Sample records for soft wheat quality

  1. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  2. Quality characteristics of U.S. soft white and club wheat

    USDA-ARS?s Scientific Manuscript database

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  3. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm: I. Grain, milling, and soft wheat quality

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is used in part to define U.S. wheat market class due to its importance in end-use quality and utilization. Durum wheat (Triticum turgidum subsp. durum) has lower demand and fewer culinary end-uses compared to bread wheat because of its extremely hard kernel texture, which precl...

  4. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  5. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    USDA-ARS?s Scientific Manuscript database

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  6. Identification of milling and baking quality QTL in multiple soft wheat mapping populations

    USDA-ARS?s Scientific Manuscript database

    Wheat derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wh...

  7. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  8. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat is known for its very hard texture, which influences how it is milled and for what products it is well suited. We developed soft kernel durum wheat lines via Ph1b-mediated homoeologous recombination with Dr. Leonard Joppa...

  9. Functional and nutritional characteristics of soft wheat grown in no-till and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of no-till vs. conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity and end-product quality. Soft white winter wheat cv. ORCF 102 was evaluated over a tw...

  10. Soft wheat quality characteristics required for making baking powder biscuits

    USDA-ARS?s Scientific Manuscript database

    Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...

  11. Relationships between falling number, a-Amylase activity, milling, and sponge cake quality of soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Falling Number of wheat is an important quality predictor and carries with it significant economic impact. Lower Falling Numbers are associated with higher a-amylase activity and poorer soft wheat end-use quality, especially sponge cake. In the present study two sample sets were examined, the first ...

  12. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    USDA-ARS?s Scientific Manuscript database

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  13. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  14. Improvement of baking quality traits through a diverse soft winter wheat population

    USDA-ARS?s Scientific Manuscript database

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  15. Quality requirements of soft red winter wheat for making northern-style Chinese steamed bread

    USDA-ARS?s Scientific Manuscript database

    Flours of 19 soft red winter (SRW) wheat varieties having protein contents of 6.6 to 9.9% were used to determine the suitability of SRW wheat for making steamed bread and the influences of flour characteristics on the quality attributes of steamed bread. Fourteen varieties produced steamed bread of ...

  16. Basis for selecting soft wheat for end-use quality

    USDA-ARS?s Scientific Manuscript database

    Within the United States, end-use quality of soft wheat (Triticum aestivum L.) is determined by several genetically controlled components: milling yield, flour particle size, and baking characteristics related to flour water absorption caused by glutenin macropolymer, non-starch polysaccharides, and...

  17. Genetic dissection of end-use quality traits in adapted soft white winter wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white winter wheat is used in foreign markets for various end products requiring specific end-use quality profiles. Phenotyping for end-use quality traits using can be destructive, costly, and time-consuming, so it is advantageous to use molecular markers to select experimental lines with supe...

  18. Modeling end-use quality in U. S. soft wheat germplasm

    USDA-ARS?s Scientific Manuscript database

    End-use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four regional nurseries. Selected parameters included: test weight, kernel hardness, kernel size, ke...

  19. Volatile organic compounds of whole grain soft winter wheat

    USDA-ARS?s Scientific Manuscript database

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  20. Relationships of Quality Characteristics with Size Exclusion HPLC Chromatogram of Protein Extract in Soft-White Winter Wheats.

    USDA-ARS?s Scientific Manuscript database

    This study investigated relationships between molecular weight distributions of unreduced grain proteins and grain, flour, and end-use quality characteristics of soft white winter wheats grown in Oregon. Absorbance area and area % values of protein fractions separated by size exclusion HPLC (SE-HPL...

  1. Significance of starch properties and quantity on sponge cake volume

    USDA-ARS?s Scientific Manuscript database

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  2. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  3. Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread

    USDA-ARS?s Scientific Manuscript database

    This study investigated the variations in the characteristics of brans obtained from a pilot-scale milling of 17 soft red winter wheat varieties and their influences on the quality of whole wheat northern-style Chinese steamed bread (CSB) prepared from blends of a base flour and brans of different w...

  4. Genetic Dissection of End-Use Quality Traits in Adapted Soft White Winter Wheat

    PubMed Central

    Jernigan, Kendra L.; Godoy, Jayfred V.; Huang, Meng; Zhou, Yao; Morris, Craig F.; Garland-Campbell, Kimberly A.; Zhang, Zhiwu; Carter, Arron H.

    2018-01-01

    Soft white wheat is used in domestic and foreign markets for various end products requiring specific quality profiles. Phenotyping for end-use quality traits can be costly, time-consuming and destructive in nature, so it is advantageous to use molecular markers to select experimental lines with superior traits. An association mapping panel of 469 soft white winter wheat cultivars and advanced generation breeding lines was developed from regional breeding programs in the U.S. Pacific Northwest. This panel was genotyped on a wheat-specific 90 K iSelect single nucleotide polymorphism (SNP) chip. A total of 15,229 high quality SNPs were selected and combined with best linear unbiased predictions (BLUPs) from historical phenotypic data of the genotypes in the panel. Genome-wide association mapping was conducted using the Fixed and random model Circulating Probability Unification (FarmCPU). A total of 105 significant marker-trait associations were detected across 19 chromosomes. Potentially new loci for total flour yield, lactic acid solvent retention capacity, flour sodium dodecyl sulfate sedimentation and flour swelling volume were also detected. Better understanding of the genetic factors impacting end-use quality enable breeders to more effectively discard poor quality germplasm and increase frequencies of favorable end-use quality alleles in their breeding populations. PMID:29593752

  5. Identification of milling and baking quality QTL in multiple soft wheat mapping populations.

    PubMed

    Cabrera, Antonio; Guttieri, Mary; Smith, Nathan; Souza, Edward; Sturbaum, Anne; Hua, Duc; Griffey, Carl; Barnett, Marla; Murphy, Paul; Ohm, Herb; Uphaus, Jim; Sorrells, Mark; Heffner, Elliot; Brown-Guedira, Gina; Van Sanford, David; Sneller, Clay

    2015-11-01

    Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.

  6. Soft durum wheat - a paradigm shift

    USDA-ARS?s Scientific Manuscript database

    Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...

  7. Registration of 'UI Stone' spring wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  8. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties

    PubMed Central

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also. PMID:26824830

  9. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    PubMed

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also.

  10. Influence of soft kernel texture on the flour and baking quality of durum wheat

    USDA-ARS?s Scientific Manuscript database

    Durum wheat is predominantly grown in semi-arid to arid environments where common wheat does not flourish, especially in the Middle East, North Africa, Mediterranean Basin, and portions of North America. Durum kernels are extraordinarily hard when compared to their common wheat counterparts. Due to ...

  11. Post-harvest and post-milling changes in wheat grain and flour quality characteristics

    USDA-ARS?s Scientific Manuscript database

    Soft red winter (SRW) wheat grain immediately after harvest and flour after milling were stored for 26 weeks and analyzed for comprehensive milling and baking quality characteristics at different time points to examine the consistency of the quality test results. Increases in falling number (FN) of ...

  12. The influence of soft kernel texture on the flour, water absorption, rheology, and baking quality of durum wheat

    USDA-ARS?s Scientific Manuscript database

    Durum (T. turgidum subsp. durum) wheat production worldwide is substantially less than that of common wheat (Triticum aestivum). Durum kernels are extremely hard; leading to most durum wheat being milled into semolina. Durum wheat production is limited in part due to the relatively limited end-user ...

  13. Flour mill stream blending affects sugar snap cookie and Japanese sponge cake quality and oxidative cross-linking potential of soft white wheat.

    USDA-ARS?s Scientific Manuscript database

    The purpose of this research was to study the functional differences between straight grade (75% extraction rate) and patent (60% extraction rate) flour blends from 28 genetically pure soft white and club wheat grain lots, as evidenced by variation in sugar snap cookie and Japanese sponge cake quali...

  14. A comprehensive survey of soft wheat grain quality in United States germplasm

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) quality is dependent upon both genetic and environmental factors, which work in combination to produce specific grain, milling, and baking characteristics. Along with these genetic and environmental factors, the adaptation of the genetics to the given growing environment...

  15. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  16. Validation of Fusarium Head Blight resistance QTL in US winter wheat

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. (Petch)], can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. Two US soft red winter wheat cultivars, Bess and NC-Neuse, have moderate...

  17. Validation of fusarium head blight resistance QTL in US winter wheat

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. (Petch)], can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. Two US soft red winter wheat cultivars, Bess and NC-Neuse, have moderate...

  18. Falling number of soft wheat wheat by near-infrared spectroscopy: a challenge revisited

    USDA-ARS?s Scientific Manuscript database

    Wheat Hagberg falling number is a long-standing quality test that, by means of measuring the viscosity of a heated water-meal or water-flour mixture, characterizes the activity of alpha-amylase, the enzyme primarily responsible for starch hydrolysis. The accuracy, time requirement, and cost of this...

  19. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    NASA Astrophysics Data System (ADS)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  20. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population

    USDA-ARS?s Scientific Manuscript database

    Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years a...

  1. Qualitative effect of added gluten on dough properties and quality of Chinese steamed bread

    USDA-ARS?s Scientific Manuscript database

    Glutens isolated from fifteen soft red winter (SRW) wheat flours were added into a SRW wheat flour to obtain protein levels of 9.6% and 11.3% for determination of the qualitative effect of gluten protein on the dough properties and quality of northern-style Chinese steamed bread (CSB). Sodium dodecy...

  2. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    PubMed

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  3. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    PubMed

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  4. Registration of “Pritchett” soft white winter club wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white club winter wheat (Triticium aestivum L. ssp. compactum) is a unique component of the wheat production in the PNW, comprising 6-10% of the wheat crop. It is valued for milling and baking functionality and marketed for export in a 20-30% blend with soft white wheat as Western White. Our g...

  5. Effect of wheat flour characteristics on sponge cake quality.

    PubMed

    Moiraghi, Malena; de la Hera, Esther; Pérez, Gabriela T; Gómez, Manuel

    2013-02-01

    To select the flour parameters that relate strongly to cake-making performance, in this study the relationship between sponge cake quality, solvent retention capacity (SRC) profile and flour physicochemical characteristics was investigated using 38 soft wheat samples of different origins. Particle size average, protein, damaged starch, water-soluble pentosans, total pentosans, SRC and pasting properties were analysed. Sponge cake volume and crumb texture were measured to evaluate cake quality. Cluster analysis was applied to assess differences in flour quality parameters among wheat lines based on the SRC profile. Cluster 1 showed significantly higher sponge cake volume and crumb softness, finer particle size and lower SRC sucrose, SRC carbonate, SRC water, damaged starch and protein content. Particle size, damaged starch, protein, thickening capacity and SRC parameters correlated negatively with sponge cake volume, while total pentosans and pasting temperature showed the opposite effect. The negative correlations between cake volume and SRC parameters along with the cluster analysis results indicated that flours with smaller particle size, lower absorption capacity and higher pasting temperature had better cake-making performance. Some simple analyses, such as SRC, particle size distribution and pasting properties, may help to choose flours suitable for cake making. Copyright © 2012 Society of Chemical Industry.

  6. Breeding FHB-resistant soft winter wheat: progress and prospects

    USDA-ARS?s Scientific Manuscript database

    Soft winter wheat (Triticum aestivum L.) breeding programs in the US have used two general approaches to developing FHB-resistant cultivars: 1) incorporation of Fhb1 plus other minor QTL from Asian wheat cultivars and their derivatives and 2) reliance on resistance native to the soft winter wheat ge...

  7. USDA, ARS Soft Wheat Quality Laboratory, Annual Report 2011

    USDA-ARS?s Scientific Manuscript database

    The report describes new activities for the lab including the a transitions in the laboratory and activites on the USDA, NIFA-funded Triticeae CAP project. Recent research on milling and quality evaluations, data management, molecular evaluations, stem rust resistance from the lab are highlighted, ...

  8. Effect of sodium chloride and sodium bicarbonate on the physicochemical properties of soft wheat flour doughs and gluten polymerization.

    PubMed

    Chen, Gengjun; Ehmke, Laura; Miller, Rebecca; Faa, Pierre; Smith, Gordon; Li, Yonghui

    2018-06-07

    Soft wheat flour doughs were prepared with different levels of salt (NaCl) and/or baking soda (NaHCO3). Oscillation rheology, elongational viscosity, and extensibility of doughs were tested to evaluate the effect of salt and/or baking soda on the physical properties of doughs. Furthermore, a series of physical-biochemical analytical techniques were used to investigate gluten polymerization in doughs, including Zeta potential analyzer, Fourier transform infrared spectroscopy (FTIR), spectrophotometer, and reversed phase high performance liquid chromatography (RP-HPLC). Addition of high levels of NaHCO3 (1.0 % fwb), either by itself or in combination with NaCl, increased dough strength, elongational viscosity, and viscoelasticity. RP-HPLC results demonstrated macromolecular aggregation of gluten proteins in the presence of NaCl and/or NaHCO3. Addition of NaHCO3 or NaCl also decreased both free sulfhydryl content and random coil structure of gluten isolated from the doughs. Overall, NaCl and/or NaHCO3 induced the changes of molecular conformation of gluten, which impacted the physicochemical qualities of soft wheat flour dough. Our study provides a better understanding of salt and baking soda functionality in the formation of soft flour dough, which will support the searching of feasible sodium reduction strategies in soft flour bakery products.

  9. Effect of mahaleb on cookie quality

    USDA-ARS?s Scientific Manuscript database

    Mahaleb seed has a public use in many areas including bakery industry, especially to soft wheat products to obtain a special odor and texture. In this study, the effect of mahaleb on the cookie quality was investigated in various concentrations. The cookies were evaluated for physical, textural an...

  10. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    USDA-ARS?s Scientific Manuscript database

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...

  11. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development.

    PubMed

    Lesage, Véronique S; Merlino, Marielle; Chambon, Christophe; Bouchet, Brigitte; Marion, Didier; Branlard, Gérard

    2012-01-01

    Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.

  12. Genetics of Leaf Rust Resistance in the Soft Red Winter Wheat Cultivars Coker 9663 and Pioneer 26R61

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by the fungus Puccinia triticina, is an important disease of soft red winter wheat cultivars that are grown in the southern and eastern United States. The objectives of this study were to identify the leaf rust resistance genes in two soft red winter wheat cultivars, Coker 9663 and...

  13. Comparison of bloat potential between a variety of soft-red versus a variety of hard-red winter wheat forage.

    PubMed

    Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K

    2009-10-01

    Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P < 0.01) percentage of observed bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency of bloat in stocker cattle. In this study, shrinking of cattle before grazing wheat pasture did not induce bloat.

  14. The viscoelastic properties of the protein-rich materials from the fermented hard wheat, soft wheat and barley flours

    USDA-ARS?s Scientific Manuscript database

    The linear and non-linear rheological properties of the suspensions for the hard red spring wheat (HRS) flour, soft wheat (Pastry) flour, barley flour, as well as the remain residues of HRS flour, Pastry flour, and barley flour after fermentation were investigated. The linear and non-linear rheologi...

  15. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    PubMed

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  16. Waxy soft white wheat: extrusion characteristics and thermal and rheological properties

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat flour was analyzed for its thermal and rheological properties and extruded to understand its processing characteristics. Comparisons were made with normal soft white wheat flour to identify extrusion differences under the same conditions. The thermal and rheological properties through Rap...

  17. ‘Savoy’: An adapted soft red winter wheat cultivar for Georgia and the South East regions of the USA

    USDA-ARS?s Scientific Manuscript database

    Soft red winter wheat (SRWW) (Triticum aestivum L.) is a major crop in Georgia (GA) and the U.S. Southeast (SE) region. Despite a decrease of wheat acreages in this region, more than 230,000 acres were grown to SRWW in GA in 2015. To capture and maximize regional market value of wheat, the new rele...

  18. Overseas Varietal Analysis: 2008 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The 2008 U.S. Wheat Associates Overseas Varietal Analysis evaluated ten soft red winter wheat varieties DK 9577, USG 3665, and USG 3350 from Arkansas, Jamestown, Tribute, and USG 3555 from Virginia, Branson, Magnolia, and Coker 9553 from North Carolina, and Bess from Missouri. Samples were evaluate...

  19. Overseas Varietal Analysis 2010 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The 2010 U.S. Wheat Associates Overseas Varietal Analysis project evaluated ten soft red winter wheat varieties: Jamestown, Merl and Shirley from Virginia; Coker 9553 and Oakes from North Carolina; Baldwin from Georgia; Renegade and DK 9577 from Arkansas; USG 3555 from Tennessee; and, Malabar from O...

  20. Analysis of Photoperiod Requirements of Soft Winter Wheat from the Eastern United States

    USDA-ARS?s Scientific Manuscript database

    Photoperiod response plays a major role in determining the climatic adaptation of wheat, and variation is commonly associated with Ppd loci on group two chromosomes. Seventy-three soft winter wheat (SWW) cultivars from the eastern U.S. were tested for photoperiod response in growth chambers. Floweri...

  1. The relationship between grain hardness, dough mixing parameters and bread-making quality in winter wheat.

    PubMed

    Salmanowicz, Bolesław P; Adamski, Tadeusz; Surma, Maria; Kaczmarek, Zygmunt; Karolina, Krystkowiak; Kuczyńska, Anetta; Banaszak, Zofia; Lugowska, Bogusława; Majcher, Małgorzata; Obuchowski, Wiktor

    2012-01-01

    The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index-PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index.

  2. The Relationship Between Grain Hardness, Dough Mixing Parameters and Bread-Making Quality in Winter Wheat

    PubMed Central

    Salmanowicz, Bolesław P.; Adamski, Tadeusz; Surma, Maria; Kaczmarek, Zygmunt; Karolina, Krystkowiak; Kuczyńska, Anetta; Banaszak, Zofia; Ługowska, Bogusława; Majcher, Małgorzata; Obuchowski, Wiktor

    2012-01-01

    The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index—PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index. PMID:22605973

  3. Wheat grain quality under enhanced tropospheric CO{sub 2} and O{sub 3} concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudorff, B.F.T.; Mulchi, C.L.; Fenny, P.

    It is expected that the progressive increase of tropospheric trace gases such as CO{sub 2} and O{sub 3} will have a significant impact on agricultural production. The single and combined effects of CO{sub 2} enrichment and tropospheric O{sub 3} on grain quality characteristics in soft red winter wheat (Triticum aestivum L.) were examined in field studies using 3 m in diam. open-top chambers. Wheat cultivars {open_quotes}Massey{close_quotes} (1991) and {open_quotes}Saluda{close_quotes} (1992) were exposed to two CO{sub 2} concentrations (350 vs. 500 {mu}mol CO{sub 2} mol{sup {minus}1}; 12 h d{sup {minus}1}) in combination with two O{sub 3} regimes (charcoal-filtered air vs. ambientmore » air + 40 {plus_minus} 20 nmol O{sub 3} mol{sup {minus}1}, 7 h d{sup {minus}1}; Monday to Friday) from late March until maturity in June. Grain quality characteristics investigated included: test weight, milling and baking quality, flour yield, protein content, softness equivalent, alkaline water retention capacity, and cookie diameter. In general, exposure of plants to either elevated CO{sub 2} or weekly chronic O{sub 3} episodes caused only small changes in grain quality. Milling and baking quality score were not significantly changed in response to treatments in both years. Flour yield was increased by elevated CO{sub 2} but this increase was counteracted when elevated CO{sub 2} was combined with chronic O{sub 3} exposure. Flour protein contents were increased by enhanced O{sub 3} under elevated CO{sub 2}. Although the single effect of either CO{sub 2} enrichment or chronic O{sub 3} exposure had some impact o grain quality characteristics, it was noted that the combined effect of these gases was minor. It is likely that the concomitant increase of CO{sub 2} and O{sub 3} in the troposphere will have no significant impact on wheat grain quality. 25 refs., 1 fig., 2 tabs.« less

  4. Overseas Varietal Analysis 2011 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The 2011 U.S. Wheat Associates Overseas Varietal Analysis project evaluated ten soft red winter wheat varieties: Malabar and AGI 303 from Ohio, Terral TV 8861 from Louisiana, SY 9978 and Coker 9804 from North Carolina, Merl and Shirley from Virginia, AGS 2060 from Arkansas, and USG 3201 and USG 3251...

  5. Enhanced gluten properties in soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...

  6. Quality Characteristics of Soft Kernel Durum -- A New Cereal Crop

    USDA-ARS?s Scientific Manuscript database

    Production of crops is in part limited by consumer demand and utilization. In this regard, world production of durum wheat (Triticum turgidum subsp. durum is limited by its culinary uses. The leading constraint is its very hard kernels. Puroindolines, which act to soften the endosperm, are completel...

  7. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    USDA-ARS?s Scientific Manuscript database

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  8. Impact of hard vs. soft wheat and monensin level on rumen acidosis in feedlot heifers.

    PubMed

    Yang, W Z; Xu, L; Zhao, Y L; Chen, L Y; McAllister, T A

    2014-11-01

    Many feedlot finishing diets include wheat when the relative wheat prices are low. This study was conducted to examine the responses in ruminal pH and fermentation as well as site and extent of digestion from substituting soft or hard wheat for barley grain and to determine whether an elevated monensin concentration might decrease indicators of ruminal acidosis in feedlot heifers. Five ruminally cannulated beef heifers were used in a 5 × 5 Latin square with 2 × 2 + 1 factorial arrangement. Treatments included barley (10% barley silage, 86% barley, 4% supplement, with 28 mg monensin/kg DM) and diets where barley was substituted by either soft or hard wheat with either 28 or 44 mg monensin/kg diet DM. Intake of DM was not affected by grain source, whereas increasing monensin with wheat diets reduced (P < 0.02) DMI. Mean ruminal pH was lower (P < 0.04) and durations of pH < 5.8 and pH < 5.5 greater (P < 0.03) for wheat than for barley diets. However, ruminal pH was not affected by wheat type or monensin level. Total VFA concentrations were greater (P < 0.03) for wheat than barley diets with no effect of wheat type. The molar proportion of propionate was greater (P < 0.04), whereas butyrate (P < 0.01) and ratio of acetate to propionate tended to be lower (P < 0.09), with the high as compared to low level of monensin. Replacing barley with wheat in finishing diets did not affect the duodenal flow or the digestibility of OM, likely as a result of greater (P < 0.01) NDF digestion from barley offsetting the increased (P < 0.03) supply of digested starch from wheat. Feeding soft vs. hard wheat delivered a greater (P < 0.03) duodenal supply of OM and nonammonia N with no differences in total tract nutrient digestion. The increased monensin concentration decreased the flow of OM (P < 0.01), total N (P < 0.05), and microbial protein (P < 0.05) to the small intestine due to decreased DMI. These results indicated that hard and soft wheat exhibited digestive characteristics similar to barley, but ruminal pH measurements indicate that compared with barley, wheat increased the risk of ruminal acidosis. Although an increased level of monensin had limited impact on ruminal indicators of acidosis, an increase in propionate would be expected to improve efficiency of feed use by heifers fed wheat-based finishing diets.

  9. ‘GA 03564-12E6’: A high-yielding soft red winter wheat cultivar adapted to Georgia and the southeastern regions of the United States

    USDA-ARS?s Scientific Manuscript database

    Soft red winter wheat (SRWW) (Triticum aestivum L.) is a major crop in the southeastern region of the United States and in Georgia. Although wheat acreages have been decreasing in Georgia and the SE region in recent years, more than 100,000 ha were grown to SRWW in 2015. Newly released cultivars mus...

  10. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b

    PubMed Central

    Giroux, Michael J.; Morris, Craig F.

    1998-01-01

    “Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953

  11. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  12. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    PubMed

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.

  13. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    PubMed Central

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. Conclusions The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers. PMID:24433256

  14. Optimization of soaking stage in technological process of wheat germination by hydroponic method when objective function is defined implicitly

    NASA Astrophysics Data System (ADS)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.

    2018-05-01

    The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».

  15. Effects of wheat source and particle size in meal and pelleted diets on finishing pig growth performance, carcass characteristics, and nutrient digestibility.

    PubMed

    De Jong, J A; DeRouchey, J M; Tokach, M D; Dritz, S S; Goodband, R D; Paulk, C B; Woodworth, J C; Jones, C K; Stark, C R

    2016-08-01

    Two experiments were conducted to test the effects of wheat source and particle size in meal and pelleted diets on finishing pig performance, carcass characteristics, and diet digestibility. In Exp. 1, pigs (PIC 327 × 1050; = 288; initially 43.8 kg BW) were balanced by initial BW and randomly allotted to 1 of 3 treatments with 8 pigs per pen (4 barrows and 4 gilts) and 12 pens per treatment. The 3 dietary treatments were hard red winter wheat ground with a hammer mill to 728, 579, or 326 μm, respectively. From d 0 to 40, decreasing wheat particle size decreased (linear, < 0.033) ADFI but improved (quadratic, < 0.014) G:F. From d 40 to 83, decreasing wheat particle size increased (quadratic, < 0.018) ADG and improved (linear, < 0.002) G:F. Overall from d 0 to 83, reducing wheat particle size improved (linear, < 0.002) G:F. In Exp. 2, pigs (PIC 327 × 1050; = 576; initially 43.4 ± 0.02 kg BW) were used to determine the effects of wheat source and particle size of pelleted diets on finishing pig growth performance and carcass characteristics. Pigs were randomly allotted to pens, and pens of pigs were balanced by initial BW and randomly allotted to 1 of 6 dietary treatments with 12 replications per treatment and 8 pigs/pen. The experimental diets used the same wheat-soybean meal formulation, with the 6 treatments using hard red winter or soft white winter wheat that were processed to 245, 465, and 693 μm and 258, 402, and 710 μm, respectively. All diets were pelleted. Overall, feeding hard red winter wheat increased ( < 0.05) ADG and ADFI when compared with soft white winter wheat. There was a tendency ( < 0.10) for a quadratic particle size × wheat source interaction for ADG, ADFI, and both DM and GE digestibility, as they were decreased for pigs fed 465-μm hard red winter wheat and were greatest for pigs fed 402-μm soft white winter wheat. There were no main or interactive effects of particle size or wheat source on carcass characteristics. In summary, fine grinding hard red winter wheat fed in meal form improved G:F and nutrient digestibility, whereas reducing particle size of wheat from approximately 700 to 250 μm in pelleted diets did not influence growth or carcass traits. Finally, feeding hard red winter wheat improved ADG and ADFI compared with feeding soft white winter wheat.

  16. Large Area Crop Inventory Experiment (LACIE). Phase 3 direct wheat study of North Dakota

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.; Nichols, J. D.; Ona, A. L. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The green number and brightness scatter plots, channel plots of radiance values, and visual study of the imagery indicate separability between barley and spring wheat/oats during the wheat mid-heading to mid-ripe stages. In the LACIE Phase 3 North Dakota data set, the separation time is more specifically the wheat soft dough stage. At this time, the barley is ripening, and is therefore, less green and brighter than the wheat. Only 4 of the 18 segments studied indicate separation of barley/other spring small grain, even though 11 of the segments have acquisitions covering the wheat soft dough stage. The remaining seven segments had less than 5 percent barley based on ground truth data.

  17. Soft wheat and flour products methods review: solvent retention capacity equation correction

    USDA-ARS?s Scientific Manuscript database

    This article discusses the results of a significant change to calculations made within AACCI Approved methods 56-10 and 56-11, the Alkaline Water Retention Capacity (AWRC) test and the Solvent Retention Capacity (SRC) test. The AACCI Soft Wheat and Flour Products Technical Committee reviewed propos...

  18. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality

    PubMed Central

    de la Horra, Ana E.; Steffolani, María Eugenia; Barrera, Gabriela N.; Ribotta, Pablo D.

    2015-01-01

    Summary The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products. PMID:27904379

  19. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality.

    PubMed

    de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E

    2015-12-01

    The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  20. Substituting Normal and Waxy-Type Whole Wheat Flour on Dough and Baking Properties

    PubMed Central

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-01-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour decreased pasting viscosity, showing all RVA parameters were the lowest in SMC40 composite flour. Water absorption was slightly higher with 40% whole wheat flour regardless of whether the wheat was normal or waxy. An increased mixing time was observed when higher levels of KK flour were substituted, but the opposite reaction occurred when SMC flour was substituted at the same levels. Bread loaf volume was lower in breads containing a whole wheat flour substitution compared to bread containing only white wheat flour. No significant difference in bread loaf volume was observed between normal and waxy whole flour, but the bread crumb firmness was significantly lower in breads containing waxy flour. The results of these studies indicate that up to 40% whole wheat flour substitution could be considered a practical option with respect to functional qualities. Also, replacing waxy whole flour has a positive effect on bread formulation over normal whole wheat flour in terms of improving softness and glutinous texture. PMID:24471084

  1. Sterilization of foods with low-energy electrons (``soft-electrons'')

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Takahashi, Yoko; Todoriki, Setsuko

    1998-06-01

    Electrons with an energy of 300 keV or lower were defined as "Soft-electrons", which showed several advantages over conventional irradiation with gamma-rays or high-energy electrons in decontamination of grains and spices. Energies of electrons necessary to reduce microbial loads to levels lower than 10 CFU/g were 60 keV for brown rice, 75 keV for wheat, 100 keV for white pepper, coriander and basil, 130 keV for buckwheat, 160 keV for rough rice, and 210 keV for black pepper. Electrons with such energies did not significantly influence the quality.

  2. Development of a Pancake-Making Method for a Batter-Based Product

    USDA-ARS?s Scientific Manuscript database

    Cake and pancake are major batter-based products made with soft wheat flour. A standardized baking method for high-ratio cake has been widely used for evaluating the cake-baking performance of soft wheat flour. Chlorinated flour is used to make high-ratio cake, and the cake formula contains relative...

  3. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  4. Association study of resistance to soil-borne wheat mosaic virus (SBWMV) in U.S. winter wheat

    USDA-ARS?s Scientific Manuscript database

    Soil-borne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter...

  5. Storage conditions affecting increase in falling number of soft red winter wheat grain

    USDA-ARS?s Scientific Manuscript database

    Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by malting, by incubating wheat stalks,...

  6. Functional and nutritional characteristics of wheat grown in organic and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of organic vs. conventional farming practices on wheat functional and nutritional characteristics were compared. Soft white winter wheat and hard red spring wheat were obtained from long-term replicated field plots near Pullman, Washington and Bozeman, Montana. Test weight, kernel weight...

  7. Adult plant leaf rust resistance derived from the soft red winter wheat cultivar Caldwell maps to chromosome 3BS

    USDA-ARS?s Scientific Manuscript database

    'Caldwell' is a U.S. soft red winter wheat that has partial, adult plant resistance to the leaf rust pathogen Puccinia triticina. A line of 'Thatcher*2/Caldwell' with adult plant resistance derived from Caldwell was crossed with 'Thatcher' to develop a population of recombinant inbred lines (RILs). ...

  8. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population.

    PubMed

    Carter, A H; Garland-Campbell, K; Morris, C F; Kidwell, K K

    2012-04-01

    Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a 'Louise' by 'Penawawa' mapping population was grown in two crop years at two locations in the Pacific Northwest region of the United States and data were collected on 17 end-use quality traits using established quality analysis protocols. Using an established genetic linkage map, composite interval mapping was used to identify QTL associated with 16 of the 17 quality traits. QTL were found on 13 of the 21 wheat chromosomes. A large number of QTL were located on chromosomes 3B and 4D and coincided with traits for milling quality and starch functionality. Chromosome 3B contained 10 QTL, which were localized to a 26.2 cM region. Chromosome 4D contained 7 QTL, all of which were located on an 18.8 cM region of this chromosome. The majority of the alleles for superior end-use quality were associated with the cultivar Louise. The identified QTL detected remained highly significant independent of grain yield and protein quantity. The identification of these QTL for end-use quality gives key insight into the relationship and complexity of end-use quality traits. It also improves our understanding of these relationships, thereby allowing plant breeders to make valuable gains from selection for these important traits.

  9. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  10. Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-12-01

    Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. USSR Report Agriculture.

    DTIC Science & Technology

    1986-02-13

    types of food, including fruit and vegetable products. As is known, potatoes, fruit and vegetables are of great significance in man’s daily diet ; they are...sugar, nitrogen- free extractive substances and carotene decreases in a grass stand. Another fact was also established: the use of nitrogen containing...with gluten content in the amount of 28-31 percent of first quality group is paid with a surcharge to the price for soft wheat in the amount of 30

  12. Molecular and cytogenetic characterization of the 5DS-5BS chromosome translocation conditioning soft kernel texture in durum wheat

    USDA-ARS?s Scientific Manuscript database

    Cultivar ‘Soft Svevo’, a new non-GMO soft durum cultivar with soft kernel texture, was developed through a 5DS(5BS) chromosomal translocation from event. cv. Chinese Spring, and subsequently used to create new soft durum germplasm. The development of Soft Svevo featured the Ph1b-mediated homoeologou...

  13. In Planta mutagenesis determines the functional regions of puroindoline proteins.

    USDA-ARS?s Scientific Manuscript database

    PINA and PINB functionally comprise the wheat (Triticum aestivum L.) Ha locus which controls grain texture and many wheat end-use properties. PINs in their functional forms impart soft texture and a mutation in either PIN is found in all hard wheats. Studies of the PINs mode of action is limited ...

  14. Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats

    USDA-ARS?s Scientific Manuscript database

    Grain physical characteristics and milling behavior of a durum wheat line in which both wild-type puroindoline alleles were translocated and stabilized after backcrossing (Svevo-Pin) were compared with the parent line (Svevo). The only observed differences between grain characteristics were the mech...

  15. A novel genome mutation in wheat increases Fusarium Head Blight resistance

    USDA-ARS?s Scientific Manuscript database

    We sought to validate an FHB resistance QTL reported to be on chromosome 2A in the soft red winter wheat cultivar Freedom by introducing it into the highly susceptible rapid maturing dwarf wheat Apogee. Marker-assisted backcrossing with an SSR marker reported to be associated with this QTL was under...

  16. Flour mill stream blending affects sugar snap cookie and Japanese sponge cake quality and oxidative cross-linking potential of soft white wheat.

    PubMed

    Ramseyer, Daniel D; Bettge, Arthur D; Morris, Craig F

    2011-01-01

    The purpose of this research was to study the functional differences between straight grade (75% extraction rate) and patent (60% extraction rate) flour blends from 28 genetically pure soft white and club wheat grain lots, as evidenced by variation in sugar snap cookie and Japanese sponge cake quality. Functional differences were examined relative to arabinoxylan content, protein content, and oxidative cross-linking potential of flour slurries. Oxidative cross-linking measurements were obtained on flour slurries with a low shear Bostwick consistometer and considered endogenous oxidative cross-linking potential (water alone) or enhanced oxidative cross-linking potential (with added hydrogen peroxide-peroxidase). A 2-way ANOVA indicated that flour blend was the greater source of variation compared to grain lot for all response variables except water-extractable arabinoxylan content. Patent flours produced larger sugar snap cookies and Japanese sponge cakes, and contained significantly less total and water-unextractable arabinoxylans, protein, and ash than did straight grade flours. Patent flours produced more viscous slurries for endogenous and enhanced cross-linking measurements compared to the straight grade flours. The functional differences between patent and straight grade flours appear to be related to the particular mill streams that were utilized in the formulation of the 2 flour blends and compositional differences among those streams. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  17. Registration of ‘Coral’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Coral’ soft white winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released March 28, 2008, via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Coral was selected from the cross MSU D3913 / MSU D0331 made i...

  18. The Ectopic Expression of the Wheat Puroindoline Genes Increase Germ Size and Seed Oil Content in Transgenic Corn

    PubMed Central

    Zhang, Jinrui; Martin, John M.; Beecher, Brian; Lu, Chaofu; Hannah, L. Curtis; Wall, Michael L.; Altosaar, Illimar; Giroux, Michael J.

    2014-01-01

    Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression. PMID:20725765

  19. Registration of "MSU E5024" wheat

    USDA-ARS?s Scientific Manuscript database

    'MSU E5024' (Reg. No. CV-1077, PI 664078) soft white winter wheat (Triticum aestivum L.) was developed by Michigan State University (MSU) AgBioResearch and released in 2011 via exclusive licensing agreements through MSU Technologies. In addition to researchers at MSU, USDA-ARS researchers at the Sof...

  20. Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking.

    PubMed

    Kajala, Ilkka; Shi, Qiao; Nyyssölä, Antti; Maina, Ndegwa Henry; Hou, Yaxi; Katina, Kati; Tenkanen, Maija; Juvonen, Riikka

    2015-01-01

    Wheat bran offers health benefits as a baking ingredient, but is detrimental to bread textural quality. Dextran production by microbial fermentation improves sourdough bread volume and freshness, but extensive acid production during fermentation may negate this effect. Enzymatic production of dextran in wheat bran was tested to determine if dextran-containing bran could be used in baking without disrupting bread texture. The Weissella confusa VTT E-90392 dextransucrase gene was sequenced and His-tagged dextransucrase Wc392-rDSR was produced in Lactococcus lactis. Purified enzyme was characterized using (14)C-sucrose radioisotope and reducing value-based assays, the former yielding K(m) and V(max) values of 14.7 mM and 8.2 μmol/(mg ∙ min), respectively, at the pH optimum of 5.4. The structure and size of in vitro dextran product was similar to dextran produced in vivo. Dextran (8.1% dry weight) was produced in wheat bran in 6 h using Wc392-rDSR. Bran with and without dextran was used in wheat baking at 20% supplementation level. Dextran presence improved bread softness and neutralized bran-induced volume loss, clearly demonstrating the potential of using dextransucrases in bran bioprocessing for use in baking.

  1. Cloning and Characterization of a Weissella confusa Dextransucrase and Its Application in High Fibre Baking

    PubMed Central

    Kajala, Ilkka; Shi, Qiao; Nyyssölä, Antti; Maina, Ndegwa Henry; Hou, Yaxi; Katina, Kati; Tenkanen, Maija; Juvonen, Riikka

    2015-01-01

    Wheat bran offers health benefits as a baking ingredient, but is detrimental to bread textural quality. Dextran production by microbial fermentation improves sourdough bread volume and freshness, but extensive acid production during fermentation may negate this effect. Enzymatic production of dextran in wheat bran was tested to determine if dextran-containing bran could be used in baking without disrupting bread texture. The Weissella confusa VTT E-90392 dextransucrase gene was sequenced and His-tagged dextransucrase Wc392-rDSR was produced in Lactococcus lactis. Purified enzyme was characterized using 14C-sucrose radioisotope and reducing value-based assays, the former yielding K m and V max values of 14.7 mM and 8.2 μmol/(mg∙min), respectively, at the pH optimum of 5.4. The structure and size of in vitro dextran product was similar to dextran produced in vivo. Dextran (8.1% dry weight) was produced in wheat bran in 6 h using Wc392-rDSR. Bran with and without dextran was used in wheat baking at 20% supplementation level. Dextran presence improved bread softness and neutralized bran-induced volume loss, clearly demonstrating the potential of using dextransucrases in bran bioprocessing for use in baking. PMID:25603169

  2. Improved wheat for baking.

    PubMed

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  3. Near-Infrared Spectrum Detection of Wheat Gluten Protein Content Based on a Combined Filtering Method.

    PubMed

    Cai, Jian-Hua

    2017-09-01

    To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.

  4. Registration of ‘Shirley’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Shirley’ (Reg. No. CV-, PI) soft red winter (SRW) wheat (Triticum aestivum L.) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Shirley was derived from the three-way cross VA94-52-25 / ‘Coker 9835’ (PI 548846 PVPO) // VA96-54-234. Shirley is widely adapted ...

  5. Effect of pyrasulfotole carryover to peanut and tobacco

    USDA-ARS?s Scientific Manuscript database

    In the southeastern United States, growers often double-crop soft red winter wheat with peanut. In some areas, tobacco is also grown as a rotational crop. Pyrasulfotole is a residual post-emergence applied herbicide used in winter wheat, but information about its effects on rotational crops is limi...

  6. Starch digestibility and apparent metabolizable energy of western Canadian wheat market classes in broiler chickens.

    PubMed

    Karunaratne, N D; Abbott, D A; Hucl, P J; Chibbar, R N; Pozniak, C J; Classen, H L

    2018-05-16

    Wheat is the primary grain fed to poultry in western Canada, but its nutritional quality, including the nature of its starch digestibility, may be affected by wheat market class. The objectives of this study were to determine the rate and extent of starch digestibility of wheat market classes in broiler chickens, and to determine the relationship between starch digestibility and wheat apparent metabolizable energy (AME). In vitro starch digestion was assessed using gastric and small intestinal phases mimicking the chicken digestive tract, while in vivo evaluation used 468 male broiler chickens randomly assigned to dietary treatments from 0 to 21 d of age. The study evaluated 2 wheat cultivars from each of 6 western Canadian wheat classes: Canadian Prairie Spring (CPS), Canadian Western Amber Durum (CWAD), CW General Purpose (CWGP), CW Hard White Spring (CWHWS), CW Red Spring (CWRS), and CW Soft White Spring (CWSWS). All samples were analyzed for relevant grain characteristics. Data were analyzed as a randomized complete block design and cultivars were nested within market class. Pearson correlation was used to determine relationships between measured characteristics. Significance level was P ≤ 0.05. The starch digestibility range and wheat class rankings were: proximal jejunum - 23.7 to 50.6% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); distal jejunum - 63.5 to 76.4% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); proximal ileum - 88.7 to 96.9% (CWSWSc, CPSbc, CWHWSbc, CWRSb, CWGPb, CWADa); distal ileum - 94.4 to 98.5% (CWSWSb, CWHWSb, CPSb, CWRSab, CWGPab, CWADa); excreta - 98.4 to 99.3% (CPSb, CWRSb, CWHWSb, CWSWSab, CWGPab, CWADa). Wheat class affected wheat AMEn with levels ranging from 3,203 to 3,411 kcal/kg at 90% DM (CWRSc, CWSWSc, CPSb, CWGPb, CWADa, CWHWSa). Significant and moderately strong positive correlations were observed between in vitro and in vivo starch digestibility, but no correlations were found between AME and starch digestibility. In conclusion, rate and extent of starch digestibility and AME were affected by western Canadian wheat class, but starch digestibility did not predict AME.

  7. Registration of "Merl" Wheat.

    USDA-ARS?s Scientific Manuscript database

    ‘Merl’ (Reg. No. CV- , PI 658598) soft red winter (SRW) wheat (Triticum aestivum L.)developed and tested as VA03W-412 by the Virginia Agricultural Experiment Station was released in March 2009. Merl was derived from the three-way cross ‘Roane’ / Pioneer Brand ‘2643’ // ‘38158’ (PI 619052). Merl is a...

  8. Registration of ‘3434’ Wheat

    USDA-ARS?s Scientific Manuscript database

    Soft red winter (SRW) wheat (Triticum aestivum L.) cultivar 3434 (Reg. No. CV-1040, PI 656754) developed and tested as VA03W-434 by the Virginia Agricultural Experiment Station was released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’/‘Coker 9835’//VA96W-270. Cultivar 34...

  9. Registration of ‘3434’ Wheat

    USDA-ARS?s Scientific Manuscript database

    The soft red winter (SRW) wheat (Triticum aestivum L.) cultivar ‘3434’ (Reg. No. CV-, PI) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’ (PI 612958) / ’Coker 9835’ (PI 548846 PVPO) // VA96W-270. Cul...

  10. Registration of ‘Shirley’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Shirley’ (Reg. No. CV-1039, PI 656753) soft red winter (SRW) wheat (Triticum aestivum L.), developed and tested as VA03W-409 by the Virginia Agricultural Experiment Station, was released in March 2008. Shirley was derived from the three-way cross VA94-52-25/‘Coker 9835’//VA96-54-234. Shirley is wid...

  11. NOTE: Measuring oxidative gelation of aqueous flour suspensions using the Rapid Visco Analyzer

    USDA-ARS?s Scientific Manuscript database

    The Rapid Visco Analyzer (RVA) was investigated as a tool to measure oxidative gelation capacity (OGC) of aqueous wheat-flour suspensions. One, club-wheat patent flour was used to determine optimal hydration time and 33 straight-grade flours (representing 12 hard and 31 soft varieties) were used to ...

  12. Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties.

    PubMed

    Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2017-10-01

    Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 75 FR 41963 - Wheat and Oilseed Programs; Durum Wheat Quality Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Programs; Durum Wheat Quality Program AGENCY: Farm Service Agency and Commodity Credit Corporation, USDA. ACTION: Final rule. SUMMARY: This rule implements specific requirements for the Durum Wheat Quality... of the Council on Environmental Quality (40 CFR parts 1500-1508), and FSA regulations for compliance...

  14. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2015 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to five locations in 2015 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Sprin...

  15. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  16. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    USDA-ARS?s Scientific Manuscript database

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  17. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat.

    PubMed

    Zhang, Ruiqi; Sun, Bingxiao; Chen, Juan; Cao, Aizhong; Xing, Liping; Feng, Yigao; Lan, Caixia; Chen, Peidu

    2016-10-01

    Powdery mildew resistance gene Pm55 was physically mapped to chromosome arm 5VS FL 0.60-0.80 of Dasypyrum villosum . Pm55 is present in T5VS·5AL and T5VS·5DL translocations, which should be valuable resources for wheat improvement. Powdery mildew caused by Blumeria graminis f. sp. tritici is a major wheat disease worldwide. Exploiting novel genes effective against powdery mildew from wild relatives of wheat is a promising strategy for controlling this disease. To identify novel resistance genes for powdery mildew from Dasypyrum villosum, a wild wheat relative, we evaluated a set of Chinese Spring-D. villosum disomic addition and whole-arm translocation lines for reactions to powdery mildew. Based on the evaluation data, we concluded that the D. villosum chromosome 5V controls post-seedling resistance to powdery mildew. Subsequently, three introgression lines were developed and confirmed by molecular and cytogenetic analysis following ionizing radiation of the pollen of a Chinese Spring-D. villosum 5V disomic addition line. A homozygous T5VS·5AL translocation line (NAU421) with good plant vigor and full fertility was further characterized using sequential genomic in situ hybridization, C-banding, and EST-STS marker analysis. A dominant gene permanently named Pm55 was located in chromosome bin 5VS 0.60-0.80 based on the responses to powdery mildew of all wheat-D. villosum 5V introgression lines evaluated at both seeding and adult stages. This study demonstrated that Pm55 conferred growth-stage and tissue-specific dependent resistance; therefore, it provides a novel resistance type for powdery mildew. The T5VS·5AL translocation line with additional softness loci Dina/Dinb of D. villosum provides a possibility of extending the range of grain textures to a super-soft category. Accordingly, this stock is a new source of resistance to powdery mildew and may be useful in both resistance mechanism studies and soft wheat improvement.

  18. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement.

    PubMed

    Alvarez, Juan B; Guzmán, Carlos

    2018-02-01

    The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.

  19. Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum ssp. durum) is a leading cereal grain whose primary use is the production of semolina and then pasta. Its rich culinary relationship to humans is related, in part, to its very hard kernel texture. This very hard texture is due to the loss of the Puroindoline genes whi...

  20. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  1. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  2. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments].

    PubMed

    Levinskikh, M A; Veselova, T D; Il'ina, G M; Dzhalilova, Kh Kh; Sychev, V N; Derendiaeva, T A; Salisbury, F; Cambell, W; Bubenheim, D

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  3. Evaluation of hard red spring wheat quality using four different roller mills

    USDA-ARS?s Scientific Manuscript database

    Domestic and overseas buyers pay premium price for hard red spring (HRS) wheat due to high protein content and excellent milling and baking performances. For efficient quality identification of wheat samples, a wheat quality laboratory needs an objective and simple experimental milling procedure and...

  4. Identification and mapping of adult plant stripe rust resistance in soft red winter wheat VA00W-38, Pioneer brand 26R46, and Coker 9553

    USDA-ARS?s Scientific Manuscript database

    Since 2000, many of the previously effective wheat (Triticum aestivum L.) seedling stripe rust (pathogen Puccinia striiformis Westend. f.sp. tritici Eriks) resistance genes have become ineffective to the new more aggressive races of the pathogen. Because seedling resistance genes work on a gene for...

  5. Fourteen Years of Diverse Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    USDA-ARS?s Scientific Manuscript database

    We have completed the 14th year of a cropping systems experiment to evaluate diverse annual (i.e., no summer fallow) cropping systems using no-till as an alternative to tillage-intensive winter wheat (Triticum aestivum L.) – summer fallow (WW-SF). Soft white and hard white classes of winter and spri...

  6. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication

    USDA-ARS?s Scientific Manuscript database

    The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. The Tg-D1 gene on chromosome 2D of Aegilops tauschii, the D-genome progenitor of ...

  7. Genetic analysis of grain attributes, milling performance, and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class and culinary end-uses. Of interest to wheat breeders is to identify quantitative trait loci (QTL) for wheat kernel texture, milling performance, or end-use quality because it is imperative for wheat breeders to ascertain the genetic architecture ...

  8. 78 FR 41138 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... gallons. 3.461 6:00PM to Blendstock for 5:15PM Next Oxygen Blending. Day. Wheat (Chicago) Soft Wheat... tenth business days of each month, the level of the DJ-UBS CI is calculated using a blended WAV formula... imposes a duty of due diligence on its ETP Holders to learn the essential facts relating to every customer...

  9. Effect of Protein Molecular Weight Distribution on Kernel and Baking Characteristics and Intra-varietal Variation in Hard Spring Wheats

    USDA-ARS?s Scientific Manuscript database

    Specific wheat protein fractions are known to have distinct associations with wheat quality traits. Research was conducted on 10 hard spring wheat cultivars grown at two North Dakota locations to identify protein fractions that affected wheat kernel characteristics and breadmaking quality. SDS ext...

  10. Major quality trait analysis and QTL detection in hexaploid wheat in humid rain-fed agriculture.

    PubMed

    Li, H M; Tang, Z X; Zhang, H Q; Yan, B J; Ren, Z L

    2013-05-21

    Humid rain-fed agriculture is a special environment for wheat (Triticum aestivum) culture that tends to negatively affect wheat yield and quality. To identify quality characters of wheat in a humid environment, we conducted quality analysis and quantitative trait loci (QTL) detection in a recombinant inbred line whose parent had a high level of quality for several years. We found that high-quality wheat had less gluten content and lower protein content. Apparently, wheat quality and associated quantity traits were in a dynamic state of equilibrium. We detected 83 QTL for 10 wheat quality traits in this recombinant inbred line population. Nine QTL were detected in both evaluation years; Q.DT.scau-2A, linked to Xwmc522-2A, was detected at the same genetic location in both years. Other QTL for different traits were detected simultaneously in more than one location. Consequently, there appeared to be pleiotropic genes that control wheat quality. Based on previous studies and our research on QTL analysis of grain protein content, we conclude that there must be one or more genes for grain protein content on chromosome 6B, whose expression was little affected by environment. We constructed a consensus map and projected the QTL on it. It was useful for choosing optimal markers for marker-assisted breeding and map-based cloning.

  11. Registration of Zak ERA8 soft white spring wheat germplasm with enhanced response to ABA and increased seed dormancy

    USDA-ARS?s Scientific Manuscript database

    ZakERA8 is a unique mutant line selected from mutagenized soft white spring 'Zak' that has increased seed dormancy as a result of enhanced responsiveness to the plant hormone abscisic acid (ABA) during germination. This germplasm was developed by USDA-ARS, Pullman, WA in collaboration with Washingt...

  12. 'Velva' spring wheat: An adapted cultivar to north-central plains of the United States with high agronomic and quality performance

    USDA-ARS?s Scientific Manuscript database

    Spring wheat (Triticum aestivum L.) growers and industry value adapted wheat cultivars with high quality attributes, essential criteria for maintaining wheat as a competitive crop in the spring wheat growing region of the United States. To address this goal, the breeding program at North Dakota Sta...

  13. The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny.

    PubMed

    Shaaf, Salar; Sharma, Rajiv; Baloch, Faheem Shehzad; Badaeva, Ekaterina D; Knüpffer, Helmut; Kilian, Benjamin; Özkan, Hakan

    2016-06-01

    Wheat belongs to the most important crops domesticated in the Fertile Crescent. In this region, fortunately, locally adapted wheat landraces are still present in farmers' fields. This material might be of immense value for future breeding programs. However, especially wheat germplasm adapted to the central part of the Fertile Crescent has been poorly characterized for allelic variation at key loci of agricultural importance. Grain hardness is an important trait influencing milling and baking quality of wheat. This trait is mainly determined by three tightly linked genes, namely, Puroindoline a (Pina), Puroindoline b (Pinb), and Grain softness protein-1 (Gsp-1), at the Hardness (Ha-D) locus on chromosome 5DS. To investigate genetic diversity and haplotype structure, we resequenced 96 diverse wheat lines at Pina-D1, Pinb-D1, Gsp-A1, Gsp-B1, and Gsp-D1. Three types of null alleles were identified using diagnostic primers: the first type was a multiple deletion of Pina-D1, Pinb-D1, and Gsp-D1 (Pina-D1k), the second was a Pina-D1 deletion (Pina-D1b); and the third type was a deletion of Gsp-D1, representing a novel null allele designated here as Gsp-D1k. Sequence analysis resulted in four allelic variants at Pinb-D1 and five at Gsp-A1, among them Gsp-A1-V was novel. Pina-D1, Gsp-B1 and Gsp-D1 sequences were monomorphic. Haplotype and phylogenetic analysis suggested that (1) bread wheat inherited its 5DS telomeric region probably from wild diploid Ae. tauschii subsp. tauschii found within an area from Transcaucasia to Caspian Iran; and that (2) the Ha-A and Ha-B homoeoloci were most closely related to sequences of wild tetraploid T. dicocco ides. This study provides a good overview of available genetic diversity at Pina-D1, Pinb-D1, and Gsp-1, which can be exploited to extend the range of grain texture traits in wheat.

  14. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition.

    PubMed

    Basati, Zahra; Jamshidi, Bahareh; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-05-30

    The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R 2  = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hard Spring Wheat Technical Committee 2016 Crop

    USDA-ARS?s Scientific Manuscript database

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  16. Whole wheat bread: Effect of bran fractions on dough and end-product quality

    USDA-ARS?s Scientific Manuscript database

    Consumption of whole-wheat based products is encouraged due to its important nutritional elements that beneficial to human health. However, processing of whole-wheat based products, such as whole-wheat bread, results in poor end-product quality. Bran was postulated as the major problem. In this stud...

  17. Visible and near-infrared instruments for detection and quantification of individual sprouted wheat kernels

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest sprouting of wheat kernels within the grain head presents serious problems as it can greatly affect end use quality. Functional properties of wheat flour made from sprouted wheat result in poor dough and bread-making quality. This research examined the ability of two instruments to estim...

  18. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat.

    PubMed

    Petersen, Stine; Lyerly, Jeanette H; Worthington, Margaret L; Parks, Wesley R; Cowger, Christina; Marshall, David S; Brown-Guedira, Gina; Murphy, J Paul

    2015-02-01

    A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.

  19. RNA interference targeting rye secalins alters flour protein composition in a wheat variety carrying a 1Bl.1RS translocation

    USDA-ARS?s Scientific Manuscript database

    Wheat varieties carrying chromosome translocations from rye are part of the international wheat breeding pool, despite being associated with defects in dough processing quality. Among the proposed causes for the quality defects of flours from such wheats is the presence of the secalins, encoded by ...

  20. 'Elgin-ND' spring wheat: A newly adapted cultivar to the north-central plains of the United States with high agronomic quality performance

    USDA-ARS?s Scientific Manuscript database

    The spring wheat (Triticum aestivum L.) industry and growers usually value adapted wheat cultivars with high quality attributes, an essential criteria for maintaining wheat as a competitive commodity at the national and international levels. Therefore, the goal of the breeding program is to develop ...

  1. Effect of Pleurotus eryngii Mushroom β-Glucan on Quality Characteristics of Common Wheat Pasta.

    PubMed

    Kim, SunHee; Lee, Jo-Won; Heo, Yena; Moon, BoKyung

    2016-04-01

    The objective of this study was to evaluate the effect of β-glucan-rich fractions (BGRFs) from Pleurotus eryngii mushroom powder on the quality, textural properties, and sensory evaluation of common wheat pasta. Pasta was prepared from semolina flour and common wheat flour by replacing common wheat flour at 2%, 4%, and 6% with BGRFs. Semolina flour showed significantly higher viscosities than common wheat flour samples. However, all viscosities, except the breakdown viscosity, were reduced with increasing percentages of BGRFs. Replacement of the common wheat flour with BGRFs resulted in a reddish brown colored pasta with a lower L* value and a higher a* value. The common wheat pastas containing up to 4% BGRFs were not significantly different from semolina pasta with regard to cooking loss. Addition of up to 2% BGRFs had no significant impact on swelling index and water absorption. The addition of BGRFs in common wheat flour had a positive effect on the quality of common wheat pasta and resulted in hardness values similar to those of semolina pasta. In a sensory evaluation, cooked pasta with 2% BGRFs had the highest overall acceptability score. In summary, the results showed that common wheat flour containing 4% BGRFs could be used to produce pasta with an improved quality and texture properties similar to semolina pasta. © 2016 Institute of Food Technologists®

  2. Nonstarch polysaccharides in wheat flour wire-cut cookie making.

    PubMed

    Guttieri, Mary J; Souza, Edward J; Sneller, Clay

    2008-11-26

    Nonstarch polysaccharides in wheat flour have significant capacity to affect the processing quality of wheat flour dough and the finished quality of wheat flour products. Most research has focused on the effects of arabinoxylans (AX) in bread making. This study found that water-extractable AX and arabinogalactan peptides can predict variation in pastry wheat quality as captured by the wire-cut cookie model system. The sum of water-extractable AX plus arabinogalactan was highly predictive of cookie spread factor. The combination of cookie spread factor and the ratio of water-extractable arabinose to xylose predicted peak force of the three-point bend test of cookie texture.

  3. Quality and sensory characteristics of hard red wheat after residential storage for up to 32 y.

    PubMed

    Rose, Devin J; Ogden, Lynn V; Dunn, Michael L; Jamison, Rachel G; Lloyd, Michelle A; Pike, Oscar A

    2011-01-01

    Samples of hard red wheat packaged for long-term storage, ranging in age from 0 to 32 y, were obtained from donors in residential households. All samples had been stored under nonabusive conditions (7% to 10% moisture, 13 to 27 °C). Selected quality parameters of the wheat (moisture, thiamin, free fatty acids, flour extraction rate, bread loaf volume, and bread firmness) and sensory properties of bread made from the stored wheat (aroma, appearance, texture, flavor, overall liking, acceptance for use as part of the regular diet, and acceptance for use in emergency situations) were evaluated. Free fatty acids increased significantly from 0.897 to 11.8 μmol/g, and flour extraction rate decreased significantly from 76.5% to 69.9% over time. None of the other quality parameters measured (moisture, thiamin, bread loaf volume, and bread firmness) were significantly correlated with wheat storage time. Panelists who frequently or occasionally consume whole wheat bread rated all breads made from the stored wheat with hedonic scores (9-point scale) of at least 6.4 (like slightly to moderately). Consumer ratings of bread texture, flavor, and overall acceptability were negatively correlated with storage time (P < 0.001); however, at least 70% of panelists indicated that they would consume the bread as part of their regular diet even after 32 y of wheat storage, while over 97% would do so in an emergency. These data indicate that wheat maintains nutritional quality and makes acceptable bread when stored up to 32 y at 13 to 27 °C and 7% to 10% moisture. Practical Application: Wheat stored for the purposes of disaster relief has the potential of being stored for extremely long periods of time, which may result in undesirable changes in milling and baking quality. Therefore, we tested wheat that had been stored under residential conditions for up to 32 y to determine its functional quality and consumer acceptability. Our results indicate that wheat of low moisture (7% to 10%) packaged in sealed cans and stored for up to 32 y at or below typical room temperature retains quality and can be made into bread that is well accepted by consumers. Thus, whole wheat has good long-term storage stability and can be recommended for emergency food supplies.

  4. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...

  5. Implications of non-covalent interactions in zein-starch dough and bread quality

    USDA-ARS?s Scientific Manuscript database

    Breads made from non-wheat flours are made from thick batters and are lower quality than wheat bread. The development of visco-elastic doughs from non-wheat proteins would allow a wider range of gluten-free products and would improve the quality of such foods. Only recently has the mechanism of zei...

  6. Quality and Safety Aspects of Cereals (Wheat) and Their Products.

    PubMed

    Varzakas, Theo

    2016-11-17

    Cereals and, most specifically, wheat are described in this chapter highlighting on their safety and quality aspects. Moreover, wheat quality aspects are adequately addressed since they are used to characterize dough properties and baking quality. Determination of dough properties is also mentioned and pasta quality is also described in this chapter. Chemometrics-multivariate analysis is one of the analyses carried out. Regarding production weighing/mixing of flours, kneading, extruded wheat flours, and sodium chloride are important processing steps/raw materials used in the manufacturing of pastry products. Staling of cereal-based products is also taken into account. Finally, safety aspects of cereal-based products are well documented with special emphasis on mycotoxins, acrylamide, and near infrared methodology.

  7. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  8. Bran characteristics and bread-baking quality of whole grain wheat flour

    USDA-ARS?s Scientific Manuscript database

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  9. Shifts of heat availability and stressful temperatures in Russian Federation result in gains and losses of wheat thermal suitability

    NASA Astrophysics Data System (ADS)

    Di Paola, Arianna; Caporaso, Luca; Santini, Monia; Di Paola, Francesco; Vasenev, Ivan; Valentini, Riccardo

    2017-04-01

    Climate changes are likely to shift the suitability of lands devoted to cropping systems. We explored the past-to-future thermal suitability of Russian Federation for wheat (Triticum aestivum) culture through an ensemble of bias corrected CMIP5-GCMs outputs considering two representative concentration pathways (RCP 4.5 and 8.5). Thermal suitability assesses where wheat heat requirement, counted from suggested sowing dates, is satisfied without the occurrence of stressful hot and frost temperatures. Thermal requirement was estimated by means of phenological observations on soft wheat involving different wheat cultivar collected in different regions of Russian Federation, Azerbaidhan, Kazakhstan and Tadzhikistan, whilst stressful temperatures were taken from a literature survey. Results showed projected geographical shift of heat resource toward the north-eastern regions, currently mainly covered by forests and croplands, but also an increase of very hot temperatures in the most productive areas of the southern regions. Gains and losses were then quantified and discussed from both agronomical and climatic perspective.

  10. Non-Starch Polysaccharides in Wheat Flour Wire-Cut Cookie Making

    USDA-ARS?s Scientific Manuscript database

    Non-starch polysaccharides in wheat flour have significant capacity to affect the processing quality of dough and the finished quality of wheat products. Most research has focused on the effects of arabinoxylans (AX) in bread making. We found that water-extractable arabinoxylan and arabinogalactan...

  11. Effects of the main cereal and type of fat of the diet on productive performance and egg quality of brown-egg laying hens from 22 to 54 weeks of age.

    PubMed

    Pérez-Bonilla, A; Frikha, M; Mirzaie, S; García, J; Mateos, G G

    2011-12-01

    The influence of the main cereal and type of supplemental fat in the diet on productive performance and egg quality of the eggs was studied in 756 brown-egg laying hens from 22 to 54 wk of age. The experiment was conducted as a completely randomized design with 9 treatments arranged factorially, with 3 cereals (dented corn, soft wheat, and barley) and 3 types of fat (soy oil, acidulated vegetable soapstocks, and lard). Each treatment was replicated 4 times (21 hens/replicate). All diets were formulated to have similar nutrient content, except for linoleic acid, which ranged from 0.8 to 3.4% depending on the combination of cereal and fat source used. This approach allows for the estimation of the minimum level of linoleic acid in the diets that maximizes egg weight. Productive performance and egg-quality traits were recorded every 28 d, and the BW of the hens was measured individually at the beginning and at the end of the experiment. No significant interactions between main factors were detected for any of the variables studied. Egg production, egg weight, and egg mass were not affected by dietary treatment. Body weight gain was higher (P < 0.05) for hens fed corn or wheat than for hens fed barley, and also higher for hens fed lard than for hens fed soy oil or acidulated vegetable soapstocks. Egg quality was not influenced by dietary treatment, except for yolk color, which was greater (P < 0.001) for hens fed corn than for hens fed wheat or barley, and greater for hens fed lard than for hens fed soy oil or acidulated vegetable soapstocks. We concluded that brown-egg laying hens do not need more than 1.0% of linoleic acid in their diet (1.16 g/hen per d) to maximize egg production and egg size. The 3 cereals and the 3 fat sources tested can replace each other in the diet provided that the linoleic acid requirements to maximize egg size are met.

  12. Effects of high temperatures and drought during anthesis and grain filling period on wheat processing quality and underlying gluten structural changes.

    PubMed

    Mastilović, Jasna; Živančev, Dragan; Lončar, Eva; Malbaša, Radomir; Hristov, Nikola; Kevrešan, Žarko

    2018-06-01

    Climate changes do not only affect wheat yield, but also its quality. Information on this topic gathered so far is somewhat contradictory and insufficient. Climate changes also affect wheat indirectly through their influence on the ecosystem, including insects and fungi that affect wheat technological quality. The aim of this study was to examine trends in structural and technological changes of wheat quality under conditions typical of climate changes. With this in mind, three groups of wheat varieties with the same Glu-score were examined in three production years, characterized by different production conditions. A production season characterized by climate change conditions results in lower activity of amylolytic enzymes. What is more, it results in lower content of gluten, higher gluten index value, its decrease after 1 h to 37 °C, lower number of free SH groups and higher content of free amino groups, which result in lower alveograph W, lower farinograph WA and higher extensograph dough resistance. Variability in wheat quality produced under different climatic conditions is mainly influenced by the production conditions, including their influence on ecosystem factors. The influence of wheat cultivar genetic predisposition is much less expressed. This indicates that differences among cultivars with different Glu-score might be diminished under the influence of altered production conditions, as a consequence of climate change. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Overview of the Wheat Genetic Transformation and Breeding Status in China.

    PubMed

    Han, Jiapeng; Yu, Xiaofen; Chang, Junli; Yang, Guangxiao; He, Guangyuan

    2017-01-01

    In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.

  14. A novel highly differentially expressed gene in wheat endosperm associated with bread quality

    PubMed Central

    Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  15. A novel highly differentially expressed gene in wheat endosperm associated with bread quality.

    PubMed

    Furtado, A; Bundock, P C; Banks, P M; Fox, G; Yin, X; Henry, R J

    2015-05-26

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5'-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production.

  16. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    PubMed

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  17. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration

    PubMed Central

    Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585

  18. 'Prosper': A high-yielding hard red spring wheat cultivar adapted to the North Central Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Providing wheat (Triticum aestivum L.) growers and industry with adapted wheat cultivars with high-quality attributes is essential for maintaining wheat as a competitive crop in the spring-wheat growing region of the USA. Therefore, our breeding program aims to develop modern wheat cultivars using b...

  19. Optimization of hard red spring wheat milling for whole wheat flour production

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of seed moisture content (10 to 16%) and rotor speed (6,000 to 15,000 rpm) of a centrifugal mill on quality of whole wheat flour (WWF) and subsequent baking quality. Particle size distribution, flour temperature, flour moisture, and starch dam...

  20. Evaluation of commercial a-amylase enzyme-linked immunosorbent assy (ELISA) test kits for wheat

    USDA-ARS?s Scientific Manuscript database

    a-Amylase enzyme is associated with preharvest sprouting (PHS) and late-maturity a amylase (LMA) in wheat, and reduces wheat and flour quality. Various means have been developed to measure the presence of a-amylase, thereby predicting end-use quality; most are based on enzyme activity. An alternativ...

  1. Biomechanical properties of wheat grains: the implications on milling.

    PubMed

    Hourston, James E; Ignatz, Michael; Reith, Martin; Leubner-Metzger, Gerhard; Steinbrecher, Tina

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. © 2017 The Authors.

  2. Biomechanical properties of wheat grains: the implications on milling

    PubMed Central

    Reith, Martin

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826

  3. Grain characterization and milling behaviour of near-isogenic lines differing by hardness.

    PubMed

    Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V

    2006-12-01

    Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.

  4. Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum

    PubMed Central

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P≤0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins. PMID:24651513

  5. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    PubMed

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  6. 77 FR 21685 - United States Standards for Wheat

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... will help to facilitate the marketing of wheat. DATES: Comments must be received on or before June 11... marketing of wheat and define U.S. wheat quality and commonly used industry terms in the domestic and global marketplace; contain basic principles governing the application of the wheat standards, such as the type of...

  7. Proteomic analysis of the impacts of powdery mildew on wheat grain.

    PubMed

    Li, Jie; Liu, Xinhao; Yang, Xiwen; Li, Yongchun; Wang, Chenyang; He, Dexian

    2018-09-30

    Powdery mildew of wheat is one of the major foliar diseases, causing significant yield loss and flour quality change. In this study, grain protein and starch response to powdery mildew infection were investigated. Total protein, glutenin and gliadin exhibited a greater increase in grains from infected wheat, while the content of total starch and amylopectin was decreased. Comparative proteomic analysis demonstrated that the overabundant protein synthesis-related proteins might facilitate the accumulation of storage proteins in grains from infected plants. The significant increase in triticin, serpin and HMW-GS in grains from infected wheat might relate to the superior gluten quality. In addition, overabundant carbohydrate metabolism-related proteins in grains from infected wheat were conducive to the depletion of starch, whereas the decreased abundance of ADP glucose pyrophosphorylase might be related to the deficiency of starch synthesis. These results provide a deeper understanding on the change of wheat quality under powdery mildew infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Characterization of puroindolines in the control of endosperm texture in common wheat lines with substitutions of homeologous group-5 chromosomes].

    PubMed

    Obukhova, L V; Efremova, T T; Shumnyĭ, V K

    2013-03-01

    The genetic control of grain hardness and its association with the specific friabilin content on starch granules of common wheat cultivars and lines with intervarietal substitutions of homeologous group-5 chromosomes were studied. A significant correlation was revealed between the technological parameters of grain hardness (mean size of flour particles) and the specific content of puroindolines on the starch surface estimated in terms of starch doses. The results obtained allowed the method of starch doses to be used to identify soft and hard wheat cultivars and lines based on an analysis of a single grain. The biochemical analysis confirmed the previously obtained estimates of flour-grinding properties of wheat cultivars and substitution lines, which allowed specific genotypes to be characterized according to the composition of puroindolines. The influence of chromosomes 5D and 5A of donor wheat cultivars on the activity of the Ha loci of recipient cultivars was revealed and found to be associated with the composition of PIN products and with the expression of the Pina-D1 and Pinb-D1 genes.

  9. Predicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat

    PubMed Central

    Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.

    2016-01-01

    Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population. PMID:27383841

  10. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    PubMed

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  11. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour

    USDA-ARS?s Scientific Manuscript database

    Fine and coarse bran particles of a hard red and a hard white wheat were used to study the influences of bran hydration and physical treatments such as autoclaving and freezing as well as their combinations on the dough properties and bread-baking quality of whole grain wheat flour (WWF). For both h...

  12. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary x non-supernumerary spikelet genotypes

    USDA-ARS?s Scientific Manuscript database

    Identifying new quantitative trait loci (QTLs) and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a population of recombinant inbred lines (RILs) developed from a cross between an elite wheat line (WCB414) and an exotic genotype wi...

  13. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    USDA-ARS?s Scientific Manuscript database

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  14. Registration of ‘Puma’ soft white winter wheat

    USDA-ARS?s Scientific Manuscript database

    Resistance to strawbreaker foot rot (caused by Oculimacula yallundae Crous & W. Gams and O. acuformis Crous & W. Gams), stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.), and Cephalosporium stripe (caused by Cephalosporium gramineum Nisikado and Ikata) are important traits ...

  15. Growth performance, carcass traits and meat quality of yellow-feathered broilers fed graded levels of alfalfa meal with or without wheat.

    PubMed

    Jiang, Shouqun; Gou, Zhongyong; Li, Long; Lin, Xiajing; Jiang, Zongyong

    2018-03-01

    The effects of 0, 40 and 80 g/kg alfalfa meal on growth performance, carcass traits and meat quality of Chinese yellow-feathered broilers fed diets containing or lacking wheat (0 or 200 g/kg) as part of the energy source, were examined using random design with a 2 × 3 factorial arrangement of treatments. Dressing percentage and semi-eviscerated proportion were lower, and meat color a* (redness) value was higher in birds fed diets containing wheat than diets lacking wheat (P < 0.05). Drip loss was reduced by the addition of alfalfa meal to diets containing or lacking wheat (P < 0.05). Average sensory score of breast meat was higher in chickens fed corn-based diets than in those fed wheat (P < 0.05). Meat from those supplemented with 40 g/kg alfalfa meal had better taste than the other two levels (P < 0.05). The inclusion of wheat significantly reduced the activities of creatine kinase and calpain of breast muscle (P < 0.05). In conclusion, Chinese yellow-feathered broilers fed diets containing wheat had better meat color and lower drip loss than those fed the diets without wheat, and adding 40 g/kg alfalfa meal generally improved meat quality and taste. © 2017 Japanese Society of Animal Science.

  16. Molecular markers linked to genes important for Hard Winter Wheat production and marketing in the U.S. Great Plains

    USDA-ARS?s Scientific Manuscript database

    Biotic stresses including diseases [leaf, stem and stripe rusts, and wheat streak mosaic virus (WSMV)] and insects [greenbug (GB), Hessian fly (Hf), Russian wheat aphid (RWA) and wheat curl mite (WCM)] significantly affect grain yield and end-use quality of hard winter wheat (HWW, Triticum aestivum ...

  17. Rheological properties and bread quality of frozen yeast-dough with added wheat fiber.

    PubMed

    Adams, Vivian; Ragaee, Sanaa M; Abdel-Aal, El-Sayed M

    2017-01-01

    The rheological characteristics of frozen dough are of great importance in bread-making quality. The effect of addition of commercial wheat aleurone and bran on rheological properties and final bread quality of frozen dough was studied. Wheat aleurone (A) and bran (B) containing 240 g kg -1 and 200 g kg -1 arabinoxylan (AX), respectively, were incorporated into refined wheat flour at 150 g kg -1 substitution level (composite A and B, respectively). Dough samples of composite A and B in addition to two reference dough samples, refined flour (ref A) and whole wheat flour (ref B) were stored at -18°C for 9 weeks. Frozen stored composite dough samples contained higher amounts of bound water, less freezable water and exhibited fewer modifications in gluten network during frozen storage based on data from differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Bread made from composite frozen dough had higher loaf volume compared to ref A or ref B throughout the storage period. The incorporation of wheat fiber into refined wheat flour produced dough with minimum alterations in its rheological properties during 9 weeks of frozen storage compared to refined and 100% wheat flour dough samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits.

    PubMed

    Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam

    2017-07-01

    Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.

  19. Evaluation of the protein quality of wheat grains (Grizza 155) and eight related products by the dose-response bioassay.

    PubMed

    Hussein, L; Abbassy, M; Arafa, A; Morcos, S R

    1979-12-01

    The amino acid analysis revealed that wheat grains, white and dark flour, baladi bread prepared from white or dark flour, bread prepared from formulae enriched with gluten and biscuits are poor in lysine with chemical scores ranging between 20 and 49. The assessment of the protein quality of wheat and related products was done by slope ratio bioassay. Results based on slopes relative to those of reference casein + methionine ranked bread prepared from dark flour and cooked wheat (belila) as the highest in their protein quality, followed by their parent; wheat (RNV = 44). Dietetic bread with gluten had RNV = 20-24; owing to its high protein content (38%), its utilizable protein approached that of good proteins (8%). Very high significant correlation existed between the two measures of response; gain in weight and net increase in body water as response of nitrogen intake.

  20. Effect of dark, hard, and vitreous kernel content on protein molecular weight distribution and on milling and breadmaking quality characteristics for hard spring wheat samples from diverse growing regions

    USDA-ARS?s Scientific Manuscript database

    Kernel vitreousness is an important grading characteristic for segregation of sub-classes of hard red spring (HRS) wheat in the U.S. This research investigated the protein molecular weight distribution (MWD), and flour and baking quality characteristics of different HRS wheat market sub-classes. T...

  1. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary x non-supernumerary spikelet genotypes

    USDA-ARS?s Scientific Manuscript database

    Identifying new QTLs and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a RIL population developed from a cross of an elite wheat line (WCB414) and an exotic genotype with supernumerary spikelets (SS) was used to identify QTLs and n...

  2. Microwave fixation enhances gluten fibril formation in wheat endosperm

    USDA-ARS?s Scientific Manuscript database

    The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...

  3. Exploiting trait correlations for next-generation grain yield and end-use quality improvement of U.S. hard winter wheat

    USDA-ARS?s Scientific Manuscript database

    Since the early 1980s, the land area planted to U.S. hard winter wheat and the share of U.S. wheat in global export markets have both declined dramatically. Improved profitability of other crops relative to wheat, declining or static domestic wheat flour consumption, and an increasingly competitive ...

  4. Resistance of Select Winter Wheat (Triticum aestivum) Cultivars to Rhopalosiphum padi (Hemiptera: Aphididae).

    PubMed

    Girvin, John; Whitworth, R Jeff; Rojas, Lina Maria Aguirre; Smith, C Michael

    2017-08-01

    The bird cherry-oat aphid (Rhopalosiphum padi L.) is a global pest of wheat and vectors some of the most damaging strains of barley yellow dwarf virus (BYDV). In years of heavy R. padi infestation, R. padi and BYDV together reduce wheat yields by 30-40% in Kansas and other states of the U.S. Great Plains wheat production area. Cultivation of wheat cultivars resistant to R. padi can greatly reduce production costs and mitigate R. padi-BYDV yield losses, and increase producer profits. This study identified cultivars of hard red and soft white winter wheat with R. padi resistance that suppress R. padi populations or tolerate the effects of R. padi feeding damage. 'Pioneer (S) 25R40,' 'MFA (S) 2248,' 'Pioneer (S) 25R77,' and 'Limagrain LCS Mint' significantly reduced R. padi populations. MFA (S) 2248, Pioneer (S) 25R40, and 'Limagrain LS Wizard' exhibited tolerance expressed as significantly greater aboveground biomass. These findings are significant in that they have identified wheat cultivars currently available to producers, enabling the immediate improvement of tactics to manage R. padi and BYDV in heavily infested areas. Secondarily, these results identify cultivars that are good candidates for use in breeding and genetic analyses of arthropod resistance genes in wheat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. [Genetics determination of wheat resistance to Puccinia graminis F. sp. tritici deriving from Aegilops cylindrica, Triticum erebuni and amphidiploid 4].

    PubMed

    Babaiants, O V; Babaiants, L T; Horash, A F; Vasil'ev, A A; Trackovetskaia, V A; Paliasn'iĭĭ, V A

    2012-01-01

    The lines of winter soft wheat developed in the Plant Breeding and Genetics Institute contain new effective introgressive Sr-genes. Line 85/06 possess SrAc1 gene, lines 47/06, 54/06, 82/06, 85/06, 87/06, 238/06, and 367/06 possess SrAc1 and SrAc2 derived from Aegilops cylindrica, line 352/06 - SrTe1 and SrTe2 from Triticum erebuni, line 12/86-04 - SrAd1 and SrAd2 from Amphidiploid 4 (Triticum dicoccoides x Triticum tauschii).

  6. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality.

    PubMed

    Zhen, Shoumin; Han, Caixia; Ma, Chaoying; Gu, Aiqin; Zhang, Ming; Shen, Xixi; Li, Xiaohui; Yan, Yueming

    2014-12-19

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by Glu-3 complex loci in hexaploid wheat, play important roles in the processing quality of wheat flour. To date, the molecular characteristics and effects on dough quality of individual Glu-3 alleles and their encoding proteins have been poorly studied. We used a Glu-A3 deletion line of the Chinese Spring (CS-n) wheat variety to conduct the first comprehensive study on the molecular characteristics and functional properties of the LMW-GS allele Glu-A3a. The Glu-A3a allele at the Glu-A3 locus in CS and its deletion in CS-n were identified and characterized by proteome and molecular marker methods. The deletion of Glu-A3a had no significant influence on plant morphological and yield traits, but significantly reduced the dough strength and breadmaking quality compared to CS. The complete sequence of the Glu-A3a allele was cloned and characterized, which was found to encode a B-subunit with longer repetitive domains and an increased number of α-helices. The Glu-A3a-encoded B-subunit showed a higher expression level and accumulation rate during grain development. These characteristics of the Glu-A3a allele could contribute to achieving superior gluten quality and demonstrate its potential application to wheat quality improvement. Furthermore, an allele-specific polymerase chain reaction (AS-PCR) marker for the Glu-A3a allele was developed and validated using different bread wheat cultivars, including near-isogenic lines (NILs) and recombinant inbred lines (RILs), which could be used as an effective molecular marker for gluten quality improvement through marker-assisted selection. This work demonstrated that the LMW-GS allele Glu-A3a encodes a specific LMW-i type B-subunit that significantly affects wheat dough strength and breadmaking quality. The Glu-A3a-encoded B-subunit has a long repetitive domain and more α-helix structures as well as a higher expression level and accumulation rate during grain development, which could facilitate the formation of wheat with a stronger dough structure and superior breadmaking quality.

  7. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI).

    PubMed

    Li, Juan; Kang, Ji; Wang, Li; Li, Zhen; Wang, Ren; Chen, Zheng Xing; Hou, Gary G

    2012-07-04

    A new method, a magnetic resonance imaging (MRI) technique characterized by T(2) relaxation time, was developed to study the water migration mechanism between arabinoxylan (AX) gels and gluten matrix in a whole wheat dough (WWD) system prepared from whole wheat flour (WWF) of different particle sizes. The water sequestration of AX gels in wheat bran was verified by the bran fortification test. The evaluations of baking quality of whole wheat bread (WWB) made from WWF with different particle sizes were performed by using SEM, FT-IR, and RP-HPLC techniques. Results showed that the WWB made from WWF of average particle size of 96.99 μm had better baking quality than those of the breads made from WWF of two other particle sizes, 50.21 and 235.40 μm. T(2) relaxation time testing indicated that the decreased particle size of WWF increased the water absorption of AX gels, which led to water migration from the gluten network to the AX gels and resulted in inferior baking quality of WWB.

  8. Development of a Benchtop Baking Method for Chemically Leavened Crackers

    USDA-ARS?s Scientific Manuscript database

    Traditionally, the baking performance of soft wheat flours has been evaluated by well-established benchtop cookie-baking methods. In contrast, a benchtop cracker-baking method has not been widely explored or implemented as an official method, due to hurdles including the difficulty in finding ideal...

  9. Overseas Varietal Analysis 2009 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Each customer in the survey has a preference for specific protein targets. Grain shipments within those protein ranges may perform better than individual varieties that often have a wider range in protein than normally observed in pooled cargos of commercial grain shipments. The feedback on protei...

  10. Row width influences wheat yield, but has little effect on wheat quality

    USDA-ARS?s Scientific Manuscript database

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  11. An Overexpressed Q Allele Leads to Increased Spike Density and Improved Processing Quality in Common Wheat (Triticum aestivum).

    PubMed

    Xu, Bin-Jie; Chen, Qing; Zheng, Ting; Jiang, Yun-Feng; Qiao, Yuan-Yuan; Guo, Zhen-Ru; Cao, Yong-Li; Wang, Yan; Zhang, Ya-Zhou; Zong, Lu-Juan; Zhu, Jing; Liu, Cai-Hong; Jiang, Qian-Tao; Lan, Xiu-Jin; Ma, Jian; Wang, Ji-Rui; Zheng, You-Liang; Wei, Yu-Ming; Qi, Peng-Fei

    2018-03-02

    Spike density and processing quality are important traits in modern wheat production and are controlled by multiple gene loci. The associated genes have been intensively studied and new discoveries have been constantly reported during the past few decades. However, no gene playing a significant role in the development of these two traits has been identified. In the current study, a common wheat mutant with extremely compact spikes and good processing quality was isolated and characterized. A new allele ( Q c1 ) of the Q gene (an important domestication gene) responsible for the mutant phenotype was cloned, and the molecular mechanism for the mutant phenotype was studied. Results revealed that Q c1 originated from a point mutation that interferes with the miRNA172-directed cleavage of Q transcripts, leading to its overexpression. It also reduces the longitudinal cell size of rachises, resulting in an increased spike density. Furthermore, Q c1 increases the number of vascular bundles, which suggests a higher efficiency in the transportation of assimilates in the spikes of the mutant than that of wild type. This accounts for the improved processing quality. The effects of Q c1 on spike density and wheat processing quality were confirmed by analyzing nine common wheat mutants possessing four different Q c alleles. These results deepen our understanding of the key roles of Q gene, and provide new insights for the potential application of Q c alleles in wheat quality breeding. Copyright © 2018 Xu et al.

  12. Study of improving the quality of bread and wheat-aegilops hybrids with the biotechnological ways

    NASA Astrophysics Data System (ADS)

    Ganbarzada, Aygun; Hasanova, Sudaba

    2016-08-01

    The great need of the people to bread demands to increase high qualitative grain plants. At present time for solving these problem different methods of biochemistry, genetics and molecular biology are widely used in the process of selection. To investigate biochemical peculiarities of wheat-aegilops hybrids and to define the correlative relation between these characteristics. To investigate the technological peculiarities of wheat- aegilops hybrids and to define the relation between their main biochemical and technological characteristics. The conclusion of this investigation showed the followings- the wheat-aegilops hybrids according to their morphological and biochemical characteristics have approached to wheats. The electrophoretic spectres of the wheat- aegilops hybrids which have stable for their morphological characteristics are homogeny and heterogenic. Hereditarily some group protein components have passed to their tribes from their parents. But spontaneous hybridisation results in taking part the components of other unknown wheats in these electrophoretic spectres. There is a relation between the electrophoretic spectres and the indications of the grain quality.

  13. Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds.

    PubMed

    Zhila, Natalia; Murueva, Anastasiya; Shershneva, Anna; Shishatskaya, Ekaterina; Volova, Tatiana

    2017-10-03

    The present study reports the herbicidal activity of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB)/MET and P(3HB)/TBM]. The developed formulations were constructed as films and microgranules, which were tested against the weeds such as white sweet clover Melilotus albus and lamb's quarters Chenopodium album in the presence of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) as the subject crop for investigation. The activity was measured in laboratory scale experiments by determining the density and weight of the vegetative organs of weeds. The study was also aimed at testing the effect of the experimental formulation on the growth of wheat crop as dependent on the method of herbicide delivery. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations.

  14. Genetic Potential of Winter Wheat Grain Quality in Central Asia

    ERIC Educational Resources Information Center

    Abugaliyeva, Aigul I.; Morgounov, Alexey I.

    2016-01-01

    The grain quality of winter wheat varies significantly by cultivars and growing region, not previously differentiated by end-use (baking, confectionery, etc.) in the national breeding programs. In these conditions it is advisable to determine the genetic potential and analyze the actual grain quality. Determining the genetic potential requires the…

  15. The distal portion of the short arm of wheat (Triticum aestivum L.) chromosome 5D controls endosperm vitreosity and grain hardness.

    PubMed

    Morris, Craig F; Beecher, Brian S

    2012-07-01

    Kernel vitreosity is an important trait of wheat grain, but its developmental control is not completely known. We developed back-cross seven (BC(7)) near-isogenic lines in the soft white spring wheat cultivar Alpowa that lack the distal portion of chromosome 5D short arm. From the final back-cross, 46 BC(7)F(2) plants were isolated. These plants exhibited a complete and perfect association between kernel vitreosity (i.e. vitreous, non-vitreous or mixed) and Single Kernel Characterization System (SKCS) hardness. Observed segregation of 10:28:7 fit a 1:2:1 Chi-square. BC(7)F(2) plants classified as heterozygous for both SKCS hardness and kernel vitreosity (n = 29) were selected and a single vitreous and non-vitreous kernel were selected, and grown to maturity and subjected to SKCS analysis. The resultant phenotypic ratios were, from non-vitreous kernels, 23:6:0, and from vitreous kernels, 0:1:28, soft:heterozygous:hard, respectively. Three of these BC(7)F(2) heterozygous plants were selected and 40 kernels each drawn at random, grown to maturity and subjected to SKCS analysis. Phenotypic segregation ratios were 7:27:6, 11:20:9, and 3:28:9, soft:heterozygous:hard. Chi-square analysis supported a 1:2:1 segregation for one plant but not the other two, in which cases the two homozygous classes were under-represented. Twenty-two paired BC(7)F(2):F(3) full sibs were compared for kernel hardness, weight, size, density and protein content. SKCS hardness index differed markedly, 29.4 for the lines with a complete 5DS, and 88.6 for the lines possessing the deletion. The soft non-vitreous kernels were on average significantly heavier, by nearly 20%, and were slightly larger. Density and protein contents were similar, however. The results provide strong genetic evidence that gene(s) on distal 5DS control not only kernel hardness but also the manner in which the endosperm develops, viz. whether it is vitreous or non-vitreous.

  16. Area Handbook Series: Tunisia; a Country Study,

    DTIC Science & Technology

    1986-01-01

    yield semoli- na, the basic ingredient of pastas such as spaghetti and of the standard Tunisian dish, couscous . Soft wheat was used in bread- making...while semolina (used in making couscous ) and pasta were to go up by nearly as much. Although the government had made known its intentions three

  17. 78 FR 29411 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change, as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...,000 gallons 3.461 6:00PM to 5:15PM Blendstock for Next Day. Oxygen Blending. Wheat (Chicago) Soft... blended WAV formula that reflects the fact that the DJ-UBS CI is rolling out of expiring contracts and...

  18. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    PubMed

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  19. Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition

    PubMed Central

    Du, Lipu; Cao, Xinyou; Zhang, Xiaoxiang; Zhou, Yang; Yan, Yueming; Ye, Xingguo

    2016-01-01

    High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high performance liquid chromatography (RP-HPLC) indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987), with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR) and quantitative real-time RT-PCR (qRT-PCR) assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source. PMID:26765256

  20. The Interactive Effects of Transgenically Overexpressed 1Ax1 with Various HMW-GS Combinations on Dough Quality by Introgression of Exogenous Subunits into an Elite Chinese Wheat Variety

    PubMed Central

    Zhang, Jian; Lei, Qian; Meng, Dandan; Ma, Fengyun; Hu, Wei; Chen, Mingjie; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs. PMID:24167625

  1. Registration of 'Bolles' hard red spring wheat with high grain protein concentration and superior baking quality

    USDA-ARS?s Scientific Manuscript database

    The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...

  2. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  3. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    PubMed

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  4. Influence of Wheat-Milled Products and Their Additive Blends on Pasta Dough Rheological, Microstructure, and Product Quality Characteristics

    PubMed Central

    Dhiraj, B.; Prabhasankar, P.

    2013-01-01

    This study is aimed to assess the suitability of T. aestivum wheat milled products and its combinations with T. durum semolina with additives such as ascorbic acid, vital gluten and HPMC (Hydroxypropyl methyl cellulose) for pasta processing quality characteristics such as pasta dough rheology, microstructure, cooking quality, and sensory evaluation. Rheological studies showed maximum dough stability in Comb1 (T. aestivum wheat flour and semolina). Colour and cooking quality of Comb2 (T. durum semolina and T. aestivum wheat flour) and Comb3 (T. aestivum wheat semolina and T. durum semolina) were comparable with control. Pasting results indicated that T. aestivum semolina gave the lowest onset gelatinization temperature (66.9°C) but the highest peak viscosity (1.053 BU). Starch release was maximum in Comb1 (53.45%) when compared with control (44.9%) as also proved by microstructure studies. Firmness was seen to be slightly high in Comb3 (2.430 N) when compared with control (2.304 N), and sensory evaluations were also in the acceptable range for the same. The present study concludes that Comb3 comprising 50% T. durum semolina and 50% T. aestivum refined wheat flour with additives would be optimal alternate for 100% T. durum semolina for production of financially viable pasta. PMID:26904601

  5. Relationship between solvent retention capacity and protein molecular weight distribution, quality characteristics, and breadmaking functionality of hard red spring wheat flour

    USDA-ARS?s Scientific Manuscript database

    In order to investigate suitability of solvent retention capacity (SRC) test for quality assessment of hard red spring (HRS) wheat flour, ten HRS genotypes from six locations in North Dakota State were analyzed for SRC and flour and breadmaking quality characteristics. The SRC values were significa...

  6. Assessing the gluten content in wheat as an expression of the nutrition deficit, through beta distribution

    NASA Astrophysics Data System (ADS)

    Pîslea, Daniela; Boldea, Marius; Sala, Florin

    2013-10-01

    The laboratory analysis of the gluten content of wheat in relation to the doses of nitrogen, phosphorus and potassium used for fertilizing the soil reveals positive correlation between the two variables. The gluten content in wheat grains is an extremely important quality index in bread manufacturing. One of the farmers' objectives is to obtain high values of this index. The quality of bread manufacturing products is very sensitive to any changes in the percentage share of this indicator. The minimum limit of gluten accepted for bread manufacturing is 26%; even a small variation, of one percentage, of gluten, over this limit, changes the quality of the wheat yield, with considerable effects on the quality of bread. Therefore, farmers are interested in using crop technologies and especially fertilization in order to obtain wheat with high gluten content. Of the nutritive macronutrients, nitrogen plays a significant role in ensuring high gluten content. The definition domain of the measurements is (0;1). This ratio is not constant, but it has a tendency towards a certain medium value, depending on the chemical fertilizers, on fertilization. It follows that the statistic distribution which evaluates the phenomenon is the beta distribution.

  7. Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    NASA Astrophysics Data System (ADS)

    Braunstein, D.; Page, J. H.; Strybulevych, A.; Peressini, D.; Scanlon, M. G.

    2012-12-01

    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an online quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300 kHz - 6 MHz. Ultrasonic phase velocity increased with increasing frequency to about 2 MHz, becoming constant and then decreasing from 3 MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties.

  8. Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets.

    PubMed

    Olgun, Osman; Altay, Y; Yildiz, Alp O

    2018-04-01

    1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3 × 2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500.00 U/kg, β-glucanase: 100 000 U/kg, cellulase: 1 000 000 U/kg, α-amylase: 160 000 U/kg) inclusion in the diet. Wheat replaced 0, 50, or 100% of maize with or without 1.0 g/kg enzyme supplementation in iso-nitrogenous and iso-caloric experimental diets. 3. Body weight, egg production, egg weight, egg mass, eggshell thickness, and the feed conversion ratio were adversely affected by the wheat-based diet. The eggshell quality parameters decreased with enzyme supplementation to the diet. 4. Wheat-based diets adversely affected calcium and phosphorus concentrations in the tibia, but the addition of the enzymes to the wheat-based diet prevented the negative effects of wheat-based diets on tibia mineralisation in laying hens. The wheat-based diets tended to reduce plasma mineral contents, and the addition of enzymes tended to affect plasma minerals and biomechanical properties of the tibia positively in laying hens. 5. These results indicate that wheat-based diets in aged laying hens adversely affected the mineral metabolism compared with maize-based diets, and the negative effects of wheat on bone mineralisation can be prevented by enzyme supplementation to the diets in laying hens.

  9. Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta.

    PubMed

    Martinez, Cristina S; Ribotta, Pablo D; Añón, María Cristina; León, Alberto E

    2014-03-01

    The technological and sensory quality of pasta made from bread wheat flour substituted with wholemeal amaranth flour (Amaranthus mantegazzianus) at four levels, 15, 30, 40 and 50% w/w was investigated. The quality of the resulted pasta was compared to that of control pasta made from bread wheat flour. The flours were analyzed for chemical composition and pasting properties. Cooking behavior, color, raw and cooked pasta texture, scanning electron microscopy and sensory evaluation were determined on samples. The pasta obtained from amaranth flour showed some detriment of the technological and sensory quality. So, a maximum substitution level of 30% w/w was defined. This is an equilibrium point between an acceptable pasta quality and the improved nutritional and functional properties from the incorporation of amaranth flour.

  10. Bread in the Economy of Qualities: The Creative Reconstitution of the Canada-UK Commodity Chain for Wheat

    ERIC Educational Resources Information Center

    Magnan, Andre

    2011-01-01

    This article traces the creative reconstitution of the Canada-UK wheat-bread commodity chain since the 1990s. In the mid-1990s, the Canadian Wheat Board (CWB) and a British bakery, Warburtons, pioneered an innovative identity-preserved sourcing relationship that ties contracted prairie wheat growers to consumers of premium bread in the United…

  11. Effects of kernel vitreousness and protein level on protein molecular weight distribution, milling quality, and breadmaking quality in hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Dark, hard, and vitreous kernel content is an important grading characteristic for hard red spring (HRS) wheat in the U.S. This research aimed to determine the associations of kernel vitreousness (KV) with protein molecular weight distribution (MWD) and quality traits that were not biased by quanti...

  12. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  13. Oxidative Gelation of Solvent-Accessible Arabinoxylans is the Predominant Consequence of Extensive Chlorination of Soft Wheat Flour

    USDA-ARS?s Scientific Manuscript database

    Solvent retention capacity (SRC) and Bostwick flow were used to explore the effects of milling yield, extent of chlorination, and flour particle size on cake flour functionality and batter viscosity. The effects of the extent of chlorination were dramatic, but milling yield and additional milling t...

  14. Soft electron processor for surface sterilization of food material

    NASA Astrophysics Data System (ADS)

    Baba, Takashi; Kaneko, Hiromi; Taniguchi, Shuichi

    2004-09-01

    As frozen or chilled foods have become popular nowadays, it has become very important to provide raw materials with lower level microbial contamination to food processing companies. Consequently, the sterilization of food material is one of the major topics for food processing. Dried materials like grains, beans and spices, etc., are not typically deeply contaminated by microorganisms, which reside on the surfaces of materials, so it is very useful to take low energetic, lower than 300 keV, electrons with small penetration power (Soft-Electrons), as a sterilization method for such materials. Soft-Electrons is researched and named by Dr. Hayashi et al. This is a non-thermal method, so one can keep foods hygienic without serious deterioration. It is also a physical method, so is free from residues of chemicals in foods. Recently, Nissin-High Voltage Co., Ltd. have developed and manufactured equipment for commercial use of Soft-Electrons (Soft Electron Processor), which can process 500 kg/h of grains. This report introduces the Soft Electron Processor and shows the results of sterilization of wheat and brown rice by the equipment.

  15. Modified dough preparation for Alveograph analysis with limited flour sample size

    USDA-ARS?s Scientific Manuscript database

    Dough rheological characteristics, such as resistance-to-extension and extensibility, obtained by alveograph testing are important traits for determination of wheat and flour quality. A challenging issue that faces wheat breeding programs and some wheat-research projects is the relatively large flou...

  16. Chapter 6: Floral Transformation of Wheat

    USDA-ARS?s Scientific Manuscript database

    Hexaploid wheat is one of the world’s most important staple crops but genetic transformation is still challenging. We are developing a floral transformation protocol for wheat that does not require tissue culture. Several T-DNA transformants have been produced in the high quality, hard red germpla...

  17. Genetic divergence for high-molecular weight glutenin subunits (HMW-GS) in indigenous landraces and commercial cultivars of bread wheat of Pakistan.

    PubMed

    Yasmeen, F; Khurshid, H; Ghafoor, A

    2015-05-11

    Wheat flour quality is an important consideration in the breeding and development of new cultivars. A strong association between high-molecular weight glutenin subunits (HMW-GS) and bread making quality has resulted in the widespread utilization of HMW-GS in wheat breeding. In this study, we analyzed 242 lines of wheat, including landraces from the provinces of Punjab and Baluchistan, as well as the commercial varieties of Pakistan, to determine allelic variation in the Glu-A1, Glu-B1, and Glu-D1 loci encoding HMW-GS. Higher genetic diversity was observed for HMW-GS in landraces from Baluchistan, followed by landraces collected from Punjab and then commercial varieties. Rare and uncommon subunits were observed in Glu-B1, whereas Glu-A1 was less polymorphic. However, Glu-B1 was the highest contributor to overall diversity (78%), with a total of 31 rare alleles, followed by Glu-D1 (20%) with the high quality 5+10 allele and other variants. Commercial cultivars possessed favorable alleles, potentially from indirect selection for wheat flour quality by the breeders; however, this indirect selection has decreased the pedigree base of commercial cultivars. The allelic combinations, including 2*, 5+10, and 17+18, showing high quality scores were frequent among landraces, indicating their usefulness in future crop improvement and breeding programs.

  18. Comparison of wheat- versus corn-based dried distillers' grains with solubles on meat quality of feedlot cattle.

    PubMed

    Aldai, N; Aalhus, J L; Dugan, M E R; Robertson, W M; McAllister, T A; Walter, L J; McKinnon, J J

    2010-03-01

    A considerable amount of information has been generated on the feeding value and impact of corn dried distillers' grains with solubles (DDGS) on meat quality, whereas little is known about the effects of wheat DDGS on meat quality, and no direct comparison of these two sources of DDGS has been completed. The current study was conducted to examine the objective and subjective carcass and meat quality traits of cattle fed diets containing corn or wheat (20% or 40%) DDGS (DM basis) as compared to a standard barley-based finishing diet (control). In general, meat obtained from animals fed the barley-based control diet was slightly darker in colour (lower chroma and hue at 24 h, P<0.01) and less tender (highest proportion of tough shears at 2 d and lowest proportion of tender shears at 20 d). Meat from corn DDGS was rated as more tender and palatable than control samples (P<0.05), and 20% corn samples were rated better for beef flavour intensity (P<0.01) and desirability (P<0.05) than 40% corn DDGS samples. In contrast, meat from steers fed wheat DDGS showed intermediate characteristics between steers fed control and corn DDGS diets. Hence, feeding wheat DDGS had no negative effects, and feeding corn DDGS had some positive effects on meat quality characteristics of beef. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  19. Cooking Methods for a Soft Diet Using Chicken Based on Food Texture Analysis.

    PubMed

    Watanabe, Emi; Maeno, Masami; Kayashita, Jun; Miyamoto, Ken-Ichi; Kogirima, Miho

    2017-01-01

    Undernutrition caused by difficulties in masticating is of growing concern among the elderly. Soft diets are often served at nursing homes; however, the styles differ with nursing homes. Improperly modified food texture and consistency may lead to further loss of nutritive value. Therefore, we developed a method to produce a soft diet using chicken. The texture-modified chicken was prepared by boiling a mixture of minced chicken and additive foodstuff that softened the meat. The best food additive was determined through testing cooking process, size after modification and texture. The optimum proportions of each component in the mixture were determined measuring food texture using a creep meter. Teriyaki chicken was cooked using the texture-modified chicken, and provided to a nursing home. The amount of food intake by elderly residents was subsequently surveyed. This study involved 22 residents (1 man and 21 women; mean age 91.4±5.3 y). Consequently, yakifu, which was made from wheat gluten, was the most suitable additive foodstuff. The hardness of the texture-modified chicken, with proportions of minced chicken, yakifu, and water being 50%, 10%, and 40% respectively, was under 40,000 N/m 2 . The intake amount of the texture-modified chicken of subjects whose intake amount of conventional chicken using chicken thigh was not 100% was significantly higher. These findings suggest that properly modified food textures could contribute to improve the quality of meals by preventing undernutrition among the elderly with mastication difficulties.

  20. Impacts of long-term no-tillage and conventional tillage management of spring wheat-lentil cropping systems in dryland Eastern Montana, USA, on fungi associated to soil aggregation

    USDA-ARS?s Scientific Manuscript database

    Lentil (Lens culinaris Medikus CV. Indianhead) used to replace fallow in spring-wheat (Triticum aestivum) rotation in the semi-arid Eastern Montana USA, may improve soil quality. We evaluate the 14 years influence of continuous wheat under no-tillage (WNT), fallow-wheat under conventional tillage (F...

  1. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    PubMed

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  2. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.

    PubMed

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2017-10-11

    Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.

  3. Relationship between physicochemical characteristics of flour and sugar-snap cookie quality in Korean wheat cultivar

    USDA-ARS?s Scientific Manuscript database

    The relationship of physicochemical properties of flour, including particle size of flour, damaged starch, SDS-sedimentation volume, gluten content and four solvent retention capacity (SRC) values with cookie baking quality, including cookie diameter and thickness was evaluated using 30 Korean wheat...

  4. Association between gluten protein composition and breadmaking quality characteristics in historical and modern spring wheat

    USDA-ARS?s Scientific Manuscript database

    Thirty hard red spring wheat cultivars released between 1910 and 2013 were studied to determine the changes in quality characteristics that occurred over time, and to determine their association with protein composition. Significant positive correlations (P = 0.01) were found between release year a...

  5. Protein and Quality Characterization of Triticale Translocation Lines in Bread Making

    USDA-ARS?s Scientific Manuscript database

    Introduction of high molecular weight glutenin subunits (HMW-GS) from the Glu-Did locus of wheat into triticale restores the genetic constitution of storage protein loci to that of wheat and subsequently improves the bread making quality of triticale. One means to achieve such restoration of the gen...

  6. Protein and quality characterization of triticale translocation lines in breadmaking

    USDA-ARS?s Scientific Manuscript database

    Introduction of high molecular weight glutenin subunits (HMW-GS) from the Glu-D1d locus of wheat into triticale restores the genetic constitution of high molecular weight glutenin loci to that of wheat and subsequently improves the breadmaking quality of triticale. One means of achieving such restor...

  7. Can Host Plant Resistance Protect the Quality of Wheat from Fusarium Head Blight?

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) infection reduces the amount of millable grain from an infected field, reduces mill yields, and generally degrades end-use quality. In 2009, the Logan County, KY, wheat trial had extended conditions for infection with FHB resulting in extensive and uniform infection withi...

  8. Enrichment of Bread with Nutraceutical-Rich Mushrooms: Impact of Auricularia auricula (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread.

    PubMed

    Yuan, Biao; Zhao, Liyan; Yang, Wenjian; McClements, David Julian; Hu, Qiuhui

    2017-09-01

    Edible mushrooms contain a variety of bioactive molecules that may enhance human health and wellbeing. Consequently, there is increasing interest in fortifying functional foods with these nutraceutical-rich substances. However, incorporation of mushroom-based ingredients into foods should not adversely affect the quality attributes of the final product. In this study, the impact of incorporating powdered Auricularia auricula, a widely consumed edible mushroom, into bread products was examined. The rheological and structural properties of wheat dough and bread supplemented with 0% to 10% (w/w) A. auricula flour were measured. Supplementation of wheat doughs with A. auricula flour increased the peak viscosity and enhanced their water holding capacity. Rapid viscosity analysis showed that peak and final viscosities of the blended flour (wheat flour with A. auricula flour) were higher than wheat flour alone. However, dough stability and elastic modulus were reduced by blending wheat flour with A. auricula flour. SEM observation showed that doughs with up to 5% (w/w) A. auricula flour had acceptable gluten network microstructure. Characterization of the quality attributes of bread indicated that incorporation of A. auricula flour at levels >5% negatively impacted bread volume, height, texture, and appearance. © 2017 Institute of Food Technologists®.

  9. Acceptance of two US Department of Agriculture commodity whole-grain products: a school-based study in Texas and Minnesota.

    PubMed

    Chu, Yen Li; Warren, Cynthia A; Sceets, Christine E; Murano, Peter; Marquart, Len; Reicks, Marla

    2011-09-01

    Whole-grain intake among children and adolescents is below national recommendations, prompting efforts to increase intake in schools. The purpose of this study was to compare the acceptance of whole-grain pancakes and tortillas to refined grain counterparts when served as part of the school meal. Data were collected at 10 schools in Minnesota and seven schools in Texas during the Spring and Fall semesters of 2009. Three pancake and two tortilla products of varying red or white whole-wheat flour content were each served an average of four times per school. Aggregate plate waste was collected and percent consumption used to assess acceptance. Students rated each product on overall liking, taste, color, and softness on 5-point (elementary schools) or 9-point hedonic scales (middle and high schools). Analysis of covariance was used to compare intake and rating scores of all products. For all children, intake of whole-grain products was substantial (percent consumption ranging from 67% to 75%). No differences were noted in consumption of whole-wheat pancakes compared to refined wheat pancakes, while consumption of whole-wheat tortillas was lower than refined products. In elementary schools, overall liking scores of pancakes made with red whole-wheat and both types of whole-wheat tortillas were lower than refined products. However, in middle and high schools, overall liking scores of 100% red whole-wheat pancakes and 66% white whole-wheat tortillas were similar to refined products. Substituting refined grain with whole-grain options represents a viable approach to increasing consumption of whole-grain products in schools. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  10. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  11. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    PubMed

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Ammonium as sole N source improves grain quality in wheat.

    PubMed

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  13. Quality Characteristics of Wholemeal Flour and Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) after Field Treatment with Plant Water Extracts.

    PubMed

    Carrubba, Alessandra; Comparato, Andrea; Labruzzo, Andrea; Muccilli, Serena; Giannone, Virgilio; Spina, Alfio

    2016-09-01

    The use of selected plant water extracts to control pests and weeds is gaining growing attention in organic and sustainable agriculture, but the effects that such extracts may exert on the quality aspects of durum wheat are still unexplored. In 2014, 5 plant water extracts (Artemisia arborescens, Euphorbia characias, Rhus coriaria, Thymus vulgaris, Lantana camara) were prepared and distributed on durum wheat cv Valbelice to evaluate their potential herbicidal effects. After crop harvesting, the major physicochemical and technological parameters of wholemeal flours obtained from each treatment were measured and compared with those from chemical weeding and untreated controls. A baking test was also performed to evaluate the breadmaking quality. In wholemeal flours obtained after the treatment with plant extracts protein and dry gluten content were higher than in control and chemical weeding. Wholemeal flours obtained after chemical weeding reached the highest Mixograph parameters, and that from durum wheat treated with R. coriaria extract demonstrated a very high α-amylase activity. We concluded that the treatments with plant water extracts may influence many quality traits of durum wheat. This occurrence must be taken into account in overall decisions concerning the use of plant extracts in pest and weed management practice. © 2016 Institute of Food Technologists®

  14. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    PubMed

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit values of GlutoPeak parameters which would be highly beneficial for millers and bakers when determine suitability of flour for end-use. © 2017 Wiley Periodicals, Inc.

  15. Effect of Partial Replacement of Wheat Flour with High Quality Cassava Flour on the Chemical Composition, Antioxidant Activity, Sensory Quality, and Microbial Quality of Bread

    PubMed Central

    Eleazu, Chinedum; Eleazu, Kate; Aniedu, Chinyere; Amajor, John; Ikpeama, Ahamefula; Ebenzer, Ike

    2014-01-01

    In the current study, wheat flour was mixed with high quality cassava flour (HQCF) in several ratios: 90:10, 80:20, 70:30, and 60:40, and used to prepare 10%, 20%, 30%, and 40% National Root Crops Research Institute (NRCRI) cassava bread, respectively. 100% wheat bread was prepared as a control (100% wheat bread). Five bread samples were prepared per group. Antioxidant assays [i.e., 2,2-diphenyl- 1-picrylhydrazyl radical (DPPH) scavenging assay, reducing power assay] revealed that the bread samples had considerable antioxidant capacities. Substitution of wheat flour with HQCF at various concentrations resulted in dose dependent decreases in the mineral and protein contents of the resulting bread samples. The crude fiber content of the bread samples was minimal, while the carbohydrate content of the bread samples ranged from 43.86% to 48.64%. A 20% substitution of wheat flour with HQCF yielded bread samples with a general acceptability that was comparable to that of 100% wheat bread. The mean bacteria counts of the bread samples ranged from 2.0×103 CFU/mL to 1.4×104 CFU/mL, while the fungal counts ranged from 0 CFU/mL to 3×103 CFU/mL. There was a positive correlation between the DPPH antioxidant activities and the reducing powers of the bread samples (R2=0.871) and a positive correlation between the DPPH antioxidant activities and the flavonoid contents of the bread samples (R2=0.487). The higher microbial load of the NRCRI cassava bread samples indicates that these bread samples may have a shorter shelf life than the 100% wheat bread. The significant positive correlation between total flavonoid content and reducing power (R2=0.750) suggests that the flavonoids present in the lipophilic fractions of the bread samples could be responsible for the reductive capacities of the bread samples. PMID:25054110

  16. Exotic QTL improve grain quality in the tri-parental wheat population SW84

    PubMed Central

    Nedelkou, Ioanna-Pavlina; Maurer, Andreas; Schubert, Anne; Léon, Jens

    2017-01-01

    Developing the tri-parental exotic wheat population SW84 Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). Studying the genetic control of grain quality in SW84 As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. Utilizing favorable exotic QTL alleles in wheat breeding Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool. PMID:28686676

  17. Formation of macromolecules in wheat gluten/starch mixtures during twin-screw extrusion: effect of different additives.

    PubMed

    Wang, Kaiqiang; Li, Cheng; Wang, Bingzhi; Yang, Wen; Luo, Shuizhong; Zhao, Yanyan; Jiang, Shaotong; Mu, Dongdong; Zheng, Zhi

    2017-12-01

    Wheat gluten comprises a good quality and inexpensive vegetable protein with an ideal amino acid composition. To expand the potential application of wheat gluten in the food industry, the effect of different additives on the physicochemical and structural properties of wheat gluten/starch mixtures during twin-screw extrusion was investigated. Macromolecules were observed to form in wheat gluten/starch mixtures during twin-screw extrusion, which may be attributed to the formation of new disulfide bonds and non-covalent interactions, as well as Maillard reaction products. Additionally, the water retention capacity and in vitro protein digestibility of all extruded wheat gluten/starch products significantly increased, whereas the nitrogen solubility index and free sulfhydryl group (SH) content decreased, during twin-screw extrusion. Secondary structural analysis showed that α-helices disappeared with the concomitant increase of antiparallel β-sheets, demonstrating the occurrence of protein aggregation. Microstructures suggested that the irregular wheat gluten granular structure was disrupted, with additive addition favoring transformation into a more layered or fibrous structure during twin-screw extrusion. The findings of the present study demonstrate that extrusion might affect the texture and quality of extruded wheat gluten-based foods and suggest that this process might serve as a basis for the high-value application of wheat gluten products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology.

    PubMed

    Xie, Quan; Li, Na; Yang, Yang; Lv, Yulong; Yao, Hongni; Wei, Rong; Sparkes, Debbie L; Ma, Zhengqiang

    2018-05-01

    Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m -2 , grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m -2 , grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m -2 , and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.

  19. The genetic control of milling yield, dough rheology and baking quality of wheat.

    PubMed

    Kuchel, H; Langridge, P; Mosionek, L; Williams, K; Jefferies, S P

    2006-05-01

    Improving the end-use quality of wheat is a key target for many breeding programmes. With the exception of the relationship between glutenin alleles and some dough rheological characters, knowledge concerning the genetic control of wheat quality traits is somewhat limited. A doubled haploid population produced from a cross between two Australian cultivars 'Trident' and 'Molineux' has been used to construct a linkage map based largely on microsatellite molecular makers. 'Molineux' is superior to 'Trident' for a number of milling, dough rheology and baking quality characteristics, although by international standards 'Trident' would still be regarded as possessing moderately good end-use quality. This population was therefore deemed useful for investigation of wheat end-use quality. A number of significant QTL identified for dough rheological traits mapped to HMW and LMW glutenin loci on chromosomes 1A and 1B. However, QTL associated with dough strength and loaf volume were also identified on chromosome 2A and a significant QTL associated with loaf volume and crumb quality was identified on chromosome 3A. A QTL for flour protein content and milling yield was identified on chromosome 6A and a QTL associated with flour colour reported previously on chromosome 7B was confirmed in this population. The detection of loci affecting dough strength, loaf volume and flour protein content may provide fresh opportunities for the application of marker-assisted selection to improve bread-making quality.

  20. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population.

    PubMed

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat.

  1. [Development of bakery products for greater adult consumption based on wheat and rice flour].

    PubMed

    Reyes Aguilar, María José; Palomo, Patricia de; Bressani, Ricardo

    2004-09-01

    The present investigation was developed as a contribution to Guatemalan's elderly food and nutrition. Its main objective was to evaluate the chemical, nutritional and sensory quality of bread prepared from the partial substitution of wheat flour with rice flour. Wheat flour substitutions with rice flour in the order of 15, 20, 30, 40, 50 and 60% were evaluated. Differences with the control (100% wheat bread) were found during the process of preparation, as well as texture, volume, height, weight and specific volume. Important effects in dough handling were noted specifically in the 40, 50 and 60% rice bread. Thus, a sandy texture was found in breads of higher rice levels. The bread protein quality increased with the level of substitution; however the protein quality difference between the wheat bread and the bread with 60% rice flour did not achieve statistical significance. Based on a statistical analysis of the physical properties the bread with 30 and 40% rice flour was selected, and through a preference test between these last two, the 30% rice flour bread was selected as the sample best suited to the present study's purposes. This bread was not different to wheat bread in many nutritional parameters, although in others it showed to be superior. Each serving size of bread has a weight of 80 grams (2 slices) that contributes adequate quantity of calories, protein and sodium, although a little less dietary fiber than 100% wheat bread.

  2. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population

    PubMed Central

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464

  3. Spring wheat production and associated pests in conventional and diversified cropping systems in north central Montana

    USDA-ARS?s Scientific Manuscript database

    Producers in the northern Plains are diversifying and intensifying traditional wheat-based cropping systems by reducing summer fallow and including legume and oilseed crops. This study examined the influence of diversification and intensification on spring wheat yield and quality, and associated ins...

  4. Modeling of cumulative ash curve in hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Analysis of cumulative ash curves (CAC) is very important for evaluation of milling quality of wheat and blending different millstreams for specific applications. The aim of this research was to improve analysis of CAC. Five hard red spring wheat genotype composites from two regions were milled on...

  5. Genetic variation for tolerance to terminal heat stress in Dasypyrum villosum

    USDA-ARS?s Scientific Manuscript database

    Heat stress substantially reduces the grain yield and quality of wheat and poses a major challenge to sustain productivity due to global warming. Across wheat growing regions in the US and globally, wheat often experiences terminal heat stress during the post-flowering period. Dasypyrum villosum, a ...

  6. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects

    USDA-ARS?s Scientific Manuscript database

    Yellow rust (Puccinia striiformis f. sp. Tritici), powdery mildew (Blumeria graminis) and wheat aphid (Sitobion avenae F.) infestation are three serious conditions that have a severe impact on yield and grain quality of winter wheat worldwide. Discrimination among these three stressors is of practic...

  7. Observations on the quality characteristics of waxy (amylose-free) winter wheats

    USDA-ARS?s Scientific Manuscript database

    Previous investigations have suggested waxy (amylose-free) wheats (Triticum aestivum L.) possess weak gluten properties and may not be suitable for commercial gluten extraction. This limitation could prevent the use of waxy wheat as a source of unique starch, because gluten is a by-product of the wh...

  8. Isolation and characterization of EMS-induced Dy10 and Ax1 high molecular weight glutenin subunit deficient mutant lines of elite hexaploid wheat (Triticum aestivum L.) cv. Summit

    USDA-ARS?s Scientific Manuscript database

    The mixing properties of the dough are critical in the production of bread and other food products derived from wheat. The high molecular weight glutenin subunits (HMW-GS) are major determinants of wheat dough processing qualities. The different alleles of the HMW-GS genes in hexaploid wheat vary ...

  9. Wheat (Triticum aestivum L.) transformation using mature embryos.

    PubMed

    Medvecká, Eva; Harwood, Wendy A

    2015-01-01

    In most protocols for the Agrobacterium-mediated transformation of wheat, the preferred target tissues are immature embryos. However, transformation methods relying on immature embryos require the growth of plants under controlled conditions to provide a continuous supply of good-quality target tissue. The use of mature embryos as a target tissue has the advantage of only requiring good-quality seed as the starting material. Here we describe a transformation method based on the Agrobacterium-mediated transformation of callus cultures derived from mature wheat embryos of the genotype Bobwhite S56.

  10. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.).

    PubMed

    Gao, Xin; Liu, Tianhong; Yu, Jing; Li, Liqun; Feng, Yi; Li, Xuejun

    2016-04-15

    Glutenin is one of the critical gluten proteins that affect the processing quality of wheat dough. High-molecular-weight glutenin subunits (HMW-GS) affect rheological behavior of wheat dough. This research demonstrated the effects of four variations of HMW-GS composition at the Glu-B1 locus on secondary and micro structures of gluten and rheological properties of wheat dough, using the bread wheat Xinong 1330 and its three near-isogenic lines (NILs). Results indicated that the Amide I bands of the four wheat lines shifted slightly, but the secondary structure, such as content of α-helices, β-sheets, disulfide bands, tryptophan bands and tyrosine bands, differed significantly among the four NILs. The micro structure of gluten in NIL 2 (Bx14+By15) and NIL 3 (Bx17+By18) showed more cross linkage, with two contrasting patterns. Correlation analysis demonstrated that the content of β-sheets and disulfide bonds has a significant relationship with dough stability, which suggests that the secondary structures could be used as predictors of wheat quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Assessment of Genetic and Molecular Approaches for the Prediction of Wheat Quality

    USDA-ARS?s Scientific Manuscript database

    Assessment of genetic and molecular approaches for the prediction of wheat quality. R.A. Graybosch, USDA-ARS, Lincoln, NE, U.S.A. Over the past four decades, the field of plant breeding and genetics has been revolutionized by technological advances in the areas of DNA manipulation and evaluation. Fo...

  13. Effect of the grain protein content locus Gpc-B1 on bread and pasta quality

    USDA-ARS?s Scientific Manuscript database

    Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele o...

  14. Genome-wide association and prediction of grain and semolina quality traits in durum wheat breeding populations

    USDA-ARS?s Scientific Manuscript database

    Grain yield and semolina quality traits are essential selection criteria in durum wheat breeding. However, high cost of phenotypic screening limited the selection only on small number of lines and at later generations. This leads to relatively low selection efficiency due to the advancement of undes...

  15. Variation of protein MWD parameters and their associations with free asparagine concentration and quality characteristics in hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    This research was performed to determine variation of protein molecular weight distribution (MWD) parameters using size exclusion HPLC and their associations with quality characteristics and free asparagine concentration (FAC) using eleven hard red spring (HRS) wheat genotypes grown at three locatio...

  16. Application of machine vision to pup loaf bread evaluation

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Chung, O. K.

    1996-12-01

    Intrinsic end-use quality of hard winter wheat breeding lines is routinely evaluated at the USDA, ARS, USGMRL, Hard Winter Wheat Quality Laboratory. Experimental baking test of pup loaves is the ultimate test for evaluating hard wheat quality. Computer vision was applied to developing an objective methodology for bread quality evaluation for the 1994 and 1995 crop wheat breeding line samples. Computer extracted features for bread crumb grain were studied, using subimages (32 by 32 pixel) and features computed for the slices with different threshold settings. A subsampling grid was located with respect to the axis of symmetry of a slice to provide identical topological subimage information. Different ranking techniques were applied to the databases. Statistical analysis was run on the database with digital image and breadmaking features. Several ranking algorithms and data visualization techniques were employed to create a sensitive scale for porosity patterns of bread crumb. There were significant linear correlations between machine vision extracted features and breadmaking parameters. Crumb grain scores by human experts were correlated more highly with some image features than with breadmaking parameters.

  17. Rain-induced spring wheat harvest losses

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  18. Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality

    PubMed Central

    Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen

    2018-01-01

    A wheat-Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1Ss from Ae. searsii, was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1Ss loci of Ae. searsii. Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.

  19. Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems.

    PubMed

    Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter

    2016-06-01

    An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.

  20. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  1. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  2. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco

    NASA Astrophysics Data System (ADS)

    Ibno Namr, Khalid; Mrabet, Rachid

    2004-06-01

    Morocco's semi-arid lands are characterized by unique challenges. The most important obstacles to the development of durable agriculture are (1) limited and unpredictable supply of soil moisture and (2) low soil quality. Intensive use of soil throughout history has led to depletion in soil quality, leading in return to reduced yields because of the consequent reduced organic matter. Recognizing the need to recover soil quality and production decline, INRA scientists began, in the early 1980s, research on the effects of crop rotations, tillage and residue management on the productivity and quality of cropped soils. The present study concerns the short-term effect of rotation, tillage and residue management on selected quality indices of a calcixeroll (organic matter, nitrogen, particulate organic carbon (Cpom), particulate organic nitrogen (Npom) and pH). Hence, three rotations (wheat-wheat, WW; fallow-wheat, FW; and fallow-wheat-barley, FWB), two tillage systems (conventional offset disking, CT and no-tillage, NT), and three levels of residue in the NT system (NT 0 = no-residue cover, NT 50 = half surface residue cover, NT 100 = full surface residue cover) were selected. Three surface horizons were sampled (0-2.5, 2.5-7 and 7-20 cm). The study results showed an improvement of measured soil chemical properties under NT compared to CT, at the surface layer. No-tillage system helped sequestration of carbon and nitrogen, build-up of particulate organic carbon and nitrogen and sensible reduction of pH only at the surface layer. Continuous wheat permitted a slight improvement of soil quality, mainly at the 0-2.5 cm depth. Effects of rotation, tillage and residue level were reduced with depth of measurements.

  3. The effects of certain enzymes on the rheology of dough and the quality characteristics of bread prepared from wheat meal.

    PubMed

    Altınel, Burak; Ünal, S Sezgin

    2017-05-01

    This study was carried out to evaluate the effects of amyloglucosidase, glucose oxidase, hemicellulase (mainly consist of endo-1,4-β-xylanase), cellulase, lipase, and the combination of phospholipase and hemicellulase (phospholipase + hemicellulase) on the extensographic properties of dough and the quality characteristics of bread prepared from wheat meal. The enzymes were added separately in two different amounts. The addition of glucose oxidase (at 0.0003-0.001%) caused a significant decrease in the resistance to extension, ratio of resistance to extensibility and energy values of the wheat meal dough compared with the control dough. The addition of hemicellulase (at 0.001-0.005%) and phospholipase + hemicellulase (at 0.0006-0.0009%) also improved the wheat meal dough rheology by reducing the resistance to extension and the ratio of resistance to extensibility. Glucose oxidase (at 0.0003-0.001%), hemicellulase (at 0.001-0.005%) and phospholipase + hemicellulase (at 0.0006-0.0009%) addition improved the specific volume of wheat meal bread compared with the control bread. Increasing the dosage of glucose oxidase from 0.0003 to 0.001% caused a further increase in the specific volume of wheat meal bread. The addition of hemicellulase (at 0.001-0.005%) caused a significant decrease in the baking loss and an increase in the moisture content of wheat meal bread compared with the control bread. The addition of amyloglucosidase (at 0.000875-0.001%), lipase (at 0.0002-0.001%) and cellulase (at 0.0003-0.0005%) did not considerably affected the dough rheological and the quality characteristics of wheat meal bread.

  4. Rupture in cemented granular media: application to wheat endosperm

    NASA Astrophysics Data System (ADS)

    Topin, V.; Delenne, J.-Y.; Radjai, F.

    2009-06-01

    The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.

  5. Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Yaping; Zhen, Shoumin; Luo, Nana; Han, Caixia; Lu, Xiaobing; Li, Xiaohui; Xia, Xianchun; He, Zhonghu; Yan, Yueming

    2016-01-01

    Low molecular weight glutenin subunit is one of the important quality elements in wheat (Triticum aestivum L.). Although considerable allelic variation has been identified, the functional properties of individual alleles at Glu-3 loci are less studied. In this work, we performed the first comprehensive study on the molecular characteristics and functional properties of the Glu-B3h gene using the wheat cultivar CB037B and its Glu-B3 deletion line CB037C. The results showed that the Glu-B3h deletion had no significant effects on plant morphological or yield traits, but resulted in a clear reduction in protein body number and size and main quality parameters, including inferior mixing property, dough strength, loaf volume, and score. Molecular characterization showed that the Glu-B3h gene consists of 1179 bp, and its encoded B-subunit has a longer repetitive domain and an increased number of α-helices, as well as higher expression, which could contribute to superior flour quality. The SNP-based allele-specific PCR markers designed for the Glu-B3h gene were developed and validated with bread wheat holding various alleles at Glu-B3 locus, which could effectively distinguish the Glu-B3h gene from others at the Glu-B3 locus, and have potential applications for wheat quality improvement through marker-assisted selection. PMID:27273251

  6. Use of indigenous technology for the production of high quality cassava flour with similar food qualities as wheat flour.

    PubMed

    Eleazu, Ogbonnaya Chinedum; Eleazu, Kate Chinedum; Kolawole, Segun

    2014-01-01

    The aim of the paper was to compare the food qualities of 2 varieties (SME 1 and 2) of high quality cassava flour (HQCF) produced from indigenous technology and that of some commercially sold wheat/HQCF samples. The pH, proximate, phytochemical, antioxidant, functional properties and starch yield of the flours were carried out using standard techniques. The wheat flours had higher bulk densities and lipids than the HQCF samples while the oil absorption capacity of the HQCF (SME 2) was higher than other fl our samples investigated. The antioxidant assays of the flours showed that they contained considerable levels of antioxidants with the HQCF sample from DAT having higher antioxidants than other flour samples studied. The HQCF (SME 1) had significantly higher (P < 0.05) starch content among the flour samples. The bacteria counts of the HQCF samples ranged from 0 to 1.4 × 10(4) cfu/ml while the fungal count ranged from 0 to 2 × 10(-3) with the unbranded wheat fl our having the highest microbial load compared with other flour samples studied. The use of this indigenous technology produces HQCF with lower lipids, microbial contamination but higher flavour retaining ability, flavonoids and starch contents than wheat flour. The significant positive correlation (R2 = 0.872) between reducing power of the samples and their DPPH antioxidant activity indicate that either could be used to assay for the total antioxidant activity of cassava and wheat flour. The study underscores the need to buy flour from branded companies to reduce the risks of microbial contamination.

  7. Structural equation models based on multivariate diversity assessment of diploid and tetraploid hulled wheat species

    USDA-ARS?s Scientific Manuscript database

    Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...

  8. Grazing Stategy To Decrease Dietary Crude Protien Wastage In Stocker Calves Grazing Winter Wheat Pasture.

    USDA-ARS?s Scientific Manuscript database

    Annual cool-season grasses, primarily winter wheat, provide high quality forage for stocker calves during the fall, winter and spring grazing seasons for stocker enterprises in the southern Great Plains. The crude protein (CP) content of winter wheat pasture exceeds the stocker calf’s daily CP requi...

  9. GlutoPeak profile analysis for wheat classification: skipping the refinement process

    USDA-ARS?s Scientific Manuscript database

    The GlutoPeak test can predict wheat flour quality by measuring gluten aggregation properties in a short time and using a small amount of sample; thus has usefulness along the entire wheat delivery chain. However, no information on the suitability of this new test on whole grain flours is available...

  10. Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS revealed rapid evolution of Triticeae genome

    USDA-ARS?s Scientific Manuscript database

    Bread wheat (Triticum aestivum, AABBDD) is an allohexaploid species derived from multiple rounds of interspecific hybridizations. A high-quality genome assembly of diploid Ae. tauschii, the donor of the wheat D genome, will provide a useful platform to study polyploid wheat evolution. A combination...

  11. Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat.

    PubMed

    Li, C J; Xu, Z H; Dong, Z X; Shi, S L; Zhang, J G

    2016-08-01

    Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (≥225 kg/ha) was significantly higher than that with lower N application rates (≤150 kg/ha). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

  12. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels.

    PubMed

    Nguyen, Tran-Nguyen; Son, SeungHyun; Jordan, Mark C; Levin, David B; Ayele, Belay T

    2016-01-25

    Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.

  13. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.).

    PubMed

    Aramrak, Attawan; Kidwell, Kimberlee K; Steber, Camille M; Burke, Ian C

    2015-10-23

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway, and is the target of the herbicide glyphosate. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the allohexaploid wheat EPSPS gene were cloned and characterized. Genomic and coding DNA sequences of EPSPS from the three related genomes of allohexaploid wheat were isolated using PCR and inverse PCR approaches from soft white spring "Louise'. Development of genome-specific primers allowed the mapping and expression analysis of TaEPSPS-7A1, TaEPSPS-7D1, and TaEPSPS-4A1 on chromosomes 7A, 7D, and 4A, respectively. Sequence alignments of cDNA sequences from wheat and wheat relatives served as a basis for phylogenetic analysis. The three genomic copies of wheat EPSPS differed by insertion/deletion and single nucleotide polymorphisms (SNPs), largely in intron sequences. RT-PCR analysis and cDNA cloning revealed that EPSPS is expressed from all three genomic copies. However, TaEPSPS-4A1 is expressed at much lower levels than TaEPSPS-7A1 and TaEPSPS-7D1 in wheat seedlings. Phylogenetic analysis of 1190-bp cDNA clones from wheat and wheat relatives revealed that: 1) TaEPSPS-7A1 is most similar to EPSPS from the tetraploid AB genome donor, T. turgidum (99.7 % identity); 2) TaEPSPS-7D1 most resembles EPSPS from the diploid D genome donor, Aegilops tauschii (100 % identity); and 3) TaEPSPS-4A1 resembles EPSPS from the diploid B genome relative, Ae. speltoides (97.7 % identity). Thus, EPSPS sequences in allohexaploid wheat are preserved from the most two recent ancestors. The wheat EPSPS genes are more closely related to Lolium multiflorum and Brachypodium distachyon than to Oryza sativa (rice). The three related EPSPS homoeologues of wheat exhibited conservation of the exon/intron structure and of coding region sequence, but contained significant sequence variation within intron regions. The genome-specific primers developed will enable future characterization of natural and induced variation in EPSPS sequence and expression. This can be useful in investigating new causes of glyphosate herbicide resistance.

  14. 'Billings' wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Selection pressure for earliness, resistance to multiple pathogens, and quality attributes consistent with the hard red winter (HRW) wheat (Triticum aestivum L.) market class is tantamount to, or can obscure, selection for yield potential in lower elevations of the U.S. southern Great Plains. The de...

  15. Empirical Study on the Sustainability of China's Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery.

    PubMed

    Zhang, Ming; Duan, Fang; Mao, Zisen

    2018-02-05

    As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces' potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China's grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield.

  16. Empirical Study on the Sustainability of China’s Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery

    PubMed Central

    Zhang, Ming; Duan, Fang; Mao, Zisen

    2018-01-01

    As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces’ potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China’s grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield. PMID:29401727

  17. Improving genomic prediction for pre-harvest sprouting tolerance in wheat by weighting large-effect quantitative trait loci

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest sprouting (PHS) is a major problem in wheat (Triticum aestivum L.) that occurs when grains in a mature spike germinate prior to harvest, resulting in reduced yield, quality, and grain sale price. Improving PHS tolerance (PHST) is a challenge to wheat breeders because it is quantitatively...

  18. Differential effects of a post-anthesis fertilizer regimen on the wheat flour proteome determined by quantitative 2-DE

    USDA-ARS?s Scientific Manuscript database

    Mineral nutrition during wheat grain development has large effects on wheat flour protein content and composition, which affect the mixing, baking and nutritional quality of a commodity of great economic value. However, it has been difficult to link individual proteins to specific genes in order to ...

  19. Characterization of high molecular weight glutenin subunits in Thinopyrum intermedium, Th. bessarabicum, Lophopyrum elongatum, Aegilops markgrafii, and their addition lines in wheat

    USDA-ARS?s Scientific Manuscript database

    High molecular weight (HMW) glutenin subunits (GSs) play an important role in determining dough viscoelastic properties and end-use quality in cultivated wheat, and they are also excellent protein markers for genotype identification. The HMW-GSs in wheat species (Triticum ssp.) and Aegilops tauschii...

  20. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat flour bread-making quality. The genes encoding for this class of proteins are mainly located at the orthologous Glu-3 loci (Glu-A...

  1. ND 803 spring wheat germplasm combining resistance to scab and leaf diseases with good agronomic and quality traits

    USDA-ARS?s Scientific Manuscript database

    The development of adapted wheat germplasm is essential so that breeding programs can develop superior cultivars, which was the objective of this research. ND 803 is hard red spring wheat (HRSW; Triticum aestivum L.) line that was developed at North Dakota State University (NDSU) and released by the...

  2. Intestinal absorption of chromium as affected by wheat bran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, K.S.; Holloway, C.L.; Hegsted, M.

    1986-03-01

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 gmore » of the respective diet, 2 hr later intubated with 100..mu..Ci of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium.« less

  3. Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat.

    PubMed

    Wang, Jian; Wang, Chang; Zhen, Shoumin; Li, Xiaohui; Yan, Yueming

    2018-04-01

    Wheat-related genomes may carry new glutenin genes with the potential for quality improvement of breadmaking. In this study, we estimated the gluten quality properties of the wheat line CNU609 derived from crossing between Chinese Spring (CS, Triticum aestivum L., 2n = 6x = 42, AABBDD) and the wheat Aegilops umbellulata (2n = 2x = 14, UU) 1U(1B) substitution line, and investigated the function of 1U-encoded low-molecular-weight glutenin subunits (LMW-GS). The main quality parameters of CNU609 were significantly improved due to introgression of the 1U genome, including dough development time, stability time, farinograph quality number, gluten index, loaf size and inner structure. Glutenin analysis showed that CNU609 and CS had the same high-molecular-weight glutenin subunit (HMW-GS) composition, but CNU609 carried eight specific 1U genome-encoded LMW-GS. The introgression of the 1U-encoded LMW-GS led to more and larger protein body formation in the CNU609 endosperm. Two new LMW-m type genes from the 1U genome, designated Glu-U3a and Glu-U3b, were cloned and characterized. Secondary structure prediction implied that both Glu-U3a and Glu-U3b encode subunits with high α-helix and β-strand content that could benefit the formation of superior gluten structure. Our results indicate that the 1U genome has superior LMW-GS that can be used as new gene resources for wheat gluten quality improvement. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours.

    PubMed

    Taccari, Manuela; Aquilanti, Lucia; Polverigiani, Serena; Osimani, Andrea; Garofalo, Cristiana; Milanović, Vesna; Clementi, Francesca

    2016-08-01

    The fermentation of type I sourdough was studied for 20 d with daily back-slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture-dependent and culture-independent PCR-DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed. © 2016 Institute of Food Technologists®

  5. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality.

    PubMed

    Olaerts, Heleen; De Bondt, Yamina; Courtin, Christophe M

    2018-02-15

    As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    PubMed

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  7. High-molecular-weight glutenin subunit-deficient mutants induced by ion beam and the effects of Glu-1 loci deletion on wheat quality properties.

    PubMed

    Zhang, Lujun; Chen, Qiufang; Su, Mingjie; Yan, Biao; Zhang, Xiangqi; Jiao, Zhen

    2016-03-15

    High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants. © 2015 Society of Chemical Industry.

  8. Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality.

    PubMed

    Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen

    2018-03-01

    A wheat- Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1S s from Ae. searsii , was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1S s loci of Ae. searsii . Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.

  9. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation.

    PubMed

    Henry, Robert J; Furtado, Agnelo; Rangan, Parimalan

    2018-05-17

    Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes. Copyright © 2018. Published by Elsevier Ltd.

  10. Physical, Textural, and Antioxidant Properties of Extruded Waxy Wheat Flour Snack Supplemented with Several Varieties of Bran.

    PubMed

    Fleischman, Emily F; Kowalski, Ryan J; Morris, Craig F; Nguyen, Thuy; Li, Chongjun; Ganjyal, Girish; Ross, Carolyn F

    2016-09-28

    Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P < 0.0001), and created denser products (P < 0.0001), especially for white bran supplemented extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P < 0.0001). Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P < 0.0001) compared to purple bran supplemented extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance. © 2016 Institute of Food Technologists®

  11. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    USDA-ARS?s Scientific Manuscript database

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  12. Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour

    USDA-ARS?s Scientific Manuscript database

    Background The end-use quality of wheat flour varies as a result of the growth conditions of the plant. Among the wheat gluten proteins, the omega-5 gliadins have been identified as a major source of environmental variability, increasing in proportion in grain from plants that receive fertilizer or ...

  13. Variation of free asparagine concentration and association with quality parameters for hard red spring wheat grown in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Free asparagine in wheat is known to be a precursor for the formation of acrylamide which is unacceptable to consumers due to its potential risks to human health. This research was performed to determine variation of free asparagine concentration (FAC) in hard red spring (HRS) wheat grown in North ...

  14. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Wheat flour is one of the world's major food ingredients, but it is difficult to distinguish and identify the many proteins in a flour sample. The abundant glutamine and proline rich gluten proteins are responsible for many of the unique end-use qualities of wheat flour but it is challenging to dis...

  15. Dissection of genetic factors underlying wheat kernel shape and size in an elite x nonadapted cross using a high density SNP linkage map

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414...

  16. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins. They are encoded by a multigene family located at the Glu-3 loci, and their allelic variation strongly influences wheat end-use quality. Due to ambiguities in the LMW-GS allele nomenclature and to the co...

  17. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  18. Navy Bean Flour Particle Size and Protein Content Affect Cake Baking and Batter Quality(1).

    PubMed

    Singh, Mukti; Byars, Jeffrey A; Liu, Sean X

    2015-06-01

    Whole navy bean flour and its fine and coarse particle size fractions were used to completely replace wheat flour in cakes. Replacement of wheat flour with whole bean flour significantly increased the protein content. The protein content was adjusted to 3 levels with navy bean starch. The effect of navy bean flour and its fractions at 3 levels of protein on cake batter rheology and cake quality was studied and compared with wheat flour samples. Batters prepared from navy bean flour and its fractions had higher viscosity than the cake flour. Reducing the protein content by addition of starch significantly lowered the viscosity of cake batters. The whole navy bean flour and coarse bean fraction cakes were softer than cakes made with wheat flour but had reduced springiness. Principal component analysis showed a clear discrimination of cakes according to protein. It also showed that low protein navy bean flour cakes were similar to wheat flour cakes. Navy bean flour with protein content adjusted to the level of cake (wheat) flour has potential as a healthy alternative in gluten-free cakes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. The Influence of Scalded Flour, Fermentation, and Plants Belonging to Lamiaceae Family on the Wheat Bread Quality and Acrylamide Content.

    PubMed

    Bartkiene, Elena; Bartkevics, Vadims; Krungleviciute, Vita; Pugajeva, Iveta; Zadeike, Daiva; Juodeikiene, Grazina; Cizeikiene, Dalia

    2018-06-01

    The aim of this study was to investigate the influence of additives such as plants belonging to Lamiaceae family (Thymus vulgaris, Carum carvi, Origanum vulgare, Ocimum basilicum, and Coriandrum sativum), scalded flour (SF) or scalded flour fermented with Lactobacillus plantarum LUHS135 (SFFLp) on the quality and acrylamide formation in wheat bread. The formation of acrylamide and bread quality significantly depended on the king of plants used and the amount of SF and SFFLp used. The additives of T. vulgaris and SF increased the content of acrylamide by 3.4-fold in comparison with bread prepared without SF, whereas the addition of SFFLp significantly reduced the content of acrylamide in bread, especially using 5% of SFFLp supplemented with O. vulgare and 15% of SFFLp supplemented with C. sativum (respectively by 40% and 29.4%) therefore could be recommended for safer bread production. The addition of 5% (from total wheat flour content) of scalded wheat flour fermented with Lactobacillus plantarum LUHS135 strain (SFFLp) with Origanum vulgare addition, and 5% or 10% of SFFLp prepared with Ocimum basilicum, and 15% of SFFLp prepared with Coriandrum sativum significantly reduce the content of acrylamide in wheat bread, therefore could be recommended for safer bread production. © 2018 Institute of Food Technologists®.

  20. Clinical and laboratory features, and quality of life assessment in wheat dependent exercise-induced anaphylaxis patients from central China.

    PubMed

    Chen, Hao; Huang, Nan; Li, Wen-Jing; Dong, Xiang; Qi, Shan-Shan; Wang, You-Na; Liu, Guang-Hui; Zhu, Rong-Fei

    2016-06-01

    Wheat dependent exercise-induced anaphylaxis (WDEIA) is a rare but potentially severe food allergy caused by the combination of wheat ingestion and physical exercise. The impact of WDEIA on quality of life (QOL) is unclear. This study characterized the clinical and laboratory features and investigated the QOL in WDEIA patients from Central China. Twenty-eight WDEIA patients were analyzed, and QOL was measured by validated Chinese version Food Allergy Quality of Life Questionnaire-Adult Form (FAQLQ-AF) and Food Allergy Independent Measure (FAIM) after obtaining the diagnosis. The results showed that half of the patients were females. The median onset age was 37 years old. The symptoms occurred within 1 h after wheat ingestion (26/28). Symptoms of anaphylaxis included cutaneous (26/28), respiratory (11/28), gastro-intestinal (5/28) and cardiovascular manifestations (27/28). Skin prick tests were positive to salt soluble (89.3%) and salt insoluble wheat allergen extracts (100%). Positive rate to wheat, gluten and omega-5 gliadin specific IgE was 64.3%, 92.9% and 92.9% respectively. Specific IgE to omega-5 gliadin with a cut-off value 0.83 KU/L offered highly efficient diagnostic criterion for WDEIA (sensitivity: 89.3%; and specificity: 88.9%). The mean scores of FAQLQ-AF and FAIM were 4.70 and 4.98 respectively and level of anti-omega-5 gliadin IgE had positive correlations with FAQLQ scores. Thereby, WDEIA is commonly found in mid-age adults. In most cases, multi-organs especially skin and cardiovascular systems are involved. Salt insoluble wheat allergen skin test and serum specific IgE to gluten and omega-5 gliadin help to diagnose WDEIA. QOL in WDEIA patients is severely impaired.

  1. Improving protein quality of bread - nutritional benefits and realities.

    PubMed

    Betschart, A A

    1978-01-01

    The bases for improving bread protein quality are critically examined. Protein consumption is shown to be directly related to total calorie intake in many countries, with a correlation coefficient (r) of greater than or equal to 0.90. Concentration of protein in bread, % kilocalories, is similar to that of mixed diets in many parts of the world. Quality of bread protein, when evaluated by male weanling rats, may be improved by supplementation with lysine and threonine, as well as with many protein sources. Human adults, on bread diets, may be maintained in nitrogen equilibrium or slightly positive nitrogen balance. Increases, however, in nitrogen retention have been reported when lysine was added to bread. Laboratory studies with infants and young children, often hospitalized and recovering from severe malnutrition, show that lysine supplementation of wheat flour and gluten diets enhanced nitrogen retention and weight gain. No effect was observed when whole wheat diets were supplemented with lysine. Several field studies with children indicate that the addition of lysine to either supplemental breads provided at school, or to all wheat products consumed, resulted in no observed beneficial effects. Other field studies report an increase in either weight or height with addition of lysine to breads. A laboratory study with human adults suggests that a wheat flour: soy flour mixture has a higher biological value than wheat flour alone. The role, in human nutrition, of breads with improved protein quality remains somewhat obscure.

  2. Improving the baking quality of bread wheat by genomic selection in early generations.

    PubMed

    Michel, Sebastian; Kummer, Christian; Gallee, Martin; Hellinger, Jakob; Ametz, Christian; Akgöl, Batuhan; Epure, Doru; Güngör, Huseyin; Löschenberger, Franziska; Buerstmayr, Hermann

    2018-02-01

    Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis. The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009-2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38-0.63). Genomic selection can furthermore be applied 2-3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.

  3. Microbiological, Nutritional, and Sensory Quality of Bread Produced from Wheat and Potato Flour Blends

    PubMed Central

    Ijah, Udeme Joshua Josiah; Aduloju, Mercy Oluwayemisi; Aransiola, Sesan Abiodun

    2014-01-01

    Dehydrated uncooked potato (Irish and sweet) flour was blended by weight with commercial wheat flour at 0 to 10% levels of substitution to make bread. Comparative study of the microbial and nutritional qualities of the bread was undertaken. The total aerobic bacterial counts ranged from 3.0 × 105 cfu/g to 1.09 × 106 cfu/g while the fungal counts ranged from 8.0 × 101 cfu/g to 1.20 × 103 cfu/g of the sample. Coliforms were not detected in the bread. Bacteria isolated were species of Bacillus, Staphylococcus, and Micrococcus while fungi isolates were species of Aspergillus, Penicillium, Rhizopus, and Mucor. The mean sensory scores (color, aroma, taste, texture, and general acceptability) were evaluated. The color of the bread baked from WF/IPF2 (wheat/Irish potato flour, 95 : 5%) blend was preferred to WF (wheat flour, 100%) while WF/SPF1 (wheat/sweet potato flour, 100%) and WF/IPF1 (wheat/Irish potato flour, 90 : 10%) aroma were preferred to WF. However, the bread baked from WF, WF/IPF2 (wheat flour/Irish potato flour, 95 : 5%), and WF/SPF2 (wheat/sweet potato flour, 95 : 5%) was more acceptable than other blends. The use of hydrated potato flour in bread making is advantageous due to increased nutritional value, higher bread yield, and reduced rate of staling. PMID:26904642

  4. Quality and Sensory Characteristics of Reduced-fat Chicken Patties with Pork Back Fat Replaced by Dietary Fiber from Wheat Sprout

    PubMed Central

    2016-01-01

    The effects of reducing pork fat levels from 20% to 15% or 10% by partially substituting pork back fat with wheat sprout fiber in reduced-fat chicken patties were investigated. Approximate composition, energy value, pH, color, cooking loss, reduction in diameter, reduction in thickness, shear force, and sensory properties were determined. Moisture content, ash contents, yellowness of uncooked and cooked reduced-fat chicken patties with wheat sprout were higher than those in the control, while displaying fat content, calorie content, and pH of uncooked and cooked lower in reduced-fat chicken patties than in the control. Cooking loss, reduction in diameter, and reduction in thickness were the highest in the reduced-fat chicken patties with 10% fat level. Cooking loss, reduction in diameter, and reduction in thickness were decreased when fat levels and wheat sprout levels were increased. Control samples without wheat sprout dietary fiber had significantly (p<0.05) higher color and flavor scores compared to reduced-fat chicken patties containing wheat sprout dietary fiber. The overall acceptability of the control and treatment with 15% fat and 2% wheat sprout dietary fiber (T3) was the highest. Therefore, 15% fat level in reduced-fat chicken patties with the addition of 2% wheat sprout dietary fiber can be used to improve the quality and sensory characteristics of regular-fat chicken patties containing 20% fat level. PMID:28115892

  5. Low quality roughages for steers grazing wheat pasture. I. Effect on weight gains and bloat.

    PubMed

    Mader, T L; Horn, G W; Phillips, W A; McNew, R W

    1983-05-01

    The effect of feeding low quality roughages (LQR) on live and carcass weight gains and the incidence and severity of bloat of stocker cattle grazed on wheat pasture was evaluated in a 3 yr study. One hundred eighty-five steer calves (172 kg mean initial weight) grazed clean-tilled wheat pasture and were either fed no LQR or had ad libitum access to wheat straw (WS) or sorghum-Sudan hay (SS). Grazing periods were (I) fall grazing, (II) winter grazing, (III) period of lush spring growth of wheat forage and (IV) period of advancing forage maturity and declining quality. Mean dry matter (DM), crude protein and acid detergent fiber (ADF) content (percentage of DM) of wheat forage averaged across years ranged, respectively, from 23.8 to 33.0, 19.8 to 26.4 and 21.5 to 27.7. Mean daily consumption (kg DM/head) of WS and SS by steers ranged from .076 to .100 and .199 to .248, respectively. Live and carcass weight gains of steers during Periods I through III (i.e., the usual wheat pasture grazing period) were not influenced (P greater than .05) by treatments. Carcass weight gains were about 74% of live weight gains. Bloat was observed only during the last 2 wk of Period III of the first year. The incidence (steer days of bloat) and severity (bloat score) of control, WS- and SS-fed steers were 9.5 and 1.2, .5 and .5 and 2.0 and 1.0, and were not different (P greater than .05) among treatments. Intake of WS and SS [g/body weight (BW).75kg] during Periods I to III was, respectively, only about 5 and 12% of roughage intakes (i.e., 37.5 g/BW.75kg) reported in the literature to "effectively control" or aid the prevention of bloat. It seems unlikely that LQR consumed to amounts similar to those of this study would control bloat of stocker cattle on wheat pasture.

  6. [Effects of air temperature increase and precipitation change on grain yield and quality of spring wheat in semiarid area of Northwest China].

    PubMed

    Wang, He-ling; Zhang, Qiang; Wang, Run-yuan; Gan, Yan-tai; Niu, Jun-yi; Zhang, Kai; Zhao, Fu-nian; Zhao, Hong

    2015-01-01

    In order to predict effects of climate changing on growth, quality and grain yields of spring wheat, a field experiment was conducted to investigate the effects of air temperature increases (0 °C, 1.0 °C, 2.0° C and 3.0°) and precipitation variations (decrease 20%, unchanging and increase 20%) on grain yields, quality, diseases and insect pests of spring wheat at the Dingxi Arid Meteorology and Ecological Environment Experimental Station of the Institute of Arid Meteorology of China Meteorological Administration (35°35' N ,104°37' E). The results showed that effects of precipitation variations on kernel numbers of spring wheat were not significant when temperature increased by less than 2.0° C , but was significant when temperature increased by 3.0° C. Temperature increase enhanced kernel numbers, while temperature decrease reduced kernel numbers. The negative effect of temperature on thousand-kernel mass of spring wheat increased with increasing air temperature. The sterile spikelet of spring wheat response to air temperature was quadratic under all precipitation regimes. Compared with control ( no temperature increase), the decreases of grain yield of spring wheat when air temperature increased by 1.0°C, 2.0°C and 3.0°C under each of the three precipitation conditions (decrease 20%, no changing and increase 20%) were 12.1%, 24.7% and 42.7%, 8.4%, 15.1% and 21.8%, and 9.0%, 15.5% and 22.2%, respectively. The starch content of spring wheat decreased and the protein content increased with increasing air temperature. The number of aphids increased when air temperature increased by 2.0°C , but decreased when air temperature increased by 3.0°CT. The infection rates of rust disease increased with increasing air temperature.

  7. Exotic QTL improve grain quality in the tri-parental wheat population SW84.

    PubMed

    Nedelkou, Ioanna-Pavlina; Maurer, Andreas; Schubert, Anne; Léon, Jens; Pillen, Klaus

    2017-01-01

    Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.

  8. Protein and quality characterization of complete and partial near isogenic lines of waxy wheat

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near-isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx-A1, Wx-B1, and Wx-D1) lines of N11 set (bread whe...

  9. Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality

    PubMed Central

    Wang, Li; Shao, Huili; Luo, Xiaohu; Wang, Ren; Li, Yongfu; Li, Yanan; Luo, Yingpeng; Chen, Zhengxing

    2016-01-01

    Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium fungi, which is found in a wide range of agricultural products, especially in wheat, barley, oat and corn. In this study, the distribution of DON in the wheat kernel and the effect of exposure time to ozone on DON detoxification were investigated. A high concentration of toxin was found in the outer part of the kernel, and DON was injected from the outside to the inside. The degradation rates of DON were 26.40%, 39.16%, and 53.48% after the samples were exposed to 75 mg/L ozone for 30, 60, and 90 min, respectively. The effect of ozonation on wheat flour quality and nutrition was also evaluated. No significant differences (P > 0.05) were found in protein content, fatty acid value, amino acid content, starch content, carbonyl and carboxyl content, and swelling power of ozone-treated samples. Moreover, the ozone-treated samples exhibited higher tenacity and whiteness, as well as lower extensibility and yellowness. This finding indicated that ozone treatment can simultaneously reduce DON levels and improve flour quality. PMID:26812055

  10. Physicochemical properties and consumer acceptance of wheat-germinated brown rice bread during storage time.

    PubMed

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Prinyawiwatkul, Witoon; No, Hong Kyoon; King, Joan M

    2010-08-01

    Selected physicochemical properties and consumer acceptance of bread prepared from composite flour (wheat:germinated brown rice:germinated glutinous brown rice flours at 60:30:10 ratio) were evaluated during storage for 0, 3, and 5 d, and compared with wheat bread (0 d, control). During storage, color profiles and water activity (from 0.947 to 0.932) of crumbs of composite flour breads slightly changed, but moisture content drastically decreased along with increasing crumb hardness (from 4.16 N to 10.37 N). Higher retrogradation in bread crumb was observed particularly for 5-d stored bread (DeltaH = 2.24 J/g) compared to that of the fresh composite bread and the control (DeltaH = 0.70 and 0.51 J/g, respectively). Mean (n = 116) overall liking score of the fresh composite flour bread (0 d) was slightly lower than that of the control (7.1 compared with 7.6 based on a 9-point hedonic scale). At least 76% of consumers would purchase the fresh composite flour bread if commercially available. Breads were differentiated by textural (moistness, smoothness, and softness) acceptability with canonical correlation of 0.84 to 0.87. The signal-to-noise ratio values of the 5-d stored breads were lower than the control, due mainly to the non-JAR (not-enough) intensity responses for moistness, smoothness, and softness; the mean drop of liking scores for these attributes ranged from 2.42 to 2.98. Flavor acceptability and overall liking were factors influencing consumers' purchase intent of composite flour breads based on logistic regression analysis. This study demonstrated feasibility of incorporating up to 40% germinated brown rice flour in a wheat bread formulation. Practical Application: Our previous study revealed that flours from germinated brown rice have better nutritional properties, particularly gamma-aminobutyric acid (GABA), than the nongerminated one. This study demonstrated feasibility of incorporating up to 40% germinated brown rice flour in a wheat bread formulation. In the current U.S. market, this type of bread may be sold as frozen bread that would have a longer shelf life, or may be supplied as a food-service product that would be made-to-order or made fresh daily as currently practiced in some major grocery stores.

  11. Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain

    PubMed Central

    Jo, Yeong-Min; Cho, Kyoungwon; Lee, Hye-Jung; Lim, Sun-Hyung; Kim, Jin Sun; Kim, Young-Mi; Lee, Jong-Yeol

    2017-01-01

    Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice. PMID:29156580

  12. Using different classification models in wheat grading utilizing visual features

    NASA Astrophysics Data System (ADS)

    Basati, Zahra; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-04-01

    Wheat is one of the most important strategic crops in Iran and in the world. The major component that distinguishes wheat from other grains is the gluten section. In Iran, sunn pest is one of the most important factors influencing the characteristics of wheat gluten and in removing it from a balanced state. The existence of bug-damaged grains in wheat will reduce the quality and price of the product. In addition, damaged grains reduce the enrichment of wheat and the quality of bread products. In this study, after preprocessing and segmentation of images, 25 features including 9 colour features, 10 morphological features, and 6 textual statistical features were extracted so as to classify healthy and bug-damaged wheat grains of Azar cultivar of four levels of moisture content (9, 11.5, 14 and 16.5% w.b.) and two lighting colours (yellow light, the composition of yellow and white lights). Using feature selection methods in the WEKA software and the CfsSubsetEval evaluator, 11 features were chosen as inputs of artificial neural network, decision tree and discriment analysis classifiers. The results showed that the decision tree with the J.48 algorithm had the highest classification accuracy of 90.20%. This was followed by artificial neural network classifier with the topology of 11-19-2 and discrimient analysis classifier at 87.46 and 81.81%, respectively

  13. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat.

    PubMed

    Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana

    2017-12-01

    Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Development of expanded extrusion food products for an Advanced Life Support system.

    PubMed

    Zasypkin, D V; Lee, T C

    1999-01-01

    Extrusion processing was proposed to provide texture and to expand the variety of cereal food products in an isolated Advanced Life Support (ALS) system. Rice, wheat, and soy are the baseline crops selected for growing during long-term manned space missions. A Brabender single-screw laboratory extruder (model 2003, L/D 20:1), equipped with round nozzles of various lengths, was used as a prototype of a small-size extruder. Several concepts were tested to extend the variety and improve the quality of the products, to decrease environmental loads, and to promote processing stability. These concepts include: the blending of wheat and soybean flour, the extrusion of a coarser rice flour, separation of wheat bran, and optimization of the extruder nozzle design. An optimal nozzle length has been established for the extrusion of rice flour. Bran separating was necessary to improve the quality of wheat extrudates.

  15. The Impact of Soft Factors on Quality Improvement in Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Chan, Shiau Wei; Fauzi Ahmad, Md; Kong, Mei Wan

    2017-08-01

    Nowadays, soft factors have become the key factors of success in quality improvement of an organisation. Many organisations have neglected the importance of soft factors, this may influence the organisational performance. Hence, the purpose of this research is to examine the impact of soft factors on quality improvement in manufacturing industries. Six hypotheses were examined while considering six dimensions of soft factors including management commitment, customer focus, supplier relationship, employee involvement, training and education, and reward and recognition that have a positive impact on quality improvement. In this study, eighty one managers from the quality department were randomly selected in the manufacturing industry in Batu Pahat, Johor. The questionnaires were distributed to them. The researcher analysed the quantitatively collected data using descriptive analysis and correlation analysis. The findings of this study revealed that all soft factors are correlated to the quality improvement in an organisation with a high significant value but the regression analysis shows that the supplier relationship and employee involvement has more significant impact on quality improvement as compared to other soft factors which contributes of this study.

  16. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii

    USDA-ARS?s Scientific Manuscript database

    Wheat is one of the most important staple grain crops in the world. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant losses in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located on the short ...

  17. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    PubMed

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Quality characteristics of bread and cookies enriched with debittered Moringa oleifera seed flour.

    PubMed

    Ogunsina, B S; Radha, C; Indrani, D

    2011-03-01

    The effects of replacing wheat flour with 0-15% debittered moringa seed (DBMS) flour on the dough rheology of wheat flour and physical, sensory and chemical properties of bread were studied. Incorporation of an increasing amount of DBMS from 0 to 15% decreased farinograph water absorption, dough stability, amylograph peak viscosity and overall quality of bread. The bread with 10% DBMS had a typical moringa seed taste and was acceptable. Addition of combination of additives improved the dough strength and quality of bread with 10% DBMS flour. Replacement of wheat flour with 10%, 20% and 30% DBMS grits was found to affect cookies quality. Cookies with 20% DBMS grits had the nutty taste of moringa seeds and were acceptable. Bread with 10% DBMS flour and cookies with 20% DBMS grits had more protein, iron and calcium. Incorporating moringa seeds in baked foods may be exploited as a means of boosting nutrition in Africa and Asia where malnutrition is prevalent.

  19. Role of ingredients in pasta product quality: a review on recent developments.

    PubMed

    Fuad, Tina; Prabhasankar, P

    2010-09-01

    Pasta is prepared using dough made from any suitable material such as semolina, durum flour, farina flour, corn, rice, wheat, or any combination of these, with water. Also, pasta can be enriched, supplemented, fortified, or remain conventional. In recent years, several ingredients and additives have been developed and are being used to improve the quality of pasta made from aestivum or durum wheat. Here we analyze how the different ingredients play an important role in pasta manufacture by enhancing nutritional parameters, palatability, and overall product quality.

  20. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad; Akhtar, Saeed; Sohaib, Muhammad

    2013-11-04

    Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010-11 & 2011-12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in humans.

  1. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns.

    PubMed

    Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

  2. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  3. Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation

    PubMed Central

    Pirgozliev, V.; Rose, S. P.; Pellny, T.; Amerah, A. M.; Wickramasinghe, M.; Ulker, M.; Rakszegi, M.; Bedo, Z.; Shewry, P. R.; Lovegrove, A.

    2015-01-01

    Different F5 recombinant inbred lines from the cross Yumai 34 × Ukrainka were grown in replicated trials on a single site in one harvest year at Rothamsted Research. A total of 10 samples from those lines were harvested and used in a broiler experiment. Twenty nutritionally complete meal-form diets that had 630 g/kg of wheat with different amounts of pentosan, with and without exogenous xylanase supplementation, were used to compare broiler growth performance and determine apparent metabolizable energy corrected for N retention (AMEn). We examined the relationship between the nutritive value of the wheat samples and their chemical compositions and results of quality tests. The amounts of total and water soluble pentosans in wheat samples ranged from 36.7 to 48.0 g/kg DM, and 6.7 to 11.6 g/kg DM, respectively. The mean crude oil and protein contents of the wheat samples were 10.5 and 143.9 g/kg DM, respectively. The average determined value for the kinematic viscosity was 0.0018 mPa.s, and 2.1 mPa.s for the dynamic viscosity. The AMEn of the wheat-based diets had a maximum range of 0.47 MJ/kg DM within the ten wheat samples that were tested. Xylanase supplementation improved (P < 0.05) dietary AMEn, dry matter, and fat digestibility coefficients. There was a positive (P < 0.05) relationship between in vitro kinematic viscosity of the wheat samples and the total pentosan content. There was a negative relationship between the total pentosan content in the wheat and broiler growth performance. An increase by 10 g of pentosan per kg of wheat reduced (P < 0.001) daily feed intake and weight gain by 2.9 g and 3.5 g, respectively. The study shows that the feeding quality of wheat samples can be predicted by their total pentosan content. Supplementary xylanase improved energy and nutrient availability of all wheat samples that was independent of differences in pentosan content. PMID:25595480

  4. Registration of 'Prevail' hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  5. Microbial Load of Hard Red Winter Wheat Produced at Three Growing Environments across Nebraska, USA.

    PubMed

    Sabillón, Luis; Stratton, Jayne; Rose, Devin J; Regassa, Teshome H; Bianchini, Andréia

    2016-04-01

    Post-flowering weather variables in farm fields may influence the microbial loads of wheat grain. In this study, the effects of weather variables following wheat flowering on the microbiological quality of wheat were evaluated over two consecutive growing seasons (2011 to 2012 and 2012 to 2013) in the state of Nebraska, USA. Three hard red winter wheat lines, including two commercial cultivars (Overland and McGill) and one experimental line (NW07505), were planted in three regions with contrasting key weather variables (Southeast, South Central, and Panhandle district) to ensure that developing seeds were exposed to different weather conditions. The natural microbial flora and deoxynivalenol concentrations of 54 freshly harvested wheat samples (three samples per wheat line, with a total of 9 samples per district) were analyzed to evaluate the impacts of the weather conditions prevailing from flowering to harvesting in each growing location (district) and season on the microbiological quality and safety of wheat grain. In 2012, the values for aerobic plate counts, Enterobacteriaceae, yeasts, molds, and internal mold infection levels were significantly lower in grain samples collected from the Panhandle district than in grain harvested from the South Central and Southeastern districts. No significant differences in the yeast counts were found in grain collected from all districts in 2013, but the levels of internal mold infection and mold counts were significantly higher in grain from the Southeastern district than in grain from the Panhandle district. Deoxynivalenol was detected in all districts; however, the concentrations were below the advisory level of 1 mg/kg for processed wheat. Microbial growth during grain development seems to be dependent on the existence of a threshold level of weather variables during the season. In general, the microbial loads in wheat grain tended to be lower in those areas with lower relative humidity levels (below 55%) and with temperatures lower than 13.7°C and higher than 31.5°C.

  6. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    PubMed

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  7. A Review of the Quality and Safety of Irradiated Food.

    DTIC Science & Technology

    1987-01-01

    Construction or Planned.................16 Figure 4: Changes in the Levels of Certain Vitamins in Different Meats Irradiated at High Doses..........24...In the twenty year5 prior to this action, irradiation had been approved for wheat, wheat products, and white potatoes but the process wa- * never used...restriu-t the ujse of . this process or require some type ol labeling. Conumri %>:~ concern about the safety and quality of irradiated food - ha

  8. USSR Report Agriculture.

    DTIC Science & Technology

    1986-04-04

    weak campaign is being waged against blight, powdery mildew , conditions which cause the grain losses to reach up to 7 and more quintals per hectare...production quality. Last year in the RSFSR over 9 million tons of high-quality grain, or 53 percent of the volume of wheat procurement, were procured. The...sown in winter wheat . Theseý crops have been assigned to brigades primarily on the basis of collective contracts. It is planned to produce over 900,000

  9. Germinated wheat: Phytochemical composition and mixing characteristics

    USDA-ARS?s Scientific Manuscript database

    Germinated grain recently attracts interest due to its beneficial effect on human health. In this research, whole wheat flour samples obtained after three days and five days of germination were analyzed for biochemical components, mixing quality, and effects on human breast cancer cells. Germinati...

  10. Physicochemical changes in nontraditional pasta during cooking

    USDA-ARS?s Scientific Manuscript database

    Changes in biochemical components of non-traditional spaghetti during cooking were reflected in the quality of the cooked product. Spaghetti samples were made from traditional and non-traditional formulations including semolina 100%, whole wheat flour 100%, semolina-whole wheat flour (49:51), semol...

  11. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm.

    PubMed

    Ma, Xiaoling; Sajjad, Muhammad; Wang, Jing; Yang, Wenlong; Sun, Jiazhu; Li, Xin; Zhang, Aimin; Liu, Dongcheng

    2017-09-20

    Kernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb. Using EcoTILLING platform, we herein investigated the allelic variations of Pina and Pinb genes and their association with the Single Kernel Characterization System (SKCS) hardness index in a diverse panel of wheat germplasm. The kernel hardness varied from 1.4 to 102.7, displaying a wide range of hardness index. In total, six Pina and nine Pinb alleles resulting in 15 genotypes were detected in 1787 accessions. The most common alleles are the wild type Pina-D1a (90.4%) and Pina-D1b (7.4%) for Pina, and Pinb-D1b (43.6%), Pinb-D1a (41.1%) and Pinb-D1p (12.8%) for Pinb. All the genotypes have hard type kernel hardness of SKCS index (>60.0), except the wild types of Pina and Pinb combination (Pina-D1a/Pinb-D1a). The most frequent genotypes in Chinese and foreign cultivars was Pina-D1a/Pinb-D1b (46.3 and 39.0%, respectively) and in Chinese landraces was Pina-D1a/Pinb-D1a (54.2%). The frequencies of hard type accessions are increasing from 35.5% in the region IV, to 40.6 and 61.4% in the regions III and II, and then to 77.0% in the region I, while those of soft type are accordingly decreasing along with the increase of latitude. Varieties released after 2000 in Beijing, Hebei, Shandong and Henan have higher average kernel hardness index than that released before 2000. The kernel hardness in a diverse panel of Chinese wheat germplasm revealed an increasing of kernel hardness generally along with the latitude across China. The wild type Pina-D1a and Pinb-D1a, and one Pinb mutant (Pinb-D1b) are the most common alleles of six Pina and nine Pinb alleles, and a new double null genotype (Pina-D1x/Pinb-D1ah) possessed relatively high SKCS hardness index. More hard type varieties were released in recent years with different prevalence of Pin-D1 combinations in different regions. This work would benefit the understanding of the selection and molecular processes of kernel hardness across China and different breeding stages, and provide useful information for the improvement of wheat quality in China.

  12. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia.

    PubMed

    Şeker, Cevdet; Özaytekin, Hasan Hüseyin; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan

    2017-04-01

    The sustainable use of agricultural lands is significantly affected by the implemented management and land processing methods. In sugar beet and wheat cropping, because the agronomic characteristics of plants are different, the tillage methods applied also exhibit significant variability. Soil quality concept is used, as a holistic approach to determining the effects of these applications on the sustainable use of soil. Agricultural soil quality evaluation is essential for economic success and environmental stability in rapidly developing regions. At present, a variety of methods are used to evaluate soil quality using different indicators. This study was conducted in one of the most important irrigated agriculture areas of Çumra plain in Central Anatolia, Turkey. In the soil under sugar beet and wheat cultivation, 12 soil quality indicators (aggregate stability (AS), available water capacity (AWC), surface penetration resistance (PR 0-20 ), subsurface penetration resistance (PR 20-40 ), organic matter (OM), active carbon (AC), potentially mineralizable nitrogen (PMN), root health value (RHV), pH, available phosphorus (AP), potassium (K), and macro-micro elements (ME) (Mg, Fe, Mn, and Zn)) were measured and scored according to the Cornell Soil Health Assessment (CSHA) and the Soil Management Assessment Framework (SMAF). The differences among 8 (AS, AWC, PR 0-20 , PR 20-40 , AC, PMN, AP, and ME) of these 12 soil quality characteristics measured in two different plant cultivation were found statistically significant. The result of the soil quality evaluation with scoring function in the examined area revealed a soil quality score of 61.46 in the wheat area and of 51.20 in the sugar beet area, which can be classified as medium and low, respectively. Low soil quality scores especially depend on physical and biological soil properties. Therefore, improvement of soil physical and biological properties with sustainable management is necessary to enhance the soil quality in the study area soils.

  13. Effects of variety, cropping year, location and fertilizer application on nutritive value of durum wheat straw.

    PubMed

    Tolera, A; Tsegaye, B; Berg, T

    2008-04-01

    This study was carried out to assess the effects of variety, year, location and level of fertilizer application on chemical composition and in sacco dry matter (DM) degradability of durum wheat straw as well as to understand the relationship between straw quality and agronomic traits of the crop and to assess the possibilities of selecting wheat varieties that combine high grain yield with desirable straw quality. Two local (Arendeto and Tikur sinde) and two improved (Boohai and Gerardo) varieties of durum wheat (Triticum turgidum Desf.) were used in the experiment. The four varieties were grown at two locations (Akaki and Ejere) in the years 2001/2002 and 2002/2003 in 5 x 5 m plots in three replications. Diammonium phosphate and urea fertilizers were applied at four levels (0/0, 32/23, 41/23 and 64/46 kg/ha of nitrogen/phosphorus). Straw quality was assessed based on chemical composition and in sacco DM degradability. Correlation of straw quality with grain and straw yield and with other agronomic characteristics of the crop was determined. The potential utility index (a measure that integrates grain and digestible straw yield) was used for ranking of the varieties. The local varieties had higher crude protein (CP) and lower neutral detergent fibre contents and higher digestibility than the improved varieties. The cropping year and location had significant effect on CP content and degradability of the straw, which could be due to climatic variation. However, the fertilizer level did not have any significant effect on straw quality except that the CP content of the straw tended to increase with increasing level of fertilizer application. Based on the potential utility index the varieties ranked, in a decreasing order, as Tikur sinde > Arendeto > Gerardo > Boohai and the ranking was consistent across years and locations. Except the CP content, straw quality was not negatively correlated with grain and straw yield. This indicates that there is a possibility of selecting varieties of wheat that combine high grain and straw yield with desirable straw quality.

  14. Identifying Rare FHB-Resistant Segregants in Intransigent Backcross and F2 Winter Wheat Populations.

    PubMed

    Clark, Anthony J; Sarti-Dvorjak, Daniela; Brown-Guedira, Gina; Dong, Yanhong; Baik, Byung-Kee; Van Sanford, David A

    2016-01-01

    Fusarium head blight (FHB), caused mainly by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)] in the US, is one of the most destructive diseases of wheat (Triticum aestivum L. and T. durum L.). Infected grain is usually contaminated with deoxynivalenol (DON), a serious mycotoxin. The challenge in FHB resistance breeding is combining resistance with superior agronomic and quality characteristics. Exotic QTL are widely used to improve FHB resistance. Success depends on the genetic background into which the QTL are introgressed, whether through backcrossing or forward crossing; QTL expression is impossible to predict. In this study four high-yielding soft red winter wheat breeding lines with little or no scab resistance were each crossed to a donor parent (VA01W-476) with resistance alleles at two QTL: Fhb1 (chromosome 3BS) and QFhs.nau-2DL (chromosome 2DL) to generate backcross and F2 progeny. F2 individuals were genotyped and assigned to 4 groups according to presence/ absence of resistance alleles at one or both QTL. The effectiveness of these QTL in reducing FHB rating, incidence, index, severity, Fusarium-damaged kernels (FDK) and DON, in F2-derived lines was assessed over 2 years. Fhb1 showed an average reduction in DON of 17.5%, and conferred significant resistance in 3 of 4 populations. QFhs.nau-2DL reduced DON 6.7% on average and conferred significant resistance in 2 of 4 populations. The combination of Fhb1 and QFhs.nau-2DL resistance reduced DON 25.5% across all populations. Double resistant lines had significantly reduced DON compared to double susceptible lines in 3 populations. Backcross derived progeny were planted in replicated yield trials (2011 and 2012) and in a scab nursery in 2012. Several top yielding lines performed well in the scab nursery, with acceptable DON concentrations, even though the average effect of either QTL in this population was not significant. Population selection is often viewed as an "all or nothing" process: if the average resistance level is insufficient, the population is discarded. These results indicate that it may be possible to find rare segregants which combine scab resistance, superior agronomic performance and acceptable quality even in populations in which the average effect of the QTL is muted or negligible.

  15. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia

    PubMed Central

    Januar, Indra; Wild, Christian; Kunzmann, Andreas

    2016-01-01

    Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts. PMID:27904802

  16. Study on grain quality forecasting method and indicators by using hyperspectral data in wheat

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Wang, Jihua; Liu, Liangyun; Wang, Zhijie; Tan, Changwei; Song, Xiaoyu; Wang, Jingdi

    2005-01-01

    Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, et al. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significant correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict of grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established for forecasting grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.

  17. Technological quality of dough and breads from commercial algarroba-wheat flour blends.

    PubMed

    Correa, M J; Salinas, M V; Carbas, B; Ferrero, C; Brites, C; Puppo, M C

    2017-06-01

    Algarroba flour is used to supplement lysine-limiting systems such as wheat flour due to its amino acidic composition. The effects of adding up to 30% of this flour to wheat flour (W-A30) on dough characteristics and breadmaking performance were studied. Dough rheology was tested by farinograph, oscillatory rheometry and texture profile analyses. Molecular mobility was evaluated by nuclear magnetic resonance, and thermal properties were analyzed by differential scanning calorimetry and viscoamylograph studies. Besides, different bread quality parameters were evaluated. Incorporation of algarroba flour resulted into increase in water absorption, development time and degree of softening, and decrease in stability of wheat flour, leading to softer, less adhesive and elastic dough, although at intermediate replacement levels cohesiveness improved. At the molecular level, a reduction of water activity and limited proton motion were observed in W-A30 samples, suggesting that protons were highly bound to the dough matrix. Dough samples with algarroba flour showed lower G' and G″ values than the control, although with the formation of a more elastic structure for W-A30. In addition, algarroba flour produced a protective effect on starch granule disruption and interfered with amylose-amylose association during cooling. The specific volume of breads decreased with the increase in algarroba level, W-A30 reaching the highest decrease (15%). Bread crumbs with algarroba flour exhibited higher values of hardness and resilience. The use of algarroba flour resulted in lower quality when compared to the control. However, algarroba flour at 20% level can be added to wheat flour to obtain bakery products of similar technological quality and with improved nutritional components.

  18. A high resolution radiation hybrid map of wheat chromosome 4A

    USDA-ARS?s Scientific Manuscript database

    Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequenc...

  19. Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production.

    PubMed

    Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro

    2017-06-01

    Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Cloning and Characterization of a Critical Regulator for Preharvest Sprouting in Wheat

    PubMed Central

    Liu, Shubing; Sehgal, Sunish K.; Li, Jiarui; Lin, Meng; Trick, Harold N.; Yu, Jianming; Gill, Bikram S.; Bai, Guihua

    2013-01-01

    Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production. PMID:23821595

  1. Association Analysis of Stem Rust Resistance in U.S. Winter Wheat

    PubMed Central

    Zhang, Dadong; Bowden, Robert L.; Yu, Jianming; Carver, Brett F.; Bai, Guihua

    2014-01-01

    Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RSAmigo (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK. PMID:25072699

  2. [Study of enzymes of xenobiotic metabolism in the evaluation of quality of protein-containing wheat germ flakes and wallpaper flour].

    PubMed

    Martinchuk, A N; E En Gyn; Safronova, A M; Peskova, E V

    1991-01-01

    Intake of wheat upholstery meal by growing rats was attended by a sharp decrease in the content and activity of xenobiotic metabolism enzymes in the hepatic microsomes, that was caused by the low biological value of the meal proteins. Hepatic microsomes of the rats that were fed with wheat germ flakes showed increased specific content of cytochromes P-450 and b5, but the total blood protein content per 100 g of body mass was lower than during casein consumption. No significant changes were detected in hydroxylation rate of benz(a)pyrene, aniline and ethylmorphine. During consumption of wheat germ flakes induction of UDP-glucuronide-transferase was detected in hepatic microsomes. Wheat germ flakes induced a 5-fold increase of Se-dependent glutathione peroxidase activity. Wheat germ flakes produced no significant effect on glutathione-S-aryltransferase and glutathione reductase activity.

  3. Pentaploid Wheat Hybrids: Applications, Characterisation, and Challenges

    PubMed Central

    Padmanaban, Sriram; Zhang, Peng; Hare, Ray A.; Sutherland, Mark W.; Martin, Anke

    2017-01-01

    Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat. PMID:28367153

  4. [The chiral mutagens: cytogenetic effects on higher plants].

    PubMed

    Morgun, V V; Larchenko, E A; Kostianovskiĭ, R G; Keterinchuk, A M

    2011-01-01

    The paper covers investigation of cytogenetic activity of chiral mutagens and their specific effects on the plant cells chromosomes of soft winter wheat (Triticum aestivum L.). Comparative analysis of cytogenetic activity of chiral NEU: S(+)1-N-nitroso- 1-N-methyl-3-N-sec-buthylureas (S(+)NMsBU) and R(-)1-N-nitroso- 1N-methyl-3-Nsec-buthylureas (R(-)NMsBU) on winter wheat was performed. As it was shown by the frequency of chromosomal aberrations the S(+) stereoisomer was twice more active than R(-). In addition to typical anaphase aberrations (fragments, bridges, lagging chromosomes) the numerous mitosis pathologies were revealed - K-mitoses, hyperspiralization and despiralization of chromosomes, unequal allocation of chromosomes between the daughter nuclei, mass fragmentation, nondisjunction and chromosome adhesion, three-pole mitoses, etc. Neither of the mentioned pathologies was observed under the action of NEU and gamma-rays.

  5. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    PubMed

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  6. Tracking arabinoxylans through the preparation of pancakes

    USDA-ARS?s Scientific Manuscript database

    Arabinoxylans (AX) are well known to have a wide-ranging influence on wheat (Triticum aestivum L.) end-use quality and are associated with health benefits as the major fiber constituent in wheat. Arabinoxylan content and properties are often assessed in raw flour and slurries and then correlated wit...

  7. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  8. Wheat breeding for quality: an historical review

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum spp. L.) is a leading cereal contributing to the nourishment of humankind. Since its domestication ca. 12 000 years ago, humans have profoundly influenced its evolution. In the more recent past, breeding via cross-hybridization and the selection of progeny with superior end-use quali...

  9. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    USDA-ARS?s Scientific Manuscript database

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  10. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in humans. PMID:24499336

  11. Impact of bran components on the quality of whole wheat bread

    USDA-ARS?s Scientific Manuscript database

    Whole grains contain components, such as dietary fiber, starch, fat, antioxidant nutrients, minerals, vitamin, lignans, and phenolic compounds, which are beneficial to human health. Most of the beneficial components are found in the germ and bran as part of a wheat kernel, which are reduced in the ...

  12. Spring wheat gliadins: Have they changed in 100 years?

    USDA-ARS?s Scientific Manuscript database

    There have been many hard red spring (HRS) wheat cultivars released in North Dakota during the last 100 years. These cultivars have been improved for various characteristics such as, adaptation to weather conditions, high yield, and good milling and baking quality. The objectives of this study wer...

  13. Flesh colour dominates consumer preference for chicken.

    PubMed

    Kennedy, Orla B; Stewart-Knox, Barbara J; Mitchell, Peter C; Thurnham, David I

    2005-04-01

    Existing research investigating interactions between visual and oral sensory cues has tended to use model food systems. In contrast, this study compared product quality assessments of corn-fed and wheat-fed chicken products among persons recruited in Northern Ireland. Three approaches have been adopted to investigate the effect of colour upon consumer choice of chicken: sensory assessment under normal lighting; focus group discussion; and sensory assessment under controlled lighting conditions. Initial consumer sensory assessment indicated that wheat-fed chicken was perceived to be tenderer and to have a more intense flavour than that which was corn-fed. Qualitative enquiry discerned that this was because consumers perceived the yellow colour of corn-fed chicken negatively. Yellow-coloured corn-fed chicken was therefore again compared with wheat-fed chicken in terms of flavour, texture and overall liking with the flesh colour disguised by means of controlled lighting. Quality ratings for corn-fed chicken were more positive when the yellow flesh colour was disguised, with corn-fed chicken judged to be tenderer than wheat-fed chicken and more flavoursome. This study illustrates the importance of using a combination of methods to gain insight into interactions between different sensory modalities in consumer quality judgements and adds to previous research on the importance of colour upon consumer choice of real foods.

  14. Effect of different iron compounds on wheat and gluten-free breads.

    PubMed

    Kiskini, Alexandra; Kapsokefalou, Maria; Yanniotis, Stavros; Mandala, Ioanna

    2010-05-01

    Iron fortification of bread often results in sub-optimal quality of the final product due to undesirable changes in the physical characteristics and sensory properties of the bread. In this study both the form of iron (soluble, insoluble or encapsulated) and the type of bread (wheat or gluten-free) were varied in order to investigate the effect of iron and gluten on the product characteristics. The effect of iron on the quality characteristics of the breads investigated depended on iron type, but not on iron solubility. Colour, crust firmness, specific volume, cell number and uniformity as well as aroma were the attributes that were mainly affected in iron-enriched wheat bread. In some cases, specific volume was 30% lower than that of the control sample, while cell uniformity was significantly lower, as low as 50% of the control sample in some fortified samples. In gluten-free breads, differences between unfortified and fortified samples included colour, crust firmness, cell number, 'moisture' odour, metallic taste and stickiness. In some cases, the sensory scores were better for fortified samples. Differences due to iron fortification were less pronounced in gluten-free compared to wheat breads. The choice of the appropriate iron compound which will not cause adverse quality changes is still a challenge.

  15. Flour sodium dodecyl sulfate (SDS)-extractable protein level as a cookie flour quality indicator.

    PubMed

    Pareyt, Bram; Bruneel, Charlotte; Brijs, Kristof; Goesaert, Hans; Delcour, Jan A

    2010-01-13

    Flour characteristics of laboratory-milled flour fractions of two wheat cultivars were related to their cookie-baking performance. Cultivar (cv.) Albatros wheat milling yielded fractions with lower damaged starch (DS) and arabinoxylan levels and higher sodium dodecyl sulfate-extractable protein (SDSEP) levels than did cv. Meunier wheat milling. During baking, cv. Albatros flour doughs spread faster and set later than their cv. Meunier counterparts and, hence, resulted in larger cookie diameters. DS levels negatively affected spread rate during both cv. Albatros (R2=0.68) and cv. Meunier (R2=0.51) cookie baking. SDSEP levels also influenced cookie quality. The use of flour heat-treated to reduce its SDSEP levels to different degrees led to reduction of the set time (R2=0.90). It was deduced that larger gluten polymer sizes limit dough spread time during baking and that, apart from DS level, the SDSEP level is an indicator for cookie flour quality.

  16. Chemical composition, rheological, quality characteristics and storage stability of buns enriched with coriander and curry leaves.

    PubMed

    Sudha, M L; Rajeswari, G; Venkateswara Rao, G

    2014-12-01

    Effect of addition of normal (NL) and dehydrated (DL) curry leaves (Murraya koeniggi) and coriander leaves (Corinadrum sativum) in the ratio of 1:1 to refined wheat flour (WF) or a blend of refined wheat flour-whole wheat flour (WF-WWF, 1:1) on the rheological, nutritional, storage and quality characteristics of the buns were studied. Water absorption increased on addition of increasing levels of DL from 0 to 7.5 % to WF-WWF when compared to WF. Dough weakening was greater when DL was added to WF-WWF as seen in decrease in dough stability and abscissa at rupture values. Addition of gluten and emulsifiers improved the quality characteristics of buns prepared using either 25 % NL or 5 % DL. Storage stability of buns with DL was better. The protein, dietary fiber, iron and carotenoids in buns prepared from WF-WWF were higher. The results indicate the utilization of leaves in dehydrated form in the preparation of nutritionally improved buns.

  17. Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour.

    PubMed

    Altenbach, Susan B; Tanaka, Charlene K; Seabourn, Bradford W

    2014-12-24

    The end-use quality of wheat flour varies as a result of the growth conditions of the plant. Among the wheat gluten proteins, the omega-5 gliadins have been identified as a major source of environmental variability, increasing in proportion in grain from plants that receive fertilizer or are subjected to high temperatures during grain development. The omega-5 gliadins also have been associated with the food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). Recently, transgenic lines with reduced levels of omega-5 gliadins were developed using RNA interference (RNAi). These lines make it possible to determine whether changes in the levels of omega-5 gliadins in response to environmental conditions and agronomic inputs may be responsible for changes in flour end-use quality. Two transgenic wheat lines and a non-transgenic control were grown under a controlled temperature regimen with or without post-anthesis fertilizer and the protein composition of the resulting flour was analyzed by quantitative two-dimensional gel electrophoresis (2-DE). In one transgenic line, all 2-DE spots identified as omega-5 gliadins were substantially reduced without effects on other proteins. In the other transgenic line, the omega-5 gliadins were absent and there was a partial reduction in the levels of the omega-1,2 gliadins and the omega-1,2 chain-terminating gliadins as well as small changes in several other proteins. With the exception of the omega gliadins, the non-transgenic control and the transgenic plants showed similar responses to the fertilizer treatment. Protein contents of flour were determined by the fertilizer regimen and were similar in control and transgenic samples produced under each regimen while both mixing time and mixing tolerance were improved in flour from transgenic lines when plants received post-anthesis fertilizer. The data indicate that omega-5 gliadins have a negative effect on flour quality and suggest that changes in quality with the growth environment may be due in part to alterations in the levels of the omega gliadins. Because a known food allergen and one of the major sources of environmentally-induced variation in wheat flour protein composition has been eliminated, the transgenic lines may yield flour with both improved end-use quality and more consistent functionality when grown in different locations.

  18. Quality Evaluation of Biscuits Supplemented with Alfalfa Seed Flour

    PubMed Central

    Ullah, Fahim; Ahmad, Sajjad; Wahab, Said; Zeb, Alam; Khan Khattak, Mansoor; Khan, Saleem; Kang, Min

    2016-01-01

    The effect of alfalfa seed flour supplementation on the quality characteristics of refined wheat flour-based biscuits was studied. The proximate composition of refined wheat flour and alfalfa seed flour was determined. Refined wheat flour contained 12.43% moisture, 11.52% crude protein, 1.61% crude fat, 0.71% crude fiber, 1.43% ash and 70.83% nitrogen free extract, while alfalfa seed flour contained 5.79%, 29.49%, 12.71%, 5.53%, 4.80% and 41.73% moisture, crude protein, crude fat, crude fiber, ash and nitrogen free extract correspondingly. Alfalfa seed flour at 5%, 10%, 15% and 20% supplementation levels was incorporated in refined wheat flour to produce composite flour. The biscuits prepared were subjected to quality evaluation. Physical analysis of biscuits disclosed that supplementation of alfalfa seed flour decreased the width from 47.25 to 42 mm and the spread factor from 62.7 to 53.12, while it increased the thickness from 7.53 to 8.10 mm. Supplementation of refined wheat flour–based biscuits with alfalfa seed flour at different inclusion levels significantly (p < 0.05) increased the crude protein content from 10.19% to 15.30%, the crude fiber content from 0.73% to 1.62%, the crude fat content from 17.46% to 21.59% and the ash content from 1.37% to 1.92%, whereas it decreased the moisture content from 3.57% to 3.26% and the nitrogen free extract from 66.90% to 59.32%. The effect of supplementation on the mineral contents of biscuits was also significant (p < 0.05). Potassium, magnesium, calcium, iron and zinc contents increased from 105.30, 14.65, 43.91, 3.74 and 0.94 to 145.00, 26.64, 79.60, 7.93 and 1.60 mg/100 g, respectively. Sensory evaluation revealed that the quality score of biscuits in terms of color, taste, texture and overall acceptability decreased with increased supplementation. The present research work confirmed that a maximum of 10% alfalfa seed flour supplementation in refined wheat flour could produce acceptable biscuits with an appropriate nutritional profile. PMID:28231168

  19. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains.

    PubMed

    Qiu, Jianbo; Dong, Fei; Yu, Mingzheng; Xu, Jianhong; Shi, Jianrong

    2016-10-01

    The Fusarium graminearum species complex infects several cereals and causes the reduction of grain yield and quality. Many factors influence the extent of Fusarium infection and mycotoxin levels. Such factors include crop rotation. In the present study, we explored the effect of rice or maize as former crops on mycotoxin accumulation in wheat grains. More than 97% of samples were contaminated with deoxynivalenol (DON). DON concentrations in wheat grains from rice and maize rotation fields were 884.37 and 235.78 µg kg(-1) . Zearalenone (ZEN) was detected in 45% of samples which were mainly collected from maize-wheat rotation systems. Fusarium strains were isolated and more F. graminearum sensu stricto (s. str.) isolates were cultured from wheat samples obtained from maize rotation fields. DON levels produced by Fusarium isolates from rice rotation fields were higher than those of samples from maize rotation fields. Rice-wheat rotation favours DON accumulation, while more ZEN contamination may occur in maize-wheat rotation models. Appropriate crop rotation may help to reduce toxin levels in wheat grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Effect of wheat stem sawfly damage on yield and quality of selected Canadian spring wheat.

    PubMed

    Beres, B L; Cárcamo, H A; Byers, J R

    2007-02-01

    The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), has reached outbreak status at most locations in the southern Canadian prairies. Solid-stemmed wheat, Triticum aestivum L., cultivars, which are less susceptible to damage, remain the primary management option. This article quantifies the effect of wheat stem sawfly damage on grain yield and quality at harvest and determines how cultivar selection affects harvest losses. Solid-stemmed cultivars were compared with hollow-stemmed cultivars and with blends of a 1:1 ratio of each. The hollow-stemmed cultivars with the exception of'McKenzie', which had intermediate levels of stem cutting, were all significantly more susceptible to stem cutting than solid-stemmed cultivars. Cultivar blends had lower damage but were still significantly higher than the solid-stemmed cultivars. The solid-stemmed 'AC Eatonia' and 'AC Abbey' had the lowest levels of stem cutting and ranked second and third overall for yield in 2001 and 2002. McKenzie ranked first, which reflects its yield potential in combination with its partial resistance to stem cutting. Lower cutting in AC Eatonia, AC Abbey, McKenzie, and the blend of AC Abbey/ McKenzie was significantly correlated with lower grain losses. Grain lost at harvest has major economic implications if sawfly pressure is moderate to high and susceptible cultivars predominate.

  1. Effect of extruded wheat flour and pre-gelatinized cassava starch on process and quality parameters of French-type bread elaborated from frozen dough.

    PubMed

    Ortolan, Fernanda; Brites, Lara Tatiane G; Montenegro, Flávio M; Schmiele, Marcio; Steel, Caroline J; Clerici, Maria Teresa P S; Almeida, Eveline L; Chang, Yoon K

    2015-10-01

    This study aimed to verify the potential of extruded wheat flour (EWF) or pre-gelatinized cassava starch (PGS) to improve the process and the quality of French bread elaborated from frozen dough. Three formulations were prepared: 100% control wheat flour (CWF) and the other two formulations with 5% substitution of wheat flour by EWF or PGS. Frozen doughs were frozen stored for seven days and after this period they were thawed, fermented, baked and evaluated for physical, chemical and technological characteristics. Available glucose levels found for EWF (12g/100g), and PGS (11.7g/100g) in relation to CWF (7.1g/100g) showed higher sugar availability for yeasts at the initial stage of proofing, and may also have had a cryoprotective effect when freezing bread doughs. The frozen doughs with EWF or PGS, when thawed and fermented, presented higher volume increase, but after baking, they presented lower volume when compared to the control bread. The results of this study are promising for the use of extruded wheat flour or pre-gelatinized cassava starch as sugar providers for doughs' post-freezing proofing process, improving frozen dough process of French-type bread. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum.

    PubMed

    Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava

    2012-03-09

    The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  3. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    PubMed

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  < 0.05) decreasing bread volume and increasing specific volume, respectively, as bambara inclusion increased. There was significant ( P  < 0.05) difference between wheat bread and the bambara-wheat composites in all the studied quality attributes. 15% bambara-wheat composite bread was the most accepted amongst the composite breads. Inclusion of bambara flour improved the protein behavior of the composite, but did not evidently show benefits in the baking characteristics.

  4. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.)

    PubMed Central

    2013-01-01

    Background Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. Results A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. Conclusions Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele possessed relatively high SKCS hardness index. This study can provide useful information for the improvement of wheat quality, as well as give a deeper understanding of the molecular and genetic processes controlling grain texture in bread wheat. PMID:24011219

  5. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID:16772040

  6. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy.

    PubMed

    De Santis, Michele A; Giuliani, Marcella M; Giuzio, Luigia; De Vita, Pasquale; Lovegrove, Alison; Shewry, Peter R; Flagella, Zina

    2017-07-01

    The impact of breeding on grain yields of wheat varieties released during the 20th century has been extensively studied, whereas less information is available on the changes in gluten quality associated with effects on the amount and composition of glutenins and gliadins. In order to explore the effects of breeding during the 20th century on gluten quality of durum wheat for processing and health we have compared a set of old and modern Italian genotypes grown under Mediterranean conditions. The better technological performance observed for the modern varieties was found to be due not only to the introgression of superior alleles of high (HMW-GS) and low molecular weight (LMW-GS) glutenin subunits encoded at Glu-B1 and Glu-B3 loci , but also to differential expression of specific storage proteins. In particular, the higher gluten index observed in modern genotypes was correlated with an increased glutenin/gliadin ratio and the expression of B-type LMW-GS which was, on average, two times higher in the modern than in the old group of durum wheat genotypes. By contrast, no significant differences were found between old and modern durum wheat genotypes in relation to the expression of α-type and γ-type gliadins which are major fractions that trigger coeliac disease (CD) in susceptible individuals. Furthermore, a drastic decrease was observed in the expression of ω-type gliadins in the modern genotypes, mainly ω-5 gliadin (also known as Tri a 19) which is a major allergen in wheat dependent exercise induced anaphylaxis (WDEIA). Immunological and 2DE SDS-PAGE analyses indicated that these differences could be related either to a general down-regulation or to differences in numbers of isoforms. Lower rainfall during grain filling period was related to overall higher expression of HMW-GS and ω-gliadins. In conclusion, breeding activity carried out in Italy during the 20th century appears to have improved durum wheat gluten quality, both in relation to technological performance and allergenic potential.

  7. Gene expression profiling of drought stress responses in widely adapted wheat cutlivars TAM 111 and TAM 112

    USDA-ARS?s Scientific Manuscript database

    Water deficit stress between the booting and grain filling stages significantly affect grain yield and quality of hard red winter wheat. Several stress tolerant cultivars with different adaptation mechanisms have been released and are widely cultivated on the Southern Great Plains of the US. How...

  8. Registration of ‘Ok102’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Ok102’ (Reg. no. CV-941, PI 632635) is a hard red winter wheat (Triticum aestivum L.) developed cooperatively by the Oklahoma Agric. Exp. Stn. and the USDA-ARS. Ok102 was released in March 2002, primarily on the basis of its resistance to several foliar diseases, excellent milling quality, and desi...

  9. Falling number sampling variation within trucks at first point of sale

    USDA-ARS?s Scientific Manuscript database

    Falling number (FN) is a test widely performed on raw samples of wheat and barley as a means to indicate the level of enzyme activity, alpha-amylase, associated with seed germination. In most circumstances of wheat, high activity levels are associated with decreased quality of the end products, and...

  10. Modeling of dough mixing profile under thermal and non thermal constraint for evalution of breadmaking quality of Hard Spring Wheat flour

    USDA-ARS?s Scientific Manuscript database

    This research was initiated to investigate the association between flour breadmaking traits and mixing characteristics and empirical dough rheological property under thermal stress. Flour samples from 30 hard spring wheat were analyzed by a mixolab standard procedure at optimum water absorptions. Mi...

  11. Examining the transcriptional response in wheat Fhb1 near-isogenic lines to Fusarium graminearum infection and deoxynivalenol treatment

    USDA-ARS?s Scientific Manuscript database

    Fusarium Head Blight (FHB) is a disease caused by the fungal pathogen Fusarium graminearum that affects wheat and other small grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON), accumulate during infection and increa...

  12. Navy bean flour particle size and protein content affect cake baking and batter quality

    USDA-ARS?s Scientific Manuscript database

    Whole navy bean flour and its fine and coarse particle size fractions were used to completely replace wheat flour in cakes. Replacement of wheat flour with whole bean flour significantly increased the protein content. The protein content was adjusted to three levels with navy bean starch. The effect...

  13. Effects of Earthworm (Eisenia fetida) and Wheat (Triticum aestivum) Straw Additions on Selected Properties of Petroleum-Contaminated Soils

    Treesearch

    Mac A. Callaham; Arthur J. Stewart; Clara Alarcon; Sara J. McMillen

    2002-01-01

    Current bioremediation techniques for petroleum-contaminated soils are designed to remove contaminants as quickly and efficiently as possible, but not necessarily with postremediation soil biological quality as a primary objective. To test a simple postbioremediation technique, we added earthworms (Eisenia fetida) or wheat (Triticum aestivum...

  14. Identification and functional expression of ZIP1 transporter protein in Triticum dicoccoides

    USDA-ARS?s Scientific Manuscript database

    Zinc (Zn) deficiency is a common problem, especially in cereal-growing areas, leading to severe decreases in grain yield and nutritional quality. Among the cereal species, durum wheat is the most sensitive crop to Zn deficiency. One major reason for this high sensitivity of durum wheat is its poor ...

  15. Effects of transgene-encoded high-molecular weight glutenin proteins in wheat flour blends and sponge and dough baking

    USDA-ARS?s Scientific Manuscript database

    HMW glutenin subunits are the most important determinants of wheat (Triticum aestivum L.) bread-making quality, and subunit composition explains a large percentage of the variability observed between genotypes. Experiments were designed to elevate expression of a key native HMW glutenin subunit (1D...

  16. Effects of post-anthesis fertilizer on the protein composition of the gluten polymer in a US bread wheat

    USDA-ARS?s Scientific Manuscript database

    Both genetic and environmental factors influence the types and amounts of wheat proteins that link together to form polymers essential for flour quality. To understand how plant growth conditions might influence gluten polymer formation, protein fractions containing small and large polymers were se...

  17. Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars

    USDA-ARS?s Scientific Manuscript database

    The accurate identification of alleles for high-molecular weight glutenins (HMW-GS) is critical for wheat breeding programs targeting end-use quality. RP-HPLC methods were optimized for separation of HMW-GS, resulting in enhanced resolution of 1By and 1Dx subunits. Statistically significant differe...

  18. Lack of evidence for a decrease in synthetic pesticide use on the main arable crops in France.

    PubMed

    Hossard, Laure; Guichard, Laurence; Pelosi, Céline; Makowski, David

    2017-01-01

    The frequent, widespread use of pesticides in agriculture adversely affects biodiversity, human health, and water quality. In 2008, the French government adopted an environmental policy plan, "Ecophyto 2018", to halve pesticide use within 10years. Trends in synthetic pesticide sales and use in France were described, through three different indicators: the number of unit doses (NUD), the quantity of active ingredient (QAI), and the treatment frequency index (TFI). Changes in pesticide use on seven of the principal arable crops in France since the implementation of this policy plan were analyzed, together with the impact of changes in pesticide use on water quality. No evidence was found for a decrease in pesticide sales at national level between 2008 and 2013. In terms of the TFI values for individual crops, the only decrease in pesticide use observed since 2001 was for soft wheat. This decrease was very slight, and pesticide use did not decline more rapidly after 2006 than before. Changes in pesticide use differed between French regions and crops. Water pollution did not decrease during the period studied. Possible explanations for the lack of effectiveness of the French environmental plan are considered in the context of European legislation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characterization of wheat endoplasmic reticulum oxidoreductin 1 and its application in Chinese steamed bread.

    PubMed

    Liu, Guang; Wang, JingJing; Hou, Yi; Huang, Yan-Bo; Wang, JiaJia; Li, Cunzhi; Guo, ShiJun; Li, Lin; Hu, Song-Qing

    2018-08-01

    This study investigated characteristics of recombinant wheat Endoplasmic Reticulum Oxidoreductin 1 (wEro1) and its influence on Chinese steamed bread (CSB) qualities. The purified wEro1 monomer, which contained two conserved redox active motif sites, bound to flavin adenine dinucleotide (FAD) cofactor with a molecular weight of ∼47 kDa. wEro1 catalyzed the reduction of both bound and free FAD, and its reduction activity of free FAD reached 7.8 U/mg. Moreover, wEro1 catalyzed the oxidation of dithiothreitol and wheat protein disulfide isomerase (wPDI). Both glutathione and the reduced ribonuclease could work as electron donors for wEro1 in catalyzing the oxidation of wPDI. Additionally, wEro1 supplementation improved the CSB qualities with an increased specific volume of CSB and decreased crumb hardness, which was attributed to water-insoluble wheat proteins increasing and gluten network strengthening. The results give an understanding of the properties and function of wEro1 to facilitate its application especially in the flour-processing industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Transglutaminases: a meeting point for wheat allergy, celiac disease, and food safety.

    PubMed

    Malandain, H

    2005-12-01

    Wheat is the staple cereal in many countries and its uses in manufactured foods are ever growing due to the technological qualities of gluten proteins. Transglutaminases (TG) are ubiquitous enzymes with many functions. They are able to transform proteins by deamidation and/or transamidation. This last reaction can cross-link proteins together. Intestinal tissue TG has been shown to play an important role in two kinds of immune reactions to wheat: celiac disease and wheat-dependent exercise-induced anaphylaxis. In addition, new epitopes have been suspected in cases of anaphylaxis to wheat isolates, a food ingredient consisting mainly of deamidated gluten proteins. As a microbial TG is included in many food technological processes, its safe use should be checked. This assessment must cover not only the safety of the TG itself but also that of the deamidated/cross-linked proteins generated by this enzyme. This article aims at discussing the possible consequences of using TG in food industry in the light of today knowledge about immune reactions to wheat.

  1. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI

    PubMed Central

    Wang, Cheng; Zeng, Jian; Li, Yin; Yang, Guangxiao; He, Guangyuan

    2014-01-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g–1 of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g–1 of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g–1 of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. PMID:24692648

  2. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress.

    PubMed

    Cui, Fa; Fan, Xiaoli; Chen, Mei; Zhang, Na; Zhao, Chunhua; Zhang, Wei; Han, Jie; Ji, Jun; Zhao, Xueqiang; Yang, Lijuan; Zhao, Zongwu; Tong, Yiping; Wang, Tao; Li, Junming

    2016-03-01

    QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.

  3. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    PubMed

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  4. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins.

    PubMed

    Acevedo-Pacheco, Laura; Serna-Saldívar, Sergio O

    2016-01-01

    One way to diminish protein malnutrition in children is by enriching cereal-based flours for the manufacturing of maize tortillas, wheat flour tortillas, and yeast-leavened breads, which are widely consumed among low socio-economic groups. The aim was to determine and compare the essential amino acid (EAA) scores, protein digestibility corrected amino acid scores (PDCAAS), and in vivo protein quality (protein digestibility, protein efficiency ratio (PER), biological values (BV), and net protein utilization (NPU) values) of regular versus soybean-fortified maize tortillas, yeast-leavened bread, and wheat flour tortillas. To comparatively assess differences in protein quality among maize tortillas, wheat flour tortillas, and yeast-leavened breads, EAA compositions and in vivo studies with weanling rats were performed. The experimental diets based on regular or soybean-fortified food products were compared with a casein-based diet. Food intake, weight gains, PER, dry matter and protein digestibility, BV, NPU, and PDCAAS were assessed. The soybean-fortified tortillas contained 6% of defatted soybean flour, whereas the yeast-leavened bread flour contained 4.5% of soybean concentrate. The soybean-fortified tortillas and bread contained higher amounts of lysine and tryptophan, which improved their EAA scores and PDCAAS. Rats fed diets based on soybean-fortified maize or wheat tortillas gained considerably more weight and had better BV and NPU values compared with counterparts fed with respective regular products. As a result, fortified maize tortillas and wheat flour tortillas improved PER from 0.73 to 1.64 and 0.69 to 1.77, respectively. The PER improvement was not as evident in rats fed the enriched yeast-leavened bread because the formulation contained sugar that decreased lysine availability possibly to Maillard reactions. The proposed enrichment of cereal-based foods with soybean proteins greatly improved PDCAAS, animal growth, nitrogen retention, and PER primarily in both maize and wheat flour tortillas. Therefore, these foods can help to diminish protein malnutrition among children who greatly depend on cereals as the main protein dietary source.

  5. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    PubMed

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  6. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom

    PubMed Central

    Farzana, Tasnim; Mohajan, Suman

    2015-01-01

    The research study was conducted to evaluate the quality characteristics of soy-mushroom-enriched biscuits which could be used as a protein supplemented cereal snack food. In this study, wheat flour was replaced with soy flour at different levels that is 20% (T3), 15% (T2), and 10% (T1) and without soy flour was kept as control (To). Mushroom was added in both biscuits. Biscuits were analyzed for chemical and sensory parameters. Protein content of soy flour-supplemented biscuits increased from 11.07% to 17.86% as compared to control along with a significant increased in fat (17.36–20.89%), fiber (0.48–0.92%), iron (1.56–1.99 mg/100 g), and energy value (463–485 Kcal/g). Ash content also increased but not significantly. Results from chemical analyses and organoleptic evaluation indicate that good quality biscuits can be prepared by substituting wheat flour with 15% soy flour and addition of mushroom powders may affect the backing quality. Protein Energy Malnutrition (PEM) of the Bangladeshi population can be reduced through the development of biscuits in this way. PMID:26405522

  7. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom.

    PubMed

    Farzana, Tasnim; Mohajan, Suman

    2015-09-01

    The research study was conducted to evaluate the quality characteristics of soy-mushroom-enriched biscuits which could be used as a protein supplemented cereal snack food. In this study, wheat flour was replaced with soy flour at different levels that is 20% (T3), 15% (T2), and 10% (T1) and without soy flour was kept as control (To). Mushroom was added in both biscuits. Biscuits were analyzed for chemical and sensory parameters. Protein content of soy flour-supplemented biscuits increased from 11.07% to 17.86% as compared to control along with a significant increased in fat (17.36-20.89%), fiber (0.48-0.92%), iron (1.56-1.99 mg/100 g), and energy value (463-485 Kcal/g). Ash content also increased but not significantly. Results from chemical analyses and organoleptic evaluation indicate that good quality biscuits can be prepared by substituting wheat flour with 15% soy flour and addition of mushroom powders may affect the backing quality. Protein Energy Malnutrition (PEM) of the Bangladeshi population can be reduced through the development of biscuits in this way.

  8. Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?

    PubMed

    Fardet, Anthony

    2015-12-01

    While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Disinfestation of different cereal products by irradiation

    NASA Astrophysics Data System (ADS)

    Kovács, E.; Kiss, I.; Boros, A.; Horváth, Ny.; Tóth, J.; Gyulai, P.; Szalma, Á.

    The sensitivity of overlineTribolium confusum - small flour beetle - to radiation was studied in a dose range of 0-0.8 kGy. We found that the insect egg was the most sensitive to radiation, then larvae and pupae followed it. 0.2 kGy dose of irradiation kills these forms or their further development is inhibited. Imagoes do not immediately die after 0.8 kGy dose of irradiation; the young imagoes are more sensitive to radiation than the aged ones. 0.4 kGy average dose of irradiation is a suitable protection against overlineTribolium confusum. Disinfestation experiments were performed with wheat-germ and wheat-bran and parallelly the most important ingredients of the two products were analysed. The vitamin E content and the rate of lipid-oxidation of wheat germ were determined. The vitamin E content decreased after radiation treatment, however, during storage of at least 6 months, it remained at a level specified by food quality standards (higher than 10 mg%). Carbohydrate content of wheat-bran (water soluble carbohydrate content, crude-fibre and dietary fibre content) did not change at all. Storability of radiation disinfested wheat-germ was 8 months, wheat-bran 3-4 months. On the base of the results 2-2 tons of wheat-germ and wheat-bran were irradiated and trial marked in 1985. In 1986 the irradiation of 10 tons of wheat-germ is planned.

  10. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    PubMed Central

    2012-01-01

    Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum. PMID:22405032

  11. Phytate negatively influences wheat dough and bread characteristics by interfering with cross-linking of glutenin molecules

    USDA-ARS?s Scientific Manuscript database

    The influence of added phytate on dough properties and bread baking quality was studied to determine the role of phytate in the impaired functional properties of whole grain wheat flour for baking bread. Phytate addition to refined flour at a 1% level substantially increased mixograph mixing time, g...

  12. Navy bean flour particle size and protein content affect cake baking and batter quality

    USDA-ARS?s Scientific Manuscript database

    There is a great demand for wheat alternatives in foods, particularly baked goods, as gluten sensitivity increases. Baked goods such as cakes have wheat flour as a major ingredient, which is rich in gluten protein. Bean proteins do not have gluten, and are a good source of soluble fiber, B-vitamins,...

  13. Influence of instrument rigidity and specimen geometry on calculations of compressive strength properties of wheat endosperm

    USDA-ARS?s Scientific Manuscript database

    Endosperm texture is one of the most important quality features in wheat that defines milling energy requirements and the suitability of flour or semolina for the various food products such as pan breads, crackers, cakes, and pastas. Rooted in low molecular weight proteins known as puroindolines a a...

  14. Unravling Key metabolomic alterations of embryos derived from water-imbibed seeds of two wheat cultivars contrasting with contrasting dormancy status

    USDA-ARS?s Scientific Manuscript database

    Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS) which deteriorates yield and quality of the crop. Metabolic homeostasis of embryo and endosperm plays a role in seed dormancy, and determines the status of the maturing grains either as dormant (PHS-tolerant) ...

  15. Quality of signatures. [spectral signatures of winter wheat grown in Texas

    NASA Technical Reports Server (NTRS)

    Kan, E. P. F.

    1974-01-01

    Three conclusions are drawn on the usability, inherent variations, and noise aspects of the spectral signatures processed from data collected by the Field Signature Acquisition System (FSAS). Conclusions are based on the spectral data collected from winter wheat of the 1972/73 season, grown at Texas A and M University, College Station, Texas.

  16. [Effects of shading at different phases of grain-filling on wheat grain protein components contents and processing quality].

    PubMed

    Shi, Yu; Chen, Mao-xue; Yu, Zhen-wen; Xu, Zhen-zhu

    2011-10-01

    Taking three wheat cultivars Jimai 20 (strong gluten), Taishan 23 (medium gluten), and Ningmai 9 (weak gluten) as test materials, a field experiment was conducted to examine the effects of shading at different phases of grain-filling on the grain protein components contents and processing quality. Four treatments were installed, i. e., no shading (S0), shading at early grain-filling phase (from 0 day after anthesis (DAA) to 11 DAA; S1), shading at medium grain-filling phase (from 12 DAA to 23 DAA; S2), and shading at late grain-filling phase (from 24 DAA to 35 DAA; S3). No significant differences were observed in the grain albumin+globulin contents of the three cultivars among the four treatments. Shading increased the grain HMW-GS, LMW-GS, gluten, glutenin, and total protein contents of Jimai 20 and Taishan 23 significantly, and the increments were higher in treatment S2 than in other shading treatments. Treatments S2 and S3 increased the grain protein components contents of Ningmai 9 significantly. Comparing with the control, shading decreased the grain yield significantly, but increased the dough development time, dough stability time, and sedimentation volume, especially for treatment S2, which suggested that the wheat grain quality had a close relationship with the light intensity at medium phase of grain-filling. Overall, the regulation effect of shading at grain-filling stage on the wheat grain yield, grain protein components contents, and indices values of grain processing quality for the test cultivars was in the order of Jimai 20 > Taishan 23 > Ningmai 9.

  17. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    PubMed

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  18. Effect of whole wheat flour on the quality, texture profile, and oxidation stability of instant fried noodles.

    PubMed

    Cao, Xinlei; Zhou, Sumei; Yi, Cuiping; Wang, Li; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2017-12-01

    The effects of whole wheat flour (WWF) on pasting properties of instant fried noodle dry mix and quality of final product were investigated in this research. Refined wheat flour in the recipe for instant-fried noodle was replaced by WWF at different levels. The peak and final viscosities were significantly and negatively correlated to WWF substitution level. With increasing WWF level, the hardness, cohesiveness, adhesiveness, and resilience values of instant fried noodles decreased by 11.63, 16.23, 16.67, 20.00%, respectively. WWF darkened noodle's surface color and increased its oil content (26.63%). A porous and less uniformed structure of the WWF instant fried noodles was observed by a scanning electron microscope. Moreover, the WWF incorporation lowered peroxide values of the instant fried noodles during storage. In conclusion, even though the oil content increased, WWF was helpful to inhibit the oil oxidation and produce instant fried noodles with softer texture and less sticky surface. Refined wheat flour in the recipe for instant-fried noodle was replaced by whole wheat flour (WWF), which is rich in dietary fibers, vitamins, and other bioactive compounds. The addition of WWF delayed the retrogradation tendency of starch in the dry mix. WWF-added instant noodles had softer texture, less sticky surface, and lower peroxide value. Based on the results of this study, the refined wheat flour in the recipe for instant-fried noodle could be partially replaced by WWF to make noodles with better texture profile and higher consumer acceptance. © 2017 Wiley Periodicals, Inc.

  19. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.

    PubMed

    Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W

    2016-06-17

    A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  20. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    PubMed

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Quality assurance of the international computerised 24 h dietary recall method (EPIC-Soft).

    PubMed

    Crispim, Sandra P; Nicolas, Genevieve; Casagrande, Corinne; Knaze, Viktoria; Illner, Anne-Kathrin; Huybrechts, Inge; Slimani, Nadia

    2014-02-01

    The interview-administered 24 h dietary recall (24-HDR) EPIC-Soft® has a series of controls to guarantee the quality of dietary data across countries. These comprise all steps that are part of fieldwork preparation, data collection and data management; however, a complete characterisation of these quality controls is still lacking. The present paper describes in detail the quality controls applied in EPIC-Soft, which are, to a large extent, built on the basis of the EPIC-Soft error model and are present in three phases: (1) before, (2) during and (3) after the 24-HDR interviews. Quality controls for consistency and harmonisation are implemented before the interviews while preparing the seventy databases constituting an EPIC-Soft version (e.g. pre-defined and coded foods and recipes). During the interviews, EPIC-Soft uses a cognitive approach by helping the respondent to recall the dietary intake information in a stepwise manner and includes controls for consistency (e.g. probing questions) as well as for completeness of the collected data (e.g. system calculation for some unknown amounts). After the interviews, a series of controls can be applied by dietitians and data managers to further guarantee data quality. For example, the interview-specific 'note files' that were created to track any problems or missing information during the interviews can be checked to clarify the information initially provided. Overall, the quality controls employed in the EPIC-Soft methodology are not always perceivable, but prove to be of assistance for its overall standardisation and possibly for the accuracy of the collected data.

  2. Expert study to select indicators of the occurrence of emerging mycotoxin hazards.

    PubMed

    Kandhai, M C; Booij, C J H; Van der Fels-Klerx, H J

    2011-01-01

    This article describes a Delphi-based expert judgment study aimed at the selection of indicators to identify the occurrence of emerging mycotoxin hazards related to Fusarium spp. in wheat supply chains. A panel of 29 experts from 12 European countries followed a holistic approach to evaluate the most important indicators for different chain stages (growth, transport and storage, and processing) and their relative importance. After three e-mailing rounds, the experts reached consensus on the most important indicators for each of the three stages: wheat growth, transport and storage, and processing. For wheat growth, these indicators include: relative humidity/rainfall, crop rotation, temperature, tillage practice, water activity of the kernels, and crop variety/cultivar. For the transport and storage stage, they include water activity in the kernels, relative humidity, ventilation, temperature, storage capacity, and logistics. For wheat processing, indicators include quality data, fraction of the cereal used, water activity in the kernels, quality management and traceability systems, and carryover of contamination. The indicators selected in this study can be used in an identification system for the occurrence of emerging mycotoxin hazards in wheat supply chains. Such a system can be used by risk managers within governmental (related) organizations and/or the food and feed industry in order to react proactively to the occurrence of these emerging mycotoxins. © 2010 Society for Risk Analysis.

  3. Quality Evaluation of Chicken Nugget Formulated with Various Contents of Chicken Skin and Wheat Fiber Mixture

    PubMed Central

    Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei

    2015-01-01

    This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (p<0.05), and increased with increasing the concentrations of SFM-1 and SFM-2. The addition of SFM-1 and SFM-2 had no significant effect on the pH of the samples. The lightness value of uncooked chicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets. PMID:26761796

  4. Quality Evaluation of Chicken Nugget Formulated with Various Contents of Chicken Skin and Wheat Fiber Mixture.

    PubMed

    Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei

    2015-01-01

    This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (p<0.05), and increased with increasing the concentrations of SFM-1 and SFM-2. The addition of SFM-1 and SFM-2 had no significant effect on the pH of the samples. The lightness value of uncooked chicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets.

  5. [Supplementation of wheat flour with chickpea (Cicer arietinum) flour. I. Preparation of flours and their properties for bread making].

    PubMed

    Figuerola, F E; Estévez, A M; Castillo, E

    1987-06-01

    The feasibility of adding chick-pea flour substituting part of wheat flour in yeast-leavened bread-making in order to increase the protein value, was studied. A 70% extraction chick-pea flour of commercial granulometry (150 mu) was prepared. Wheat flours of 74% and 78% extraction were then blended with 5%, 10% and 15% of chick-pea flour. Every flour and blend were subsequently analyzed to determine protein, ash, fiber, fat and maltose content, as well as sedimentation, farinogram and bread-making. Addition of chick-pea flour increased protein, fiber, ash and fat content in the blends, not causing a severe effect on quality, even at the 15% level of substitution. Blends showed an increase in maltose content, W value and bread specific volume. Furthermore, breads prepared were of good quality even without the use of maturing agents.

  6. Quality characteristics of bread produced from wheat, rice and maize flours.

    PubMed

    Rai, Sweta; Kaur, Amarjeet; Singh, Baljit; Minhas, K S

    2012-12-01

    Rice (Oryza sativa) flour and maize (Zea mays) meal substitution in wheat (Triticum aestivum) flour, from 0 to 100% each, for the production of bread was investigated. The proximate analysis, pasting properties, bread making qualities of raw materials and sensory evaluation of the bread samples were determined. The pasting temperature increased with increased percentage of rice flour and maize meal. But the other pasting characters decreased with the higher proportion of rice flour. The baking absorption was observed to increase with higher level of maize meal but it decreased when level of rice flour was increased. Loaf weight (g) decreased with progressive increase in the proportion of maize meal but increased when rice flour incorporation was increased. Loaf volume, loaf height and specific volume decreased for progressively higher level of maize meal and rice flour. The sensory evaluation revealed that 25% replacement of wheat flour was found to be more acceptable than control sample.

  7. Wheat differential gene expression induced by different races of Puccinia triticina.

    PubMed

    Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P

    2018-01-01

    Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.

  8. Bioprocessing of wheat and paddy straw for their nutritional up-gradation.

    PubMed

    Sharma, Rakesh Kumar; Arora, Daljit Singh

    2014-07-01

    Solid-state bioprocessing of agricultural residues seems to be an emerging and effective method for the production of high quality animal feed. Seven strains of white-rot fungi were selected to degrade wheat and paddy straw (PS) under solid-state conditions. Degradation of different components, i.e., hemicellulose, cellulose and lignin was evaluated along with nutritional parameters including; in vitro digestibility, crude protein, amino acids, total phenolic contents (TPC) etc. Effect of nitrogen-rich supplements on degradation of lignocellulosics was evaluated using two best selected fungal strains (Phlebia brevispora and Phlebia floridensis). The best selected conditions were used to upscale the process up to 200 g batches of wheat and PS. Lignin was selectively degraded up to 30 % with a limited loss of 11-12 % in total organic matter. Finally, the degraded agro-residues demonstrated 50-62 % enhancement in their digestibility. Two-threefold enhancement in other nutritional quality (amino acids, TPCs and antioxidant activity) fortifies the process. Thus the method is quite helpful to design an effective solid-state fermentation system to improve the nutritive quality of agricultural residues by simultaneous production of lignocellulolytic enzyme production and antioxidants.

  9. Influence of doum (Hyphaene thebaica L.) flour addition on dough mixing properties, bread quality and antioxidant potential.

    PubMed

    Aboshora, Waleed; Lianfu, Zhang; Dahir, Mohammed; Qingran, Meng; Musa, Abubakr; Gasmalla, Mohammed A A; Omar, Khamis Ali

    2016-01-01

    In this covenant of functional foods, the world seeks for new healthier food products with appropriate proportions of bioactive constituents such as fiber, mineral elements, phenols and flavonoids. The doum fruit has good nutritional and pharmaceutical properties; therefore, its incorporation in breads could be beneficial in improving human health. In the current study, partial substitution of wheat flour (WF) with doum fruit flour (DFF) at levels of 5 %, 10 %, 15 % and 20 % were carried out to investigate the dough viscoelastic properties, baking performance, proximate compositions and antioxidant properties of the breads. Partial substitution of WF with DFF increased the water absorption and developing time of dough (P ≤ 0.05), while, the dough extensibility, resistance to extension and the deformation energy were reduced. Bread supplemented with DFF resulted in a reduction in quality in terms of specific loaf volume, conferred softness, hardness, cohesiveness and gumminess to the bread crumbs. DFF up to 15 % could partially replace WF in bread; increase its nutritional value in terms of fiber content and minerals, with only a small depreciation in the bread quality. Sensory evaluation showed that breads supplemented up to 15 % DFF were acceptable to the panelists and there was no significant difference in terms of taste, texture and overall acceptability compared to the control. The incorporation of DFF increased the total phenolic contents, total flavonoids contents and antioxidant properties compared to the control (for both flour and bread).

  10. Recommended data sets, corn segments and spring wheat segments, for use in program development

    NASA Technical Reports Server (NTRS)

    Austin, W. W. (Principal Investigator)

    1981-01-01

    The sets of Large Area Crop Inventory Experiment sites, crop year 1978, which are recommended for use in the development and evaluation of classification techniques based on LANDSAT spectral data are presented. For each site, the following exists: (1) accuracy assessment digitized ground truth; (2) a minimum of 5 percent of the scene ground truth identified as corn or spring wheat; and (3) at least four acquisitions of acceptable data quality during the growing season of the crop of interest. The recommended data sets consist of 41 corn/soybean sites and 17 spring wheat sites.

  11. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages.

    PubMed

    Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee

    2017-07-10

    Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.

  12. Effects of energy supplementation on energy losses and nitrogen balance of steers fed green-chopped wheat pasture I. Calorimetry

    USDA-ARS?s Scientific Manuscript database

    Providing an energy supplement to cattle grazing high-quality wheat pasture can increase average daily gain; however the effects on greenhouse gas emissions are not known. Therefore we used 10 British cross-bred steers (initial weight: 206 ± 10.7 kg) in a respiration calorimetry study to evaluate t...

  13. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology and baking quality in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...

  14. Suitability of spring wheat varieties for the production of best quality pizza.

    PubMed

    Tehseen, Saima; Anjum, Faqir Muhammad; Pasha, Imran; Khan, Muhammad Issa; Saeed, Farhan

    2014-08-01

    The selection of appropriate wheat cultivars is an imperative issue in product development and realization. The nutritional profiling of plants and their cultivars along with their suitability for development of specific products is of considerable interests for multi-national food chains. In this project, Pizza-Hut Pakistan provided funds for the selection of suitable newly developed Pakistani spring variety for pizza production. In this regard, the recent varieties were selected and evaluated for nutritional and functional properties for pizza production. Additionally, emphasis has been paid to assess all varieties for their physico-chemical attributes, rheological parameters and mineral content. Furthermore, pizza prepared from respective flour samples were further evaluated for sensory attributes Results showed that Anmool, Abadgar, Imdad, SKD-1, Shafaq and Moomal have higher values for protein, gluten content, pelshenke value and SDS sedimentation and these were relatively better in studied parameters as compared to other varieties although which were considered best for good quality pizza production. TD-1 got significantly highest score for flavor of pizza and lowest score was observed from wheat variety Kiran. Moreover, it is concluded from current study that all wheat varieties except TJ-83 and Kiran exhibited better results for flavor.

  15. Biochemical and molecular characterization of Avena indolines and their role in kernel texture.

    PubMed

    Gazza, Laura; Taddei, Federica; Conti, Salvatore; Gazzelloni, Gloria; Muccilli, Vera; Janni, Michela; D'Ovidio, Renato; Alfieri, Michela; Redaelli, Rita; Pogna, Norberto E

    2015-02-01

    Among cereals, Avena sativa is characterized by an extremely soft endosperm texture, which leads to some negative agronomic and technological traits. On the basis of the well-known softening effect of puroindolines in wheat kernel texture, in this study, indolines and their encoding genes are investigated in Avena species at different ploidy levels. Three novel 14 kDa proteins, showing a central hydrophobic domain with four tryptophan residues and here named vromindoline (VIN)-1,2 and 3, were identified. Each VIN protein in diploid oat species was found to be synthesized by a single Vin gene whereas, in hexaploid A. sativa, three Vin-1, three Vin-2 and two Vin-3 genes coding for VIN-1, VIN-2 and VIN-3, respectively, were described and assigned to the A, C or D genomes based on similarity to their counterparts in diploid species. Expression of oat vromindoline transgenes in the extra-hard durum wheat led to accumulation of vromindolines in the endosperm and caused an approximate 50 % reduction of grain hardness, suggesting a central role for vromindolines in causing the extra-soft texture of oat grain. Further, hexaploid oats showed three orthologous genes coding for avenoindolines A and B, with five or three tryptophan residues, respectively, but very low amounts of avenoindolines were found in mature kernels. The present results identify a novel protein family affecting cereal kernel texture and would further elucidate the phylogenetic evolution of Avena genus.

  16. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    PubMed Central

    Zhang, Gaisheng; Ju, Lan; Zhang, Jiao; Yu, Yongang; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world’s most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1–induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1–induced male sterile wheat and is a valuable source of data for future research in SQ-1–induced wheat male sterility. PMID:25898130

  17. Using Synchrotron Radiation-Based Infrared Microspectroscopy to Reveal Microchemical Structure Characterization: Frost Damaged Wheat vs. Normal Wheat

    PubMed Central

    Xin, Hangshu; Zhang, Xuewei; Yu, Peiqiang

    2013-01-01

    This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774–1475 cm−1), structural carbohydrates (SCHO, ca. 1498–1176 cm−1), cellulosic compounds (CELC, ca. 1295–1176 cm−1), total carbohydrates (CHO, ca. 1191–906 cm−1) and non-structural carbohydrates (NSCHO, ca. 954–809 cm−1). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains. PMID:23949633

  18. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system.

    PubMed

    Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

  19. Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes.

    PubMed

    Ahmad, Zulfiqar; Butt, Masood Sadiq; Ahmed, Anwaar; Riaz, Muhammad; Sabir, Syed Mubashar; Farooq, Umar; Rehman, Fazal Ur

    2014-10-01

    The present study was conducted to investigate the impact of various treatments of xylanase produced by Aspergillus niger applied in bread making processes like during tempering of wheat kernels and dough mixing on the dough quality characteristics i.e. dryness, stiffness, elasticity, extensibility, coherency and bread quality parameters i.e. volume, specific volume, density, moisture retention and sensory attributes. Different doses (200, 400, 600, 800 and 1,000 IU) of purified enzyme were applied to 1 kg of wheat grains during tempering and 1 kg of flour (straight grade flour) during mixing of dough in parallel. The samples of wheat kernels were agitated at different intervals for uniformity in tempering. After milling and dough making of both types of flour (having enzyme treatment during tempering and flour mixing) showed improved dough characteristics but the improvement was more prominent in the samples receiving enzyme treatment during tempering. Moreover, xylanase decreased dryness and stiffness of the dough whereas, resulted in increased elasticity, extensibility and coherency and increase in volume & decrease in bread density. Xylanase treatments also resulted in higher moisture retention and improvement of sensory attributes of bread. From the results, it is concluded that dough characteristics and bread quality improved significantly in response to enzyme treatments during tempering as compared to application during mixing.

  20. Major controlling factors and prediction models for arsenic uptake from soil to wheat plants.

    PubMed

    Dai, Yunchao; Lv, Jialong; Liu, Ke; Zhao, Xiaoyan; Cao, Yingfei

    2016-08-01

    The application of current Chinese agriculture soil quality standards fails to evaluate the land utilization functions appropriately due to the diversity of soil properties and plant species. Therefore, the standards should be amended. A greenhouse experiment was conducted to investigate arsenic (As) enrichment in various soils from 18 Chinese provinces in parallel with As transfer to 8 wheat varieties. The goal of the study was to build and calibrate soil-wheat threshold models to forecast the As threshold of wheat soils. In Shaanxi soils, Wanmai and Jimai were the most sensitive and insensitive wheat varieties, respectively; and in Jiangxi soils, Zhengmai and Xumai were the most sensitive and insensitive wheat varieties, respectively. Relationships between soil properties and the bioconcentration factor (BCF) were built based on stepwise multiple linear regressions. Soil pH was the best predictor of BCF, and after normalizing the regression equation (Log BCF=0.2054 pH- 3.2055, R(2)=0.8474, n=14, p<0.001), we obtained a calibrated model. Using the calibrated model, a continuous soil-wheat threshold equation (HC5=10((-0.2054 pH+2.9935))+9.2) was obtained for the species-sensitive distribution curve, which was built on Chinese food safety standards. The threshold equation is a helpful tool that can be applied to estimate As uptake from soil to wheat. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.

  2. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    PubMed

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  3. Identification of Intact High Molecular Weight Glutenin Subunits from the Wheat Proteome Using Combined Liquid Chromatography-Electrospray Ionization Mass Spectrometry

    PubMed Central

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction. PMID:23520527

  4. Security Quality Requirements Engineering (SQUARE) Methodology

    DTIC Science & Technology

    2005-11-01

    such as Joint Application Development and the Accelerated Requirements Method [Wood 89, Hubbard 99] • Soft Systems Methodology [Checkland 89...investigated were misuse cases [Jacobson 92], Soft Systems Methodology (SSM) [Checkland 89], Quality Function Deployment (QFD) [QFD 05], Con- trolled...html (2005). [Checkland 89] Checkland, Peter. Soft Systems Methodology . Rational Analysis for a Problematic World. New York, NY: John Wiley & Sons

  5. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat

    PubMed Central

    Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin

    2013-01-01

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes. PMID:23536608

  6. [Analysis of storage proteins (prolamines, puroindolines and waxy) in common wheat lines Triticum aestivum L. x (Triticum timopheevii Zhuk. x Triticum tauschii) with complex resistance to fungal infections].

    PubMed

    Obukhova, L V; Laĭkova, L I; Shumnyĭ, V K

    2010-06-01

    Storage proteins (prolamines, puroindolines, and Waxy) were studied in common wheat introgression lines obtained with the use of the Saratovskaya 29 (S29) cultivar line and synthetic hexaploid wheat (Triticum timopheevii Zhuk. x T. tauschii) (Sintetik, Sin.) and displaying complex resistance to fungal infections. Comparative analysis of storage proteins in the introgression lines of common wheat Triticum aestivum L. and in the parental forms revealed the only line (BC5) having a substitution at the Gli-B2 locus from Sintetik. Hybrid lines subjected to nine back crosses with the recurrent parental form S29 and selections for resistance to pathogens can be considered as nearly isogenic for the selected trait and retaining the allelic composition of (1) prolamines responsible for the bread-making qualitiy, (2) puroindolines associated with grain texture, and (3) Waxy proteins responsible for nutritive qualities. These lines are valuable as donors of immunity in breeding programs without the loss of the quality of flour and grain as compared to the S29 line and are also important in searching for genes determining resistance to leaf and stem rust and to powdery mildew. The amphiploid has a number of characters (silent Glu-A 1 locus and Ha genotype) that can negatively affect the quality of flour and grain and thus should be taken into account when choosing this donor.

  7. Coexpression of the High Molecular Weight Glutenin Subunit 1Ax1 and Puroindoline Improves Dough Mixing Properties in Durum Wheat (Triticum turgidum L. ssp. durum)

    PubMed Central

    Li, Xiaoyan; Xiao, Xin; Sun, Fusheng; Wang, Cheng; Hu, Wei; Feng, Zhijuan; Chang, Junli; Chen, Mingjie; Wang, Yuesheng; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat. PMID:23185532

  8. Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum).

    PubMed

    Li, Yin; Wang, Qiong; Li, Xiaoyan; Xiao, Xin; Sun, Fusheng; Wang, Cheng; Hu, Wei; Feng, Zhijuan; Chang, Junli; Chen, Mingjie; Wang, Yuesheng; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat.

  9. The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition.

    PubMed

    Nikolic, Miroslav; Nikolic, Nina; Kostic, Ljiljana; Pavlovic, Jelena; Bosnic, Predrag; Stevic, Nenad; Savic, Jasna; Hristov, Nikola

    2016-05-15

    The deficiency of zinc (Zn) and iron (Fe) is a global issue causing not only considerable yield losses of food crops but also serious health problems. We have analysed Zn and Fe concentrations in the grains of two bread wheat cultivars along native gradient of micronutrient availability throughout Serbia. Although only 13% of the soil samples were Zn deficient and none was Fe deficient, the levels of these micronutrients in grain were rather low (median values of 21 mg kg(-1) for Zn and 36 mg kg(-1) for Fe), and even less adequate in white flour. Moreover, excessive P fertilization of calcareous soils in the major wheat growing areas strongly correlated with lower grain concentration of Zn. Our results imply that a latent Zn deficiency in wheat grain poses a high risk for grain quality relevant to human health in Serbia, where wheat bread is a staple food. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gene networks in the synthesis and deposition of protein polymers during grain development of wheat.

    PubMed

    She, Maoyun; Ye, Xingguo; Yan, Yueming; Howit, C; Belgard, M; Ma, Wujun

    2011-03-01

    As the amino acid storing organelle, the protein bodies provide nutrients for embryo development, seed germination and early seedling growth through storage proteolysis in cereal plants, such as wheat and rice. In protein bodies, the monomeric and polymeric prolamins, i.e. gliadins and glutenins, form gluten and play a key role in determining dough functionality and end-product quality of wheat. The formation of intra- and intermolecular bonds, including disulphide and tyrosine bonds, in and between prolamins confers cohesivity, viscosity, elasticity and extensibility to wheat dough during mixing and processing. In this review, we summarize recent progress in wheat gluten research with a focus on the fundamental molecular biological aspects, including transcriptional regulation on genes coding for prolamin components, biosynthesis, deposition and secretion of protein polymers, formation of protein bodies, genetic control of seed storage proteins, the transportation of the protein bodies and key enzymes for determining the formation of disulphide bonds of prolamin polymers.

  11. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.

    PubMed

    Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula

    2017-08-01

    Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses <20kDa) was determined for breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients

    PubMed Central

    Lamacchia, Carmela; Camarca, Alessandra; Picascia, Stefania; Di Luccia, Aldo; Gianfrani, Carmen

    2014-01-01

    The gluten-free diet is, to date, the only efficacious treatment for patients with Celiac Disease. In recent years, the impressive rise of Celiac Disease incidence, dramatically prompted changes in the dietary habit of an increasingly large population, with a rise in demand of gluten-free products. The formulation of gluten-free bakery products presents a formidable challenge to cereal technologists. As wheat gluten contributes to the formation of a strong protein network, that confers visco-elasticity to the dough and allows the wheat flour to be processed into a wide range of products, the preparation of cereal-based gluten-free products is a somehow difficult process. This review focuses on nutritional and technological quality of products made with gluten-free cereals available on the market. The possibility of using flour from naturally low toxic ancient wheat species or detoxified wheat for the diet of celiacs is also discussed. PMID:24481131

  13. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins

    PubMed Central

    Acevedo-Pacheco, Laura; Serna-Saldívar, Sergio O.

    2016-01-01

    Background One way to diminish protein malnutrition in children is by enriching cereal-based flours for the manufacturing of maize tortillas, wheat flour tortillas, and yeast-leavened breads, which are widely consumed among low socio-economic groups. Objective The aim was to determine and compare the essential amino acid (EAA) scores, protein digestibility corrected amino acid scores (PDCAAS), and in vivo protein quality (protein digestibility, protein efficiency ratio (PER), biological values (BV), and net protein utilization (NPU) values) of regular versus soybean-fortified maize tortillas, yeast-leavened bread, and wheat flour tortillas. Design To comparatively assess differences in protein quality among maize tortillas, wheat flour tortillas, and yeast-leavened breads, EAA compositions and in vivo studies with weanling rats were performed. The experimental diets based on regular or soybean-fortified food products were compared with a casein-based diet. Food intake, weight gains, PER, dry matter and protein digestibility, BV, NPU, and PDCAAS were assessed. The soybean-fortified tortillas contained 6% of defatted soybean flour, whereas the yeast-leavened bread flour contained 4.5% of soybean concentrate. Results The soybean-fortified tortillas and bread contained higher amounts of lysine and tryptophan, which improved their EAA scores and PDCAAS. Rats fed diets based on soybean-fortified maize or wheat tortillas gained considerably more weight and had better BV and NPU values compared with counterparts fed with respective regular products. As a result, fortified maize tortillas and wheat flour tortillas improved PER from 0.73 to 1.64 and 0.69 to 1.77, respectively. The PER improvement was not as evident in rats fed the enriched yeast-leavened bread because the formulation contained sugar that decreased lysine availability possibly to Maillard reactions. Conclusions The proposed enrichment of cereal-based foods with soybean proteins greatly improved PDCAAS, animal growth, nitrogen retention, and PER primarily in both maize and wheat flour tortillas. Therefore, these foods can help to diminish protein malnutrition among children who greatly depend on cereals as the main protein dietary source. PMID:27765143

  14. Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China.

    PubMed

    Yuan, Qing-Song; Yang, Peng; Wu, Ai-Bo; Zuo, Dong-Yun; He, Wei-Jie; Guo, Mao-Wei; Huang, Tao; Li, He-Ping; Liao, Yu-Cai

    2018-04-24

    Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom) and storage times (3, 6, 9, and 12 months). The fungal community in wheat on the first day of storage (T₀) included 105 classified species (81 genera) and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%), Filobasidium floriforme (27%), Fusarium graminearum (12%), and Wallemia sebi (12%). Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13⁻34% higher in all positions at 3 months compared to T₀, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24⁻57% higher than at T₀. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T₀ and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models.

  15. Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties.

    PubMed

    Jan, Ulfat; Gani, Adil; Ahmad, Mudasir; Shah, Umar; Baba, Waqas N; Masoodi, F A; Maqsood, Sajid; Gani, Asir; Wani, Idress Ahmed; Wani, S M

    2015-10-01

    Buckwheat flour was incorporated into wheat flour at different levels (0, 20, 40, 60, 80, and 100 %) and the physicochemical, functional and antioxidant properties of the blended flour were studied. This study also investigated the effect of buckwheat on the retention of antioxidant properties of cookies during baking. The results showed significant variation in physicochemical and functional properties of the blended flour. The addition of buckwheat flour into wheat flour also increased the antioxidant properties of blended flour proportionally, but metal chelating properties decreased. The incorporation of buckwheat in wheat flour helped in better retention of antioxidant potential of cookies during baking process as buckwheat cookies (100 % buckwheat) showed greater percentage increase in antioxidant properties than control (100 % wheat). Quality characteristics of cookies such as hardness and spread ratio decreased, while as non-enzymatic browning (NEB) increased significantly with increase in the proportion of buckwheat flour in wheat flour. The Overall acceptability of cookies by sensory analysis was highest at 40 % level of blending. This study concluded that addition of buckwheat in wheat flour, may not only improve the physico-chemical and functional properties of the blended flour but may also enhance the nutraceutical potential of the product prepared from it.

  16. Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China

    PubMed Central

    Yuan, Qing-Song; Yang, Peng; Zuo, Dong-Yun; He, Wei-Jie; Guo, Mao-Wei; Huang, Tao; Li, He-Ping; Liao, Yu-Cai

    2018-01-01

    Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom) and storage times (3, 6, 9, and 12 months). The fungal community in wheat on the first day of storage (T0) included 105 classified species (81 genera) and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%), Filobasidium floriforme (27%), Fusarium graminearum (12%), and Wallemia sebi (12%). Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13–34% higher in all positions at 3 months compared to T0, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24–57% higher than at T0. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T0 and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models. PMID:29695035

  17. Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels.

    PubMed

    Amiour, Nardjis; Merlino, Marielle; Leroy, Philippe; Branlard, Gérard

    2002-06-01

    Wheat proteins and specially gluten proteins have been well studied and are closely associated with baking products. Amphiphilic proteins (proteins that are soluble using nonionic detergent Triton X-114 ) also play an important role in wheat quality. Some of them, like puroindolines, are lipid binding proteins, and are strongly linked to dough foaming properties and to fine crumb texture. However many amphiphilic proteins are still unknown and both their physiological and technological functions remain to be analysed. In order to explore these proteins, proteomic analysis was carried out using 81 F9 lines, progeny obtained from an interspecific cross "W7984"x"Opata", and already used to built a map of more than 2000 molecular markers (International Triticeae Mapping Initiative, ITMImap). Two-dimensional electrophoresis (immobilized pH gradient (pH 6-11)x sodium dodecyl sulfate-polyacrylamide gel electrophoresis) was performed on amphiphilic proteins with three to five replicates for each line. Silver stained gels were analysed using Melanie 3 software. Genetic determinism was carried out on 170 spots segregating between the two parental hexaploïd wheats. Many of these spots were mapped on different chromosomes of the ITMImap. Spots of interest were identified using matrix-assisted laser desorption/ionization-time of flight and some of them were partly sequenced using electrospray ionization-tandem mass spectrometry. This proteomic approach provided some very useful information about some proteic components linked to bread wheat quality and particularly to kernel hardness.

  18. Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.).

    PubMed

    Adrees, Muhammad; Ibrahim, Muhammad; Shah, Aamir Mehmood; Abbas, Farhat; Saleem, Farhan; Rizwan, Muhammad; Hina, Saadia; Jabeen, Fariha; Ali, Shafaqat

    2016-05-01

    Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.

  19. Health risk assessment of heavy metals in wheat using different water qualities: implication for human health.

    PubMed

    Khan, Zafar Iqbal; Ahmad, Kafeel; Rehman, Sidrah; Siddique, Samra; Bashir, Humayun; Zafar, Asma; Sohail, Muhammad; Ali, Salem Alhajj; Cazzato, Eugenio; De Mastro, Giuseppe

    2017-01-01

    In the recent years, the use of sewage water for irrigation has attracted the attention of arid and semi-arid countries where the availability of fresh water is poor. Despite the potential use of sewage water in crop irrigation as effective and sustainable strategy, the environmental and human risks behind this use need to be deeply investigated. In this regard, an experiment was carried out under field conditions in Nursery, University College of Agriculture Sargodha, to evaluate the possible health risks of undesirable metals in wheat grains. Wheat variety Sarang was cultivated and irrigated with different combinations of ground (GW) and sewage water (SW). The concentrations of heavy metals (Cr, Cd, Ni, and Pb) and trace elements (Cu, Zn, and Fe) in wheat grains as well as in soil were determined. Moreover, the pollution load index (PLI), accumulation factor (AF), daily intake of metals (DIM), and health risk index (HRI) were calculated. Results showed that the concentration trend of heavy metals was Pb

  20. Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu.

    PubMed

    Luo, Guangbin; Zhang, Xiaofei; Zhang, Yanlin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Zhang, Aimin; Liu, Dongcheng

    2015-02-28

    Wheat (AABBDD, 2n = 6x = 42) is a major dietary component for many populations across the world. Bread-making quality of wheat is mainly determined by glutenin subunits, but it remains challenging to elucidate the composition and variation of low-molecular-weight glutenin subunits (LMW-GS) genes, the major components for glutenin subunits in hexaploid wheat. This problem, however, can be greatly simplified by characterizing the LMW-GS genes in Triticum urartu, the A-genome donor of hexaploid wheat. In the present study, we exploited the high-throughput molecular marker system, gene cloning, proteomic methods and molecular evolutionary genetic analysis to reveal the composition, variation, expression and evolution of LMW-GS genes in a T. urartu population from the Fertile Crescent region. Eight LMW-GS genes, including four m-type, one s-type and three i-type, were characterized in the T. urartu population. Six or seven genes, the highest number at the Glu-A3 locus, were detected in each accession. Three i-type genes, each containing more than six allelic variants, were tightly linked because of their co-segregation in every accession. Only 2-3 allelic variants were detected for each m- and s-type gene. The m-type gene, TuA3-385, for which homologs were previously characterized only at Glu-D3 locus in common wheat and Aegilops tauschii, was detected at Glu-A3 locus in T. urartu. TuA3-460 was the first s-type gene identified at Glu-A3 locus. Proteomic analysis showed 1-4 genes, mainly i-type, expressed in individual accessions. About 62% accessions had three active i-type genes, rather than one or two in common wheat. Southeastern Turkey might be the center of origin and diversity for T. urartu due to its abundance of LMW-GS genes/genotypes. Phylogenetic reconstruction demonstrated that the characterized T. urartu might be the direct donor of the Glu-A3 locus in common wheat varieties. Compared with the Glu-A3 locus in common wheat, a large number of highly diverse LMW-GS genes and active genes were characterized in T. urartu, demonstrating that this progenitor might provide valuable genetic resources for LMW-GS genes to improve the quality of common wheat. The phylogenetic analysis provided molecular evidence and confirmed that T. urartu was the A-genome donor of hexaploid wheat.

  1. Functionality of maize, wheat, teff and cassava starches with stearic acid and xanthan gum.

    PubMed

    Maphalla, Thabelang Gladys; Emmambux, Mohammad Naushad

    2016-01-20

    Consumer concerns to synthetic chemicals have led to strong preference for 'clean' label starches. Lipid and hydrocolloids are food friendly chemicals. This study determines the effects of stearic acid and xanthan gum alone and in combination on the functionality of maize, wheat, teff and cassava starches. An increase in viscosity was observed for all starches with stearic acid and xanthan gum compared to the controls with cassava having the least increase. A further increase in viscosity was observed for the cereal starches with combination of stearic acid and xanthan gum. Stearic acid reduced retrogradation, resulting in soft textured pastes. Combination of stearic acid and xanthan gum reduced the formation of type IIb amylose-lipid complexes, syneresis, and hysteresis in cereal starches compared to stearic acid alone. A combination of stearic acid and xanthan gum produce higher viscosity non-gelling starches and xanthan gum addition increases physical stability to freezing and better structural recovery after shear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Frequency-dependent transition from homogeneous to constricted shape in surface dielectric barrier discharge and its impact on biological target

    NASA Astrophysics Data System (ADS)

    Lazukin, A. V.; Serdukov, Y. A.; Pinchuk, M. E.; Stepanova, O. M.; Krivov, S. A.; Grabelnykh, O. I.

    2018-01-01

    The results of an experimental research of influence the surface dielectric discharge products excited by alternating sinusoidal voltage with RMS of 3.5 kV across the barrier of aluminum nitride with frequency of 50 Hz-100 kHz on a germination of soft winter wheat (Triticum aestivum L.) are presented. The stimulation effect on seedling morphological characteristics (sprout length and total length of roots) was observed but its reproducibility with combining the same processing conditions and subsequent germination is insignificant.

  3. Development of hypoimmunogenic muffins: batter rheology, quality characteristics, microstructure and immunochemical validation.

    PubMed

    Ashwini; Umashankar, K; Rajiv, Jyotsna; Prabhasankar, P

    2016-01-01

    A high demand exists for gluten free and hypoimmunogenic products from gluten sensitive population. The present study focuses on the development of hypoimmunogenic muffins using a combination of the blend (CB) consisting of modified (protease treated) Whole Wheat Flour (WWF) and Pearl Millet Flour (PMF). The batter density of CB was 0.97, and it varied between 0.91-0.93 and 0.97-0.99 g/cc with the use of emulsifiers and hydrocolloids respectively. The volume of the muffin made using CB was 70 mL, and it increased to 120 mL with the combination of additives (CAD) comprising of Carboxy Methyl Cellulose (CMC) and Polysorbate-60 (PS-60). The muffins made of CB + CAD had the lowest hardness (19.8 N) and gumminess (6.6 N) values and highest springiness value (13.3 mm) indicating that the texture was soft. Sensory characteristics of the muffin made with CB + CAD were good and had an overall quality score of 90.5 out of 100. Rheometer studies showed that the incorporation of additives improved the visco-elastic properties of muffin batters. Microstructure studies showed a change in gluten matrix of muffins followed by treatments. Immunochemical validation of muffins made using CB + CAD showed that the immunogenicity reduced by 70.8 % which may be suitable for patients with gluten sensitivity.

  4. Injury Profile SIMulator, a Qualitative Aggregative Modelling Framework to Predict Injury Profile as a Function of Cropping Practices, and Abiotic and Biotic Environment. II. Proof of Concept: Design of IPSIM-Wheat-Eyespot

    PubMed Central

    Robin, Marie-Hélène; Colbach, Nathalie; Lucas, Philippe; Montfort, Françoise; Cholez, Célia; Debaeke, Philippe; Aubertot, Jean-Noël

    2013-01-01

    IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation. PMID:24146783

  5. Injury profile SIMulator, a Qualitative aggregative modelling framework to predict injury profile as a function of cropping practices, and abiotic and biotic environment. II. Proof of concept: design of IPSIM-wheat-eyespot.

    PubMed

    Robin, Marie-Hélène; Colbach, Nathalie; Lucas, Philippe; Montfort, Françoise; Cholez, Célia; Debaeke, Philippe; Aubertot, Jean-Noël

    2013-01-01

    IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation.

  6. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer

    PubMed Central

    Mane, Vijay Panjabrao; Patil, Shyam Sopanrao; Syed, Abrar Ahmed; Baig, Mirza Mushtaq Vaseem

    2007-01-01

    Pleurotus sajor-caju (Fr.) Singer was cultivated on selected agro wastes viz. cotton stalks, groundnut haulms, soybean straw, pigeon pea stalks and leaves and wheat straw, alone or in combinations. Cotton stalks, pigeon pea stalks and wheat straw alone or in combination were found to be more suitable than groundnut haulms and soybean straw for the cultivation. Organic supplements such as groundnut oilseed cake, gram powder and rice bran not only affected growth parameters but also increased yields. Thus bioconversion of lignocellulosic biomass by P. sajor-caju offers a promising way to convert low quality biomass into an improved human food. PMID:17910118

  7. Relationship between the dough quality and content of specific glutenin proteins in wheat mill streams, and its application to making flour suitable for instant Chinese noodles.

    PubMed

    Yahata, Eriko; Maruyama-Funatsuki, Wakako; Nishio, Zenta; Yamamoto, Yoshihiko; Hanaoka, Akihiro; Sugiyama, Hisashi; Tanida, Masatoshi; Saruyama, Haruo

    2006-04-01

    The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.

  8. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber.

    PubMed

    McRorie, Johnson W; McKeown, Nicola M

    2017-02-01

    Enduring misconceptions about the physical effects of fiber in the gut have led to misunderstandings about the health benefits attributable to insoluble and soluble fiber. This review will focus on isolated functional fibers (eg, fiber supplements) whose effects on clinical outcomes have been readily assessed in well-controlled clinical studies. This review will also focus on three health benefits (cholesterol lowering, improved glycemic control, and normalizing stool form [constipation and diarrhea]) for which reproducible evidence of clinical efficacy has been published. In the small bowel, clinically meaningful health benefits (eg, cholesterol lowering and improved glycemic control) are highly correlated with the viscosity of soluble fibers: high viscosity fibers (eg, gel-forming fibers such as b-glucan, psyllium, and raw guar gum) exhibit a significant effect on cholesterol lowering and improved glycemic control, whereas nonviscous soluble fibers (eg, inulin, fructooligosaccharides, and wheat dextrin) and insoluble fibers (eg, wheat bran) do not provide these viscosity-dependent health benefits. In the large bowel, there are only two mechanisms that drive a laxative effect: large/coarse insoluble fiber particles (eg, wheat bran) mechanically irritate the gut mucosa stimulating water and mucous secretion, and the high water-holding capacity of gel-forming soluble fiber (eg, psyllium) resists dehydration. Both mechanisms require that the fiber resist fermentation and remain relatively intact throughout the large bowel (ie, the fiber must be present in stool), and both mechanisms lead to increased stool water content, resulting in bulky/soft/easy-to-pass stools. Soluble fermentable fibers (eg, inulin, fructooligosaccharide, and wheat dextrin) do not provide a laxative effect, and some fibers can be constipating (eg, wheat dextrin and fine/smooth insoluble wheat bran particles). When making recommendations for a fiber supplement, it is essential to recognize which fibers possess the physical characteristics required to provide a beneficial health effect, and which fiber supplements are supported by reproducible, rigorous evidence of one or more clinically meaningful health benefits. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Approximate bilateral symmetry in evaporation-induced polycrystalline structures from droplets of wheat grain leakages and fluctuating asymmetry as quality indicator

    NASA Astrophysics Data System (ADS)

    Kokornaczyk, Maria Olga; Dinelli, Giovanni; Betti, Lucietta

    2013-01-01

    The present paper reports on an observation that dendrite-like polycrystalline structures from evaporating droplets of wheat grain leakages exhibit bilateral symmetry. The exactness of this symmetry, measured by means of fluctuating asymmetry, varies depending on the cultivar and stress factor influence, and seems to correspond to the seed germination rate. In the bodies of plants, animals, and humans, the exactness of bilateral symmetry is known to reflect the environmental conditions of an organism's growth, its health, and its success in sexual selection. In polycrystalline structures, formed under the same conditions, the symmetry exactness depends on the properties of the crystallizing solution such as the composition and viscosity; however, it has never been associated with sample quality. We hypothesize here that, as in living nature, the exactness of approximate bilateral symmetry might be considered a quality indicator also in crystallographic methods applied to food quality analysis.

  10. Quality and nutritional properties of pasta products enriched with immature wheat grain.

    PubMed

    Casiraghi, Maria Cristina; Pagani, Maria Ambrogina; Erba, Daniela; Marti, Alessandra; Cecchini, Cristina; D'Egidio, Maria Grazia

    2013-08-01

    In this study, nutritional and sensory properties of pasta enriched with 30% immature wheat grain (IWG), a natural source of fructo-oligosaccharides (FOS), are evaluated. Colour and cooking quality, nutritional value and glycaemic index (GI) of pasta were assessed in comparison with commercially enriched inulin and 100% wholewheat pastas. IWG integration induced deep changes in colour, without negatively affecting the cooking quality of pasta, and promoted nutritional quality by increasing the fibre content; IWG pasta presented a remarkable leaching of FOS in cooking water, thus providing only 1 g of FOS per serving. IWG pastas showed a GI of 67 (dried) and 79 (fresh), not significantly different from commercial pasta products. IWG can be considered an interesting ingredient to obtain functional products 'naturally enriched' in FOS and fibre. Results about FOS leaching suggest that, in dealing with functional effects, the actual prebiotic content should be carefully considered on food 'as eaten'.

  11. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.

    PubMed

    Sinha, R N; Tuma, D; Abramson, D; Muir, W E

    1988-01-01

    The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.

  12. Application of Statistic Experimental Design to Assess the Effect of Gammairradiation Pre-Treatment on the Drying Characteristics and Qualities of Wheat

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Wang, Jun

    Wheat, pretreated by 60Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 °C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied.

  13. Reduced plant nutrition under elevated CO2 depresses the immunocompetence of cotton bollworm against its endoparasite

    NASA Astrophysics Data System (ADS)

    Yin, Jin; Sun, Yucheng; Ge, Feng

    2014-04-01

    Estimating the immunocompetence of herbivore insects under elevated CO2 is an important step in understanding the effects of elevated CO2 on crop-herbivore-natural enemy interactions. Current study determined the effect of elevated CO2 on the immune response of Helicoverpa armigera against its parasitoid Microplitis mediator. H. armigera were reared in growth chambers with ambient or elevated CO2, and fed wheat grown in the concentration of CO2 corresponding to their treatment levels. Our results showed that elevated CO2 decreases the nutritional quality of wheat, and reduces the total hemocyte counts and impairs the capacity of hemocyte spreading of hemolymph of cotton bollworm larvae, fed wheat grown in the elevated CO2, against its parasitoid; however, this effect was insufficient to change the development and parasitism traits of M. mediator. Our results suggested that lower plant nutritional quality under elevated CO2 could decrease the immune response of herbivorous insects against their parasitoid natural enemies.

  14. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality.

    PubMed

    Tamás, Cecília; Kisgyörgy, Boglárka N; Rakszegi, Mariann; Wilkinson, Mark D; Yang, Moon-Sik; Láng, László; Tamás, László; Bedo, Zoltán

    2009-07-01

    An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.

  15. Study of Fungal Colonization of Wheat Kernels in Syria with a Focus on Fusarium Species

    PubMed Central

    Alkadri, Dima; Nipoti, Paola; Döll, Katharina; Karlovsky, Petr; Prodi, Antonio; Pisi, Annamaria

    2013-01-01

    Wheat is one of the main crops in Mediterranean countries, and its cultivation has an important role in the Syrian economy. In Syria, Fusarium head blight (FHB) has not been reported so far. Mycological analysis of 48 samples of wheat kernels collected from cultivation areas with different climatic conditions were performed in 2009 and 2010. Fungal isolates were identified at the genus level morphologically; Fusarium species were characterized morphologically and by species-specific PCR. The most frequent fungal genera found were Alternaria spp. and Cladosporium spp., with frequencies of 24.7% and 8.1%, respectively, while the frequency of Fusarium spp. was 1.5% of kernels. Most frequent Fusarium species were F. tricinctum (30% of all Fusarium isolates), F. culmorum (18%), F. equiseti (14%) and F. graminearum (13%). The mycotoxin production potential of selected Fusarium isolates was assessed by HPLC-MS analysis of rice cultures; chemotyping by PCR was carried out for comparison. All six F. graminearum strains tested produced small amounts (<3 mg/kg) of nivalenol (NIV). All ten F. culmorum strains tested produced large amounts of trichothecenes (>100 mg/kg); four strains produced NIV and six strains produced deoxynivalenol (DON) and 3-acetyl-deoxynivalenol (3Ac-DON). PCR chemotyping lead to an oversimplified picture, because all 3Ac-DON chemotype strains produced more DON than 3Ac-DON; furthermore, the strongest NIV producers produced significant amounts of DON. All tested strains of F. culmorum, F. graminearum, F. pseudograminearum (two strains) and most F. equiseti strains (five of six strains) produced zearalenone. Grains of durum wheat were more frequently colonized by Fusarium spp. than grains of soft wheat. Incidence of Fusarium spp. in irrigated fields was higher than in rainfed fields. The incidence of Fusarium strains producing mycotoxins raises concerns about the risk of Fusarium head blight to Syria and its consequences for public health. PMID:23493058

  16. ENVIRONMENTAL AND ENERGY QUALITY TECHNOLOGIES Task Order 0005: Organic Finishing Technologies Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping

    DTIC Science & Technology

    2015-06-22

    hazardous materials and eliminating the hazardous waste streams associated with wheat starch , chemical strippers and hand sanding. Additionally, the laser...chemical attack resistance and other special characteristics while providing corrosion protection. The materials used for these purposes are designed...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch , plastic

  17. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  18. Genetic variations in the digestibility in sheep of selected whole-crop cereals used as silages.

    PubMed

    Emile, J C; Jobim, C C; Surault, F; Barrière, Y

    2007-09-01

    Whole-plant winter cereals could be of great interest if used as silages for ruminant feeding as opposed to summer crops in that they would spare water resources or valorize low-input management. This study aimed to compare the feeding value of rye, barley, wheat (two genotypes) and triticale (six genotypes). The cereals were sown in October and harvested as silage in June. Forages were offered to Texel castrated sheep in order to evaluate the organic matter digestibility (OMd). The OMd of the wheat cultivars was higher (61.6%, P<0.05) than those of barley (57.2%) and rye (54.7%) but no different from that of triticale (60.6%). Within the triticale genotypes, OMd ranged from 54.7 to 62.3%. The presence of rough barbs should explain the relatively low intake of the cereals with the exception of wheat. Winter cereals provide good-quality forage for feeding ruminants. Wheat has a higher nutritional value than barley and rye and a wide variability for digestibility seems to exist within the triticale cultivars. Such variability in a species known for its ability to be cropped under limiting conditions should be explored in much greater depth as it could result in providing farmers with genotypes of good quality with an acceptable yield at a lower cost.

  19. Impact of erosion and tillage on the productivity and quality of selected semiarid soils of Iran

    NASA Astrophysics Data System (ADS)

    Mehdizade, B.; Asadi, H.; Shabanpour, M.; Ghadiri, H.

    2013-09-01

    This greenhouse research was carried out to study the effects of water and tillage erosion on agricultural productivity and soil quality in soil samples from a semiarid region of Iran. A factorial experiment of complete randomized block design was used to compare the effects of soil erosion (eroded and non-eroded soils), slope position, water stress and fertilizer (N-P-K) on yield and yield components of wheat as soil productivity index. The results showed that erosion ie water and tillage erosion has a significant effect (p<0.01) in decreasing soil productivity due to its negative impact on soil organic matter, nutrients (N and K) and hydraulic conductivity. Complete N-P-K fertilization and water stress had significant effects on increasing and decreasing of wheat yield, respectively. The effect of water stress in particular was so high that it could eclipse the erosion impact on yield reduction. Wheat dry matter and grain mass on foot and mid slopes were significantly higher than that on upslope positions where total N and available K were the lowest and equivalent calcium carbonate the highest. Saturated hydraulic conductivity and total nitrogen were found to be the most important soil properties as far as their correlations to wheat yield are concerned.

  20. Effect of sorghum flour addition on in vitro starch digestibility, cooking quality, and consumer acceptability of durum wheat pasta.

    PubMed

    Khan, Imran; Yousif, Adel M; Johnson, Stuart K; Gamlath, Shirani

    2014-08-01

    Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory-scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum-containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability. © 2014 Institute of Food Technologists®

  1. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas.

    PubMed

    Mondal, Suchismita; Tilley, Michael; Alviola, Juma Novi; Waniska, Ralph D; Bean, Scott R; Glover, Karl D; Hays, Dirk B

    2008-01-09

    In wheat ( Triticum aestivum L), the synthesis of high molecular weight (HMW) glutenins (GS) is controlled by three heterologous genetic loci present on the long arms of group 1 wheat chromosomes. The loci Glu-A1, Glu-B1, and Glu-D1 and their allelic variants play important roles in the functional properties of wheat flour. This study focused on understanding the functionality of these protein subunits on tortilla quality. Near-isogenic wheat lines in which one or more of these loci were absent or deleted were used. Tortillas were prepared from each deletion line and the parent lines. The elimination of certain HMW-GS alleles alter distinct but critical aspects of tortilla quality such as diameter, shelf stability, and overall quality. Two deletion lines possessing HMW-GS 17 + 18 at Glu-B1 and deletions in Glu-A1 and Glu-D1 had significantly larger tortilla diameters, yet tortilla shelf life was compromised or unchanged from the parent lines used to develop the deletion lines or the commercial tortilla flour used as a control. Alternatively, a deletion line possessing Glu-A1 and Glu-D1 (HMW-GS 1, 5 + 10) and a deletion in Glu-B1 also significantly improved tortilla diameters. Whereas the increase in diameter was less than the line possessing only HMW-GS 17 + 18 at Glu-B1, the stability of the tortillas were, however, maintained and improved as compared to the parent lines containing a full compliment of HMW-GS. Thus, the presence of subunits 5 + 10 at Glu-D1 alone or in combination with subunit 1 at Glu-A1 appears to provide a compromise of improvement in dough extensibility for improved tortilla diameters while also providing sufficient gluten strength to maintain ideal shelf stability.

  2. Effect of environment and variety on the relationships of wheat grain physical and chemical characteristics with ethanol yield.

    PubMed

    Awole, Kedija D; Kettlewell, Peter S; Hare, Martin C; Agu, Reginald C; Brosnan, James M; Bringhurst, Thomas A

    2012-02-01

    Following the Renewable Transport Fuel Obligation (RTFO), there is an increasing demand for wheat grain for liquid biofuel in the UK. In order to enhance productivity of the bioethanol industry, good quality wheat must be used. A total of 84 grain samples comprising 14 varieties collected from 11 sites in two harvest years were analysed for a range of grain quality parameters and ethanol yield (EY). The grain quality parameters studied were starch and protein concentration, specific weight, grain density, packing efficiency, thousand-grain weight (TGW), grain length, width, length/width ratio and hardness index. Regression analysis was used to establish the relationships between grain quality parameters and EY. Apart from grain length and density, all grain parameters had significant relationships with EY. In the order of importance, protein concentration, TGW, packing efficiency and specific weight showed good relationships with EY. All other parameters, including starch concentration, showed a poor correlation with EY. EY and the relationship with the grain parameters were affected more by environment than by variety. Some sites gave consistently higher EY than others. When site and variety were considered with TGW and protein, a good prediction of EY could be made (variance accounted for = 87%). Combining TGW and protein concentration could be a better indicator of EY than the current practice of specific weight and protein. Copyright © 2011 Society of Chemical Industry.

  3. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status.

    PubMed

    Howell, Tyson; Hale, Iago; Jankuloski, Ljupcho; Bonafede, Marcos; Gilbert, Matthew; Dubcovsky, Jorge

    2014-12-01

    This study identifies a small distal region of the 1RS chromosome from rye that has a positive impact on wheat yield. The translocation of the short arm of rye (Secale cereale L.) chromosome one (1RS) onto wheat (Triticum aestivum L.) chromosome 1B (1RS.1BL) is used in wheat breeding programs worldwide due to its positive effect on yield, particularly under abiotic stress. Unfortunately, this translocation is associated with poor bread-making quality. To mitigate this problem, the 1RS arm was engineered by the removal and replacement of two interstitial rye segments with wheat chromatin: a distal segment to introduce the Glu-B3/Gli-B1 loci from wheat, and a proximal segment to remove the rye Sec-1 locus. We used this engineered 1RS chromosome (henceforth 1RS(WW)) to develop and evaluate two sets of 1RS/1RS(WW) near isogenic lines (NILs). Field trials showed that standard 1RS lines had significantly higher yield and better canopy water status than the 1RS(WW) NILs in both well-watered and water-stressed environments. We intercrossed the 1RS and 1RS(WW) lines and generated two additional NILs, one carrying the distal (1RS(RW)) and the other carrying the proximal (1RS(WR)) wheat segment. Lines not carrying the distal wheat region (1RS and 1RS(WR)) showed significant improvements in grain yield and canopy water status compared to NILs carrying the distal wheat segment (1RS(WW) and 1RS(RW)), indicating that the 1RS region replaced by the distal wheat segment carries the beneficial allele(s). NILs without the distal wheat segment also showed higher carbon isotope discrimination and increased stomatal conductance, suggesting that these plants had improved access to water. The 1RS(WW), 1RS(WR) and 1RS(RW) NILs have been deposited in the National Small Grains Collection.

  4. Isolation, characterization of wheat gluten and its regeneration properties.

    PubMed

    Kaushik, Ravinder; Kumar, Naveen; Sihag, Manvesh Kumar; Ray, Aradhita

    2015-09-01

    In order to assess the effectiveness of different drying methods on physicochemical and reconstitution properties of wheat gluten, four wheat cultivars were selected and milled. Gluten was extracted and its wet and dry gluten content and water holding capacity were estimated. The washed starch and other flour constituents were dried. Isolated gluten was dried using three treatments viz. oven drying, vacuum drying and freeze drying. Dried gluten of four wheat cultivars were characterized for its water and oil absorption properties and thermal properties. The dried gluten and washed and dried flour constituents were then reconstituted and this flour was checked for flour quality (SDS volume, texture analysis and falling number). Only reconstituted flour using freeze dried gluten showed no significant difference to control flour in SDS volume and dough strength. In Falling number all reconstituted flour samples showed significant difference to control flour.

  5. Agronomic Traits and Molecular Marker Identification of Wheat–Aegilops caudata Addition Lines

    PubMed Central

    Gong, Wenping; Han, Ran; Li, Haosheng; Song, Jianmin; Yan, Hongfei; Li, Genying; Liu, Aifeng; Cao, Xinyou; Guo, Jun; Zhai, Shengnan; Cheng, Dungong; Zhao, Zhendong; Liu, Cheng; Liu, Jianjun

    2017-01-01

    Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B–G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D–F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B–G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C–F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research. PMID:29075275

  6. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  7. Food hypersensitivity reactions in Soft Coated Wheaten Terriers with protein-losing enteropathy or protein-losing nephropathy or both: gastroscopic food sensitivity testing, dietary provocation, and fecal immunoglobulin E.

    PubMed

    Vaden, S L; Hammerberg, B; Davenport, D J; Orton, S M; Trogdon, M M; Melgarejo, L T; VanCamp, S D; Williams, D A

    2000-01-01

    The purpose of this study was to evaluate Soft Coated Wheaten Terriers (SCWTs) affected with protein-losing enteropathy (PLE) or protein-losing nephropathy (PLN) or both for allergy to food. We performed gastroscopic food-sensitivity testing, a provocative dietary trial, and measurement of fecal immunoglobulin E (IgE) in 6 SCWTs affected with PLE or PLN or both. Positive gastroscopic food-sensitivity test reactions were noted in 5 of 6 dogs. Positive reactions were found to milk in 4 dogs, to lamb in 2 dogs, and to wheat and chicken each in 1 dog. Adverse reactions to food (diarrhea, vomiting, or pruritus) were detected in all 6 dogs during the provocative dietary trial. Adverse reactions were found to corn in 5 dogs, to tofu in 3 dogs, to cottage cheese in 2 dogs, to milk in 2 dogs, to farina cream of wheat in 2 dogs, and to lamb in 2 dogs. Serum albumin concentrations significantly decreased and fecal alpha1-protease inhibitor concentration significantly increased 4 days after the provocative trial when compared with baseline values. Antigen-specific fecal IgE varied throughout the provocative trial, with peak levels following ingestion of test meals. We conclude that food hypersensitivities are present in SCWTs affected with the syndrome of PLE/PLN. Mild inflammatory bowel disease was already established in the 6 SCWTs of this report at the time of study, making it impossible to determine if food allergies were the cause or result of the enteric disease.

  8. Cookie- versus cracker-baking--what's the difference? Flour functionality requirements explored by SRC and alveography.

    PubMed

    Kweon, Meera; Slade, Louise; Levine, Harry; Gannon, Diane

    2014-01-01

    The many differences between cookie- and cracker-baking are discussed and described in terms of the functionality, and functional requirements, of the major biscuit ingredients--flour and sugar. Both types of products are similar in their major ingredients, but different in their formulas and processes. One of the most important and consequential differences between traditional cracker and cookie formulas is sugar (i.e., sucrose) concentration: usually lower than 30% in a typical cracker formula and higher than 30% in a typical cookie formula. Gluten development is facilitated in lower-sugar cracker doughs during mixing and sheeting; this is a critical factor linked to baked-cracker quality. Therefore, soft wheat flours with greater gluten quality and strength are typically preferred for cracker production. In contrast, the concentrated aqueous sugar solutions existing in high-sugar cookie doughs generally act as an antiplasticizer, compared with water alone, so gluten development during dough mixing and starch gelatinization/pasting during baking are delayed or prevented in most cookie systems. Traditional cookies and crackers are low-moisture baked goods, which are desirably made from flours with low water absorption [low water-holding capacity (WHC)], and low levels of damaged starch and water-soluble pentosans (i.e., water-accessible arabinoxylans). Rheological (e.g., alveography) and baking tests are often used to evaluate flour quality for baked-goods applications, but the solvent retention capacity (SRC) method (AACC 56-11) is a better diagnostic tool for predicting the functional contribution of each individual flour functional component, as well as the overall functionality of flours for cookie- and/or cracker-baking.

  9. Microbiological Quality of Raw Dried Pasta from the German Market, with Special Emphasis on Cronobacter Species.

    PubMed

    Akineden, Ömer; Murata, Kristina Johanna; Gross, Madeleine; Usleber, Ewald

    2015-12-01

    The microbiological quality of 132 dried pasta products available on the German market, originating from 11 different countries, was studied. Sample materials included soft or durum wheat products, some of which produced with other ingredients such as eggs, spices, or vegetables. Parameters included hygiene indicators (aerobic plate count, mold count, the presence of Enterobacteriaceae) and pathogenic/toxinogenic bacterial species (Salmonella spp., Staphylococcus aureus, presumptive Bacillus cereus, and Cronobacter spp.). The overall results of hygiene parameters indicated a satisfactory quality. Salmonella was not found in any sample. Three samples were positive for S. aureus (10(2) to 10(4) colony forming unit (CFU)/g). Presumptive B. cereus at levels of 10(3) to 10(4) CFU/g were detected in 3 samples. Cronobacter spp. were isolated from 14 (10.6%) products. Of these, 9 isolates were identified as C. sakazakii, 2 each as C. turicensis and C. malonaticus, and 1 as C. muytjensii. The isolates were assigned to 9 multilocus sequence typing (MLST) sequence types and to 14 different PFGE profiles. Although pasta products are typically cooked before consumption, some consumers, and children in particular, may also eat raw pasta as nibbles. Raw pasta seems to be a relevant source of exposure to dietary Cronobacter spp., although health risks are probably restricted to vulnerable consumers. High numbers of presumptive B. cereus as found in some samples may be a risk after improper storage of cooked pasta products because toxinogenic strains are frequently found within this species. © 2015 Institute of Food Technologists®

  10. Nutritional composition of Pakistani wheat varieties*

    PubMed Central

    Ikhtiar, Khan; Alam, Zeb

    2007-01-01

    Pakistani wheat varieties are grown over a wide agro-climatic range and as such are anticipated to exhibit yield and quality differences. It is therefore necessary to investigate the nutritional status of wheat varieties in terms of biochemical and physiochemical characteristics available for food and nutritional purposes in Pakistan. The result shows that wheat grains of different varieties contain a net protein level of 9.15%~10.27%, 2.15%~2.55% total fats, 1.72%~1.85% dietary fibers, 77.65×10−6~84.25×10−6 of potassium and 7.70×10−6~35.90×10−6 of sodium ions concentration, 0.24×10−6~0.84×10−6 of phosphorus, 1.44%~2.10% ash, 31.108~43.602 g of thousand grain mass (TGM) and 8.38%~9.67% moisture contents. This study is significant in providing an opportunity to explore the available wheat varieties and to further improve their nutritional excellence and also essential for setting nutritional regulations for domestic and export purposes. PMID:17657856

  11. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance.

    PubMed

    Bae, Woosung; Lee, Sung Ho; Yoo, Sang-Ho; Lee, Suyong

    2014-08-01

    A maltotetraose-producing enzyme (G4-amylase) was utilized to improve the baking performance of whole-grain wheat flour. Whole-grain bread dough prepared with G4-amylase showed reduced water absorption and increased development time, while the dough stability was not affected. Also, the G4-amylase-treated samples exhibited lower Mixolab torque values than the control upon heating and cooling. Rheological measurements showed the decreased ratio of Rmax /E and increased tan δ, clearly demonstrating that the viscous characteristics of whole-grain bread dough became dominant with increasing levels of G4-amylase. The use of G4-amylase produced whole-grain wheat breads with a variety of maltooligosaccharides, primarily maltotetraose that positively contributed to the bread volume (1.2-fold higher than the control). Moreover, G4-amylase delayed the crumb firming of whole-grain wheat bread during a 7-d storage period, showing that it can function as an antiretrogradation agent to enhance the quality attributes of whole-grain wheat bread. © 2014 Institute of Food Technologists®

  12. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    PubMed

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  13. Environmental and Energy Quality Technologies. Task Order 0005: Organic Finishing Technologies, Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping : Project: WP 2146

    DTIC Science & Technology

    2015-06-22

    hazardous materials and eliminating the hazardous waste streams associated with wheat starch , chemical strippers and hand sanding. Additionally, the laser...chemical attack resistance and other special characteristics while providing corrosion protection. The materials used for these purposes are designed...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch , plastic

  14. Cadmium Contents of Soils, Durum, and Bread Wheats in Harran Plain, Southeast Turkey

    NASA Astrophysics Data System (ADS)

    Büyükkılıç, Asuman; Mermut, Ahmet; Faz Cano, Angel; Carmona Garces, Doria

    2010-05-01

    Turkey is growing significant amount of durum wheat (Triticum turgidum durum - (Desf.)Husn) which is widely used for making pasta, spaghetti, noodles etc. Objective of this study were to: 1) determine Cd concentrations of the soils, durum and bread wheats grown in the Harran plain, southeast Turkey and 2) evaluate this element in terms of food safety. Soil samples from the selected 16 profiles, grains, roots, and leaves of durum and bread wheats were taken for analyses. Total Cd contents of the soils were below the threshold values. The soils in the northern part of the plain have more than 0.2 ppm of Cd. Carbonate and clay contents are > 15% and 40% respectively and have substantial amounts of Fe-oxy-hydroxides. Three phosphorus fertilizer samples, frequently used in the area, had > 2 ppm of Cd. As expected, the amounts of Cd in bread wheat were lower than durum wheat. However, the Cd contents in durum wheat grains in the area studied were < 50 ?g kg-1 which is less than those in Canada (> 100 ?g kg-1) and similar to the drum grains from Italy. Some samples in Italy even had 71 ?g kg-1. These were attributed to the presence of high amounts of carbonates, Fe-oxy-hydroxides, and clay in the soils we studied. In the surface soil, Zn contents were between 21.5 and 72.8 mg kg-1.This could be another reason for lower contents of Cd in our durum wheat. Our study confirms that durum wheat grown in the Harran plain southeast Turkey has a better quality, therefore advantageous; in terms of food safety from the standpoint of Cd contents.

  15. Differentiation of modern and ancient varieties of common wheat by quantitative capillary electrophoretic profile of phenolic acids.

    PubMed

    Gotti, Roberto; Amadesi, Elisa; Fiori, Jessica; Bosi, Sara; Bregola, Valeria; Marotti, Ilaria; Dinelli, Giovanni

    2018-01-12

    Phenolic compounds have received great attention among the health promoting phytochemicals in common wheat (Triticum aestivum L.), mainly because of their strong antioxidant properties. In the present study a simple Capillary Zone Electrophoresis (CZE) method with UV detection was optimized and validated for the quantitation of six of the most important phenolic acids in whole grain i.e., sinapic, ferulic, syringic, p-coumaric, vanillic and p-hydroxybenzoic acid. The separation was achieved in a running buffer composed of sodium phosphate solution (50 mM) in water/methanol 80:20 (v/v) at pH 6.0 and using a fused-silica capillary at the temperature of 30 °C under application of 27 kV. By means of diode array detector, and made possible by the favorable characteristic UV spectra, the quantitation of the solutes was carried out at 200, 220 and 300 nm, in the complex matrices represented by the soluble and bound fractions of wheat flours. The validation parameters of the method i.e., linearity, sensitivity, precision, accuracy and robustness were in line with those obtained by consolidated separation techniques applied for the same purposes (e.g., HPLC-UV), with a significant advantage in term of analysis time (less than 12 min). Ten varieties of soft wheat (five modern Italian and five old Italian genotypes) were analysed and the data were subjected to Principal Components Analysis (PCA). Interestingly, significant differences of the quantitative phenolic acids profile were observed between the modern and the ancient genotypes, with the latter showing higher amount of the main represented phenolic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pasta production: complexity in defining processing conditions for reference trials and quality assessment models

    USDA-ARS?s Scientific Manuscript database

    Pasta is a simple food made from water and durum wheat (Triticum turgidum subsp. durum) semolina. As pasta increases in popularity, studies have endeavored to analyze the attributes that contribute to high quality pasta. Despite being a simple food, the laboratory scale analysis of pasta quality is ...

  17. Beyond metrics? Utilizing ‘soft intelligence’ for healthcare quality and safety

    PubMed Central

    Martin, Graham P.; McKee, Lorna; Dixon-Woods, Mary

    2015-01-01

    Formal metrics for monitoring the quality and safety of healthcare have a valuable role, but may not, by themselves, yield full insight into the range of fallibilities in organizations. ‘Soft intelligence’ is usefully understood as the processes and behaviours associated with seeking and interpreting soft data—of the kind that evade easy capture, straightforward classification and simple quantification—to produce forms of knowledge that can provide the basis for intervention. With the aim of examining current and potential practice in relation to soft intelligence, we conducted and analysed 107 in-depth qualitative interviews with senior leaders, including managers and clinicians, involved in healthcare quality and safety in the English National Health Service. We found that participants were in little doubt about the value of softer forms of data, especially for their role in revealing troubling issues that might be obscured by conventional metrics. Their struggles lay in how to access softer data and turn them into a useful form of knowing. Some of the dominant approaches they used risked replicating the limitations of hard, quantitative data. They relied on processes of aggregation and triangulation that prioritised reliability, or on instrumental use of soft data to animate the metrics. The unpredictable, untameable, spontaneous quality of soft data could be lost in efforts to systematize their collection and interpretation to render them more tractable. A more challenging but potentially rewarding approach involved processes and behaviours aimed at disrupting taken-for-granted assumptions about quality, safety, and organizational performance. This approach, which explicitly values the seeking out and the hearing of multiple voices, is consistent with conceptual frameworks of organizational sensemaking and dialogical understandings of knowledge. Using soft intelligence this way can be challenging and discomfiting, but may offer a critical defence against the complacency that can precede crisis. PMID:26282705

  18. Thermoresistant xylanases from Trichoderma stromaticum: Application in bread making and manufacturing xylo-oligosaccharides.

    PubMed

    Carvalho, Elck Almeida; Dos Santos Góes, Laís Mendes; Uetanabaro, Ana Paula T; da Silva, Erik Galvão Paranhos; Rodrigues, Luciano Brito; Pirovani, Carlos Priminho; da Costa, Andréa Miura

    2017-04-15

    The enzymes Xyl1 and Xyl2 from T. stromaticum were purified and identified by mass spectrometry (MALDI-TOF/MS). Xyl1 contained three proteins with similarity to xylanase family 10, 62 and anarabinofuranosidase of the Trichoderma genus and Xyl2 contained a protein with similarity to endo-1,4-β-xylanase. High xylanase activity was found at 50°C for Xyl1 and 60°C for Xyl2 and pH 5.0 for both, retaining more than 80% of activities for one hour at 60°C and pH 5-8. Ag 2+ and β-mercaptoethanol increased while SDS and EDTA inhibited the xylanase activity of both Xyl1 and Xyl2 extracts. The Km and V max values for purified Xyl2 were 9.6mg/mL and 28.57μmol/min/mg, respectively. In application tests, both Xyl1 and Xyl2 were effective in degrading beechwood xylan to produce xylo-oligosaccharides. In baking, adding Xyl1 increased the softness and volume of wheat bread and whole grain bread, qualities increasingly desired by consumers in this segment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences.

    PubMed

    Arena, Simona; D'Ambrosio, Chiara; Vitale, Monica; Mazzeo, Fiorella; Mamone, Gianfranco; Di Stasio, Luigia; Maccaferri, Marco; Curci, Pasquale Luca; Sonnante, Gabriella; Zambrano, Nicola; Scaloni, Andrea

    2017-06-06

    Durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) is an economically important crop used for the production of semolina, which is the basis of pasta and other food products. Its grains provide proteins and starch for human consumption. Grain development is a key process in wheat physiology; it is highly affected by a number of enzymes that control the metabolic processes governing accumulation of starch and storage proteins and ultimately grain weight. Most of these enzymes are present in the albumin/globulin grain fraction, which represents about a quarter of total seed proteins. With the aim to describe the dynamic profile of the albumin/globulin fraction during durum wheat grain development, we performed a proteomic analysis of this subproteome using a two-dimensional differential gel electrophoresis (2D-DIGE)-based approach and compared six developmental stages. A total of 285 differentially (237 over- and 48 under-) represented spots was identified by nanoLC-ESI-LIT-MS/MS, which were associated with 217 non-redundant Triticum sequence entries. Quantitative protein dynamics demonstrated that carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division functional categories were highly affected during grain development, concomitantly with progressive grain size increase and starch/protein reserve accumulation. Bioinformatic interaction prediction revealed a complex network of differentially represented proteins mainly centered at enzymes involved in carbon and protein metabolism. A description of 18 proteins associated with wheat flour human allergies was also obtained; these components showed augmented levels at the last developmental stages. By providing a comprehensive understanding of the molecular basis of durum wheat grain development, yield and quality formation, this study provides the foundation and reveals potential biomarkers for further investigations of durum wheat breeding and semolina quality. A 2D-DIGE-based comparative analysis of the albumin/globulin fraction from durum wheat caryopses at six developmental stages was performed to describe the dynamic subproteomic changes associated with grain development. Quantitative variations of 217 differentially proteins demonstrated that highly affected are the functional categories of carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division, which displayed a general over-representation, consistently with concomitant occurrence of grain size increase and starch/protein reserve accumulation. Bioinformatics revealed a complex protein network centered mainly at enzymes involved in carbon and protein metabolism. Differentially represented proteins and corresponding functional categories highly resembled those previously identified as variable in developing bread wheat grain. This suggests that the main differences in kernel hardness between durum and bread wheat probably do not depend on proteomic changes in corresponding albumins/globulins, but on other specific factors affecting the interaction between the starch granules and the endosperm protein matrix in the kernel. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2016-01-01

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California–Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch. PMID:27110322

  1. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [ Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II ( SBEII ) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A ( SBEIIa/b -A; Reg. No. GP-968, PI 670159), 2B ( SBEIIa/b -B; Reg. No. GP-970, PI 670161), and on both chromosomes ( SBEIIa/b -AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII- mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b -AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b -AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  2. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

    PubMed Central

    2013-01-01

    Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011

  3. Total mesorectal excision training in soft cadaver: feasibility and clinical application.

    PubMed

    Tantiphlachiva, Kasaya; Suansawan, Channarong

    2006-09-01

    The major problem in the treatment of rectal cancer is local recurrence. After the introduction of total mesorectal excision (TME), the recurrent rate decreased from 100% to around 10%. The purpose of the present study was to evaluate the quality of organ and tissue plane preservation in soft cadaver and to assess the feasibility to perform the procedure (mobilization of colon and rectum, total mesorectal excision and stapler anastomosis) in soft cadaver. Colorectal Division, Department of Surgery and Surgical Training Center Department of Anatomy, Faculty of Medicine, Chulalongkorn University. Prospective descriptive study. Seven soft cadavers were used for total mesorectal excision (TME) training. These procedures were performed by 21 participants (1 soft cadaver for 3 participants). The procedures were done under the supervision of experienced colorectal surgeons. The successfulness, satisfaction in performing the procedure and the quality of organ preservation were evaluated using standardized questionnaires. Participants were satisfied about TME training in soft cadaver (mean 8.24-8.71) and rated that soft cadavers were good in terms of internal organs and tissue plane preservation (mean 7.19-8.19) (0 = extremely unsatisfied, 10 = extremely satisfied). Training of TME in soft cadaver is feasible. The similarity in tissue quality (texture, consistency, color) of the preserved organs to that of the living and the good feel of performing the procedure make the trainee better understand the techniques and improve their skills.

  4. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products.

    PubMed

    Kulawinek, Mariola; Jaromin, Anna; Kozubek, Arkadiusz; Zarnowski, Robert

    2008-08-27

    The alkylresorcinol content and homologue composition in selected Polish rye and wheat cultivars and selected whole-grain cereal products were determined in this study. Cereal grains and whole-grain cereal products were extracted with acetone, whereas bread types were extracted with hot 1-propanol. The average alkylresorcinol content in tested rye (approximately 1100 mg/kg DM) and wheat (approximately 800 mg/kg DM) grains harvested in Poland was within the range previously reported in Swedish and Finnish samples. The total alkylresorcinol content in tested cereal products available on the Polish market varied from very low levels in barley grain-based foods up to 3000 mg/kg DM in wheat bran. The total alkylresorcinol content in 14 bread samples extracted with hot 1-propanol varied from approximately 100 mg/kg DM in whole bread made with honey up to approximately 650 mg/kg DM in whole-rye bread. Calculated ratios of C17:0 to C21:0 homologues, a useful parameter previously used to distinguish between rye and wheat cereals and their derived products, was about 1.2-1.4 in rye products, about 0.2 in wheat products, and varied between 0.2 and 0.6 in cereal-derived products containing a mixture of whole rye and/or wheat. The data set obtained were subsequently compared using cluster and principal component analysis, which allowed the tested cereal products to be classified into two major groups consisting of whole-rye or whole-wheat products, respectively. On the basis of that approach, mixed cereal products containing rye and wheat bran or whole rye and wheat flour were grouped between those two well-defined clusters. Our work not only provides a detailed examination of alkylresorcinols in selected Polish rye and wheat cultivars and selected whole-grain cereal products, but also demonstrates that this type of analysis accompanied by the use of proper statistical algorithms offers an objective way to evaluate the quality of whole-grain rye and/or wheat and their derived products.

  5. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    PubMed

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.

  6. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems.

    PubMed

    Bonte, Anja; Neuweger, Heiko; Goesmann, Alexander; Thonar, Cécile; Mäder, Paul; Langenkämper, Georg; Niehaus, Karsten

    2014-10-01

    Identification of biomarkers capable of distinguishing organic and conventional products would be highly welcome to improve the strength of food quality assurance. Metabolite profiling was used for biomarker search in organic and conventional wheat grain (Triticum aestivum L.) of 11 different old and new bread wheat cultivars grown in the DOK system comparison trial. Metabolites were extracted using methanol and analysed by gas chromatography-mass spectrometry. Altogether 48 metabolites and 245 non-identified metabolites (TAGs) were detected in the cultivar Runal. Principal component analysis showed a sample clustering according to farming systems and significant differences in peak areas between the farming systems for 10 Runal metabolites. Results obtained from all 11 cultivars indicated a greater influence of the cultivar than the farming system on metabolite concentrations. Nevertheless, a t-test on data of all cultivars still detected 5 metabolites and 11 TAGs with significant differences between the farming systems. Based on individual cultivars, metabolite profiling showed promising results for the categorization of organic and conventional wheat. Further investigations are necessary with wheat from more growing seasons and locations before definite conclusions can be drawn concerning the feasibility to evolve a combined set of biomarkers for organically grown wheat using metabolite profiles. © 2014 Society of Chemical Industry.

  7. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    PubMed Central

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2–3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  8. Effects of organic and conventional production systems and cultivars on the technological properties of winter wheat.

    PubMed

    Ceseviciene, Jurgita; Slepetiene, Alvyra; Leistrumaite, Alge; Ruzgas, Vytautas; Slepetys, Jonas

    2012-11-01

    The current study aimed to estimate the effects of organic and conventional production systems and four winter wheat (Triticum aestivum L.) bread cultivars on the technological properties of grain, flour, dough and bread, to increase current knowledge regarding the interactions of the technological properties of winter wheat and assess the cultivars for their suitability for organic production systems. All the technological properties winter wheat which were investigated were significantly affected by the agricultural production system and cultivars, and some of them, mostly grain quality parameters, by the harvest year. Grain from organic winter wheat had significantly lower protein and gluten contents, lower sedimentation and flour water absorption values, shorter dough stability time and lower loaf volume, but higher values of starch content and stronger gluten, compared with grain from the conventional wheat. For both production systems significant positive correlations of protein content with gluten content, sedimentation value, dough stability time, loaf volume, farinograph water absorption, and negative with starch content, gluten index were determined. Statistically significant differences between agricultural production systems were found. The cultivars Ada and Alma had better technological properties that make them more suitable for the organic production system, compared to Širvinta 1 and Zentos. Copyright © 2012 Society of Chemical Industry.

  9. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef

    PubMed Central

    Phillips, Hannah N.; Delate, Kathleen; Turnbull, Robert

    2017-01-01

    Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye. PMID:29099863

  10. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef.

    PubMed

    Phillips, Hannah N; Heins, Bradley J; Delate, Kathleen; Turnbull, Robert

    2017-01-01

    Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.

  11. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in Mediterranean environments. PMID:27281174

  12. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat.

    PubMed

    Li, Da; Jin, Huaibing; Zhang, Kunpu; Wang, Zhaojun; Wang, Faming; Zhao, Yue; Huo, Naxin; Liu, Xin; Gu, Yong Q; Wang, Daowen; Dong, Lingli

    2018-05-11

    Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  13. A high-fiber diet may improve bowel function and health-related quality of life in patients with Crohn disease.

    PubMed

    Brotherton, Carol S; Taylor, Ann Gill; Bourguignon, Cheryl; Anderson, Joel G

    2014-01-01

    Crohn disease is a chronic disorder characterized by episodes of epithelial inflammation in the gastrointestinal tract for which there is no cure. The prevalence of Crohn disease increased in civilized nations during the time period in which food sources were industrialized in those nations. A characteristic of industrialized diets is the conspicuous absence of cereal fiber. The purpose of this 2-group, randomized, controlled study was to investigate the effects of fiber-related dietary instructions specifying wheat bran consumption on health-related quality of life and gastrointestinal function in individuals diagnosed with Crohn disease, as measured by the Inflammatory Bowel Disease Questionnaire and the partial Harvey Bradshaw Index, respectively. Results demonstrated that consuming a wheat bran-inclusive diet was feasible and caused no adverse effects, and participants consuming whole wheat bran in the diet reported improved health-related quality of life (p = .028) and gastrointestinal function (p = .008) compared to the attention control group. The results of a secondary aim, to investigate differences in measures of systemic inflammation, found no group differences in C-reactive protein or erythrocyte sedimentation rates. This study suggests that diet modification may be a welcomed complementary therapy for individuals suffering gastrointestinal disruption associated with Crohn disease.

  14. Evaluation of milk quality in delivering sterilized milk with soft tank transportation system.

    PubMed

    Tsukamoto, C; Rula, Sa; Asano, H; Ando, K

    2009-09-01

    A new transportation system is proposed recently to improve the defects of liquid transportation by tank trucks. This method is called "soft tank transportation system"; a driver installs a sac-like container (soft tank), which is made from a tarpaulin with high-pressure resistant-waterproof zippers, in a general cargo vehicle. To evaluate the quality of sterilized milk by using the soft tank transportation system, ground and marine transportation for a long distance which took about 36 h from the shipper's loading to the receiver's unloading in a high-temperature summer season (average outside temperature was 33.4 degrees C) were carried out. Although the difference of milk temperature before and after the delivery varied from -0.7 to +1.4 degrees C, there was no difference in milk quality (fat, nonfat solids, total dissolved solids, and pH) and no coliform bacteria were detected. It can be evaluated that sterilized milk was carried in keeping good conditions by soft tank transportation system.

  15. Durum wheat (Triticum turgidum spp. durum, cultivar Senatore Cappelli) production systems effects on grain and flours functional properties under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cavoski, Ivana; Turk, Jelena; Chami, Ziad Al

    2015-04-01

    The main goal of organic farming is the "production of high quality products". Integrity and vital quality of products should be preserved along the entire production chain. In order to evaluate the effect of organic vs. conventional production systems on durum wheat phenolic acids and antioxidant activity open field experiment has been carried out. During the whole process chain from field to fork, there are various factors influencing the quality of the end product. Organic production should rely on genotypes with high nitrogen use efficiency, disease and pest resistance, weed competitiveness and tolerance especially under Mediterranean conditions. In this study, production systems differed according to the practices and inputs applied to manage the soil fertility and plant protection. In conventional system, synthetic fertilizers and pesticides were used. Whereas, in the two organic systems, cow manure with fertilizers and temporary intercropping with fava bean (Vicia faba) and fertilizers were used to manage soil fertility. Biopesticides were used for plant protection for organic systems. One treatment without inputs was used as a control in order to evaluate environmental site and cultivar effect. Quantity of free, free and conjugated and bounded phenolic acids were evaluated in relation to overall quality and production systems. In addition, antioxidant capacities of each fraction by different assays were assessed. The organic production method assured higher overall quality in paricular functional properties compared to the conventional one. Therefore, understanding the functional links between production systems variables and physiological responses is essential to improve and standardize the quality of organic durum wheat products. Keywords: organic farming, soil fertility management, phenolic acids, antioxidant activity.

  16. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    PubMed

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  17. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    PubMed Central

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding. PMID:28018403

  18. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.).

    PubMed

    Liu, Zhenshan; Xin, Mingming; Qin, Jinxia; Peng, Huiru; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin

    2015-06-20

    Hexaploid wheat (Triticum aestivum) is a globally important crop. Heat, drought and their combination dramatically reduce wheat yield and quality, but the molecular mechanisms underlying wheat tolerance to extreme environments, especially stress combination, are largely unknown. As an allohexaploid, wheat consists of three closely related subgenomes (A, B, and D), and was reported to show improved tolerance to stress conditions compared to tetraploid. But so far very little is known about how wheat coordinates the expression of homeologous genes to cope with various environmental constraints on the whole-genome level. To explore the transcriptional response of wheat to the individual and combined stress, we performed high-throughput transcriptome sequencing of seedlings under normal condition and subjected to drought stress (DS), heat stress (HS) and their combination (HD) for 1 h and 6 h, and presented global gene expression reprograms in response to these three stresses. Gene Ontology (GO) enrichment analysis of DS, HS and HD responsive genes revealed an overlap and complexity of functional pathways between each other. Moreover, 4,375 wheat transcription factors were identified on a whole-genome scale based on the released scaffold information by IWGSC, and 1,328 were responsive to stress treatments. Then, the regulatory network analysis of HSFs and DREBs implicated they were both involved in the regulation of DS, HS and HD response and indicated a cross-talk between heat and drought stress. Finally, approximately 68.4 % of homeologous genes were found to exhibit expression partitioning in response to DS, HS or HD, which was further confirmed by using quantitative RT-PCR and Nullisomic-Tetrasomic lines. A large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses, which possibly contributes to the wide adaptability and distribution of hexaploid wheat in response to various environmental constraints.

  19. Effect of incorporation of corn byproducts on quality of baked and extruded products from wheat flour and semolina.

    PubMed

    Sharma, Savita; Gupta, Jatinder Pal; Nagi, H P S; Kumar, Rakesh

    2012-10-01

    The effect of blending level (0, 5, 10, 15 and 20%) of corn bran, defatted germ and gluten with wheat flour on the physico-chemical properties (protein, crude fiber, phosphorus, iron and calcium), baking properties of bread, muffins and cookies, and extrusion properties of noodles and extruded snacks prepared from semolina were examined. Blending of wheat flour and corn byproducts significantly increased the protein, crude fiber, phosphorus, iron and calcium contents. Breads from gluten blends had higher loaf volume as compared to bran and germ breads. Among corn byproducts, gluten cookies were rated superior with respect to top grain. Muffins from germ blends and gluten blends had higher acceptability scores than the bran muffins. Blending of corn bran, defatted germ and gluten at 5 and 10% with wheat flour resulted in satisfactory bread, cookie, and muffin score. Quality of noodles was significantly influenced by addition of corn byproducts and their levels. Corn byproducts blending had significant influence on cooking time, however, gruel solid loss affected non-significantly in case of noodles. Expansion ratio and density of extruded snacks was affected non significantly by blending source and blending level. However, significant effect was observed on amperage, pressure, yield and overall acceptability of extruded snacks. Acceptable extruded products (noodles and extruded snacks) could be produced by blending corn byproducts with semolina upto 10% level.

  20. Biochemical and functional properties of wheat gliadins: a review.

    PubMed

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2015-01-01

    Gliadins account for 40-50% of the total storage proteins of wheat and are classified into four subcategories, α-, β-, γ-, and ω-gliadins. They have also been classified as ω5-, ω1, 2-, α/β-, and γ-gliadins on the basis of their primary structure and molecular weight. Cysteine residues of gliadins mainly form intramolecular disulfide bonds, although α-gliadins with odd numbers of cysteine residues have also been reported. Gliadins are generally regarded to possess globular protein structure, though recent studies report that the α/β-gliadins have compact globular structures and γ- and ω-gliadins have extended rod-like structures. Newer techniques such as Mass Spectrometry with the development of matrix-assisted laser desorption/ionization (MALDI) in combination with time-of-flight mass spectrometry (TOFMS) have been employed to determine the molecular weight of purified ω- gliadins and to carry out the direct analysis of bread and durum wheat gliadins. Few gliadin alleles and components, such as Gli-B1b, Gli-B2c and Gli-A2b in bread wheat cultivars, γ-45 in pasta, γ-gliadins in cookies, lower gliadin content for chapatti and alteration in Gli 2 loci in tortillas have been reported to improve the product quality, respectively. Further studies are needed in order to elucidate the precise role of gliadin subgroups in dough strength and product quality.

Top