR system, allowing for simultaneous acquisition of PET and MR data. Eighty percent iso-contour volumes of interest were placed on lesions in soft tissue (n = 21), in bone (n = 20), near bone (n = 19), and within or near MR susceptibility artifacts (n = 9). Relative mean volume-of-interest differences were calculated with CT-based attenuation correction as a reference. For soft-tissue lesions, none of the methods revealed a significant difference in PET standardized uptake value relative to CT-based attenuation correction (SEG1, -2.6% ± 5.8%; SEG2, -1.6% ± 4.9%; AT&PR, -4.7% ± 6.5%; SEG2wBONE, 0.2% ± 5.3%). For bone lesions, underestimation of PET standardized uptake values was found for all methods, with minimized error for the atlas-based approaches (SEG1, -16.1% ± 9.7%; SEG2, -11.0% ± 6.7%; AT&PR, -6.6% ± 5.0%; SEG2wBONE, -4.7% ± 4.4%). For lesions near bone, underestimations of lower magnitude were observed (SEG1, -12.0% ± 7.4%; SEG2, -9.2% ± 6.5%; AT&PR, -4.6% ± 7.8%; SEG2wBONE, -4.2% ± 6.2%). For lesions affected by MR susceptibility artifacts, quantification errors could be reduced using the atlas-based artifact correction (SEG1, -54.0% ± 38.4%; SEG2, -15.0% ± 12.2%; AT&PR, -4.1% ± 11.2%; SEG2wBONE, 0.6% ± 11.1%). For soft-tissue lesions, none of the evaluated methods showed statistically significant errors. For bone lesions, significant underestimations of -16% and -11% occurred for methods in which bone tissue was ignored (SEG1 and SEG2). In the present attenuation correction schemes, uncorrected MR susceptibility artifacts typically result in reduced attenuation values, potentially leading to highly reduced PET standardized uptake values, rendering lesions indistinguishable from background. While AT&PR and SEG2wBONE show accurate results in both soft tissue and bone, SEG2wBONE uses a two-step approach for tissue classification, which increases the robustness of prediction and can be applied retrospectively if more precision in bone areas is needed.
Nazarynasab, Dariush; Farahmand, Farzam; Mirbagheri, Alireza; Afshari, Elnaz
2017-07-01
Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of obtaining compressive force-deformation data related to mechanical behaviour of soft tissues. This new laparoscopic grasper includes four sections as mechanical hardware, sensory part, electrical/electronical part and data storage part. By considering a unique design for mechanical hardware, data recording conditions will be close to unconfined-compression-test conditions; so obtained data can be properly used in extracting the mechanical behaviour of soft tissues. Also, the other distinguishing feature of this new system is its applicability during different laparoscopic surgeries and subsequently obtaining in vivo data. However, more preclinical examinations are needed to evaluate the practicality of the novel laparoscopic grasper with two parallel jaws.
Facial soft tissue thickness in skeletal type I Japanese children.
Utsuno, Hajime; Kageyama, Toru; Deguchi, Toshio; Umemura, Yasunobu; Yoshino, Mineo; Nakamura, Hiroshi; Miyazawa, Hiroo; Inoue, Katsuhiro
2007-10-25
Facial reconstruction techniques used in forensic anthropology require knowledge of the facial soft tissue thickness of each race if facial features are to be reconstructed correctly. If this is inaccurate, so also will be the reconstructed face. Knowledge of differences by age and sex are also required. Therefore, when unknown human skeletal remains are found, the forensic anthropologist investigates for race, sex, and age, and for other variables of relevance. Cephalometric X-ray images of living persons can help to provide this information. They give an approximately 10% enlargement from true size and can demonstrate the relationship between soft and hard tissue. In the present study, facial soft tissue thickness in Japanese children was measured at 12 anthropological points using X-ray cephalometry in order to establish a database for facial soft tissue thickness. This study of both boys and girls, aged from 6 to 18 years, follows a previous study of Japanese female children only, and focuses on facial soft tissue thickness in only one skeletal type. Sex differences in thickness of tissue were found from 12 years of age upwards. The study provides more detailed and accurate measurements than past reports of facial soft tissue thickness, and reveals the uniqueness of the Japanese child's facial profile.
Mechanics of ultrasound elastography
Li, Guo-Yang
2017-01-01
Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350
Non Lipomatous Benign Lesions Mimicking Soft-tissue Sarcomas: A Pictorial Essay
CORAN, ALESSANDRO; ORSATTI, GIOVANNA; CRIMÌ, FILIPPO; RASTRELLI, MARCO; DI MAGGIO, ANTONIO; PONZONI, ALBERTO; ATTAR, SHADY; STRAMARE, ROBERTO
2018-01-01
The incidental finding of soft tissue masses is a challenge for the radiologist. Benign and malignant lesions can be differentiated relying on patient history, symptoms and mostly with the help of imaging. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) become fundamental in order to distinguish these lesions but the radiologist needs to know the main characteristics of benign soft tissue masses and sarcomas. Herein, we present a pictorial review of lesions mimicking soft tissue sarcomas features. PMID:29475903
Akbarzadeh, A; Ay, M R; Ahmadian, A; Alam, N Riahi; Zaidi, H
2013-02-01
Hybrid PET/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies.
Novel on-demand bioadhesion to soft tissue in wet environments.
Mogal, Vishal; Papper, Vladislav; Chaurasia, Alok; Feng, Gao; Marks, Robert; Steele, Terry
2014-04-01
Current methods of tissue fixation rely on mechanical-related technologies developed from the clothing and carpentry industries. Herein, a novel bioadhesive method that allows tuneable adhesion and is also applicable to biodegradable polyester substrates is described. Diazirine is the key functional group that allows strong soft tissue crosslinking and on-demand adhesion based on a free radical mechanism. Plasma post-irradiation grafting makes it possible to graft diazirine onto PLGA substrates. When the diazirine-PLGA films, placed on wetted ex vivo swine aortas, are activated with low intensity UV light, lap shear strength of up to 450 ± 50 mN cm(-2) is observed, which is one order of magnitude higher than hydrogel bioadhesives placed on similar soft tissues. The diazirine-modified PLGA thin films could be added on top of previously developed technologies for minimally invasive surgeries. The present work is focused on the chemistry, grafting, and lap shear strength of the alkyl diazirine-modified PLGA bioadhesive films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toward soft-tissue elastography using digital holography to monitor surface acoustic waves
NASA Astrophysics Data System (ADS)
Li, Shiguang; Mohan, Karan D.; Sanders, William W.; Oldenburg, Amy L.
2011-11-01
Measuring the elasticity distribution inside the human body is of great interest because elastic abnormalities can serve as indicators of several diseases. We present a method for mapping elasticity inside soft tissues by imaging surface acoustic waves (SAWs) with digital holographic interferometry. With this method, we show that SAWs are consistent with Rayleigh waves, with velocities proportional to the square root of the elastic modulus greater than 2-40 kPa in homogeneous tissue phantoms. In two-layer phantoms, the SAW velocity transitions approximately from that of the lower layer to that of the upper layer as frequency is increased in agreement with the theoretical relationship between SAW dispersion and the depth-dependent stiffness profile. We also observed deformation in the propagation direction of SAWs above a stiff inclusion placed 8 mm below the surface. These findings demonstrate the potential for quantitative digital holography-based elastography of soft tissues as a noninvasive method for disease detection.
Levy, Angela D; Manning, Maria A; Al-Refaie, Waddah B; Miettinen, Markku M
2017-01-01
Soft-tissue sarcomas are a diverse group of rare mesenchymal malignancies that can arise at any location in the body and affect all age groups. These sarcomas are most common in the extremities, trunk wall, retroperitoneum, and head and neck. In the adult population, soft-tissue sarcomas arising in the abdomen and pelvis are often large masses at the time of diagnosis because they are usually clinically silent or cause vague or mild symptoms until they invade or compress vital organs. In contrast, soft-tissue sarcomas arising from the abdominal wall come to clinical attention earlier in the course of disease because they cause a palpable mass, abdominal wall deformity, or pain that is more clinically apparent. The imaging features of abdominal and pelvic sarcomas and abdominal wall sarcomas can be nonspecific and overlap with more common pathologic conditions, making diagnosis difficult or, in some cases, delaying diagnosis. Liposarcoma (well-differentiated and dedifferentiated liposarcomas), leiomyosarcoma, and gastrointestinal stromal tumor (GIST) are the most common intra-abdominal primary sarcomas. Any soft-tissue sarcoma can arise in the abdominal wall. Knowledge of the classification and pathologic features of soft-tissue sarcomas, the anatomic locations where they occur, and their cross-sectional imaging features helps the radiologist establish the diagnosis or differential diagnosis so that patients with soft-tissue sarcomas can receive optimal treatment and management. In part 1 of this article, the most common soft-tissue sarcomas (liposarcoma, leiomyosarcoma, and GIST) are reviewed, with a discussion on anatomic locations, classification, clinical considerations, and differential diagnosis. Part 2 will focus on the remainder of the soft-tissue sarcomas occurring in the abdomen and pelvis.
Abdel-Hamid, Mohamed Zaki; Chang, Chung-Hsun; Chan, Yi-Sheng; Lo, Yang-Pin; Huang, Jau-Wen; Hsu, Kuo-Yao; Wang, Ching-Jen
2006-06-01
This investigation arthroscopically assesses the frequency of soft tissue injury in tibial plateau fracture according to the severity of fracture patterns. We hypothesized that use of arthroscopy to evaluate soft tissue injury in tibial plateau fractures would reveal a greater number of associated injuries than have previously been reported. From March 1996 to December 2003, 98 patients with closed tibial plateau fractures were treated with arthroscopically assisted reduction and osteosynthesis, with precise diagnosis and management of associated soft tissue injuries. Arthroscopic findings for associated soft tissue injuries were recorded, and the relationship between fracture type and soft tissue injury was then analyzed. The frequency of associated soft tissue injury in this series was 71% (70 of 98). The menisci were injured in 57% of subjects (56 in 98), the anterior cruciate ligament (ACL) in 25% (24 of 98), the posterior cruciate ligament (PCL) in 5% (5 of 98), the lateral collateral ligament (LCL) in 3% (3 of 98), the medial collateral ligament (MCL) in 3% (3 of 98), and the peroneal nerve in 1% (1 of 98); none of the 98 patients exhibited injury to the arteries. No significant association was noted between fracture type and incidence of meniscus, PCL, LCL, MCL, artery, and nerve injury. However, significantly higher injury rates for the ACL were observed in type IV and VI fractures. Soft tissue injury was associated with all types of tibial plateau fracture. Menisci (peripheral tear) and ACL (bony avulsion) were the most commonly injured sites. A variety of soft tissue injuries are common with tibial plateau fracture; these can be diagnosed with the use of an arthroscope. Level III, diagnostic study.
Manning, Maria A.; Al-Refaie, Waddah B.; Miettinen, Markku M.
2017-01-01
Soft-tissue sarcomas are a diverse group of rare mesenchymal malignancies that can arise at any location in the body and affect all age groups. These sarcomas are most common in the extremities, trunk wall, retroperitoneum, and head and neck. In the adult population, soft-tissue sarcomas arising in the abdomen and pelvis are often large masses at the time of diagnosis because they are usually clinically silent or cause vague or mild symptoms until they invade or compress vital organs. In contrast, soft-tissue sarcomas arising from the abdominal wall come to clinical attention earlier in the course of disease because they cause a palpable mass, abdominal wall deformity, or pain that is more clinically apparent. The imaging features of abdominal and pelvic sarcomas and abdominal wall sarcomas can be nonspecific and overlap with more common pathologic conditions, making diagnosis difficult or, in some cases, delaying diagnosis. Liposarcoma (well-differentiated and dedifferentiated liposarcomas), leiomyosarcoma, and gastrointestinal stromal tumor (GIST) are the most common intra-abdominal primary sarcomas. Any soft-tissue sarcoma can arise in the abdominal wall. Knowledge of the classification and pathologic features of soft-tissue sarcomas, the anatomic locations where they occur, and their cross-sectional imaging features helps the radiologist establish the diagnosis or differential diagnosis so that patients with soft-tissue sarcomas can receive optimal treatment and management. In part 1 of this article, the most common soft-tissue sarcomas (liposarcoma, leiomyosarcoma, and GIST) are reviewed, with a discussion on anatomic locations, classification, clinical considerations, and differential diagnosis. Part 2 will focus on the remainder of the soft-tissue sarcomas occurring in the abdomen and pelvis. PMID:28287938
Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping
2012-01-01
Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890
Urban, Istvan A; Monje, Alberto; Wang, Hom-Lay
2015-01-01
Severe vertical ridge deficiency in the anterior maxilla represents one of the most challenging clinical scenarios in the bone regeneration arena. As such, a combination of vertical bone augmentation using various biomaterials and soft tissue manipulation is needed to obtain successful outcomes. The present case series describes a novel approach to overcome vertical deficiencies in the anterior atrophied maxillae by using a mixture of autologous and anorganic bovine bone. Soft tissue manipulation including, but not limited to, free soft tissue graft was used to overcome the drawbacks of vertical bone augmentation (eg, loss of vestibular depth and keratinized mucosa). By combining soft and hard tissue grafts, optimum esthetic and long-term implant prosthesis stability can be achieved and sustained.
Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*
Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon
2013-01-01
Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910
Soft tissue augmentation around osseointegrated and uncovered dental implants: a systematic review.
Bassetti, Renzo G; Stähli, Alexandra; Bassetti, Mario A; Sculean, Anton
2017-01-01
The aim was to compile the current knowledge about the efficacy of different soft tissue correction methods around osseointegrated, already uncovered and/or loaded (OU/L) implants with insufficient soft tissue conditions. Procedures to increase peri-implant keratinized mucosa (KM) width and/or soft tissue volume were considered. Screening of two databases: MEDLINE (PubMed) and EMBASE (OVID), and manual search of articles were performed. Human studies reporting on soft tissue augmentation/correction methods around OU/L implants up to June 30, 2016, were considered. Quality assessment of selected full-text articles to weight risk of bias was performed using the Cochrane collaboration's tool. Overall, four randomized controlled trials (risk of bias = high/low) and five prospective studies (risk of bias = high) were included. Depending on the surgical techniques and graft materials, the enlargement of keratinized tissue (KT) ranged between 1.15 ± 0.81 and 2.57 ± 0.50 mm. The apically positioned partial thickness flap (APPTF), in combination with a free gingival graft (FGG), a subepithelial connective tissue graft (SCTG), or a xenogeneic graft material (XCM) were most effective. A coronally advanced flap (CAF) combined with SCTG in three, combined with allogenic graft materials (AMDA) in one, and a split thickness flap (STF) combined with SCTG in another study showed mean soft tissue recession coverage rates from 28 to 96.3 %. STF combined with XCM failed to improve peri-implant soft tissue coverage. The three APPTF-techniques combined with FGG, SCTG, or XCM achieved comparable enlargements of peri-implant KT. Further, both STF and CAF, both in combination with SCTG, are equivalent regarding recession coverage rates. STF + XCM and CAF + AMDA did not reach significant coverage. In case of soft tissue deficiency around OU/L dental implants, the selection of both an appropriate surgical technique and a suitable soft tissue graft material is of utmost clinical relevance.
The Adjunctive Soft-Tissue Diode Laser in Orthodontics.
Borzabadi-Farahani, Ali
2017-04-01
Lasers are a relatively new addition to the orthodontist's armamentarium. This article reviews the fundamental basic science of available soft-tissue lasers, with an emphasis on diode lasers, and discusses various adjunct applications of the diode laser for soft-tissue orthodontic procedures. Diode lasers function by cutting with an initiated hot tip and produce minimal to no interaction with healthy dental hard tissue, making them suitable for soft-tissue procedures. The contact cutting mode provides enhanced bloodless site visibility and facility to perform delicate soft tissue procedures, which is important in areas with difficult access. Such adjunctive uses include laser gingivectomy to improve oral hygiene or bracket positioning, esthetic laser gingival recontouring, and laser exposure of superficially impacted teeth. Selected cases treated with a 940-nm indium-gallium-arsenide-phosphide (InGaAsP) diode laser will be presented.
The role of radiology in paediatric soft tissue sarcomas
van Rijn, R.; McHugh, K.
2008-01-01
Abstract Paediatric soft tissue sarcomas (STS) are a group of malignant tumours that originate from primitive mesenchymal tissue and account for 7% of all childhood tumours. Rhabdomyosarcomas (RMS) and undifferentiated sarcomas account for approximately 50% of soft tissue sarcomas in children and non-rhabdomyomatous soft tissue sarcomas (NRSTS) the remainder. The prognosis and biology of STS tumours vary greatly depending on the age of the patient, the primary site, tumour size, tumour invasiveness, histologic grade, depth of invasion, and extent of disease at diagnosis. Over recent years, there has been a marked improvement in survival rates in children and adolescents with soft tissue sarcoma and ongoing international studies continue to aim to improve these survival rates whilst attempting to reduce the morbidity associated with treatment. Radiology plays a crucial role in the initial diagnosis and staging of STS, in the long term follow-up and in the assessment of many treatment related complications. We review the epidemiology, histology, clinical presentation, staging and prognosis of soft tissue sarcomas and discuss the role of radiology in their management. PMID:18442956
Development and characterization of a novel hydrogel adhesive for soft tissue applications
NASA Astrophysics Data System (ADS)
Sanders, Lindsey Kennedy
With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for expandable organ application, such as the bladder. Incorporation of chitosan expanded the utility of the bi-functional modified T1107 (TAS) adhesive to tissue wounds on highly vascularized organs (e.g., liver, kidney). Further, we demonstrated that the modified Tetronic adhesive is biocompatible and safe for treatment of small soft tissue wounds on rat's muscle using FDA requirements. The current findings helped our understanding of the material and mechanical properties of the modified Tetronic adhesive and ultimately progress the field of surgical adhesives and sealants by providing a tunable adhesive system for various internal soft tissue wound applications.
Wei, Shi; Henderson-Jackson, Evita; Qian, Xiaohua; Bui, Marilyn M
2017-08-01
- Current 2013 World Health Organization classification of tumors of soft tissue arranges these tumors into 12 groups according to their histogenesis. Tumor behavior is classified as benign, intermediate (locally aggressive), intermediate (rarely metastasizing), and malignant. In our practice, a general approach to reaching a definitive diagnosis of soft tissue tumors is to first evaluate clinicoradiologic, histomorphologic, and cytomorphologic features of the tumor to generate some pertinent differential diagnoses. These include the potential line of histogenesis and whether the tumor is benign or malignant, and low or high grade. Although molecular/genetic testing is increasingly finding its applications in characterizing soft tissue tumors, currently immunohistochemistry still not only plays an indispensable role in defining tumor histogenesis, but also serves as a surrogate for underlining molecular/genetic alterations. Objective- To provide an overview focusing on the current concepts in the classification and diagnosis of soft tissue tumors, incorporating immunohistochemistry. This article uses examples to discuss how to use the traditional and new immunohistochemical markers for the diagnosis of soft tissue tumors. Practical diagnostic pearls, summary tables, and figures are used to show how to avoid diagnostic pitfalls. - Data were obtained from pertinent peer-reviewed English-language literature and the authors' first-hand experience as bone and soft tissue pathologists. - -The ultimate goal for a pathologist is to render a specific diagnosis that provides diagnostic, prognostic, and therapeutic information to guide patient care. Immunohistochemistry is integral to the diagnosis and management of soft tissue tumors.
Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun
2018-03-01
Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soft tissues store and return mechanical energy in human running.
Riddick, R C; Kuo, A D
2016-02-08
During human running, softer parts of the body may deform under load and dissipate mechanical energy. Although tissues such as the heel pad have been characterized individually, the aggregate work performed by all soft tissues during running is unknown. We therefore estimated the work performed by soft tissues (N=8 healthy adults) at running speeds ranging 2-5 m s(-1), computed as the difference between joint work performed on rigid segments, and whole-body estimates of work performed on the (non-rigid) body center of mass (COM) and peripheral to the COM. Soft tissues performed aggregate negative work, with magnitude increasing linearly with speed. The amount was about -19 J per stance phase at a nominal 3 m s(-1), accounting for more than 25% of stance phase negative work performed by the entire body. Fluctuations in soft tissue mechanical power over time resembled a damped oscillation starting at ground contact, with peak negative power comparable to that for the knee joint (about -500 W). Even the positive work from soft tissue rebound was significant, about 13 J per stance phase (about 17% of the positive work of the entire body). Assuming that the net dissipative work is offset by an equal amount of active, positive muscle work performed at 25% efficiency, soft tissue dissipation could account for about 29% of the net metabolic expenditure for running at 5 m s(-1). During running, soft tissue deformations dissipate mechanical energy that must be offset by active muscle work at non-negligible metabolic cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low, Jin-Huat; Yeow, Chen-Hua
2016-08-02
Soft compliant gripping is essential in delicate surgical manipulation for minimizing the risk of tissue grip damage caused by high stress concentrations at the point of contact. It can be achieved by complementing traditional rigid grippers with soft robotic pneumatic gripper devices. This manuscript describes a rod-based approach that combined both 3D-printing and a modified soft lithography technique to fabricate the soft pneumatic gripper. In brief, the pneumatic featureless mold with chamber component is 3D-printed and the rods were used to create the pneumatic channels that connect to the chamber. This protocol eliminates the risk of channels occluding during the sealing process and the need for external air source or related control circuit. The soft gripper consists of a chamber filled with air, and one or more gripper arms with a pneumatic channel in each arm connected to the chamber. The pneumatic channel is positioned close to the outer wall to create different stiffness in the gripper arm. Upon compression of the chamber which generates pressure on the pneumatic channel, the gripper arm will bend inward to form a close grip posture because the outer wall area is more compliant. The soft gripper can be inserted into a 3D-printed handling tool with two different control modes for chamber compression: manual gripper mode with a movable piston, and robotic gripper mode with a linear actuator. The double-arm gripper with two actuatable arms was able to pick up objects of sizes up to 2 mm and yet generate lower compressive forces as compared to elastomer-coated and non-coated rigid grippers. The feasibility of having other designs, such as single-arm or hook gripper, was also demonstrated, which further highlighted the customizability of the soft gripper device, and it's potential to be used in delicate surgical manipulation to reduce the risk of tissue grip damage.
Color reproduction for advanced manufacture of soft tissue prostheses.
Xiao, Kaida; Zardawi, Faraedon; van Noort, Richard; Yates, Julian M
2013-11-01
The objectives of this study were to develop a color reproduction system in advanced manufacture technology for accurate and automatic processing of soft tissue prostheses. The manufacturing protocol was defined to effectively and consistently produce soft tissue prostheses using a 3D printing system. Within this protocol printer color profiles were developed using a number of mathematical models for the proposed 3D color printing system based on 240 training colors. On this basis, the color reproduction system was established and their system errors including accuracy of color reproduction, performance of color repeatability and color gamut were evaluated using 14 known human skin shades. The printer color profile developed using the third-order polynomial regression based on least-square fitting provided the best model performance. The results demonstrated that by using the proposed color reproduction system, 14 different skin colors could be reproduced and excellent color reproduction performance achieved. Evaluation of the system's color repeatability revealed a demonstrable system error and this highlighted the need for regular evaluation. The color gamut for the proposed 3D printing system was simulated and it was demonstrated that the vast majority of skin colors can be reproduced with the exception of extreme dark or light skin color shades. This study demonstrated that the proposed color reproduction system can be effectively used to reproduce a range of human skin colors for application in advanced manufacture of soft tissue prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization.
Shin, Jaehyun; Zhong, Yongmin; Oetomo, Denny; Gu, Chengfan
2018-05-21
This paper presents a new nonlinear filtering method based on the Hunt-Crossley model for online nonlinear soft tissue characterization. This method overcomes the problem of performance degradation in the unscented Kalman filter due to contact model error. It adopts the concept of Mahalanobis distance to identify contact model error, and further incorporates a scaling factor in predicted state covariance to compensate identified model error. This scaling factor is determined according to the principle of innovation orthogonality to avoid the cumbersome computation of Jacobian matrix, where the random weighting concept is adopted to improve the estimation accuracy of innovation covariance. A master-slave robotic indentation system is developed to validate the performance of the proposed method. Simulation and experimental results as well as comparison analyses demonstrate that the efficacy of the proposed method for online characterization of soft tissue parameters in the presence of contact model error.
Changes of the peri-implant soft tissue thickness after grafting with a collagen matrix
Zafiropoulos, Gregory-George; Deli, Giorgio; Hoffmann, Oliver; John, Gordon
2016-01-01
Background: The aim of this study was to determine the treatment outcome of the use of a porcine monolayer collagen matrix (mCM) to increase soft-tissue volume as a part of implant site development. Materials and Methods: Implants were placed in single sites in 27 patients. In the test group, mCM was used for soft-tissue augmentation. No graft was placed in the control group. Soft-tissue thickness (STTh) was measured at the time of surgery (T0) and 6 months postoperatively (T1) at two sites (STTh 1, 1 mm below the gingival margin; STTh 2, 3 mm below the mucogingival margin). Results: Significant increases (P < 0.001) in STTh (STTh 1 = 1.06 mm, 117%; STTh 2 = 0.89 mm, 81%) were observed in the test group. Biopsy results showed angiogenesis and mature connective tissue covered by keratinized epithelium. Conclusions: Within the limitations of this study, it could be concluded that mCM leads to a significant increase of peri-implant soft-tissue thickness, with good histological integration and replacement by soft tissue and may serve as an alternative to connective tissue grafting. PMID:28298828
Zhu, Lei; Zhang, Yuanzheng; Ji, Yali
2017-06-01
Poly(1,8-octanediol citrate) (POC) is a recently developed biodegradable crosslinked elastomer that possesses good cytocompatibility and matchable mechanical properties to soft tissues. However, the thermosetting characteristic reveals a big challenge to manufacture its porous scaffold. Herein, POC elastomer was electrospun into fiber mat using poly(L-lactic acid) (PLLA) as a spinnable carrier. The obtained POC/PLLA fiber mats were characterized by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), uniaxial tensile test, static-water-contact-angle, thermal analysis, in vitro degradation and biocompatibility test. It was found that the fibrous structure could be formed so long as the POC pre-polymer's content was no more than 50 wt%. The presence of elastic POC component not only strengthened the fiber mats but also toughened the fiber mats. The hydrophilicity of 50/50 fiber mat significantly improved. In vitro degradation rate of POC based fiber mats was much faster than that of pure PLLA. Cyto- and histo-compatibility tests confirmed that the POC/PLLA fiber mats had good biocompatibility for potential applications in soft tissue engineering.
Joss, Christof Urs; Joss-Vassalli, Isabella Maria; Kiliaridis, Stavros; Kuijpers-Jagtman, Anne Marie
2010-06-01
The purpose of the present systematic review was to evaluate the soft tissue/hard tissue ratio in bilateral sagittal split advancement osteotomy (BSSO) with rigid internal fixation (RIF) or wire fixation (WF). The databases PubMed, Medline, CINAHL, Web of Science, Cochrane Library, and Google Scholar Beta were searched. From the original 711 articles identified, 12 were finally included. Only 3 studies were prospective and 9 were retrospective. The postoperative follow-up ranged from 3 months to 12.7 years for RIF and 6 months to 5 years for WF. The short- and long-term ratios for the lower lip to lower incisor for BSSO with RIF or WF were 50%. No difference between the short- and long-term ratios for the mentolabial-fold to point B and soft tissue pogonion to pogonion could be observed. It was a 1:1 ratio. One exception was seen for the long-term results of the soft tissue pogonion to pogonion in BSSO with RIF; they tended to be greater than a 1:1 ratio. The upper lip mainly showed retrusion but with high variability. Despite a large number of studies on the short- and long-term effects of mandibular advancement by BSSO, the results of the present systematic review have shown that evidence-based conclusions on soft tissue changes are still unknown. This is mostly because of the inherent problems of retrospective studies, inferior study designs, and the lack of standardized outcome measures. Well-designed prospective studies with sufficient sample sizes that have excluded patients undergoing additional surgery (ie, genioplasty or maxillary surgery) are needed. 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Mehl, Christian; Gassling, Volker; Schultz-Langerhans, Stephan; Açil, Yahya; Bähr, Telse; Wiltfang, Jörg; Kern, Matthias
The main aim of this study was to evaluate the influence of four different abutment materials and the adhesive joint of two-piece abutments on the cervical implant bone and soft tissue. Sixty-four titanium implants (Camlog Conelog; 4.3 ± 9 mm) were placed bone level into the edentulous arches of four minipigs. Four different types of abutments were placed at implant exposure: zirconium dioxide, lithium disilicate, and titanium bonded to a titanium luting base with resin cement; one-piece titanium abutments served as the control. The animals were sacrificed 6 months after implant exposure, and the bone-to-implant contact (BIC) area, sulcus depth, the length of the junctional epithelium and the connective tissue, the biologic width, and first cervical BIC-implant shoulder distance were measured using histomorphometry and light and fluorescence microscopy. Overall, 14 implants were lost (22%). At exposure, the implant shoulder-bone distance was 0.6 ± 0.7 mm. Six months later, the bone loss was 2.1 ± 1.2 mm measured histomorphometrically. There was a significant difference between the two measurements (P ≤ .0001). No significant influence could be found between any of the abutment materials with regard to bone loss or soft tissue anatomy (P > .05), with the exception of zirconium dioxide and onepiece titanium abutments when measuring the length of the junctional epithelium (P ≤ .01). The maxilla provided significantly more soft tissue and less bone loss compared with the mandible (P ≤ .02). All tested abutment materials and techniques seem to be comparable with regard to soft tissue properties and the cervical bone level.
Soft network composite materials with deterministic and bio-inspired designs
Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.
2015-01-01
Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. PMID:25782446
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity.
Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T; Wang, Ruikang K; O'Donnell, Matthew
2016-12-23
Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity
Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew
2016-01-01
Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea. PMID:28008920
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity
NASA Astrophysics Data System (ADS)
Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2016-12-01
Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.
2018-02-27
Bone Cancer; Chondrosarcoma; Clear Cell Sarcoma of the Kidney; Metastatic Osteosarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Osteosarcoma; Recurrent Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma
2018-05-09
Metastatic Angiosarcoma; Metastatic Epithelioid Sarcoma; Metastatic Fibrosarcoma; Metastatic Leiomyosarcoma; Metastatic Liposarcoma; Metastatic Malignant Peripheral Nerve Sheath Tumor; Metastatic Synovial Sarcoma; Metastatic Undifferentiated Pleomorphic Sarcoma; Myxofibrosarcoma; Pleomorphic Rhabdomyosarcoma; Stage III Soft Tissue Sarcoma; Stage IV Soft Tissue Sarcoma; Undifferentiated (Embryonal) Sarcoma
Soft tissue balancing in total shoulder replacement.
Mueller, Maike; Hoy, Gregory
2014-03-01
Total shoulder arthroplasty is now capable of recreating near anatomic reproduction of native bony shoulder anatomy, but the function and longevity of anatomic shoulder replacement is dependent on a competent soft tissue envelope and adequate motoring of all musculo-tendinous units about the shoulder. Balancing the soft tissues requires understanding of the anatomy and pathology, as well as technical skills. The advent of reverse shoulder biomechanics has brought with it special requirements of understanding of the soft tissue elements still left in the shoulder despite major rotator cuff deficiency.
Soft tissue coverage of the elbow in a developing country.
Pirela-Cruz, Miguel A; Reddy, Kartheek K; Higgs, Matthew
2007-09-01
Two cases that required soft tissue coverage to the anterior aspect of the elbow are presented. A fasciocutaneous intercostal perforator chest wall flap was used for one patient when only skin and fascia coverage was required. A latissimus dorsi myocutaneous flap was used to provide soft tissue coverage and supply motor power for elbow flexion after contracture release in the other. The surgical techniques for each of these flaps are discussed in the context of addressing soft tissue traumatic injuries about the elbow in a developing country with limited resources.
Relevance of infiltration analgesia in pain relief after total knee arthroplasty
Znojek-Tymborowska, Justyna; Kęska, Rafał; Paradowski, Przemysław T.; Witoński, Dariusz
2013-01-01
OBJECTIVE: The aim of the study was to assess the effect of different types of anesthesia on pain intensity in early postoperative period. PATIENTS AND METHODS: A total of 87 patients (77 women, 10 men) scheduled for total knee arthroplasty (TKA) were assigned to receive either subarachnoid anesthesia alone or in combination with local soft tissue anesthesia, local soft tissue anesthesia and femoral nerve block and pre-emptive infiltration together with local soft tissue anesthesia. We assessed the pain intensity, opioid consumption, knee joint mobility, and complications of surgery. RESULTS: Subjects with pre-emptive infiltration and local soft tissue anesthesia had lower pain intensity on the first postoperative day compared to those with soft tissue anesthesia and femoral nerve block (P=0.012, effect size 0.68). Subjects who received pre-emptive infiltration and local soft-tissue anesthesia had the greatest range of motion in the operated knee at discharge (mean 90 grades [SD 7], P=0.01 compared to those who received subarachnoid anesthesia alone, and P=0.001 compared to those with subarachnoid together with soft tissue anesthesia). CONCLUSION: Despite the differences in postoperative pain and knee mobility, the results obtained throughout the postoperative period do not enable us to favour neither local nor regional infiltration anesthesia in TKA. Level of Evidence II, Prospective Comparative Study. PMID:24453679
A large parosteal ossifying lipoma of lower limb encircling the femur
2014-01-01
Introduction Lipoma is a benign soft tissue neoplasm that may contain mesenchymal elements, as a result of metaplastic process. Ossification in benign and malignant soft tissue tumors can also manifest due to metaplastic process. Case presentation A 45 year old woman presented with a large thigh mass. The mass was developed one and a half year ago which insidiously increased in size and was associated with movement restriction. Radiological findings revealed soft tissue neoplasm on antero-medial aspect of thigh encircling the femur and displacing adjacent muscles. Fine trabeculations were seen in neoplasm suggestive of ossification. Excision of the mass was performed and histopathology revealed adipocytes with mature bony trabeculae possessing prominent osteoblastic rimming suggestive of ossifying lipoma. Conclusion It is important to recognize this variant of lipoma as it is associated with a better clinical outcome in contrast to most of the deep seated soft tissue neoplasms. Secondly it should also be differentiated from myositis ossificans and heterologous differentiation in other soft tissue neoplasms. We suggest an algorithmic approach to the diagnosis of ossifying soft tissue neoplasms histopathologically. Mature bony trabeculae with prominent osteoblastic rimming in a soft tissue lesion are due to a metaplastic process and should not be confused with osteosarcoma. PMID:24433545
A mummified duck-billed dinosaur with a soft-tissue cock's comb.
Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M
2014-01-06
Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer?
Naemi, R; Chatzistergos, P; Suresh, S; Sundar, L; Chockalingam, N; Ramachandran, A
2017-04-01
To investigate if the assessment of the mechanical properties of plantar soft tissue can increase the accuracy of predicting Diabetic Foot Ulceration (DFU). 40 patients with diabetic neuropathy and no DFU were recruited. Commonly assessed clinical parameters along with plantar soft tissue stiffness and thickness were measured at baseline using ultrasound elastography technique. 7 patients developed foot ulceration during a 12months follow-up. Logistic regression was used to identify parameters that contribute to predicting the DFU incidence. The effect of using parameters related to the mechanical behaviour of plantar soft tissue on the specificity, sensitivity, prediction strength and accuracy of the predicting models for DFU was assessed. Patients with higher plantar soft tissue thickness and lower stiffness at the 1st Metatarsal head area showed an increased risk of DFU. Adding plantar soft tissue stiffness and thickness to the model improved its specificity (by 3%), sensitivity (by 14%), prediction accuracy (by 5%) and prognosis strength (by 1%). The model containing all predictors was able to effectively (χ 2 (8, N=40)=17.55, P<0.05) distinguish between the patients with and without DFU incidence. The mechanical properties of plantar soft tissue can be used to improve the predictability of DFU in moderate/high risk patients. Copyright © 2017 Elsevier B.V. All rights reserved.
The study on facial soft tissue thickness using Han population in Xinjiang.
Wang, Jierui; Zhao, Xi; Mi, Congbo; Raza, Iqbal
2016-09-01
Facial profile is an important aspect in physical anthropology, forensic science, and cosmetic research. Thus, facial soft tissue measurement technology plays a significant role in facial restoration. A considerable amount of work has investigated facial soft tissue thickness, which significantly varies according to gender, age, and race. However, only few studies have considered the nutritional status of the investigated individuals. Moreover, no sufficient research among Chinese ethnic groups, particularly Xinjiang population in China, is currently available. Hence, the current study investigated the adaptability of facial soft tissue to the underlying hard tissue among young adults of Han population in Xinjiang, China; the analysis was performed on the basis of gender, skeletal class, and body mass index (BMI). Measurements were obtained from the lateral cephalometric radiographs of 256 adults aged 18-26 years old. Differences in soft tissue thickness were observed between genders and among skeletal classes. With regard to gender, significant differences in soft tissue thickness were found at rhinion, glabella, subnasale, stomion, labrale superius, pogonion, and gnathion among different BMI groups. Thus, nutritional status should be considered when reconstructing an individual's facial profile. Results showed that the thinnest and thickest craniofacial soft tissues existed in rhinion and lip regions, respectively. Overall, this research provides valuable data for forensic facial reconstruction and identification of young adults in Xinjiang, China. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Patel, Harsh S; Managutti, Anil M; Menat, Shailesh; Agarwal, Arvind; Shah, Dishan; Patel, Jigar
2016-07-01
Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic procedure often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. Recently developed physics forceps is one of the instruments which is claimed to perform atraumatic extractions. The aim of the present study was to compare the efficacy of physics forceps with conventional forceps in terms of operating time, prevention of marginal bone loss & soft tissue loss, postoperative pain and postoperative complications following bilateral premolar extractions for orthodontic purpose. In this prospective split-mouth study, outcomes of the 2 groups (n = 42 premolars) requiring extraction of premolars for orthodontic treatment purpose using Physics forceps and Conventional forceps were compared. Clinical outcomes in form of time taken, loss of buccal soft tissue and buccal cortical plate based on extraction defect classification system, postoperative pain and other complication associated with extraction were recorded and compared. Statistically significant reduction in the operating time was noted in physics forceps group. Marginal bone loss and soft tissue loss was also significantly lesser in physics forceps group when compared to conventional forceps group. However, there was no statistically significant difference in severity of postoperative pain between both groups. The results of the present study suggest that physics forceps was more efficient in reducing operating time and prevention of marginal bone loss & soft tissue loss when compared to conventional forceps in orthodontically indicated premolar extractions.
Safety and efficacy of an intensive insulin protocol in a burn-trauma intensive care unit.
Cochran, Amalia; Davis, Lynn; Morris, Stephen E; Saffle, Jeffrey R
2008-01-01
Aggressive glycemic management in critically ill patients with acute burn injury or life-threatening soft-tissue infections has not been thoroughly evaluated. An intensive insulin protocol with target glucose values of less than 120 mg/dl was implemented in October 2005 in our regional Burn-Trauma intensive care unit. We reviewed our initial experience with this protocol to evaluate the safety and efficacy of aggressive glycemic control in these patient groups. Patients were placed on the intensive insulin protocol based upon the need for glycemic management during their hospitalization for burn or soft-tissue disease. Patient information prospectively collected while on protocol included all measured blood glucose values, total daily insulin use, and incidence of hypoglycemic episodes, defined as serum glucose <60 mg/dl. Thirty patients (17 burns, 13 soft-tissue infections) were placed on the intensive insulin protocol during the first 16 months of use. The mean daily blood glucose level for burn patients was 115.9 mg/dl and for soft-tissue disease patients was 119.5 mg/dl. There was a 5% incidence of hypoglycemic episodes per protocol day. All hypoglycemic episodes were treated by holding the insulin infusion, and no episode had known adverse effects. Hyperglycemia in critically ill patients with burns and extensive soft-tissue disease can be effectively managed with an insulin protocol that targets blood glucose values of less than 120 mg/dl with minimal incidence of hypoglycemia. A multicenter prospective randomized trial would provide the ideal forum for evaluating clinical outcome benefits of using an intensive insulin protocol.
Panzer, Stephanie; Mc Coy, Mark R; Hitzl, Wolfgang; Piombino-Mascali, Dario; Jankauskas, Rimantas; Zink, Albert R; Augat, Peter
2015-01-01
The purpose of this study was to develop a checklist for standardized assessment of soft tissue preservation in human mummies based on whole-body computed tomography examinations, and to add a scoring system to facilitate quantitative comparison of mummies. Computed tomography examinations of 23 mummies from the Capuchin Catacombs of Palermo, Sicily (17 adults, 6 children; 17 anthropogenically and 6 naturally mummified) and 7 mummies from the crypt of the Dominican Church of the Holy Spirit of Vilnius, Lithuania (5 adults, 2 children; all naturally mummified) were used to develop the checklist following previously published guidelines. The scoring system was developed by assigning equal scores for checkpoints with equivalent quality. The checklist was evaluated by intra- and inter-observer reliability. The finalized checklist was applied to compare the groups of anthropogenically and naturally mummified bodies. The finalized checklist contains 97 checkpoints and was divided into two main categories, "A. Soft Tissues of Head and Musculoskeletal System" and "B. Organs and Organ Systems", each including various subcategories. The complete checklist had an intra-observer reliability of 98% and an inter-observer reliability of 93%. Statistical comparison revealed significantly higher values in anthropogenically compared to naturally mummified bodies for the total score and for three subcategories. In conclusion, the developed checklist allows for a standardized assessment and documentation of soft tissue preservation in whole-body computed tomography examinations of human mummies. The scoring system facilitates a quantitative comparison of the soft tissue preservation status between single mummies or mummy collections.
A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue
NASA Astrophysics Data System (ADS)
Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.
2013-04-01
Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.
A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue
Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.
2013-01-01
Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~ 3.5 fold increase in adhesion strength compared to staples in skin graft fixation, and removal force of ~ 4.5 N/cm2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics. PMID:23591869
von Drygalski, Annette; Moore, Randy E; Nguyen, Sonha; Barnes, Richard F W; Volland, Lena M; Hughes, Tudor H; Du, Jiang; Chang, Eric Y
2018-01-24
Point-of-care musculoskeletal ultrasound (US) is increasingly used by hemophilia providers to guide management; however, pathologic tissue differentiation with US is uncertain. We sought to determine the extent to which point-of-care musculoskeletal US can identify and discriminate pathologic soft tissue changes in hemophilic arthropathy. Thirty-six adult patients with hemophilia A/B were prospectively enrolled. Point-of-care musculoskeletal US examinations were performed on arthropathic joints (16 knees, 10 ankles, and 10 elbows) using standard views by a musculoskeletal US-trained and certified hematologist, who recorded abnormal intra-articular soft tissue accumulation. Within 3 days, magnetic resonance imaging was performed using conventional and multiecho ultrashort echo time sequences. Soft tissue identification (synovial proliferation with or without hemosiderin, fat, and/or blood products) was performed by a musculoskeletal radiologist. Findings obtained with both imaging modalities were compared and correlated in a blinded fashion. There was perfect agreement between the modalities on the presence of abnormal soft tissue (34 of 36 cases). However, musculoskeletal US was unable to discriminate between coagulated blood, synovium, intrasynovial or extrasynovial fat tissue, or hemosiderin deposits because of wide variations in echogenicity. Musculoskeletal US is valuable for point-of-care imaging to determine the presence of soft tissue accumulation in discrete areas. However, because of limitations of musculoskeletal US in discriminating the nature of pathologic soft tissues and detecting hemosiderin, magnetic resonance imaging will be required if such discrimination is clinically important. © 2018 by the American Institute of Ultrasound in Medicine.
Vincenzi, Bruno; Santini, Daniele; Schiavon, Gaia; Frezza, Anna Maria; Silletta, Marianna; Crucitti, Pierfilippo; Casali, Paolo; Dei Tos, Angelo P; Rossi, Sabrina; Rizzo, Sergio; Badalamenti, Giuseppe; Tomasino, Rosa Maria; Russo, Antonio; Butrynski, James E; Tonini, Giuseppe
2012-04-01
Soft tissue sarcomas are aggressive tumors representing <1% of all adult neoplasms. Aim of our study was to evaluate promyelocytic leukemia gene expression value as prognostic factor and as a factor predicting response to alkylating agents/antracycline-based first line therapy. One hundred eleven patients affected by locally advanced and metastatic soft tissue sarcoma were selected. PML expression was evaluated by immunohistochemical analysis in pathological samples and in the corresponding normal tissue from each case. PML immunohistochemical results were correlated with prognosis and with radiological response to alkylating agents/antracycline-based first line therapy. PML expression was significantly reduced in synovial sarcomas (P < 0.0001), in myofibroblastic sarcomas (P < 0.0001), angiosarcomas (P < 0.0001), in leiomyosarcomas (P = 0.003), in mixoid liposarcomas (P < 0.0001), and in dedifferentiated liposarcomas (P < 0.0001). No significant difference was found for pleomorphic sarcoma [31.8 (95% CI: 16.7-41.0); P = 0.21]. and pleomorphic liposarcomas (P = 0.51). Loss of PML expression was found to be statistically correlated with TTP (P < 0.0001), median duration of response (P = 0.007), and OS (P = 0.02). No correlation was observed between PML expression and treatment efficacy. PML IHC expression is down-regulated in synovial sarcomas, myofibroblastic sarcomas, angiosarcomas, liposarcoma, and leiomyosarcomas and its expression correlated with prognosis. Copyright © 2011 Wiley Periodicals, Inc.
Esthetic soft tissue management for teeth and implants.
Fu, Jia-Hui; Su, Chuan-Yi; Wang, Hom-Lay
2012-09-01
Can newly introduced graft materials be successfully used in soft tissue augmentation around teeth and dental implants? An electronic search on the PubMed database for English articles published before March 31, 2012, was performed using the following key words: "root coverage," "soft tissue graft," "periodontal plastic surgery," "subepithelial connective graft (SCTG)," "acellular dermal matrix (ADM)," "guided tissue regeneration based root coverage (GTRC)," "recession defects," "mucogingival defects," "collagen matrix," "living cellular construct (LCC)," "mucograft," and "biologic agents." Literature featuring new soft tissue graft materials, such as ADM, collagen matrix, GTRC, and biologic agents, were included. Data showed (1) allogeneic grafts were comparable to SCTG in terms of mean complete root coverage (CRC), mean root coverage (RC), and mean amount of keratinized tissue (KT) gain; (2) xenogeneic collagen matrix was as comparable to SCTG in terms of mean amount of KT gain around teeth and dental implants but inferior in achieving RC; (3) GTRC was inferior to SCTG in terms of mean CRC and mean RC; (4) LCC was inferior to free gingival graft in terms of mean amount of KT gain but was superior in esthetics and patient satisfaction; and (5) adjunctive use of biologic agents did not exert a significant effect on mean CRC, mean RC, and mean amount of KT gain. Although these new materials do not surpass the gold standard (SCTG), they do provide improved patient satisfaction and esthetics, are available in abundance, and lead to reduced postoperative discomfort and surgical time. Copyright © 2012 Elsevier Inc. All rights reserved.
Timing of soft tissue management around dental implants: a suggested protocol.
Kadkhodazadeh, Mahdi; Amid, Reza; Kermani, Mehdi Ekhlasmand; Mirakhori, Mahdieh; Hosseinpour, Sepanta
2017-01-01
Survival of dental implants depends on several factors; soft tissue (ST) management around dental implants is one of the foremost. Several studies have suggested techniques for ST management around dental implants, but none of them has discussed a suitable timetable for this process. This study aimed to review published articles related to the timing of ST management around dental implants and suggest a customized treatment protocol. A search of the PubMed database was conducted; the search was limited to English-language articles published from January 1995 to July 2015 with available full texts. Only in vivo studies and clinical trials in relation to the terms soft tissue management, management timing, keratinized mucosa, free gingival graft, connective tissue graft, soft tissue, augmentation, and dental implant were included. A total of 492 articles were reviewed, and eventually 42 articles were thoroughly evaluated. Those with treatment protocols in terms of the timing of ST grafting were selected and classified. ST management around dental implants may be done prior to the surgical phase, after the surgical phase, before loading, or even after loading. A thick gingival biotype is more suitable for implant placement, providing more favorable esthetic results. A treatment plan should be based on individual patient needs as well as the knowledge and experience of the clinician. The width and thickness of keratinized tissues, the need for bone management, and local risk factors that influence esthetic results determine the appropriate time for ST augmentation procedures.
Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R
2017-07-01
Foot loading rate, load magnitude, and the presence of diseases such as diabetes can all affect the mechanical properties of the plantar soft tissues of the human foot. The hydraulic plantar soft tissue reducer instrument was designed to gain insight into which variables are the most significant in determining these properties. It was used with gated magnetic resonance imaging to capture three-dimensional images of feet under dynamic loading conditions. Custom electronics controlled by LabVIEW software simultaneously recorded system pressure, which was then translated to applied force values based on calibration curves. Data were collected for two subjects, one without diabetes (Subject A) and one with diabetes (Subject B). For a 0.2-Hz loading rate, and strains 0.16, 0.18, 0.20, and 0.22, Subject A's average tangential heel pad stiffness was 10 N/mm and Subject B's was 24 N/mm. Maximum test loads were approximately 200 N. Loading rate and load magnitude limitations (both were lower than physiologic values) will continue to be addressed in the next version of the instrument. However, the current hydraulic plantar soft tissue reducer did produce a data set for healthy versus diabetic tissue stiffness that agrees with previous trends. These data are also being used to improve finite element analysis models of the foot as part of a related project.
Innocenti, M; Cardin-Langlois, E; Menichini, G; Baldrighi, C
2014-02-01
Soft tissue defects involving the anterior aspect of the knee are a frequent finding in a number of pathological conditions. The aim of this article is to describe a new pedicled flap consisting of a conventional medial gastrocnaemius muscle flap associated with a propeller flap based on a perforator of the medial sural artery. Five males ranging in age between 26 and 72 years underwent a reconstruction of the soft tissue of the knee by means of the described procedure. Three patients sustained complex tissue loss subsequent to high-energy trauma; two losses were due to septic complications after elective knee surgery. Four flaps survived allowing adequate proximal tibial metaphysis and patella coverage. One patient underwent early above-the-knee amputation due to life-threatening septicaemia. The described chimaera flap consists of a medial gastrocnaemius flap with a skin paddle that is elevated on a perforator of the medial sural artery and then rotated according to the propeller flaps' principles. It provides effective coverage of large soft tissue defects of the knee. In the authors' experience, the propeller flap portion proved to be particularly useful to cover the patella, while the muscle flap was used to cover the proximal metaphysis of the tibia and fill the dead space if present. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Soft tissue grafting to improve implant esthetics
Kassab, Moawia M
2010-01-01
Dental implants are becoming the treatment of choice to replace missing teeth, especially if the adjacent teeth are free of restorations. When minimal bone width is present, implant placement becomes a challenge and often resulting in recession and dehiscence around the implant that leads to subsequent gingival recession. To correct such defect, the author turned to soft tissue autografting and allografting to correct a buccal dehiscence around tooth #24 after a malpositioned implant placed by a different surgeon. A 25-year-old woman presented with the chief complaint of gingival recession and exposure of implant threads around tooth #24. The patient received three soft tissue grafting procedures to augment the gingival tissue. The first surgery included a connective tissue graft to increase the width of the keratinized gingival tissue. The second surgery included the use of autografting (connective tissue graft) to coronally position the soft tissue and achieve implant coverage. The third and final surgery included the use of allografting material Alloderm to increase and mask the implant from showing through the gingiva. Healing period was uneventful for the patient. After three surgical procedures, it appears that soft tissue grafting has increased the width and height of the gingiva surrounding the implant. The accomplished thickness of gingival tissue appeared to mask the showing of implant threads through the gingival tissue and allowed for achieving the desired esthetic that the patient desired. The aim of the study is to present a clinical case with soft tissue grafting procedures. PMID:23662087
Angiogenic effects of borate glass microfibers in a rodent model.
Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E
2014-12-01
The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. © 2014 Wiley Periodicals, Inc.
Optimization and real-time control for laser treatment of heterogeneous soft tissues.
Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole
2009-01-01
Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.
2011-04-01
tissue and polymer: mineralized tissue stained dark green, osteoid and collagen bright red, soft tissue pink to light green, and erythrocytes bright...of bone, soft tissue , and polymer, high-resolution digital images were acquired at 1.25 · or 20 · . The area of interest comprising the bone defect...bone, soft tissue , and polymer (when present) within the defect were quantified using Metamorph software (Molecular Devices, Inc.) and were calculated
Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.
Lu, Helen H; Spalazzi, Jeffrey P
2009-07-01
The emphasis in the field of orthopaedic tissue engineering is on imparting biomimetic functionality to tissue engineered bone or soft tissue grafts and enabling their translation to the clinic. A significant challenge in achieving extended graft functionality is engineering the biological fixation of these grafts with each other as well as with the host environment. Biological fixation will require re-establishment of the structure-function relationship inherent at the native soft tissue-to-bone interface on these tissue engineered grafts. To this end, strategic biomimicry must be incorporated into advanced scaffold design. To facilitate integration between distinct tissue types (e.g., bone with soft tissues such as cartilage, ligament, or tendon), a stratified or multi-phasic scaffold with distinct yet continuous tissue regions is required to pre-engineer the interface between bone and soft tissues. Using the ACL-to-bone interface as a model system, this review outlines the strategies for stratified scaffold design for interface tissue engineering, focusing on identifying the relevant design parameters derived from an understanding of the structure-function relationship inherent at the soft-to-hard tissue interface. The design approach centers on first addressing the challenge of soft tissue-to-bone integration ex vivo, and then subsequently focusing on the relatively less difficult task of bone-to-bone integration in vivo. In addition, we will review stratified scaffold design aimed at exercising spatial control over heterotypic cellular interactions, which are critical for facilitating the formation and maintenance of distinct yet continuous multi-tissue regions. Finally, potential challenges and future directions in this emerging area of advanced scaffold design will be discussed.
Yang, M; Zhu, X R; Park, PC; Titt, Uwe; Mohan, R; Virshup, G; Clayton, J; Dong, L
2012-01-01
The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0–3.4%, primarily because soft tissue is the dominant tissue type in human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield Numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction. PMID:22678123
Chambers, Hannah
2013-06-01
The aim of this study was to summarize the available evidence on lumbar facet joint injections and the physiotherapy treatments, land-based lower back mobility exercise, soft tissue massage and lumbar spinal mobilizations for chronic low back pain (CLBP). The plausibility of physiotherapy and lumbar facet joint injections as a combination treatment is discussed. Using a systematic process, an online electronic search was performed using key words utilizing all available databases and hand searching reference lists. Using a critical appraisal tool from the Critical Appraisal Skills Programme (CASP), the literature was screened to include primary research. The main aspects of the research were summarized. The evidence for lumbar facet joint injections suggests an overall short-term positive effect on CLBP. Land-based lower back mobility exercise and soft tissue massage appear to have a positive effect on CLBP in the short term and possibly in the longer term. There is insufficient evidence to draw conclusions for lumbar spinal mobilizations. The review indicates that lumbar facet joint injections create a short period when pain is reduced. Physiotherapy treatments including land-based lower back mobility exercise and soft tissue massage may be of benefit during this time to improve the longer-term outcomes of patients with CLBP. It is not possible to make generalizations or firm conclusions. The current review highlights the need for further research. A randomized controlled trial is recommended to assess the impact of physiotherapy in combination with lumbar facet joint injections on CLBP. Copyright © 2013 John Wiley & Sons, Ltd.
Hindfoot containment orthosis for management of bone and soft-tissue defects of the heel.
Johnson, Jeffrey E; Rudzki, Jonas R; Janisse, Erick; Janisse, Dennis J; Valdez, Ray R; Hanel, Douglas P; Gould, John S
2005-03-01
Bone, soft-tissue, and nerve deficits of the weightbearing surface of the foot are frequent sequelae from foot trauma or diabetes mellitus and present challenging treatment issues. Injury to the specialized, shock-absorbing, heel-pad tissue containing spirally arranged fat chambers is particularly difficult to manage. Appropriate footwear modifications and shoe inserts for protection of this skin are essential to the long-term management of bone and soft-tissue defects of the heel. This study evaluated the performance of a new custom total contact foot orthosis (Hindfoot Containment Orthosis, HCO) which was designed to contain the soft tissues of the heel, reduce shear forces, redistribute weightbearing load, and accommodate bone or soft-tissue deformity of the heel. Twenty-two patients treated with HCO were retrospectively reviewed. Followup averaged 26 months. The effectiveness of the orthosis was assessed by how well the integrity of the soft tissue was maintained (e.g. the number of ulcerations since dispensing the orthosis), the number of refabrications of the orthosis that were required, and whether or not revision surgery was required. Ten patients had superficial ulcerations. No patient required revision surgery. A total of 62 refabrications of the orthoses in 22 patients were required over a 2-year period. Overall results were good in 17 (77%) patients, fair in four (18%), and poor in one. The HCO is effective for preservation of soft-tissue integrity of the heel pad after bony or soft-tissue injury. Important factors in achieving success with the HCO are patient compliance and periodic monitoring for refabrication of the orthosis to accommodate skeletal growth, change in foot size or shape, and compression or wear of insert materials.
Cosgarea, Raluca; Gasparik, Cristina; Dudea, Diana; Culic, Bogdan; Dannewitz, Bettina; Sculean, Anton
2015-05-01
To objectively determine the difference in colour between the peri-implant soft tissue at titanium and zirconia abutments. Eleven patients, each with two contralaterally inserted osteointegrated dental implants, were included in this study. The implants were restored either with titanium abutments and porcelain-fused-to-metal crowns, or with zirconia abutments and ceramic crowns. Prior and after crown cementation, multi-spectral images of the peri-implant soft tissues and the gingiva of the neighbouring teeth were taken with a colorimeter. The colour parameters L*, a*, b*, c* and the colour differences ΔE were calculated. Descriptive statistics, including non-parametric tests and correlation coefficients, were used for statistical analyses of the data. Compared to the gingiva of the neighbouring teeth, the peri-implant soft tissue around titanium and zirconia (test group), showed distinguishable ΔE both before and after crown cementation. Colour differences around titanium were statistically significant different (P = 0.01) only at 1 mm prior to crown cementation compared to zirconia. Compared to the gingiva of the neighbouring teeth, statistically significant (P < 0.01) differences were found for all colour parameter, either before or after crown cementation for both abutments; more significant differences were registered for titanium abutments. Tissue thickness correlated positively with c*-values for titanium at 1 mm and 2 mm from the gingival margin. Within their limits, the present data indicate that: (i) The peri-implant soft tissue around titanium and zirconia showed colour differences when compared to the soft tissue around natural teeth, and (ii) the peri-implant soft tissue around zirconia demonstrated a better colour match to the soft tissue at natural teeth than titanium. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Body weight and risk of soft-tissue sarcoma
Tavani, A; Soler, M; Vecchia, C La; Negri, E; Gallus, S; Franceschi, S
1999-01-01
The relation between body mass (BMI) and soft-tissue sarcoma (STS) risk was evaluated in a case–control study from Northern Italy based on 217 incident STS and 1297 hospital controls. The risk of STS rose with BMI, with multivariate odds ratios of 3.49 (95% confidence interval (CI) 1.06–11.55) among men and 3.26 (95% CI 1.27–8.35) among women with a BMI >30 kg m–2 compared to those with BMI ≤ 20 kg m–2. © 1999 Cancer Research Campaign PMID:10555763
Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E
2010-01-01
Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.
Histology-validated x-ray tomography for imaging human coronary arteries
NASA Astrophysics Data System (ADS)
Buscema, Marzia; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Matviykiv, Sofiya; Holme, Margaret N.; Hipp, Alexander; Beckmann, Felix; Saxer, Till; Michaud, Katarzyna; Müller, Bert
2016-10-01
Heart disease is the number one cause of death worldwide. To improve therapy and patient outcome, the knowledge of anatomical changes in terms of lumen morphology and tissue composition of constricted arteries is crucial for designing a localized drug delivery to treat atherosclerosis disease. Traditional tissue characterization by histology is a pivotal tool, although it brings disadvantages such as vessel morphology modification during decalcification and slicing. X-ray tomography in absorption and phase contrast modes yields a deep understanding in blood vessel anatomy in healthy and diseased stages: measurements in absorption mode make visible highly absorbing tissue components including cholesterol plaques, whereas phase contrast tomography gains better contrast of the soft tissue components such as vessel walls. Established synchrotron radiation-based micro-CT techniques ensure high performance in terms of 3D visualization of highly absorbing and soft tissues.
Phase contrast imaging of buccal mucosa tissues-Feasibility study
NASA Astrophysics Data System (ADS)
Fatima, A.; Tripathi, S.; Shripathi, T.; Kulkarni, V. K.; Banda, N. R.; Agrawal, A. K.; Sarkar, P. S.; Kashyap, Y.; Sinha, A.
2015-06-01
Phase Contrast Imaging (PCI) technique has been used to interpret physical parameters obtained from the image taken on the normal buccal mucosa tissue extracted from cheek of a patient. The advantages of this method over the conventional imaging techniques are discussed. PCI technique uses the X-ray phase shift at the edges differentiated by very minute density differences and the edge enhanced high contrast images reveal details of soft tissues. The contrast in the images produced is related to changes in the X-ray refractive index of the tissues resulting in higher clarity compared with conventional absorption based X-ray imaging. The results show that this type of imaging has better ability to visualize microstructures of biological soft tissues with good contrast, which can lead to the diagnosis of lesions at an early stage of the diseases.
Sorafenib in Treating Patients With Metastatic, Locally Advanced, or Recurrent Sarcoma
2014-05-07
Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Leiomyosarcoma; Adult Malignant Fibrous Histiocytoma; Adult Neurofibrosarcoma; Adult Synovial Sarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma; Uterine Carcinosarcoma; Uterine Leiomyosarcoma
Isolated Limb Perfusion With Melphalan in Treating Patients With Stage IIIB-IV Melanoma or Sarcoma
2015-07-22
Basal Cell Carcinoma of the Skin; Eccrine Carcinoma of the Skin; Recurrent Adult Soft Tissue Sarcoma; Recurrent Melanoma; Recurrent Skin Cancer; Squamous Cell Carcinoma of the Skin; Stage III Adult Soft Tissue Sarcoma; Stage IIIB Melanoma; Stage IIIC Melanoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Melanoma
Putzer, David; Klug, Sebastian; Moctezuma, Jose Luis; Nogler, Michael
2014-12-01
Time-of-flight (TOF) cameras can guide surgical robots or provide soft tissue information for augmented reality in the medical field. In this study, a method to automatically track the soft tissue envelope of a minimally invasive hip approach in a cadaver study is described. An algorithm for the TOF camera was developed and 30 measurements on 8 surgical situs (direct anterior approach) were carried out. The results were compared to a manual measurement of the soft tissue envelope. The TOF camera showed an overall recognition rate of the soft tissue envelope of 75%. On comparing the results from the algorithm with the manual measurements, a significant difference was found (P > .005). In this preliminary study, we have presented a method for automatically recognizing the soft tissue envelope of the surgical field in a real-time application. Further improvements could result in a robotic navigation device for minimally invasive hip surgery. © The Author(s) 2014.
Options to avoid the second surgical site: a review of literature.
Ramachandra, Srinivas Sulugodu; Rana, Ritu; Reetika, Singhal; Jithendra, K D
2014-09-01
As esthetics gain importance, periodontal plastic surgical procedures involving soft tissue grafts are becoming commoner both around natural teeth as well as around implants. Periodontal soft tissue grafts are primarily used for the purpose of root coverage and in pre-prosthetic surgery to thicken a gingival site or to improve the crestal volume. Soft tissue grafts are usually harvested from the palate. Periodontal plastic surgical procedures involving soft tissue grafts harvested from the palate have two surgical sites; a recipient site and another donor site. Many patients are apprehensive about the soft tissue graft procedures, especially the creation of the second/donor surgical site in the palate. In the past decade, newer techniques and products have emerged which provide an option for the periodontist/patient to avoid the second surgical site. MucoMatrixX, Alloderm(®), Platelet rich fibrin, Puros(®) Dermis and Mucograft(®) are the various options available to the practicing periodontist to avoid the second surgical site. Use of these soft tissue allografts in an apprehensive patient would decrease patient morbidity and increase patient's acceptance towards periodontal plastic surgical procedures.
Wang, Heng; Sang, Yuanjun
2017-10-01
The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.
Xu, Y Q; Li, Z Y; Li, J
2000-11-01
To investigate the clinical effect of free vascularized thoracoumbilical flap with reversal flow in repairing the soft tissue defect in leg with tibia exposure. Forty-four casting mould specimens of leg arteries were studied firstly. Then 25 cases with soft tissue defect and tibia exposure in the proximal-middle segment of leg were adopted in this study. Among them, 18 cases had long distance thrombosis of the anterior tibial vessels or posterior tibial vessels due to traumatic lesion. The maximal size of defect was 28 cm x 11 cm and the minimal size of defect was 11 cm x 9 cm. In operation, the thoracoumbilical flap which was based on the inferior epigastric vessels was anastomosed to the distal end of the anterior tibial vessels or posterior tibial vessels. Anterior tibial artery, posterior tibial artery and fibular artery had rich communication branches in foot and ankle. All the flaps survived, the color and cosmetic result of them were good. The free vascularized thoracoumbilical flap with reversed flow is practical in repairing the soft tissue defect of leg with tibia exposure. Either the anterior tibial vessels or the posterior tibial vessels is normal, and the distal end of injured blood vessels is available, this technique can be adopted.
Bhowmik, Abhijit; Mallick Sinha, Mamata Guha; Barman, Dilip Chandra
2015-01-01
Diseases of the skin and superficial subcutaneous soft tissues present with a wide array of lesions ranging from nonspecific dermatoses and inflammatory lesions to frank neoplasms. Though cytopathology is an excellent diagnostic tool in routine dermatologic practice, studies relating to histopathological and cytological correlation are sparse. The aim of this study was to analyze the concordance rate between cytological and histopathological diagnosis of skin and superficial soft tissue lesions. We retrospectively studied 510 consecutive fine needle aspiration cytology findings of cases from North Bengal Medical College and Hospital and correlated their diagnoses based upon cytological and histopathological grounds. Out of the 510 cases studied, 253 were non neoplastic lesions and 257 were neoplastic. A high degree of concordance was observed (100% for malignant and 96.15% for benign lesions) when these two diagnostic modalities were compared. Histopathological correlation was possible in all malignant, 52/189 (27.51%) of benign and 27/253 (10.67%) of non-neoplastic lesions. Sensitivity and specificity of diagnoses were 95.31% and 97.6%, respectively. It can be safely concluded that fine needle aspiration cytology is a rapid, reliable and fairly accurate tool for initial triage and treatment of skin and superficial soft tissue lesions.
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B
2018-02-01
Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.
Chan, Ka Man Carmen; Li, Randolph H.; Chapman, Joseph W.; Trac, Eric M.; Kobler, James B.; Zeitels, Steven M.; Langer, Robert; Karajanagi, Sandeep S.
2014-01-01
Particle size, stiffness and surface functionality are important in determining the injection site, safety and efficacy of injectable soft-tissue fillers. Methods to produce soft injectable biomaterials with controlled particle characteristics are therefore desirable. Here we report a method based on suspension photopolymerization and semi-interpenetrating network (semi-IPN) to synthesize soft, functionalizable, spherical hydrogel microparticles (MP) of independently tunable size and stiffness. MP were prepared using acrylated forms of polyethylene glycol (PEG), gelatin and hyaluronic acid. Semi-IPN MP of PEG-diacrylate and PEG were used to study the effect of process parameters on particle characteristics. The process parameters were systematically varied to produce MP with size ranging from 115 to 515 μm and stiffness ranging from 190 to 1600 Pa. In vitro studies showed that the MP thus prepared were cytocompatible. The ratio and identity of the polymers used to make the semi-IPN MP were varied to control their stiffness and to introduce amine groups for potential functionalization. Slow-release polymeric particles loaded with Rhodamine or dexamethasone were incorporated in the MP as a proof-of-principle of drug incorporation and release from the MP. This work has implications in preparing injectable biomaterials of natural or synthetic polymers for applications as soft-tissue fillers. PMID:24561708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
Kaya, Y; Yalim, M; Bahçecitapar, M; Baloş, K
2009-07-01
To date, there have been many studies clinically evaluating periodontal regenerative procedures by the help of routinely used hard and soft tissue parameters; however, these parameters are not capable of assessing interdental soft tissue located above the regenerative periodontal surgery area. The purpose of this study was to assess interproximal soft tissue changes following application of (i) particulate form demineralized bone matrix (DBM), (ii) putty form DBM and (ii) open flap debridement (OFD, control), using modified curtain technique in the treatment of interproximal suprabony (horizontal) defects located in anterior maxillary region, as previously reported. Twenty-five chronic periodontitis patients with 125 interproximal surgery sites (radiologically >or=4 mm horizontal bone defect) were also participate in this second stage of the triple-blind, split mouth, randomized, controlled clinical trial. Surgery sites were assessed by (i) plaque index (PI), (ii) gingival index (GI), (iii) the presence of interdental soft tissue clefts or craters and (iv) the loss of interdental papilla height by using papilla presence index (PPI), during the healing period. At the baseline and 3, 6, 9 and 12 months after the operations, these measurements were repeated. In all groups, there is a significant increase in the prevalence of soft tissue cleft and crater formation (P < 0.01), with increase in PI and GI scores at interdental soft tissue defect areas (P < 0.001), 3 months after the operations. There was also an increase in PPI scores after the operations in all treatment groups (P < 0.01). Three procedures affected the interproximal soft tissues similarly. There was no significant difference among groups in terms of all parameters (P > 0.05). Particulate DBM, putty DBM and OFD demostrated similar interproximal soft tissue changes especially increasing interproximal PI and GI scores in 3 months follow-up.
NASA Astrophysics Data System (ADS)
Yap, C. K.; Ismail, A.; Tan, S. G.; Abdul Rahim, I.
2003-07-01
The distributions of Cd, Pb and Zn in the total soft tissues and total shells of the green-lipped mussel Perna viridis were studied in field collected samples as well as from laboratory experimental samples. The results showed that Cd, Pb and Zn were readily accumulated in the whole shells. In mussels sampled from 12 locations along the west coast of Peninsular Malaysia, the ratios of the shell metals to the soft tissue metals were different at each sampling site. Nevertheless, the Cd and Pb levels in the shells were always higher than those in the soft tissues, while the Zn level was higher in the soft tissues than in the shells. In comparison with soft tissues, the degrees of variability for Pb and Cd concentrations in the shells were lower. The lower degrees of variability and significant ( P<0.05) correlation coefficients of Cd and Pb within the shells support the use of the mussel shell as a suitable biomonitoring material for the two metals rather than the soft tissue since this indicated that there is more precision (lower CV) in the determination of metal concentrations in the shell than in the soft tissue. Experimental work showed that the pattern of depuration in the shell was not similar to that of the soft tissue although their patterns of accumulation were similar. This indicated that the depuration of heavy metals in the shell was not affected by the physiological conditions of the mussels. Although Zn could be regulated by the soft tissue, the incorporated Cd, Pb and Zn remained in the shell matrices. The present results support the use of the total shell of P. viridis as a potential biomonitoring material for long-term contamination of Cd, Pb and Zn.
Soft tissue augmentation procedures for mucogingival defects in esthetic sites.
Levine, Robert A; Huynh-Ba, Guy; Cochran, David L
2014-01-01
This systematic review was performed to address the focus question: "In adult patients with soft tissue deficiencies around maxillary anterior implants, what is the effect on esthetic outcomes when a soft tissue procedure is performed?" In addition, this paper reviews the importance of presurgical esthetic risk assessment (ERA) starting with comprehensive team case planning prior to surgical intervention and a restorative-driven approach. A thorough Medline database search performed on related MeSH terms yielded 1,532 titles and selected abstracts that were independently screened. Out of the 351 abstracts selected, 123 full-text articles were obtained for further evaluation. At each level, any disagreements were discussed until a consensus was reached. A total of 18 studies were included in this systematic review of esthetic outcomes following soft tissue procedures around implants with soft tissue deficiencies. A preliminary analysis of the included studies showed that the vast majority were case series studies with most not providing objective outcomes of their results. Moreover, only one randomized controlled trial was identified. Therefore, quantitative data analysis and subsequent meta-analysis could not be performed. The included studies were grouped according to the intervention on the peri-implant soft tissue performed and six groups were identified. The periodontal procedures performed around dental implants gave initial good results from the inflammation involved in wound healing, but in virtually all cases significant recession occurred as healing resolved and the tissues matured. Although success of implant therapy is similar in the anterior maxilla and other areas of the mouth, the majority of studies evaluating this therapy in the esthetic zone are lacking literature support, few in number, devoid of long-term follow-up and number of patients, and are subject to inclusion bias. The use of the ERA tool for all esthetic zone cases can benefit both the clinician and the patient to avoid any miscommunication and problems of expectation upon completion. All the available knowledge on this topic, including the approaches described in this paper, is based on a very limited literature support and thus should be addressed with caution. These concerns should encourage long-term good clinical trials for better assessment of those issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, N; Bharathiya University, Coimbatore, Tamilnadu; Ganesh, KM
Purpose: To validate the Monaco montecorlo beam model for a range of small field in the heterogeneous medium. Methods: A in-house phantom with three different medium of Foam, PMMA and derlin resembling the densities of lung, soft tissue, and bone was used for the study. The field sizes of 8, 16, 24, 32 and 48mm were studied for the validation of montecarlo algorithm using 0.01cc volume ionchamber and gafchromic films. The 6MV photon beam from Elekta Beam modulator was used with 100cm SAD setup. The outputs were measured at the depth of 5, 10 and 20mm in every second mediummore » with 3cm buildup of first medium for the interface of lung-bone, lung-soft tissue, soft tissue-bone, bone-lung and soft tissue-lung. Similarly, the 2D dose analysis with gamma criteria of 2%2mm were done at the same depths using gafchromic film. For all the measurements 10.4×10.4cm were taken as reference to which the other field sizes were compared. Monaco TPSv.3.20 was used to calculate the dose distribution for all the simulated measurement setups. Results: The average maximum difference among the field sizes of 8, 16, 24, 32 and 48mm at the depth of 5mm in second medium with the interface of lung-bone, lung-soft tissue, soft tissue-bone, bone-lung and soft tissue-lung were observed as 1.29±0.14%, 0.49±0.16%, 0.87±0.23%, 0.92±0.11%, 1.01±0.19% respectively. The minimum and maximum variation of dose among different materials for the smallest field size of 8mm were observed as 0.23% and 1.67% respectively. The 2D analysis showed the average gamma passing of 98.9±0.5%. The calculated two-tailed P-value were showed insignificance with values of 0.562 and 0.452 for both ionchamber and film measurements. Conclusion: The accuracy of dose calculation for the small fields in Monaco Montecarlo TPS algorithm was validated in different inhomogeneous medium and found the results were well correlated with measurement data.« less
The new laparoscopic proctocolectomy training (in soft cadaver).
Pattana-arun, Jirawat; Udomsawaengsup, Suthep; Sahakitrungruang, Chucheep; Tansatit, Tanvaa; Tantiphlachiva, Kasaya; Rojanasakul, Arun
2005-09-01
The purpose of the present study was to evaluate the quality of preservation (tissue plane, named vessels identification, consistency of colon and rectum), quality of performing procedures, difficulties and problems and finally the satisfaction of surgeons in laparoscopic proctocolectomy in soft cadaver. Colorectal Division, Department of Surgery and Surgical Training Center Department of Anatomy, Faculty of Medicine, Chulalongkorn University. Prospective descriptive study 10 soft cadavers were scheduled for laparoscopic proctocolectomy. The procedures (colon-rectum mobilization and named vessels identification) were performed by 14 experienced surgeons (8 colorectal surgeons) and assisted by surgical residents. The quality of preservation, successfulness and the satisfaction in performing the procedures were recorded using questionnaires for evaluation. The preservation was very good in every aspect especially tissue plane between colon, mesocolon and retroperitoneum which was clearly dissected, same asfasciapropria of rectum. The named vessels and the tissue consistency were very well preserved and tolerated to laparoscopic equipment handling. The surgeons were satisfied with the tissue handling and dissections. There were two difficulties, the first was air leakage but simply corrected with purse string suture and the second was unflavored smell which was not concerned. Laparoscopic proctocolectomy could be completely performed in soft cadaver. Laparoscopic proctocolectomy could be performed in soft cadavers with great satisfaction. Repeated practice is possible, so the surgeons can gain their experiences outside the operating theatre. This success may shorten the learning curve and may be the new era in cadaver-based training.
Non Lipomatous Benign Lesions Mimicking Soft-tissue Sarcomas: A Pictorial Essay.
Coran, Alessandro; Orsatti, Giovanna; Crimì, Filippo; Rastrelli, Marco; DI Maggio, Antonio; Ponzoni, Alberto; Attar, Shady; Stramare, Roberto
2018-01-01
The incidental finding of soft tissue masses is a challenge for the radiologist. Benign and malignant lesions can be differentiated relying on patient history, symptoms and mostly with the help of imaging. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) become fundamental in order to distinguish these lesions but the radiologist needs to know the main characteristics of benign soft tissue masses and sarcomas. Herein, we present a pictorial review of lesions mimicking soft tissue sarcomas features. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Jung, Sung-ah; Choi, Yoon Jeong; Lee, Dong-Won; Kim, Kyung-Ho; Chung, Chooryung J
2015-05-01
To investigate the prevalence of distinguishable soft tissue scarring after the removal of temporary anchorage devices (TADs) such as orthodontic miniscrews and to analyze the factors associated with scar formation. The prevalence of soft tissue scarring in 66 patients (202 miniscrew removal sites) was clinically investigated at least 1 year after miniscrew removal. To determine the clinical factors associated with soft tissue scar formation, miniscrew stability; host factors including age, gender, and gingival biotype; and miniscrew-related factors such as insertion site, vertical position, and insertion period were evaluated. The prevalence of a distinguishable scar remaining at least 1 year after miniscrew removal was 44.6%. Patients with flat gingiva showed a significantly higher prevalence of soft tissue scar formation than did those with pronounced scalloped gingiva (P < .05). Maxillary buccal removal sites showed a significantly higher prevalence of soft tissue scar formation than did those in the mandible or palatal slope (P < .05). Miniscrew sites at the alveolar mucosa showed a significantly lower prevalence of soft tissue scar formation than did those in the mucogingival junction or the attached gingiva (P < .01). The prevalence of distinguishable scarring after miniscrew removal was fairly high. On the basis of our results, patients with flat gingiva and buccal interdental gingival insertion sites are more susceptible to scar formation.
Lops, Diego; Stellini, Edoardo; Sbricoli, Luca; Cea, Niccolò; Romeo, Eugenio; Bressan, Eriberto
2017-10-01
The aim of the present clinical trial was to analyze, through spectrophotometric digital technology, the influence of the abutment material on the color of the peri-implant soft tissue in patients with thin gingival biotype. Thirty-seven patients received an endosseous dental implant in the anterior maxilla. At time of each definitive prosthesis delivery, an all-ceramic crown has been tried on gold, titanium and zirconia abutment. Peri-implant soft-tissue color has been measured through a spectrophotometer after the insertion of each single abutment. Also facial peri-implant soft-tissue thickness was measured at the level of the implant neck through a caliper. A specific software has been utilized to identify a standardized tissue area and to collect the data before the statistical analysis in Lab* color space. ΔE parameters of the selected abutments were tested for correlation with mucosal thickness. Pearson correlation test was used. Only 15 patients met the study inclusion criteria on peri-implant soft-tissue thickness. Peri-implant soft-tissue color was different from that around natural teeth, no matter which type of restorative material was selected. Measurements regarding all the abutments were above the critical threshold of ΔE 8.74 for intraoral color distinction by the naked eye. The ΔE mean values of gold and zirconium abutments were similar (11.43 and 11.37, respectively) and significantly lower (P = 0.03 and P = 0.04, respectively) than the titanium abutment (13.55). In patients with a facial soft-tissue thickness ≤2 mm, the ΔE mean value of gold and zirconia abutments was significantly lower than that of titanium abutments (P = 0.03 and P = 0.04, respectively) and much more close to the reference threshold of 8.74. For peri-implant soft tissue of ≤2 mm, gold or zirconia abutments could be selected in anterior areas treatment. Moreover, the thickness of the peri-implant soft tissue seemed to be a crucial factor in the abutment impact on the color of soft tissues with a thickness of ≤2 mm. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Biological characterization of soft tissue sarcomas.
Hayashi, Takuma; Horiuchi, Akiko; Sano, Kenji; Kanai, Yae; Yaegashi, Nobuo; Aburatani, Hiroyuki; Konishi, Ikuo
2015-12-01
Soft tissue sarcomas are neoplastic malignancies that typically arise in tissues of mesenchymal origin. The identification of novel molecular mechanisms leading to mesenchymal transformation and the establishment of new therapies and diagnostic biomarker has been hampered by several critical factors. First, malignant soft tissue sarcomas are rarely observed in the clinic with fewer than 15,000 newly cases diagnosed each year in the United States. Another complicating factor is that soft tissue sarcomas are extremely heterogeneous as they arise in a multitude of tissues from many different cell lineages. The scarcity of clinical materials coupled with its inherent heterogeneity creates a challenging experimental environment for clinicians and scientists. Faced with these challenges, there has been extremely limited advancement in clinical treatment options available to patients as compared to other malignant tumours. In order to glean insight into the pathobiology of soft tissue sarcomas, scientists are now using mouse models whose genomes have been specifically tailored to carry gene deletions, gene amplifications, and somatic mutations commonly observed in human soft tissue sarcomas. The use of these model organisms has been successful in increasing our knowledge and understanding of how alterations in relevant oncogenic and/or tumour suppressive signal cascades, i.e., interferon-γ (IFN-γ), tumour protein 53 (TP53) and/or retinoblastoma (RB) pathway directly impact sarcomagenesis. It is the goal of many in the physiological community that the use of several mouse models will serve as powerful in vivo tools for further understanding of sarcomagenesis and potentially identify new diagnostic biomarker and therapeutic strategies against human soft tissue sarcomas.
Prevalence, Type and Etiology of Dental and Soft Tissue Injuries in Children in Croatia.
Škaričić, Josip; Vuletić, Marko; Hrvatin, Sandra; Jeličić, Jesenka; Čuković-Bagić, Ivana; Jurić, Hrvoje
2016-06-01
The prevalence, type and etiology of dental and soft tissue injuries and relationship between the time of arrival and sustaining soft tissue injury were analyzed in this retrospective study conducted at the Department of Pediatric Dentistry, University Dental Clinic in Zagreb, Croatia, during the 2010-2014 period using documentation on 447 patients (264 male and 183 female) aged 1-16 years with injuries of primary and permanent teeth. The highest prevalence of traumatic dental injury (TDI) was found in the 7-12 age group and maxillary central incisors were most frequently affected (80.9%) in both primary and permanent dentitions. Enamel-dentin fracture without pulp exposure (31.9%) was the most common TDI of dental hard tissue in both dentitions, whereas subluxation (27.3%) was the most common periodontal tissue injury type. The most frequent location, cause and seasonal variation of trauma were at home, falling and spring. Soft tissue injuries were observed in 203 (45.4%) patients. Soft tissue injuries were less likely when fewer teeth were traumatized (p<0.001). Comparison of children with and without soft tissue injuries yielded a statistically significant difference in the time to arrival between primary and permanent teeth (p<0.01). Because soft tissue injuries include bleeding and clinical presentation appears more dramatic, the time elapsed between injury and initial treatment was shorter than in non-bleeding injuries, pointing to the need of education focused on parents and school teachers regarding the importance of immediate therapy for both bleeding and non-bleeding TDIs.
Wu, John Z; Cutlip, Robert G; Welcome, Daniel; Dong, Ren G
2006-01-01
Knowledge of viscoelastic properties of soft tissues is essential for the finite element modelling of the stress/strain distributions in finger-pad during vibratory loading, which is important in exploring the mechanism of hand-arm vibration syndrome. In conventional procedures, skin and subcutaneous tissue have to be separated for testing the viscoelastic properties. In this study, a novel method has been proposed to simultaneously determine the viscoelastic properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. A mathematical approach has been derived to obtain the creep and relaxation characteristics of skin and subcutaneous tissue using uniaxial stress relaxation data of skin/subcutaneous composite specimens. The micro-structures of collagen fiber networks in the soft tissue, which underline the tissue mechanical characteristics, will be intact in the proposed method. Therefore, the viscoelastic properties of soft tissues obtained using the proposed method would be more physiologically relevant than those obtained using the conventional method. The proposed approach has been utilized to measure the viscoelastic properties of soft tissues of pig. The relaxation curves of pig skin and subcutaneous tissue obtained in the current study agree well with those in literature. Using the proposed approach, reliable material properties of soft tissues can be obtained in a cost- and time-efficient manner, which simultaneously improves the physiological relevance.
Melham, T J; Sevier, T L; Malnofski, M J; Wilson, J K; Helfst, R H
1998-06-01
This clinical case report demonstrates the clinical effectiveness of a new form of soft tissue mobilization in the treatment of excessive connective tissue fibrosis (scar tissue) around an athlete's injured ankle. The scar tissue was causing the athlete to have pain with activity, pain on palpation of the ankle, decreased range of motion, and loss of function. Surgery and several months of conventional physical therapy failed to alleviate the athlete's symptoms. As a final resort, augmented soft tissue mobilization (ASTM) was administered. ASTM is an alternative nonsurgical treatment modality that is being researched at Performance Dynamics (Muncip, IN). ASTM is a process that uses ergonomically designed instruments that assist therapists in the rapid localization and effective treatment of areas exhibiting excessive soft tissue fibrosis. This is followed by a stretching and strengthening program. Upon the completion of 6 wk of ASTM therapy, the athlete had no pain and had regained full range of motion and function. This case report is an example of how a noninvasive augmented form of soft tissue mobilization (ASTM) demonstrated impressive clinical results in treating a condition caused by connective tissue fibrosis.
Traumatic hallux varus repair utilizing a soft-tissue anchor: a case report.
Labovitz, J M; Kaczander, B I
2000-01-01
Hallux varus is usually iatrogenic in nature; however, congenital and acquired etiologies have been described in the literature. The authors present a case of traumatic hallux varus secondary to rupture of the adductor tendon. Surgical correction was performed using a soft tissue anchor for maintenance of the soft tissues utilized for repair.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... repair of soft tissue injuries of the medial meniscus. In repairing and reinforcing medial meniscal... zone of the meniscus to provide sufficient vascularization. The CS reinforces soft tissue and provides a resorbable scaffold that is replaced by the patient's own soft tissue. The CS is not a prosthetic...
Periodontal and peri-implant wound healing following laser therapy.
Aoki, Akira; Mizutani, Koji; Schwarz, Frank; Sculean, Anton; Yukna, Raymond A; Takasaki, Aristeo A; Romanos, Georgios E; Taniguchi, Yoichi; Sasaki, Katia M; Zeredo, Jorge L; Koshy, Geena; Coluzzi, Donald J; White, Joel M; Abiko, Yoshimitsu; Ishikawa, Isao; Izumi, Yuichi
2015-06-01
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A tensile machine with a novel optical load cell for soft biological tissues application.
Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah
2014-11-01
The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.
NASA Astrophysics Data System (ADS)
Jeong, Jeong-Won; Kim, Tae-Seong; Shin, Dae-Chul; Do, Synho; Marmarelis, Vasilis Z.
2004-04-01
Recently it was shown that soft tissue can be differentiated with spectral unmixing and detection methods that utilize multi-band information obtained from a High-Resolution Ultrasonic Transmission Tomography (HUTT) system. In this study, we focus on tissue differentiation using the spectral target detection method based on Constrained Energy Minimization (CEM). We have developed a new tissue differentiation method called "CEM filter bank". Statistical inference on the output of each CEM filter of a filter bank is used to make a decision based on the maximum statistical significance rather than the magnitude of each CEM filter output. We validate this method through 3-D inter/intra-phantom soft tissue classification where target profiles obtained from an arbitrary single slice are used for differentiation in multiple tomographic slices. Also spectral coherence between target and object profiles of an identical tissue at different slices and phantoms is evaluated by conventional cross-correlation analysis. The performance of the proposed classifier is assessed using Receiver Operating Characteristic (ROC) analysis. Finally we apply our method to classify tiny structures inside a beef kidney such as Styrofoam balls (~1mm), chicken tissue (~5mm), and vessel-duct structures.
Studer, S; Naef, R; Schärer, P
1997-12-01
Esthetically correct treatment of a localized alveolar ridge defect is a frequent prosthetic challenge. Such defects can be overcome not only by a variety of prosthetic means, but also by several periodontal surgical techniques, notably soft tissue augmentations. Preoperative classification of the localized alveolar ridge defect can be greatly useful in evaluating the prognosis and technical difficulties involved. A semiquantitative classification, dependent on the severity of vertical and horizontal dimensional loss, is proposed to supplement the recognized qualitative classification of a ridge defect. Various methods of soft tissue augmentation are evaluated, based on initial volumetric measurements. The roll flap technique is proposed when the problem is related to ridge quality (single-tooth defect with little horizontal and vertical loss). Larger defects in which a volumetric problem must be solved are corrected through the subepithelial connective tissue technique. Additional mucogingival problems (eg, insufficient gingival width, high frenum, gingival scarring, or tattoo) should not be corrected simultaneously with augmentation procedures. In these cases, the onlay transplant technique is favored.
Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B
2015-12-10
Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.
Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B
2018-05-15
In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
McCormack, Joshua R.; Underwood, Frank B.; Slaven, Emily J.; Cappaert, Thomas A.
2016-01-01
Background: Eccentric exercise is commonly used in the management of Achilles tendinopathy (AT) but its effectiveness for insertional AT has been questioned. Soft tissue treatment (Astym) combined with eccentric exercise could result in better outcomes than eccentric exercise alone. Hypothesis: Soft tissue treatment (Astym) plus eccentric exercise will be more effective than eccentric exercise alone for subjects with insertional AT. Study Design: Prospective randomized controlled trial. Level of Evidence: Level 2. Methods: Sixteen subjects were randomly assigned to either a soft tissue treatment (Astym) and eccentric exercise group or an eccentric exercise–only group. Intervention was completed over a 12-week period, with outcomes assessed at baseline, 4, 8, 12, 26, and 52 weeks. Outcomes included the Victorian Institute of Sport Assessment Achilles-Specific Questionnaire (VISA-A), the numeric pain rating scale (NPRS), and the global rating of change (GROC). Results: Significantly greater improvements on the VISA-A were noted in the soft tissue treatment (Astym) group over the 12-week intervention period, and these differences were maintained at the 26- and 52-week follow-ups. Both groups experienced a similar statistically significant improvement in pain over the short and long term. A significantly greater number of subjects in the soft tissue treatment (Astym) group achieved a successful outcome at 12 weeks. Conclusion: Soft tissue treatment (Astym) plus eccentric exercise was more effective than eccentric exercise only at improving function during both short- and long-term follow-up periods. Clinical Relevance: Soft tissue treatment (Astym) plus eccentric exercise appears to be a beneficial treatment program that clinicians should consider incorporating into the management of their patients with insertional AT. PMID:26893309
Reaction of facial soft tissues to treatment with a Herbst appliance.
Meyer-Marcotty, P; Kochel, J; Richter, U; Richter, F; Stellzig-Eisenhauer, Angelika
2012-04-01
The objective of this prospective longitudinal study was to investigate the reaction of facial soft tissues to treatment with a Herbst appliance. We aimed to quantify three-dimensionally (3D) the isolated effect of the Herbst appliance and volume changes in the lip profile. The 3D data of the facial soft tissues of 34 patients with skeletal Class II (17 female and 17 male, mean age 13.5 ± 1.8 years) were prepared in a standardized manner immediately before (T1) and after (T2) treatment with a Herbst appliance. Anthropometric evaluation was carried out in sagittal and vertical dimensions. To quantify volume changes, pretherapeutic and posttherapeutic images were superimposed three-dimensionally and the difference volumes calculated. Following testing for normal distribution, a statistical analysis was carried out using the paired t test. We observed ventral development of the soft tissues of the lower jaw with flattening of the profile curvature and anterior displacement of the sublabial region in a total of 27 patients. Anterior facial height was lengthened and the facial depth at the lower jaw increased. The largest percentage changes were noted in the lip profile, with a reduction in the red margin of the upper lip and an increase in lower lip height. We also observed a reduction of the sublabial fold in conjunction with a simultaneous increase in volume. The influence of the Herbst appliance on the facial soft tissues is expected to result in a positive treatment outcome, particularly in patients with a convex profile, a retrusive lower lip, and a marked sublabial fold. We observed a broad clinical spectrum of individual reactions in the facial soft tissues. It is, thus, not possible to detect a linear relationship between the Herbst treatment and soft tissue changes, making soft tissue changes difficult to predict.
Lear, Aaron; McCord, Gary; Peiffer, Jeffrey; Watkins, Richard R; Parikh, Arpan; Warrington, Steven
2011-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections have been documented with increasing frequency in both team and individual sports in recent years. It also seems that the level of MRSA skin and soft tissue infections in the general population has increased. One hundred ninety athletes from 6 local high school football teams were recruited for this prospective observational study to document nasal colonization and the potential role this plays in skin and soft tissue infections in football players and, in particular, MRSA infections. Athletes had nasal swabs done before their season started, and they filled out questionnaires regarding potential risk factors for skin and soft tissue infections. Those enrolled in the study were then observed over the course of the season for skin and soft tissue infections. Those infected had data about their infections collected. One hundred ninety of 386 available student athletes enrolled in the study. Forty-four of the subjects had nasal colonization with methicillin-susceptible S. aureus, and none were colonized with MRSA. There were 10 skin and soft tissue infections (8 bacterial and 2 fungal) documented over the course of the season. All were treated as outpatients with oral or topical antibiotics, and none were considered serious. Survey data from the preseason questionnaire showed 21% with skin infection, 11% with methicillin-susceptible S. aureus, and none with MRSA infection during the past year. Three reported a remote history of MRSA infection. We documented an overall skin infection rate of 5.3% among high school football players over a single season. Our results suggest that skin and soft tissue infection may not be widespread among high school athletes in northeast Ohio.
Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults
Fu, Xiao-Yu; Zelik, Karl E.; Board, Wayne J.; Browning, Raymond C.; Kuo, Arthur D.
2014-01-01
Obesity not only adds to the mass that must be carried during walking, but also changes body composition. Although extra mass causes roughly proportional increases in musculoskeletal loading, less well understood is the effect of relatively soft and mechanically compliant adipose tissue. Purpose To estimate the work performed by soft tissue deformations during walking. The soft tissue would be expected to experience damped oscillations, particularly from high force transients following heel strike, and could potentially change the mechanical work demands for walking. Method We analyzed treadmill walking data at 1.25 m/s for 11 obese (BMI > 30 kg/m2) and 9 non-obese (BMI < 30 kg/m2) adults. The soft tissue work was quantified with a method that compares the work performed by lower extremity joints as derived using assumptions of rigid body segments, with that estimated without rigid body assumptions. Results Relative to body mass, obese and non-obese individuals perform similar amounts of mechanical work. But negative work performed by soft tissues was significantly greater in obese individuals (p= 0.0102), equivalent to about 0.36 J/kg vs. 0.27 J/kg in non-obese individuals. The negative (dissipative) work by soft tissues occurred mainly after heel strike, and for obese individuals was comparable in magnitude to the total negative work from all of the joints combined (0.34 J/kg vs. 0.33 J/kg for obese and non-obese adults, respectively). Although the joints performed a relatively similar amount of work overall, obese individuals performed less negative work actively at the knee. Conclusion The greater proportion of soft tissues in obese individuals results in substantial changes in the amount, location, and timing of work, and may also impact metabolic energy expenditure during walking. PMID:25380475
Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P
2013-03-01
We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.
Colen, David L; Carney, Martin J; Shubinets, Valeriy; Lanni, Michael A; Liu, Tiffany; Levin, L Scott; Lee, Gwo-Chin; Kovach, Stephen J
2018-04-01
Total knee arthroplasty is a common orthopedic procedure in the United States and complications can be devastating. Soft-tissue compromise or joint infection may cause failure of prosthesis requiring knee fusion or amputation. The role of a plastic surgeon in total knee arthroplasty is critical for cases requiring optimization of the soft-tissue envelope. The purpose of this study was to elucidate factors associated with total knee arthroplasty salvage following complications and clarify principles of reconstruction to optimize outcomes. A retrospective review of patients requiring soft-tissue reconstruction performed by the senior author after total knee arthroplasty over 8 years was completed. Logistic regression and Fisher's exact tests determined factors associated with the primary outcome, prosthesis salvage versus knee fusion or amputation. Seventy-three knees in 71 patients required soft-tissue reconstruction (mean follow-up, 1.8 years), with a salvage rate of 61.1 percent, mostly using medial gastrocnemius flaps. Patients referred to our institution with complicated periprosthetic wounds were significantly more likely to lose their knee prosthesis than patients treated only within our system. Patients with multiple prior knee operations before definitive soft-tissue reconstruction had significantly decreased rates of prosthesis salvage and an increased risk of amputation. Knee salvage significantly decreased with positive joint cultures (Gram-negative greater than Gram-positive organisms) and particularly at the time of definitive reconstruction, which also trended toward an increased risk of amputation. In revision total knee arthroplasty, prompt soft-tissue reconstruction improves the likelihood of success, and protracted surgical courses and contamination increase failure and amputations. The authors show a benefit to involving plastic surgeons early in the course of total knee arthroplasty complications to optimize genicular soft tissues. Therapeutic, III.
Thoma, Daniel S; Naenni, Nadja; Benic, Goran I; Hämmerle, Christoph H F; Jung, Ronald E
2017-02-01
The aim of this study was to test whether or not soft tissue augmentation with a collagen matrix (VCMX) leads to a similar increase in ridge width around dental implants compared to the use of an autogenous subepithelial connective tissue graft (SCTG). In 12 dogs, immediate dental implants were placed with simultaneous guided bone regeneration. Three months later, soft tissue volume augmentation was performed by randomly allocating three treatment modalities to these sites [VCMX, SCTG, sham-operated group (control)]. Dogs were sacrificed at 1 (n = 4), 2 (n = 4) or 6 months (n = 4). Descriptive histology and histomorphometric measurements for soft tissue thickness were performed on non-decalcified sections. The horizontal soft tissue thickness was maximal at the most coronal level (alveolar crest) at 1 month (VCMX: 2.1 ± 1.6 mm; SCTG: 2.5 ± 1.7 mm; p = 0.877) and decreased until 6 months. At 6 months, the greatest mucosal thickness was at a level 3.5 mm below the crest (VCMX: 0.8 ± 0.3 mm; SCTG: 0.7 ± 0.2 mm) (p = 0.754). Control sites revealed no relevant soft tissue augmentation at any level and any time-point. Tissue integration for VCMX and SCTG were favourable with minimal inflammatory reactions. Soft tissue volume augmentation at implant sites was obtained to a similar extent using VCMX and SCTG up to 2 months. Thereafter, degradation and remodelling processes were enhanced leading to a minimal increase in soft tissue thickness at 6 months for VCMX and SCTG. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials
Huang, Changjin; Quinn, David; Suresh, Subra
2018-01-01
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037
Hemmrich, Karsten; von Heimburg, Dennis; Rendchen, Raoul; Di Bartolo, Chiara; Milella, Eva; Pallua, Norbert
2005-12-01
The reconstruction of soft tissue defects following extensive deep burns or tumor resections remains an unresolved problem in plastic and reconstructive surgery since adequate implant materials are still not available. Preadipocytes, immature precursor cells found between mature adipocytes in adipose tissue, are a potential material for soft tissue engineering since they can proliferate and differentiate into adipose tissue after transplantation. In previous studies, we identified hyaluronan benzyl ester (HYAFF 11) sponges to be promising carrier matrices. This study now evaluates, in vitro and in vivo, a new sponge architecture with pores of 400 microm either made of plain HYAFF 11 or HYAFF 11 coated with the extracellular matrix glycosaminoglycan hyaluronic acid. Human preadipocytes were isolated, seeded onto carriers and implanted into nude athymic mice. Explants harvested after 3, 8, and 12 weeks were examined for macroscopical appearance, thickness, weight, pore structure, histology, and immunohistochemistry. Compared to previous studies, we found better penetration of cells into both types of scaffolds, with more extensive formation of new vessels throughout the construct but with only minor adipose tissue. Our encouraging results contribute towards a better seeded and vascularised scaffold but also show that the enhancement of adipogenic conversion of preadipocytes remains a major task for further in vivo experiments.
Abrahamsson, Peter; Isaksson, Sten; Andersson, Gunilla
2011-11-01
To evaluate the space-maintaining capacity of titanium mesh covered by a collagen membrane after soft tissue expansion on the lateral border of the mandible in rabbits, and to assess bone quantity and quality using autogenous particulate bone or bone-substitute (Bio-Oss(®) ), and if soft tissue ingrowth can be avoided by covering the mesh with a collagen membrane. In 11 rabbits, a self-inflatable soft tissue expander was placed under the lateral mandibular periosteum via an extra-oral approach. After 2 weeks, the expanders were removed and a particulated onlay bone graft and deproteinized bovine bone mineral (DBBM) (Bio-Oss(®) ) were placed in the expanded area and covered by a titanium mesh. The bone and DBBM were separated in two compartments under the mesh with a collagen membrane in between. The mesh was then covered with a collagen membrane. After 3 months, the animals were sacrificed and specimens were collected for histology. The osmotic soft tissue expander created a subperiosteal pocket and a ridge of new bone formed at the edges of the expanded periosteum in all sites. After the healing period of 3 months, no soft tissue dehiscence was recorded. The mean bone fill was 58.1±18% in the bone grafted area and 56.9±13.7% in the DBBM area. There was no significant difference between the autologous bone graft and the DDBM under the titanium mesh with regard to the total bone area or the mineralized bone area. Scanning electron microscopy showed that new bone was growing in direct contact with the DBBM particles and the titanium mesh. There is a soft tissue ingrowth even after soft tissue expansion and protection of the titanium mesh with a collagen membrane. This study confirms that an osmotic soft tissue expander creates a surplus of periosteum and soft tissue, and that new bone can subsequently be generated under a titanium mesh with the use of an autologous bone graft or DBBM. © 2011 John Wiley & Sons A/S.
Latif, Vishnu Ben; Keshavaraj; Rai, Rohan; Hegde, Gautham; Shajahan, Shabna
2015-01-01
Background: The aim of this study was to verify the intra-individual reproducibility of natural head position (NHP) in centric relation (CR) position, to prove the inter-individual differences in the Frankfort horizontal plane and sella-nasion line compared with the true horizontal line, and to establish linear norms from A-point, B-point, Pog as well as soft tissue A-point, soft tissue B-point, and soft tissue Pog to nasion true vertical line (NTVL) in adult Indian subjects. Methods: Lateral cephalograms (T1) of Angle’s Class I subjects were taken in NHP and with bite in CR. A second lateral cephalogram (T2) of these subjects with ANB angle in the range 1-4° were taken after 1 week using the same wax bite and both the radiographs were analyzed based on six angular parameters using cephalometric software (Do-it, Dental studio NX version 4.1) to assess the reproducibility of NHP. Linear values of six landmarks were taken in relation to NTVL, and the mean values were calculated. A total of 116 subjects were included in this study. Results: When the cephalometric values of T1 and T2 were analyzed, it was found that, the parameters showed a P < 0.001, indicating the reproducibility of NHP in CR. Mean values for point A, point B, Pog and their soft tissue counterparts were also obtained. Conclusion: The study proved that NHP is a reproducible and accurate when recorded with the mandible in CR. Linear norms for skeletal Class I subjects in relation to NTVL were established. PMID:26124598
Surgical hazards posed by marine and freshwater animals in Florida.
Howard, R J; Burgess, G H
1993-11-01
Marine and freshwater animals can cause injury to humans by biting, stinging, being poisonous to eat, and causing infections. Biting aquatic animals in Florida include sharks, barracudas, alligators, and moray eels. Devitalized tissue should be débrided, and vascular, neurologic, and tendinous injuries should be repaired. Radiographs should be obtained to examine the injury sit for fractures and retained foreign bodies (teeth). The spines of stingrays and marine catfish can cause soft tissue injury and infection. The spine has a recurved, serrated shape that may cause further injury and break if it is pulled out. The venom may cause local tissue necrosis requiring débridement. Soft tissue infections with marine Vibrio bacteria can occur after eating raw oysters or receiving even minor injuries from marine animals. Thirty-one individuals developed soft tissue infections, 49 developed sepsis, and 23 developed both sepsis and soft tissue infection with marine Vibrio species during a 12-year period. Sixteen patients developed necrotizing soft tissue infections. Treatment is with antibiotics and débridement when necrosis occurs.
Avazmohammadi, Reza; Li, David S; Leahy, Thomas; Shih, Elizabeth; Soares, João S; Gorman, Joseph H; Gorman, Robert C; Sacks, Michael S
2018-02-01
Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior remains elusive. A major challenge is the complex architecture of soft tissues, such as myocardium, which endows them with strongly anisotropic and heterogeneous mechanical properties. Available experimental approaches for quantifying the 3D mechanical behavior of myocardium are limited to preselected planar biaxial and 3D cuboidal shear tests. These approaches fall short in pursuing a model-driven approach that operates over the full kinematic space. To address these limitations, we took the following approach. First, based on a kinematical analysis and using a given strain energy density function (SEDF), we obtained an optimal set of displacement paths based on the full 3D deformation gradient tensor. We then applied this optimal set to obtain novel experimental data from a 1-cm cube of post-infarcted left ventricular myocardium. Next, we developed an inverse finite element (FE) simulation of the experimental configuration embedded in a parameter optimization scheme for estimation of the SEDF parameters. Notable features of this approach include: (i) enhanced determinability and predictive capability of the estimated parameters following an optimal design of experiments, (ii) accurate simulation of the experimental setup and transmural variation of local fiber directions in the FE environment, and (iii) application of all displacement paths to a single specimen to minimize testing time so that tissue viability could be maintained. Our results indicated that, in contrast to the common approach of conducting preselected tests and choosing an SEDF a posteriori, the optimal design of experiments, integrated with a chosen SEDF and full 3D kinematics, leads to a more robust characterization of the mechanical behavior of myocardium and higher predictive capabilities of the SEDF. The methodology proposed and demonstrated herein will ultimately provide a means to reliably predict tissue-level behaviors, thus facilitating organ-level simulations for efficient diagnosis and evaluation of potential treatments. While applied to myocardium, such developments are also applicable to characterization of other types of soft tissues.
Soft Tissue Regeneration Incorporating 3-Dimensional Biomimetic Scaffolds.
Shah, Gaurav; Costello, Bernard J
2017-02-01
Soft tissue replacement and repair is crucial to the ever-developing field of reconstructive surgery as trauma, pathology, and congenital deficits cannot be adequately restored if soft tissue regeneration is deficient. Predominant approaches were sometimes limited to harvesting autografts, but through regenerative medicine and tissue engineering, the hope of fabricating custom constructs is now a feasible and fast-approaching reality. The breadth of this field includes tissues ranging from skin, mucosa, muscle, and fat and hopes to not only provide construct to replace a tissue but also to replace its function. Copyright © 2016 Elsevier Inc. All rights reserved.
Thoma, Daniel S; Zeltner, Marco; Hilbe, Monika; Hämmerle, Christoph H F; Hüsler, Jürg; Jung, Ronald E
2016-10-01
To test whether or not the use of a collagen matrix (VCMX) results in short-term soft tissue volume increase at implant sites non-inferior to an autogenous subepithelial connective tissue graft (SCTG), and to evaluate safety and tissue integration of VCMX and SCTG. In 20 patients with a volume deficiency at single-tooth implant sites, soft tissue volume augmentation was performed randomly allocating VCMX or SCTG. Soft tissue thickness, patient-reported outcome measures (PROMs), and safety were assessed up to 90 days (FU-90). At FU-90 (abutment connection), tissue samples were obtained for histological analysis. Descriptive analysis was computed for both groups. Non-parametric tests were applied to test non-inferiority for the gain in soft tissue thickness at the occlusal site. Median soft tissue thickness increased between BL and FU-90 by 1.8 mm (Q1:0.5; Q3:2.0) (VCMX) (p = 0.018) and 0.5 mm (-1.0; 2.0) (SCTG) (p = 0.395) (occlusal) and by 1.0 mm (0.5; 2.0) (VCMX) (p = 0.074) and 1.5 mm (-2.0; 2.0) (SCTG) (p = 0.563) (buccal). Non-inferiority with a non-inferiority margin of 1 mm could be demonstrated (p = 0.020); the difference between the two group medians (1.3 mm) for occlusal sites indicated no relevant, but not significant superiority of VCMX versus SCTG (primary endpoint). Pain medication consumption and pain perceived were non-significantly higher in group SCTG up to day 3. Median physical pain (OHIP-14) at day 7 was 100% higher for SCTG than for VCMX. The histological analysis revealed well-integrated grafts. Soft tissue augmentation at implant sites resulted in a similar or higher soft tissue volume increase after 90 days for VCMX versus SCTG. PROMs did not reveal relevant differences between the two groups. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Soft tissue hemangioma with osseous extension: a case report and review of the literature.
Daoud, Alexander; Olivieri, Brandon; Feinberg, Daniel; Betancourt, Michel; Bockelman, Brian
2015-04-01
Soft tissue hemangiomas are commonly encountered lesions, accounting for 7-10 % of all benign soft tissue masses (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010). While the literature describes the great majority of hemangiomas as asymptomatic and discovered only as incidental findings, they do have the potential to induce reactive changes in neighboring structures (Pastushyn et al. Surg Neurol 50(6):535-47, 1998). When these variants occur in close proximity to bone, they may elicit a number of well-documented reactive changes in osseous tissue (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010; DeFilippo et al. Skelet Radiol 25(2):174-7, 1996; Ly et al. AJR Am J Roentgenol 180(6):1695-700, 2003; Sung et al. Skelet Radiol 27(4):205-10, 1998). However, instances of direct extension into bone by soft tissue hemangiomas--that is, infiltration of the mass's vascular components into nearby osseous tissue--are currently undocumented in the literature. In these cases, imaging plays an important role in differentiating hemangiomas from malignant lesions (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010; Sung et al. Skelet Radiol 27(4):205-10, 1998; Pourbagher, Br J Radiol 84(1008):1100-8, 2011). In this article, we present such a case that involved the sacral spine. Imaging revealed a soft tissue mass with direct extension of vascular components into osseous tissue of the adjacent sacral vertebrae. Biopsy and subsequent histopathologic examination led to definitive diagnosis of soft tissue hemangioma. While MRI is widely regarded as the gold standard imaging modality for evaluating hemangiomas, in this report we describe how CT can aid in narrowing the differential diagnosis when one encounters a vascular lesion with adjacent osseous changes. Furthermore, we review the literature as it pertains to the imaging of soft tissue hemangiomas that occur in proximity to osseous tissue, as well as correlate this case to current theories on the pathogenesis of hemangiomas. Radiologists should be aware that benign soft tissue hemangiomas demonstrate a spectrum of imaging findings, including aggressive-appearing changes to adjacent bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.
Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside amore » given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may be caused by the biomechanical deformation process. Accuracy and stability of the model response were validated using ground-truth simulations representing soft tissue behavior under local and global deformations. Numerical accuracy of the HN deformations was analyzed by applying nonrigid skeletal transformations acquired from interfraction kVCT images to the model’s skeletal structures and comparing the subsequent soft tissue deformations of the model with the clinical anatomy. Results: The GPU based framework enabled the model deformation to be performed at 60 frames/s, facilitating simulations of posture changes and physiological regressions at interactive speeds. The soft tissue response was accurate with a R{sup 2} value of >0.98 when compared to ground-truth global and local force deformation analysis. The deformation of the HN anatomy by the model agreed with the clinically observed deformations with an average correlation coefficient of 0.956. For a clinically relevant range of posture and physiological changes, the model deformations stabilized with an uncertainty of less than 0.01 mm. Conclusions: Documenting dose delivery for HN radiotherapy is essential accounting for posture and physiological changes. The biomechanical model discussed in this paper was able to deform in real-time, allowing interactive simulations and visualization of such changes. The model would allow patient specific validations of the DIR method and has the potential to be a significant aid in adaptive radiotherapy techniques.« less
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.
Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A
2017-09-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces
Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.
2017-01-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332
Local application of periodontal ligament stromal cells promotes soft tissue regeneration.
Baik, H S; Park, J; Lee, K J; Chung, C
2014-09-01
To test the potential stimulatory effect of local application of periodontal ligament (PDL) stromal cells on soft tissue regeneration. Fluorescently labeled PDL cells outgrown from extracted human premolars or phosphate-buffered saline were locally injected to the cutaneous wounds created on mice. Soft tissue regeneration was evaluated for 14 days using photographs and histomorphometry. PDL cell engraftment was tracked with confocal microscopy. To detect the paracrine effect of the PDL cells on soft tissue regeneration, PDL cell-conditioned medium (CM) was evaluated for the concentration of secretory factors, transforming growth factor-beta 1 (TGFβ1). The effect of PDL CM on the proliferation and migration of dermal fibroblast and keratinocyte was tested using MTT assay and migration assay. The application of PDL cells significantly promoted soft tissue regeneration compared with the application of PBS. Self-replicating PDL cells were engrafted into the hair follicles of the host tissue. Dermal fibroblast proliferation and keratinocyte migration were significantly enhanced by the treatment with PDL CM. Physiologically significant amount of TGFβ1 was secreted from PDL cells into the CM. Local injection of PDL cells promoted soft tissue regeneration in part by the enhancement of fibroblast proliferation and keratinocyte migration through a paracrine mechanism. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Imaging the hard/soft tissue interface.
Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M
2014-03-01
Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.
New Soft Tissue Implants Using Organic Elastomers
NASA Astrophysics Data System (ADS)
Ku, David N.
Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.
Palaeoneurological clues to the evolution of defining mammalian soft tissue traits
Benoit, J.; Manger, P. R.; Rubidge, B. S.
2016-01-01
A rich fossil record chronicles the distant origins of mammals, but the evolution of defining soft tissue characters of extant mammals, such as mammary glands and hairs is difficult to interpret because soft tissue does not readily fossilize. As many soft tissue features are derived from dermic structures, their evolution is linked to that of the nervous syutem, and palaeoneurology offers opportunities to find bony correlates of these soft tissue features. Here, a CT scan study of 29 fossil skulls shows that non-mammaliaform Prozostrodontia display a retracted, fully ossified, and non-ramified infraorbital canal for the infraorbital nerve, unlike more basal therapsids. The presence of a true infraorbital canal in Prozostrodontia suggests that a motile rhinarium and maxillary vibrissae were present. Also the complete ossification of the parietal fontanelle (resulting in the loss of the parietal foramen) and the development of the cerebellum in Probainognathia may be pleiotropically linked to the appearance of mammary glands and having body hair coverage since these traits are all controlled by the same homeogene, Msx2, in mice. These suggest that defining soft tissue characters of mammals were already present in their forerunners some 240 to 246 mya. PMID:27157809
Soft tissue gas gangrene: a severe complication of emphysematous cholecystitis.
Safioleas, Michael; Stamatakos, Michael; Kanakis, Meletios; Sargedi, Constantina; Safioleas, Constantinos; Smirnis, Anastasios; Vaiopoulos, George
2007-12-01
Soft tissue gas gangrene with myonecrosis is a severe complication of traumatic and non-traumatic conditions with a potentially lethal outcome. Emphysematous cholecystitis is a complication of acute cholecystitis, which is characterized by air accumulation in the gallbladder wall and is reported in the literature as a rare causative factor of soft tissue gas gangrene. Here we report 4 patients who developed soft tissue gas gangrene as a complication of emphysematous cholecystitis. Two patients were female octogenarians (one with a history of diabetes mellitus), and underwent percutaneous trans-gallbladder drainage and fascia incisions of the affected soft tissue with prompt administration of antibiotics. Finally, both of them died. The other two patients were male (32 years old diabetic and 47 years old with a history of chronic alcoholism). They underwent open cholecystectomy. Fascia incisions of the gangrenous areas and antibiotic therapy administration were also performed. Both of them were discharged from the hospital and are currently in excellent clinical status. We also present the ultrasonographic and/or radiologic images of these four patients. Soft tissue gas gangrene may complicate emphysematous cholecystitis, and clinicians should be aware of the coexistence of these two clinical conditions, since immediate management is needed in order to prevent fatal outcome.
Chattopadhyay, Debarati; Agarwal, Akhilesh Kumar; Guha, Goutam; Bhattacharya, Nirjhar; Chumbale, Pawan K; Gupta, Souradip; Murmu, Marang Buru
2014-01-01
Study Design Case series. Purpose To describe paraspinal transposition flap for coverage of sacral soft tissue defects. Overview of Literature Soft tissue defects in the sacral region pose a major challenge to the reconstructive surgeon. Goals of sacral wound reconstruction are to provide a durable skin and soft tissue cover adequate for even large sacral defects; minimize recurrence; and minimize donor site morbidity. Various musculocutaneous and fasciocutanous flaps have been described in the literature. Methods The flap was applied in 53 patients with sacral soft tissue defects of diverse etiology. Defects ranged in size from small (6 cm×5 cm) to extensive (21 cm×10 cm). The median age of the patients was 58 years (range, 16-78 years). Results There was no flap necrosis. Primary closure of donor sites was possible in all the cases. The median follow up of the patients was 33 months (range, 4-84 months). The aesthetic outcomes were acceptable. There has been no recurrence of pressure sores. Conclusions The authors conclude that paraspinal transposition flap is suitable for reconstruction of large sacral soft tissue defects with minimum morbidity and excellent long term results. PMID:24967044
Zhang, Qixu; Johnson, Joshua A; Dunne, Lina W; Chen, Youbai; Iyyanki, Tejaswi; Wu, Yewen; Chang, Edward I; Branch-Brooks, Cynthia D; Robb, Geoffrey L; Butler, Charles E
2016-04-15
Using a perfusion decellularization protocol, we developed a decellularized skin/adipose tissue flap (DSAF) comprising extracellular matrix (ECM) and intact vasculature. Our DSAF had a dominant vascular pedicle, microcirculatory vascularity, and a sensory nerve network and retained three-dimensional (3D) nanofibrous structures well. DSAF, which was composed of collagen and laminin with well-preserved growth factors (e.g., vascular endothelial growth factor, basic fibroblast growth factor), was successfully repopulated with human adipose-derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs), which integrated with DSAF and formed 3D aggregates and vessel-like structures in vitro. We used microsurgery techniques to re-anastomose the recellularized DSAF into nude rats. In vivo, the engineered flap construct underwent neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant adipose tissue formation at 3months postoperatively. Our results indicate that DSAF co-cultured with hASCs and HUVECs is a promising platform for vascularized soft tissue flap engineering. This platform is not limited by the flap size, as the entire construct can be immediately perfused by the recellularized vascular network following simple re-integration into the host using conventional microsurgical techniques. Significant soft tissue loss resulting from traumatic injury or tumor resection often requires surgical reconstruction using autologous soft tissue flaps. However, the limited availability of qualitative autologous flaps as well as the donor site morbidity significantly limits this approach. Engineered soft tissue flap grafts may offer a clinically relevant alternative to the autologous flap tissue. In this study, we engineered vascularized soft tissue free flap by using skin/adipose flap extracellular matrix scaffold (DSAF) in combination with multiple types of human cells. Following vascular reanastomosis in the recipient site, the engineered products successful regenerated large-scale fat tissue in vivo. This approach may provide a translatable platform for composite soft tissue free flap engineering for microsurgical reconstruction. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bache, Matthias; Kappler, Matthias; Wichmann, Henri; Rot, Swetlana; Hahnel, Antje; Greither, Thomas; Said, Harun M; Kotzsch, Matthias; Würl, Peter; Taubert, Helge; Vordermark, Dirk
2010-04-08
Osteopontin (OPN) overexpression is correlated with a poor prognosis for tumor patients. However, only a few studies investigated the prognostic impact of expression of OPN in soft tissue sarcomas (STS) yet. This study is based on tumor and serum samples from 93 adult STS patients. We investigated OPN protein levels in serum (n = 86) and tumor tissue (n = 80) by ELISA and OPN mRNA levels in tumor tissue (n = 68) by quantitative real-time PCR. No correlation was found between OPN levels in serum and tumor tissue. Moreover, an elevated OPN protein level in the serum was significantly associated with clinical parameters such as higher stage (p = 0.004), higher grade (p = 0.003), subtype (p = 0.002) and larger tumor size (p = 0.03). OPN protein levels in the tumor tissue were associated with higher stage (p = 0.06), higher grade (p = 0.003), subtype (p = 0.07) and an increased rate of relapse (p = 0.02). In addition, using a Cox's proportional hazards regression model, we found that an elevated OPN protein level in the serum and tumor tissue extracts is a significant negative prognostic factor for patients with STS. The relative risks of tumor-related death were 2.2 (p < 0.05) and 3.7 (p = 0.01), respectively. Our data suggest OPN protein in serum as well as in tumor tissue extracts is an important prognostic factor for soft tissue sarcoma patients.
Wen, Gen; Wang, Chun-Yang; Chai, Yi-Min; Cheng, Liang; Chen, Ming; Yi-Min, L V
2013-11-01
The complex wound with the exposed hardware and infection is one of the common complications after the internal fixation of the tibia fracture. The salvage of hardware and reconstruction of soft tissue defect remain challenging. In this report, we presented our experience on the use of the distally based saphenous neurocutaneous perforator flap combined with vacuum-assisted closure (VAC) therapy for the coverage of the soft tissue defect and the exposed hardware in the lower extremity with fracture. Between January 2008 and July 2010, seven patients underwent the VAC therapy followed by transferring a reversed saphenous neurocutaneous perforator flap for reconstruction of the wound with exposed hardware around the distal tibia. The sizes of the flaps ranged from 6 × 3 cm to 15 × 6 cm. Six flaps survived completely. Partial necrosis occurred in one patient. There were no other complications of repair and donor sites. Bone healing was achieved in all patients. In conclusion, the reversed saphenous neurocutaneous perfortor flaps combined with the VAC therapy might be one of the options to cover the complex wound with exposed hardware in the lower extremities. © 2013 Wiley Periodicals, Inc.
Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.
San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan
2012-02-01
Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM.
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes
Shweikeh, Faris; Bukavina, Laura; Saeed, Kashif; Sarkis, Reem; Suneja, Aarushi; Sweiss, Fadi; Drazin, Doniel
2014-01-01
Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing's sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma), some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma), and a few after 36 months (chondrosarcoma and liposarcoma). Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing's sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas). Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease. PMID:24757391
Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G
2018-05-12
3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Singh, G D; McNamara, J A; Lozanoff, S
1998-01-01
While the dynamics of maxillo-mandibular allometry associated with treatment modalities available for the management of Class III malocclusions currently are under investigation, developmental aberration of the soft tissues in untreated Class III malocclusions requires specification. In this study, lateral cephalographs of 124 prepubertal European-American children (71 with untreated Class III malocclusion; 53 with Class I occlusion) were traced, and 12 soft-tissue landmarks digitized. Resultant geometries were scaled to an equivalent size and mean Class III and Class I configurations compared. Procrustes analysis established statistical difference (P < 0.001) between the mean configurations. Comparing the overall untreated Class III and Class I configurations, thin-plate spline (TPS) analysis indicated that both affine and non-affine transformations contribute towards the deformation (total spline) of the averaged Class III soft tissue configuration. For non-affine transformations, partial warp 8 had the highest magnitude, indicating large-scale deformations visualized as a combination of columellar retrusion and lower labial protrusion. In addition, partial warp 5 also had a high magnitude, demonstrating upper labial vertical compression with antero-inferior elongation of the lower labio-mental soft tissue complex. Thus, children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the maxillary soft tissue complex in combination with antero-inferior mandibular soft tissue elongation. This pattern of deformations may represent gene-environment interactions, resulting in Class III malocclusions with characteristic phenotypes, that are amenable to orthodontic and dentofacial orthopedic manipulations.
Reverse radial artery flap for soft tissue defects of hand in pediatric age group.
Cheema, Saeed Ashraf; Talaat, Nabeela
2009-01-01
To highlight the usefulness of reverse radial artery flap in covering various soft tissue defects of hand in paediatric age group. A total of 16 reverse radial artery flaps were utilized in a period of three years to cover various soft tissue defects of hand for paediatric age group patients. The age ranged from 5-18 years. The two common causes of soft tissue defects in this series were mechanical trauma and fireworks trauma with five cases in each group. Three of the cases were burn victims and other two presented with earth quake injuries. One patient had wound because of road traffic accident. Soft tissue defects of palm were covered with this flap in eight cases while in three cases it was wrapped around the thumb. First web space defects were covered with this flap in two cases. Two cases required coverage of amputation stump at transmetacarpal level and yet another required a big flap to cover the soft tissue defects at palm, dorsum and thumb. Donor site was covered with split skin graft in all cases but one, which was closed primarily. We had partial loss of flap in one case. Grafted donor sites healed uneventfully and were quite acceptable to the patients in due course of time. Reverse radial artery flap has a quite long arc of rotation which brings it great ease to cover the soft tissue defects of various areas of hand like palm, dorsum, first web space and thumb.
Myoepithelial carcinoma on the right shoulder: Case report with published work review.
Yokose, Chiharu; Asai, Jun; Kan, Saori; Nomiyama, Tomoko; Takenaka, Hideya; Konishi, Eiichi; Goto, Keisuke; Ansai, Shin-Ichi; Katoh, Norito
2016-09-01
Myoepithelial carcinoma is a malignant tumor that can differentiate towards myoepithelial cells and commonly occur in the salivary glands. There have been only a few reports of primary cutaneous myoepithelial carcinoma; however, most cases showed subcutaneous involvement and could also be diagnosed as soft tissue myoepithelial carcinoma arising from the subcutis with dermal involvement. It may thus be impossible to distinguish a primary cutaneous from a soft tissue myoepithelial carcinoma. Herein, we describe a case of myoepithelial carcinoma on the shoulder in an 85-year-old Japanese woman. The tumor was located in the whole dermis and subcutis; therefore, it could be diagnosed as either a cutaneous or soft tissue myoepithelial carcinoma. We reviewed previous cases of primary cutaneous and soft tissue myoepithelial carcinomas and compared their clinical and immunohistological features. We found no obvious differences in anatomical distribution or immunohistochemical findings. However, the recurrence rate of cutaneous myoepithelial carcinomas seems to be lower than that of soft tissue carcinomas. Such a difference may be attributable to the adequate surgical margin in cutaneous carcinomas compared with the deep-seated soft tissue carcinomas. The metastatic frequency did not significantly differ between the two types. Although we could summarize from only a small number of cases, these results indicate the difficulty in distinguishing between cutaneous and soft tissue myoepithelial carcinomas; furthermore, it may not be suitable to distinguish them on the basis of aggressive behavior. © 2016 Japanese Dermatological Association.
Cairo, Francesco; Barbato, Luigi; Tonelli, Paolo; Batalocco, Guido; Pagavino, Gabriella; Nieri, Michele
2017-07-01
Peri-implant soft tissue may be critical to prevent inflammation and promote gingival margin stability. The purpose of this randomized clinical trial (RCT) is to compare xenogeneic collagen matrix (XCM) versus connective tissue graft (CTG) to increase buccal soft tissue thickness at implant site. Soft tissue augmentation with XCM (test) or CTG (control) was performed at 60 implants in 60 patients at the time of implant uncovering. Measurements were performed by a blinded examiner at baseline, 3 and 6 months. Outcome measures included buccal soft tissue thickness (GT), apico-coronal keratinized tissue (KT), chair time and post-operative discomfort. Visual Analogue Scale (VAS) was used to evaluate patient satisfaction. After 6 months, the final GT increase was 0.9 ± 0.2 in the XCM group and 1.2 ± 0.3 mm in the CTG group, with a significant difference favouring the control group (0.3 mm; p = .0001). Both procedures resulted in similar final KT amount with no significant difference between treatments. XCM was associated with significant less chair-time (p < .0001), less post-operative pain (p < .0001), painkillers intake (p < .0001) and higher final satisfaction than CTG (p = .0195). CTG was more effective than XCM to increase buccal peri-implant soft tissue thickness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Basal paravian functional anatomy illuminated by high-detail body outline
Wang, Xiaoli; Pittman, Michael; Zheng, Xiaoting; Kaye, Thomas G.; Falk, Amanda R.; Hartman, Scott A.; Xu, Xing
2017-01-01
Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit. PMID:28248287
Prefabricated microvascular autograft in tracheal reconstruction.
Fayad, J; Kuriloff, D B
1994-10-01
Tracheal reconstruction continues to be a challenge in head and neck surgery. Numerous techniques, including the use of alloplasts, composite grafts, and staged laryngotracheal troughs, have met with limited success because of implant exposure, infection, persistent granulation tissue, and eventual restenosis. With recently introduced techniques for soft-tissue molding, bone induction with bone morphogenetic protein, and microvascular free tissue transfer, a rodent model was developed to create a well-vascularized tracheal autograft. In this model, a rigid tube having the same dimensions and flexibility as the native trachea was created by wrapping a cylindrical silicone tracheal mold with a layer of vascularized adductor thigh muscle pedicled on the femoral vessels in the groin. Tracheal rings were created by filing transverse troughs in the muscle bed with bone morphogenetic protein-primed demineralized bone matrix before wrapping around the silicone mold. Grafts harvested at 2 weeks demonstrated rigid skeletal support provided by heterotopic bone formation in the form of rings and a smooth inner lining produced by fibroplasia. Bone transformation was controlled and restricted to the muscle troughs, allowing intervening regions of soft tissue and thus producing a flexible neotrachia. With this model, a homologous, vascularized tracheal autograft capable of microvascular free tissue transfer was fabricated based on the femoral vessels. Prefabrication of composite grafts, through the use of soft-tissue molding, bone induction, and subsequent free tissue transfer, has an unlimited potential for use in head and neck reconstruction.
Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels
NASA Astrophysics Data System (ADS)
Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.
2011-03-01
For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.
Lin, Cho-Ying; Chen, Zhaozhao; Pan, Whei-Lin; Wang, Hom-Lay
2018-05-01
To achieve a predictable esthetic and functional outcome, soft tissue augmentation has become popular in implant treatment. The aim of this systematic review and meta-analysis was to assess the influence of different timing for soft tissue augmentation during implant treatment on soft tissue conditions and its stability. Electronic and manual searches for articles written in English up to September 2017 were performed by two independent reviewers. Human clinical studies with the purpose of evaluating outcomes (at least 3-month follow-up) of autogenous soft tissue graft for augmentation during implant treatment, either simultaneous or after implant placement (staged), were included. Cumulative changes of keratinized tissue width (KTW), soft tissue thickness (STT), and mid-buccal mucosal recession (MR) data were analyzed with a random-effects model to compare the postoperative outcomes. Twenty-nine human studies (eight randomized clinical trials, six cohort studies, and 15 case series) that met the inclusion criteria were included. For the overall data, the weighted mean STT gain (1 year after surgery) was 1.03 mm (95% CI: 0.78-1.29 mm), among which the simultaneous group was 1.12 mm (95% CI: 0.75-1.49 mm) and staged group (3-6 months after implant placement) was 0.95 mm (95% CI: 0.58-1.31 mm). There was no statistically significant difference in KTW and MR between 3 months and more than 3 months after surgery. This review revealed that the stability of soft tissue, in terms of KTW and mid-buccal MR, can be obtained 3 months after surgery. There is no difference between simultaneous and staged soft tissue augmentation during implant treatment, and both procedures significantly enhance KTW and STT. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-03-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
NASA Astrophysics Data System (ADS)
Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.
2009-08-01
A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.
Summaries of Research - Fiscal Year 1985.
1986-01-01
emergencies, not trauma-related, 2) diagnosis of dental emergencies, trauma-related, 3) differential diagnosis of soft tissue lesions, 4) definitions of terms...on 49 different soft tissue lesions. Preliminary validation was accomplished by a variety of dentists who input over 200 simulated emergencies. The...non-specific opsonin, that promotes adhesion of fibroblasts to collagen, and influences the attachment of bacteria to soft tissues . As a first step
SU-E-J-203: Investigation of 1.5T Magnetic Field Dose Effects On Organs of Different Density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Rubinstein, A; Ibbott, G
2015-06-15
Purpose: For the combined 1.5T/6MV MRI-linac system, the perpendicular magnetic field to the radiation beam results in altered radiation dose distributions. This Monte Carlo study investigates the change in dose at interfaces for common organs neighboring soft tissue. Methods: MCNP6 was used to simulate the effects of a 1.5T magnetic field when irradiating tissues with a 6 MV beam. The geometries used in this study were not necessarily anatomically representative in size in order to directly compare quantitative dose effects for each tissue at the same depths. For this purpose, a 512 cm{sup 3} cubic material was positioned at themore » center of a 2744 cm{sup 3} cubic soft tissue material phantom. The following tissue materials and their densities were used in this study: lung (0.296 g/cm{sup 3}), fat (0.95), spinal cord (1.038), soft tissue (1.04), muscle (1.05), eye (1.076), trabecular bone (1.40), and cortical bone (1.85). Results: The addition of a 1.5T magnetic field caused dose changes of +46.5%, +2.4%, −0.9%, −0.8%, −1.5%, −6.5%, and −8.8% at the entrance interface between soft tissue and lung, fat, spinal cord, muscle, eye, trabecular bone, and cortical bone tissues respectively. Dose changes of −39.4%, −4.1%, −0.8%, −0.8%, +0.5%, +6.7%, and +10.9% were observed at the second interface between the same tissues respectively and soft tissue. On average, the build-up distance was reduced by 0.6 cm, and a dose increase of 62.7% was observed at the exit interface between soft tissue and air of the entire phantom. Conclusion: The greatest changes in dose were observed at interfaces containing lung and bone tissues. Due to the prevalence and proximity of bony anatomy to soft tissues throughout the human body, these results encourage further examination of these tissues with anatomically representative geometries using multiple beam configurations for safe treatment using the MRI-linac system.« less
Repair of cocaine-related oronasal fistula with forearm radial free flap.
Colletti, Giacomo; Allevi, Fabiana; Valassina, Davide; Bertossi, Dario; Biglioli, Federico
2013-01-01
Cocaine snorting may cause significant local ischemic necrosis and the destruction of nasal and midfacial bones and soft tissues, leading to the development of a syndrome called cocaine-induced midline destructive lesion. A review of the English-language literature reveals only a few articles describing the treatment of hard and/or soft palatal perforation related to cocaine inhalation. Described here are 4 patients with a history of cocaine abuse showing palatal lesions. From 2010 to 2013, a total of 4 patients affected by cocaine-related midline destructive lesions were referred to our department. They all presented signs of a cocaine-induced midline destructive lesion. They showed wide midfacial destruction involving the nasal septum as well as the hard and soft palates causing an ample oronasal communication. In 3 patients, oronasal communication has been treated successfully using a personal technique based on a partially de-epithelialized forearm free flap. The fourth patient had been treated only with local debridement because, when she came to our attention, her abusive habits were still unsolved. Different surgical options have been reported such as local, regional, and free flaps for hard and soft palate reconstruction. However, because of an unpredictable vascularization of the palatal tissues and owing to the scarceness of the local soft tissues, local flaps are at high risk for partial and complete failure. The transfer of free vascularized tissue, however, seems to be the most reliable and logical solution for medium- to large-sized fistulas. Among the various free flaps, we choose the radial forearm type because of the pedicle length and the flap thickness.
Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D
2016-07-25
A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.
Soft Tissue Grafting Around Teeth and Implants.
Deeb, George R; Deeb, Janina Golob
2015-08-01
The presence of healthy attached tissue at the tooth and implant soft tissue interface correlates with long-term success and stability in function and esthetics. There are several soft tissue grafting procedures that increase the volume of keratinized tissue and provide coverage on both teeth and implants. Many of these techniques can be used in conjunction with implant placement, or after placement as a means of salvage. This article describes the techniques for augmentation of keratinized tissue as well as root and implant coverage. These tools should be in the armamentarium of oral and maxillofacial surgeons providing implant services. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping
2016-11-01
A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.
Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M
2016-06-01
Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Spilker, R L; de Almeida, E S; Donzelli, P S
1992-01-01
This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafaei, F; Nie, L
Purpose: Improvement in an in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium (Gd) in bone has been investigated. Series of improvements to the method is described. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging and the potential toxicity of Gd exposure. Methods: A set of seven bone equivalent phantoms with different amount of Gd concentrations (from 0–100 ppm) has been developed. Soft tissue equivalent plastic plates were used to simulate the soft tissue overlaying the tibia bone in an in vivo measurement. A new 5more » GBq 109Cd source was used to improve the source activity in comparison to the previous study (0.17 GBq). An improved spectral fitting program was utilized for data analysis. Results: The previous published minimum detection limit (MDL) for Gd doped phantom measurements using KXRF system was 3.3 ppm. In this study the MDL for bare bone phantoms was found to be 0.8 ppm. Our previous study used only three layers of plastic (0.32, 0.64 and 0.96 mm) as soft tissue equivalent materials and obtained the MDL of 4–4.8 ppm. In this study the plastic plates with more realistic thicknesses to simulate the soft tissue covering tibia bone (nine thicknesses ranging from 0.61–6.13 mm) were used. The MDLs for phantoms were determined to be 1.8–3.5 ppm. Conclusion: With the improvements made to the technology (stronger source, improved data analysis algorithm, realistic soft tissue thicknesses), the MDL of the KXRF system to measure Gd in bare bone was improved by a factor of 4.1. The MDL is at the level of the bone Gd concentration reported in literature. Hence, the system is ready to be tested on human subjects to investigate the use of bone Gd as a biomarker for Gd toxicity.« less
High energy x-ray phase contrast CT using glancing-angle grating interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.
Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less
Practical use of imaging technique for management of bone and soft tissue tumors.
Miwa, Shinji; Otsuka, Takanobu
2017-05-01
Imaging modalities including radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are necessary for the diagnosis of bone and soft tissue tumors. The history of imaging began with the discovery of X-rays in the 19th century. The development of CT, MRI, ultrasonography, and positron emission tomography (PET) have improved the management of bone and soft tissue tumors. X-ray imaging and CT scans enable the evaluation of bone destruction, periosteal reaction, sclerotic changes in lesions, condition of cortical bone, and ossification. MRI enables the assessment of tissue characteristics, tumor extent, and the reactive areas. Functional imaging modalities including 201 thallium ( 201 Tl) scintigraphy can be used to differentiate benign lesions from malignant lesions and to assess chemotherapeutic effects. Real-time assessment of soft tissue tumors by ultrasonography enables accurate and safe performance of surgery and biopsy. This article describes useful imaging modalities and characteristic findings in the management of bone and soft tissue tumors. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering
Lu, Helen H.; Thomopoulos, Stavros
2014-01-01
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244
Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.
Lulich, Steven M; Arsikere, Harish
2015-06-01
This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.
Characterization of focal muscle compression under impact loading
NASA Astrophysics Data System (ADS)
Butler, B. J.; Sory, D. R.; Nguyen, T.-T. N.; Proud, W. G.; Williams, A.; Brown, K. A.
2017-01-01
In modern wars over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome of the extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions.
El Chaar, Edgard; Oshman, Sarah; Cicero, Giuseppe; Castano, Alejandro; Dinoi, Cinzia; Soltani, Leila; Lee, Yoonjung Nicole
Localized ridge resorption, the consequence of socket collapse, following tooth extraction in the anterior maxilla can adversely affect esthetics, function, and future implant placement. Immediate grafting of extraction sockets may help preserve natural ridge contours, but a lack of available soft tissue can compromise the final esthetic outcome. The presented modified rotated palatal pedicle connective tissue flap is a useful technique for simultaneous soft tissue coverage and augmentation of grafted sockets to improve esthetic outcome. This article delineates its advantages through the presentation of a four-case series using this new technique.
Soft-Tissue Infections and Their Imaging Mimics: From Cellulitis to Necrotizing Fasciitis.
Hayeri, Mohammad Reza; Ziai, Pouya; Shehata, Monda L; Teytelboym, Oleg M; Huang, Brady K
2016-10-01
Infection of the musculoskeletal system can be associated with high mortality and morbidity if not promptly and accurately diagnosed. These infections are generally diagnosed and managed clinically; however, clinical and laboratory findings sometimes lack sensitivity and specificity, and a definite diagnosis may not be possible. In uncertain situations, imaging is frequently performed to confirm the diagnosis, evaluate the extent of the disease, and aid in treatment planning. In particular, cross-sectional imaging, including computed tomography and magnetic resonance imaging, provides detailed anatomic information in the evaluation of soft tissues due to their inherent high spatial and contrast resolution. Imaging findings of soft-tissue infections can be nonspecific and can have different appearances depending on the depth and anatomic extent of tissue involvement. Although many imaging features of infectious disease can overlap with noninfectious processes, imaging can help establish the diagnosis when combined with the clinical history and laboratory findings. Radiologists should be familiar with the spectrum of imaging findings of soft-tissue infections to better aid the referring physician in managing these patients. The aim of this article is to review the spectrum of soft-tissue infections using a systematic anatomic compartment approach. We discuss the clinical features of soft-tissue infections, their imaging findings with emphasis on cross-sectional imaging, their potential mimics, and clinical management. © RSNA, 2016.
Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans
Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia; David, Nathaniel; Mori, Susumu; Taube, Janis M.; Elisseeff, Jennifer H.
2015-01-01
Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal light exposure. Modulating the ratio of synthetic to biological polymer allowed us to tune implant elasticity and volume persistence. In a small-animal model, implanted photocrosslinked PEG-HA showed a dose-dependent relationship between increasing PEG concentration and enhanced implant volume persistence. In direct comparison with commercial HA injections, the PEG-HA implants maintained significantly greater average volumes and heights. Reversibility of the implant volume was achieved with hyaluronidase injection. Pilot clinical testing in human patients confirmed the feasibility of the transdermal photocrosslinking approach for implantation in abdomen soft tissue, although an inflammatory response was observed surrounding some of the materials. PMID:21795587
Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings.
Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko
2012-06-01
Although metal hypersensitivity or pseudotumors are concerns for metal-on-metal (MoM) bearings, detailed pathologies of patterns, severity, and incidence of periprosthetic soft tissue lesions are incompletely understood. We examined the potential of ultrasound for screening of periarticular soft tissue lesions around MoM bearings. Ultrasound examinations were conducted in 88 hips (79 patients) with MoM hip resurfacings or MoM total hip arthroplasties with a large femoral head. Four qualitative ultrasound patterns were shown, including normal pattern in 69 hips, joint-expansion pattern in 11 hips, cystic pattern in 5 hips, and mass pattern in 3 hips. Hips with the latter 3 abnormal patterns showed significantly higher frequency of clinical symptoms, without significant differences of sex, duration of implantation, head sizes, and cup abduction/anteversion angles, compared with hips with normal pattern. Ultrasound examination provides sensitive screening of soft tissue reactions around MoM bearings and may be useful in monitoring progression and defining treatment for periarticular soft tissue abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.
Soft tissue reconstruction of the oral cavity: a review of current options.
Rigby, Matthew H; Taylor, S Mark
2013-08-01
This article provides an overview of the principles of soft tissue reconstruction of the oral cavity, and reviews the recent clinical outcomes for described options. For small defects of the oral cavity, healing by secondary intention and primary closure are both excellent options and may provide functionally superior results. In defects where a split-thickness skin graft is appropriate, acellular dermis may provide results that are at least as good at lower cost. Free flaps, particularly the radial forearm and the anterolateral thigh, have become the mainstays of oral cavity soft tissue reconstruction for larger defects. Recent clinical series suggest that relatively novel regional flaps provide a reasonable alternative to free flap reconstructions for moderate and some large soft tissue defects. Soft tissue reconstruction of the oral cavity is a complex task with significant functional implications. There are a large number of reconstructive options available. Systematic appraisal of the defect and options allows the reconstructive surgeon to optimize functional potential by choosing the most appropriate reconstructive option.
Marzouk, Eiman S; Kassem, Hassan E
2018-03-01
To evaluate soft tissue changes and their long-term stability in skeletal anterior open bite adults treated by maxillary posterior teeth intrusion using zygomatic miniplates and premolar extractions. Lateral cephalograms of 26 patients were taken at pretreatment (T1), posttreatment (T2), 1 year posttreatment (T3), and 4 years posttreatment (T4). At the end of treatment, the soft tissue facial height and profile convexity were reduced. The lips increased in length and thickness, with backward movement of the upper lip and forward movement of the lower lip. The total relapse rate ranged from 20.2% to 31.1%. At 4 years posttreatment, 68.9% to 79.8% of the soft tissue treatment effects were stable. The changes in the first year posttreatment accounted for approximately 70% of the total relapse. Soft tissue changes following maxillary posterior teeth intrusion with zygomatic miniplates and premolar extractions appear to be stable 4 years after treatment.
Arthroscopic debridement for soft tissue ankle impingement.
Brennan, S A; Rahim, F; Dowling, J; Kearns, S R
2012-06-01
To assess the response to treatment in patients with soft tissue impingement of the ankle managed with arthroscopic debridement. Forty-one ankle arthroscopies were performed for soft tissue impingement between April 2007 and April 2009. There were 26 men and 15 women and the mean age was 30.1 years. Arthroscopy was performed on an average of 21 months after injury. The Visual-Analogue-Scale Foot and Ankle (VASFA) score and Meislin's criteria were used to assess the response to treatment. The mean pre-operative VASFA score was 44.5. This increased to 78.3 postoperatively (p < 0.0001). According to Meislin's criteria, there were 34 good or excellent results, five fair and two poor results. Pre-operative magnetic resonance imaging was useful in detecting tears of the anterior talofibular ligament and excluding osteochondral defects; however, synovitis and soft tissue impingement was under-reported. Arthroscopy is an effective method for the diagnoses and treatment of soft tissue impingement of the ankle joint. This condition is under-reported on MRI.
Herford, Alan S; Akin, Lee; Cicciu, Marco; Maiorana, Carlo; Boyne, Philip J
2010-07-01
Soft tissue grafting is often required to correct intraoral mucosal deficiencies. Autogenous grafts have disadvantages including an additional harvest site with its associated pain and morbidity and, sometimes, poor quality and limited amount of the graft. Porcine collagen matrices have the potential to be helpful for grafting of soft tissue defects. Thirty consecutive patients underwent intraoral grafting to re-create missing soft tissue. Defects ranged in size from 50 to 900 mm(2). Porcine collagen matrices were used to reconstruct missing tissue. Indications included preprosthetic (22), followed by tumor removal (5), trauma (2), and release of cheek ankylosis (1). The primary efficacy parameters evaluated were the degree of lateral and/or alveolar extension and the evaluation of re-epithelialization and shrinkage of the grafted area. Overall, the percentage of shrinkage of the graft was 14% (range, 5%-20%). The amount of soft tissue extension averaged 3.4 mm (range, 2-10 mm). The secondary efficacy parameters included hemostatic effect, pain evaluation, pain and discomfort, and clinical evaluation of the grafted site. All patients reported minimal pain and swelling associated with the grafted area. No infections were noted. This porcine collagen matrix provides a biocompatible surgical material as an alternative to an autogenous transplant, thus obviating the need to harvest soft tissue autogenous grafts from other areas of the oral cavity. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Wu, Ching-Lan; Lai, Yi-Chen; Wang, Hsin-Kai; Chen, Paul Chih-Hsueh; Chiou, Hong-Jen
2017-11-01
The purpose of this study is to test the possibility of obtained cell-like resolution in soft tissue tumors on the basis of ultrasound echotexture. This is a prospective study consisting of 57 patients (29 females and 28 males, age range: 9-83 years, average age: 44.5 years) with palpable soft tissue mass, referred from the Departments of Orthopedics and Oncology for ultrasound (US)-guided biopsy. The study was approved by the institutional review board (IRB) of our hospital. Ultrasonographic images were recorded by still imaging in the biopsy tract in each biopsy session. Equipment included curvilinear and linear array probes. After biopsy, a radiologist and a pathologist correlated the US image and the observations regarding the histology of the tissue specimen in low-power (40 × magnification) and high-power (100-400 × magnification) fields. The histologic results included 22 benign and 35 malignant lesions. The echotexture of the soft tissue tumors correlated well with the cellular distribution and arrangement: the greater the number of cells and the more regular their arrangement as seen histologically, the greater is the hypoechogenicity on the ultrasound. The echogenicity of the soft tissue tumor also correlated well with the presence of fat cells, hemorrhage, cartilage, and osteoid tissue, all of which cause an increase in echogenicity. This study showed that the echotexture of soft tissue tumors can predict some details of cellular histology. Copyright © 2017. Published by Elsevier Taiwan LLC.
Rustemeyer, Jan; Martin, Alice
2013-03-01
Since improvement of facial aesthetics after orthognathic surgery moves increasingly into the focus of patients, prediction of soft tissue response to hard tissue movement becomes essential for planning. The aim of this study was to assess the facial soft tissue response in skeletal class II and III patients undergoing orthognathic surgery and to compare the potentials of cephalometry and two-dimensional (2-D) photogrammetry for predicting soft tissue changes. Twenty-eight patients with class II relationship and 33 with class III underwent bimaxillary surgery. All subjects had available both a traced lateral cephalogram and a traced lateral photogram taken pre- and postsurgery in natural head position (median follow-up, 9.4 ± 0.6 months). Facial convexity and lower lip length were highly correlated with hard tissue movements cephalometrically in class III patients and 2-D photogrammetrically in both classes. In comparison, cephalometric correlations for class II patients were weak. Correlations of hard and soft tissue movements between pre- and postoperative corresponding landmarks in horizontal and vertical planes were significant for cephalometry and 2-D photogrammetry. No significant difference was found between cephalometry and 2-D photogrammetry with respect to soft to hard tissue movement ratios. This study revealed that cephalometry is still a feasible standard for evaluating and predicting outcomes in routine orthognathic surgery cases. Accuracy could be enhanced with 2-D photogrammetry, especially in class II patients.
NASA Astrophysics Data System (ADS)
Trojanova, E.; Schyns, L. E. J. R.; Dubois, L.; Jakubek, J.; Le Pape, A.; Sefc, L.; Sykora, V.; Turecek, D.; Uher, J.; Verhaegen, F.
2017-01-01
The tissue type resolving X-ray radiography and tomography can be performed even without contrast agents. The differences between soft tissue types such as kidney, muscles, fat, liver, brain and spleen were measured based on their spectral response. The Timepix based X-ray imaging detector WidePIX2×5 with 300 μm thick silicon sensors was used for most of the measurements presented in this work. These promising results are used for further optimizations of the detector technology and radiographic methods.
Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.
2010-01-01
Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459
Beerle, Corinne; Gelpke, Hans; Breitenstein, Stefan; Staerkle, Ralph F
2016-12-01
We report a case of a rare complication of acute appendicitis with perforation through the abdominal wall. The case points out that an intraabdominal origin should be considered in patients presenting with rapidly spreading soft tissue infections of the trunk. A 58-year-old European woman presented to our hospital with a 1-week history of severe abdominal pain accompanied by rapidly spreading erythema and emphysema of the lower abdomen. On admission, the patient was in septic shock with leukocytosis and elevation of C-reactive protein. Among other diagnoses, necrotizing fasciitis was suspected. Computed tomography showed a large soft tissue infection with air-fluid levels spreading through the lower abdominal wall. During the operation, we found a perforated appendicitis breaking through the fascia and causing a rapidly progressive soft tissue infection of the abdominal wall. Appendicitis was the origin of the soft tissue infection. The abdominal wall was only secondarily involved. Even though perforated appendicitis as an etiology of a rapidly progressive soft tissue infection of the abdominal wall is very rare, it should be considered in the differential diagnosis of abdominal wall cellulitis. The distinction between rapidly spreading subcutaneous infection with abscess formation and early onset of necrotizing fasciitis is often difficult and can be confirmed only by surgical intervention.
Gulia, A; Puri, A; Chorge, S; Panda, P K
2016-01-01
This study was conducted to know the spectrum and number of bone and soft tissue (BST) tumors presenting to our institute. We needed to assess the gap between the number of patients seen and infrastructure available, and based on this information, help formulate guidelines for optimum utilization of resources and to provide best possible evidence-based cancer care. This is a prospective observational study (epidemiological). This study included all new patients seen in BST-disease management group (DMG) in the year 2010. An audit form was devised to capture all the relevant information. A comparison of our data with other national and international studies was also done. Out of total 31,951 new patients registered at our institute, 2007 patients availed BST-DMG services. Sixty percent were bone tumors and 36% were soft tissue tumors. In bone tumor, 66% were malignant, 15% were benign, and 19% were non-neoplastic. Osteosarcoma (43%) was the most common malignant tumor followed by primitive neuroectodermal tumor/Ewing's (27%) and chondrosarcoma (11%). Giant cell tumor was the most common benign bone tumor. Eighty-one percent of all soft tissue lesions were malignant, of which 75% were of mesenchymal origin and 25% were of cutaneous origin. This is an attempt to document the epidemiology of musculoskeletal tumors presenting to our institution while guiding the institute to frame and implement disease-specific protocols and generate further research questions. Continued data collection and follow-up can provide valuable information on long-term survival and treatment-related toxicities. This data (within limitations) may be extrapolated to national level to identify the need for infrastructure and human resources.
Espí-López, Gemma-Victoria; Ruescas-Nicolau, Maria-Arantzazu; Nova-Redondo, Cristina; Benítez-Martínez, Josep C; Dugailly, Pierre-Michel; Falla, Deborah
2018-04-30
To determine the efficacy of suboccipital inhibitory techniques in people with migraine compared with a control treatment based on myofascial trigger point (MTrP) therapy and stretching. A randomized, double-blind controlled pilot trial was conducted. University research laboratory. Forty-six adults diagnosed with migraine with over 6 months duration. Participants were randomized to receive either combined MTrP therapy and stretching (control group) or the control treatment plus suboccipital soft tissue inhibition (experimental group). Treatment was applied on four occasions over 8 weeks (one every 15 days), with a duration of 30 minutes per session in the experimental group and 20 min in the control group. The impact of headache was assessed with the Headache Impact Test (HIT-6), disability by the migraine disability assessment (MIDAS), and quality of life by the Short Form Health Survey (SF-36). Both groups were assessed at baseline and 1 week immediately after the end of treatment. The amount of change of the HIT-6 score and MIDAS scores were significantly different between groups (p < 0.05), although the SF-36 scores were not. The change in the HIT-6 score and MIDAS scores was greater in the experimental group. Both groups showed a reduction on the HIT-6 score (p < 0.001), MIDAS scores (p < 0.05), and SF-36 physical subscale, whereas the SF-36 mental subscale improved only in the experimental group (p < 0.001). Soft tissue techniques based on MTrP therapy and stretching were helpful for improving certain aspects of migraine, such as the impact and disability caused by the headache, and the frequency and intensity of headache; however, when combined with suboccipital soft tissue inhibition, the treatment effect was larger.
Development of a computed tomography-based scoring system for necrotizing soft-tissue infections.
McGillicuddy, Edward A; Lischuk, Andrew W; Schuster, Kevin M; Kaplan, Lewis J; Maung, Adrian; Lui, Felix Y; Bokhari, S A Jamal; Davis, Kimberly A
2011-04-01
Necrotizing soft-tissue infections (NSTIs) are associated with significant morbidity and mortality, but a definitive nonsurgical diagnostic test remains elusive. Despite the widespread use of computed tomography (CT) as a diagnostic adjunct, there is little data that definitively correlate CT findings with the presence of NSTI. Our goal was the development of a CT-based scoring system to discriminate non-NSTI from NSTI. Patients older than 17 years undergoing CT for evaluation of soft-tissue infection at a tertiary care medical center over a 10-year period (2000-2009) were included. Abstracted data included comorbidities and social history, physical examination, laboratory findings, and operative and pathologic findings. NSTI was defined as soft-tissue necrosis in the dictated operative note or the accompanying pathology report. CT scans were reviewed by a radiologist blinded to clinical and laboratory data. A scoring system was developed and the area under the receiver operating characteristic curve was calculated. During the study period, 305 patients underwent CT scanning (57% men; mean age, 47.4 years). Forty-four patients (14.4%) evaluated had an NSTI. A scoring system was retrospectively developed (table). A score >6 points was 86.3% sensitive and 91.5% specific for the diagnosis of NSTI (positive predictive value, 63.3%; negative predictive value, 85.5%). The area under the receiver operating characteristic curve was 0.928 (95% confidence interval, 0.893-0.964). The mean score of the non-NSTI group was 2.74. We have developed a CT scoring system that is both sensitive and specific for the diagnosis of NSTIs. This system may allow clinicians to more accurately diagnose NSTIs. Prospective validation of this scoring system is planned.
The application of diode laser in the treatment of oral soft tissues lesions. A literature review.
Ortega-Concepción, Daniel; Cano-Durán, Jorge A; Peña-Cardelles, Juan-Francisco; Paredes-Rodríguez, Víctor-Manuel; González-Serrano, José; López-Quiles, Juan
2017-07-01
Since its appearance in the dental area, the laser has become a treatment of choice in the removal of lesions in the oral soft tissues, due to the numerous advantages they offer, being one of the most used currently the diode laser. The aim of this review was to determine the efficacy and predictability of diode laser as a treatment of soft tissue injuries compared to other surgical methods. A literature review of articles published in PubMed/MEDLINE, Scopus and the Cochrane Library databases between 2007 and 2017 was performed. "Diode laser", "soft tissue", "oral cavity" and "oral surgery" were employed for the search strategy. Only articles published English or Spanish were selected. The diode laser is a minimally invasive technology that offers great advantages, superior to those of the conventional scalpel, such as reduction of bleeding, inflammation and the lower probability of scars. Its effectiveness is comparable to that of other types of lasers, in addition to being an option of lower cost and greater ease of use. Its application in the soft tissues has been evaluated, being a safe and effective method for the excision of lesions like fibromas, epulis fissuratum and the accomplishment of frenectomies. The diode laser can be used with very good results for the removal of lesions in soft tissues, being used in small exophytic lesions due to their easy application, adequate coagulation, no need to suture and the slightest inflammation and pain. Key words: Diode laser, soft tissues, oral cavity, oral surgery.
Hacquebord, Jacques H; Hanel, Douglas P; Friedrich, Jeffrey B
2017-08-01
The pedicled latissimus flap has been shown to provide effective coverage of wounds around the elbow with an average size of 100 to 147 cm 2 but with complication rates of 20% to 57%. We believe the pedicled latissimus dorsi flap is an effective and safe technique that provides reliable and durable coverage of considerably larger soft tissue defects around the elbow and proximal forearm. A retrospective review was performed including all patients from Harborview Medical Center between 1998 and 2012 who underwent coverage with pedicled latissimus dorsi flap for defects around the elbow. Demographic information, injury mechanism, soft tissue defect size, complications (minor vs major), and time to surgery were collected. The size of the soft tissue defect, complications, and successful soft tissue coverage were the primary outcome measures. A total of 18 patients were identified with variable mechanisms of injury. Average defect size around the elbow was 422 cm 2 . Three patients had partial necrosis of the distal most aspect of the flap, which was treated conservatively. One patient required a secondary fasciocutaneous flap, and another required conversion to a free latissimus flap secondary to venous congestion. Two were lost to follow-up after discharge from the hospital. In all, 88% (14 of 16) of the patients had documented (>3-month follow-up) successful soft tissue coverage with single-stage pedicled latissimus dorsi flap. The pedicled latissimus dorsi flap is a reliable option for large and complex soft tissue injuries around the elbow significantly larger than previous reports. However, coverage of the proximal forearm remains challenging.
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Principles of definitive soft tissue coverage with flaps.
Levin, L Scott
2008-01-01
Despite the emergence of negative pressure wound therapy with reticulated open cell foam (NPWT/ROCF) as delivered by V.A.C.(R) Therapy (KCI, San Antonio, TX) for orthopaedic trauma, vascularized tissue transfer whether it be pedicle, free, or tissue transfer using the operating microscope or as an island, remains the mainstay of soft tissue reconstruction for orthopaedic traumatology. The critisism of microvascular procedures has been that they are lengthy, costly, and required technical expertise to perform. While technical skills are required, microsurgical care has evolved into a routine operation with high degrees of success in experienced hand. The problem that still remains is access to surgeons who are interested in soft tissue reconstruction and can perform definitive coverage with flaps. There is a need in the orthopaedic community to solve the problem of lack of flap surgeons and as a result, NPWT/ROCF has been touted as the answer to flap reconstruction. NPWT/ROCF is an important addition to soft tissue reconstruction but it serves as a bridge rather than definitive coverage in many hands. Just as wound technology is evolving with tissue substitutes, growth factors and NPWT/ROCF flaps technology continues to advance with new perforator flaps and local regional flaps, particularly the sural flap, coming on line as mainstays of soft tissue reconstruction.
Imunohistological aspects of the tissue around dental implants
NASA Astrophysics Data System (ADS)
Nimigean, Victor; Nimigean, Vanda R.; Sǎlǎvǎstru, Dan I.; Moraru, Simona; BuÅ£incu, Lavinia; Ivaşcu, Roxana V.; Poll, Alexandru
2016-03-01
Objectives: study of soft and hard tissues around implants. Material and methods: For the immunohistochemical and histological study of the implant/soft tissue interface, we examined pieces of peri-implant mucosa harvested from 35 patients. The implant/bone interface was assessed using histologic and histomorphometric examination of hard tissues around unloaded, early loaded or delayed loaded dental implants with pre-established design, with a sandblasted and acid-etched surface, placed both in extraction sockets, or after bone healing following tooth removal. This study was performed on 9 common race dogs. Results: The histological study of the implant/soft tissue interface showed regenerative modifications and moderate chronic subepithelial inflammatory reactions. Immunohistochemical evaluation of the soft tissue biopsies revealed the presence of specific immunocompetent cells and proteins of the matrix metalloproteinase (MMP) expression. Bone-implants contacts were more obvious in the apical half of the implants and at the edges of the threads, than between them. A mature, lamelliform bone containing lacunae with osteocytes and lack of connective tissue were noticed around implants that were late placed and loaded. The new-formed bone was also abundant in the crestal zone, not only in the apical part of the implants. Conclusions: A thorough understanding of the microstructure of dental implant/soft and hard tissue interface will improve the longevity of osseointegrated implants.
Bourke, Jason M; Porter, W M Ruger; Ridgely, Ryan C; Lyson, Tyler R; Schachner, Emma R; Bell, Phil R; Witmer, Lawrence M
2014-11-01
The nasal region plays a key role in sensory, thermal, and respiratory physiology, but exploring its evolution is hampered by a lack of preservation of soft-tissue structures in extinct vertebrates. As a test case, we investigated members of the "bony-headed" ornithischian dinosaur clade Pachycephalosauridae (particularly Stegoceras validum) because of their small body size (which mitigated allometric concerns) and their tendency to preserve nasal soft tissues within their hypermineralized skulls. Hypermineralization directly preserved portions of the olfactory turbinates along with an internal nasal ridge that we regard as potentially an osteological correlate for respiratory conchae. Fossil specimens were CT-scanned, and nasal cavities were segmented and restored. Soft-tissue reconstruction of the nasal capsule was functionally tested in a virtual environment using computational fluid dynamics by running air through multiple models differing in nasal soft-tissue conformation: a bony-bounded model (i.e., skull without soft tissue) and then models with soft tissues added, such as a paranasal septum, a scrolled concha, a branched concha, and a model combining the paranasal septum with a concha. Deviations in fluid flow in comparison to a phylogenetically constrained sample of extant diapsids were used as indicators of missing soft tissue. Models that restored aspects of airflow found in extant diapsids, such as appreciable airflow in the olfactory chamber, were judged as more likely. The model with a branched concha produced airflow patterns closest to those of extant diapsids. These results from both paleontological observation and airflow modeling indicate that S. validum and other pachycephalosaurids could have had both olfactory and respiratory conchae. Although respiratory conchae have been linked to endothermy, such conclusions require caution in that our re-evaluation of the reptilian nasal apparatus indicates that respiratory conchae may be more widespread than originally thought, and other functions, such as selective brain temperature regulation, could be important. © 2014 Wiley Periodicals, Inc.
Joyce, Christopher D; Randall, Kyle L; Mariscalco, Michael W; Magnussen, Robert A; Flanigan, David C
2016-02-01
To describe the outcomes of bone-patellar tendon-bone (BPTB) and soft-tissue allografts in anterior cruciate ligament (ACL) reconstruction with respect to graft failure risk, physical examination findings, instrumented laxity, and patient-reported outcomes. A search of the PubMed, Scopus, CINAHL (Cumulative Index to Nursing and Allied Health Literature) Complete, Cochrane Collaboration, and SPORTDiscus databases was performed. English-language studies with outcome data on primary ACL reconstruction with nonirradiated BPTB and soft-tissue allografts were identified. Outcome data included failure risk, physical examination findings, instrumented laxity measurements, and patient-reported outcome scores. Seventeen studies met the inclusion criteria. Of these studies, 11 reported on BPTB allografts exclusively, 5 reported on soft-tissue allografts exclusively, and 1 compared both types. The comparative study showed no difference in failure risk, Lachman grade, pivot-shift grade, instrumented laxity, or overall International Knee Documentation Committee score between the 2 allograft types. Data from all studies yielded a failure risk of 10.3% (95% confidence interval [CI], 4.5% to 18.1%) in the soft-tissue group and 15.2% (95% CI, 11.3% to 19.6%) in the BPTB group. The risk of a Lachman grade greater than 5 mm was 6.4% (95% CI, 1.7% to 13.7%) in the soft-tissue group and 8.6% (95% CI, 6.3% to 11.2%) in the BPTB group. The risk of a grade 2 or 3 pivot shift was 1.4% (95% CI, 0.3% to 3.3%) in the soft-tissue group and 4.1% (95% CI, 1.9% to 7.2%) in the BPTB group. One comparative study showed no difference in results after ACL reconstruction with nonirradiated BPTB and soft-tissue allografts. Inclusion of case series in the analysis showed qualitatively similar outcomes with the 2 graft types. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Kim, Hyong-Nyun; Park, Yoo-Jung; Kim, Gab-Lae; Park, Yong-Wook
2013-01-01
The purpose of the present study was to investigate the outcomes of distal chevron osteotomy with lateral soft tissue release for moderate to severe hallux valgus. The patients were selected using criteria that included the degree of lateral soft tissue contracture and metatarsocuneiform joint flexibility. The contracture and flexibility were determined from intraoperative varus stress radiographs. From April 2007 to May 2009, 56 feet in 51 consecutive patients with moderate to severe hallux valgus had undergone distal chevron osteotomy with lateral soft tissue release. This was done when the lateral soft tissue contracture was not so severe that passive correction of the hallux valgus deformity was not possible and when the metatarsocuneiform joint was flexible enough to permit additional correction of the first intermetatarsal angle after lateral soft tissue release. The mean patient age was 45.2 (range 23 to 54) years, and the duration of follow-up was 27.5 (range 24 to 46) months. The mean hallux abductus angle decreased from 33.5° ± 3.1° to 11.6° ± 3.3°, and the first intermetatarsal angle decreased from 16.4° ± 2.7° to 9.7° ± 2.1°. The mean American Orthopaedic Foot and Ankle Society hallux-interphalangeal scores increased from 66.6° ± 10.7° to 92.6° ± 9.4° points, and 46 of the 51 patients (90%) were either very satisfied or satisfied with the outcome. No recurrence of deformity or osteonecrosis of the metatarsal head occurred. When lateral soft tissue contracture is not severe and when the metatarsocuneiform joint is flexible enough, distal chevron osteotomy with lateral soft tissue release can be a useful and effective choice for moderate to severe hallux valgus deformity. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Soft tissue wound healing around teeth and dental implants.
Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D
2014-04-01
To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schmitt, Christian M; Matta, Ragai E; Moest, Tobias; Humann, Julia; Gammel, Lisa; Neukam, Friedrich W; Schlegel, Karl A
2016-07-01
This study evaluates a porcine collagen matrix (CM) for soft tissue thickening in comparison to the subepithelial connective tissue graft (SCTG). In eight beagle dogs, soft tissue thickening was performed at the buccal aspects of the upper canines (SCTG and CM). Impressions were taken before augmentation (i1), after surgery (i2), after one (i3), three (i4) and ten month (i5). Casts were optically scanned with a 3D scanner and each augmented region (unit of analysis) evaluated (primary outcome variable: volume increase in mm(3) ; secondary outcome variables: volume increase in percent, mean and maximum thickness increases in mm). 3D tissue measurements after surgery revealed a significant higher volume increase in the CM (86.37 mm(3) ± 35.16 mm(3) ) than in the SCTG group (47.65 mm(3) ± 17.90 mm(3) ). After 10 months, volume increase was non-significant between groups (SCTG:11.36 mm(3) ± 9.26 mm(3) ; CM: 8.67 mm(3) ± 13.67 mm(3) ). Maximum soft tissue thickness increase (i1-i5) was 0.66 mm ± 0.29 mm (SCTG) and 0.79 mm ± 0.37 mm (CM) with no significant difference. Ten months after soft tissue thickening, the CM is statistically non-inferior to the SCTG in terms of soft tissue volume and thickness increase. Further 3D studies are needed to confirm the data. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials.
Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy
2018-01-02
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.
Zhou, Haoyan; Goss, Monika; Hernandez, Christopher; Mansour, Joseph M; Exner, Agata
2016-05-01
Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.
Reconstruction of maxillectomy and midfacial defects with free tissue transfer.
Santamaria, Eric; Cordeiro, Peter G
2006-11-01
The maxillary bones are part of the midfacial skeleton and are closely related to the eyeglobe, nasal airway, and oral cavity. Together with the overlying soft tissues, the two maxillae are responsible to a large extent for facial contour. Maxillectomy defects become more complex when critical structures such as the orbit, globe, and cranial base are resected, and reconstruction with distant tissues become essential. In this article, we describe a classification system and algorithm for reconstruction of these complex defects using various pedicled and free flaps. Most defects that involve resection of the maxilla and adjacent soft tissues may be classified into one of the following four types: Type I defects, Limited maxillectomy; Type II defects, Subtotal maxillectomy; Type III defects, Total maxillectomy; and Type IV defects, Orbitomaxillectomy. Using this classification, reconstruction of maxillectomy and midfacial defects may be approached considering the relationship between volume and surface area requirements, that is, addressing the bony defect first, followed by assessment of the associated soft tissue, skin, palate, and cheek-lining deficits. In our experience, most complex maxillectomy defects are best reconstructed using free tissue transfer. The rectus abdominis and radial forearm free flap in combination with immediate bone grafting or as an osteocutaneous flap reliably provide the best aesthetic and functional results. A temporalis muscle pedicled flap is used for reconstruction of maxillectomy defects only in those patients who are not candidates for a microsurgical procedure.
Principles of treatment for soft tissue sarcoma.
Dernell, W S; Withrow, S J; Kuntz, C A; Powers, B E
1998-02-01
Soft tissue sarcomas (STS) are mesenchymal tumors arising from connective tissue elements and are grouped together based on a common biologic behavior. The most common histologic types include malignant peripheral nerve sheath tumors (schwannoma and neurofibrosarcoma) "hemangiopericytoma," fibrosarcoma, and malignant fibrous histiocytoma. These tumors are relatively slow growing yet locally invasive with a high rate of recurrence following conservative management. Appropriate preoperative planning and aggressive surgical resection often result in long-term remission or cure. Identification and evaluation of resection margins are paramount in appropriate case management. The addition of radiotherapy after surgical resection can aid in remission for incompletely resected masses. Systemic chemotherapy for STS should be considered for high-grade tumors with a moderate metastatic potential. Potential prognostic factors include grade, resection margins, size, location, histologic type, and previous treatment, with grade and margins being the most important. Tumor types classified as STS that differ slightly in their presentation or treatment, including synovial cell sarcoma, rhabdomyosarcoma, liposarcoma, and vaccine-associated STS in cats, are discussed. Soft tissue sarcomas can be a frustrating disease to treat, but adherence to solid surgical oncology principles can greatly increase the odds of good disease control.
Salgado Ordóñez, F; Villar Jiménez, J; Hidalgo Conde, A; Villalobos Sánchez, A; de la Torre Lima, J; Aguilar García, J; da Rocha Costa, I; García Ordóñez, M A; Nuño Alvarez, E; Ramos Cantes, C; Martín Pérez, M
2006-07-01
To describe the characteristics of patients admitted in hospitals with soft tissue infections, and analyse the variables whose died, in order to define risk groups. retrospective analysis of medical reports of all patient admitted during 2002 year for soft tissue infections in public malacitans hospitals. We excluded the patient with soft tissue infections associated with burns, surgery, pressure ulcers, and orbit cellulitis. We analysed clinical, biochemical variables and indications for yields and imaging tests, so the empiric antibiotic treatment established and its correlations with practice guidelines. We analysed 391 admissions of 374 patients. Cellulitis was the most frequent diagnosis (69.3%). We did imaging tests in 51.6%. In 94.3% of cases were treated with empirics antibiotics. The most prescribed drug was amoxiciline plus clavulanate (39%). 27 patients died, 40.7% of them for septic cause. All deceased patients had chronic diseases. The only biochemical parameters associated with mortality were serum proteins and albumina (55 +/- 9 g/L vs. 63 +/- 8 g/L; p = 0.0231) and (22 +/- 7 g/L vs. 29 +/- 7 g/L; p = 0.0125) respectively. Cellullitis are the most frequent soft tissue infections that requires admissions in hospitals. We overuse imaging test and don t follow the practice guidelines recommendations in antibiotic therapy. Primary soft issue infection s mortality is low and it s restricted to people with chronic illness, deep infections and bad nutritional status.
Management of facial soft tissue injuries in children.
Vasconez, Henry C; Buseman, Jason L; Cunningham, Larry L
2011-07-01
Pediatric facial trauma can present a challenge to even the more experienced plastic surgeon. Injuries to the head and neck may involve bone and soft tissues with an assortment of specialized organs and tissue elements involved. Because of the active nature of children, facial soft tissue injuries can be diverse and extensive as well as some of the more common injuries a plastic surgeon is asked to treat. In 2007, approximately 800,000 patients younger than 15 years presented to emergency departments around the country with significant open wounds of the head that required treatment.In this review, we present the different types and regions of pediatric soft tissue facial trauma, as well as treatment options and goals of plastic surgery wound management. Special aspects, such as bite wounds, burns, pediatric analgesia, and antibiotic therapy, are also discussed.
Complications of Minimally Invasive Cosmetic Procedures: Prevention and Management
Levy, Lauren L; Emer, Jason J
2012-01-01
Over the past decade, facial rejuvenation procedures to circumvent traditional surgery have become increasingly popular. Office-based, minimally invasive procedures can promote a youthful appearance with minimal downtime and low risk of complications. Injectable botulinum toxin (BoNT), soft-tissue fillers, and chemical peels are among the most popular non-invasive rejuvenation procedures, and each has unique applications for improving facial aesthetics. Despite the simplicity and reliability of office-based procedures, complications can occur even with an astute and experienced injector. The goal of any procedure is to perform it properly and safely; thus, early recognition of complications when they do occur is paramount in dictating prevention of long-term sequelae. The most common complications from BoNT and soft-tissue filler injection are bruising, erythema and pain. With chemical peels, it is not uncommon to have erythema, irritation and burning. Fortunately, these side effects are normally transient and have simple remedies. More serious complications include muscle paralysis from BoNT, granuloma formation from soft-tissue filler placement and scarring from chemical peels. Thankfully, these complications are rare and can be avoided with excellent procedure technique, knowledge of facial anatomy, proper patient selection, and appropriate pre- and post-skin care. This article reviews complications of office-based, minimally invasive procedures, with emphasis on prevention and management. Practitioners providing these treatments should be well versed in this subject matter in order to deliver the highest quality care. PMID:23060707
Sagiyama, Koji; Watanabe, Yuji; Kamei, Ryotaro; Hong, Sungtak; Kawanami, Satoshi; Matsumoto, Yoshihiro; Honda, Hiroshi
2017-12-01
To investigate the usefulness of voxel-based analysis of standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs) for evaluating soft-tissue tumour malignancy with a PET/MR system. Thirty-five subjects with either ten low/intermediate-grade tumours or 25 high-grade tumours were prospectively enrolled. Zoomed diffusion-weighted and fluorodeoxyglucose ( 18 FDG)-PET images were acquired along with fat-suppressed T2-weighted images (FST2WIs). Regions of interest (ROIs) were drawn on FST2WIs including the tumour in all slices. ROIs were pasted onto PET and ADC-maps to measure SUVs and ADCs within tumour ROIs. Tumour volume, SUVmax, ADCminimum, the heterogeneity and the correlation coefficients of SUV and ADC were recorded. The parameters of high- and low/intermediate-grade groups were compared, and receiver operating characteristic (ROC) analysis was also performed. The mean correlation coefficient for SUV and ADC in high-grade sarcomas was lower than that of low/intermediate-grade tumours (-0.41 ± 0.25 vs. -0.08 ± 0.34, P < 0.01). Other parameters did not differ significantly. ROC analysis demonstrated that correlation coefficient showed the best diagnostic performance for differentiating the two groups (AUC 0.79, sensitivity 96.0%, specificity 60%, accuracy 85.7%). SUV and ADC determined via PET/MR may be useful for differentiating between high-grade and low/intermediate-grade soft tissue tumours. • PET/MR allows voxel-based comparison of SUVs and ADCs in soft-tissue tumours. • A comprehensive assessment of internal heterogeneity was performed with scatter plots. • SUVmax or ADCminimum could not differentiate high-grade sarcoma from low/intermediate-grade tumours. • Only the correlation coefficient between SUV and ADC differentiated the two groups. • The correlation coefficient showed the best diagnostic performance by ROC analysis.
Yoo, Sua; Wu, Q. Jackie; Godfrey, Devon; Yan, Hui; Ren, Lei; Das, Shiva; Lee, William R.; Yin, Fang-Fang
2008-01-01
Purpose To evaluate on-board digital tomosynthesis (DTS) for patient positioning in comparison with 2D-radiographs and 3D-CBCT. Methods and Materials A total of 92 image sessions from 9 prostate cancer patients were analyzed. An on-board image set was registered to a corresponding reference image set. Four pairs of image sets were used; DRR vs. on-board orthogonal paired radiograph for the 2D method, coronal-reference-DTS (RDTS) vs. on-board coronal-DTS for the coronal-DTS method, sagittal-RDTS vs. on-board sagittal-DTS for the sagittal-DTS method, and planning CT vs. CBCT for the CBCT method. Registration results were compared. Results The systematic errors in all methods were less than 1 mm/1°. When registering bony anatomy, the mean vector differences were 0.21±0.11 cm between 2D and CBCT, 0.11±0.08 cm between CBCT and coronal-DTS, and 0.14±0.07 cm between CBCT and sagittal-DTS. The correlation of CBCT to DTS was stronger (coefficients=0.92–0.95) than the correlation between 2D and CBCT or DTS (coefficients=0.81–0.83). When registering soft tissue, the mean vector differences were 0.18±0.11 cm between CBCT and coronal-DTS and 0.29±0.17 cm between CBCT and sagittal-DTS. The correlation coefficients of CBCT to sagittal-DTS and to coronal-DTS were 0.84 and 0.92, respectively. Conclusions DTS could provide equivalent results to CBCT when bony anatomy is used as landmarks for prostate IGRT. For soft tissue-based positioning verification, coronal-DTS produced equivalent results to CBCT and sagittal-DTS alone was insufficient. DTS could allow comparable soft tissue-based target localization with faster scanning time and less imaging dose compared to CBCT. PMID:19100923
Exploring Molecular and Mechanical Gradients in Structural Bioscaffolds†
Waite, J. Herbert; Lichtenegger, Helga C.; Stucky, Galen D.; Hansma, Paul
2007-01-01
Most organisms consist of a functionally adaptive assemblage of hard and soft tissues. Despite the obvious advantages of reinforcing soft protoplasm with a hard scaffold, such composites can lead to tremendous mechanical stresses where the two meet. Although little is known about how nature relieves these stresses, it is generally agreed that fundamental insights about molecular adaptation at hard/soft interfaces could profoundly influence how we think about biomaterials. Based on two noncellular tissues, mussel byssus and polychaete jaws, recent studies suggest that one natural strategy to minimize interfacial stresses between adjoining stiff and soft tissue appears to be the creation of a “fuzzy” boundary, which avoids abrupt changes in mechanical properties. Instead there is a gradual mechanical change that accompanies the transcendence from stiff to soft and vice versa. In byssal threads, the biochemical medium for achieving such a gradual mechanical change involves the elegant use of collagen-based self-assembling block copolymers. There are three distinct diblock copolymer types in which one block is always collagenous, whereas the other can be either elastin-like (soft), amorphous polyglycine (intermediate), or silk-like (stiff). Gradients of these are made by an incrementally titrated expression of the three proteins in secretory cells the titration phenotype of which is linked to their location. Thus, reflecting exactly the composition of each thread, the distal cells secrete primarily the silk– and polyglycine–collagen diblocks, whereas the proximal cells secrete the elastin– and polyglycine–collagen diblocks. Those cells in between exhibit gradations of collagens with silk or elastin blocks. Spontaneous self-assembly appears to be by pH triggered metal binding by histidine (HIS)-rich sequences at both the amino and carboxy termini of the diblocks. In the polychaete jaws, HIS-rich sequences are expanded into a major block domain. Histidine predominates at over 20 mol % near the distal tip and diminishes to about 5 mol % near the proximal base. The abundance of histidine is directly correlated to transition metal content (Zn or Cu) as well as hardness determined by nanoindentation. EXAFS analyses of the jaws indicate that transition metals such as Zn are directly bound to histidine ligands and may serve as cross-linkers. PMID:15196007
Phase contrast imaging of cochlear soft tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.; Hwang, M.; Rau, C.
A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less
Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V
2009-04-01
We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate calculi was significantly different from the gold standard for all methods except bone window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x magnified bone windows was superior to 4.0x magnified soft tissue windows in measurement accuracy. Magnified bone window measurements were not statistically different from digital caliper measurements (mean underestimation vs digital caliper 0.3 mm, p = 0.4), while magnified soft tissue windows were statistically distinct (mean underestimation 1.4 mm, p = 0.001). In this study magnified bone windows were the most accurate method of stone measurements in vitro and in vivo. Therefore, we recommend the routine use of magnified bone windows for computerized tomography measurement of stones. In vitro the measurement error in calcium oxalate stones was greater than that in uric acid stones, suggesting that stone composition may be responsible for measurement inaccuracies.
Soft-tissue and phase-contrast imaging at the Swiss Light Source
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Mohan, Nishant; Stampanoni, Marco; Muller, Ralph
2004-05-01
Recent results show that bone vasculature is a major contributor to local tissue porosity, and therefore can be directly linked to the mechanical properties of bone tissue. With the advent of third generation synchrotron radiation (SR) sources, micro-computed tomography (μCT) with resolutions in the order of 1 μm and better has become feasible. This technique has been employed frequently to analyze trabecular architecture and local bone tissue properties, i.e. the hard or mineralized bone tissue. Nevertheless, less is known about the soft tissues in bone, mainly due to inadequate imaging capabilities. Here, we discuss three different methods and applications to visualize soft tissues. The first approach is referred to as negative imaging. In this case the material around the soft tissue provides the absorption contrast necessary for X-ray based tomography. Bone vasculature from two different mouse strains was investigated and compared qualitatively. Differences were observed in terms of local vessel number and vessel orientation. The second technique represents corrosion casting, which is principally adapted for imaging of vascular systems. The technique of corrosion casting has already been applied successfully at the Swiss Light Source. Using the technology we were able to show that pathological features reminiscent of Alzheimer"s disease could be distinguished in the brain vasculature of APP transgenic mice. The third technique discussed here is phase contrast imaging exploiting the high degree of coherence of third generation synchrotron light sources, which provide the necessary physical conditions for phase contrast. The in-line approach followed here for phase contrast retrieval is a modification of the Gerchberg-Saxton-Fienup type. Several measurements and theoretical thoughts concerning phase contrast imaging are presented, including mathematical phase retrieval. Although up-to-now only phase images have been computed, the approach is now ready to retrieve the phase for a large number of angular positions of the specimen allowing application of holotomography, which is the three-dimensional reconstruction of phase images.
Finne, Kaj; Rompen, Eric; Toljanic, Joseph
2007-06-01
A novel 1-piece implant purported to provide for stable tissue support, immediate function, and immediate placement in extraction sockets has been developed. Stabilization of the marginal bone level over time requires documentation. The aim of this study was to evaluate marginal bone level differences and soft tissue health between the 1- and 2-year follow-up of a 1-piece implant design. Eighty-two implants, restoring both single teeth and multiple edentulous situations, in 56 consecutively treated patients, were included. Marginal bone level was evaluated on radiographs made at implant insertion, 6-month follow-up, and annually thereafter. At 3-, 6-month, and 1-year follow-ups, presence of plaque and the soft tissue response were evaluated using plaque and bleeding on probing indexes. The papilla index was used to determine papilla size at implant insertion with the provisional restoration in place and at the insertion of the definitive restoration. The change over time in marginal bone level was analyzed with a 1-way analysis of variance (ANOVA) paired design with time as main effect (1 to 2 years) and subjects as block effect (alpha=.05). One implant failure occurred, resulting in a 98.8% cumulative survival rate (CSR) for the follow-up time of 2 years. The mean (SD) change in bone level between years 1 and 2 was 0.08 mm (1.19) (95% CI-0.30 to 0.46) (P=.68), demonstrating a stable marginal bone level. Normal implant mucosa was noted for approximately 90% of the sites at the 1-year follow-up. The mean (SD) papilla score at placement was 1.3 (0.66) and increased to 1.7 (0.67) at insertion of the definitive prosthesis. The stable marginal bone level and soft tissue health observed indicate that the 1-piece implant tested has the ability to preserve both hard and soft tissue. Based on the high implant survival rate and favorable tissue response, the 1-piece implant can be recommended for clinical use.
A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time.
Schweitzer, Mary H; Zheng, Wenxia; Cleland, Timothy P; Goodwin, Mark B; Boatman, Elizabeth; Theil, Elizabeth; Marcus, Matthew A; Fakra, Sirine C
2014-01-22
The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-αFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem 'tissue fixation' by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB - O2 > -O2 > +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues.
A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time
Schweitzer, Mary H.; Zheng, Wenxia; Cleland, Timothy P.; Goodwin, Mark B.; Boatman, Elizabeth; Theil, Elizabeth; Marcus, Matthew A.; Fakra, Sirine C.
2014-01-01
The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-αFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem ‘tissue fixation’ by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB − O2 > −O2 ≫ +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues. PMID:24285202
2017-07-31
Adult Rhabdomyosarcoma; Childhood Alveolar Rhabdomyosarcoma; Childhood Embryonal Rhabdomyosarcoma; Metastatic Childhood Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Untreated Childhood Rhabdomyosarcoma
Reconstruction of pink esthetics: The periodontal way
Balasubramanian, K.; Arshad, L. Mohamed; Priya, B. Dhathri
2015-01-01
Cosmetic procedures involving gingival reconstruction have become an integral part of current periodontal practice. The ability to cover unsightly exposed, sensitive roots and recontour soft tissue recessions have added an esthetic angle to the traditional concept of biological and functional periodontal health. The recession of the gingiva, either localized or generalized, may be associated with one or more surfaces, resulting in attachment loss and root exposure, which can lead to clinical problems such as diminished cosmetic appeal and aesthetic concern. Marginal gingival recession, therefore, can cause major functional and aesthetic problems and should not be viewed as merely a soft tissue defect, but rather as the destruction of both the soft and hard tissue. Treatment proposals for this type of defect have evolved based on the knowledge for healing the gingiva and the attachment system. This case report describes a clinical case of severe Miller Class II gingival recession treated by two stages of surgery that combined a free gingival graft and connective tissue grafting. First, a free gingival graft (FGG) was performed to obtain an adequate keratinized tissue level. Three months later, a connective tissue graft (CTG)was performed to obtain root coverage. The results indicated that the FGG allows for a gain in the keratinized tissue level and the CTG allows for root coverage with decreased recession level after 6 months. Therefore, for this type of specific gingival recession, the combined use of FGG and CTG still serves as a Gold Standard in predictable root coverage. PMID:25684918
Pauwels, E; Van Loo, D; Cornillie, P; Brabant, L; Van Hoorebeke, L
2013-04-01
High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm(3) . PMA, PTA, HgCl2 and also to a lesser extent Na2 WO4 and (NH4 )2 MoO4 allowed a clearer distinction between the different soft tissue structures present. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
All-fiber laser at 1.94 µm: effect on soft tissue
NASA Astrophysics Data System (ADS)
Pal, Atasi; Pal, Debasis; Das Chowdhury, Sourav; Sen, Ranjan
2017-02-01
A focused laser beam at wavelength of strong water absorption at 1.94 μm can be a good scalpel for precision soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave as well as modulated, cladding pumped, thulium-doped fiber laser at 1.94 μm has been configured to deliver up to 10 W of laser power under pumping at 793 nm having an efficiency of 32 %. The laser was exposed to freshly sacrificed chicken breast at different power level and exposure time. The formalin-fixed samples were examined by microscopy to identify the ablation region, carbonization and necrosis region for laser parameter optimization.
NASA Astrophysics Data System (ADS)
Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.
2014-07-01
A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans
2013-01-01
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth. PMID:23554928
Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans
2013-01-01
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true 'eruptive force' is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, 'biological response units' in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.
Age-related changes in dynamic compressive properties of trochanteric soft tissues over the hip.
Choi, W J; Russell, C M; Tsai, C M; Arzanpour, S; Robinovitch, S N
2015-02-26
Hip fracture risk increases dramatically with age, and 90% of fractures are due to falls. During a fall on the hip, the soft tissues overlying the hip region (skin, fat, and muscle) act as shock absorbers to absorb energy and reduce the peak force applied to the underlying bone. We conducted dynamic indentation experiments with young women (aged 19-30; n=17) and older women (aged 65-81; n=17) to test the hypothesis that changes occur with age in the stiffness and damping properties of these tissues. Tissue stiffness and damping were derived from experiments where subjects lay sideways on a bed with the greater trochanter contacting a 3.8cm diameter indenter, which applied sinusoidal compression between 5 to 30Hz with a peak-to-peak amplitude of 1mm. Soft tissue thickness was measured using ultrasound. On average, stiffness was 2.9-fold smaller in older than young women (5.7 versus 16.8kN/m, p=0.0005) and damping was 3.5-fold smaller in older than young women (81 versus 282Ns/m, p=0.001). Neither parameter associated with soft tissue thickness. Our results indicate substantial age-related reductions in the stiffness and damping of soft tissues over the hip region, which likely reduce their capacity to absorb and dissipate energy (before "bottoming out") during a fall. Strategies such as wearable hip protectors or compliant flooringmay compensate for age-related reductions in the shock-absorbing properties of soft tissues and decrease the injury potential of falls. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
Rausch, M K; Karniadakis, G E; Humphrey, J D
2017-02-01
Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.
Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach
Rausch, M. K.; Karniadakis, G. E.; Humphrey, J. D.
2016-01-01
Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues. PMID:27538848
Real-time simulation of biological soft tissues: a PGD approach.
Niroomandi, S; González, D; Alfaro, I; Bordeu, F; Leygue, A; Cueto, E; Chinesta, F
2013-05-01
We introduce here a novel approach for the numerical simulation of nonlinear, hyperelastic soft tissues at kilohertz feedback rates necessary for haptic rendering. This approach is based upon the use of proper generalized decomposition techniques, a generalization of PODs. Proper generalized decomposition techniques can be considered as a means of a priori model order reduction and provides a physics-based meta-model without the need for prior computer experiments. The suggested strategy is thus composed of an offline phase, in which a general meta-model is computed, and an online evaluation phase in which the results are obtained at real time. Results are provided that show the potential of the proposed technique, together with some benchmark test that shows the accuracy of the method. Copyright © 2013 John Wiley & Sons, Ltd.
High strain-rate soft material characterization via inertial cavitation
NASA Astrophysics Data System (ADS)
Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian
2018-03-01
Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.
Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi
2017-01-01
Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.
Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei
2017-02-01
Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Gignac, Paul M; Kley, Nathan J
2014-05-01
The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CT (µCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy. © 2014 Wiley Periodicals, Inc.
Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens.
Zhou, Boran; Ravindran, Suraj; Ferdous, Jahid; Kidane, Addis; Sutton, Michael A; Shazly, Tarek
2016-01-24
Characterization of the mechanical behavior of biological and engineered soft tissues is a central component of fundamental biomedical research and product development. Stress-strain relationships are typically obtained from mechanical testing data to enable comparative assessment among samples and in some cases identification of constitutive mechanical properties. However, errors may be introduced through the use of average strain measures, as significant heterogeneity in the strain field may result from geometrical non-uniformity of the sample and stress concentrations induced by mounting/gripping of soft tissues within the test system. When strain field heterogeneity is significant, accurate assessment of the sample mechanical response requires measurement of local strains. This study demonstrates a novel biomechanical testing protocol for calculating local surface strains using a mechanical testing device coupled with a high resolution camera and a digital image correlation technique. A series of sample surface images are acquired and then analyzed to quantify the local surface strain of a vascular tissue specimen subjected to ramped uniaxial loading. This approach can improve accuracy in experimental vascular biomechanics and has potential for broader use among other native soft tissues, engineered soft tissues, and soft hydrogel/polymeric materials. In the video, we demonstrate how to set up the system components and perform a complete experiment on native vascular tissue.
Schulz, Simon; Angarano, Marco; Fabritius, Martin; Mülhaupt, Rolf; Dard, Michel; Obrecht, Marcel; Tomakidi, Pascal
2014-01-01
Standard preclinical assessments in vitro often have limitations regarding their transferability to human beings, mainly evoked by their nonhuman and tissue-different/nontissue-specific source. Here, we aimed at employing tissue-authentic simple and complex interactive fibroblast-epithelial cell systems and their in vivo-relevant biomarkers for preclinical in vitro assessment of nonwoven-based gelatin/polycaprolactone membranes (NBMs) for treatment of soft tissue defects. NBMs were composed of electrospun gelatin and polycaprolactone nanofiber nonwovens. Scanning electron microscopy in conjunction with actin/focal contact integrin fluorescence revealed successful adhesion and proper morphogenesis of keratinocytes and fibroblasts, along with cells' derived extracellular matrix deposits. The “feel-good factor” of cells under study on the NBM was substantiated by forming a confluent connective tissue entity, which was concomitant with a stratified epithelial equivalent. Immunohistochemistry proved tissue authenticity over time by abundance of the biomarker vimentin in the connective tissue entity, and chronological increase of keratins KRT1/10 and involucrin expression in epithelial equivalents. Suitability of the novel NBM as wound dressing was evidenced by an almost completion of epithelial wound closure in a pilot mini-pig study, after a surgical intervention-caused gingival dehiscence. In summary, preclinical assessment by tissue-authentic cell systems and the animal pilot study revealed the NBM as an encouraging therapeutic medical device for prospective clinical applications. PMID:24494668
2014-03-01
Complicated by Invasive Mucor Soft-Tissue Infections MAJ Jonathan B. Lundy, MC USA; MAJ Ian R. Driscoll, MC USA ABSTRACT Catastrophic pelviperineal injuries...invasive Mucor species infection. The purpose of this report is to describe two catastrophi- cally injured combat casualties with pelviperineal blast...loss of anal sphincter complex, invasive Mucor species pelvic soft- tissue infection, and continued soilage of perineal wounds. Combat Casualty 1 A 25
A device for characterising the mechanical properties of the plantar soft tissue of the foot.
Parker, D; Cooper, G; Pearson, S; Crofts, G; Howard, D; Busby, P; Nester, C
2015-11-01
The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo. Copyright © 2015. Published by Elsevier Ltd.
Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J
2014-04-01
Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Huang, Shih-Wei; Liu, Sen-Yung; Tang, Hao-Wei; Wei, Ta-Sen; Wang, Wei-Te; Yang, Chao-Pin
2012-09-01
The aims of this study were: (i) to determine whether the severity of post-hemiplegic shoulder subluxation in stroke patients correlates with soft-tissue injury; and (ii) to determine the shoulder subluxation measurement cut-off points that are indications for further ultrasound examination for soft-tissue injuries in these patients. Cross-sectional study. A total of 39 stroke patients with shoulder subluxation. Shoulder subluxation was evaluated by physical examination, radiography and ultrasound. Soft-tissue injuries were assessed by ultrasound. Subluxation parameters were entered into stepwise logistic regression analyses to predict biceps and supraspinatus tendonitis. With the assumption that shoulder subluxation can be a predisposing factor for tendonitis, receiver operating characteristic curves for shoulder subluxation parameters of the affected side were used to determine cut-off points for optimal sensitivity and specificity of biceps and supraspinatus tendonitis. Shoulder subluxation lateral distance, measured by physical examination, is a predictor for supraspinatus tendonitis (odds ratio = 34.9, p = 0.036). Further ultrasound investigation for soft-tissue injury is indicated when subluxation lateral distance, measured by physical examination is ≥ 2.25 cm or, measured by radiographic examination, ≥ 3.18 cm for lateral distance, ≥ 3.08 cm for vertical distance, or ≥ 2.65 cm for horizontal distance. When post-hemiplegic shoulder subluxation measurements exceed the above-mentioned cut-off points in physical or radiographic examinations, further ultrasound evaluation for soft-tissue injury is recommended.
Clover, A J P; Jemec, B; Redmond, A D
2014-10-01
Earthquakes are the leading cause of natural disaster-related mortality and morbidity. Soft tissue and musculoskeletal injuries are the predominant type of injury seen after these events and a major reason for admission to hospital. Open fractures are relatively common; however, they are resource-intense to manage. Appropriate management is important in minimising amputation rates and preserving function. This review describes the pattern of musculoskeletal and soft-tissue injuries seen after earthquakes and explores the manpower and resource implications involved in their management. A Medline search was performed, including terms "injury pattern" and "earthquake," "epidemiology injuries" and "earthquakes," "plastic surgery," "reconstructive surgery," "limb salvage" and "earthquake." Papers published between December 1992 and December 2012 were included, with no initial language restriction. Limb injuries are the commonest injuries seen accounting for 60 % of all injuries, with fractures in more than 50 % of those admitted to hospital, with between 8 and 13 % of these fractures open. After the first few days and once the immediate lifesaving phase is over, the management of these musculoskeletal and soft-tissue injuries are the commonest procedures required. Due to the predominance of soft-tissue and musculoskeletal injuries, plastic surgeons as specialists in soft-tissue reconstruction should be mobilised in the early stages of a disaster response as part of a multidisciplinary team with a focus on limb salvage.
Soft tissue effects of the THC:YAG laser on canine vocal cords.
Kay, S L; Oz, M C; Haber, M; Blitzer, A; Treat, M R; Trokel, S L
1992-09-01
Recently, a laser based on a thulium-holmium-chromium (THC) doped Yttrium-aluminum-garnet (YAG) rod has been developed that produces light of 2.15 microns wavelength and can be transmitted through a low OH- silica fiberoptic cable. This wavelength falls on one of the peaks of the energy absorption spectrum of water. Thus, the THC:YAG laser eliminates the disadvantage of a cumbersome delivery system found in the CO2 laser while still providing precise cutting and minimal tissue injury inherent in lasers emitting light absorbed by water. We evaluated the soft tissue effects of this laser on canine vocal cords. Ablative lesions were produced by the THC:YAG laser and histologically examined on postoperative days 1, 7, and 28. Results indicate that the depth of tissue penetration is easily controlled and the healing response to tissue injury is comparable to that of the CO2 laser. The THC:YAG laser should prove to be a superior laser for use in otorhinolaryngology, especially when adapted to a flexible endoscope.
Injectable fillers: review of material and properties.
Attenello, Natalie Huang; Maas, Corey S
2015-02-01
With an increasing understanding of the aging process and the rapidly growing interest in minimally invasive treatments, injectable facial fillers have changed the perspective for the treatment and rejuvenation of the aging face. Other than autologous fat and certain preformed implants, the collagen family products were the only Food and Drug Administration approved soft tissue fillers. But the overwhelming interest in soft tissue fillers had led to the increase in research and development of other products including bioengineered nonpermanent implants and permanent alloplastic implants. As multiple injectable soft tissue fillers and biostimulators are continuously becoming available, it is important to understand the biophysical properties inherent in each, as these constitute the clinical characteristics of the product. This article will review the materials and properties of the currently available soft tissue fillers: hyaluronic acid, calcium hydroxylapatite, poly-l-lactic acid, polymethylmethacrylate, and autologous fat (and aspirated tissue including stem cells). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Dudak, J.; Zemlicka, J.; Krejci, F.; Karch, J.; Patzelt, M.; Zach, P.; Sykora, V.; Mrzilkova, J.
2016-03-01
X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured.
Early Reconstructions of Complex Lower Extremity Battlefield Soft Tissue Wounds
Ebrahimi, Ali; Nejadsarvari, Nasrin; Ebrahimi, Azin; Rasouli, Hamid Reza
2017-01-01
BACKGROUND Severe lower extremity trauma as a devastating combat related injury is on the rise and this presents reconstructive surgeons with significant challenges to reach optimal cosmetic and functional outcomes. This study assessed early reconstructions of complex lower extremity battlefield soft tissue wounds. METHODS This was a prospective case series study of battled field injured patients which was done in the Department of Plastic Surgery, Baqiyatallah University of Medical Sciences hospitals, Tehran, Iran between 2013-2015. In this survey, 73 patients were operated for reconstruction of lower extremity soft tissue defects due to battlefield injuries RESULTS Seventy-three patients (65 men, 8 womens) ranging from 21-48 years old (mean: 35 years) were enrolled. Our study showed that early debridement and bone stabilization and later coverage of complex battlefields soft tissue wounds with suitable flaps and grafts of lower extremity were effective method for difficult wounds managements with less amputation and infections. CONCLUSION Serial debridement and bone stabilization before early soft tissue reconstruction according to reconstructive ladder were shown to be essential steps. PMID:29218283
Ultrasound elastography assessment of bone/soft tissue interface
NASA Astrophysics Data System (ADS)
Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella
2016-01-01
We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.
Ezri, T.; Gewürtz, G.; Sessler, D.I.; Medalion, B.; Szmuk, P.; Hagberg, C.; Susmallian, S.
2005-01-01
Prediction of difficult laryngoscopy in obese patients is challenging. In 50 morbidly obese patients, we quantified the neck soft tissue from skin to anterior aspect of trachea at the vocal cords using ultrasound. Thyromental distance <6 cm, mouth opening <4 cm, limited neck mobility, Mallampati score >2, abnormal upper teeth, neck circumference >45 cm, and sleep apnoea were considered predictors of difficult laryngoscopy. Of the nine (18%) difficult laryngoscopy cases, seven had obstructive sleep apnoea history; whereas, only 2 of the 41 easy laryngoscopy patients did (P<0.001). Difficult laryngoscopy patients had larger neck circumference [50 (3.8) vs. 43.5 (2.2) cm; P<0.001] and more pre-tracheal soft tissue [28 (2.7) mm vs. 17.5 (1.8) mm; P<0.001] [mean (SD)]. Soft tissue values completely separated difficult and easy laryngoscopies. None of the other predictors correlated with difficult laryngoscopy. Thus, an abundance of pretracheal soft tissue at the level of vocal cords is a good predictor of difficult laryngoscopy in obese patients. PMID:14616599
Markose, Eldho; Paulose, Joby; Paul, Eldho T
2013-12-01
The purpose of the study was to compare the soft tissue changes after maxillary advancement in patients with maxillary deficiency associated with cleft lip and palate (CLP) by two approaches-anterior maxillary distraction (AMD) and advancement LeFort I osteotomy (ALO). Twenty patients with maxillary hypoplasia associated with cleft lip and palate who had undergone either LeFort I osteotomy or distraction osteogenesis with maxillary advancement were included in this study. Lateral cephalogram taken at various intervals of time were used to evaluate soft tissue and hard tissue changes over time. In both groups, vertical as well as horizontal changes in pronasale was well observed. A substantial increase in nasal parameters was noted in case of AMD group in comparison to ALO. Though maxillary advancement was evident in both the groups, a significant and consistent change was observed in AMD. Significant vertical and horizontal changes were seen with respect to subnasale and labrale superius in AMD group. Soft tissue as well as hard tissue relapse was greater in ALO group than AMD group. Significant soft tissue and hard tissue changes were clearly observed in both the groups, but the treatment results were more consistent in cases treated with AMD. Hence AMD could be considered as a better treatment of choice in cases of maxillary hypoplasia associated with cleft lip and palate.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying
2018-06-01
In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.
Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen
2017-09-06
Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Espí-López, Gemma V; Gómez-Conesa, Antonia; Gómez, Anna Arnal; Martínez, Josep Benítez; Pascual-Vaca, Angel Oliva; Blanco, Cleofás Rodríguez
2014-10-01
This study researches the effectiveness of two manual therapy treatments focused on the suboccipital region for tension-type headache. A randomized double-blind clinical trial was conducted over a period of four weeks with a follow-up at one month. Eighty-four patients with a mean age of 39.7 years (SD 11.4) with tension-type headache were assigned to 4 groups which included the following manual therapy treatment: suboccipital soft tissue inhibition; occiput-atlas-axis global manipulation; combination of both techniques; and a control group. The primary assessment consisted of collecting socio-demographic data and headache characteristics in a one-month base period, data such as age, gender, severity of pain, intensity and frequency of headache, among other. Outcome secondary assessment were: impact of headache, disability, ranges of motion of the craniocervical junction, frequency and intensity of headache, and pericranial tenderness. In the month prior to the study, average pain intensity, was rated at 6.49 (SD 1.69), and 66.7% subjects suffered headaches of moderate intensity. After 8 weeks, statistically significant improvements were noted. OAA manipulative treatment and combined therapy treatments proved to be more effective than suboccipital soft tissue inhibition for tension-type headache. The treatment with suboccipital soft tissue inhibition, despite producing less significant results, also has positive effects on different aspects of headache. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of Soft Tissue Reaction to Corundum Ceramic Implants Infiltrated with Colloidal Silver.
Wnukiewicz, Witold; Rutowski, Roman; Zboromirska-Wnukiewicz, Beata; Reichert, Paweł; Gosk, Jerzy
2016-01-01
Corundum ceramic is a biomaterial used as a bone graft substitute. Silver is a well known antiseptic substance with many practical, clinical applications. The aim of this study was to estimate soft tissue (in vivo) reaction to a new kind of ceramic implants. In our experiment, we examined the soft tissue reaction after implantation of corundum ceramic infiltrated with colloidal silver in the back muscles of 18 Wistar rats. The use of colloidal silver as a coating for the implant was designed to protect it against colonization by bacteria and the formation of bacterial biofilm. In our study, based on the experimental method, we performed implantation operations on 18 Wistar rats. We implanted 18 modified ceramic implants and, as a control group, 18 unmodified implants. As a follow up, we observed the animals operated upon, and did postoperative, autopsy and histopathological examinations 14, 30, 90 and 180 days after implantation. We didn't observe any pathological reactions and significant differences between the soft tissue reaction to the modified implants and the control group. Lack of pathological reaction to the modified implants in the living organism is the proof of their biocompatibility. This is, of course, the first step on the long path to introduce a new kind of biocompatible ceramic implant with antiseptic cottage. Our experiment has an only introductory character and we plan to perform other, more specific, tests of this new kind of implant.
Characterization of Focal Muscle Compression Under Impact Loading
NASA Astrophysics Data System (ADS)
Butler, Ben; Sory, David; Nguyen, Thuy-Tien; Curry, Richard; Clasper, Jon; Proud, William; Williams, Alun; Brown, Kate
2015-06-01
The pattern of battle injuries sustained in modern wars shows that over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome in extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions. Funding provided by the Royal British Legion.
[Real-time PCR in rapid diagnosis of Aeromonas hydrophila necrotizing soft tissue infections].
Kohayagawa, Yoshitaka; Izumi, Yoko; Ushita, Misuzu; Niinou, Norio; Koshizaki, Masayuki; Yamamori, Yuji; Kaneko, Sakae; Fukushima, Hiroshi
2009-11-01
We report a case of rapidly progressive necrotizing soft tissue infection and sepsis followed by a patient's death. We suspected Vibrio vulnificus infection because the patient's underlying disease was cirrhosis and the course extremely rapid. No microbe had been detected at death. We extracted DNA from a blood culture bottle. SYBR green I real-time PCR was conducted but could not detect V. vulnificus vvh in the DNA sample. Aeromonas hydrophila was cultured and identified in blood and necrotized tissue samples. Real-time PCR was conducted to detect A. hydrophila ahh1, AHCYTOEN and aerA in the DNA sample extracted from the blood culture bottle and an isolated necrotized tissue strain, but only ahh1 was positive. High-mortality in necrotizing soft tissue infections makes it is crucial to quickly detect V. vulnificus and A. hydrophila. We found real-time PCR for vvh, ahh1, AHCYTOEN, and aerA useful in detecting V. vulnificus and A. hydrophila in necrotizing soft tissue infections.
A novel bioprinting method and system for forming hybrid tissue engineering constructs.
Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y
2015-12-18
Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance surrounding the conduit indicated that culture media effectively diffused through the conduit and fed the cells. The results suggest that the developed technology is potent to form functional TECs composed of rigid and soft biomaterials.
NASA Astrophysics Data System (ADS)
Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.
2014-11-01
The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.
... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...
Gunshot wounds: epidemiology, wound ballistics, and soft-tissue treatment.
Dougherty, Paul J; Najibi, Soheil; Silverton, Craig; Vaidya, Rahul
2009-01-01
The extremities are the most common anatomic location for gunshot wounds. Because of the prevalence of gunshot injuries, it is important that orthopaedic surgeons are knowledgeable about caring for them. The most common injuries seen with gunshot wounds are those of the soft tissues. Nonsurgical management of patients who have gunshot wounds with minimal soft-tissue disruption has been successfully accomplished in emergency departments for several years; this includes extremity wounds without nerve, intra-articular, or vascular injury. Stable, nonarticular fractures of an extremity have also been successfully treated with either minimal surgical or nonsurgical methods in the emergency department. Indications for surgical treatment include unstable fractures, intra-articular injuries, a significant soft-tissue injury (especially with skin loss), vascular injury, and/or a large or expanding hematoma.
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2013-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
Melorheostosis mimicking synovial osteochondromatosis.
Wadhwa, Vibhor; Chhabra, Avneesh; Samet, Jonathan D
2014-01-01
Melorheostosis is an uncommon, sporadic, sclerosing bone lesion that may affect the adjacent soft tissues. It has been associated with many entities such as osteopoikilosis, soft tissue vascular malformations, bone and soft tissue tumors, nephrotic syndrome, segmental limb contractures, osteosarcoma, desmoid tumor, and mesenteric fibromatosis. Synovial osteochondromatosis is a benign neoplasia of the hyaline cartilage presenting as nodules in the subsynovial tissue of a joint or tendon sheath. The intra-articular extension of melorheostosis mimicking synovial osteochondromatosis has not been reported before. In this article, the authors describe an unusual case mimicking synovial chondromatosis arising as a result of melorheostosis and their characteristic imaging findings.
Soft Tissue Management in Facial Trauma
Braun, Tara L.; Maricevich, Renata S.
2017-01-01
The management of soft tissue injury after facial trauma poses unique challenges to the plastic surgeon, given the specialized nature of facial tissue and the aesthetic importance of the face. The general principles of trauma management and wound care are applied in all cases. The management of severe injuries to the face is discussed in relation to the location and the mechanism of injury. Facial transplants have arisen in the past decade for the management of catastrophic soft tissue defects, although high morbidity and mortality after these non-life-saving operations must be considered in patient selection. PMID:28496386
Alharethy, Sami; Alohali, Sama; Alquniabut, Ibrahim; Jang, Yong Ju
2018-04-11
The aim of this study was to derive the normal values for bone and soft tissue nasal angles as well as the overlying skin thickness and to attempt to determine the correlation between differences in bone and soft tissue angles and overlying skin thickness in Middle Eastern patients. Three-dimensional cephalometric analysis was performed for 100 patients who underwent computed tomography of the paranasal sinuses. The nasofrontal angle, pyramidal angle-nasal root, pyramidal angle-tip of the nasal bone, and overlying skin thickness were measured, and the results were analyzed according to sex, age, and body mass index (BMI). All soft tissue angles were significantly larger than the bone angles, with the mean difference being 11.62°, 30.80°, and 27.05° for the nasofrontal angle (P = 0.000), pyramidal angle-nasal root (P = 0.000), and pyramidal angle-tip of the nasal bone (P = 0.000), respectively. The mean overlying skin thickness was 3.89 ± 1.48 mm at the nasion, 1.16 ± 0.6 mm at the rhinion, and 2.93 ± .97 mm at the nasal tip. Differences in the nasofrontal angle were strongly correlated with the skin thickness at the nasion (P = 0.001). A simple clinical exam of the soft tissue nasal angles does not reflect the underlying bone angles that will be encountered during rhinoplasty. BMI does not influence nasal shape, and rhinoplasty surgery should take into account the ethnic group, age, and sex of the patient. Surgeons should leave a minor skeletal hump at the end of the nasal bone for Middle Eastern patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Gabbett, Tim J
2010-10-01
Limited information exists on the training dose-response relationship in elite collision sport athletes. In addition, no study has developed an injury prediction model for collision sport athletes. The purpose of this study was to develop an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. Ninety-one professional rugby league players participated in this 4-year prospective study. This study was conducted in 2 phases. Firstly, training load and injury data were prospectively recorded over 2 competitive seasons in elite collision sport athletes. Training load and injury data were modeled using a logistic regression model with a binomial distribution (injury vs. no injury) and logit link function. Secondly, training load and injury data were prospectively recorded over a further 2 competitive seasons in the same cohort of elite collision sport athletes. An injury prediction model based on planned and actual training loads was developed and implemented to determine if noncontact, soft-tissue injuries could be predicted and therefore prevented in elite collision sport athletes. Players were 50-80% likely to sustain a preseason injury within the training load range of 3,000-5,000 units. These training load 'thresholds' were considerably reduced (1,700-3,000 units) in the late-competition phase of the season. A total of 159 noncontact, soft-tissue injuries were sustained over the latter 2 seasons. The percentage of true positive predictions was 62.3% (n = 121), whereas the total number of false positive and false negative predictions was 20 and 18, respectively. Players that exceeded the training load threshold were 70 times more likely to test positive for noncontact, soft-tissue injury, whereas players that did not exceed the training load threshold were injured 1/10 as often. These findings provide information on the training dose-response relationship and a scientific method of monitoring and regulating training load in elite collision sport athletes.
Parks, Connie L; Richard, Adam H; Monson, Keith L
2014-04-01
Facial approximation is the technique of developing a representation of the face from the skull of an unknown individual. Facial approximation relies heavily on average craniofacial soft tissue depths. For more than a century, researchers have employed a broad array of tissue depth collection methodologies, a practice which has resulted in a lack of standardization in craniofacial soft tissue depth research. To combat such methodological inconsistencies, Stephan and Simpson 2008 [15] examined and synthesized a large number of previously published soft tissue depth studies. Their comprehensive meta-analysis produced a pooled dataset of averaged tissue depths and a simplified methodology, which the researchers suggest be utilized as a minimum standard protocol for future craniofacial soft tissue depth research. The authors of the present paper collected craniofacial soft tissue depths using three-dimensional models generated from computed tomography scans of living males and females of four self-identified ancestry groups from the United States ranging in age from 18 to 62 years. This paper assesses the differences between: (i) the pooled mean tissue depth values from the sample utilized in this paper and those published by Stephan 2012 [21] and (ii) the mean tissue depth values of two demographically similar subsets of the sample utilized in this paper and those published by Rhine and Moore 1984 [16]. Statistical test results indicate that the tissue depths collected from the sample evaluated in this paper are significantly and consistently larger than those published by Stephan 2012 [21]. Although a lack of published variance data by Rhine and Moore 1984 [16] precluded a direct statistical assessment, a substantive difference was also concluded. Further, the dataset presented in this study is representative of modern American adults and is, therefore, appropriate for use in constructing contemporary facial approximations. Published by Elsevier Ireland Ltd.
Balsly, Colleen R; Cotter, Andrew T; Williams, Lisa A; Gaskins, Barton D; Moore, Mark A; Wolfinbarger, Lloyd
2008-12-01
The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3-21.8 kGy) and a moderate absorbed dose (24.0-28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.
Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force
NASA Astrophysics Data System (ADS)
Xu, Yingqiang; Zhang, Qinhe; Liu, Guowei
2017-04-01
Needle biopsy is a method to extract the cells from the patient's body with a needle for tissue pathological examination. Many factors affect the cutting process of soft tissue, including the geometry of the biopsy needle, the mechanical properties of the soft tissue, the parameters of the puncture process and the interaction between them. This paper conducted orthogonal experiment of main cutting parameters based on single plane puncture biopsy needle, and obtained the cutting force curve of single plane puncture biopsy needle by studying the influence of the inclination angle, diameter and velocity of the single plane puncture biopsy needle on the puncture force of the biopsy needle. Stage analysis of the cutting process of biopsy needle puncture was made to determine the main influencing factors of puncture force during the cutting process, which provides a certain theoretical support for the design of new type of puncture biopsy needle and the operation of puncture biopsy.
Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping
2013-01-01
Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.