Sample records for soft woods

  1. Wood-Destroying Soft Rot Fungi in the Historic Expedition Huts of Antarctica

    PubMed Central

    Blanchette, Robert A.; Held, Benjamin W.; Jurgens, Joel A.; McNew, Douglas L.; Harrington, Thomas C.; Duncan, Shona M.; Farrell, Roberta L.

    2004-01-01

    Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common. PMID:15006750

  2. Seismic Risk Reduction for Soft-Story Wood-Frame Buildings: Test Results and Retrofit Recommendations from the Nees-Soft Project

    Treesearch

    John W. van de Lindt; Pouria Bahmani; Mikhail Gershfeld; Gary Mochizuki; Xiaoyun Shao; Steven E. Pryor; Weichiang Pang; Michael D. Symans; Jingjing Tian; Ershad Ziaei; Elaina N. Jennings; Douglas Rammer

    2014-01-01

    There are thousands of soft-story wood-frame buildings in California which have been recognized as a disaster preparedness problem with concerted mitigation efforts underway in many cities throughout the state. The vast majority of those efforts are based on numerical modelling, often with half-century old data in which assumptions have to be made based on engineering...

  3. Bacterial associations with decaying wood : a review

    Treesearch

    C. A. Clausen

    1996-01-01

    Wood-inhabiting bacteria are associated with wood decay and may have an indirect influence on the decay process. Bacteria are able to affect wood permeability, attack wood structure, or work synergistically with other bacteria and soft-rot fungi to predispose wood to fungal attack. Bacteria that can inhabit chemically treated wood are recognized. The natural ability of...

  4. Exploring methods for prevention of oxidative stain in soft maple

    Treesearch

    Michael C. Wiemann; Richard D. Bergman; Mark Knaebe; Scott A. Bowe

    2009-01-01

    Interior gray enzymatic oxidative stain for white woods such as maple has plagued the wood industry for many years because methods that have been found to reduce stain are hard to scale up to industrial levels. We examined possible alternative treatments to eliminate stain in soft maple (Acer rubrum L.), and found that exposure to sulfur dioxide gas eliminates interior...

  5. Full-Scale Experimental Verification of Soft-Story-Only Retrofits of Wood-Frame Buildings using Hybrid Testing

    Treesearch

    Elaina Jennings; John W. van de Lindt; Ershad Ziaei; Pouria Bahmani; Sangki Park; Xiaoyun Shao; Weichiang Pang; Douglas Rammer; Gary Mochizuki; Mikhail Gershfeld

    2015-01-01

    The FEMA P-807 Guidelines were developed for retrofitting soft-story wood-frame buildings based on existing data, and the method had not been verified through full-scale experimental testing. This article presents two different retrofit designs based directly on the FEMA P-807 Guidelines that were examined at several different seismic intensity levels. The...

  6. Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites

    Treesearch

    David P. Harper; Thomas L. Eberhardt

    2010-01-01

    Micron-sized particles, prepared from loblolly pine (Pinus taeda L.) wood and bark, were evaluated for use in wood-plastic composites (WPCs). Particles were also prepared from hard (periderm) and soft (obliterated phloem) components in the bark and compared to whole wood (without bark) filler commonly used by the WPC industry. All bark fillers had...

  7. Experimental seismic behavior of a full-scale four-story soft-story wood-frame building with retrofits II: shake table test results

    Treesearch

    John W. van de Lindt; Pouria Bahmani; Gary Mochizuki; Steven E. Pryor; Mikhail Gershfeld; Jingjing Tian; Michael D. Symans; Douglas Rammer

    2016-01-01

    Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. The majority of these buildings were constructed from the 1920s to the 1960s and are prone to collapse during moderate to large earthquakes due to a characteristic deficiency in strength and stiffness in their first story. In order to propose and validate retrofit...

  8. Experimental seismic behavior of a full-scale four-story soft-story wood-frame building with retrofits I: building design, retrofit methodology, and numerical validation

    Treesearch

    Pouria Bahmani; John W. van de Lindt; Mikhail Gershfeld; Gary L. Mochizuki; Steven E. Pryor; Douglas Rammer

    2016-01-01

    Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multifamily three- and four-story structures throughout California and other parts of the United States. The majority were constructed between 1920 and 1970 and are prevalent in regions such as the San Francisco Bay Area in...

  9. Generation rate and particle size distribution of wood dust by handheld sanding operation.

    PubMed

    Ojima, Jun

    2016-11-29

    The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m 3 /min ventilation rate.

  10. Mechanisms of protection by NHA against fungal decay

    Treesearch

    Frederick Green; William Henry; Tor Schultz

    2002-01-01

    Treating wood with the water-borne sodium salt of N'-N-naphthaloylhydroxylamine (Na-NHA) protects wood against decay and termite damage. Initial testing indicated little or no inhibition of sapstain fungi, molds, or soft-rot fungi by Na-NHA, suggesting that the mechanism by which this compound protected wood was complex and not that of a broad-spectrum biocide....

  11. Generation rate and particle size distribution of wood dust by handheld sanding operation

    PubMed Central

    Ojima, Jun

    2016-01-01

    Objectives: The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Methods: Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Results: Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Conclusions: Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m3/min ventilation rate. PMID:27725491

  12. Wood decay by Chlorociboria aeruginascens (Nyl.) Kanouse (Helotiales, Leotiaceae) and associated basidiomycete fungi

    Treesearch

    Dana L. Richter; Jessie A. Glaeser

    2015-01-01

    Two isolates of Chlorociboria aeruginascens (Nyl.) Kanouse incubated axenically on aspen wood blocks resulted in 18% and 32% mass loss after 134 wks (2 yrs 8 mo). Aspen wood decayed by C. aeruginascens contained cavities in the S2 layer of the secondary cell wall, similar to Type I soft rot attack, as well as erosion troughs and...

  13. Shell-armored wood cobbles as a potential criterion for detrital coal deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, M.J.; Nummedal, D.

    1986-01-01

    Shell-armored wood cobbles occur on detrital-peat beaches along the seaward edge of the Mississippi Delta. Shell material consists exclusively of Mulinia lateralis, a dwarf surf clam. Soft, heavy, waterlogged wood fragments are abraded and become armored by hard shells in response to wave activity on the beach. Although their preservation potential is suspect, fossilized shell-armored wood clasts would probably be recognized as a type of coal ball and might indicate an allochthonous origin for the host coal.

  14. Security Quality Requirements Engineering (SQUARE) Methodology

    DTIC Science & Technology

    2005-11-01

    such as Joint Application Development and the Accelerated Requirements Method [Wood 89, Hubbard 99] • Soft Systems Methodology [Checkland 89...investigated were misuse cases [Jacobson 92], Soft Systems Methodology (SSM) [Checkland 89], Quality Function Deployment (QFD) [QFD 05], Con- trolled...html (2005). [Checkland 89] Checkland, Peter. Soft Systems Methodology . Rational Analysis for a Problematic World. New York, NY: John Wiley & Sons

  15. Wood digestion in Pselactus spadix Herbst--a weevil attacking marine timber structures.

    PubMed

    Oevering, Pascal; Pitman, Andrew J; Pandey, Krishna K

    2003-04-01

    Pselactus spadix tunnels timber structures in the marine environment. Recent studies reported a cosmopolitan distribution for this weevil, which is frequently found in harbour and port areas. P. spadix feeds on timber (hardwood and softwood) in immature and adult life stages, but its digestion of wood components had not been investigated. Using dry weight analyses of tunnel walls and frass produced, P. spadix adults consumed Scots pine with soft rot decay at a rate of 1.59 +/- 0.37 mg d-1 and the digestibility of this substrate was 57.96 +/- 5.89 (i.e. for 100 mg consumed SR-pine, 58 mg was digested). Using gravimetric analysis to quantify structural wood components in tunnel walls and frass, P. spadix adults were found to digest cellulose, lignin and hemicellulose with digestibility coefficients of 82.2, 41.2 and 14.5 respectively. Fourier Transform Infrared (FTIR) spectroscopy analyses of tunnel walls and frass of adults and larvae from soft rotted pine also indicated digestion of all structural components, with larvae digesting cellulose and lignin more efficiently than adults. When FTIR was employed to analyse adult tunnel walls and frass from undecayed pine, cellulose and hemicellulose were digested, but no evidence of lignin digestion was found. This study shows that adults digest lignin when soft rot is present and suggests a symbiotic function of wood degrading microorganisms.

  16. Wood Decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican Dry and Wet Forests: A 13-year Case Study.

    Treesearch

    Juan A. Torres; Grizelle Gonzalez

    2005-01-01

    We studied the decomposition of Cyrilla racemiflora logs over a 13-yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood-inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs...

  17. Mass timber rocking panel retrofit of a four-story soft-story building with full-scale shake table validation

    Treesearch

    Pouria Bahmani; John van de Lindt; Asif Iqbal; Douglas Rammer

    2017-01-01

    Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multi-family three- and four-story structures throughout California and the United States. The majority were constructed between 1920 and 1970, with many being prevalent in the San Francisco Bay Area in California. The NEES Soft...

  18. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  19. A new physical method to assess handle properties of fabrics made from wood-based fibers

    NASA Astrophysics Data System (ADS)

    Abu-Rous, M.; Liftinger, E.; Innerlohinger, J.; Malengier, B.; Vasile, S.

    2017-10-01

    In this work, the handfeel of fabrics made of wood-based fibers such as viscose, modal and Lyocell was investigated in relation to cotton fabrics applying the Tissue Softness Analyzer (TSA) method in comparison to other classical methods. Two different construction groups of textile were investigated. The validity of TSA in assessing textile softness of these constructions was tested. TSA results were compared to human hand evaluation as well as to classical physical measurements like drape coefficient, ring pull-through and Handle-o-meter, as well as a newer device, the Fabric Touch Tester (FTT). Physical methods as well as human hand assessments mostly agreed on the softest and smoothest range, but showed different rankings in the harder/rougher side fabrics. TSA ranking of softness and smoothness corresponded to the rankings by other physical methods as well as with human hand feel for the basic textile constructions.

  20. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.

    PubMed

    Zhu, Hongli; Jia, Zheng; Chen, Yuchen; Weadock, Nicholas; Wan, Jiayu; Vaaland, Oeyvind; Han, Xiaogang; Li, Teng; Hu, Liangbing

    2013-07-10

    Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical capacity of 847 mAh/g, but it has several limitations such as large volume expansion with cycling, slow kinetics, and unstable solid electrolyte interphase (SEI) formation. In this article, we demonstrate that an anode consisting of a Sn thin film deposited on a hierarchical wood fiber substrate simultaneously addresses all the challenges associated with Sn anodes. The soft nature of wood fibers effectively releases the mechanical stresses associated with the sodiation process, and the mesoporous structure functions as an electrolyte reservoir that allows for ion transport through the outer and inner surface of the fiber. These properties are confirmed experimentally and computationally. A stable cycling performance of 400 cycles with an initial capacity of 339 mAh/g is demonstrated; a significant improvement over other reported Sn nanostructures. The soft and mesoporous wood fiber substrate can be utilized as a new platform for low cost Na-ion batteries.

  1. Foreign object detection via texture recognition and a neural classifier

    NASA Astrophysics Data System (ADS)

    Patel, Devesh; Hannah, I.; Davies, E. R.

    1993-10-01

    It is rate to find pieces of stone, wood, metal, or glass in food packets, but when they occur, these foreign objects (FOs) cause distress to the consumer and concern to the manufacturer. Using x-ray imaging to detect FOs within food bags, hard contaminants such as stone or metal appear darker, whereas soft contaminants such as wood or rubber appear slightly lighter than the food substrate. In this paper we concentrate on the detection of soft contaminants such as small pieces of wood in bags of frozen corn kernels. Convolution masks are used to generate textural features which are then classified into corresponding homogeneous regions on the image using an artificial neural network (ANN) classifier. The separate ANN outputs are combined using a majority operator, and region discrepancies are removed by a median filter. Comparisons with classical classifiers showed the ANN approach to have the best overall combination of characteristics for our particular problem. The detected boundaries are in good agreement with the visually perceived segmentations.

  2. Influence of anatomical, physical, and mechanical properties of diffuse-porous hardwoods on moisture durability of bonded assemblies

    Treesearch

    Daniel J. Yelle; Ashley M. Stirgus

    2016-01-01

    Studying wood adhesive bond durability is challenging because wood is highly variable and heterogeneous at all length scales. In this study, three North American diffuse-porous hardwoods (hard maple, soft maple, and basswood) and their adhesively bonded as-semblies were exposed to wet and dry cyclic tests. Then, their den-sity differences were related to bond...

  3. Impact of initial spacing on yield per acre and wood quality of unthinned loblolly pine at age 21

    Treesearch

    Alexander, III Clark; Richard F. Daniels; Lewis Jordan; Laurie Schimleck

    2010-01-01

    The market for southern pine first thinnings is soft. Thus, forest managers are planting at wider spacings, and using weed control and fertilization to grow chipping-saw and sawtimber trees in shorter rotations. A 21-year-old unthinned spacing study was sampled to determine the effect of initial spacing on wood quality and yield per acre of planted loblolly pine (

  4. Field performance testing of improved engineered wood fiber surfaces for accessible playground areas

    Treesearch

    Theodore L. Laufenberg; Jerrold E. Winandy

    2003-01-01

    Some engineered wood fiber (EWF) surfaces on playgrounds are soft and uneven, which creates difficulties for those who use mobility aids, such as wheelchairs and walkers. The outdoor field testing reported in this study is part of an effort to stabilize EWF to improve accessibility. The concept is to mix a binder with the upper surface of EWF to create a stiff (firm)...

  5. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    PubMed

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Temporal Trend in Wood Dust Exposure During the Production of Wood Pellets.

    PubMed

    Eriksson, Kåre; Bryngelsson, Ing-Liss; Hagström, Katja

    2017-05-01

    Wood dust data collected in the production of wood pellets during 2001 to 2013 were evaluated to study a temporal trend in inhalation exposure. A linear mixed effects model of natural ln-transformed data was used to express the relative annual difference in inhalation wood dust exposure. There was an annual decrease of -20.5% of the geometric mean wood dust exposure during 2001 until 2013. The results were based on 617 inhalable dust samples collected at 14 different production units. The exposure to wood dust at the industrial premises investigated has decreased from a relatively high level of 6.4 mg m-3 in 2001 to 1.0 mg-3 in 2013. The Swedish Occupational Exposure Limit (SOEL) of 2 mg m-3 may still be exceeded. Analysis of the temporal trend in soft wood production units revealed declines in exposure of 20.5% per annum. It is important that precautions are taken to protect workers from a hazardous exposure to wood dust at the premises as the SOEL of 2 mg m-3 at some occasions is still exceeded. Additional measurements of wood dust exposure should be carried out on a regular basis in wood pellet production units in Sweden as well in other countries. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, D.

    The reasons for preservative treatment of cooling tower wood are reviewed along with a summary of which types of treatment are available, how they are applied, and a comparison of materials and processes. Industries often specify minimum quality preservatives for their cooling towers without understanding the loss of strength caused by decay and the economic losses due to a cooling tower failure and lost production. Wood is subject to both chemical (surface delignification and iron rot) and biological (soft rot) attack. A successful preservative treatment that protects against both must have retention and penetration qualities. Research efforts are examining themore » toxicity and environmental impacts of preservatives and exploring the possibility of chemically modifying wood. (DCK)« less

  8. Iowa Saw-Log Production and Sawmill Industry, 1969

    Treesearch

    James E. Blyth

    1972-01-01

    Iowa loggers harvested nearly 47 million board feet of saw logs in 1969. Leading species were soft maple, elm, red oak, and cottonwood. Three-fifths of the wood residue generated at 63 Iowa sawmills was not used.

  9. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    PubMed

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  10. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    PubMed Central

    Chowdhury, S.; Maniar, A.; Suganya, O.M.

    2014-01-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper. PMID:26644928

  11. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    NASA Astrophysics Data System (ADS)

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-11-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.

  12. Metrics, Lumber, and the Shop Teacher

    ERIC Educational Resources Information Center

    Craemer, Peter J.

    1978-01-01

    As producers of lumber are preparing to convert their output to the metric system, wood shop and building construction teachers must become familiar with the metric measurement language and methods. Manufacturers prefer the "soft conversion" process of changing English to metric units rather than hard conversion, or redimensioning of lumber. Some…

  13. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  14. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.

    PubMed

    Liers, Christiane; Arnstadt, Tobias; Ullrich, René; Hofrichter, Martin

    2011-10-01

    The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Lignin degradation in wood-feeding insects.

    PubMed

    Geib, Scott M; Filley, Timothy R; Hatcher, Patrick G; Hoover, Kelli; Carlson, John E; Jimenez-Gasco, Maria del Mar; Nakagawa-Izumi, Akiko; Sleighter, Rachel L; Tien, Ming

    2008-09-02

    The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.

  16. Short-time pretreatment of wood with low-concentration and room-temperature ionic liquid for SEM observation.

    PubMed

    Yamashita, Taiji; Miyamoto, Kenji; Yonenobu, Hitoshi

    2018-06-20

    A new pretreatment method using room-temperature ionic liquid (IL) was proposed for observing wood specimens in scanning electron microscopy (SEM). A variety of concentrations were examined for ethanol solution of the IL, [Emim][MePO3Me], to determine an optimal pretreatment procedure. It was concluded that 10% ethanol solution of the IL was the most adequate to acquire good SEM images. Using the procedure optimized, SEM images were taken for typical anatomical types of modern soft and hardwood species and archeological wood. SEM images taken were sufficiently good in observing wood cells. The pretreatment method was also effective to archeological wood dated ca. 1600 years ago. It was thus concluded that the method developed in this study is more useful than those conventionally used. Additionally, pretreatment at the high temperature was performed to confirm morphological changes in softwood. Deformation of latewood cells (tracheids) was occurred by treating with undiluted IL at the high temperature of 50°C, probably due to higher accessibility of the IL into intercellular space. Nonetheless, it was confirmed that this happens under far more extreme conditions than our proposed method.

  17. Using SDS-PAGE gel fingerprinting to identify soft-bodied wood-boring insect larvae to species.

    PubMed

    O'Neill, Mark A; Denos, Mia; Reed, Daniel

    2018-03-01

    This paper describes the progress that we have made in assessing the feasibility of 'fingerprinting' using imaged SDS-PAGE gels of haemolymph proteins, to identify soft-bodied wood-boring insect larvae such as the Asian longhorn beetle, Anoplophora glabripennis (Motscholsky, 1853) (Coleoptera: Cerambycidae). Because of stringent import restrictions and difficulty in obtaining licences to work with these organisms, we opted to work with four species of scarab beetle, Mecynorhina polyphemus (Fabricius, 1781), Pachnoda sinuata (Fabricius, 1775), Eucidella shiratica (Csiki, 1909) and Eucidella shultzeorum (Kolbe, 1906) which have near identical larval morphologies. We show that this technology when combined with an advanced pattern matching system (Digital Automated Identification SYstem - DAISY) can classify soft-bodied insect larvae that are almost identical morphologically to species at a level of accuracy is in excess of 98%. The study also indicates that the technology copes well with noisy data and small training sets. The experience gained in undertaking this study gives us confidence that we will be able to develop a field deployable system in the medium term. We believe that as a high-throughput identification tool, this technology is superior to competitor technologies (e.g. fingerprinting of imaged DNA gels) in terms of speed, cost and ease of use; and therefore, is suitable for low-cost deployment in the field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Populus deltoides Bartr ex Marsh.

    Treesearch

    D. T. Cooper

    1980-01-01

    Eastern cottonwood (Populus deltoides), one of the largest eastern hardwoods, is short-lived but the fastest-growing commercial forest species in North America. It grows best on moist well-drained sands or silts near streams, often in pure stands. The lightweight, rather soft wood is used primarily for core stock in manufacturing fumiture and for pulpwood. Eastern...

  19. Economic and operational feasibility of short rotation hardwood inventory

    Treesearch

    Tom Gallagher; Robert Shaffer

    2002-01-01

    Procuring wood during the winter months for a pulpmill in the Southeast has some difficulties, especially in hardwood. Soft ground reduces the operational feasibility of many sites, forcing companies to store hardwood in woodyards for retrieval during wet weather. Intensively managed, short rotation hardwood grown on dry sites could economically supply a pulpmill...

  20. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Insights on wood combustion generated proinflammatory ultrafine particles (UFP).

    PubMed

    Corsini, Emanuela; Ozgen, Senem; Papale, Angela; Galbiati, Valentina; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Becagli, Silvia; Caruso, Donatella; Vecchi, Roberta; Galli, Corrado L; Marinovich, Marina

    2017-01-15

    This study aimed to collect, characterize ultrafine particles (UFP) generated from the combustion of wood pellets and logs (softwood and hardwood) and to evaluate their pro-inflammatory effects in THP-1 and A549 cells. Both cell lines responded to UFP producing interleukin-8 (IL-8), with wood log UFP being more active compared to pellet UFP. With the exception of higher effect observed with beech wood log UFP in THP-1, the ability of soft or hard woods to induce IL-8 release was similar. In addition, on weight mass, IL-8 release was similar or lower compared to diesel exhaust particles (DEP), arguing against higher biological activity of smaller size particles. UFP-induced IL-8 could be reduced by SB203580, indicating a role of p38MAPK activation in IL-8 production. The higher activity of beech wood log UFP in THP-1 was not due to higher uptake or endotoxin contamination. Qualitatively different protein adsorption profiles were observed, with less proteins bound to beech UFP compared to conifer UFP or DEP, which may provide higher intracellular availability of bioactive components, i.e. levoglucosan and galactosan, toward which THP-1 were more responsive compared to A549 cells. These results contribute to our understanding of particles emitted by domestic appliances and their biological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Inhibition of decay fungi using cotton cellulose hydrolysis as a model for wood decay

    Treesearch

    Frederick Green

    2000-01-01

    Environmental pressures to replace chromium and arsenic in fixed waterborne preservatives have been increasing. Potential inhibitors of brown-, white- and soft-rot fungi need to be evaluated as alternative preservatives by screening and testing in, in vitro model systems. This paper reports the inhibition of cellulose depolymerization and weight loss of selected decay...

  3. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  4. Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile.

    PubMed

    Ortiz, Rodrigo; Párraga, Mario; Navarrete, José; Carrasco, Ivo; de la Vega, Eduardo; Ortiz, Manuel; Herrera, Paula; Jurgens, Joel A; Held, Benjamin W; Blanchette, Robert A

    2014-04-01

    The use of wood in construction has had a long history and Chile has a rich cultural heritage of using native woods for building churches and other important structures. In 2000, UNESCO designated a number of the historic churches of Chiloé, built entirely of native woods, as World Heritage Sites. These unique churches were built in the late 1700 s and throughout the 1800 s, and because of their age and exposure to the environment, they have been found to have serious deterioration problems. Efforts are underway to better understand these decay processes and to carryout conservation efforts for the long-term preservation of these important structures. This study characterized the types of degradation taking place and identified the wood decay fungi obtained from eight historic churches in Chiloé, seven of them designated as UNESCO World Heritage sites. Micromorphological observations identified white, brown and soft rot in the structural woods and isolations provided pure cultures of fungi that were identified by sequencing of the internal transcribed region of rDNA. Twenty-nine Basidiomycota and 18 Ascomycota were found. These diverse groups of fungi represent several genera and species not previously reported from Chile and demonstrates a varied microflora is causing decay in these historic buildings.

  5. A pilot study of personal exposure to respirable and inhalable dust during the sanding and sawing of medium density fibreboard (MDF) and soft wood.

    PubMed

    Hursthouse, Andrew; Allan, Fraser; Rowley, Louise; Smith, Frank

    2004-08-01

    A pilot study of production of respirable and inhalable dusts from sawing and sanding medium density fibreboard (MDF) and softwood in a typical cabinet-making workshop produced high but variable exposure levels at the bench and operator position. Exposure levels for the total inhalable fraction (approximately <100 microm) were 6.9-91 mg m(-3) for MDF and 2.5-45 mg m(-3) for softwood. For the respirable fraction (< 10 microm) levels were 0.4-13 mg m(-3) for MDF and 0.4-2.9 mg m(-3) for softwood. These results show significant dust loading is produced in the coarser fraction and that the material used has a significant impact on levels produced. It suggests that fuller evaluation of operator influence of fine dust production is needed and may question the common application of a single inhalable exposure standard for wood dust to all wood working scenarios.

  6. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    DOE PAGES

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; ...

    2015-02-12

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less

  7. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. In this paper, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot andmore » brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Finally, our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.« less

  8. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii

    PubMed Central

    Floudas, Dimitrios; Held, Benjamin W.; Riley, Robert; Nagy, Laszlo G.; Koehler, Gage; Ransdell, Anthony S.; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A.; Kües, Ursula; Blanchette, Robert A.; Grigoriev, Igor V.; Minto, Robert E.; Hibbett, David S.

    2015-01-01

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white rot fungus Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. Fistulina hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition towards a brown rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. PMID:25683379

  9. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii.

    PubMed

    Floudas, Dimitrios; Held, Benjamin W; Riley, Robert; Nagy, Laszlo G; Koehler, Gage; Ransdell, Anthony S; Younus, Hina; Chow, Julianna; Chiniquy, Jennifer; Lipzen, Anna; Tritt, Andrew; Sun, Hui; Haridas, Sajeet; LaButti, Kurt; Ohm, Robin A; Kües, Ursula; Blanchette, Robert A; Grigoriev, Igor V; Minto, Robert E; Hibbett, David S

    2015-03-01

    Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pitchblende deposits at the Wood and Calhoun mines, Central City mining district, Gilpin County, Colorado

    USGS Publications Warehouse

    Moore, Frank R.; Butler, C.R.

    1952-01-01

    Pitchblende has been mined in commercial quantities from four gold- and silver-bearing pyrite-sphalerite-galena veins that occur in an area about one-half mile square on the south side of Quartz Hill, Central City district, Gilpin County, Colo. These veins are the Kirk, the German-Belcher, the Wood, and the Calhoun. Two of these veins, the Wood and the Calhoun, were studied in an attempt to determine the geologic factors favorable for pitchblende deposition. All accessible workings at the Wood and East Calhoun mines were mapped by tape and compass, and the distribution of radioactivity was studied in the field. Channel and chip samples were taken for chemical assay to compare radioactivity with uranium content. The pitchblende-bearing veins cat both pre-Cambrian granite gneiss and quartz-biotite schist; however, the gneiss was the more favorable host rock. Two bostonite porphyry dikes of Tertiary(?) age were crosscut by the Wood and Calhoun veins. The pitchblende occurs in lenses erratically distributed along the veins and in stringers extending outward from the veins. In the lenses it forms hard'. masses, but elsewhere it is Soft and powdery. The pitchblende is contemporaneous with the pyrite bat earlier than the sphalerite and galena in the same vein. All the observed pitchblende was at depths of less than 400 ft. The veins probably cannot be mined profitably for the pitchblende alone under present conditions.

  11. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi.

    PubMed

    Held, Benjamin W; Blanchette, Robert A

    2017-02-01

    Very little is known about fungal diversity in Antarctica as compared to other biomes and how these important organisms function in this unusual ecosystem. Perhaps one of the most unusual ecosystems is that of Deception Island; an active volcanic island part of the South Shetland Islands of the Antarctic Peninsula. Here we describe the fungal diversity associated with historic wood from structures on the island, which reveals a diverse fungal assemblage of known wood decay fungi as well as the discovery of undescribed species. The major group of wood decay fungi identified were species of Cadophora and as shown in previous studies in other geographic regions of Antarctica, they caused a soft-rot type of decay in the introduced woods. Additionally, unlike other areas of Antarctica that have been studied, filamentous basidiomycetes (Hypochniciellum spp. and Pholiota spp.) were also identified that have different modes of degradation including brown and white rot. Matches of fungal sequences to known species in temperate regions likely introduced on building materials indicates human influences and volcanic activity have greatly impacted fungal diversity. Lahars (mudslides from volcanic activity) have partially buried many of the structures and the buried environment as well as the moist, warm soils provided conditions conducive for fungal growth that are not found in other regions of Antarctica. The diverse assemblage of decay fungi and different forms of wood decomposition add to the difficulty of conserving wooden structures at these important polar heritage sites. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. KENNEDY SPACE CENTER, FLA. - A soft-shell turtle with only three legs is seen crossing the tow-way at KSC. The turtle is one of 65 amphibians and reptiles found in the Merritt Island National Wildlife Refuge, which surrounds KSC. The Wildlife Refuge encompasses 92,000 acres that are also a habitat for more than 331 species of birds, 31 mammals and 117 fishes. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, plus a variety of insects.

    NASA Image and Video Library

    2003-05-29

    KENNEDY SPACE CENTER, FLA. - A soft-shell turtle with only three legs is seen crossing the tow-way at KSC. The turtle is one of 65 amphibians and reptiles found in the Merritt Island National Wildlife Refuge, which surrounds KSC. The Wildlife Refuge encompasses 92,000 acres that are also a habitat for more than 331 species of birds, 31 mammals and 117 fishes. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, plus a variety of insects.

  13. KENNEDY SPACE CENTER, FLA. - A closeup of a soft-shell turtle seen crossing the tow-way at KSC. The turtle is one of 65 amphibians and reptiles found in the Merritt Island National Wildlife Refuge, which surrounds KSC. The Wildlife Refuge encompasses 92,000 acres that are also a habitat for more than 331 species of birds, 31 mammals and 117 fishes. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, plus a variety of insects.

    NASA Image and Video Library

    2003-05-29

    KENNEDY SPACE CENTER, FLA. - A closeup of a soft-shell turtle seen crossing the tow-way at KSC. The turtle is one of 65 amphibians and reptiles found in the Merritt Island National Wildlife Refuge, which surrounds KSC. The Wildlife Refuge encompasses 92,000 acres that are also a habitat for more than 331 species of birds, 31 mammals and 117 fishes. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, plus a variety of insects.

  14. Shellac/nanoparticles dispersions as protective materials for wood

    NASA Astrophysics Data System (ADS)

    Weththimuni, Maduka L.; Capsoni, Doretta; Malagodi, Marco; Milanese, Chiara; Licchelli, Maurizio

    2016-12-01

    Wood is a natural material that finds numerous and widespread applications, but is subject to different decay processes. Surface coating is the most common method used to protect wood against deterioration and to improve and stabilize its distinctive appearance. Shellac is a natural resin that has been widely used as a protective material for wooden artefacts (e.g. furniture, musical instruments), due to its excellent properties. Nevertheless, diffusion of shellac-based varnishes has significantly declined during the last decades, because of some limitations such as the softness of the coating, photo-degradation, and sensitivity to alcoholic solvents and to pH variations. In the present study, different inorganic nanoparticles were dispersed into dewaxed natural shellac and the resulting materials were investigated even after application on wood specimens in order to assess variations of the coating properties. Analyses performed by a variety of experimental techniques have shown that dispersed nanoparticles do not significantly affect some distinctive and desirable features of the shellac varnish such as chromatic aspect, film-forming ability, water repellence, and adhesion. On the other hand, the obtained results suggested that some weak points of the coating, such as low hardness and poor resistance to UV-induced ageing, can be improved by adding ZrO2 and ZnO nanoparticles, respectively.

  15. Relationships of personality traits and stress to gingival status or soft-tissue oral pathology: an exploratory study.

    PubMed

    Minneman, M A; Cobb, C; Soriano, F; Burns, S; Schuchman, L

    1995-01-01

    The purpose of this study was to examine the relationships of personality traits and stress with gingival inflammation and with soft-tissue oral pathology. Personality traits of psychoticism (P), extroversion and introversion (E), and neuroticism (N) were measured with Eysenck's personality questionnaire (EPQ). Stress was measured with a modified organizational and individual assessment survey (OIAS) developed by Hendrix. Military recruits from Ft. Leonard Wood, Missouri, were examined for soft-tissue oral pathology and gingival status at weeks one (n = 241) and six (n = 61) of basic combat training (BCT). The EPQ and OIAS were administered to 217 recruits during week six of BCT. A discriminant analysis was used to determine correlations among study variables. Significant correlations (P < .05) were found between personality traits and various measures of tolerance of stress. Little variance was found between groups originally presenting with or without disease. Only physical stress (P < .005) was shown to affect soft-tissue pathology, while gingival inflammation correlated significantly to E scores (P < .02), tolerance to change (P < .02), and anxiety (P < .05). Data support a possible relationship among certain personality traits, stress variables, and gingival inflammation or soft-tissue pathology in recruits with extreme personality characteristics or perception of high physical stress levels in basic combat training.

  16. Seals, Concrete Anchors, and Connections

    DTIC Science & Technology

    1989-02-01

    brick. Medium to heavy I.. loads cannot be safely fastened to soft masonry materials (stuc-. : - . co. grout. plaster or plasterboard ) since such...588C, Type 1. Class A. Style 1 Use in: All masonry material Use in: Block, wallboard , plaster , hollow tile Use with: Sheet metal, wood or lag screws... Wallboard . plaster , paneling Use in: Wallboard or solid masonry Use with: No (- oer fastener needed Use with: Sheet metal screw Made of: Ste( Made of

  17. Design and Development of an Automatic Tool Changer for an Articulated Robot Arm

    NASA Astrophysics Data System (ADS)

    Ambrosio, H.; Karamanoglu, M.

    2014-07-01

    In the creative industries, the length of time between the ideation stage and the making of physical objects is decreasing due to the use of CAD/CAM systems and adicitive manufacturing. Natural anisotropic materials, such as solid wood can also be transformed using CAD/CAM systems, but only with subtractive processes such as machining with CNC routers. Whilst some 3 axis CNC routing machines are affordable to buy and widely available, more flexible 5 axis routing machines still present themselves as a too big investment for small companies. Small refurbished articulated robots can be a cheaper alternative but they require a light end-effector. This paper presents a new lightweight tool changer that converts a small 3kg payload 6 DOF robot into a robot apprentice able to machine wood and similar soft materials.

  18. A comparative study on the properties of graphene oxide and activated carbon based sustainable wood starch composites.

    PubMed

    Baishya, Prasanta; Maji, Tarun Kumar

    2018-08-01

    Activated carbon (AC) prepared from Jatropha curcas and graphene oxide (GO) were employed in the preparation of natural polymer based wood starch composites (WSC) through the solution blending technique using water as a solvent. In this study, methyl methacrylate (MMA) was grafted onto the starch polymer and this MMA grafted starch (MMA-g-starch) was cross-linked with the cheap soft wood flour using the citric acid as cross-linker and water as a solvent in the whole process. The prepared GO and AC were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and Raman study. The interaction of GO and AC, with MMA-g-starch, citric acid and wood were studied by FTIR, XRD and SEM analysis. The GO and AC treated composites exhibited outstanding mechanical properties, thermal stability and fire resistance properties. The tensile strength of the composites increased by 178% and 200% with addition of 2 phr AC and GO respectively compared to untreated composites. A significant enhancement in water resistance properties of GO and AC treated composites was also attained. The study showed that the properties of the composites containing AC prepared from the seeds of Jatropha curcas was quite comparable with the composites reinforced with GO. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Parametrization of a nonlocal chiral quark model in the instantaneous three-flavor case. Basic formulas and tables

    NASA Astrophysics Data System (ADS)

    Grigorian, H.

    2007-05-01

    We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon, and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters, light and strange quark masses and coupling strength (G S) and range of the interaction (Λ), have been fixed by the same phenomenological inputs: pion and kaon masses and the pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials, where separable models have been proven successfully.

  20. Photoacoustic tomography of foreign bodies in soft biological tissue.

    PubMed

    Cai, Xin; Kim, Chulhong; Pramanik, Manojit; Wang, Lihong V

    2011-04-01

    In detecting small foreign bodies in soft biological tissue, ultrasound imaging suffers from poor sensitivity (52.6%) and specificity (47.2%). Hence, alternative imaging methods are needed. Photoacoustic (PA) imaging takes advantage of strong optical absorption contrast and high ultrasonic resolution. A PA imaging system is employed to detect foreign bodies in biological tissues. To achieve deep penetration, we use near-infrared light ranging from 750 to 800 nm and a 5-MHz spherically focused ultrasonic transducer. PA images were obtained from various targets including glass, wood, cloth, plastic, and metal embedded more than 1 cm deep in chicken tissue. The locations and sizes of the targets from the PA images agreed well with those of the actual samples. Spectroscopic PA imaging was also performed on the objects. These results suggest that PA imaging can potentially be a useful intraoperative imaging tool to identify foreign bodies.

  1. Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction

    NASA Astrophysics Data System (ADS)

    Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.

    2003-06-01

    The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.

  2. The effect of chars and their water extractable organic carbon (WEOC) fractions on atrazine adsorption-desorption processes

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; Jablonowski, N.; Burauel, P.; Miano, T.

    2012-04-01

    Chars are carbonaceous material produced from different type of biomass by pyrolysis. They are known as highly effective adsorbents for atrazine therefore limiting its degradation and its diffusion into the aqueous phase. The aim of the present work is to study the effects of different chars and char's derived WEOC on atrazine sorption-desorption processes. The five chars been used in this study derived from: 1) fast pyrolysis from hard wood (FP1); 2) flash pyrolysis from soft wood (FP2); 3) slow pyrolysis from deciduous wood (CC); 4) gasification from deciduous wood (GC) and 5) the market, purchased as activated charcoal standard (AC). Short-term batch equilibration tests were conducted to assess the sorption-desorption behavior of 14C-labeled atrazine on the chars, with a special focus on the desorption behavior using successive dilution method with six consecutive desorption step. Chars and their WEOC were physically and chemically characterized. Results demonstrate that biomass and pyrolysis process used to produce chars affect their physical and chemical properties, and atrazine adsorption-desorption behavior. Atrazine desorption resulted from the positive and competitive interactions between WEOC and chars surfaces. WEOC pool play important role in atrazine adsorption-desorption behavior. FP1 and FP2 with higher concentration of WEOC showed higher desorption rates, whereas GC, CC and AC with insignificant WEOC concentration strongly adsorb atrazine with low desorption rates. According to our results, when high WEOC pools chars are concerned, an increase in atrazine desorption can be observed but further studies would help in confirming the present results.

  3. A Simple Strategy in Avulsion Flap Injury: Prediction of Flap Viability Using Wood's Lamp Illumination and Resurfacing with a Full-thickness Skin Graft.

    PubMed

    Lim, Hyoseob; Han, Dae Hee; Lee, Il Jae; Park, Myong Chul

    2014-03-01

    Extensive degloving injuries of the extremities usually result in necrosis of the flap, necessitating comprehensive skin grafting. Provided there is a sufficient tool to evaluate flap viability, full-thickness skin can be used from a nonviable avulsed flap. We used a Wood's lamp to determine the viability of avulsed flaps in the operation field after intravenous injection of fluorescein dye. We experienced 13 cases during 16 months. Fifteen minutes after the intravenous injection of fluorescein dye, the avulsed skin flaps were examined and non-fluorescent areas were marked under Wood's lamp illumination. The marked area was defatted for full-thickness skin grafting. The fluorescent areas were sutured directly without tension. The non-fluorescent areas were covered by defatted skin. Several days later, there was soft tissue necrosis within the flap area. We measured necrotic area and revised the flap. Among all the cases, necrotic area was 21.3% of the total avulsed area. However, if we exclude three cases, one of a carelessly managed patient and two cases of the flaps were inappropriately applied, good results were obtained, with a necrotic area of only 8.4%. Eight patients needed split-thickness skin grafts, and heel pad reconstruction was performed with free flap. A full-thickness skin graft from an avulsed flap is a good method for addressing aesthetic concerns without producing donor site morbidity. Fluorescein dye is a useful, simple, and cost-effective tool for evaluating flap viability. Avulsed flap injuries can be managed well with Wood's lamp illumination and a full-thickness skin graft.

  4. Fungi and wind strongly influence the temporal availability of logs in an old-growth spruce forest.

    PubMed

    Edman, Mattias; Jönsson, Mari; Jonsson, Bengt Gunnar

    2007-03-01

    Coarse woody debris (CWD) is a key habitat for many species in forest ecosystems. To ensure the long-term survival of such species, forest management regimes must include measures that promote dead wood dynamics similar to those of natural forests. Thus, information on CWD dynamics under natural conditions is required, including data pertaining to the underlying agents of disturbance. This study examines modes of mortality, decay rates, and temporal patterns in the availability of Picea abies logs in a Swedish old-growth forest affected by internal, small-scale disturbance. All 684 logs in a 6.6-ha plot were mapped and classified into one of six decay classes. Logs in the early stages of decay were examined for the presence of heart-rot fungi. Six years later all logs were re-inventoried, including newly formed logs. Matrix models based on the transition rates between decay classes showed that it took about 60 years for 90% of the logs to decay beyond class 6 (a deformed trunk with soft wood). Large logs (> 26 cm) decayed 40% more slowly than small logs (< 25 cm). The initial volume of logs was 37.6 m3/ha but increased to 44.8 m3/ha after six years. In addition, there was a large shift in the decay-class distribution. The volume of logs in early and late decay classes increased by 71% and 45%, respectively, while the volume of logs in the intermediate decay classes decreased by 32%. The fluctuations appear to result from pulses in mortality, driven by a combination of strong winds and the heart-rot fungus, Phellinus chrysoloma, which was present in more than 30% of all logs at an early stage of decay. These results show that large temporal fluctuations in dead wood also occur in the absence of large-scale disturbance, and that heart-rot fungi are important factors driving the overall dynamics of dead wood. Since many wood-inhabiting species are naturally rare and have very specific substrate demands, such temporal variability in dead wood availability may have effects on biodiversity and should be taken into account when designing small, protected forest areas.

  5. An Antarctic hot spot for fungi at Shackleton's historic hut on Cape Royds.

    PubMed

    Blanchette, Robert A; Held, Benjamin W; Arenz, Brett E; Jurgens, Joel A; Baltes, Nicolas J; Duncan, Shona M; Farrell, Roberta L

    2010-07-01

    The historic expedition huts located in the Ross Sea Region of the Antarctic and the thousands of artifacts left behind by the early explorers represent important cultural heritage from the "Heroic Era" of Polar exploration. The hut at Cape Royds built by Ernest Shackleton and members of the 1907-1908 British Antarctic Expedition has survived the extreme Antarctic environment for over 100 years, but recent studies have shown many forms of deterioration are causing serious problems, and microbial degradation is evident in the historic wood. Conservation work to reduce moisture at the hut required removal of fodder, wood, and many different types of organic materials from the stables area on the north side of the structure allowing large numbers of samples to be obtained for these investigations. In addition, wood from historic food storage boxes exposed in a ravine adjacent to the hut were also sampled. Fungi were cultured on several different media, and pure cultures were obtained and identified by sequencing of the internal transcribed spacer region of rDNA. From the 69 cultures of filamentous fungi obtained, the most predominant genera were Cadophora (44%) followed by Thielavia (17%) and Geomyces (15%). Other fungi found included Cladosporium, Chaetomium, and isolates identified as being in Pezizomycotina, Onygenales, Nectriaceae, and others. No filamentous basidiomycetes were found. Phylogenetic analyses of the Cadophora species showed great species diversity present revealing Cadophora malorum, Cadophora luteo-olivacea, Cadophora fastigiata, as well as Cadophora sp. 4E71-1, a C. malorum-like species, and Cadophora sp. 7R16-1, a C. fastigiata-like species. Scanning electron microscopy showed extensive decay was present in the wood samples with type 1 and type 2 forms of soft rot evident in pine and birch wood, respectively. Fungi causing decay in the historic wooden structures and artifacts are of great concern, and this investigation provides insight into the identity and species diversity of fungi found at the site. The historic woods and other organic materials at this site represent a large input of carbon into the Antarctic environment. This as well as nutrient additions from the nearby Adélie penguin (Pygoscelis adeliae) colony and favorable conditions for fungal growth at Cape Royds appear responsible for the significant fungal diversity, and where extensive decay is taking place in wood in contact with the ground.

  6. Morphological and Genetic Diversity of the Wood-Boring Xylophaga (Mollusca, Bivalvia): New Species and Records from Deep-Sea Iberian Canyons

    PubMed Central

    Romano, Chiara; Voight, Janet Ruth; Pérez-Portela, Rocío; Martin, Daniel

    2014-01-01

    Deep-sea bivalves of the Xylophagaidae, a poorly known group, are obligate wood-borers. Deployment of wood in three submarine canyons off the Iberian coast, the Blanes and La Fonera Canyons (Mediterranean Sea) and the Avilés Canyon (Cantabric Sea, Bay of Biscay), lead to the discovery of four xylophagaid species in our samples. Xylophaga dorsalis (the dominant species), X. atlantica, X. cf. anselli and the new species X. brava, were identified on the basis of morphological data, and supported by a phylogenetic reconstruction based on the nuclear genes 18S rDNA and 28S rDNA and including several genus of Xylophagaidae. Genetic divergence between species of Xylophaga varied between genes, ranging from 0.5 to 4.0% for the 18SrDNA and from 4.1 to 16.6% for the 28SrDNA. Xylophaga brava sp. nov. appeared to be restricted to the Mediterranean and morphologically resembled the closely related X. cf. anselli from the Cantabrian Sea. However, they clearly diverged in two well-supported clades. Low levels of intraspecific variability and higher interspecific divergence between species also supported the existence of these two different species. Morphologically they differ in the number of cirri at the siphon openings, in the shape of the posterior shell and in the size of prodissoconch II. The new species is characterized by having weak, poorly mineralized mesoplax and siphons united throughout, covered by a periostracal, non-calcified tube; distinct proximal and distal siphons, the former translucent and soft, the latter muscular, with concentric rings. Xylophaga atlantica, previously known only from the western Atlantic, is reported for the first time in the Mediterranean Sea. Whether its presence in the Mediterranean indicates its natural distribution or reflects its recent introduction is unknown. Although xylophagaids have been previously reported to recruit heavily to wood deposited on the seabed, these four species colonized wood suspended 30 m above the seafloor. PMID:25061913

  7. Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): new species and records from deep-sea Iberian canyons.

    PubMed

    Romano, Chiara; Voight, Janet Ruth; Pérez-Portela, Rocío; Martin, Daniel

    2014-01-01

    Deep-sea bivalves of the Xylophagaidae, a poorly known group, are obligate wood-borers. Deployment of wood in three submarine canyons off the Iberian coast, the Blanes and La Fonera Canyons (Mediterranean Sea) and the Avilés Canyon (Cantabric Sea, Bay of Biscay), lead to the discovery of four xylophagaid species in our samples. Xylophaga dorsalis (the dominant species), X. atlantica, X. cf. anselli and the new species X. brava, were identified on the basis of morphological data, and supported by a phylogenetic reconstruction based on the nuclear genes 18S rDNA and 28S rDNA and including several genus of Xylophagaidae. Genetic divergence between species of Xylophaga varied between genes, ranging from 0.5 to 4.0% for the 18SrDNA and from 4.1 to 16.6% for the 28SrDNA. Xylophaga brava sp. nov. appeared to be restricted to the Mediterranean and morphologically resembled the closely related X. cf. anselli from the Cantabrian Sea. However, they clearly diverged in two well-supported clades. Low levels of intraspecific variability and higher interspecific divergence between species also supported the existence of these two different species. Morphologically they differ in the number of cirri at the siphon openings, in the shape of the posterior shell and in the size of prodissoconch II. The new species is characterized by having weak, poorly mineralized mesoplax and siphons united throughout, covered by a periostracal, non-calcified tube; distinct proximal and distal siphons, the former translucent and soft, the latter muscular, with concentric rings. Xylophaga atlantica, previously known only from the western Atlantic, is reported for the first time in the Mediterranean Sea. Whether its presence in the Mediterranean indicates its natural distribution or reflects its recent introduction is unknown. Although xylophagaids have been previously reported to recruit heavily to wood deposited on the seabed, these four species colonized wood suspended 30 m above the seafloor.

  8. Chemical Speciation and Bioaccessibility of Arsenic and Chromiumin Chromated Copper Arsenate-Treated Wood and Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nico, Peter S.; Ruby, Michael V.; Lowney, Yvette W.

    This research compares the As and Cr chemistry ofdislodgeable residues from Chromated Copper Arsenate (CCA)-treated woodcollected by two different techniques (directly from the board surfaceeither by rubbing with a soft bristle brush or from human hands aftercontact with CCA-treated wood), and demonstrates that these materials areequivalent in terms of the chemical form and bonding of As and Cr and interms of the As leaching behavior. This finding links the extensivechemical characterization and bioavailability testing that has been donepreviously on the brush-removed residue to a material that is derivedfrom human skin contact with CCA-treated wood. Additionally, thisresearch characterizes the arsenic presentmore » in biological fluids (sweatand simulated gastric fluid) following contact with these residues. Thedata demonstrate that in biological fluids, the arsenic is presentprimarily as free arsenate ions.Arsenic-containing soils were alsoextracted into human sweat to evaluate the potential for arsenicdissolution from soils at the skin surface. For soils from field sites,only a small fraction of the total arsenic is soluble in sweat. Based oncomparisons to reference materials that have been used in in vivo dermalabsorption studies, these findings suggest that the actual relativebioavailability via dermal absorption of As from CCA-residues and soilmay be well below the current default value of 3 percent used by U.S.EPA.« less

  9. METHOD FOR SOLDERING NORMALLY NON-SOLDERABLE ARTICLES

    DOEpatents

    McGuire, J.C.

    1959-11-24

    Methods are presented for coating and joining materials which are considered difficult to solder by utilizing an abrasive wheel and applying a bar of a suitable coating material, such as Wood's metal, to the rotating wheel to fill the cavities of the abrasive wheel and load the wheel with the coating material. The surface of the base material is then rubbed against the loaded rotating wheel, thereby coating the surface with the soft coating metal. The coating is a cohesive bonded layer and holds the base metal as tenaciously as a solder holds to easily solderable metals.

  10. Retene Emission from Residential Solid Fuels in China and Evaluation of Retene as a Unique Marker for Soft Wood Combustion

    PubMed Central

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Massey Simonich, Staci L.

    2012-01-01

    Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EFRET) from 11 crop residues, 27 firewood and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EFRET varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EFRET for pine (0.34±0.08 mg/kg) and larch (0.29±0.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.081±0.058 mg/kg). However, EFRET for crop residues varied from 0.048±0.008 to 0.37±0.14 mg/kg and were not significantly lower than those for softwood (0.074±0.026 to 0.34±0.08 mg/kg). The EFRET for coal were very high and ranged from 2.2±1.5 (anthracite briquette) to 187±113 mg/kg (raw bituminous chunk). EFRET was positively correlated with EFs of co-emitted particulate matter (EFPM) and phenanthrene (EFPHE) for crop residue and coal, but not for wood. In addition, the ratios of EFPHE/EFRET and EFPM/EFRET for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment. PMID:22452486

  11. Swaziland.

    PubMed

    1993-04-01

    Swaziland is a country of 17,363 sq km with 860,000 inhabitants, of whom 64% are literate. Independence was gained on September 6, 1968. The terrain consists of mountains and plateaus, with a climate variously near-temperature, subtropical, and semi-arid. English and SiSwati are spoken by Swazi, Zulu, and non-African ethnic groups, who variously hold Christian and indigenous beliefs. Life expectancy ranges between 53 and 60 years, GDP is $704 million, growing at a rate of 7%. Per capita income is $900. The country's natural resources include asbestos, coal, diamonds, timber, hydroelectric power, and clay. Sugar cane, corn, citrus, fruit, livestock, wood, pineapple, cotton, tobacco, and light manufactured and processed goods are areas of economic production. Motor vehicles, heavy machinery, fuel and lubricants, foodstuffs, and clothing are imported, and sugar, soft drink concentrate, woodpulp and wood products, manufactures, canned fruit, asbestos, and meat products are exported. In-depth information is also given on the people and history, government and principal officials, political conditions, the economy, defense, foreign relations, relations with the US, and names of US officials in the country.

  12. Associations of soft flooring materials in free stalls with milk yield, clinical mastitis, teat lesions, and removal of dairy cows.

    PubMed

    Ruud, L E; Bøe, K E; Osterås, O

    2010-04-01

    The objective was to test if there was an association between free-stall base softness and milk yield, incidence of clinical mastitis (CM), teat lesions, and removal of cows. In a questionnaire sent to 1,923 dairy farms presumed to be using free-stall housing, farmers were asked for information regarding housing and stall base; for example, the year of installation and the product name or brand of their mats or mattresses. This information was merged with data for milk yield, CM, teat lesions, and removal of cows extracted from the Norwegian Dairy Herd Recording System for the years after installation of mats or mattresses. After exclusion of invalid contributions, the data set consisted of 29,326 lactations for milk yield distributed over 363 free-stalled herds in Norway. The farms were stratified into 5 categories according to the softness of the stall surface measured as millimeter impact of a sphere with a diameter of 120 mm at 2-kN load: 1=concrete, softness of 0mm; 2=rubber, softness of 1 to 8mm; 3=soft mats, softness of 9 to 16 mm; 4=multilayer mats, softness of 17 to 24 mm; and 5=mattresses, softness over 24 mm. Lactation curves were estimated as modified Wood's lactation curves using test-day data and mixed models with repeated measurements, adjusting for days in milk, parity, and softness of free-stall flooring. Herds on concrete free-stall bases yielded 6,727+/-146 kg of milk from 5 to 305 days in milk. In comparison, herds showed a decrease of 0.3% on rubber, an increase of 2.4% on soft mats, an increase of 4.5% on multilayer mats, and an increase of 3.9% on mattresses. Compared with concrete, the hazard ratio (HR) of CM was less on rubber, multilayer mats, and mattresses [HR=0.89 (0.79-0.99), 0.85 (0.73-0.996), and 0.80 (0.73-0.88), respectively]. Compared with concrete, the HR of teat lesions was less on rubber, soft mats, multilayer mats, and mattresses [HR=0.41 (0.26-0.65), 0.33 (0.24-0.44), 0.12 (0.04-0.38), and 0.47 (0.33-0.67), respectively]. The HR of removal of cows was less on mattresses compared with concrete, rubber, soft mats, and multilayer mats, with HR=0.90 (0.84-0.97), 0.88 (0.80-0.97), 0.86 (0.80-0.93), and 0.85 (0.76-0.95), respectively. A soft free-stall base contributed significantly to increased milk yield and fewer incidences of CM, teat lesions, and removal of cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. KSC-03PD-1830

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. A closeup of a soft-shell turtle seen crossing the tow-way at KSC. The turtle is one of 65 amphibians and reptiles found in the Merritt Island National Wildlife Refuge, which surrounds KSC. The Wildlife Refuge encompasses 92,000 acres that are also a habitat for more than 331 species of birds, 31 mammals and 117 fishes. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, plus a variety of insects.

  14. KSC-03PD-1829

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. A soft-shell turtle with only three legs is seen crossing the tow-way at KSC. The turtle is one of 65 amphibians and reptiles found in the Merritt Island National Wildlife Refuge, which surrounds KSC. The Wildlife Refuge encompasses 92,000 acres that are also a habitat for more than 331 species of birds, 31 mammals and 117 fishes. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, plus a variety of insects.

  15. Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California

    USGS Publications Warehouse

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.

    1994-01-01

    The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.

  16. London's historic pea-soupers''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbinato, D.

    Americans may think smog was invented in Los Angeles. Not so. In fact, a Londoner coined the term smog'' in 1905 to describe the city's insidious combination of natural fog and coal smoke. By then, the phenomenon was part of London history, and dirty, acrid smoke-filled pea-soupers'' were as familiar to Londoners as Big Ben and Westminster Abby. Smog in London predates Shakespeare by four centuries. Until the 12th century, most Londoners burned wood for fuel. But as the city grew and the forests shrank, wood became scarce and increasingly expensive. Large deposits of sea-coal'' off the northeast coast providedmore » a cheap alternative. Soon, Londoners were burning the soft, bituminous coal to heat their homes and fuel their factories. Sea-coal was plentiful, but it didn't burn efficiently. A lot of its energy was spent making smoke, not heat. Coal smoke drifting through thousands of London chimneys combined with clean natural fog to make smog. If the weather conditions were right, it would last for days. Early on, no one had the scientific tools to correlate smog with adverse health effects, but complaints about the smoky air as an annoyance date back to at least 1272, when King Edward I, on the urging of important noblemen and clerics, banned the burning of sea-coal. Anyone caught burning or selling the stuff was to be tortured or executed. The first offender caught was summarily put to death. This deterred nobody. Of necessity, citizens continued to burn sea-coal in violation of the law, which required the burning of wood few could afford.« less

  17. Computed tomographic images using tube source of x rays: interior properties of the material

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2002-01-01

    An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.

  18. Larvae and pupae of two North American darkling beetles (Coleoptera, Tenebrionidae, Stenochiinae), Glyptotus cribratus LeConte and Cibdelis blaschkei Mannerheim, with notes on ecological and behavioural similarities.

    PubMed

    Steiner, Warren E

    2014-01-01

    THIS STUDY DESCRIBES AND ILLUSTRATES THE LARVAE AND PUPAE OF TWO NORTH AMERICAN DARKLING BEETLES (COLEOPTERA: Tenebrionidae) in the subfamily Stenochiinae, Glyptotus cribratus LeConte from the southeastern United States, and Cibdelis blaschkei Mannerheim from California. Both species inhabit forested regions where adults and larvae occur in soft rotten dry wood of dead branches on living trees or in sections recently fallen from them. Species identity was confirmed by rearing of adults and pupae and the discovery of both in pupal cells with associated exuvia. Specimen label data and notes on habitats are provided. Antipredator defense structures and behaviour are noted for larvae and pupae of both species.

  19. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    PubMed

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy shed light on the superior properties of these nanomaterials.

  20. Wood bison population recovery and forage availability in northwestern Canada.

    PubMed

    Strong, Wayne L; Gates, C Cormack

    2009-01-01

    Forage availability was assessed to determine sustainable stocking rates for eight broadly defined vegetation types (Treed Uplands, Treed Lowlands, Mixed Tall Shrub/Sedge, Closed-canopied Willow, and Open-canopied Willow, Meadow, Wetland Grass, Wetland Sedge) for use by wood bison (Bison bison athabascae), a threatened subspecies, in the Canadian boreal forest of northern Alberta. Clip plots (n=108) were used to sample peak availability of herbs and current annual growth of Salix spp. in late summer. Graminoid wetlands dominated by Carex atherodes, Carex aquatilis, Carex utriculata, Scolochloa festucacea, or Calamagrostis stricta produced 1975-4575 kg ha(-1) of fair to good quality forage, whereas treed stands produced < 250 kg ha(-1) of forb-dominated forage (>85% content), which was below a published 25% foraging efficiency threshold of 263 kg ha(-1) for bison. Upland forests that dominate the region produced < or = 1 animal unit day (AUD) of forage per hectare in summer. Most forest understory plants were of poor forage value, suggesting the potential sustainable stocking rate of such areas was actually < or = 0.3 AUD ha(-1), with even lower rates during winter due to snow cover. Herbaceous wetlands contained approximately 78 AUD ha(-1) of forage, but were considered largely unavailable in summer because of flooding and soft organic soils that make access difficult. Conversion of prime foraging habitat to agricultural land, forest expansion due to fire control, and a warmer and wetter climatic regime after the mid-1900s likely contributed to a regional reduction in carrying capacity. It is hypothesized that substantial recovery of the wood bison population toward historical levels will be constrained in northern Alberta by the availability of summer forage, and the limited extent of graminoid wetlands that provide winter foraging habitat.

  1. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    NASA Astrophysics Data System (ADS)

    Shrestha, Prachand

    This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  2. Pulse granuloma as a complication following dental trauma in children.

    PubMed

    Padmanabhan, Makkada Yuvaraj; Aparna, Radhakrishnan; Karthikeyani, Shanmugasundaram; Dinakar, Jayakumar; Manickaraj, Menaka

    2013-01-01

    Contamination and subsequent retention of foreign bodies within wound surfaces may negatively influence healing following maxillofacial injuries. Larger foreign bodies that produce embedded or impalement injuries of soft tissues are easily detected. However, smaller contaminants, such as sand, gravel, food particles, wood splinters, and glass fibers, may not be easily identified in the initial examination, and their remnants may remain within the injury site even after debridement. Tissue reactions depend on the host response, type of foreign body, and nature of the wound surface. The purposes of this report are to: (1) detail the diagnosis and management of a peripheral pulse granuloma following retention of food particles within gingival sulci during a dental injury; and (2) provide a brief review of the diagnosis of foreign body-induced granulomas following maxillofacial injuries in children.

  3. Larvae and pupae of two North American darkling beetles (Coleoptera, Tenebrionidae, Stenochiinae), Glyptotus cribratus LeConte and Cibdelis blaschkei Mannerheim, with notes on ecological and behavioural similarities

    PubMed Central

    Steiner, Warren E.

    2014-01-01

    Abstract This study describes and illustrates the larvae and pupae of two North American darkling beetles (Coleoptera: Tenebrionidae) in the subfamily Stenochiinae, Glyptotus cribratus LeConte from the southeastern United States, and Cibdelis blaschkei Mannerheim from California. Both species inhabit forested regions where adults and larvae occur in soft rotten dry wood of dead branches on living trees or in sections recently fallen from them. Species identity was confirmed by rearing of adults and pupae and the discovery of both in pupal cells with associated exuvia. Specimen label data and notes on habitats are provided. Antipredator defense structures and behaviour are noted for larvae and pupae of both species. PMID:25009432

  4. RXTE All-Sky Monitor Localization of SGR 1627-41

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Bradt, H. V.; Levine, A. M.

    1999-09-01

    The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR 1627--41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6(deg) segment of a narrow (19('') ) annulus (Hurley et al. 1999; Woods et al. 1998). We report on two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5(') long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3(') of the supernova remnant (SNR) G337.0--0.1. The probability that a SNR would fall so close to the error box purely by chance is ~ 5%.

  5. Soft and Flexible Bilayer Thermoplastic Polyurethane Foam for Development of Bioinspired Artificial Skin.

    PubMed

    Li, Huan; Sinha, Tridib K; Oh, Jeong Seok; Kim, Jin Kuk

    2018-04-25

    Inspired by the epidermis-dermis composition of human skin, here we have simply developed a lightweight, robust, flexible, and biocompatible single-electrode triboelectric nanogenerator (S-TENG)-based prototype of bilayer artificial skin, by attaching one induction electrode with unfoamed skin layer of microcellular thermoplastic polyurethane (TPU) foam, which shows high-performance object manipulation [by responding differently toward different objects, viz., aluminum foil, balloon, cotton glove, human finger, glass, rubber glove, artificial leather, polyimide, poly(tetrafluoroethylene) (PTFE), paper, and wood], due to electrification and electrostatic induction during contact with the objects having different chemical functionalities. Comparative foaming behavior of ecofriendly supercritical fluids, viz., CO 2 over N 2 under variable temperatures (e.g., 130 and 150 °C) and constant pressure (15 MPa), have been examined here to pursue the soft and flexible triboelectric TPU foam. The foam derived by CO 2 foaming at 150 °C has been prioritized for development of S-TENG. Foam derived by CO 2 foaming at 130 °C did not respond as well due to the smaller cell size, higher hardness, and thicker skin. Inflexible N 2 -derived foam was not considered for S-TENG fabrication. Object manipulation performance has been visualized by principal component analysis (PCA), which shows good discrimination among responses to different objects.

  6. Effect of Preservative Pretreatment on the Biological Durability of Corn Straw Fiber/HDPE Composites.

    PubMed

    Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H H; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A D

    2017-07-12

    The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus.

  7. Effect of Preservative Pretreatment on the Biological Durability of Corn Straw Fiber/HDPE Composites

    PubMed Central

    Xuan, Lihui; Hui, Dongxue; Cheng, Wanli; Wong, Andrew H. H.; Han, Guangping; Tan, Wei Khong; Tawi, Carlson A. D.

    2017-01-01

    The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus. PMID:28773150

  8. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  9. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  10. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  11. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  12. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    PubMed

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong influence of the biodiesel content on the nature of the particulate organic material.

  13. Generic detection of basic taxoids in wood of European Yew (Taxus baccata) by liquid chromatography-ion trap mass spectrometry.

    PubMed

    Kite, Geoffrey C; Rowe, Emily R; Veitch, Nigel C; Turner, Jill E; Dauncey, Elizabeth A

    2013-02-01

    The occurrence of the cardiotoxin taxine (comprising taxine B and several other basic taxoids) in leaves of Taxus baccata L. (European yew) is well known and has led to public concerns about the safety of eating or drinking from utensils crafted from the wood of this poisonous species. The occurrence of basic taxoids in the heartwood of T. baccata had not been examined in detail, although the bark is known to contain 2'β-deacetoxyaustrospicatine. Initial examination of heartwood extracts for 2'β-deacetoxyaustrospicatine by liquid chromatography-mass spectrometry (LC-MS) revealed the presence of this basic taxoid at about 0.0007% dry weight, using a standard isolated from bark. Analyses for taxine B, however, proved negative at the extract concentration analysed. Observing other basic taxoids within the heartwood extracts was facilitated by developing generic LC-MS methods that utilised a fragment arising from the N-containing acyl group of basic taxoids as a reporter ion. Of the various MS strategies available on a hybrid ion trap-orbitrap instrument that allowed observation of this reporter ion, combining all-ion collisions with high resolution ion filtering by the orbitrap was most effective, both in terms of the number of basic taxoids detected and sensitivity. Numerous basic taxoids, in addition to 2'β-deacetoxyaustrospicatine, were revealed by this method in heartwood extracts of T. baccata. Red wine readily extracted the basic taxoids from heartwood while coffee extracted them less efficiently. Contamination with basic taxoids could also be detected in soft cheese that had been spread onto wood. The generic LC-MS method for detecting basic taxoids complements specific methods for detecting taxine B when investigating yew poisoning cases in which the analysis of complex extracts may be required or taxine B has not been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana.

    PubMed

    Klass, Klaus-Dieter; Nalepa, Christine; Lo, Nathan

    2008-03-01

    Isoptera are highly specialized cockroaches and are one of the few eusocial insect lineages. Cryptocercus cockroaches have appeared to many as ideal models for inference on the early evolution of termites, due to their possible phylogenetic relationship and several shared key attributes in life history. Recently, Pellens, Grandcolas, and colleagues have proposed the blaberid cockroach Parasphaeria boleiriana to be an alternative model for the early evolution in termites. We compare the usefulness of Cryptocercus and P. boleiriana as models for termite evolution. Cryptocercus and lower Isoptera (1) can both feed on comparatively recalcitrant wood, (2) have an obligate, rich and unique hypermastigid and oxymonadid fauna in the hindgut, (3) transfer these flagellates to the next generation by anal trophallaxis, (4) have social systems that involve long-lasting biparental care, and, finally, (5) are strongly suggested to be sister groups, so that the key attributes (1)-(4) appear to be homologous between the two taxa. On the other hand, P. boleiriana (1) feeds on soft, ephemeral wood sources, (2) shows no trace of the oxymonadid and hypermastigid hindgut fauna unique to Cryptocercus and lower Isoptera, nor does it have any other demonstrated obligate relationship with hindgut flagellates, (3) is likely to lack anal trophallaxis, (4) has only a short period of uniparental brood care, and (5) is phylogenetically remote from the Cryptocercus+Isoptera clade. These facts would argue against any reasonable usage of P. boleiriana as a model for the early evolution of Isoptera or even of the clade Cryptocercus+Isoptera. Cryptocercus thus remains an appropriate model-taxon-by-homology for early termite evolution. As compared to P. boleiriana, some other Blaberidae (such as the Panesthiinae Salganea) appear more useful as model-taxa-by-homoplasy for the early evolution of the Cryptocercus+Isoptera clade, as their brooding behavior is more elaborate than in P. boleiriana.

  15. Significance of wood extractives for wood bonding.

    PubMed

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  16. Wood : adhesives

    Treesearch

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  17. Geophysical imaging of root-zone, trunk, and moisture heterogeneity.

    PubMed

    Attia Al Hagrey, Said

    2007-01-01

    The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.

  18. Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Olendzenski, L.; Afzelius, B. A.

    1990-01-01

    Many morphologically distinguishable filamentous spore-forming bacteria symbiotic in the paunch (hypertrophied hindguts) of wood-eating insects have been seen since Arthromitus was first described and named as a plant by Leidy in 1850. Previous descriptions were inadequate for acceptance of the group in modern bacteriological literature. Twenty-two distinguishable arthromitids in nine different arthropod hosts are recorded on the basis of microscopic studies. Five are named, including two whose ultrastructure are detailed: Arthromitus chasei sp. nov. that lives in the damp wood-eating termite Zootermopsis angusticollis (from the west coast of North America) and Arthromitus reticulitermitidis sp. nov. from the subterranean west coast termite Reticulitermes tibialis. A pterotermiditis from the desert termite Pterotermitidis occidentis; A. zootermopsidis, also from Z. angusticollis; and A. cristatus (Leidy, 1881) from Reticulitermes flavipes of eastern North America are also named here. Characterized by trichomes that show a morphogenetic sequence from no spores through immature spores to mature spores with spore filaments, Arthromitus symbionts can be identified as members of the genus by light microscopy and habitat. Electron microscopy reveals their remarkable complexity. They attach by spore filaments to various objects including the host gut wall; their maturation extends distally toward the termite lumen. By surface sterilization of the termite, maceration of the paunch, exposure to boiling temperatures and plating on soft acetate agar, the heat resistant nature of the spores and facultatively aerobic nature of Arthromitus sp. (from Zootermopsis) was demonstrated.

  19. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Micropropagation of Vaccinium sp. by in vitro axillary shoot proliferation.

    PubMed

    Litwińczuk, Wojciech

    2013-01-01

    The Vaccinium genus contains several valuable fruit and ornamental species, among others: highbush blueberry (Vaccinium × corymbosum L.), cranberry (Vaccinium macrocarpon Ait.), and lingonberry (Vaccinium vitis-idaea L.). In some most popular and valuable cultivars, the conventional propagation methods, exploiting hard or soft wood cuttings, are inefficient. The demand for nursery plants could be fulfilled only by micropropagation. In principle cultivars are propagated in vitro through similar three-stage method, based on subculture of shoot explants on different culture media supplemented with IAA (0-4 mg/L) and 2iP (5-10 mg/L), and rooting shoots in vivo. The obtained plantlets are transferred to peat substrate and grown in the glasshouse until the end of growing period. The development of adventitious shoots should be monitored and controlled during in vitro stages. Many clones have specific requirements for growing conditions and/or are recalcitrant.

  1. A portable fracture toughness tester for biological materials

    NASA Astrophysics Data System (ADS)

    Darvell, B. W.; Lee, P. K. D.; Yuen, T. D. B.; Lucas, P. W.

    1996-06-01

    A portable mechanical tester is described which is both lightweight and cheap to produce. The machine is simple and convenient to operate and requires only a minimum of personnel training. It can be used to measure the fundamental mechanical properties of pliant solids, particularly toughness (in the sense of `work of fracture') using either scissors or wedge tests. This is achieved through a novel hardware integration technique. The circuits are described. The use of the machine does not require a chart recorder but it can be linked to a personal computer, either to show force - displacement relationships or for data storage. The design allows the use of any relatively `soft' mechanical test, i.e. tests in which the deformability of the frame of the machine and its load cell do not introduce significant errors into the results. Examples of its use in measuring the toughness of biomaterials by scissors (paper, wood) and wedges (mung bean starch gels) are given.

  2. Expansion of presoldier cuticle contributes to head elongation during soldier differentiation in termites

    NASA Astrophysics Data System (ADS)

    Sugime, Yasuhiro; Ogawa, Kota; Watanabe, Dai; Shimoji, Hiroyuki; Koshikawa, Shigeyuki; Miura, Toru

    2015-12-01

    In termites, the soldier caste possesses morphological features suitable for colony defence, despite some exceptions. Soldiers are differentiated via two moultings through a presoldier stage with dramatic morphogenesis. While a number of morphological modifications are known to occur during the presoldier moult, growth and morphogenesis seem to continue even after the moult. The present study, using the damp-wood termite Hodotermopsis sjostedti, carried out morphological and histological investigations on the developmental processes during the presoldier stage that is artificially induced by the application of a juvenile hormone analogue. Measurements of five body parameters indicated that head length significantly increased during the 14-day period after the presoldier moult, while it did not increase subsequently to the stationary moult (pseudergate moult as control). Histological observations also showed that the cuticular development played a role in the presoldier head elongation, suggesting that the soft and flexible presoldier cuticle contributed to the soldier morphogenesis in termites.

  3. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Treesearch

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  4. Wood handbook : wood as an engineering material.

    Treesearch

    Forest Products Laboratory

    1999-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  5. Wood handbook : wood as an engineering material

    Treesearch

    Robert J. Ross; Forest Products Laboratory USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  6. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

    PubMed

    Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun

    2014-03-01

    Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.

  7. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Acoustic and adsorption properties of submerged wood

    NASA Astrophysics Data System (ADS)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  10. Wood as an adherend

    Treesearch

    Bryan H. River; Charles B. Vick; Robert H. Gillespie

    1991-01-01

    Wood is a porous, permeable, hygroscopic, orthotropic, biological composite material of extreme chemical diversity and physical intricacy. Table 1.1 provides an overview of the may variables, including wood variables, that bear on the bonding and performance of wood in wood joints and wood-based materials. Of particular note is the fact that wood properties vary...

  11. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    PubMed Central

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55–65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0–25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T. harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field. PMID:28379978

  12. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    PubMed

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T. harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field.

  13. Cord Wood Testing in a Non-Catalytic Wood Stove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.; Trojanowski, R.; Wei, G.

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here ismore » to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.« less

  14. Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins

    Treesearch

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2008-01-01

    Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three-necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac-type liquefied wood/phenol/...

  15. New species of Ipomoea (Convolvulaceae) from South America

    PubMed Central

    Wood, John R.I.; Muñoz-Rodríguez, Pablo; Degen, Rosa; Scotland, Robert W.

    2017-01-01

    Abstract The importance of discovering, describing and cataloguing poorly known species in herbarium collections is discussed. It is a spur to efforts at rediscovery and consequent conservation efforts. The problems faced in describing species from limited material are discussed and our methods and criteria in making a decision are described. Prospects for future novelties are briefly assessed. Fifteen new species are described and illustrated with line drawings and distribution maps: Ipomoea attenuata J.R.I. Wood & Scotland, I. cuscoensis J.R.I. Wood & P. Muñoz, I. dasycarpa J.R.I. Wood & Scotland, I. dolichopoda J.R.I. Wood & R. Degen, I. ensiformis J.R.I.Wood & Scotland, I. fasciculata J.R.I. Wood & Scotland, I. graminifolia J.R.I. Wood & Scotland, I. kraholandica J.R.I. Wood & Scotland, I. longirostra J.R.I. Wood & Scotland, I. revoluta J.R.I. Wood & Scotland, I. scopulina J.R.I. Wood &. Scotland, I. uninervis J.R.I. Wood & Scotland, I. veadeirosii J.R.I. Wood & Scotland, I. velutinifolia J.R.I. Wood & Scotland, I. walteri J.R.I. Wood & Scotland. All species are narrow endemics except I. velutinifolia which is found in Brazil and Peru; of the others, 12 are found in Brazil and one each in Paraguay and Peru. PMID:29118645

  16. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    PubMed

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Chapter 6: Wood energy and competing wood product markers

    Treesearch

    Kenneth E. Skog; Robert C. Abt; Karen Abt

    2014-01-01

    Understanding the effect of expanding wood energy markets is important to all wood-dependent industries and to policymakers debating the implementation of public programs to support the expansion of wood energy generation. A key factor in determining the feasibility of wood energy projects (e.g. wood boiler or pellet plant) is the long-term (i.e. 20-30year) supply...

  18. Wood flour

    Treesearch

    Craig M. Clemons; Daniel F. Caufield

    2005-01-01

    The term “wood flour” is somewhat ambiguous. Reineke states that the term wood flour “is applied somewhat loosely to wood reduced to finely divided particles approximating those of cereal flours in size, appearance, and texture”. Though its definition is imprecise, the term wood flour is in common use. Practically speaking, wood flour usually refers to wood particles...

  19. Wood flour

    Treesearch

    Craig M. Clemons

    2010-01-01

    The term “wood flour” is somewhat ambiguous. Reineke states that the term wood flour “is applied somewhat loosely to wood reduced to finely divided particles approximating those of cereal flours in size, appearance, and texture.” Though its definition is imprecise, the term wood flour is in common use. Practically speaking, wood flour usually refers to wood particles...

  20. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    PubMed

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  1. Effects of humidity on the magnetic and woody characteristics of powder-type magnetic wood

    NASA Astrophysics Data System (ADS)

    Oka, H.; Tokuta, H.; Namizaki, Y.; Sekino, N.

    2004-05-01

    Among three types of proposed magnetic wood, powder-type magnetic wood can be made of recycled magnetic materials from IT devices, consumer electronics and waste wood. Because of its wood powder content, powder-type magnetic wood shows special characteristics different from those of typical magnetic materials. We focused on the relationship between humidity and magnetic characteristics of powder-type magnetic wood. The magnetic powder ratio, wood powder density and magnetic binder density were all examined as parameters for AC permeability.

  2. Study of influence of 2.4 GHz electromagnetic waves on electrophysical properties of coniferous trees wood

    NASA Astrophysics Data System (ADS)

    Abdurahimov, Nursulton; Lagunov, Alexey; Melehov, Vladimir

    2017-09-01

    Climate change has a significant impact on changing weather conditions in the Arctic. Wood is a traditional building material in the North of Russia. Supports of communication lines are made of wood. Dry wood is a solid dielectric with a low conductivity. At the same time it is porous material having high hygroscopicity. The presence of moisture leads to wood rotting. To prevent rotting of a support it needs to be impregnated with antiseptics. A tree dried by means of convection drying cannot provide required porosity of wood for impregnation. Our studies of electrophysical properties of coniferous species showed that microwave drying of wood increases the porosity of the wood. Wood dried in this way is easily impregnated with antiseptics. Thorough wood drying requires creating optimal conditions in a microwave oven. During the drying process in a chamber there is a resonant phenomenon. These phenomena depend on electro-physical properties of the material placed in the chamber. Dielectric constant of wood has the most influence. A resonator method to determine the dielectric constant of the wood was used. The values of permittivity for the spruce and pine samples were determined. The measured value of the dielectric constant of wood was used to provide optimal matching of the generator with the resonator in a wood-drying resonator type microwave chamber, and to maintain it in the process of wood drying. It resulted in obtaining the samples with a higher permeability of wood in radial and longitudinal direction. This creates favorable conditions for wood impregnation with antiseptics and flame retardants. Timber dried by means of electromagnetic waves in the 2.4 GHz band has a deeper protective layer. The support made of such wood will serve longer as supports of communication lines.

  3. FIELD-SCALE LEACHING OF ARSENIC, CHROMIUM AND COPPER FROM WEATHERED TREATED WOOD

    PubMed Central

    Hasan, A. Rasem; Hu, Ligang; Solo-Gabriele, Helena M.; Fieber, Lynne; Cai, Yong; Townsend, Timothy G.

    2010-01-01

    Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals’ leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers. PMID:20053493

  4. Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.

    2016-04-01

    The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood becomes more decomposed. Our results provide quantitative experimental evidence for how several key abiotic and biotic factors, especially moisture content and the key underlying trait wood density, as well as their interactions, together drive coarse wood carbon turnover through fire. Our experimental data on coarse wood behavior and gas efflux during fire will help to improve the predictive power of global vegetation climate models on dead wood turnover and its feedback to climate.

  5. UV resistance and dimensional stability of wood modified with isopropenyl acetate.

    PubMed

    Nagarajappa, Giridhar B; Pandey, Krishna K

    2016-02-01

    Chemical modification of Rubberwood (Hevea brasiliensis Müll.Arg) with isopropenyl acetate (IPA) in the presence of anhydrous aluminum chloride as a catalyst has been carried out under solvent free conditions. The level of modification was estimated by determining the weight percent gain and modified wood was characterized by FTIR-ATR and CP/MAS (13)C NMR spectroscopy. The effect of catalyst concentration on WPG was studied. UV resistance, moisture adsorption and dimensional stability of modified wood were evaluated. UV resistance of modified wood was evaluated by exposing unmodified and modified wood to UV irradiation in a QUV accelerated weathering tester. Unmodified wood showed rapid color changes and degradation of lignin upon exposure to UV light. Chemical modification of wood polymers with IPA was effective in reducing light induced color changes (photo-yellowing) at wood surfaces. In contrast to unmodified wood, modified wood exhibited bleaching. FTIR analysis of modified wood exposed to UV light indicated stabilization of wood polymers against UV degradation. Modified wood showed good dimensional stability and hydrophobicity. Thermogravimetric analysis showed that modification with IPA improved thermal stability of wood. Improved dimensional stability and UV resistance of modified wood indicates IPA as a promising reagent since there is no acid byproduct of reaction as observed in case of other esterification reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Structural design models for tunnels in soft soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duddeck, H.; Erdmann, J.

    In 1982 the ITA (International Tunnelling Association) working group on structural design models for tunnelling published the answers to a questionnaire in the form of a synopsis. As a continuation of that work, results of an investigation on design models for soft ground tunnels are presented and a comparative review of the progress to date in this field is given. The main differences in the assumptions entering the different models are stated. Diagrams for the hoop forces, bending moments and radial displacements shows the differences in the design values evaluated for three different models: (1) the continuum models; (2) themore » design model by Muir Wood; and (3) the bedded beam model without bedding at the crown region. Because a comparison with free parameters necessitates analytical solutions, only circular cross-sections were investigated. Nevertheless the results of the investigation also may be valid to a great extent for noncircular cross-sections and a more refined numerical analyses. It can be shown that there is a trend toward agreement on the proper assumptions and on the design models applied either for shallow or for deep tunnels. As should be expected, the bending moments are sensitive with regard to the model chosen, whereas the hoop forces in the tunnel ring are rather unaffected by the change of ground and lining properties. The significance of the nonlinearity due to geometrical deformations or to plastic behavior is demonstrated from specific examples.« less

  7. Wood fuel preparation

    Treesearch

    L. H. Reineke

    1965-01-01

    This report gives information on the preparation of wood fuel from wood residues and other wood raw materials. Types of wood fuel discussed are cordwood, stovewood, slabwood, kindling, chips, hogged fuel, sawdust and shavings, bark, charcoal, alcohol, and briquets. Related information is given on types of machinery for preparing wood fuel and on possible markets for...

  8. Evaluation of interior and exterior latex paints : final report.

    DOT National Transportation Integrated Search

    1979-10-01

    The wood panels that have only one coat of paint over bare wood and one coat of paint over primed wood are continuing to show sighs of deterioration. The wood panels that have two coats of paint over bare wood and two coats of paint over primed wood ...

  9. Wood Programs. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Kaylor, Robert; And Others

    This courseware evaluation rates the Wood Programs software developed by the Iowa Department of Public Instruction. (These programs--not contained in this document--include understanding board feet, wood characteristics, wood safety drill, wood dimensions, wood moisture, operating the table saw, radial arm, measurement drill, fraction drill, and…

  10. 76 FR 76690 - Multilayered Wood Flooring From the People's Republic of China: Amended Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... is issuing an antidumping duty order on multilayered wood flooring (``wood flooring'') from the... antidumping duty investigation of wood flooring from the PRC. See Multilayered Wood Flooring From the People's...

  11. Corrosion of metals in wood : comparing the results of a rapid test method with long-term exposure tests across six wood treatments

    Treesearch

    Samuel L. Zelinka; Donald S. Stone

    2011-01-01

    This paper compares two methods of measuring the corrosion of steel and galvanized steel in wood: a long-term exposure test in solid wood and a rapid test method where fasteners are electrochemically polarized in extracts of wood treated with six different treatments. For traditional wood preservatives, the electrochemical extract method correlates with solid wood...

  12. Methanol from wood waste : a technical and economic study

    Treesearch

    A. E. Hokanson; R. M. Rowell

    1977-01-01

    A methanol-from-wood waste facility having a capacity of 50 million gallons per year requires 1,500 ovendry tons (ODT) of wood waste per day. The yield of methanol from wood is about 38 percent, or about 100 gallons per ODT of wood. This yield is based on all process energy required coming from the wood waste. At a wood waste cost of $15/ODT, the selling price of...

  13. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  14. Effects of floor heating and litter quality on the development and severity of foot pad dermatitis in young turkeys.

    PubMed

    Abd El-Wahab, A; Beineke, A; Beyerbach, M; Visscher, C F; Kamphues, J

    2011-09-01

    Actions concerning animal health in turkey production are coming more and more to the fore. Litter quality has a great impact on the bird's health and welfare. This study aimed at evaluating the effects of using floor heating, different litter materials, and exposure to litter with a "critical moisture content" of 35% for 16 or 24 hr/day on the severity of foot pad dermatitis (FPD), a widespread disease in fattening turkeys. Four groups of 2-wk-old female turkeys, with 20 birds in each, were reared during 3 wk. All turkeys were fed a commercial pellet diet ad libitum. The first two groups were kept on wood shavings (35% moisture) without and with floor heating. The other two groups were housed on lignocellulose (Soft Cell) of 35% moisture without and with floor heating. In each group, half of the birds were housed for 8 hr/day in adjacent separate boxes where the litter was kept clean and dry throughout the experimental period. Foot pads were assessed weekly for external and at day 35 for histopathologic scoring (scores: 0 = healthy; 7 = ulcer). At day 14 each bird had normal and healthy foot pads. The results indicate that using floor heating resulted in significantly lower FPD scores (0.8 +/- 0.2) compared to groups without floor heating (2.0 +/- 0.8). Using lignocellulose as a litter material resulted in significantly lower histopathologic FPD scores (1.4 +/- 0.7) compared with wood shavings (1.7 +/- 0.8). In all birds housed on dry litter for 8 hr/day, significantly lower FPD scores were found compared to birds housed on wet litter for 24 hr. In conclusion, using floor heating, even with wet litter (35% moisture), independent of the litter type, resulted in reduced severity of FPD compared to those birds housed in pens without using floor heating. Additionally, using lignocellulose as a litter material resulted in lower FPD compared with wood shavings. Keeping litter dry and "warm" could be achieved by using floor heating, which is considered a practical step to enhance animal health and welfare.

  15. Effects of breathing frequency and flow rate on the total inward leakage of an elastomeric half-mask donned on an advanced manikin headform.

    PubMed

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; McKay, Roy; Bergman, Michael S; Zhuang, Ziqing

    2014-03-01

    The objective of this study was to investigate the effects of breathing frequency and flow rate on the total inward leakage (TIL) of an elastomeric half-mask donned on an advanced manikin headform and challenged with combustion aerosols. An elastomeric half-mask respirator equipped with P100 filters was donned on an advanced manikin headform covered with life-like soft skin and challenged with aerosols originated by burning three materials: wood, paper, and plastic (polyethylene). TIL was determined as the ratio of aerosol concentrations inside (C in) and outside (C out) of the respirator (C in/C out) measured with a nanoparticle spectrometer operating in the particle size range of 20-200nm. The testing was performed under three cyclic breathing flows [mean inspiratory flow (MIF) of 30, 55, and 85 l/min] and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). A completely randomized factorial study design was chosen with four replicates for each combination of breathing flow rate and frequency. Particle size, MIF, and combustion material had significant (P < 0.001) effects on TIL regardless of breathing frequency. Increasing breathing flow decreased TIL. Testing with plastic aerosol produced higher mean TIL values than wood and paper aerosols. The effect of the breathing frequency was complex. When analyzed using all combustion aerosols and MIFs (pooled data), breathing frequency did not significantly (P = 0.08) affect TIL. However, once the data were stratified according to combustion aerosol and MIF, the effect of breathing frequency became significant (P < 0.05) for all MIFs challenged with wood and paper combustion aerosols, and for MIF = 30 l/min only when challenged with plastic combustion aerosol. The effect of breathing frequency on TIL is less significant than the effects of combustion aerosol and breathing flow rate for the tested elastomeric half-mask respirator. The greatest TIL occurred when challenged with plastic aerosol at 30 l/min and at a breathing frequency of 30 breaths/min.

  16. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Treesearch

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  17. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Treesearch

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  18. Finishes for Wood Decks

    Treesearch

    Mark Knaebe

    2013-01-01

    Wood decks have become an important part of residential construction. Wood decks can add versatile living space to a home and, with minimal maintenance, provide decades of use. However, wood decks are exposed to high levels of stress from severe weather conditions that shrink and swell the wood. Without proper maintenance, wood decks can develop problems such as checks...

  19. Surface characterization

    Treesearch

    Mandla A. Tshabalala

    2005-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites, as the...

  20. Effect of wood flour content on the optical color, surface chemistry, mechanical and morphological properties of wood flour/recycled high density polyethylene (rHDPE) composite

    NASA Astrophysics Data System (ADS)

    Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.

    2018-05-01

    In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.

  1. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  2. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  3. Functional lignocellulosic materials prepared by ATRP from a wood scaffold.

    PubMed

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-08-10

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood.

  4. Functional lignocellulosic materials prepared by ATRP from a wood scaffold

    PubMed Central

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-01-01

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood. PMID:27506369

  5. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    NASA Astrophysics Data System (ADS)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  6. Wood adhesives : vital for producing most wood products

    Treesearch

    Charles R. Frihart

    2011-01-01

    A main route for the efficient utilization of wood resources is to reduce wood to small pieces and then bond them together (Frihart and Hunt 2010). Although humankind has been bonding wood since early Egyptian civilizations, the quality and quantity of bonded wood products has increased dramatically over the past 100 years with the development of new adhesives and...

  7. Chapter 8:Surface Characterization

    Treesearch

    Mandla A. Tshabalala; Joseph Jakes; Mark R. VanLandingham; Shaoxia Wang; Jouko Peltonen

    2013-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media, or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites where the...

  8. 77 FR 69454 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ..., South Carolina. B. Federal Reserve Bank of Chicago (Colette A. Fried, Assistant Vice President) 230.... Woods, Bluffton, South Carolina, individually and as part of a group acting in concert with Edgar Woods.... Woods, Milton Woods Jr. and Susan H Woods, both of Ridgeland, South Carolina, and J. Eric Woods...

  9. Chapter 02: Basic wood biology—Anatomy for identification

    Treesearch

    Alex Wiedenhoeft

    2011-01-01

    Before the topics of using a hand lens, preparing wood for observation, and understanding the characters used in wood identification can be tackled, a general introduction to the biology of wood must be undertaken. The woods in commercial trade in Central America come almost exclusively from trees, so the discussion of wood biology is restricted to trees here, though...

  10. Uses and desirable properties of wood in the 21st century

    Treesearch

    Theodore Wegner; Kenneth E. Skog; Peter J. Ince; Charles J. Michler

    2010-01-01

    The desirability of specific wood properties is driven by a number of social, economic, and environmental factors that influence wood-use trends. This article discusses current continuing commercial uses of wood, significant new or emerging commercial uses, and desirable wood properties indicated by projected changes in wood use. Emerging issues and applications such...

  11. Interaction of copper wood preservatives and adhesives

    Treesearch

    Charles R. Frihart

    2003-01-01

    Compared to other substrates, wood is generally easy to bond. However, adhesion is diminished when the wood surface is covered by chemicals, whether natural oils and resins or added chemicals. Among the chemicals added to wood are fire retardants and wood preservatives. Chromated copper arsenate (CCA) has been widely used to protect wood against rot and termites, but...

  12. Characterization of Juvenile wood in Lodgepole Pine in the Intermountain West

    Treesearch

    Thomas M. Gorman; David E. Kretschmann

    2012-01-01

    Juvenile wood (core wood) is typically characterized as being less dimensionally stable and having lower mechanical properties than mature wood. Determination of the age of transition from juvenile wood to mature wood can provide basic information needed to assess dimensional stability and better utilize small-diameter trees growing in the intermountain west as solid-...

  13. Many Roles of Wood Adhesives

    Treesearch

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  14. Thermal decomposition of wood: influence of wood components and cellulose crystallite size.

    PubMed

    Poletto, Matheus; Zattera, Ademir J; Forte, Maria M C; Santana, Ruth M C

    2012-04-01

    The influence of wood components and cellulose crystallinity on the thermal degradation behavior of different wood species has been investigated using thermogravimetry, chemical analysis and X-ray diffraction. Four wood samples, Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP) were used in this study. The results showed that higher extractives contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the wood thermal stability. On the other hand, the thermal decomposition of wood shifted to higher temperatures with increasing wood cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of wood species. Copyright © 2012. Published by Elsevier Ltd.

  15. The raft of the Saint-Jean River, Gaspé (Québec, Canada): A dynamic feature trapping most of the wood transported from the catchment

    NASA Astrophysics Data System (ADS)

    Boivin, Maxime; Buffin-Bélanger, Thomas; Piégay, Hervé

    2015-02-01

    The rivers of the Gaspé Peninsula, Québec (Canada), a coastal drainage system of the St. Lawrence River, receive and transport vast quantities of large wood. The rapid rate of channel shifting caused by high-energy flows and noncohesive banks allows wood recruitment that in turn greatly influences river dynamics. The delta of the Saint-Jean River has accumulated wood since 1960, leading to frequent avulsions over that time period. The wood raft there is now more than 3-km in length, which is unusual but natural. This jam configuration allows a unique opportunity to estimate a wood budget at the scale of a long river corridor and to better understand the dynamics of large wood (LW) in rivers. A wood budget includes the evaluation of wood volumes (i) produced by bank erosion (input), (ii) still in transit in the river corridor (deposited on sand bars or channel edges), and (iii) accumulated in the delta (output). The budget is based on an analysis of aerial photos dating back to 1963 as well as surveys carried out in 2010, all of which were used to locate and describe large wood accumulations along a 60-km river section. The main results of this paper show that the raft formation in the delta is dynamic and can be massive, but it is a natural process. Considering the estimated wood volume trapped in the delta from 1963 to 2013 (≈ 25,000 m3), two important points are revealed by the quantification of the wood recruitment volume from 1963 to 2004 (≈ 27,000 m3 ± 400 m3) and of the wood volume stored on the bars in 2010 (≈ 5950 m3). First, the recruitment of large wood from lateral migration for the 40-year period can account for the volume of large wood in the delta and in transit. Second, the excess wood volume produced by lateral migration and avulsion represents a minimum estimation of the large wood trapped on the floodplain owing to wood volume that has decomposed and large wood that exited the river system. Rafts are major trapping structures that provide good potential sites to monitor wood delivery from the catchment through time and allow estimations of LW residence time while in transit. These results contribute to understanding the interannual large wood dynamics in the Saint-Jean River and can assist river managers in determining sustainable solutions for coping with the issue of wood rafts in rivers.

  16. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    NASA Astrophysics Data System (ADS)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  17. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    PubMed

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  18. Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology.

    PubMed

    Mishra, Pawan Kumar; Giagli, Kyriaki; Tsalagkas, Dimitrios; Mishra, Harshita; Talegaonkar, Sushma; Gryc, Vladimír; Wimmer, Rupert

    2018-02-14

    Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. DNA Damage among Wood Workers Assessed with the Comet Assay

    PubMed Central

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  20. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood.

    PubMed

    Clair, Bruno; Gril, Joseph; Di Renzo, Francesco; Yamamoto, Hiroyuki; Quignard, Françoise

    2008-02-01

    Wood behavior is characterized by high sensibility to humidity and strongly anisotropic properties. The drying shrinkage along the fibers, usually small due to the reinforcing action of cellulosic microfibrils, is surprisingly high in the so-called tension wood, produced by trees to respond to strong reorientation requirements. In this study, nitrogen adsorption-desorption isotherms of supercritically dried tension wood and normal wood show that the tension wood cell wall has a gel-like structure characterized by a pore surface more than 30 times higher than that in normal wood. Syneresis of the tension wood gel explains its paradoxical drying shrinkage. This result could help to reduce technological problems during drying. Potential applications in biomechanics and biomimetics are worth investigating, considering that, in living trees, tension wood produces tensile growth stresses 10 times higher than that of normal wood.

  1. Large wood transport and jam formation in a series of flume experiments

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; MacKenzie, L. G.; Eaton, B. C.

    2015-12-01

    Large wood has historically been removed from streams, resulting in the depletion of in-stream wood in waterways worldwide. As wood increases morphological and hydraulic complexity, the addition of large wood is commonly employed as a means to rehabilitate in-stream habitat. At present, however, the scientific understanding of wood mobilization and transport is incomplete. This paper presents results from a series of four flume experiments in which wood was added to a reach to investigate the piece and reach characteristics that determine wood stability and transport, as well as the time scale required for newly recruited wood to self-organize into stable jams. Our results show that wood transitions from a randomly distributed newly recruited state to a self-organized, or jam-stabilized state, over the course of a single bankfull flow event. Statistical analyses of piece mobility during this transitional period indicate that piece irregularities, especially rootwads, dictate the stability of individual wood pieces; rootwad presence or absence accounts for up to 80% of the variance explained by linear regression models for transport distance. Furthermore, small pieces containing rootwads are especially stable. Large ramped pieces provide nuclei for the formation of persistent wood jams, and the frequency of these pieces in the reach impacts the travel distance of mobile wood. This research shows that the simulation of realistic wood dynamics is possible using a simplified physical model, and also has management implications, as it suggests that randomly added wood may organize into persistent, stable jams, and characterizes the time scale for this transition.

  2. Furniture wood wastes: Experimental property characterisation and burning tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatano, Fabio; Barbadoro, Luca; Mangani, Giovanna

    2009-10-15

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675more » to 5105 kcal kg{sup -1} for HHV, and from 3304 to 4634 kcal kg{sup -1} for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM{sub 1} fraction during incomplete industrial wood burning.« less

  3. New views on antidiarrheal effect of wood creosote: is wood creosote really a gastrointestinal antiseptic?

    PubMed

    Ataka, Koji; Ito, Masafumi; Shibata, Takashi

    2005-12-01

    Wood creosote, the principal ingredient in Seirogan, has a long history as a known gastrointestinal microbicidal agent. When administered orally, the intraluminal concentration of wood creosote is not sufficiently high to achieve this microbicidal effect. Through further animal tests, we have shown that antimotility and antisecretory actions are the principal antidiarrheal effects of wood creosote. Wood creosote inhibits intestinal secretion induced by enterotoxins by blocking the Cl(-) channel on the intestinal epithelium. Wood creosote also decreases intestinal motility accelerated by mechanical, chemical, or electrical stimulus by the inhibition of the Ca(2+) influx into the smooth muscle cells. In this overview, the antimotility and antisecretory effects of wood creosote are compared with those of loperamide. Wood creosote was observed to inhibit stimulated colonic motility, but not normal jejunal motility. Loperamide inhibits normal jejunal motility, but not stimulated colonic motility. Both wood creosote and loperamide inhibit intestinal secretion accelerated by acetylcholine. Wood creosote was found to have greater antisecretory effects in the colon than loperamide. Based upon these findings, we conclude that the antidiarrheal effects of wood creosote are due to both antisecretory activity in the intestine and antimotility in the colon, but not due to the microbicidal activity as previously thought. Wood creosote was found to have no effects on normal intestinal activity. These conclusions are supported by the results of a recent clinical study comparing wood creosote and loperamide, which concluded that wood creosote was more efficacious in relieving abdominal pain and comparable to loperamide in relieving diarrhea.

  4. Comparing energy use and environmental emissions of reinforced wood doors and steel doors

    Treesearch

    Lynn Knight; Melissa Huff; Janet I. Stockhausen; Robert J. Ross

    2005-01-01

    The USDA Forest Service Forest Products Laboratory has patented a technology that incorporates fiberglass-reinforced wood into the structure of wood doors and other wood building products. The process of reinforcing wood doors with epoxy and fiberglass increases the strength and durability of the product. Also, it allows the use of low-value, small-diameter wood which...

  5. Analysis of three-year Wisconsin temperature histories for roof systems using wood, wood-thermoplastic composite, and fiberglass shingles

    Treesearch

    Jerrold E. Winandy; Cherilyn A. Hatfield

    2007-01-01

    Temperature histories for various types of roof shingles, wood roof sheathing, rafters, and nonventilated attics were monitored in outdoor attic structures using simulated North American light-framed construction. In this paper, 3-year thermal load histories for wood-based composite roof sheathing, wood rafters, and attics under western redcedar (WRC) shingles, wood-...

  6. Woods from the Miocene Bakate Formation, Ethiopia : anatomical characteristics, estimates of original specific gravity and ecological inferences

    Treesearch

    E.A. Wheeler; M.C. Wiemann; J.G. Fleagle

    2007-01-01

    An assemblage of permineralized woods from the Miocene Bakate Formation, Fejej Plain, Ethiopia, is described. This assemblage of twelve wood types differs from other Miocene wood assemblages known from Ethiopia. Cell wall percentages of the woods were determined to estimate the original specific gravities of the woods in order to better understand the Miocene...

  7. Preparation and Characterization of Novolak Phenol Formaldehyde Resin from Liquefied Brown-Rotted Wood

    Treesearch

    Gai-Yun Li; Chung-Yun Hse; Te-Fu Qin

    2012-01-01

    The brown-rotted wood was liquefied in phenol with phosphoric acid as catalyst and the resulting liquefied products were condensed with formaldehyde to yield novolak liquefied wood-based phenol formaldehyde resin (LWPF). The results showed that brown-rotted wood could be more easily liquefied than sound wood in phenol. The residue content of liquefied wood decreased...

  8. Structure and function of wood

    Treesearch

    Alex C. Wiedenhoeft; Regis B. Miller

    2005-01-01

    Despite the many human uses to which various woods are suited, at a fundamental level wood is a complex biological structure, itself a composite of many chemistries and cell types acting together to serve the needs of the plant. Although humans have striven to understand wood in the context of wood technology, we have often overlooked the key and basic fact that wood...

  9. Review of in-service moisture and temperature conditions in wood-frame buildings

    Treesearch

    Samuel V. Glass; Anton TenWolde

    2007-01-01

    This literature review reports in-service moisture and temperature conditions of floor, wall, and roof members of wood-frame buildings and exposed wood decks and permanent wood foundations. A wide variation exists in reported wood moisture content, spanning a range from as low as 2% to well above 30%. Relevant studies are summarized, and measured values of wood...

  10. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites

    Treesearch

    Nicole M. Stark; Robert E. Rowlands

    2003-01-01

    Commercial wood flour, the most common wood-derived filler for thermoplastics, is produced in a mixture of particle sizes and generally has a lower aspect ratio than wood and other natural fibers. To understand how wood flour and fiber characteristics influence the mechanical properties of polypropylene composites, we first investigated the effect of different sizes of...

  11. Mechanical properties of small-scale wood laminated composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Chung Y. Hse

    2004-01-01

    Power companies in the United States consume millions of solid wood poles every year. These poles are from high-valued trees that are becoming more expensive and less available. wood laminated composite poles (LCP) are a novel alternative to solid wood poles. LCP consists of trapezoid wood strips that are bonded by a synthetic resin. The wood strips can be made from...

  12. Wood preservatives and pressure-treated wood: considerations for historic-preservation projects

    Treesearch

    Ronald W. Anthony; Stan T. Lebow

    2015-01-01

    Wood, an abundant resource throughout most of the world, has been used as a building material for thousands of years. Many historic buildings have been built primarily of wood, and masonry and stone buildings generally have wood elements, both structural and architectural. As a biological material, wood is both remarkably complex and yet quite durable if well...

  13. Method for lowering the VOCS emitted during drying of wood products

    DOEpatents

    Banerjee, Sujit; Boerner, James Robert; Su, Wei

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  14. Temporal dynamics of instream wood in headwater streams draining mixed Carpathian forests

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek; Stoffel, Markus

    2017-09-01

    Instream wood can reside in fluvial systems over varying periods depending on its geographical context, instream position, tree species, piece size, and fluvial environment. In this paper, we investigate the residence time of two typical species representing a majority of instream wood in steep headwaters of the Carpathians and located under mixed forest canopy. Residence times of individual logs were then confronted with other wood parameters (i.e., wood dimensions, mean annual increment rate, tree age, class of wood stabilisation and decay, geomorphic function of wood pieces, and the proportion of the log length within the active channel). Norway spruce (Picea abies (L.) Karst.) samples indicated more than two times longer mean and maximal residence times as compared to European beech (Fagus sylvatica L.) based on the successful cross-dating of 127 logs. Maximum residence time in the headwaters was 128 years for P. abies and 59 years for F. sylvatica. We demonstrate that log age and log diameter played an important role in the preservation of wood in the fluvial system, especially in the case of F. sylvatica instream wood. By contrast, we did not observe any significant trends between wood residence time and total wood length. Instream wood with geomorphic functions (i.e., formation of steps and jams) did not show any differences in residence time as compared to nonfunctional wood. Nevertheless, we found shorter residence times for hillslope-stabilised pieces when compared to pieces located entirely in the channel (either unattached or stabilised by other wood or bed sediments). We also observed changes of instream wood orientation with respect to wood residence time. This suggests some movement of instream wood (i.e., its turning or short-distance transport), including pieces longer than channel width in the steep headwaters studied here (1.5 ≤ W ≤ 3.5 m), over the past few decades.

  15. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  16. Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species.

    PubMed

    Heilmann-Clausen, J; Boddy, L

    2005-04-01

    The effects of exudates from uncolonized and from partly decayed beech wood on the extension rates of 16 later stage decay fungi were investigated. The partly decayed wood had been colonized by the pyrenomycete Eutypa spinosa, or the basidiomycetes Fomes fomentarius, Stereum hirsutum, and Trametes versicolor, all known as common early decay agents in European beech forests. Sterilized wood pieces were placed onto 0.5% malt agar, opposite to small agar plugs containing the test fungi. The latter showed very variable and species-specific growth responses to the various wood types. The presence of uncolonized wood stimulated extension rates in many species, whereas the four previously decayed wood types had variable stimulatory or inhibitory effects. Wood decayed by S. hirsutum resulted in reduced extension rate, delayed growth, or total inhibition in the majority of species, thus it is suggested that this species uses secondary metabolites in a defensive strategy. A single species was, however, stimulated in the presence of S. hirsutum-decayed wood. In contrast, the presence of wood decayed by F. fomentarius was stimulatory to 45% of the species. The other previously decayed wood types generally resulted in more variable responses, depending upon species. The results are discussed in an ecological context and it is suggested that the exudates from the partly decayed wood that are responsible for the reported effects may function as infochemicals, structuring microbial communities in wood.

  17. Tropical wood resistance to the West Indian drywood termite Cryptotermes brevis: If termites can't chew….

    PubMed

    Cosme, Lírio; Haro, Marcelo M; Guedes, Nelsa Maria P; Della Lucia, Terezinha Maria C; Guedes, Raul Narciso C

    2018-04-01

    The importance and impact of invasive species are usually considered based on their economic implications, particularly the direct damage that they cause. The West Indian drywood termite Cryptotermes brevis (Walker) is an example and is a concern in structural lumber, furniture, and other wood products. Despite its importance, its tropical wood preferences and the wood physical characteristics contributing to resistance have not been investigated to date. Here, we developed wood testing units to allow the X-ray recording of termite colonization and then subsequently tested tropical wood resistance to the termite through free-choice and no-choice bioassays using these wood testing units. The relevance of wood density and hardness as determinants of such resistance was also tested, as was termite mandible wear. The wood testing units used allowed the assessment of the termite infestation and wood area loss, enabling subsequent choice bioassays to be performed. While pine (Pinus sp.), jequitiba (Cariniana sp.) and angelim (Hymenolobium petraenum) exhibited the heaviest losses and highest infestations; cumaru (Dipteryx odorata), guariuba (Clarisia racemosa), and purpleheart (Peltogyne sp.) showed the lowest losses and infestations; courbaril (Hymenaea courbaril), eucalyptus (Eucalyptus sp.), and tatajuba (Bagassa guianensis) exhibited intermediary results. Wood hardness and in particular wood density were key determinants of wood resistance to the termites, which exhibited lower infestations associated with greater mandible wear when infesting harder high-density wood. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    PubMed

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  19. Lignin-Retaining Transparent Wood.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK -1 , and work-tofracture of 1.2 MJ m -3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Particulate matter emissions from combustion of wood in district heating applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning systemmore » in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.« less

  1. Lignin‐Retaining Transparent Wood

    PubMed Central

    Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin

    2017-01-01

    Abstract Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light‐transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high‐lignin‐content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK−1, and work‐tofracture of 1.2 MJ m−3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy‐saving buildings. PMID:28719095

  2. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-09-01

    Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of citric acid modification of aspen wood on sorption of copper ion

    Treesearch

    James D. McSweeny; Roger M. Rowell; Soo Hong Min

    2006-01-01

    Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...

  4. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Treesearch

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  5. Wood-boring beetles in homes

    Treesearch

    V.R. Lewis; S.J. Seybold

    2010-01-01

    Three groups of wood-boring beetles—powderpost, deathwatch, and false powderpost (Table 1)—invade and damage wood furniture as well as structural and decorative wood inside of buildings. The beetle larvae feed in and do most of the damage to wood, and when they reach the adult stage, they emerge through round exit holes, which they create by chewing through the wood...

  6. Can melamine-based wood primers help in understanding bonded wood durability?

    Treesearch

    Charles R. Frihart; Jermal G. Chandler

    2006-01-01

    Melamine–formaldehyde adhesives form wood bonds with exterior durability, and the melamine is more easily studied because of its significant nitrogen content (compared with the lack of nitrogen in wood components). In addition, some melamine–formaldehyde chemicals reduce wood swelling [6], enter into wood cell walls [7], and strengthen them [8]. This information led to...

  7. Common wood decay fungi found in the Caribbean Basin

    Treesearch

    D. Jean Lodge

    2016-01-01

    There are hundreds of wood-decay fungi in the Caribbean Basin, but relatively few of these are likely to grow on manmade structures built of wood or wood-composites. The wood-decay fungi of greatest concern are those that cause brown-rot, and especially brown-rot fungi that are resistant to copper-based wood preservatives. Some fungi that grow in the Caribbean and...

  8. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    PubMed Central

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C. B.; Jacobsen, Carsten S.

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha-1. We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha-1 to alkaline at 167 t ha-1. Bacterial numbers significantly increased up to a wood ash dose of 22 t ha-1 followed by significant decrease at 167 t ha-1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha-1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha-1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha-1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly explained by the wood ash induced changes in pH, electrical conductivity and the addition of wood ash inherent nutrients. PMID:28804476

  9. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.

    PubMed

    Bang-Andreasen, Toke; Nielsen, Jeppe T; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C B; Jacobsen, Carsten S

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha -1 . We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha -1 to alkaline at 167 t ha -1 . Bacterial numbers significantly increased up to a wood ash dose of 22 t ha -1 followed by significant decrease at 167 t ha -1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha -1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha -1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha -1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly explained by the wood ash induced changes in pH, electrical conductivity and the addition of wood ash inherent nutrients.

  10. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates.

    PubMed

    Martin, Adam R; Erickson, David L; Kress, W John; Thomas, Sean C

    2014-11-01

    In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Wood Technology: Techniques, Processes, and Products

    ERIC Educational Resources Information Center

    Oatman, Olan

    1975-01-01

    Seven areas of wood technology illustrates applicable techniques, processes, and products for an industrial arts woodworking curriculum. They are: wood lamination; PEG (polyethylene glycol) diffusion processes; wood flour and/or particle molding; production product of industry; WPC (wood-plastic-composition) process; residential construction; and…

  12. 36 CFR 13.1110 - May I collect or burn interstadial wood?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... interstadial wood? 13.1110 Section 13.1110 Parks, Forests, and Public Property NATIONAL PARK SERVICE... and Preserve General Provisions § 13.1110 May I collect or burn interstadial wood? Collecting or burning interstadial wood (aged wood preserved in glacial deposits) is prohibited. ...

  13. 36 CFR 13.1110 - May I collect or burn interstadial wood?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... interstadial wood? 13.1110 Section 13.1110 Parks, Forests, and Public Property NATIONAL PARK SERVICE... and Preserve General Provisions § 13.1110 May I collect or burn interstadial wood? Collecting or burning interstadial wood (aged wood preserved in glacial deposits) is prohibited. ...

  14. X-RAY DENSITOMETRY OF NORWAY SPRUCE SUBFOSSIL WOOD FROM THE AUSTRIAN ALPS

    PubMed Central

    KŁUSEK, MARZENA; GRABNER, MICHAEL

    2016-01-01

    The processing of subfossil wood poses some difficulties in densitometric research. Problems arise because of the physio-chemical changes of wood occurring in the sedimentation environment. Subfossil wood modification can result from the uptake of mineral and organic substances into the wood tissue. It can also occur as the effect of microbiological degradation of wood. The goal of this study was to identify the appropriate method of subfossil wood preparation for the densitometric research. For this purpose the wood of Norway spruce from Lake Schwarzensee was subjected to extraction in deionized water, acetone and diluted acetic acid. The application of acetic acid did not significantly influence the density of the wood and acetone seemed to be too aggressive. The best result was obtained by rinsing the samples in cold de-ionized water. This extraction procedure allowed removal of unwanted water-soluble, organic and inorganic compounds from wood and simultaneously did not lead to the degradation of subfossil samples. PMID:27158247

  15. Wood Export and Deposition Dynamics in Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Senter, Anne Elizabeth

    Wood dynamics that store, transport, break down, and ultimately export wood pieces through watershed networks are key elements of stream complexity and ecosystem health. Efforts to quantify wood processes are advancing rapidly as technological innovations in field data collection, remotely sensed data acquisition, and data analyses become increasingly sophisticated. The ability to extend the temporal and spatial scales of wood data acquisition has been particularly useful to the investigations presented herein. The primary contributions of this dissertation are focused on two aspects of wood dynamics: watershed-scale wood export processes as identified using the depositional environment of a mountain reservoir, and wood deposition mechanisms in a bedrock-dominated mountain river. Three chapters present this work: In Chapter 1, continuous video monitoring of wood in transport revealed seasonal and diurnal hydrologic cycle influences on the variable rates at which wood transports. This effort supports the efficacy of utilizing continuous data collection methods for wood transport studies. Annual wood export data were collected via field efforts and aerial image analyses from New Bullards Bar Reservoir on the North Yuba River, Sierra Nevada, California. Examination of data revealed linkages between decadal-scale climatic patterns, large flood events, and episodic wood export quantities. A watershed-specific relation between wood export quantities and annual peak discharge contributes to the notion that peak discharge is a primary control on wood export, and yielded prediction of annual wood export quantities where no data were available. Linkages between seasonality, climatic components, and hydrologic events that exert variable control on watershed scale wood responses are presented as a functional framework. An accompanying conceptual model supports the framework presumption that wood responses are influenced by seasonal variations in Mediterranean-montane climate conditions and accompanying hydrologic responses. Chapter 2 contains development of new theory in support of the introduction of multiplicative coefficients, categorized by water year type, that were used to predict wood export quantities via utilization of an existing discharge-based theoretical equation. This new theory was the product of continued investigations into watershed-scale factors in search of explanation of observed variation of wood export rates into New Bullards Bar Reservoir. The gap between known variability and the attribution of wood export to one hydrologic relation continues to be a persistent issue, as the hierarchical and stochastic temporal and spatial nature of wood budget components remain difficult to quantify. The development of "watershed processes" coefficients was specifically focused on a generalized, parsimonious approach using water year type categories, with validation exercises supporting the approach. In dry years, predictions more closely represented observed wood export quantities, whereas the previously derived annual peak discharge relation yielded large over-predictions. Additional data are needed to continue development of these watershed-specific coefficients. This new approach to wood export prediction may be beneficial in regulated river systems for planning purposes, and its efficacy could be tested in other watersheds. Chapter 3 presents the results of an investigation into wood deposition mechanisms in a 12.2 km segment of the confined, bedrock-dominated South Yuba River watershed. Inclusion of coarse wood particles in the analyses was essential in recognizing depositional patterns, thus supporting the value of utilizing a wider wood-size range. A near-census data collection effort yielded myriad data, of which topographic wetted width and bed elevation data, developed for an observed 4.5-year flood event, were standardized in 10-m intervals and then univariate and linked values were ordered into landform classifications using decision tree analyses. Digital imagery collected via kite-blimp was mosaicked into a geographic information system and all resolvable wood pieces greater then 2.5 cm in one dimension were delineated and categorized into piece count density classes. Visual imagery was also key in identifying two river corridor terrains: bedrock outcrops and cobble-boulder-vegetation patches. A conceptual model framed an investigation into how topographic variability and structural elements might influence observed wood deposition dynamics. Forage ratio test results that quantified wood piece utilization versus interval availability revealed that high-density wood deposition patterns were most significantly co-located with five discrete bedrock outcrops that dominated small portions of the river corridor in high flow conditions. Topographic variations and cobble-boulder-vegetation patches were found to be subordinate factors in wood deposition patterns. Bedrock outcrops with specific structural components were the primary depositional environments that acted as floodplain extents for coarse wood deposition, with mechanisms such as topographic steering, eddying, trapping, stranding, backwater effects, and lateral roughness features inferred to be responsible for observed wood deposition patterns.

  16. The Fungal Degradation of Wood and Wood Products Selected Bibliography

    DTIC Science & Technology

    1981-08-01

    Pi 0-Alt^Jihi 1 TECHNICAL LIBRARY SPECIAL PUBLICATION ARLCD-SP-81006 THE FUNGAL DEGRADATION OF WOOD AND WOOD PRODUCTS SELECTED BIBLIOGRAPHY...GOVT ACCESSION NO. READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT’S CATALOG NUMBER 4. TITLE fand SubJltJo; THE FUNGAL DEGRADATION OF...search con- centrated on the microbiological deterioration or degradation of wood (trees) or wood products which are found or used in tropical

  17. Continued growth expected for wood energy despite turbulence of the economic crisis : wood energy markets, 2008-2009

    Treesearch

    Rens Hartkamp; Bengt Hillring; Warren Mabee; Olle Olsson; Kenneth Skog; Henry Spelter; Johan Vinterback; Antje Wahl

    2009-01-01

    The economic crisis has not reduced the demand for wood energy, which is expected to continue to grow. The downturn in sawmill production caused a shortage of raw material supply for wood pellet producers. With decreased demand for pulpwood-quality roundwood for wood and paper products in 2009, some pulpwood is being converted into wood energy. Economies of scale are...

  18. Black Swan Event Assessment for Fort Leonard Wood, Missouri

    DTIC Science & Technology

    2016-03-01

    Fort Leonard Wood ERDC/CERL SR-16-1 March 2016 Black Swan Event Assessment for Fort Leonard Wood , Missouri James D. Westervelt Construction ...ER D C/ CE RL S R- 16 -1 Net Zero Planning for Fort Leonard Wood Black Swan Event Assessment for Fort Leonard Wood , Missouri Co ns... Wood ” ERDC/CERL SR-16-1 ii Abstract Emergency preparation typically involves evaluating disaster potential and consequences, followed by

  19. Woodmetrics: imaging devices and processes in wood inspection at Lulea University of Technology

    NASA Astrophysics Data System (ADS)

    Hagman, Olle

    1999-09-01

    Wood Technology research and education at Lulea University of Technology is located in Skelleftea 800 km north of Stockholm. At the campus about 25 persons are involved in education and research in Wood Technology. We are educating M.Sc. and post- graduate students in Wood Technology. The research at the campus includes the following main fields: -- Wood Machining - - Woodmetrics -- Wood Drying -- Wood Composites/Wood Material Science. Our research strategy is to obtain an individual treatment of every tree, board and piece of wood in order to get highest possible value for the forest products. This shall be accomplished by the aid of advanced scanning technology and computer technology. Woodmetrics means to measure different wood parameters in order to optimize the utilization of the raw material. Today we have the following projects in this field: Automatic wood inspection -- Color changes and moisture flow in drying processes -- Inner quality of logs and lumber - - Stem quality database -- Computer tomography -- Aesthetic properties of wood -- Market/industry/forest relations. In the Woodmetrics field we are using computer tomography, CCD cameras and other sensors in order to find and measure defects in trees and on boards. The signals are analyzed and classified with modern image analyzing techniques and advanced statistical methods.

  20. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    PubMed Central

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  1. Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Large wood recruitment and redistribution mechanisms were investigated in a 3.9 km2 basin with an old-growth Pseudotsuga menziesii (Mirb.) Franco and Tsuga heterophylla (Raf.) Sarg. forest, located in the southern Coast Range of Oregon. Stream size and topographic setting strongly influenced processes that delivered wood to the channel network. In small colluvial channels draining steep hillslopes, processes associated with slope instability dominated large wood recruitment. In the larger alluvial channel, windthrow was the dominant recruitment process from the local riparian area. Consequently, colluvial channels received wood from further upslope than the alluvial channel. Input and redistribution processes influenced piece location relative to the direction of flow and thus, affected the functional role of wood. Wood recruited directly from local hillslopes and riparian areas was typically positioned adjacent to the channel or spanned its full width, and trapped sediment and wood in transport. In contrast, wood that had been fluvially redistributed was commonly located in mid-channel positions and was associated with scouring of the streambed and banks. Debris flows were a unique mechanism for creating large accumulations of wood in small streams that lacked the capacity for abundant fluvial transport of wood, and for transporting wood that was longer than the bank-full width of the channel.

  2. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species

    PubMed Central

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N.; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W. M. R.

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect. PMID:27649315

  3. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    PubMed

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.

  4. Evaluating landfill disposal of chromated copper arsenate (CCA) treated wood and potential effects on groundwater: evidence from Florida.

    PubMed

    Saxe, Jennifer K; Wannamaker, Eric J; Conklin, Scott W; Shupe, Todd F; Beck, Barbara D

    2007-01-01

    Chromated copper arsenate (CCA) treated wood has been used for more than 50 years. Recent attention has been focused on appropriate disposal of CCA-treated wood when its service life ends. Groups in the US and Europe concerned with the possibility of arsenic migration to groundwater from disposed CCA-treated wood have proposed that consumers be required to dispose of the wood as a hazardous waste, in the most protective of landfills. We examined available data for evidence of arsenic migration from unlined construction and demolition (C&D) debris landfills in Florida, where CCA-treated wood is disposed. Florida was chosen because soil, groundwater, landfill design, weather, and levels of CCA-treated wood use make the state a uniquely sensitive indicator for observing arsenic migration from CCA-treated wood disposal sites, should it occur. We developed and quality-checked a CCA-treated wood disposal model to estimate the amount of wood and associated arsenic disposed. By 2000, an estimated 13 million kg of arsenic in CCA-treated wood was disposed in Florida; however, groundwater monitoring data do not indicate that arsenic is migrating from unlined C&D landfills. Our results provide evidence that highly stringent regulation of CCA-treated wood disposal, such as treatment as a hazardous waste, is unnecessary.

  5. Rubber-like materials derived from biosourced phenolic resins

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.

    2017-07-01

    The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.

  6. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars.

    PubMed

    Sun, Ke; Jin, Jie; Keiluweit, Marco; Kleber, Markus; Wang, Ziying; Pan, Zezhen; Xing, Baoshan

    2012-08-01

    Molecular variations among different biochar categories translate into differences in their ability to function as sorbents to three phthalic acid esters (PAEs) representing a gradient in hydrophobicity. The sorption capacity (K(OC)) for all three PAEs was the greatest for amorphous biochars (heat treatment temperature HTT=400 °C), followed by biochars produced at 300 °C, and was best explained by the hydrophobicity of the sorbate. Greater alkyl C content and higher polarity of grass chars versus wood chars prepared at similar temperatures explained both (a) the difference in sorbent strength between feedstocks and (b) the maximum in sorbent strength at relatively low HTTs (300-400 °C). Hydrophobic partitioning into 'soft' alkyl carbon and specific H-bonding involving char-bound O and N groups jointly account for high affinities of PAEs for low-HTT biochars. The results highlight the influence of feedstocks and HTTs on PAEs sorption strength and mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Significance of wood terpenoids in the resistance of Scots pine provenances against the old house borer, Hylotrupes bajulus, and brown-rot fungus, Coniophora puteana.

    PubMed

    Nerg, A M; Heijari, J; Noldt, U; Viitanen, H; Vuorinen, M; Kainulainen, P; Holopainen, J K

    2004-01-01

    We tested how terpenoid (i.e., monoterpenes and resin acids) composition and concentration in wood affects resistance against wood-borers and decaying fungi. Scots pine (Pinus sylvestris) wood from nine provenances having variable terpenoid profiles was studied against the old house borer, Hylotrupes bajulus, and the decay fungus, Coniophora puteana. Provenances represented a 1200-km N-S transect from Estonia to northern Finland, but they were all cultivated for 7 years in the same nursery field, in central Finland. Mean relative growth rate (MRGR) of small H. hajulus larvae positively correlated with the total monoterpene concentration of wood, and feeding was associated with high proportion of levopimaric+palustric acid in wood. Provenance did not affect the MRGR of small or big larvae, but big larvae consumed more wood and produced more frass on the northern Ylitornio trees than on the southern Rakvere and Ruokolahti trees. Low beta-pinene and total monoterpene concentration and low beta: alpha-pinene ratio in wood were all associated with a high number of eggs. The most northern Muonio provenance was the most favored as an oviposition site, differing significantly from Saaremaa, Tenhola, and Suomussalmi. Wood from Saaremaa, Tenhola, Ruokolahti, and Suomussalmi provenance was most resistant against decay fungus, differing significantly from that of Kinnula provenance. However, decay resistance was not clearly associated with the concentrations of wood terpenoids. These results suggest that monoterpene composition of wood affects resistance against wood-boring Cerambycid beetles, but resistance against wood-decaying fungi is not as clearly associated with wood terpenoids.

  8. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle infestation, although this may reflect the relatively recent nature (< 10 years) of the infestation.

  9. 76 FR 26685 - Multilayered Wood Flooring From the People's Republic of China: Alignment of Final Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... determination in this countervailing duty investigation of multilayered wood flooring (``wood flooring'') from... simultaneously initiated antidumping and countervailing duty investigations of wood flooring from the PRC. See...

  10. Oxalate analysis methodology for decayed wood

    Treesearch

    Carol A. Clausen; William Kenealy; Patricia K. Lebow

    2008-01-01

    Oxalate from partially decayed southern pine wood was analyzed by HPLC or colorimetric assay. Oxalate extraction efficiency, assessed by comparing analysis of whole wood cubes with ground wood, showed that both wood geometries could be extracted with comparable efficiency. To differentiate soluble oxalate from total oxalate, three extraction methods were assessed,...

  11. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the wood... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... process wastewater pollutants into publicly owned treatment works from wood preserving processes that use...

  12. 40 CFR 429.90 - Applicability; description of the wood preserving-Boulton subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the wood... CATEGORY Wood Preserving-Boulton Subcategory § 429.90 Applicability; description of the wood preserving... introduction of process wastewater pollutants into a publicly owned treatment works from wood preserving...

  13. 40 CFR 429.90 - Applicability; description of the wood preserving-Boulton subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the wood... CATEGORY Wood Preserving-Boulton Subcategory § 429.90 Applicability; description of the wood preserving... introduction of process wastewater pollutants into a publicly owned treatment works from wood preserving...

  14. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  15. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  16. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  17. 40 CFR 429.90 - Applicability; description of the wood preserving-Boulton subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the wood... CATEGORY Wood Preserving-Boulton Subcategory § 429.90 Applicability; description of the wood preserving... introduction of process wastewater pollutants into a publicly owned treatment works from wood preserving...

  18. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the wood... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... process wastewater pollutants into publicly owned treatment works from wood preserving processes that use...

  19. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the wood... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... process wastewater pollutants into publicly owned treatment works from wood preserving processes that use...

  20. The Carbon Impacts of Wood Products

    Treesearch

    Richard Bergman; Maureen Puettmann; Adam Taylor; Kenneth E. Skog

    2014-01-01

    Wood products have many environmental advantages over nonwood alternatives. Documenting and publicizing these merits helps the future competitiveness of wood when climate change impacts are being considered. The manufacture of wood products requires less fossil fuel than nonwood alternative building materials such as concrete, metals, or plastics. By nature, wood is...

  1. 40 CFR 63.2231 - Does this subpart apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products What This Subpart Covers § 63... manufacturing facility is a facility that manufactures plywood and/or composite wood products by bonding wood... and pressure, to form a structural panel or engineered wood product. Plywood and composite wood...

  2. Wood preservation

    Treesearch

    Stan T. Lebow

    2010-01-01

    Many commonly used wood species can deteriorate if exposed to conditions that support growth of wood-degrading organisms (see Chap. 14). Wood products can be protected from the attack of decay fungi, harmful insects, or marine borers by applying chemical preservatives. Preservative treatments greatly increase the life of wood structures, thus reducing replacement costs...

  3. Wood Condition Assessment Manual: Second Edition

    Treesearch

    Robert J. Ross; Robert H. White

    2014-01-01

    This report summarizes information on condition assessment of in-service wood, including visual inspection of wood and timbers, use of ultrasound and probing/boring techniques for inspection, and assessment of wood and timbers that have been exposed to fire. The report also includes information on assigning allowable design values for in-service wood.

  4. Finishing of wood

    Treesearch

    R. Sam Williams

    1999-01-01

    The primary function of any wood finish (paint, varnish, and stain, for example) is to protect the wood surface, help maintain a certain appearance, and provide a cleanable surface. Although wood can be used both outdoors and indoors without finishing, unfinished wood surfaces exposed to the weather change color, are roughened by photodegradation and surface checking,...

  5. 40 CFR 429.90 - Applicability; description of the wood preserving-Boulton subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the wood... Wood Preserving-Boulton Subcategory § 429.90 Applicability; description of the wood preserving—Boulton... process wastewater pollutants into a publicly owned treatment works from wood preserving operations which...

  6. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  7. 40 CFR 429.90 - Applicability; description of the wood preserving-Boulton subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the wood... Wood Preserving-Boulton Subcategory § 429.90 Applicability; description of the wood preserving—Boulton... process wastewater pollutants into a publicly owned treatment works from wood preserving operations which...

  8. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  9. Juvenile wood effect in red alder : analysis of physical and mechanical data to delineate juvenile and mature wood zones

    Treesearch

    Joel W. Evans; John F. Senft; David W. Green

    2000-01-01

    The objective of this study was to investigate the influence of juvenile wood on the mechanical and physical properties of red alder. Tree growth in the first 10 to 20 years, usually referred to as juvenile wood, often influences wood quality by adversely affecting mechanical strength properties. Strength can be reduced up to 50 percent by the presence of juvenile wood...

  10. Comparison of Wood Preservatives in Stake Tests (1981 Progress Report).

    DTIC Science & Technology

    1981-12-01

    infected with Trichoderma mold, plus other selected species such as oak, Douglas-fir, and Engelmann spruce. Southern pine untreated control stakes...acetylated wood, cyanoethylated wood, that with thiamine destroyed, chemically modified wood, wood infected with Trichoderma mold, embedded fiberboard (western...14 toA4 41U(4 a ...- 44- Table 31.--Condition of southern pine stakes (2 x 4 in. nominal x 18 in.) of uninfected and Trichoderma mcid-infected wood

  11. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars

    2016-04-11

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

  12. Wood energy-commercial applications

    NASA Technical Reports Server (NTRS)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  13. Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakes, Joseph E.; Arzola, Xavier; Bergman, Rick

    Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of wood as a raw material and as a feedstock will lead to its increased utilization. We first give an overview of wood structure and chemical composition and then highlight current topics in forest products research, including (1) industrial chemicals, biofuels, and energy from woody materials; (2) wood-basedmore » activated carbon and carbon nanostructures; (3) development of improved wood protection treatments; (4) massive timber construction; (5) wood as a bioinspiring material; and (6) atomic simulations of wood polymers. We conclude with a discussion of the sustainability of wood as a renewable forest resource.« less

  14. Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels

    NASA Astrophysics Data System (ADS)

    Jakes, Joseph E.; Arzola, Xavier; Bergman, Rick; Ciesielski, Peter; Hunt, Christopher G.; Rahbar, Nima; Tshabalala, Mandla; Wiedenhoeft, Alex C.; Zelinka, Samuel L.

    2016-09-01

    Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of wood as a raw material and as a feedstock will lead to its increased utilization. We first give an overview of wood structure and chemical composition and then highlight current topics in forest products research, including (1) industrial chemicals, biofuels, and energy from woody materials; (2) wood-based activated carbon and carbon nanostructures; (3) development of improved wood protection treatments; (4) massive timber construction; (5) wood as a bioinspiring material; and (6) atomic simulations of wood polymers. We conclude with a discussion of the sustainability of wood as a renewable forest resource.

  15. Wood phenology: from organ-scale processes to terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Delpierre, Nicolas; Guillemot, Joannès

    2016-04-01

    In temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits and reserve compounds. In this presentation, we review both the role of environmental drivers in determining the phenology of wood and the models used to predict its phenology in temperate and boreal forest trees. Temperature is a key driver of the resumption of wood activity in spring. There is no such clear dominant environmental cue involved in the cessation of wood formation in autumn, but temperature and water stress appear as prominent factors. We show that wood phenology is a key driver of the interannual variability of wood growth in temperate tree species. Incorporating representations of wood phenology in a terrestrial ecosystem model substantially improved the simulation of wood growth under current climate.

  16. Wood typification by Venturi easy ambient sonic spray ionization mass spectrometry: the case of the endangered Mahogany tree.

    PubMed

    Cabral, Elaine C; Simas, Rosineide C; Santos, Vanessa G; Queiroga, Carmen L; da Cunha, Valnei S; de Sá, Gilberto F; Daroda, Romeu J; Eberlin, Marcos N

    2012-01-01

    Venturi easy ambient sonic spray ionization mass spectrometry in both its liquid (V(L) -EASI-MS) and solid sample modes (V(S) -EASI-MS) is shown to provide nearly immediate and secure typification of woods, as demonstrated for Mahogany, an endangered and most valuable type of tropical wood. This reddish wood displays unique phytochemical markers (phragmalin-type limonoids) which are rapidly detected from the wood surface by V(S) -EASI-MS or from a simple methanol extract of a tiny wood chip by V(L) -EASI-MS. Unique profiles were obtained for Mahogany (Swietenia macrophylla) whereas genuine samples of six other similar types of woods, which are commonly falsified by artificial coloring and commercialized as Mahogany, display also typical but dissimilar pythochemical profiles as compared to that of the authentic wood. Variable and atypical chemical profiles were observed for artificially colored woods. Secure chemical characterization via V(S) -EASI-MS or V(s) -EASI-MS fingerprints of Mahogany and other types of woods with similar appearance should help to control the illegal logging and trade of this and other endangered woods and their falsification, and to create certified standards. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Where Does Wood Most Effectively Enhance Storage? Network-Scale Distribution of Sediment and Organic Matter Stored by Instream Wood

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Andrew; Wohl, Ellen

    2018-01-01

    We used 48 reach-scale measurements of large wood and wood-associated sediment and coarse particulate organic matter (CPOM) storage within an 80 km2 catchment to examine spatial patterns of storage relative to stream order. Wood, sediment, and CPOM are not distributed uniformly across the drainage basin. Third- and fourth-order streams (23% of total stream length) disproportionately store wood and coarse and fine sediments: 55% of total wood volume, 78% of coarse sediment, and 49% of fine sediment, respectively. Fourth-order streams store 0.8 m3 of coarse sediment and 0.2 m3 of fine sediment per cubic meter of wood. CPOM storage is highest in first-order streams (60% of storage in 47% of total network stream length). First-order streams can store up to 0.3 m3 of CPOM for each cubic meter of wood. Logjams in third- and fourth-order reaches are primary sediment storage agents, whereas roots in small streams may be more important for storage of CPOM. We propose the large wood particulate storage index to quantify average volume of sediment or CPOM stored by a cubic meter of wood.

  18. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs

    PubMed Central

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-01-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation. PMID:28430188

  19. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.

    PubMed

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-03-30

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time-temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance ( ICR ) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  20. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    PubMed Central

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  1. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    PubMed Central

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  2. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.

  3. The pulse of driftwood export from a very large forested river basin over multiple time scales, Slave River, Canada

    NASA Astrophysics Data System (ADS)

    Kramer, Natalie; Wohl, Ellen; Hess-Homeier, Brooke; Leisz, Stephen

    2017-03-01

    This study presents a case study of large wood transport on the great Slave River in northern Canada with the objective to better understand the processes of and variability in pulsed wood fluxes from large forested catchments. We use a varied approach, integrating field characterization of wood, historical anecdotes, repeat aerial imagery of stored wood, and time-lapse imagery of moving wood, for a robust analysis and synthesis of processes behind pulsed wood flux, from yearly uncongested export to rare congested wood floods. Repeat monitoring of known sites of temporary storage with new or historic imagery proved to be a very useful tool for constraining wood flux histories. Pulsed wood export on the Slave River is not an artifact of episodic recruitment from major up-basin disturbances, but rather reflects decadal- to half-century-scale discharge patterns that redistribute wood recruited from channel migration and bank slumping. We suggest that the multiyear flow history is of paramount importance for estimating wood flux magnitude, followed in declining importance by the yearly sequence of peaks and the magnitude and characteristics of the rising limb of individual floods.

  4. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs.

    PubMed

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-09-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation.

  5. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Bølling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  6. Thermochemical Modeling and Experimental Validation of Wood Pyrolysis Occurring During Pre-ignition Combustion

    NASA Astrophysics Data System (ADS)

    Fawaz, M.; Lautenberger, C.; Bond, T. C.

    2017-12-01

    The use of wood as a solid fuel for cooking and heating is associated with high particle emission which largely contribute to the dispersion of particulate matter (PM) in the atmosphere. The majority of those particles are released during the "pre-ignition" phase, i.e., before flaming of the wood occurs. In this work, we investigate the factors that influence the emission of PM during pre-ignition and lead to high particle emission to the atmosphere. During this combustion phase, at elevated temperature, pyrolysis is responsible for wood degradation and the production of gaseous materials that travel and exit the wood. We model the thermal degradation using Gpyro, an open source finite volume method numerical model to simulate heat, mass, and momentum transfer in the wood. In our analysis, we study factors that vary during combustion and that influence emission of PM: wood sample size and boundary conditions. In a fire the boundary conditions represent the thermal energy a piece of wood receives from the surrounding in the form of heat flux. We find that heat transfer is the limiting process governing the production and transport of gas from the wood, and that the amount of emitted PM is dependent on the size of the wood. The dependence of heat transfer from the boundaries on PM emission becomes more important with increasing wood log size. The model shows that a small log of wood (6cm by 2cm) emits close values of total mass of gas at low and high heat fluxes. For a large log of wood (20cm by 5cm) the total mass of gas emitted increases by 30% between low and high heat flux. We validate the model results with a controlled-temperature reactor that accommodates centimeter scale wood samples. The size of the wood used, indicates the abundance of wood in the region where wood is used a solid fuel. Understanding those factors will allow for defining conditions that result in reducing particle emissions during combustion.

  7. Factors controlling large-wood transport in a mountain river

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Wyżga, Bartłomiej; Zawiejska, Joanna; Hajdukiewicz, Maciej; Stoffel, Markus

    2016-11-01

    As with bedload transport, wood transport in rivers is governed by several factors such as flow regime, geomorphic configuration of the channel and floodplain, or wood size and shape. Because large-wood tends to be transported during floods, safety and logistical constraints make field measurements difficult. As a result, direct observation and measurements of the conditions of wood transport are scarce. This lack of direct observations and the complexity of the processes involved in wood transport may result in an incomplete understanding of wood transport processes. Numerical modelling provides an alternative approach to addressing some of the unknowns in the dynamics of large-wood in rivers. The aim of this study is to improve the understanding of controls governing wood transport in mountain rivers, combining numerical modelling and direct field observations. By defining different scenarios, we illustrate relationships between the rate of wood transport and discharge, wood size, and river morphology. We test these relationships for a wide, multithread reach and a narrower, partially channelized single-thread reach of the Czarny Dunajec River in the Polish Carpathians. Results indicate that a wide range of quantitative information about wood transport can be obtained from a combination of numerical modelling and field observations and from document contrasting patterns of wood transport in single- and multithread river reaches. On the one hand, log diameter seems to have a greater importance for wood transport in the multithread channel because of shallower flow, lower flow velocity, and lower stream power. Hydrodynamic conditions in the single-thread channel allow transport of large-wood pieces, whereas in the multithread reach, logs with diameters similar to water depth are not being moved. On the other hand, log length also exerts strong control on wood transport, more so in the single-thread than in the multithread reach. In any case, wood transport strongly decreases with increasing piece volume, although this relation is not linear. We also document a nonlinear relationship between wood transport and flood magnitude. A threshold discharge was identified below which wood transport is negligible. This threshold is higher in the multithread reach, while in the single-thread reach floods of lower magnitude are able to transport wood downstream. Wood transport ratio increases with discharge until it reaches an upper threshold or tipping point, and then decreases or increases much more slowly. This threshold is clearly related to bankfull discharge, but it is much higher for the multithread reach than for the single-thread one. Although modelling input and field observations were taken from a specific river, our findings and conclusions are likely to be applicable to a much larger suite of (mountain) rivers.

  8. Bridging the gaps: An overview of wood across time and space in diverse rivers

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-02-01

    Nearly 50 years of research focused on large wood (LW) in rivers provide a basis for understanding how wood enters rivers; how wood decays, breaks, and is transported downstream; and how at least temporarily stable wood influences channel geometry, fluxes of water, sediment, and organic matter, and the abundance and diversity of aquatic and riparian organisms. Field-based studies have led to qualitative conceptual models and to numerical stimulations of river processes involving wood. Numerous important gaps remain, however, in our understanding of wood dynamics. The majority of research on wood in rivers focuses on small- to medium-sized rivers, defined using the ratio of wood piece size to channel width as channels narrower than the locally typical wood-piece length (small) and slightly narrower than the longer wood pieces present (medium). Although diverse geographic regions and biomes are represented by one or a few studies in each region, the majority of research comes from perennial rivers draining temperate conifer forests. Regional syntheses most commonly focus on the Pacific Northwest region of North America where most of these studies originate. Consequently, significant gaps in our understanding include lack of knowledge of wood-related processes in large rivers, dryland rivers, and rivers of the high and low latitudes. Using a wood budget as an organizing framework, this paper identifies other gaps related to wood recruitment, transport, storage, and how beavers influence LW dynamics. With respect to wood recruitment, we lack information on the relative importance of mass tree mortality and transport of buried or surficial downed wood from the floodplain into the channel in diverse settings. Knowledge gaps related to wood transport include transport distances of LW and thresholds for LW mobility in small to medium rivers. With respect to wood storage, we have limited data on longitudinal trends in LW loads within unaltered large and great rivers and on fluctuations in LW load over time intervals greater than a few years. Other knowledge gaps relate to physical and ecological effects of wood, including the magnitude of flow resistance caused by LW; patterns of wood-related sediment storage for diverse river sizes and channel geometry; quantification of channel-floodplain-LW interactions; and potential threshold effects of LW in relation to physical processes and biotic communities. Finally, knowledge gaps are related to management of large wood and river corridors, including understanding the consequences of enormous historical reductions in LW load in rivers through the forested portions of the temperate zone; and how to effectively reintroduce and manage existing LW in river corridors, which includes enhancing public understanding of the importance of LW. Addressing these knowledge gaps requires more case studies from diverse rivers, as well as more syntheses and metadata analyses.

  9. A foundation monograph of Convolvulus L. (Convolvulaceae).

    PubMed

    Wood, John R I; Williams, Bethany R M; Mitchell, Thomas C; Carine, Mark A; Harris, David J; Scotland, Robert W

    2015-01-01

    A global revision of Convolvulus L. is presented, Calystegia R.Br. being excluded on pragmatic grounds. One hundred and ninety species are recognised with the greatest diversity in the Irano-Turanian region. All recognised species are described and the majority are illustrated. Distribution details, keys to species identification and taxonomic notes are provided. Four new species, Convolvulusaustroafricanus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulusiranicus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvuluspeninsularis J.R.I.Wood & R.W.Scotland, sp. nov. and Convolvulusxanthopotamicus J.R.I.Wood & R.W.Scotland, sp. nov., one new subspecies Convolvuluschinensissubsp.triangularis J.R.I.Wood & R.W.Scotland, subsp. nov., and two new varieties Convolvulusequitansvar.lindheimeri J.R.I.Wood & R.W.Scotland, var. nov., Convolvulusglomeratusvar.sachalitarum J.R.I.Wood & R.W.Scotland, var. nov. are described. Convolvulusincisodentatus J.R.I.Wood & R.W.Scotland, nom. nov., is provided as a replacement name for the illegitimate Convolvulusincisus Choisy. Several species treated as synonyms of other species in recent publications are reinstated including Convolvuluschinensis Ker-Gawl., Convolvulusspinifer M.Popov., Convolvulusrandii Rendle and Convolvulusaschersonii Engl. Ten taxa are given new status and recognised at new ranks: Convolvulusnamaquensis (Schltr. ex. A.Meeuse) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulushermanniaesubsp.erosus (Desr.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvuluscrenatifoliussubsp.montevidensis (Spreng.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulusfruticulosussubsp.glandulosus (Webb) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvuluscapituliferussubsp.foliaceus (Verdc.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulushystrixsubsp.ruspolii (Dammer ex Hallier f.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulushystrixsubsp.inermis (Chiov.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulusrottlerianussubsp.stocksii (Boiss.) J.R.I.Wood & R.W.Scotland, comb. et stat. nov., Convolvuluscalvertiisubsp.ruprechtii (Boiss.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvuluscephalopodussubsp.bushiricus (Bornm.) J.R.I.Wood & R.W.Scotland, stat. nov. The status of various infraspecific taxa is clarified and numerous taxa are lectotypified. This account represents a new initiative in terms of taxonomic monography, being an attempt to bring together the global approach of the traditional monograph with the more pragmatic and identification-focussed approach of most current floras while at the same time being informed by insights from molecular systematics.

  10. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    PubMed

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians.

    PubMed

    Rokoff, Lisa B; Koutrakis, Petros; Garshick, Eric; Karagas, Margaret R; Oken, Emily; Gold, Diane R; Fleisch, Abby F

    2017-06-01

    Use of wood for residential heating is regaining popularity in developed countries. Currently, over 11 million US homes are heated with a wood stove. Although wood stoves reduce heating costs, wood smoke may adversely impact child health through the emission of gaseous and particulate air pollutants. Our purpose is to raise awareness of this environmental health issue among pediatricians. To summarize the state of the science, we performed a narrative review of articles published in PubMed and Web of Science. We identified 36 studies in developed countries that reported associations of household wood stove use and/or community wood smoke exposure with pediatric health outcomes. Studies primarily investigated respiratory outcomes, with no evaluation of cardiometabolic or neurocognitive health. Studies found community wood smoke exposure to be consistently associated with adverse pediatric respiratory health. Household wood stove use was less consistently associated with respiratory outcomes. However, studies of household wood stoves always relied on participant self-report of wood stove use, while studies of community wood smoke generally assessed air pollution exposure directly and more precisely in larger study populations. In most studies, important potential confounders, such as markers of socioeconomic status, were unaccounted for and may have biased results. We conclude that studies with improved exposure assessment, that measure and account for confounding, and that consider non-respiratory outcomes are needed. While awaiting additional data, pediatricians can refer patients to precautionary measures recommended by the US Environmental Protection Agency (EPA) to mitigate exposure. These include replacing old appliances with EPA-certified stoves, properly maintaining the stove, and using only dry, well-seasoned wood. In addition, several studies have shown mechanical air filters to effectively reduce wood stove pollution exposure in affected homes and communities. Copyright © 2017 Mosby, Inc. All rights reserved.

  12. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians

    PubMed Central

    Rokoff, Lisa B.; Koutrakis, Petros; Garshick, Eric; Karagas, Margaret R.; Oken, Emily; Gold, Diane R.; Fleisch, Abby F.

    2017-01-01

    Use of wood for residential heating is regaining popularity in developed countries. Currently, over 11 million US homes are heated with a wood stove. Although wood stoves reduce heating costs, wood smoke may adversely impact child health through the emission of gaseous and particulate air pollutants. Our purpose is to raise awareness of this environmental health issue among pediatricians. To summarize the state of the science, we performed a narrative review of articles published in PubMed and Web of Science. We identified 36 studies in developed countries that reported associations of household wood stove use and/or community wood smoke exposure with pediatric health outcomes. Studies primarily investigated respiratory outcomes, with no evaluation of cardiometabolic or neurocognitive health. Studies found community wood smoke exposure to be consistently associated with adverse pediatric respiratory health. Household wood stove use was less consistently associated with respiratory outcomes. However, studies of household wood stoves always relied on participant self-report of wood stove use, while studies of community wood smoke generally assessed air pollution exposure directly and more precisely in larger study populations. In most studies, important potential confounders, such as markers of socioeconomic status, were unaccounted for and may have biased results. We conclude that studies with improved exposure assessment, that measure and account for confounding, and that consider non-respiratory outcomes are needed. While awaiting additional data, pediatricians can refer patients to precautionary measures recommended by the US Environmental Protection Agency (EPA) to mitigate exposure. These include replacing old appliances with EPA-certified stoves, properly maintaining the stove, and using only dry, well-seasoned wood. In addition, several studies have shown mechanical air filters to effectively reduce wood stove pollution exposure in affected homes and communities. PMID:28583817

  13. Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula×alba)

    PubMed Central

    Richet, Nicolas; Afif, Dany; Huber, Françoise; Pollet, Brigitte; Banvoy, Jacques; El Zein, Rana; Lapierre, Catherine; Dizengremel, Pierre; Perré, Patrick; Cabané, Mireille

    2011-01-01

    Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula×alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 nl l−1). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost. PMID:21357770

  14. Detection and Identification of Decay Fungi in Spruce Wood by Restriction Fragment Length Polymorphism Analysis of Amplified Genes Encoding rRNA†

    PubMed Central

    Jasalavich, Claudia A.; Ostrofsky, Andrea; Jellison, Jody

    2000-01-01

    We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region. PMID:11055916

  15. Wood-Based Nanocomposite Derived by in Situ Formation of Organic-Inorganic Hybrid Polymer within Wood via a Sol-Gel Method.

    PubMed

    Dong, Xiaoying; Zhuo, Xiao; Wei, Jie; Zhang, Gang; Li, Yongfeng

    2017-03-15

    Solid wood materials and wood-plastic composites as two kinds of lightweight materials are attracting great interest from academia and industry due to their green and recycling nature. However, the relatively lower specific strength limits their wider applications. In particular, solid wood is vulnerable to moisture and decay fungi in nature, resulting in its poor durability for effectively long-term utilization. Inspired from the porous structure of wood, we propose a new design to build a wood-based nanocomposite with higher specific strength and satisfactory durability by in situ generation of organic-inorganic hybrid polymer within wood via a sol-gel method. The derived composite has 50-1200% improvement of impact toughness, 56-192% improvement of tensile strength, and 110-291% improvement of flexural strength over those of typical wood-plastic composites, respectively; and even 34% improvement of specific tensile strength than that of 36A steel; 208% enhancement of hardness; and 156% enhancement of compression strength than those of compared solid wood, respectively; as well as significantly improved dimensional stability and decay resistance over those of untreated natural wood. Such materials could be potentially utilized as lightweight and high-strength materials for applications in construction and automotive industries. This method could be extended to constitute other inorganic nanomaterials for novel organic-inorganic hybrid polymer within wood.

  16. Experimental analysis and simulation modeling of forest management impacts on wood thrushes, Hylocichla mustelina

    USGS Publications Warehouse

    Banks, R.C.

    1998-01-01

    North American Breeding Bird Survey data show that wood thrush (Hylocichla mustelina) populations in eastern U.S. forests have declined 1.8% per year during 1966-95. The declining quality of breeding forest tracts in North America is one possible cause for the apparent decline of some neotropical migratory birds, such as the wood thrush. In Georgia, however, wood thrush populations have declined during a period of increasing pine forest area and larger patch sizes. We hypothesized that forest management practices such as thinning and prescribed burning might create unsuitable habitat for wood thrushes. We conducted a four-year before/after, treatment/control experiment at the Piedmont National Wildlife Refuge in central Georgia to study to the effects of a treatment of thinning and prescribed burning on wood thrush demographic parameters. We simultaneously monitored wood thrush adults and juveniles with mark-recapture, radio-telemetry, nest searches, and plot-map surveys. Our analyses showed that wood thrushes were less likely to emigrate from the study compartments after the treatment, and wood thrushes exhibited some tendency to increase preference for hardwood habitats and decrease preference for pine habitats following the treatment. However, we observed no effects of treatment on nest success, adult survival, and adult and juvenile dispersal distances. We also found that female wood thrushes had lower survival rates than males during the breeding season, and we documented large-scale, within-year dispersal movements of adult (up to 17 km) and juvenile (up to 7 km) wood thrushes. We conclude that landscape level habitat quantity and quality must be considered during songbird management decisions. The documentation of sex- and age-specific wood thrush survival and movement rates was critical for construction of a set of population models. We used three stochastic models to learn more about wood thrush population dynamics and make predictions about population growth rates, reproductive success, and the effect of habitat changes on wood thrush populations. The simplest source/sink population model suggests that the Piedmont National Wildlife Refuge's wood thrush population is probably stable or increasing, and wood thrush populations in treated areas had higher growth rates than birds in untreated areas. We were able to use the individual-based model of wood thrush productivity to predict fecundity, a parameter that we could not measure directly in the field. Again, females on treated areas had higher fecundity than birds on untreated areas. Our spatially-based model predicted that wood thrush populations should respond positively to predicted changes in the age/size class structure of the Refuge's pine forests. Our model also showed that most wood thrushes leave the Refuge's forest compartments during the breeding season, and these dispersal movements are extremely important to understanding and managing wood thrush populations. The use of prescribed burning and retention shelterwood silviculture at the Piedmont National Wildlife Refuge does not appear to negatively affect the local wood thrush population. Continued use of the current management regime should result in adequate nesting, foraging, and escape habitats for wood thrushes. However, landscape-level habitat availability and quality, including lands outside the Refuge, must be considered when making management decisions that may affect wood thrushes.

  17. 40 CFR 454.30 - Applicability; description of the manufacture of wood rosin, turpentine and pine oil subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacture of wood rosin, turpentine and pine oil subcategory. 454.30 Section 454.30 Protection of... WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Wood Rosin, Turpentine and Pine Oil Subcategory § 454.30 Applicability; description of the manufacture of wood rosin, turpentine and pine oil...

  18. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...

  19. 40 CFR 454.30 - Applicability; description of the manufacture of wood rosin, turpentine and pine oil subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacture of wood rosin, turpentine and pine oil subcategory. 454.30 Section 454.30 Protection of... WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Wood Rosin, Turpentine and Pine Oil Subcategory § 454.30 Applicability; description of the manufacture of wood rosin, turpentine and pine oil...

  20. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...

  1. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...

  2. 40 CFR 454.30 - Applicability; description of the manufacture of wood rosin, turpentine and pine oil subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacture of wood rosin, turpentine and pine oil subcategory. 454.30 Section 454.30 Protection of... WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Wood Rosin, Turpentine and Pine Oil Subcategory § 454.30 Applicability; description of the manufacture of wood rosin, turpentine and pine oil...

  3. The challenge of bonding treated wood

    Treesearch

    Charles R. Frihart

    2004-01-01

    Wood products are quite durable if exposure to moisture is minimized; however, most uses of wood involve considerable exposure to moisture. To preserve the wood, chemicals are used to minimize moisture pickup, to prevent insect attack, and/or to resist microbial growth. The chemicals used as preservatives can interfere with adhesive bonds to wood. Given the many...

  4. Evaluating shrinkage of wood propellers in a high-temperature environment

    Treesearch

    Richard Bergman; Robert J. Ross

    2008-01-01

    Minimizing wood shrinkage is a priority for many wood products in use, particularly engineered products manufactured to close tolerances, such as wood propellers for unmanned surveillance aircraft used in military operations. Those currently in service in the Middle East are experiencing performance problems as a consequence of wood shrinking during long-term storage...

  5. 49 CFR 178.935 - Standards for wooden Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Packagings. (i) Natural wood used in the construction of Large Packagings must be well-seasoned, commercially...) Reconstituted wood used in the construction of Large Packagings must be water resistant reconstituted wood such... Packaging types are designated: (1) 50C natural wood. (2) 50D plywood. (3) 50F reconstituted wood. (b...

  6. Wood and Other Materials Used to Construct Nonresidential Buildings - Canada

    Treesearch

    David B. McKeever; Joe Elling

    2014-01-01

    Low-rise nonresidential building construction is an important market in Canada for lumber, engineered wood products, structural wood panels, and nonstructural wood panels. This report examines wood products consumption in 2012 for construction of selected low-rise nonresidential buildings types that have six or fewer stories. Buildings with more than six stories are...

  7. Effects of swelling forces on the durability of wood adhesive bonds

    Treesearch

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  8. The compression of wood/thermoplastic fiber mats during consolidation

    Treesearch

    Karl R. Englund; Michael P. Wolcott; John C. Hermanson

    2004-01-01

    Secondary processing of non-woven wood and wood/thermoplastic fiber mats is generally performed using compression molding, where heated platens or dies form the final product. Although the study and use of wood-fiber composites is widespread, few research efforts have explicitly described the fundamentals of mat consolidation. In contrast, the wood composite literature...

  9. Raman spectroscopic characterization of wood and pulp fibers

    Treesearch

    Umesh Prasad Agarwal

    2008-01-01

    This chapter reviews applications of Raman spectroscopy in the field of wood and pulp fibers. Most of the literature examined was published between 1998 and 2006. In addition to introduction, this chapter contains sections on wood and components, mechanical pulp, chemical pulp, modified/treated wood, cellulose I crystallinity of wood fibers, and the self-absorption...

  10. Water repellents and water-repellent preservatives for wood

    Treesearch

    R. Sam Williams; William C. Feist

    1999-01-01

    Water repellents and water-repellent preservatives increase the durability of wood by enabling the wood to repel liquid water. This report focuses on water-repellent finishes for wood exposed outdoors above ground. The report includes a discussion of the effects of outdoor exposure on wood, the characteristics of water repellent and water-repellent preservative...

  11. EFFECTS OF BURN RATE, WOOD SPECIES, MOISTURE CONTENT AND WEIGHT OF WOOD LOADED ON WOODSTOVE EMISSIONS

    EPA Science Inventory

    The report gives results of tests of four woodstove operating parameters (burn rate, wood moisture, wood load, and wood species) at two levels each using a half factorial experimental test design to determine statistically significant effects on the emission components CO, CO2, p...

  12. FIRE INSURANCE AND WOOD SCHOOL BUILDINGS.

    ERIC Educational Resources Information Center

    PURCELL, FRANK X.

    A COMPARISON OF FIRE INSURANCE COSTS OF WOOD, MASONRY, STEEL AND CONCRETE STRUCTURES SHOWS FIRE INSURANCE PREMIMUMS ON WOOD STRUCTURES TEND TO BE HIGHER THAN PREMIUMS ON MASONRY, STEEL AND CONCRETE BUILDINGS, HOWEVER, THE INITIAL COST OF THE WOOD BUILDINGS IS LOWER. DATA SHOW THAT THE SAVINGS ACHIEVED IN THE INITIAL COST OF WOOD STRUCTURES OFFSET…

  13. Wood for energy in the Pacific Northwest: an overview.

    Treesearch

    James O. Howard

    1979-01-01

    This report presents an overview of the technology of converting wood to energy and the availability of wood. The first section describes fuel values and significant processes used to generate various energy products from wood. Physical, technical, and economic availability of the wood resource is discussed in the second section. The paper...

  14. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not limited...

  15. 77 FR 71167 - Multilayered Wood Flooring From the People's Republic of China: Notice of Court Decision Not in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... public that the final judgment in this case is not in harmony with the Department's Wood Flooring Final... multilayered wood flooring (``wood flooring'') from the People's Republic of China (``PRC'') covering the...

  16. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not limited...

  17. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product...

  18. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product...

  19. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for reconstituted wood boxes. 178.515... wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements for reconstituted wood boxes are as follows: (1) The walls of boxes must be made of water...

  20. Environment-friendly wood fibre composite with high bonding strength and water resistance

    PubMed Central

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi

    2018-01-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications. PMID:29765653

  1. Environment-friendly wood fibre composite with high bonding strength and water resistance

    NASA Astrophysics Data System (ADS)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  2. Gravitropisms and reaction woods of forest trees - evolution, functions and mechanisms.

    PubMed

    Groover, Andrew

    2016-08-01

    Contents 790 I. 790 II. 792 III. 795 IV. 797 V. 798 VI. 800 VII. 800 800 References 800 SUMMARY: The woody stems of trees perceive gravity to determine their orientation, and can produce reaction woods to reinforce or change their position. Together, graviperception and reaction woods play fundamental roles in tree architecture, posture control, and reorientation of stems displaced by wind or other environmental forces. Angiosperms and gymnosperms have evolved strikingly different types of reaction wood. Tension wood of angiosperms creates strong tensile force to pull stems upward, while compression wood of gymnosperms creates compressive force to push stems upward. In this review, the general features and evolution of tension wood and compression wood are presented, along with descriptions of how gravitropisms and reaction woods contribute to the survival and morphology of trees. An overview is presented of the molecular and genetic mechanisms underlying graviperception, initial graviresponse and the regulation of tension wood development in the model angiosperm, Populus. Critical research questions and new approaches are discussed. No claim to US Government works New Phytologist © 2016 New Phytologist Trust.

  3. A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution.

    PubMed

    Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin

    2016-12-16

    The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

  4. A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin

    2016-12-01

    The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

  5. Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius.

    PubMed

    Větrovský, Tomáš; Voříšková, Jana; Snajdr, Jaroslav; Gabriel, Jiří; Baldrian, Petr

    2011-07-01

    Saprotrophic wood-inhabiting basidiomycetes are the most important decomposers of lignin and cellulose in dead wood and as such they attracted considerable attention. The aims of this work were to quantify the activity and spatial distribution of extracellular enzymes in coarse wood colonised by the white-rot basidiomycete Fomes fomentarius and in adjacent fruitbodies of the fungus and to analyse the diversity of the fungal and bacterial community in a fungus-colonised wood and its potential effect on enzyme production by F. fomentarius. Fungus-colonised wood and fruitbodies were collected in low management intensity forests in the Czech Republic. There were significant differences in enzyme production by F. fomentarius between Betula pendula and Fagus sylvatica wood, the activity of cellulose and xylan-degrading enzymes was significantly higher in beech wood than in birch wood. Spatial analysis of a sample B. pendula log segment proved that F. fomentarius was the single fungal representative found in the log. There was a high level of spatial variability in the amount of fungal biomass detected, but no effects on enzyme activities were observed. Samples from the fruiting body showed high β-glucosidase and chitinase activities compared to wood samples. Significantly higher levels of xylanase and cellobiohydrolase were found in samples located near the fruitbody (proximal), and higher laccase and Mn-peroxidase activities were found in the distal ones. The microbial community in wood was dominated by the fungus (fungal to bacterial DNA ratio of 62-111). Bacterial abundance composition was lower in proximal than distal parts of wood by a factor of 24. These results show a significant level of spatial heterogeneity in coarse wood. One of the explanations may be the successive colonization of wood by the fungus: due to differential enzyme production, the rates of biodegradation of coarse wood are also spatially inhomogeneous.

  6. Gravimetric screening method for fungal decay of paper: inoculation with Trametes versicolor.

    PubMed

    Råberg, Ulrika; Hafrén, Jonas

    2009-10-01

    The European standard test EN 113 for fungal degradation of solid wood has been adapted for degradation of paper by white rot fungus (Trametes versicolor). Fungal degradation of paper sheets may potentially be used for screening different wood preservatives on paper instead of solid wood. The paper samples showed higher relative mass losses compared to wood, and samples pretreated with boric acid, copper sulfate and polymerized linseed oil were successfully tested for biodegradation using the paper sheet method. The results on paper degradation were compared with wood, both as wood blocks (according to standard test) and wood cut in sections forming layered structures mimicking paper layers.

  7. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood

    PubMed Central

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Context Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Methods Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Results Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). Main Conclusion Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees. PMID:26555144

  8. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    PubMed

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees.

  9. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2014-09-30

    and Fish Near the Shelfbreak Front off Cape Hatteras James F. Lynch MS #11, Woods Hole Oceanographic Institution Woods Hole, MA 02543 Phone...508) 289-2230 Fax: (508) 457-2194 e-mail: jlynch@whoi.edu Glen Gawarkiewicz MS#21, Woods Hole Oceanographic Institution Woods Hole, MA 02543...Phone: (508) 289-2913 Fax: (508) 457-2181 e-mail: gleng@whoi.edu Ying-Tsong Lin MS #11, Woods Hole Oceanographic Institution Woods Hole, MA 02543

  10. The Mechanical Properties of Wood of Different Moisture Content Within -200 Degrees to +200 Degrees C Temperature Range

    NASA Technical Reports Server (NTRS)

    Kollmann, Franz

    1941-01-01

    Systematic experiments were undertaken with special reference to the effect of gross specific weight (specific weight inclusive of pores) and the moisture content of wood. It was found that the modules of elasticity of wood at room temperature and frozen at -8 degrees is practically the same. The effect of moisture on the compression strength of frozen wood was explored as well as the flexural and impact strength of frozen wood and frozen laminated wood.

  11. Wood Preference of Reticulitermes virginicus (Blattodea: Rhinotermitidae) Using No-, Two-, and Four-Choice Designs and Seven Different Measures of Wood Consumption.

    PubMed

    Lee, T-Y; Forschler, B T

    2016-04-01

    Three hundred Reticulitermes virginicus (Banks) workers were exposed to three 1-cm3 wood blocks of either Quercus sp. (Red Oak), Populus sp. (Poplar), Pinus sp. (Pine), or Sequoia sp. (Redwood) placed into one of the three bioassay designs (no-, two-, and four-choice) for 21 d. Termite wood consumption was measured by wood weight loss, resistance class, and visual rating. Wood consumption rates were determined using four formulas in addition to two standardized visual rating scales (American Society for Testing and Materials [ASTM] and American Wood Protection Association [AWPA]) and a preference ranking obtained for each measure. The wood consumption formula, rating scale, and preference rankings were compared by bioassay design. The overall preference ranking of the four wood types as determined by the combination of all three designs was—1) Pine, 2) Red Oak, 3) Redwood, and 4) Poplar. Results indicate that bioassay design influenced both wood consumption and preference rankings. A no-choice design can determine aversion; a four-choice design the most preferred wood; and a two-choice design can illuminate the fine details of comparative preference. The different formulas employed for calculation of consumption rate influenced preference ranking in the no- and four-choice designs but not the two-choice design.

  12. Traits drive global wood decomposition rates more than climate.

    PubMed

    Hu, Zhenhong; Michaletz, Sean T; Johnson, Daniel J; McDowell, Nate G; Huang, Zhiqun; Zhou, Xuhui; Xu, Chonggang

    2018-06-14

    Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), while only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.

    PubMed

    Hellgren, Jenny M; Olofsson, Kjell; Sundberg, Björn

    2004-05-01

    Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway.

  14. Wood in New Zealand's Native Forest Streams. Recent Advances

    NASA Astrophysics Data System (ADS)

    Mark, M. A.; Davies-Colley, R.

    2005-05-01

    We conducted a series of research projects to investigate the importance of wood in native forested streams of New Zealand. We examined abundance and geomorphic role of wood in 18 pristine native forest streams (channel width: 3-6 m) throughout New Zealand. Forest type and geographic location had no discernable influence on wood abundance, possibly reflecting the confounding influences of local features (e.g., tree fall regime) and methodology (`snap-shot' survey of a dynamic system). Number (18-66 per 100 m) and dead wood volume (85-470 m3 ha-1) of stream logs were at the high end of the international range. Living trees contributed up to 25% of total wood, and tree ferns were strongly represented (up to 11% of volume). The largest 10% of pieces contributed 75% of the total volume. The importance of the large wood pieces (>10 m3) was explored further with surveys within that watershed containing the site with the greatest wood volume. The largest pieces were rare but seemed relatively uniformly distributed. To explore the biological consequences of stream wood, we studied use of wood-related micro-habitat by the crayfish (Paranephrops planifrons White). Our findings suggest that wood is an important component of New Zealand's forested stream ecosystems.

  15. Evaluating wood-based composites for incipient fungal decay with the immunodiagnostic wood decay test.

    Treesearch

    C.A. Clausen; L. Haughton; C. Murphy

    2003-01-01

    Early and accurate detection of the extent of fungal deterioration during forensic inspection of the building envelope would eliminate excessive or unnecessary replacement of wood-based building materials. Areas of water infiltration in wood-framed building envelopes in the Pacific Northwest were evaluated visually and sampled for moisture content. Wood samples were...

  16. Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review

    Treesearch

    Adam C. Senalik; Greg Schueneman; Robert J. Ross

    2014-01-01

    The authors conducted a review of ultrasonic testing and evaluation of wood and wood products, starting with a description of basic ultrasonic inspection setups and commonly used equations. The literature review primarily covered wood research presented between 1965 and 2013 in the Proceedings of the Nondestructive Testing of Wood Symposiums. A table that lists the...

  17. Understanding key issues of sustainable wood production in the Pacific Northwest.

    Treesearch

    Robert L. Deal; Seth M. White

    2005-01-01

    Researchers involved with the Pacific Northwest (PNW) Research Station Sustainable Wood Production Initiative have outlined some of the barriers and opportunities for sustainable wood production in the region. Sustainable wood production is defined as the capacity of forests to produce wood, products, and services on a long-term basis and in the context of human...

  18. CCA-TREATED WOOD DISPOSED IN LANDFILLS AND LIFE-CYCLE TRADE-OFFS WITH WASTE-TO-ENERGY AND MSW LANDFILL DISPOSAL

    EPA Science Inventory

    Chromated copper arsenate (CCA) treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. In the U.S. CCA-treated wood is disposed primarily within landfills, however some of the wood is combu...

  19. Gene expression analysis of wood decay fungus Fibroporia Radiculosa grown In ACQ-treated wood

    Treesearch

    Ayfer Akgul; Ali Akgul; Juliet D. Diehl Tang

    2018-01-01

    Copper-tolerant brown-rot fungi are able todegrade wood treated with copper or copper-based wood preservatives. This research used quantitative reverse transcriptase polymerase chain reaction to explore what genes of the brown-rot fungus, Fibroporia radiculosa, were expressed when the fungus was overcoming the wood preservatives and decaying the...

  20. Selection and application of exterior stains for wood

    Treesearch

    R. Sam Williams; William C. Feist

    1999-01-01

    Exterior stains for wood protect the wood surface from sunlight and moisture. Because stains are formulated to penetrate the wood surface, they are not prone to crack or peel as can film-forming finishes, such as paints. This publication describes the properties of stains and wood, methods for applying stains, and the expected service life of stains.

  1. Structure and Function of Wood

    Treesearch

    Alex C. Wiedenhoeft

    2012-01-01

    Wood is a complex biological structure, a composite of many cell types and chemistries acting together to serve the needs of living plant. Attempting to understand wood inthe context of wood technology, we have often overlooked the basic fact that wood evolved over the course of millions of years to serve three main functions in plants-conduction of water from the...

  2. Users guide for WoodCite, a product cost quotation tool for wood component manufacturers [computer program

    Treesearch

    Jeff Palmer; Adrienn Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2014-01-01

    WoodCite is a Microsoft® Access-based application that allows wood component manufacturers to develop product price quotations for their current and potential customers. The application was developed by the U.S. Forest Service and Virginia Polytechnic Institute and State University, in cooperation with the Wood Components Manufacturers Association.

  3. Bioprocessing preservative-treated waste wood

    Treesearch

    Barbara L. Illman; Vina W. Yang; Les Ferge

    2000-01-01

    Disposal of preservative-treated waste wood is a growing problem worldwide. Bioprocessing the treated wood offers one approach to waste management under certain conditions. One goal is to use wood decay fungi to reduce the volume of waste with an easily managed system in a cost-effective manner. Wood decay fungi were obtained from culture collections in the Mycology...

  4. Moisture relations and physical properties of wood

    Treesearch

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  5. Weathering characteristics of wood plastic composites reinforced with extracted or delignified wood flour

    Treesearch

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2016-01-01

    This study investigated weathering performance of an HDPE wood plastic composite reinforced with extracted or delignified wood flour (WF). The wood flour was pre-extracted with three different solvents, toluene/ethanol (TE), acetone/water (AW), and hot water (HW), or sodium chlorite/acetic acid. The spectral properties of the composites before and after artificial...

  6. A review of double-diffusion wood preservation suitable for Alaska.

    Treesearch

    K. Josephine Pavia

    2006-01-01

    Currently, all treated lumber used in Alaska is imported from the 48 contiguous states and Canada because there are no wood-treating facilities in Alaska. This report explores conventional and alternative wood-treating methods and reviews previous studies and laboratory tests on treated wood. In investigating wood treatment as a possible processing option for Alaska...

  7. Full field stress/strain analysis : use of Moire and TSA for wood structural assemblies

    Treesearch

    R. W. Wolfe; R. E. Rowlands; C. H. Lin

    1994-01-01

    Laboratory and field experiments in wood engineering often rely on different types of devices to measure strain. Each type has certain limitations and characteristics that generally dictate its applicability to wood. Some of the issues related to using traditional strain measurement devices on wood and wood-based materials are discussed in this paper.

  8. Factors that lead to failure with wood adhesive bonds

    Treesearch

    Charles R. Frihart; James F. Beecher

    2016-01-01

    Understanding what makes a good wood adhesive is difficult since the type of adhesive, wood species, bonding process, and resultant products vary considerably. Wood bonds are subjected to a variety of tests that reflect the different product performance criteria in diverse countries. The most common tests involve some type of moisture resistance; both wood and adhesive...

  9. Housing and the wood industry, trends & market conditions

    Treesearch

    Urs Buehlmann; Matt Bumgardner; Al Schuler; K. Koenig

    2011-01-01

    Housing markets continue to have major impacts on the secondary wood industry. So, what are the steps being taken by wood products manufacturers in order to stay viable? As a follow-up to last year's article, "Housing Market's Impact on the Secondary Woodworking Industry" (Wood & Wood Products, July 2010), the focus of this year's study was...

  10. Extractives in eastern hardwoods : a review

    Treesearch

    John W. Rowe

    1979-01-01

    This report extensively reviews the chemistry of extractives from wood and bark of hardwoods from the eastern United States. While such extractives are not used to a great extent commercially, they may influence properties of the wood and performance of wood products. For example, extractives can protect wood from decay, add color and odor to wood, accent grain pattern...

  11. Aircraft Wood Structures, Covering and Finishing Methods (Course Outline), Aviation Mechanics 2 (Air Frame): 9065.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with aircraft wood structures and related Federal Aviation Agency requirements. Topics outlined are identification of defects on wood samples, defining terms used on wood structures, inspecting wood structure together with servicing and repair of wood…

  12. Achieving wood energy potentials: evidence in northeastern Minnesota.

    Treesearch

    Dennis P. Bradley; David C. Lothner

    1987-01-01

    A study of wood energy potential in northeastern Minnesota concludes that (1) the forests of the region could support a much larger wood energy harvest without significant cost increases for other forest products; (2) existing stands are predominantly overmature and cutting more now will enhance future wood supplies for all users; (3) converting to wood energy could...

  13. Relationship of wood surface energy to surface composition

    Treesearch

    Feipeng P. Liu; Timothy G. Rials; John Simonsen

    1998-01-01

    The wood cell wall is composed of cellulose, lignin, hemicelluloses, and extractives. Thus, the surface energy of the wood material must be some combination of the surface energies of these components. The influence of extractives on wood surface chemistry can be important in diverse industrial applications, such as coating, pulping, and wood-based composites. In this...

  14. Wood-based composites and panel products

    Treesearch

    John A. Youngquist

    1999-01-01

    Because wood properties vary among species, between trees of the same species, and between pieces from the same tree, solid wood cannot match reconstituted wood in the range of properties that can be controlled in processing. When processing variables are properly selected, the end result can sometimes surpass nature’s best effort. With solid wood, changes in...

  15. Fire resistance of exposed wood members

    Treesearch

    Robert H. White

    2004-01-01

    Fire resistance data on exposed wood beams and columns are plentiful, but few studies have been done on exposed wood members in tension and in decks. To provide data to verify the application of a new calculation procedure, a limited series of fire resistance tests were conducted on wood members loaded in tension and on exposed wood decks.

  16. Effects of chemically modified wood on bond durability

    Treesearch

    Rishawn Brandon; Rebecca E. Ibach; Charles R. Frihart

    2005-01-01

    Chemical modification of wood can improve its dimensional stability and resistance to biological degradation and moisture, but modification can also create a new surface for bonding. Acetylation of wood results in the loss of hydroxyl groups, making the wood more hydrophobic and reduces its ability to hydrogen-bond with the adhesive. In contrast, reacting wood with...

  17. Characterization of novolac type liquefied wood/phenol/formaldehyde (LWPF) resin

    Treesearch

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    Novolac type liquefied wood/phenol/formaldehyde (LWPF) resins were synthesized from liquefied wood and formaldehyde. The average molecular weight of the LWPF resin made from the liquefied wood reacted in an atmospheric three neck flask increased with increasing P/W ratio. However, it decreased with increasing phenol/wood ratio when using a sealed Parr reactor. On...

  18. Bond quality of phenol-based adhesives containing liquefied creosote-treated wood

    Treesearch

    Chung-Yun Hse; Feng Fu; Hui Pan

    2009-01-01

    Liquefaction of spent creosote-treated wood was studied to determine the technological practicability of its application in converting treated wood waste into resin adhesives. A total of 144 plywood panels were fabricated with experimental variables included 2 phenol to wood (P/W) ratios in liquefaction, 6 resin formulations (3 formaldehyde/liquefied wood (F/...

  19. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.

    PubMed

    Civardi, Chiara; Schwarze, Francis W M R; Wick, Peter

    2015-05-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm-25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.

    PubMed

    Skyba, Oleksandr; Douglas, Carl J; Mansfield, Shawn D

    2013-04-01

    In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.

  1. Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi

    PubMed Central

    Skyba, Oleksandr; Douglas, Carl J.

    2013-01-01

    In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance. PMID:23396333

  2. Silicification of wood adopted for barrel production using pure silicon alkoxides in gas phase to avoid microbial colonisation.

    PubMed

    Guzzon, Raffaele; Widmann, Giacomo; Bertoldi, Daniela; Nardin, Tiziana; Callone, Emanuela; Nicolini, Giorgio; Larcher, Roberto

    2015-02-01

    The paper presents a new approach, covering wood with silica-based material in order to protect it from spoilage due to microbial colonisation and avoiding the loss of the natural features of the wood. Wood specimens derived from wine barrels were treated with methyltriethoxysilane in gas phase, leading to the deposition of a silica nanofilm on the surface. (29)Si and (13)C solid state Nuclear Magnetic Resonance and Scanning Electron Microscope-Energy Dispersive X-ray analysis observations showed the formation of a silica polymeric film on the wood samples, directly bonding with the wood constituents. Inductively Coupled Plasma-Mass Spectroscopy quantification of Si showed a direct correlation between the treatment time and silica deposition on the surface of the wood. The silica-coated wood counteracted colonisation by the main wine spoilage microorganisms, without altering the migration from wood to wine of 21 simple phenols measured using a HPLC-Electrochemical Coulometric Detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cytochemical localization of cellulases in decayed and nondecayed wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murmanis, L.; Highley, T.L.; Palmer, J.G.

    1987-01-01

    Sawdust from undecayed western hemlock wood and from wood previously decayed by the brown-rot fungus Poria placenta or by the white-rot fungus Ganoderma applanatum was incubated with commercial cellulase from Trichoderma viride. Samples were treated cytochemically to locate cellulase activity and examined by TEM. Results showed that cellulase degraded undecayed wood extensively, with the attack starting on the outer border of a cell wall and progressing inside. Wood decayed by P. placenta, with or without cellulase incubation, and treated by the cytochemical test showed uniform distribution of electron dense particles throughout the cell walls. In wood decayed by G. applanatum,more » cellulase degradation was similar to that in undecayed wood. From measurements of particle diameter it is suggested that electron dense particles are cellulase. It is concluded that brown-rot and white-rot fungi have different effects on the microstructure of wood. The brown-rot fungus appears to open the wood microstructure so that cellulase can diffuse throughout the degraded tracheid wall.« less

  4. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    PubMed

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Sunken wood habitat for thiotrophic symbiosis in mangrove swamps.

    PubMed

    Laurent, Mélina C Z; Gros, Olivier; Brulport, Jean-Pierre; Gaill, Françoise; Bris, Nadine Le

    2009-03-01

    Large organic falls to the benthic environment, such as dead wood or whale bones, harbour organisms relying on sulfide-oxidizing symbionts. Nothing is known however, concerning sulfide enrichment at the wood surface and its relation to wood colonization by sulfide-oxidizing symbiotic organisms. In this study we combined in situ hydrogen sulfide and pH measurements on sunken wood, with associated fauna microscopy analyses in a tropical mangrove swamp. This shallow environment is known to harbour thiotrophic symbioses and is also abundantly supplied with sunken wood. A significant sulfide enrichment at the wood surface was revealed. A 72h sequence of measurements emphasized the wide fluctuation of sulfide levels (0.1->100muM) over time with both a tidal influence and rapid fluctuations. Protozoans observed on the wood surface were similar to Zoothamnium niveum and to vorticellids. Our SEM observations revealed their association with ectosymbiotic bacteria, which are likely to be sulfide-oxidizers. These results support the idea that sunken wood surfaces constitute an environment suitable for sulfide-oxidizing symbioses.

  6. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    NASA Astrophysics Data System (ADS)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the reintroduction of large wood is inferred because the character (the size and complexity of individual pieces) and positioning of large wood in managed reaches did not mimic that of reference reaches effectively despite the abundance of wood pieces being similar in the reference and managed reaches. The results of this study highlight the importance of understanding the natural character and distribution of large wood on hydraulic landscapes in large low energy lowland river systems, especially when reintroducing large wood for river management purposes.

  7. Evaluation of Binding Effects in Wood Flour Board Containing Ligno-Cellulose Nanofibers

    PubMed Central

    Kojima, Yoichi; Isa, Akiko; Kobori, Hikaru; Suzuki, Shigehiko; Ito, Hirokazu; Makise, Rie; Okamoto, Masaki

    2014-01-01

    Wood-based materials are used extensively in residual construction worldwide. Most of the adhesives used in wood-based materials are derived from fossil resources, and some are not environmentally friendly. This study explores nanofiber technology as an alternative to such adhesives. Previous studies have shown that the three-dimensional binding effects of cellulose nanofiber (CNF), when mixed with wood flour, can significantly improve the physical and mechanical properties of wood flour board. In this study, ligno-cellulose nanofibers (LCNF) were fabricated by wet disk milling of wood flour. Composite boards of wood flour and LCNF were produced to investigate the binding effect(s) of LCNF. The fabrication of LCNF by disk milling was simple and effective, and its incorporation into wood flour board significantly enhanced the physical and mechanical properties of the board. PMID:28788217

  8. Thermal decomposition of wood: kinetics and degradation mechanisms.

    PubMed

    Poletto, Matheus; Zattera, Ademir J; Santana, Ruth M C

    2012-12-01

    The influence of wood components and cellulose crystallinity on the kinetic degradation of different wood species has been investigated using thermogravimetry. Four wood species were studied: Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP). Thermogravimetric results showed that higher extractive contents in the wood accelerate the degradation process and promote an increase in the conversion values at low temperatures. Alternatively, the results indicated that the cellulose crystallinity inhibits wood degradation; organized cellulose regions slow the degradation process because the well-packed cellulose chains impede heat diffusion, which improves the wood's thermal stability. The wood degradation mechanism occurs by diffusion processes when the conversion values are below 0.4. When the conversion values are above 0.5, the degradation is a result of random nucleation with one nucleus in each particle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  10. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE PAGES

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; ...

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  11. Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, Virginia; Piégay, Hervé; Gurnell, Angela A.; Marston, Richard A.; Stoffel, Markus

    2016-09-01

    Large wood is an important physical component of woodland rivers and significantly influences river morphology. It is also a key component of stream ecosystems. However, large wood is also a source of risk for human activities as it may damage infrastructure, block river channels, and induce flooding. Therefore, the analysis and quantification of large wood and its mobility are crucial for understanding and managing wood in rivers. As the amount of large-wood-related studies by researchers, river managers, and stakeholders increases, documentation of commonly used and newly available techniques and their effectiveness has also become increasingly relevant as well. Important data and knowledge have been obtained from the application of very different approaches and have generated a significant body of valuable information representative of different environments. This review brings a comprehensive qualitative and quantitative summary of recent advances regarding the different processes involved in large wood dynamics in fluvial systems including wood budgeting and wood mechanics. First, some key definitions and concepts are introduced. Second, advances in quantifying large wood dynamics are reviewed; in particular, how measurements and modeling can be combined to integrate our understanding of how large wood moves through and is retained within river systems. Throughout, we present a quantitative and integrated meta-analysis compiled from different studies and geographical regions. Finally, we conclude by highlighting areas of particular research importance and their likely future trajectories, and we consider a particularly underresearched area so as to stress the future challenges for large wood research.

  12. Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers1[C][W

    PubMed Central

    Mahboubi, Amir; Ratke, Christine; Gorzsás, András; Kumar, Manoj; Mellerowicz, Ewa J.; Niittylä, Totte

    2013-01-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H+ symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after 13CO2 assimilation, the SUT3RNAi lines contained more 13C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers. PMID:24170204

  13. Poor neighborhoods: safe playgrounds.

    PubMed

    Powell, Elizabeth C; Ambardekar, Erin J; Sheehan, Karen M

    2005-09-01

    Although unstructured physical play is helpful to child development and physical activity is important to obesity prevention, up-to-date information about playgrounds and playground hazards in urban areas is limited. Local data are needed to identify problems and target interventions. The aim of this study was to describe the hazards in playgrounds located in low-income (median dollars 28,728-38,915) and very low-income (median dollars 18,266-18,955) Chicago neighborhoods. Using a standardized on-site survey (National Program for Playground Safety), two investigators reviewed seventy-eight public playgrounds for hazards related to playground design, safe surfaces, supervision, and equipment design and maintenance. The design of 56 playgrounds (72%) posed no hazards. One playground lacked protection from motor vehicles, and 21 had minor flaws. One playground had an asphalt surface; all others had protective surfaces, usually wood chips. The chips were too thin in many places, and in 15 playgrounds (19%), at least one concrete footing was exposed. Trash was a common surface hazard (68%). Although most equipment was safe (swings of soft materials and appropriate platform barriers), many pieces needed repairs. Equipment maintenance hazards included gaps (44%) and missing (38%) or broken parts (35%). In 13 of 39 playgrounds (33%) where children were observed playing, one or more were unsupervised. Playgrounds in very low-income neighborhoods more often had trash in the fall zone and exposed footings (P<.01 for each); there were no differences between low and very low-income neighborhoods in playground design or equipment maintenance. We conclude that playgrounds in low-income Chicago neighborhoods are of good design and have appropriate surfaces. Needed improvements include attention to wood chip depth, the removal of trash from the fall zone, and equipment repairs. Greater adult supervision is warranted.

  14. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  15. A foundation monograph of Convolvulus L. (Convolvulaceae)

    PubMed Central

    Wood, John R.I.; Williams, Bethany R.M.; Mitchell, Thomas C.; Carine, Mark A.; Harris, David J.; Scotland, Robert W.

    2015-01-01

    Abstract A global revision of Convolvulus L. is presented, Calystegia R.Br. being excluded on pragmatic grounds. One hundred and ninety species are recognised with the greatest diversity in the Irano-Turanian region. All recognised species are described and the majority are illustrated. Distribution details, keys to species identification and taxonomic notes are provided. Four new species, Convolvulus austroafricanus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulus iranicus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulus peninsularis J.R.I.Wood & R.W.Scotland, sp. nov. and Convolvulus xanthopotamicus J.R.I.Wood & R.W.Scotland, sp. nov., one new subspecies Convolvulus chinensis subsp. triangularis J.R.I.Wood & R.W.Scotland, subsp. nov., and two new varieties Convolvulus equitans var. lindheimeri J.R.I.Wood & R.W.Scotland, var. nov., Convolvulus glomeratus var. sachalitarum J.R.I.Wood & R.W.Scotland, var. nov. are described. Convolvulus incisodentatus J.R.I.Wood & R.W.Scotland, nom. nov., is provided as a replacement name for the illegitimate Convolvulus incisus Choisy. Several species treated as synonyms of other species in recent publications are reinstated including Convolvulus chinensis Ker-Gawl., Convolvulus spinifer M.Popov., Convolvulus randii Rendle and Convolvulus aschersonii Engl. Ten taxa are given new status and recognised at new ranks: Convolvulus namaquensis (Schltr. ex. A.Meeuse) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hermanniae subsp. erosus (Desr.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus crenatifolius subsp. montevidensis (Spreng.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus fruticulosus subsp. glandulosus (Webb) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus capituliferus subsp. foliaceus (Verdc.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hystrix subsp. ruspolii (Dammer ex Hallier f.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hystrix subsp. inermis (Chiov.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus rottlerianus subsp. stocksii (Boiss.) J.R.I.Wood & R.W.Scotland, comb. et stat. nov., Convolvulus calvertii subsp. ruprechtii (Boiss.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus cephalopodus subsp. bushiricus (Bornm.) J.R.I.Wood & R.W.Scotland, stat. nov. The status of various infraspecific taxa is clarified and numerous taxa are lectotypified. This account represents a new initiative in terms of taxonomic monography, being an attempt to bring together the global approach of the traditional monograph with the more pragmatic and identification-focussed approach of most current floras while at the same time being informed by insights from molecular systematics. PMID:26140023

  16. Pretreatment Characteristics of Waste Oak Wood by Ammonia Percolation

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seok; Kim, Hyunjoon; Lee, Jin-Suk; Lee, Joon-Pyo; Park, Soon-Chul

    A log of waste oak wood collected from a Korean mushroom farm has been tested for ammonia percolation pretreatment. The waste log has different physical characteristics from that of virgin oak wood. The density of the waste wood was 30% lower than that of virgin oak wood. However, there is little difference in the chemical compositions between the woods. Due to the difference in physical characteristics, the optimal pretreatment conditions were also quite different. While for waste oak the optimum temperature was determined to be 130°C, for virgin oak wood the optimum pretreatment was only achieved at 170°C. Presoaking for 12 h with ammonia solution before pretreatment was helpful to increase the delignification efficiency.

  17. Opportunities to change timber demand through altered timber utilization [Chapter 10

    Treesearch

    K. E. Skog; D. P. Bradley; H. N. Spelter; I. Durbak; P. J. Ince; W. J. Lange; P. A. Araman; D. B. McKeever; J. I. Zerbe

    1990-01-01

    This paper discusses opportunities for timber utilization improvement that will 1) increase efficiency of wood use, 2) reduce the cost of wood products and the cost of using wood in applications, and 3) provide new or improved wood products or wood use applications. A key purpose here is to propose and explain technology-influenced projections of 1) costs for...

  18. Detection of wood failure by image processing method: influence of algorithm, adhesive and wood species

    Treesearch

    Lanying Lin; Sheng He; Feng Fu; Xiping Wang

    2015-01-01

    Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...

  19. The central role of wood biology in understanding the durability of wood-coating interactions

    Treesearch

    Alex C. Wiedenhoeft

    2007-01-01

    To design effectively for durability, one must actively and honestly assess the material properties and limitations of each of the components in the design system; wood or wood composite, and the coating. Inasmuch as wood coatings are manufactured to specified tolerances from known materials, we have control of that component of the system. Compared to manmade...

  20. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Treesearch

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  1. Wood construction codes issues in the United States

    Treesearch

    Douglas R. Rammer

    2006-01-01

    The current wood construction codes find their origin in the 1935 Wood Handbook: Wood as an Engineering Material published by the USDA Forest Service. Many of the current design recommendations can be traced back to statements from this book. Since this time a series of development both historical and recent has led to a multi-layered system for use of wood products in...

  2. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation

    Treesearch

    Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans

    2007-01-01

    The limited penetration of wood by light explains why the weathering of wood exposed outdoors is a surface phenomenon. Wood is rapidly degraded by short-wave-length UV radiation, but the penetration of light into wood is positively correlated with its wavelength. Hence, subsurface degradation is likely to be caused by longer-wavelength light that still has sufficient...

  3. The use and market for wood in the electrometallurgical industry

    Treesearch

    Jeffery L. Wartluft; Jeffery L. Wartluft

    1971-01-01

    Wood residues, particularly large chips, play an important role in the electric smelting of certain ferro-alloys. This is a report on the characteristics and growth potential of the market for wood in the electrometallurgicaI industry, including a brief account of how wood is used in electrometallurgical processes, a discussion of the preferred form of wood used, a...

  4. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  5. Allowable bending stresses of wood for use in portable wood ladders

    Treesearch

    Fred Werren

    1975-01-01

    A standard for portable wood ladders has been in effect since 1923, and has been revised several times since then. The most recent publication is "American National Standard Safety Standard for Portable Wood Ladders," A14.1-1975, from American National Standards Institute, Inc. Methods of arriving at allowable stresses for wood ladder parts have never been...

  6. The Asian Wood Pellet Markets

    Treesearch

    Joseph A. Roos; Allen Brackley

    2012-01-01

    This study examines the three major wood pellet markets in Asia: China, Japan, and South Korea. In contrast to the United States, where most wood pellets are used for residential heating with pellet stoves, a majority of the wood pellets in Asia are used for co-firing at coal-fired power plants. Our analysis indicated that Japan is the largest importer of wood pellets...

  7. Consumer preference study of characteristics of Hawaiian koa wood bowls

    Treesearch

    Eini C Lowell; Katherine Wilson; Jan Wiedenbeck; Catherine Chan; J. B. Friday; Nicole Evans

    2017-01-01

    Koa (Acacia koa A. Gray), a species endemic to the Hawaiian Islands, has ecological, cultural, and economic significance. Its wood is prized globally but today, most woodworkers only use koa wood from dead and dying old-growth trees. The general perception of wood from young-growth koa is that it lacks the color and figure of old-growth wood and is...

  8. Characterizing and contrasting instream and riparian coarse wood in western Montana basins

    Treesearch

    Michael K. Young; Ethan A. Mace; Eric T. Ziegler; Elaine K. Sutherland

    2006-01-01

    The importance of coarse wood to aquatic biota and stream channel structure is widely recognized, yet characterizations of large-scale patterns in coarse wood dimensions and loads are rare. To address these issues, we censused instream coarse wood ( 2 m long and 10 cm minimum diameter) and sampled riparian coarse wood and channel characteristics in and along 13 streams...

  9. Synthesis and evaluation of borates derived from boric acid for fire and decay protections

    Treesearch

    George Chen

    1999-01-01

    The degradation of wood by decay, fire and UV constitutes the three major losses of wood products in use. Commercial wood preservatives including chromated copper arsenate(CCA) and pentachlorophenol(penta) can only protect wood from decay. Dual protections of wood against decay and fire or decay and UV if acheivable are more desirable. Many phosphorus and boron...

  10. Electrochemical corrosion testing of fasteners in extracts of treated wood

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer; Donald S. Stone

    2008-01-01

    A recent change in wood preservatives has highlighted the need for a rapid, quantitative test to measure the corrosion rates of metals in contact with treated wood that could be used to evaluate new fasteners or new wood preservatives. A new method was developed where polarisation resistance tests were conducted on fasteners exposed to a water extract of wood treated...

  11. Drying and control of moisture content and dimensional changes

    Treesearch

    William T. Simpson

    1999-01-01

    In the living tree, wood contains large quantities of water. As green wood dries, most of the water is removed. The moisture remaining in the wood tends to come to equilibrium with the relative humidity of the surrounding air. Correct drying, handling, and storage of wood will minimize moisture content changes that might occur after drying when the wood is in service...

  12. Structure and function of wood

    Treesearch

    Alex Wiedenhoeft

    2010-01-01

    Wood is a complex biological structure, a composite of many chemistries and cell types acting together to serve the needs of a living plant. Attempting to understand wood in the context of wood technology, we have often overlooked the key and basic fact that wood evolved over the course of millions of years to serve three main functions in plants― conduction of water...

  13. Finite element analyses of two dimensional, anisotropic heat transfer in wood

    Treesearch

    John F. Hunt; Hongmei Gu

    2004-01-01

    The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Inputting basic orthogonal properties of the wood material alone are not sufficient for accurate modeling because wood is a combination of porous fiber cells that are aligned and mis-...

  14. Breakdown and invertebrate colonization of dead wood in wetland, upland, and river habitats

    Treesearch

    A Braccia; D Batzer

    2010-01-01

    Breakdown of woody debris in river and upland habitats as well as the interactions between wood and invertebrates have been well described. Studies of wood in wetlands are rare, and far less is known about breakdown and invertebrate use of wood in these transitional habitats. This study experimentally assessed breakdown and invertebrate colonization of wood in a...

  15. New Developments in Wood-Destroying Organisms from the International Research Group on Wood Preservation \\t

    Treesearch

    Elmer L. Schmidt

    1991-01-01

    New developments in wood-destroying organisms and in wood protection from the 20th annual meeting (May 1989 at Lappeenranta, Finland) of the International Research Group on Wood Preservation (IRG) are highlighted in the areas of biological control of fungi, dry rot, decay mechanisms and product problems, new techniques, insect problems and control, and developments in...

  16. Wood products used in the construction of low-rise nonresidential buildings in the United States, 2008

    Treesearch

    David McKeever

    2010-01-01

    Low-rise nonresidential building construction is an important market for lumber, structural wood panels, nonstructural wood panels, and engineered wood products in the United States. This report examines low-rise nonresidential buildings of four or fewer stories only. Buildings with five or more stories are normally severely restricted by building code from being wood...

  17. Analysis of U.S. household wood energy consumption: 1967-2009

    Treesearch

    Nianfu Song; Francisco X. Aguilar; Stephen R. Shifley; Michael E. Goerndt

    2012-01-01

    The residential sector consumes about 23% of the energy derived from wood (wood energy) in the U.S. An estimated error correction model with data from 1967 to 2009 suggests that residential wood energy consumption has declined by an average 3% per year in response to technological progress, urbanization, accessibility of non-wood energy, and other factors associated...

  18. Treatments that enhance physical properties of wood

    Treesearch

    Roger M. Rowell; Peggy Konkol

    1987-01-01

    This paper was prepared for anyone who wants to know more about enhancing wood’s physical properties, from the amateur wood carver to the president of a forest products company. The authors describe chemical and physical treatments of wood that enhance the strength, stiffness, water repellency, and stability of wood. Five types of treatments are described: 1. water-...

  19. Physical properties and moisture relations of wood

    Treesearch

    William Simpson; Anton TenWolde

    1999-01-01

    The versatility of wood is demonstrated by a wide variety of products. This variety is a result of a spectrum of desirable physical characteristics or properties among the many species of wood. In many cases, more than one property of wood is important to the end product. For example, to select a wood species for a product, the value of appearance- type properties,...

  20. Chronicle of 65 years of wood finishing research at the Forest Products Laboratory

    Treesearch

    Thomas M. Gorman; William C. Feist

    1989-01-01

    For 65 years, the Forest Products Laboratory (FPL) in Madison, Wisconsin, has had a continuous and extensive program of research on finishing wood for outdoor use. The research has stressed the fundamental aspects of wood weathering and the interactions of pretreatments and finishes on wood surfaces. This report outlines the history of the FPL wood finishing research...

  1. Evaluation of the accessibility of CCA metals in liquefied CCA-treated wood sludge for recovery and reuse

    Treesearch

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    CCA-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. The heavy metals were precipitated by Ca(OH)2 from liquefied CCA-treated wood. The original CCA-treated wood and precipitated wood sludge were fractionated by a modified BCR (Community Bureau of Reference) sequential extraction procedure. The purpose of the BCR...

  2. Domestic market activity in solid wood products in the United States, 1950-1998.

    Treesearch

    David B. McKeever

    2002-01-01

    Solid wood is important to the construction, manufacturing, and shipping segments of the U.S. economy. Nearly all new houses are built with wood, and wood building products are used in the construction of nonresidential buildings, and in the upkeep and improvement of existing structures. Solid wood is used extensively to produce and transport manufactured products. It...

  3. Climate Change Mitigation Challenge for Wood Utilization-The Case of Finland.

    PubMed

    Soimakallio, Sampo; Saikku, Laura; Valsta, Lauri; Pingoud, Kim

    2016-05-17

    The urgent need to mitigate climate change invokes both opportunities and challenges for forest biomass utilization. Fossil fuels can be substituted by using wood products in place of alternative materials and energy, but wood harvesting reduces forest carbon sink and processing of wood products requires material and energy inputs. We assessed the extended life cycle carbon emissions considering substitution impacts for various wood utilization scenarios over 100 years from 2010 onward for Finland. The scenarios were based on various but constant wood utilization structures reflecting current and anticipated mix of wood utilization activities. We applied stochastic simulation to deal with the uncertainty in a number of input variables required. According to our analysis, the wood utilization decrease net carbon emissions with a probability lower than 40% for each of the studied scenarios. Furthermore, large emission reductions were exceptionally unlikely. The uncertainty of the results were influenced clearly the most by the reduction in the forest carbon sink. There is a significant trade-off between avoiding emissions through fossil fuel substitution and reduction in forest carbon sink due to wood harvesting. This creates a major challenge for forest management practices and wood utilization activities in responding to ambitious climate change mitigation targets.

  4. Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia.

    PubMed

    Kutsuki, H; Higuchi, T

    1981-07-01

    The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.

  5. Polyphenolic profile as a useful tool to identify the wood used in wine aging.

    PubMed

    Sanz, Miriam; Fernández de Simón, Brígida; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Hernández, Ma Teresa; Estrella, Isabel

    2012-06-30

    Although oak wood is the main material used in cooperage, other species are being considered as possible sources of wood for the production of wines and their derived products. In this work we have compared the phenolic composition of acacia (Robinia pseudoacacia), chestnut (Castanea sativa), cherry (Prunus avium) and ash (Fraxinus excelsior and F. americana) heartwoods, by using HPLC-DAD/ESI-MS/MS (some of these data have been showed in previous paper), as well as the changes that toasting intensity at cooperage produce in each polyphenolic profile. Before toasting, each wood shows a different and specific polyphenolic profile, with both qualitative and quantitative differences among them. Toasting notably changed these profiles, in general, proportionally to toasting intensity and led to a minor differentiation among species in toasted woods, although we also found phenolic markers in toasted woods. Thus, methyl syringate, benzoic acid, methyl vanillate, p-hydroxybenzoic acid, 3,4,5-trimethylphenol and p-coumaric acid, condensed tannins of the procyanidin type, and the flavonoids naringenin, aromadendrin, isosakuranetin and taxifolin will be a good tool to identify cherry wood. In acacia wood the chemical markers will be the aldehydes gallic and β-resorcylic and two not fully identified hydroxycinnamic compounds, condensed tannins of the prorobinetin type, and when using untoasted wood, dihydrorobinetin, and in toasted acacia wood, robinetin. In untoasted ash wood, the presence of secoiridoids, phenylethanoid glycosides, or di and oligolignols will be a good tool, especially oleuropein, ligstroside and olivil, together verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. In toasted ash wood, tyrosol, syringaresinol, cyclolovil, verbascoside and olivil, could be used to identify the botanical origin. In addition, in ash wood, seasoned and toasted, neither hydrolysable nor condensed tannins were detected. Lastly, in chestnut wood, gallic and ellagic acids and hydrolysable tannins of both the gallotannin and ellagitannin type, can be used as chemical markers. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    PubMed

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Household wood heater usage and indoor leakage of BTEX in Launceston, Australia: A null result

    NASA Astrophysics Data System (ADS)

    Galbally, Ian E.; Gillett, Robert W.; Powell, Jennifer C.; Lawson, Sarah J.; Bentley, Simon T.; Weeks, Ian A.

    A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses. The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in winter in all houses in Launceston.

  8. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions.

    PubMed

    Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  9. Application of FTIR spectroscopy to the characterization of archeological wood.

    PubMed

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-15

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Application of FTIR spectroscopy to the characterization of archeological wood

    NASA Astrophysics Data System (ADS)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-01

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P = 0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR.

  11. Effect of Trichoderma-enriched organic charcoal in the integrated wood protection strategy

    PubMed Central

    Gandía, Mónica; Marcos, Jose F.; Bas, Maria del Carmen; Fink, Siegfried

    2017-01-01

    The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar) against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720) was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP) in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives. PMID:28797118

  12. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  13. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humar, Miha; Amartey, Sam A.; Pohleven, Franc

    2006-07-01

    There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, themore » ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes.« less

  14. Effect of Trichoderma-enriched organic charcoal in the integrated wood protection strategy.

    PubMed

    Ribera, Javier; Gandía, Mónica; Marcos, Jose F; Bas, Maria Del Carmen; Fink, Siegfried; Schwarze, Francis W M R

    2017-01-01

    The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar) against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720) was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP) in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.

  15. Comparative evaluation of different thermally modified wood samples finishing with UV-curable and waterborne coatings

    NASA Astrophysics Data System (ADS)

    Herrera, René; Muszyńska, Monika; Krystofiak, Tomasz; Labidi, Jalel

    2015-12-01

    Thermally modified wood has been developed as an industrial method to improve durability and dimensional stability of wood and thus extends the range of uses and service life of wood-based products. Despite the improvements gained by treatment, surface finishing using coatings prevents esthetical changes such as color degradation or occasional growth of mold adding protection in outdoor use and extending the service life of products. The wood finishing process was carried out with commercially available waterborne and UV-curable coatings on industrially modified at 192, 200, 212 °C and unmodified European ash (Fraxinus excelsior L.) wood, using an industrial rollers system and a laboratory brushing system. Changes caused by thermal treatment which could affect the surface finish were measured and compared with control samples, such as water uptake, wettability and acidity. Following the wood finishing, surface properties and esthetic changes were evaluated; as well as the coatings performance. Thermally modified wood presented improved adherence compared with unmodified wood with a significant improvement in samples modified at 212 °C, which also present the highest hardness when UV-cured. Finishes with UV-curing maintain the hydrophobic effect of thermally modified wood, whereas waterborne finishes increase the surface wettability. Thermal modification did not negatively influence on the elastic properties of the coated substrate and thus allows this material to be finished with different coating systems in the same conditions as unmodified wood.

  16. From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers.

    PubMed

    Jia, Chao; Chen, Chaoji; Kuang, Yudi; Fu, Kun; Wang, Yilin; Yao, Yonggang; Kronthal, Spencer; Hitz, Emily; Song, Jianwei; Xu, Fujun; Liu, Boyang; Hu, Liangbing

    2018-06-07

    Advanced textiles made of macroscopic fibers are usually prepared from synthetic fibers, which have changed lives over the past century. The shortage of petrochemical resources, however, greatly limits the development of the textile industry. Here, a facile top-down approach for fabricating macroscopic wood fibers for textile applications (wood-textile fibers) comprising aligned cellulose nanofibers directly from natural wood via delignification and subsequent twisting is demonstrated. Inherently aligned cellulose nanofibers are well retained, while the microchannels in the delignified wood are squeezed and totally removed by twisting, resulting in a dense structure with approximately two times higher mechanical strength (106.5 vs 54.9 MPa) and ≈20 times higher toughness (7.70 vs 0.36 MJ m -3 ) than natural wood. Dramatically different from natural wood, which is brittle in nature, the resultant wood-textile fibers are highly flexible and bendable, likely due to the twisted structures. The wood-textile fibers also exhibit excellent knitting properties and dyeability, which are critical for textile applications. Furthermore, functional wood-textile fibers can be achieved by preinfiltrating functional materials in the delignified wood film before twisting. This top-down approach of fabricating aligned macrofibers is simple, scalable, and cost-effective, representing a promising direction for the development of smart textiles and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nitrogen removal in wood chip combined substrate baffled subsurface-flow constructed wetlands: impact of matrix arrangement and intermittent aeration.

    PubMed

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng

    2017-02-01

    In this study, two lab-scale baffled subsurface-flow constructed wetlands (BSFCWs), including gravel-wood chips-slag and gravel-slag-wood chips, were operated at different intermittent aeration to evaluate the effect of artificial aeration and slow-released carbon source on the treatment efficiency of high-strength nitrogen wastewater. Results indicated that gravel-slag-wood chips extended aerobic/anaerobic alternating environment to gravel and slag zones and maintained anaerobic condition in the subsequent wood chip section. The order of gravel-slag-wood chip was more beneficial to pollutant removal. Sufficient carbon source supply resulted from wood-chip-framework substrate simultaneously obtained high removals of COD (97%), NH 4 + -N (95%), and TN (94%) in BSFCWs at 2 h aeration per day. The results suggest that intermittent aeration combined with wood chips could achieve high nitrogen removal in BSFCWs.

  18. A comparison of the recoverable proportion of methicillin-resistant Staphylococcus aureus from two different types of papers.

    PubMed

    Kacmaz, Birgul; Gul, Serdar

    2016-01-01

    Paper is used for various purposes in hospitals. Generally, there are two different types of paper, which are commonly used in our facility: wood-free paper, and paper containing wood. We compared the recoverable proportion of methicillin-resistant Staphylococcus aureus (MRSA; ATCC 43300) from the surface of such papers. The papers were divided into two groups: Group 1: wood-free paper; Group 2: paper containing wood. The papers were contaminated in a standardized procedure with 0.1 mL of a 5×10(7) CFU MRSA/mL stock solution. The recoverable proportion of MRSA was higher in the wood-containing papers than in the papers without wood (P=0.043). This study indicates that if paper is purchased for healthcare facilities it should not contain wood, but rather wood-free paper types should be considered.

  19. Weathering Characteristics of Wood Plastic Composites Reinforced with Extracted or Delignified Wood Flour

    PubMed Central

    Chen, Yao; Stark, Nicole M.; Tshabalala, Mandla A.; Gao, Jianmin; Fan, Yongming

    2016-01-01

    This study investigated weathering performance of an HDPE wood plastic composite reinforced with extracted or delignified wood flour (WF). The wood flour was pre-extracted with three different solvents, toluene/ethanol (TE), acetone/water (AW), and hot water (HW), or sodium chlorite/acetic acid. The spectral properties of the composites before and after artificial weathering under accelerated conditions were characterized by Fourier transform infrared (FTIR) spectroscopy, the surface color parameters were analyzed using colorimetry, and the mechanical properties were determined by a flexural test. Weathering of WPC resulted in a surface lightening and a decrease in wood index (wood/HDPE) and flexural strength. WPCs that were reinforced with delignified wood flour showed higher ΔL* and ΔE* values, together with lower MOE and MOR retention ratios upon weathering when compared to those with non-extracted control and extracted WF. PMID:28773732

  20. Age-dependent radial increases in wood specific gravity of tropical pioneers in Costa Rica

    Treesearch

    Bruce G. Williamson; Michael C. Wiemann

    2010-01-01

    Wood specific gravity is the single best descriptor of wood functional properties and tree life-history traits, and it is the most important variable in estimating carbon stocks in forests. Tropical pioneer trees produce wood of increasing specific gravity across the trunk radius as they grow in stature. Here, we tested whether radial increases in wood specific gravity...

  1. Moisture properties

    Treesearch

    Roger M. Rowell

    2005-01-01

    Wood was designed by nature over millions of years to perform in a wet environment. The wood structure is formed in a water-saturated environment in the living tree, and the water in the living tree keeps the wood elastic and able to withstand environmental strain such as high wind loads. We cut down a tree, dry the wood, and mainly use it in its dry state. But wood in...

  2. Science supporting the economic and environmental benefits of using wood and wood products in green building construction

    Treesearch

    Michael A. Ritter; Kenneth Skog; Richard Bergman

    2011-01-01

    The objective of this report is to summarize the scientific findings that support the environmental and economic benefits of using wood and wood products in green building construction. Despite documented advantages in many peer-reviewed scientific articles, most building professionals and members of the public do not recognize wood as a renewable resource or the role...

  3. Periodate and hypobromite modification of Southern pine wood to improve sorption of copper ion

    Treesearch

    James D. McSweeny; Roger M. Rowell; George C. Chen; Thomas L. Eberhardt; Min Soo-Hong

    2008-01-01

    Milled southern pine wood was modified with sequential treatments of sodium periodate and sodium hypobromite for the purpose of improving copper ion (Cu2+) sorption capacity of the wood when tested in 24-h equilibrium batch tests. The modified wood provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ uptake over that of...

  4. Statistical analysis of influence of soil source on leaching of arsenic and copper from CCA-C treated wood

    Treesearch

    Patricia Lebow; Richard Ziobro; Linda Sites; Tor Schultz; David Pettry; Darrel Nicholas; Stan Lebow; Pascal Kamdem; Roger Fox; Douglas Crawford

    2006-01-01

    Leaching of wood preservatives affects the long-term efficacy and environmental impact of treated wood. Soil properties and wood characteristicscan affectleaching of woad preservatives, but these effects are not well understood. This paper reports a statistical analysis of the effects of soil and wood properties on leaching of arsenic (As) and copper (Cu) from southern...

  5. Corrosion of metals in treated wood examined by synchrotron based xanes and XFM

    Treesearch

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; Leandro Passarini; Barry Lai

    2016-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products used in outdoor environments. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Over the past ten years, several studies have looked at the...

  6. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Treesearch

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  7. Treated wood in transition : a look at CCA and the candidates to replace it

    Treesearch

    Stan Lebow; Jerrold Winandy; Donald Bender

    2003-01-01

    Wood is one of the most versatile and widely used building materials. However, it is also biodegradable, and may be attacked by decay fungi or insects when used in some applications or geographic locations. Uses that allow the wood to frequently become wet, such as embedded posts or other exposed wood members, are familiar examples of applications where wood will...

  8. Treated wood in transition : a look at CCA and the candidates to replace it

    Treesearch

    Stan Lebow; Jerrold Winandy; Donald Bender

    2004-01-01

    Wood is one of the most versatile and widely used building materials. However, it is also biodegradable and may be attacked by decay fungi or insects when used in some applications or geographic locations. Uses that allow the wood to frequently become wet, such as embedded posts or other exposed wood members, are familiar examples of applications where wood will...

  9. Methods for Mitigating the Environmental Risks Associated with Wood Preservatives

    Treesearch

    Dennis Hayward; Stan T. Lebow; Kenneth M. Brooks

    2011-01-01

    As noted in earlier chapters, the treatment of wood is both art and science. Wood is a variable material; treatment results tend to vary with the preservative and wood species and even within boards of the same species. This means that treated wood often contains a range of preservative retentions. Some pieces will have less than the desired retention, while others may...

  10. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Treesearch

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  11. Life cycle inventory of manufacturing prefinished engineered wood flooring in eastern U.S. with comparison to solid strip wood flooring

    Treesearch

    Richard D. Bergman; Scott A. Bowe

    2011-01-01

    Building products have come under increased scrutiny because of environmental impacts from their manufacture. Our study followed the life cycle inventory approach for prefinished engineered wood flooring in the eastern US and compared the results with those of solid strip wood flooring. Our study surveyed five engineered wood flooring manufacturers in the eastern US....

  12. Physical and mechanical properties of bio-composites from wood particles and liquefied wood resin

    Treesearch

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    Compression molded composites were made from wood particles and a liquefied wood/phenol/formaldehyde co-condensed resin. Based on our previous research, a phenol to wood (P/W) ratio of 2/1 was chosen for this study. The two experimental variables selected were: 1) liquefaction temperature (150o and 180oC) and 2) cooking method (atmospheric and sealed). Panels were...

  13. Fractionation of heavy metals in liquefied chromated copper arsenate (CCA)-treated wood sludge using a modified BCR-sequential extraction procedure

    Treesearch

    Hui Pan; Chung-Yun Hse; Robert Gambrell; Todd F. Shupe

    2009-01-01

    Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified...

  14. Overview of the wood adhesives industry in China

    Treesearch

    Chung-Yun Hse

    1999-01-01

    Adhesives products and demand for them in China are discussed in this paper, with special emphasis on wood adhesives products in this decade. In 1994, the wood industries in China con­sumed more than 330,000 tons of adhesives. The estimated demand for wood adhesives will be more than 560,000 tons in the year 2000. The main wood adhesive used is urea-formaldehyde resin...

  15. On the patterns and processes of wood in northern California streams

    NASA Astrophysics Data System (ADS)

    Benda, Lee; Bigelow, Paul

    2014-03-01

    Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.

  16. The Long-Term Effects of Large Wood Placement on Salmonid Habitat in East Fork Mill Creek, Redwood National and State Park, California

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. L.; Stubblefield, A. P.

    2017-12-01

    The conservation and recovery of anadromous salmonids (Oncorhynchus sp.) depend on stream restoration and protection of freshwater habitats. Instream large wood dictates channel morphology, increase retention of terrestrial inputs such as organic matter, nutrients and sediment, and enhances the quality of fish habitat. Historic land use/land cover changes have resulted in aquatic systems devoid of this component. Restoration by placement of large wood jams is intended to restore physical and biological processes. An important question for scientists and managers, in addition to the initial effectiveness of restoration, is the persistence and fate of this type of project. In this study we compare channel change and large wood attributes on the East Fork of Mill Creek, a tributary of the Smith River in northern California, eight years after a major instream wood placement effort took place. Our results are compared with previously published data from before and one year after the restoration. Preliminary results suggest the dramatic increase in spawning gravel abundance and large wood accumulation observed in the earlier study have persisted. From 2008 to 2016 a reduction in median sediment size, ranging from 103-136 percent, has been observed in a majority of the sites. The sites have continued to grow in size and influence by racking floating wood from upstream and destabilizing proximate banks of riparian alder, increasing both instream large wood volume (5-196 %) and floodplain connectivity. Preliminary results also show a decrease in residual pool depth and an increase in pool length which may be attributed to floodplain connectivity. Changes to the following attributes are evaluated: 1) wood loading (total site wood volume, total wood volume in active channel, and wood piece count); 2) percent pool cover by large wood; 3) residual pool depth; 4) upstream sediment aggradation; 5) floodplain connectivity; and 6) mean sediment size directly above and below large wood. We present on these results and statistical comparisons of total site wood volume with response factors.

  17. How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory

    PubMed Central

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates. PMID:25536334

  18. Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies.

    PubMed

    Hasan, A Rasem; Solo-Gabriele, Helena; Townsend, Timothy

    2011-04-01

    Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory.

    PubMed

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.

  20. Method for predicting dry mechanical properties from wet wood and standing trees

    DOEpatents

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  1. Biodeterioration of wood

    Treesearch

    Carol A. Clausen

    2010-01-01

    Under proper conditions, wood will give centuries of service. However, under conditions that permit the development of wood-degrading organisms, protection must be provided during processing, merchandising, and use. The organisms that can degrade wood are principally fungi, insects, bacteria, and marine borers.

  2. 76 FR 71922 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... from coatings and strippers used on wood products, wood paneling, and miscellaneous metal parts and...: PCAPCD Rule 236 (Wood Products and Coating Operations), PCAPCD Rule 238 (Factory Coating of Flat Wood...

  3. Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics

    NASA Astrophysics Data System (ADS)

    Boivin, Maxime; Buffin-Bélanger, Thomas; Piégay, Hervé

    2017-02-01

    Semi-alluvial rivers of the Gaspé Peninsula, Québec, are prone to produce and transport vast quantities of large wood (LW). The high rate of lateral erosion owing to high energy flows and noncohesive banks is the main process leading to the recruitment of large wood, which in turn initiates complex patterns of wood accumulation and reentrainment within the active channel. The delta of the Saint-Jean River (SJR) has accumulated large annual wood fluxes since 1960 that culminated in a wood raft of > 3-km in length in 2014. To document the kinetics of large wood on the main channel of SJR, four annual surveys were carried out from 2010 to 2013 to locate and describe > 1000 large wood jams (LWJ) and 2000 large wood individuals (LWI) along a 60-km river section. Airborne and ground photo/video images were used to estimate the wood volume introduced by lateral erosion and to identify local geomorphic conditions that control wood mobility and deposits. Video camera analysis allowed the examination of transport rates from three hydrometeorological events for specific river sections. Results indicate that the volume of LW recruited between 2010 and 2013 represents 57% of the total LW production over the 2004-2013 period. Volumes of wood deposited along the 60-km section were four times higher in 2013 than in 2010. Increases in wood amount occurred mainly in upper alluvial sections of the river, whereas decreases were observed in the semi-alluvial middle sections. Observations suggest that the 50-year flood event of 2010 produced large amounts of LW that were only partly exported out of the basin so that a significant amount was still available for subsequent floods. Large wood storage continued after this flood until a similar flood or an ice-breakup event could remobilise these LW accumulations into the river corridor. Ice-jam floods transport large amounts of wood during events with fairly low flow but do not contribute significantly to recruitment rates (ca. 10 to 30% early). It is fairly probable that the wood export peak observed in 2012 at the river mouth, where no flood occurred and which is similar to the 1-in 10-year flood of 2010, is mainly linked to such ice-break events that occurred in March 2012.

  4. Wood mimetic hydrogel beads for enzyme immobilization.

    PubMed

    Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun

    2015-01-22

    Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Eco-friendly materials for large area piezoelectronics: self-oriented Rochelle salt in wood

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Ayela, C.; Atli, A.

    2018-02-01

    Upgraded biodegradable piezoelectric composite materials elaborated by incorporation of Rochelle salt (RS, Sodium potassium tartrate tetrahydrate) in wood were reported. RS crystals, known as the first discovered piezoelectric material, were grown in the micro-cavities of wood, having naturally a tubular structure, by soaking the wood into RS saturated water. Since most of the cavities in wood are oriented in the same direction, the piezoelectric effect was improved when the cavities were filled by RS crystals. The mechanical, structural and piezoelectric properties of RS incorporated wood composite samples were characterized. Both direct and converse piezoelectric effects are illustrated. The wood-base composite exhibits an effective piezoelectric constant d 33 of 11 pC N-1. Also, the flexural strength and modulus of elasticity were enhanced by inserting RS into the wood, nevertheless the samples became more brittle. The wood-based piezoelectric samples prepared in this work can be used as actuators, sensors or energy harvesters. The process developed here permits us to manufacture large area piezoelectric devices which are environmentally and economically unsurpassed.

  6. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    NASA Astrophysics Data System (ADS)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  7. Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea.

    PubMed

    Kim, Nam Kyu; Park, Jae Young; Park, Myung Soo; Lee, Hyun; Cho, Hae Jin; Eimes, John A; Kim, Changmu; Lim, Young Woon

    2016-09-01

    The wood decay fungi are a diverse taxonomic group that plays a pivotal role in forest carbon cycling. Wood decay fungi use various enzymatic pathways to digest dead or living wood in order to obtain carbon and other nutrients and these enzymatic systems have been exploited for both industrial and medical applications. Over 600 wood decay fungi species have been described in Korea; however, the recent application of molecular markers has dramatically altered the taxonomy of many of these wood decay fungi at both the genus and species levels. By combining molecular methods, specifically sequences of the internal transcribed spacer region, with traditional morphological characters, this study identified five new species records for Korea in five genera: Aurantiporus , Favolus , Neofavolus , Loweomyces , and Hymenochaetopsis . Three of these genera ( Aurantiporus , Favolus , and Loweomyces ) were previously unknown in Korea. The relatively simple morphology of the wood decay fungi often leads to ambiguous taxonomic assignment. Therefore, molecular markers are a necessary component of any taxonomic or evolutionary study of wood decay fungi. Our study highlights the need for a more robust and multifaceted approach in investigating new wood decay fungi in Korea.

  8. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams

    Treesearch

    Hui Pan; Zhifeng Zheng; Chung Y. Hse

    2011-01-01

    Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...

  9. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams

    Treesearch

    Hui Pan; Zhifeng Zheng; Chung-Yun Hse

    2012-01-01

    Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/ glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...

  10. Biocentricity and economy of scale : hypothesis (and product) testing when wood is a part of an experimental system evaluating durability

    Treesearch

    Alex C. Wiedenhoeft

    2009-01-01

    Wood is a biological material, and its structure and organization are relicts of its biogenesis. From the hydrogen bonding of water molecules in the cell wall to extractives bleeding from knots in siding, the characteristics and behavior of wood are derived from its biological origin; this is my unashamedly biocentric view of wood structure. The structure of wood...

  11. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy

    Treesearch

    Nicole M. Stark; Laurent M. Matuana

    2004-01-01

    The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiber–thermoplastic composites by the construction industry. As a result, the durability of wood-fiber– thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood-...

  12. Outlook for U.S. paper and paperboard sector and wood fiber supply in North America

    Treesearch

    Peter J. Ince

    2000-01-01

    Consumption of wood fiber in pulp, paper and paperboard increased in the United States over the past century and is projected to increase well into the next century at a decelerating rate of growth. Harvest of pulpwood on forest land is the single largest source of wood fiber, followed by recycled paper and wood residues. In the past decade, wood residues declined in...

  13. Treatment of wood with glucose-diammonium phosphate for fire and fungal decay protection

    Treesearch

    George C. Chen

    2002-01-01

    This study describes a method for dual protection of wood against fungal and fire degradation in one treatment. The method consists of impregnating wood with aqueous solution of glucose-diammonium phosphate at pH 9, followed by heating the treated wood at temperatures of 160 °C and 190 °C for various lengths of time to form water insoluble products in wood.

  14. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States

    Treesearch

    Robert A. Haack; Kerry O. Britton; Eckelhard G. Brockerhoff; Joseph F. Cavey; Lynn J. Garrett; Mark Kimberley; Frank Lowenstein; Amelia Nuding; Lars J. Olson; James Tumer; Kathryn N. Vasilaky

    2014-01-01

    Numerous bark- and wood-infesting insects have been introduced to new countries by international trade where some have caused severe environmental and economic damage. Wood packaging material (WPM), such as pallets, is one of the high risk pathways for the introduction of wood pests. International recognition of this risk resulted in adoption of International Standards...

  15. Preliminary investigation of biological resistance, water absorption and swelling of thermally compressed pine wood panels

    Treesearch

    Oner Unsal; S. Nami Kartal; Zeki Candan; Rachel Arango; Carol A. Clausen; Frederick Green

    2008-01-01

    Wood can be modified by compressive, thermal and chemical treatments. Compression of wood under thermal conditions is resulted in densification of wood. This study evaluated decay and termite resistance of thermally compressed pine wood panels at either 5 or 7 MPa and at either 120 or 150°C for one hour. The process caused increases in density and decreases in...

  16. Influence of carbonization conditions on the pyrolytic carbon deposition in acacia and eucalyptus wood chars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Gupta, R.C.

    1997-04-01

    The amount of deposited pyrolytic carbon (resulting from the cracking of volatile matter) was found to depend on wood species and carbonization conditions, such as temperature and heating rate. Maximum pyrolytic carbon deposition in both the acacia and eucalyptus wood chars has been observed at a carbonization temperature of 800 C. Rapid carbonization (higher heating rate) of wood significantly reduces the amount of deposited pyrolytic carbon in resulting chars. Results also indicate that the amount of deposited pyrolytic carbon in acacia wood char is less than that in eucalyptus wood char.

  17. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.

    PubMed

    Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A

    2015-06-01

    Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  18. Assemblage composition of fungal wood-decay species has a major influence on how climate and wood quality modify decomposition.

    PubMed

    Venugopal, Parvathy; Junninen, Kaisa; Edman, Mattias; Kouki, Jari

    2017-03-01

    The interactions among saprotrophic fungal species, as well as their interactions with environmental factors, may have a major influence on wood decay and carbon release in ecosystems. We studied the effect that decomposer diversity (species richness and assemblage composition) has on wood decomposition when the climatic variables and substrate quality vary simultaneously. We used two temperatures (16 and 21°C) and two humidity levels (70% and 90%) with two wood qualities (wood from managed and old-growth forests) of Pinus sylvestris. In a 9-month experiment, the effects of fungal diversity were tested using four wood-decaying fungi (Antrodia xantha, Dichomitus squalens, Fomitopsis pinicola and Gloeophyllum protractum) at assemblage levels of one, two and four species. Wood quality and assemblage composition affected the influence of climatic factors on decomposition rates. Fungal assemblage composition was found to be more important than fungal species richness, indicating that species-specific fungal traits are of paramount importance in driving decomposition. We conclude that models containing fungal wood-decay species (and wood-based carbon) need to take into account species-specific and assemblage composition-specific properties to improve predictive capacity in regard to decomposition-related carbon dynamics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Comparison of VOC emissions between air-dried and heat-treated Norway spruce ( Picea abies), Scots pine ( Pinus sylvesteris) and European aspen ( Populus tremula) wood

    NASA Astrophysics Data System (ADS)

    Hyttinen, Marko; Masalin-Weijo, Marika; Kalliokoski, Pentti; Pasanen, Pertti

    2010-12-01

    Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.

  20. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespanmore » of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.« less

  1. Efficacy of interventions targeting household air pollution from residential wood stoves.

    PubMed

    Ward, Tony J; Semmens, Erin O; Weiler, Emily; Harrar, Solomon; Noonan, Curtis W

    2017-01-01

    Wood is commonly used for residential heating, but there are limited evidence-based interventions for reducing wood smoke exposures in the indoor environment. The Asthma Randomized Trial of Indoor Wood Smoke (ARTIS) study was designed to assess the efficacy of residential interventions to reduce indoor PM exposure from wood stoves. As part of a three-arm randomized placebo-controlled trial, two household-level interventions were evaluated: wood stove changeouts and air filtration units. Exposure outcomes included indoor measures such as continuous PM 2.5 , particle counts, and carbon monoxide. Median indoor PM 2.5 concentration was 17.5 μg/m 3 in wood-burning homes prior to interventions. No significant reductions in PM 2.5 concentrations were observed in the 40 homes receiving the placebo filter intervention. Sixteen homes received the wood stove changeout and showed no significant changes in PM 2.5 or particle counts. PM 2.5 concentrations were reduced by 68% in the filter intervention homes. Relative to placebo, air filtration unit homes had an overall PM 2.5 reduction of 63% (95% CI: 47-75%). Relative to the wood stove changeout, the filtration unit intervention was more efficacious and less expensive, yet compliance issues indicated a need for the evaluation of additional strategies for improving indoor air quality in homes using wood stoves.

  2. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    NASA Astrophysics Data System (ADS)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  3. Corticosterone level and central dopaminergic activity involved in agile and exploratory behaviours in formosan wood mice (Apodemus semotus).

    PubMed

    Shieh, Kun-Ruey; Yang, Shu-Chuan

    2018-03-27

    The native Formosan wood mouse (Apodemus semotus) is the dominant rodent in Taiwan. In their natural environment, Formosan wood mice exhibit high locomotor activity, including searching and exploratory behaviours, which is observed similarly in the laboratory environment. How the behavioural responses of Formosan wood mice exhibit in elevated plus maze and marble burying tests remains unclear. How corticosterone levels and central dopaminergic activities are related to the behaviours in these tests is also unclear. This study compared the behaviours of Formosan wood mice with that of C57BL/6J mice using the elevated plus maze and marble burying tests, and measured the corticosterone levels and central dopaminergic activities. Formosan wood mice showed greater locomotor and exploratory activity than the C57BL/6J mice. Similarly, the marble burying and rearing numbers were higher for Formosan wood mice. High locomotor and exploratory behaviours were strongly correlated with corticosterone levels after acute mild restraint stress in Formosan wood mice. The anxiolytic, diazepam, reduced the high exploratory activity, corticosterone levels and central dopaminergic activities. The high locomotor and exploratory behaviours of Formosan wood mice are related to the corticosterone levels and central dopaminergic activities. These data may explain Formosan wood mice dominance in the intermediate altitude of Taiwan.

  4. Energy and exergy analysis of cookstove by using Cedrus deodara (deodar wood) and saccharum officinarum (sugar cane) waste

    NASA Astrophysics Data System (ADS)

    Chouhan, A. P. Singh; Yaseen, S.; Pruthi, A.

    2017-07-01

    Deodar (Cedrus deodara) wood collected from the Kashmir region in India. This study is focused on energy and exergy analysis of cook stove by using deodar wood, demand of a cookstove is higher in rural areas. In ancient time U-shaped and three stone cook stove was used, but they emitted greenhouse gases CO and CO2 in the environment and these toxic emissions are also dangerous for human being and the environment. Sampada model cook stove used for the analysis of energy an exergy by using water boiling test with using deodar wood and bagasse samples and a mixture of wood and bagasse also used. Wood and bagasse characterized for the ultimate, proximate, calorific value before the water boiling test of the cookstove. Results carried out that the efficiency of cook stove with deodar wood was 33.33 % and exergy calculated 2.1 % and energy efficiency and energy efficiency by using bagasse were 23.23 % and 0.43 %, respectively, and wood and bagasse mixture ratio given energy and exergy efficiencies for ratios 75:25 is the best ratio of energy production. These results indicated that deodar wood is more stable because thermal stability of wood is greater than bagasse. Deodar is a suitable source for the combustion purposes of higher energy production.

  5. 3_D modeling using TLS and GPR techniques to characterize above and below-ground wood distribution in pyroclastic deposits along the Blanco River (Chilean Patagonia)

    NASA Astrophysics Data System (ADS)

    Valdebenito, Galo; Tonon, Alessia; Iroume, Andrés; Alvarado, David; Fuentes, Carlos; Picco, Lorenzo; Lenzi, Mario

    2016-04-01

    To date, the study of in-stream wood in rivers has been focused mainly on quantifying wood pieces deposited above the ground. However, in some particular river systems, the presence of buried dead wood can also represent an important component of wood recruitment and budgeting dynamics. This is the case of the Blanco River (Southern Chile) severely affected by the eruption of Chaitén Volcano occurred between 2008 and 2009. The high pyroclastic sediment deposition and transport affected the channel and the adjacent forest, burying wood logs and standing trees. The aim of this contribution is to assess the presence and distribution of wood in two study areas (483 m2 and 1989 m2, respectively) located along the lower streambank of the Blanco River, and covered by thick pyroclastic deposition up to 5 m. The study areas were surveyed using two different devices, a Terrestrial Laser Scanner (TLS) and a Ground Penetrating Radar (GPR). The first was used to scan the above surface achieving a high point cloud density (≈ 2000 points m-2) which allowed us to identify and measure the wood volume. The second, was used to characterize the internal morphology of the volcanic deposits and to detect the presence and spatial distribution of buried wood up to a depth of 4 m. Preliminary results have demonstrated differences in the numerousness and volume of above wood between the two study areas. In the first one, there were 43 wood elements, 33 standing trees and 10 logs, with a total volume of 2.96 m3 (109.47 m3 km-1), whereas the second one was characterized by the presence of just 7 standing trees and 11 wood pieces, for a total amount of 0.77 m3 (7.73 m3 km-1). The dimensions of the wood elements vary greatly according to the typology, standing trees show the higher median values in diameter and length (0.15 m and 2.91 m, respectively), whereas the wood logs were smaller (0.06 m and 1.12 m, respectively). The low dimensions of deposited wood can be probably connected to their origin, suggesting that these elements were generated by toppling and breaking of surrounding dead trees. Results obtained with the GPR confirm the ability of this instrument to localize the presence and distribution of buried wood. From the 3-D analysis it was possible to assess the spatial distribution and to estimate, as first approach, the volume of the buried wood which represents approximately 0.04% of the entire volcanic deposit. Further analysis will focus on additional GPR calibration with different wood sizes for a more accurate estimation of the volume. The knowledge of the overall wood amount stored in a fluvial system that can be remobilized over time, represent an essential factor to ensure better forest and river management actions.

  6. Environmental controls of wood entrapment in upper Midwestern streams

    USGS Publications Warehouse

    Merten, Eric C.; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.

    2011-01-01

    Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions.

  7. Wood Litter Consumption by three Species of Nasutitermes Termites in an Area of the Atlantic Coastal Forest in Northeastern Brazil

    PubMed Central

    Vasconcellos, Alexandre; Moura, Flávia Maria da Silva

    2010-01-01

    Termites constitute a considerable fraction of the animal biomass in tropical forest, but little quantitative data are available that indicates their importance in the processes of wood decomposition. This study evaluated the participation of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae), N. ephratae (Holmgren), and N. macrocephalus (Silvestri) in the consumption of the wood litter in a remnant area of Atlantic Coastal Forest in northeastern Brazil. The populations of this species were quantified in nests and in decomposing tree trunks, while the rate of wood consumption was determined in the laboratory using wood test-blocks of Clitoria fairchildiana Howard (Fabales: Fabaceae), Cecropia sp. (Urticales: Cecropiaceae), and Protium heptaphyllum (Aublet) Marchand (Sapindales: Burseraceae). The abundance of the three species of termites varied from 40.8 to 462.2 individuals/m2. The average dry wood consumption for the three species was 9.4 mg/g of termites (fresh weight)/day, with N. macrocephalus demonstrating the greatest consumption (12.1 mg/g of termite (fresh weight)/day). Wood consumption by the three species of Nasutitermes was estimated to be 66.9 kg of dry wood /ha/year, corresponding to approximately 2.9% of the annual production of wood-litter in the study area. This consumption, together with that of the other 18 exclusively wood-feeders termite species known to occur in the area, indicates the important participation of termites in removing wood-litter within the Atlantic Coastal Forest domain. PMID:20673190

  8. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    PubMed Central

    Michie, Laura; Taylor, Ben W.

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  9. Characterization of carbonaceous aerosols emitted from outdoor wood boilers

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from different outdoor wood-fired boiler (OWB) technologies including two cord-wood heaters, a pellet heater, and a multistage gasifier/combustor. The effect of fuel type [red oak wood (Quercus rubra), w...

  10. Wood preservation

    Treesearch

    Rebecca E. Ibach

    2003-01-01

    When wood is exposed to various environmental conditions, many degradation reactions (biological, ultraviolet, mechanical, moisture, and chemical) can occur. To protect wood from biological degradation, chemical preservatives are applied by nonpressure or pressure treatment. Penetration and retention of a chemical depend upon the wood species and the amount of...

  11. 78 FR 30329 - Multilayered Wood Flooring from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ...)] Multilayered Wood Flooring from China AGENCY: United States International Trade Commission. ACTION: Notice of...-1179 (Final) concerning multilayered wood flooring (``MLWF'') from China. For further information... Hardwood Floors, Inc.; BR Custom Surface; Real Wood Floors, LLC; Galleher Corp.; and DPR International, LLC...

  12. 75 FR 66126 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ...)] Multilayered Wood Flooring From China AGENCY: United States International Trade Commission. ACTION: Institution... the United States is materially retarded, by reason of imports from China of multilayered wood... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...

  13. Image analysis of multiple moving wood pieces in real time

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  14. The use of wood for wind turbine blade construction

    NASA Technical Reports Server (NTRS)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  15. Abundance of large old trees in wood-pastures of Transylvania (Romania).

    PubMed

    Hartel, Tibor; Hanspach, Jan; Moga, Cosmin I; Holban, Lucian; Szapanyos, Árpád; Tamás, Réka; Hováth, Csaba; Réti, Kinga-Olga

    2018-02-01

    Wood-pastures are special types of agroforestry systems that integrate trees with livestock grazing. Wood pastures can be hotspots for large old tree abundance and have exceptional natural values; but they are declining all over Europe. While presence of large old trees in wood-pastures can provide arguments for their maintenance, actual data on their distribution and abundance are sparse. Our study is the first to survey large old trees in Eastern Europe over such a large area. We surveyed 97 wood-pastures in Transylvania (Romania) in order to (i) provide a descriptive overview of the large old tree abundance; and (ii) to explore the environmental determinants of the abundance and persistence of large old trees in wood-pastures. We identified 2520 large old trees belonging to 16 taxonomic groups. Oak was present in 66% of the wood-pastures, followed by beech (33%), hornbeam (24%) and pear (22%). For each of these four species we constructed a generalized linear model with quasi-Poisson error distribution to explain individual tree abundance. Oak trees were most abundant in large wood-pastures and in wood-pastures from the Saxon cultural region of Transylvania. Beech abundance related positively to elevation and to proximity of human settlements. Abundance of hornbeam was highest in large wood-pastures, in wood-pastures from the Saxon cultural region, and in places with high cover of adjacent forest and a low human population density. Large old pear trees were most abundant in large wood-pastures that were close to paved roads. The maintenance of large old trees in production landscapes is a challenge for science, policy and local people, but it also can serve as an impetus for integrating economic, ecological and social goals within a landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry.

    PubMed

    Löfstedt, Håkan; Hagström, Katja; Bryngelsson, Ing-Liss; Holmström, Mats; Rask-Andersen, Anna

    2017-06-01

    Wood pellets are used as a source of renewable energy for heating purposes. Common exposures are wood dust and monoterpenes, which are known to be hazardous for the airways. The purpose of this study was to study the effect of occupational exposure on respiratory health in wood pellet workers. Thirty-nine men working with wood pellet production at six plants were investigated with a questionnaire, medical examination, allergy screening, spirometry, and nasal peak expiratory flow (nasal PEF). Exposure to wood dust and monoterpenes was measured. The wood pellet workers reported a higher frequency of nasal symptoms, dry cough, and asthma medication compared to controls from the general population. There were no differences in nasal PEF between work and leisure time. A lower lung function than expected (vital capacity [VC], 95%; forced vital capacity in 1 second [FEV 1 ], 96% of predicted) was noted, but no changes were noted during shifts. There was no correlation between lung function and years working in pellet production. Personal measurements of wood dust at work showed high concentrations (0.16-19 mg/m 3 ), and exposure peaks when performing certain work tasks. Levels of monoterpenes were low (0.64-28 mg/m 3 ). There was no association between exposure and acute lung function effects. In this study of wood pellet workers, high levels of wood dust were observed, and that may have influenced the airways negatively as the study group reported upper airway symptoms and dry cough more frequently than expected. The wood pellet workers had both a lower VC and FEV 1 than expected. No cross-shift changes were found.

  17. Wood-related occupations, wood dust exposure, and sinonasal cancer.

    PubMed

    Hayes, R B; Gerin, M; Raatgever, J W; de Bruyn, A

    1986-10-01

    A case-control study was conducted to examine the relations between type of woodworking and the extent of wood dust exposure to the risks for specific histologic types of sinonasal cancer. In cooperation with the major treatment centers in the Netherlands, 116 male patients newly diagnosed between 1978 and 1981 with primary malignancies of epithelial origin of this site were identified for study. Living controls were selected from the municipal registries, and deceased controls were selected from the national death registry. Interviews were completed for 91 (78%) cases and 195 (75%) controls. Job histories were coded by industry and occupation. An index of exposure was developed to classify the extent of occupational exposure to wood dust. When necessary, adjustment was made for age and usual cigarette use. The risk for nasal adenocarcinoma was elevated by industry for the wood and paper industry (odds ratio (OR) = 11.9) and by occupation for those employed in furniture and cabinet making (OR = 139.8), in factory joinery and carpentry work (OR = 16.3), and in association with high-level wood dust exposure (OR = 26.3). Other types of nasal cancer were not found to be associated with wood-related industries or occupations. A moderate excess in risk for squamous cell cancer (OR = 2.5) was associated with low-level wood dust exposure; however, no dose-response relation was evident. The association between wood dust and adenocarcinoma was strongest for those employed in wood dust-related occupations between 1930 and 1941. The risk of adenocarcinoma did not appear to decrease for at least 15 years after termination of exposure to wood dust. No cases of nasal adenocarcinoma were observed in men whose first exposure to wood dust occurred after 1941.

  18. Evaluation of three bait materials and their food transfer efficiency in Formosan subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Wang, Cai; Henderson, Gregg

    2012-10-01

    The consumption and food transfer efficiency of two commercially used termite bait materials, southern yellow pine wood and cardboard, and one potential bait material, maize (Zea mays L.) cob, were evaluated for use against the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), in the laboratory. In the no-choice test, the consumption of wood and cob was similar and significantly more than cardboard. Tunneling under the food sources was similar. In the two-choice test, the consumption was cob > wood, wood > cardboard, cob = cardboard, and tunneling under these choices was cob = wood, wood = cardboard, cob > cardboard. In the three-choice test, no significant difference was detected in consumption, but tunnels made under the cob were significantly more than wood and cardboard. Nile blue A was used to study food transfer of bait material among termite cohorts. Dyed cardboard, cob, or wood (0.1% Nile blue A) was provided to termites as food. Termites feeding on wood turned blue in significantly greater number at 6 h compared with cardboard and cob, but there was no significant difference after 12 h. Blue termites feeding on different bait materials were then collected and combined with undyed termites. When undyed (white) termites were placed with blue termites and food (wood block), termites turned blue in the same percentage regardless of original bait material fed on. However, when no food was provided (starvation group), the rate of white termites turning blue was dramatic; in dyed wood treatment, significantly more termites turned blue than that of cardboard, although neither were significantly different from cob. Our study is the first to show that, cob, an otherwise waste product of the food and biofuel industry, is as efficient as wood and cardboard as a termite bait matrix.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard F. Daniels; Alexander Clark III

    The forest industry will increasingly rely on fast-growing intensively managed southern pine plantations to furnish wood and fiber. Intensive silvicultural practices, including competition control, stand density control, fertilization, and genetic improvement are yielding tremendous gains in the quantity of wood production from commercial forest land. How these technologies affect wood properties was heretofore unknown, although there is concern about the suitability of fast-grown wood for traditional forest products. A four year study was undertaken to examine the effects of these intensive practices on the properties of loblolly and slash pine wood by applying a common sampling method over 10 existingmore » field experiments. Early weed control gets young pines off to a rapid start, often with dramatically increased growth rates. This response is all in juvenile wood however, which is low in density and strength. Similar results are found with early Nitrogen fertilization at the time of planting. These treatments increase the proportion of juvenile wood in the tree. Later, mid-rotation fertilization with Nitrogen and Phosphorus can have long term (4-8 year) growth gains. Slight reductions in wood density are short-lived (1-2 years) and occur while the tree is producing dense, stiff mature wood. Impacts of mid-rotation fertilization on wood properties for manufacturing are estimated to be minimal. Genetic differences are evident in wood density and other properties. Single family plantings showed somewhat more uniform properties than bulk improved or unimproved seedlots. Selection of genetic sources with optimal wood properties may counter some of the negative impacts of intensive weed control and fertilization. This work will allow forest managers to better predict the effects of their practices on the quality of their final product.« less

  20. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry

    PubMed Central

    Löfstedt, Håkan; Hagström, Katja; Bryngelsson, Ing-Liss; Holmström, Mats; Rask-Andersen, Anna

    2017-01-01

    Introduction Wood pellets are used as a source of renewable energy for heating purposes. Common exposures are wood dust and monoterpenes, which are known to be hazardous for the airways. The purpose of this study was to study the effect of occupational exposure on respiratory health in wood pellet workers. Materials and methods Thirty-nine men working with wood pellet production at six plants were investigated with a questionnaire, medical examination, allergy screening, spirometry, and nasal peak expiratory flow (nasal PEF). Exposure to wood dust and monoterpenes was measured. Results The wood pellet workers reported a higher frequency of nasal symptoms, dry cough, and asthma medication compared to controls from the general population. There were no differences in nasal PEF between work and leisure time. A lower lung function than expected (vital capacity [VC], 95%; forced vital capacity in 1 second [FEV1], 96% of predicted) was noted, but no changes were noted during shifts. There was no correlation between lung function and years working in pellet production. Personal measurements of wood dust at work showed high concentrations (0.16–19 mg/m3), and exposure peaks when performing certain work tasks. Levels of monoterpenes were low (0.64–28 mg/m3). There was no association between exposure and acute lung function effects. Conclusions In this study of wood pellet workers, high levels of wood dust were observed, and that may have influenced the airways negatively as the study group reported upper airway symptoms and dry cough more frequently than expected. The wood pellet workers had both a lower VC and FEV1 than expected. No cross-shift changes were found. PMID:28276782

  1. Principles for Protecting Wood Buildings from Decay. Revision

    DTIC Science & Technology

    1979-01-01

    masked by the stain. growing stage are threadlike, and the individual Stained wood is more permeable to rainwater; strands, called hyphae , are...invisible to the naked thus wood in exterior service is more subject eye except in mass. These hyphae penetrate and to decay infection. ramify within wood...of cooling towers, for example, areMold hyphae , however, penetrate wood deeply subject to so•fl rot. Some of the molds and the and increaae

  2. Fort Leonard Wood - Building 2101: Interior Character-Defining Features, Inventory and Assessment

    DTIC Science & Technology

    2014-04-01

    the original wood wain- scot and original wallboard above (Figure 12 and Figure 13), and a large room with the original wood wainscot and original...ER D C/ CE RL S R- 14 -3 Fort Leonard Wood – Building 2101 Interior Character-Defining Features, Inventory and Assessment Co ns tr uc...2014 Fort Leonard Wood – Building 2101 Interior Character-Defining Features, Inventory and Assessment Adam D. Smith Construction Engineering

  3. Effects of raw materials on the properties of wood fiber-polyethylene composites--part 3: effect of a compatibilizer and wood adhesive on the interfacial adhesion of wood/plastic composites

    Treesearch

    Chin-yin Hwang; Chung-yun Hse; Todd F. Shupe

    2008-01-01

    The objective of this study was to examine the effect of maleated polypropylene compatabilizer on the interfacial properties of wood and polyolefins. Birch wood dowels containing an adhesive applied on the surface were embedded in molten plastic matrices using specially designed jigs. The three plastics investigated included low density polyethylene (LFPE), linear low...

  4. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    PubMed

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.

  5. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    PubMed

    Pop Ristova, Petra; Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on the Eastern Mediterranean sunken wooden logs. This study suggests that biogeography and succession play an important role for the composition of bacteria and fauna of wood-associated communities, and that wood can act as stepping-stones for seep biota.

  6. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    PubMed Central

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on the Eastern Mediterranean sunken wooden logs. This study suggests that biogeography and succession play an important role for the composition of bacteria and fauna of wood-associated communities, and that wood can act as stepping-stones for seep biota. PMID:28122036

  7. Floods and Fluvial Wood

    NASA Astrophysics Data System (ADS)

    Comiti, F.

    2014-12-01

    Several studies have recently addressed the complex interactions existing at various spatial scales among riparian vegetation, channel morphology and wood storage. The majority of these investigations has been carried out in relatively natural river systems, focusing mostly on the long-term vegetation-morphology dynamics under "equilibrium" conditions. Little is still known about the role of flood events - of different frequency/magnitude - on several aspects of such dynamics, e.g. entrainment conditions of in-channel wood, erosion rates of vegetation from channel margins and from islands, transport distances of wood elements of different size along the channel network. Even less understood is how the river's evolutionary trajectory may affect these processes, and thus the degree to which conceptual models derivable from near-natural systems could be applicable to human-disturbed channels. Indeed, the different human pressures - present on most river basins worldwide - have greatly impaired the morphological and ecological functions of fluvial wood, and the attempts to "restore" in-channel wood storage are currently carried out without a sufficient understanding of wood transport processes occurring during floods. On the other hand, the capability to correctly predict the magnitude of large wood transport during large floods is now seen as crucial - especially in mountain basins - for flood hazard mapping, as is the identification of the potential wood sources (e.g. landslides, floodplains, islands) for the implementation of sound and effective hazard mitigation measures. The presentation will first summarize the current knowledge on fluvial wood dynamics and modelling at different spatial and temporal scales, with a particular focus on mountain rivers. The effects of floods of different characteristics on vegetation erosion and wood transport will be then addressed presenting some study cases from rivers in the European Alps and in the Italian Apennines featuring different degrees of human alteration. Finally, several conclusions about the applicability of wood transport modelling and on rationale vegetation/wood management strategies will be drawn.

  8. Arsenic Speciation of Solvent-Extracted Leachate from New and Weathered CCA-Treated Wood

    PubMed Central

    KHAN, BERNINE I.; SOLO - GABRIELE, HELENA M.; DUBEY, BRAJESH K.; TOWNSEND, TIMOTHY G.; CAI, YONG

    2009-01-01

    For the past 60 yr, chromate-copper-arsenate (CCA) has been used to pressure-treat millions of cubic meters of wood in the United States for the construction of many outdoor structures. Leaching of arsenic from these structures is a possible health concern as there exists the potential for soil and groundwater contamination. While previous studies have focused on total arsenic concentrations leaching from CCA-treated wood, information pertaining to the speciation of arsenic leached is limited. Since arsenic toxicity is dependent upon speciation, the objective of this study was to identify and quantify arsenic species leaching from new and weathered CCA-treated wood and CCA-treated wood ash. Solvent-extraction experiments were carried out by subjecting the treated wood and the ash to solvents of varying pH values, solvents defined in the EPA’s Synthetic Precipitation Leaching Procedure (SPLP) and Toxicity Characteristic Leaching Procedure (TCLP), rainwater, deionized water, and seawater. The generated leachates were analyzed for inorganic As(III) and As(V) and the organoarsenic species, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), using high-performance liquid chromatography followed by hydride generation and atomic fluorescence spectrometry (HPLC–HG-AFS). Only the inorganic species were detected in any of the wood leachates; no organoarsenic species were found. Inorganic As(V) was the major detectable species leaching from both new and weathered wood. The weathered wood leached relatively more overall arsenic and was attributed to increased inorganic As(III) leaching. The greater presence of As(III) in the weathered wood samples as compared to the new wood samples may be due to natural chemical and biological transformations during the weathering process. CCA-treated wood ash leached more arsenic than unburned wood using the SPLP and TCLP, and ash samples leached more inorganic As(III) than the unburned counterparts. Increased leaching was due to higher concentrations of arsenic within the ash and to the conversion of some As(V) to As(III) during combustion. PMID:15461159

  9. Engineering economic assessment of residential wood heating in NY

    EPA Science Inventory

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  10. Molecular Dissection of Xylan Biosynthesis During Wood Formation in Poplar

    EPA Science Inventory

    Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes invo...

  11. 75 FR 41896 - Colville Indian Precision Pine, Colville Tribal Enterprise Corporation, Wood Products Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Pine, Colville Tribal Enterprise Corporation, Wood Products Division, Including On-Site Contract... Tribal Enterprise Corporation Wood Products Division, Omak, Washington. The notice was published in the... Colville Indian Precision Pine, Colville Tribal Enterprise Corporation, Wood Products Division. The...

  12. 76 FR 35474 - Colville Indian Plywood and Veneer, Colville Tribal Enterprise Corporation Wood Products Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... and Veneer, Colville Tribal Enterprise Corporation Wood Products Division, Including On-Site Workers..., applicable to workers of Colville Indian Plywood and Veneer, Colville Tribal Enterprise Corporation Wood... Wood Products Division, to perform construction, electrical and operational maintenance support...

  13. 78 FR 51695 - Formaldehyde Emissions Standards for Composite Wood Products; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Formaldehyde Emissions Standards for Composite Wood Products; Extension of Comment Period AGENCY: Environmental... composite wood products. After receiving requests for an extension, EPA extended the comment period from... Environmental protection, Formaldehyde, Reporting and recordkeeping requirements, Toxic substances, Wood. Dated...

  14. Use of a region of the visible and near infrared spectrum to predict mechanical properties of wet wood and standing trees

    DOEpatents

    Meglen, Robert R.; Kelley, Stephen S.

    2003-01-01

    In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.

  15. Estimated Hardwood Volume Available for Wood Chipmills or Other Low Grade Uses

    EPA Pesticide Factsheets

    The potential of wood chip mills to influence the distribution of harvests and the dynamics of wood fiber utilization has become an issue of concern. Where wood chip mills are active in a timber market, they may increase the utilization of wood fiber derived from a given harvest; change the pattern and distribution of harvests on the landscape; and reduce production costs of fiber supply, thus increasing overall quantity supplied in a price-taking market. Wood chip mills have proliferated in the South in recent decades. This data layer was created to address the following question: If the Mid-Atlantic region behaves as the South, which areas are relatively more attractive as sources of low grade hardwood fiber, and therefore relatively more vulnerable to any negative stresses associated with wood chip harvests? The data layer simulates annual softwood wood chip volume (in tons) available to supply chip mills or other low grade uses, if timber supply in the Mid-Atlantic mirrors trends for the South.

  16. Mercury (Hg) emissions from domestic biomass combustion for space heating.

    PubMed

    Huang, Jiaoyan; Hopke, Philip K; Choi, Hyun-Deok; Laing, James R; Cui, Huailue; Zananski, Tiffany J; Chandrasekaran, Sriraam Ramanathan; Rattigan, Oliver V; Holsen, Thomas M

    2011-09-01

    Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM(2.5))) were measured in the stack of a small scale wood combustion chamber at 400°C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM(2.5) concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Laser-Induced Graphene Formation on Wood.

    PubMed

    Ye, Ruquan; Chyan, Yieu; Zhang, Jibo; Li, Yilun; Han, Xiao; Kittrell, Carter; Tour, James M

    2017-10-01

    Wood as a renewable naturally occurring resource has been the focus of much research and commercial interests in applications ranging from building construction to chemicals production. Here, a facile approach is reported to transform wood into hierarchical porous graphene using CO 2 laser scribing. Studies reveal that the crosslinked lignocellulose structure inherent in wood with higher lignin content is more favorable for the generation of high-quality graphene than wood with lower lignin content. Because of its high electrical conductivity (≈10 Ω per square), graphene patterned on wood surfaces can be readily fabricated into various high-performance devices, such as hydrogen evolution and oxygen evolution electrodes for overall water splitting with high reaction rates at low overpotentials, and supercapacitors for energy storage with high capacitance. The versatility of this technique in formation of multifunctional wood hybrids can inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical Composition of Cacti Wood and Comparison with the Wood of Other Taxonomic Groups.

    PubMed

    Maceda, Agustín; Soto-Hernández, Marcos; Peña-Valdivia, Cecilia B; Terrazas, Teresa

    2018-04-01

    The aims of this study were to determine the wood chemical composition of 25 species of Cactaceae and to relate the composition to their anatomical diversity. The hypothesis was that wood chemical components differ in relationship to their wood features. The results showed significant differences in wood chemical compounds across species and genera (P < 0.05). Pereskia had the highest percentage of lignin, whereas species of Coryphantha had the lowest; extractive compounds in water were highest for Echinocereus, Mammillaria, and Opuntia. Principal component analysis showed that lignin proportion separated the fibrous, dimorphic, and non-fibrous groups; additionally, the differences within each type of wood occurred because of the lignification of the vascular tissue and the type of wall thickening. Compared with other groups of species, the Cactaceae species with fibrous and dimorphic wood had a higher lignin percentage than did gymnosperms and Acer species. Lignin may confer special rigidity to tracheary elements to withstand desiccation without damage during adverse climatic conditions. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  19. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    PubMed

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Mechanical properties of acacia and eucalyptus wood chars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Verma, B.B.; Gupta, R.C.

    1999-10-01

    In the present investigation the effects of carbonization conditions (temperature and heating rate) on the mechanical properties (such as crushing and impact strengths and shatter index) of acacia and eucalyptus wood chars have been determined. The crushing and impact strengths of both the acacia and eucalyptus wood chars (made by slow carbonization) decreased with increase of preparation temperature up to 600 C, followed by an increase thereafter. These wood chars showed a continuous increase in shatter index values with carbonization temperature. In contrast to slow carbonization (heating rate 4 C min{sup {minus}1}), rapid carbonization (heating rate 30 C min{sup {minus}1})more » yielded chars of lower crushing strengths. Slowly carbonized eucalyptus wood gave chars of superior crushing and impact strengths than those produced from acacia wood under the same carbonization conditions. The crushing and impact strengths of these wood chars, in general, have shown an increase with increase in their apparent density. The crushing strength of cubic-shaped wood char decreased with increase in size.« less

  1. The use of urban wood waste as an energy resource

    NASA Astrophysics Data System (ADS)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  2. Localization of heavy metals immobilized on specific organic and mineral parts of a wood-derived biochar

    NASA Astrophysics Data System (ADS)

    Rees, Frédéric; Watteau, Françoise; Morel, Jean-Louis

    2013-04-01

    Biochar has been intensively investigated over recent years, not only as a promising carbon sequestration or fertilizing agent in soils but also as a possible new sorbent to remediate contaminated soils. A few studies have revealed its high potential for heavy metals immobilization depending on the nature of biochar and trace elements. The mechanisms behind this immobilization remain however unclear: some authors have hypothesized a high sorption capacity due to biochar large surface area while others have suggested that this immobilization is mainly due to soil pH increase. In particular, the distinction between heavy metals specific sorption in biochar pores and heavy metals precipitation in or outside biochar particles is often impossible to make while it is of primary importance to evaluate biochar ability to retain these pollutants on a long-time scale. In order to evaluate the main heavy metal immobilization effects on a standard biochar and to identify the most successful biochar parts of the sample, we examined biochar particles after heavy metals immobilization in batch experiments designed to mimic real chemical processes in soils. A biochar derived from hard and soft wood and pyrolyzed at about 450°C was put in contact with relatively low concentrations of heavy metals (Pb, Cu, Cd, Zn, Ni) in an initially acidic Ca(NO3)2 solution. Following a one-week adsorption and a one-week desorption step, we recovered the biochar particles and observed them using scanning electron microscopy coupled to energy dispersive x-ray spectroscopy, focusing especially on the changes in mineral phases and the location of each of the retained heavy metals on biochar particles. We were able to distinguish different structures in the biochar samples which were linked to the degree of pyrolysis and the exact nature of the raw wood biomass. We detected the presence of concentrated metals zones (e.g. lead) in specific locations of the organic particles depending on the original plant tissues, and enlightened metal associations with newly-formed mineral phases such as calcite present on biochar surface. These observations provide new insights in the understanding of metal immobilization mechanisms on biochar such as precipitation and co-precipitation. Our findings also underline the need to consider the heterogeneity of biochar constitution for optimizing the remediation potential of biochar on contaminated sites.

  3. Development of a pathway model to assess the exposure of European pine trees to pine wood nematode via the trade of wood.

    PubMed

    Douma, J C; van der Werf, W; Hemerik, L; Magnusson, C; Robinet, C

    2017-04-01

    Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once established, eradication is not practically feasible. Therefore, preventing entry of PWN into new areas is crucial. Entry risk analysis can assist in targeting management to reduce the probability of entry. Assessing the entry of PWN is challenging due to the complexity of the wood trade and the wood processing chain. In this paper, we develop a pathway model that describes the wood trade and wood processing chain to determine the structure of the entry process. We consider entry of PWN through imported coniferous wood from China, a possible origin of Portuguese populations, to Europe. We show that exposure increased over years due to an increase in imports of sawn wood. From 2000 to 2012, Europe received an estimated 84 PWN propagules from China, 88% of which arose from imported sawn wood and 12% from round wood. The region in Portugal where the PWN was first reported is among those with the highest PWN transfer per unit of imported wood due to a high host cover and vector activity. An estimated 62% of PWN is expected to enter in countries where PWN is not expected to cause the wilt of pine trees because of low summer temperatures (e.g., Belgium, Sweden, Norway). In these countries, PWN is not easily detected, and such countries can thus serve as potential reservoirs of PWN. The model identifies ports and regions with high exposure, which helps targeting monitoring and surveillance, even in areas where wilt disease is not expected to occur. In addition, we show that exposure is most efficiently reduced by additional treatments in the country of origin, and/or import wood from PWN-free zones. Pathway modelling assists plant health managers in analyzing risks along the pathway and planning measures for enhancing biosecurity. © 2016 by the Ecological Society of America.

  4. A new methodology for monitoring wood fluxes in rivers using a ground camera: Potential and limits

    NASA Astrophysics Data System (ADS)

    Benacchio, Véronique; Piégay, Hervé; Buffin-Bélanger, Thomas; Vaudor, Lise

    2017-02-01

    Ground imagery, which produces large amounts of valuable data at high frequencies, is increasingly used by fluvial geomorphologists to survey and understand processes. While such technology provides immense quantities of information, it can be challenging to analyze and requires automatization and associated development of new methodologies. This paper presents a new approach to automate the processing of image analysis to monitor wood delivery from the upstream Rhône River (France). The Génissiat dam is used as an observation window; all pieces of wood coming from the catchment are trapped here, hence a wood raft accumulates over time. In 2011, we installed an Axis 211W camera to acquire oblique images of the reservoir every 10 min with the goal of automatically detecting a wood raft area, in order to transform it to wood weight (t) and flux (t/d). The methodology we developed is based on random forest classification to detect the wood raft surface over time, which provided a good classification rate of 97.2%. Based on 14 mechanical wood extractions that included weight of wood removed each time, conducted during the survey period, we established a relationship between wood weight and wood raft surface area observed just before the extraction (R2 = 0.93). We found that using such techniques to continuously monitor wood flux is difficult because the raft undergoes very significant changes through time in terms of density, with a very high interday and intraday variability. Misclassifications caused by changes in weather conditions can be mitigated as well as errors from variation in pixel resolution (owing to camera position or window size), but a set of effects on raft density and mobility must still be explored (e.g., dam operation effects, wind on the reservoir surface). At this stage, only peak flow contribution to wood delivery can be well calculated, but determining an accurate, continuous series of wood flux is not possible. Several recommendations are made in terms of maximizing the potential benefit of such monitoring.

  5. Assessment and management of dead-wood habitat

    USGS Publications Warehouse

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In Oregon and Washington, approximately 150 species of wildlife are reported to use dead wood in forests (O’Neil et al., 2001). Forty-seven sensitive and special-status species are associated with dead wood (Appendix A). These are key species for management consideration because concern over small or declining populations is often related to loss of suitable dead-wood habitat (Marshall et al., 1996). Primary excavators (woodpeckers) also are often the focus of dead-wood management, because they perform keystone functions in forest ecosystems by creating cavities for secondary cavity-nesters (Martin and Eadie, 1999; Aubry and Raley, 2002). A diverse guild of secondary cavity-users (including swallows, bluebirds, several species of ducks and owls, ash-throated flycatcher, flying squirrel, bats, and many other species) is unable to excavate dead wood, and therefore relies on cavities created by woodpeckers for nesting sites. Suitable nest cavities are essential for reproduction, and their availability limits population size (Newton, 1994). Thus, populations of secondary cavity-nesters are tightly linked to the habitat requirements of primary excavators. Although managers often focus on decaying wood as habitat for wildlife, the integral role dead wood plays in ecological processes is an equally important consideration for management. Rose et al. (2001) provide a thorough review of the ecological functions of dead wood in Pacific Northwest forests, briefly summarized here. Decaying wood functions in: soil development and productivity, nutrient cycling, nitrogen fixation, and carbon storage. From ridge tops, to headwater streams, to estuaries and coastal marine ecosystems, decaying wood is fundamental to diverse terrestrial and aquatic food webs. Wildlife species that use dead wood for cover or feeding are linked to these ecosystem processes through a broad array of functional roles, including facilitation of decay and trophic interactions with other organisms (Marcot, 2002; Marcot, 2003). For example, by puncturing bark and fragmenting sapwood, woodpeckers create sites favorable for wood-decaying organisms (Farris et al., 2004), which in turn create habitat for other species and facilitate nutrient cycling. Small mammals that use down wood for cover function in the dispersal of plant seeds and fungal spores (Carey et al., 1999). Resident cavitynesting birds may regulate insect populations by preying on overwintering arthropods (Jackson, 1979; Kroll and Fleet, 1979). These examples illustrate how dead wood not only directly provides habitat for a large number of wildlife species, but also forms the foundation of functional webs that critically influence forest ecosystems (Marcot, 2002; Marcot, 2003). The important and far-reaching implications of management of decaying wood highlight the need for conservation of dead-wood resources in managed forests. Consideration of the key ecological functions of species associated with dead wood can help guide management of dead wood in a framework consistent with the paradigm of ecosystem management (Marcot and Vander Heyden, 2001; Marcot, 2002.) As more information is revealed about the ecological and habitat values of decaying wood, concern has increased over a reduction in the current amounts of dead wood relative to historic levels (Ohmann and Waddell, 2002). Past management practices have tended to severely reduce amounts of dead wood throughout all stages of forest development (Hansen et al., 1991). The large amounts of legacy wood that characterize young post-disturbance forests are not realized in managed stands, because most of the wood volume is removed at harvest for economic and safety reasons. Mid-rotation thinning is used to “salvage” some mortality that might otherwise occur due to suppression, so fewer snags are recruited in mid-seral stages. Harvest rotations of 80 years or less truncate tree size in managed stands, and thus limit the production of large-diameter wood. As a consequence of these practices, dead wood has been reduced by as much as 90% after two rotations of managed Douglas-fir (Rose et al., 2001). Large legacy deadwood is becoming a scarce, critical habitat that will take decades to centuries to replace. Furthermore, management continues to have important direct and indirect effects on the amount and distribution of dead wood in forests. Current guidelines for managing dead wood may be inadequate to maintain habitat for all associated species because they largely focus on a single use of dead wood (nesting habitat) by a small suite of species (cavity-nesting birds), and may under represent the sizes and amounts of dead wood used by many wildlife species (Rose et al., 2001, Wilhere, 2003). 

  6. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    PubMed

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood.

    PubMed

    Wu, Yiqiang; Yao, Chunhua; Hu, Yunchu; Zhu, Xiaodan; Qing, Yan; Wu, Qinglin

    2014-01-24

    The effect of basic magnesium carbonate (BMC), magnesium hydroxide (MH), and magnesium chloride hydrate (MCH) on thermal degradation of red gum wood was studied using cone calorimetry, Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis, and X-ray diffraction (XRD) characterization. The results showed common fire retardation actions of the three compounds by releasing incombustible gas and/or water vapor to dilute combustible gas in the flaming zone, and by converting to MgO, which had a satisfactory protective wall effect on the wood. Individually, BMC absorbed heat from the wood at the pre-decomposition stage and, thus, slowed down wood pyrolysis process. It slightly increased the char yield by charring in both the charring stage and the char calcination stage. MH lost water at about 270 °C, close to the temperature at which wood thermally degraded. MH rendered wood char quickly, and the compact char layer impeded further carbonization and burning of inner wood. MCH promoted charring with Mg 2+ as a Lewis acid, and increased wood char yield. MCH also released Cl· free radical and HCl at 167 °C, which easily coordinated with combustion reaction radical, and slowed down, even inhibited, the combustion chain reaction.

  8. The principles, procedures and pitfalls in identifying archaeological and historical wood samples

    PubMed Central

    Cartwright, Caroline R.

    2015-01-01

    Background The science of wood anatomy has evolved in recent decades to add archaeological and historical wood to its repertoire of documenting and characterizing modern and fossil woods. The increasing use of online wood anatomy databases and atlases has fostered the adoption of an international consensus regarding terminology, largely through the work of the International Association of Wood Anatomists (IAWA). Scope and Conclusions This review presents an overview for the general reader of the current state of principles and procedures involved in the study of the wood anatomy of archaeological and historical specimens, some of which may be preserved through charring, waterlogging, desiccation or mineral replacement. By means of selected case studies, the review evaluates to what extent varying preservation of wood anatomical characteristics limits the level of identification to taxon. It assesses the role played by increasingly accessible scanning electron microscopes and complex optical microscopes, and whether these, on the one hand, provide exceptional opportunities for high-quality imaging and analysis of difficult samples, but, on the other hand, might be misleading the novice into thinking that advanced technology can be a substitute for specialized botanical training in wood anatomy. PMID:25953039

  9. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood

    PubMed Central

    Wu, Yiqiang; Yao, Chunhua; Hu, Yunchu; Zhu, Xiaodan; Qing, Yan; Wu, Qinglin

    2014-01-01

    The effect of basic magnesium carbonate (BMC), magnesium hydroxide (MH), and magnesium chloride hydrate (MCH) on thermal degradation of red gum wood was studied using cone calorimetry, Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis, and X-ray diffraction (XRD) characterization. The results showed common fire retardation actions of the three compounds by releasing incombustible gas and/or water vapor to dilute combustible gas in the flaming zone, and by converting to MgO, which had a satisfactory protective wall effect on the wood. Individually, BMC absorbed heat from the wood at the pre-decomposition stage and, thus, slowed down wood pyrolysis process. It slightly increased the char yield by charring in both the charring stage and the char calcination stage. MH lost water at about 270°C, close to the temperature at which wood thermally degraded. MH rendered wood char quickly, and the compact char layer impeded further carbonization and burning of inner wood. MCH promoted charring with Mg2+ as a Lewis acid, and increased wood char yield. MCH also released Cl· free radical and HCl at 167°C, which easily coordinated with combustion reaction radical, and slowed down, even inhibited, the combustion chain reaction. PMID:28788480

  10. Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea

    PubMed Central

    Kim, Nam Kyu; Park, Jae Young; Park, Myung Soo; Lee, Hyun; Cho, Hae Jin; Eimes, John A.; Kim, Changmu

    2016-01-01

    The wood decay fungi are a diverse taxonomic group that plays a pivotal role in forest carbon cycling. Wood decay fungi use various enzymatic pathways to digest dead or living wood in order to obtain carbon and other nutrients and these enzymatic systems have been exploited for both industrial and medical applications. Over 600 wood decay fungi species have been described in Korea; however, the recent application of molecular markers has dramatically altered the taxonomy of many of these wood decay fungi at both the genus and species levels. By combining molecular methods, specifically sequences of the internal transcribed spacer region, with traditional morphological characters, this study identified five new species records for Korea in five genera: Aurantiporus, Favolus, Neofavolus, Loweomyces, and Hymenochaetopsis. Three of these genera (Aurantiporus, Favolus, and Loweomyces) were previously unknown in Korea. The relatively simple morphology of the wood decay fungi often leads to ambiguous taxonomic assignment. Therefore, molecular markers are a necessary component of any taxonomic or evolutionary study of wood decay fungi. Our study highlights the need for a more robust and multifaceted approach in investigating new wood decay fungi in Korea. PMID:27790065

  11. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    PubMed Central

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  12. Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification.

    PubMed

    Allmér, Johan; Vasiliauskas, Rimvis; Ihrmark, Katarina; Stenlid, Jan; Dahlberg, Anders

    2006-01-01

    Wood-inhabiting fungi play a key role in forest ecosystems and constitute an essential part of forest biodiversity. We therefore examined the composition and abundance of wood-inhabiting fungi by three methods: sporocarp counts, mycelial culturing and direct amplification of internal transcribed spacer terminal restriction fragment length polymorphism from wood combined with sequencing of reference rDNA. Seven-year-old slash piles left after a thinning were analyzed in a 50-year-old Norway spruce plantation. Fifty-eight fungal species were detected from the piled branches and treetops. More species were revealed by sporocarp counts and cultured mycelia than by direct amplification from wood. In principle, sporocarp monitoring may reveal all fruiting taxa, but it poorly reflects their relative abundance in the wood. In contrast, terminal restriction fragment length polymorphism will record the most frequent fungal taxa in the wood, but it may overlook uncommon taxa. Culturing mycelia from wood gives a bias towards species favoured by the cultural medium. The results demonstrate the advantage and the limitations of these methods to be considered in analyses of fungal communities in wood.

  13. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose.

    PubMed

    Kuuskeri, Jaana; Häkkinen, Mari; Laine, Pia; Smolander, Olli-Pekka; Tamene, Fitsum; Miettinen, Sini; Nousiainen, Paula; Kemell, Marianna; Auvinen, Petri; Lundell, Taina

    2016-01-01

    The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate. According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay. Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.

  14. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...

  15. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...

  16. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...

  17. Primary wood-product industries of southern New England - 1971

    Treesearch

    James T. Bones

    1973-01-01

    The results of a complete canvass of the primary wood manufacturers in southern New England. The report contains data about wood production and receipts for the states of the region. Comparisons are made with a similar 1952 survey and trends in industrial wood output are noted.

  18. Reusing remediated CCA-treated wood

    Treesearch

    Carol A. Clausen

    2003-01-01

    Options for recycling and reusing chromated-copper-arsenate- (CCA) treated material include dimensional lumber and round wood size reduction, composites, and remediation. Size reduction by remilling, shaving, or resawing CCA-treated wood reduces the volume of landfilled waste material and provides many options for reusing used treated wood. Manufacturing composite...

  19. TREATMENT TECHNOLOGY PERFORMANCE AND COST DATA FOR REMEDIATION OF WOOD PRESERVING SITES

    EPA Science Inventory

    Wood preserving has been an industry in North America for more than 100 years. During this time wood preserving facilities have utilized a variety of compounds, including pentachlorophenol (PCP), creosote, and certain metals to extend the useful life of wood products. Past operat...

  20. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the wood... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam subcategory...

  1. 75 FR 41896 - Colville Indian Plywood and Veneer Colville Tribal Enterprise Corporation Wood Products Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... and Veneer Colville Tribal Enterprise Corporation Wood Products Division Including On-Site Contract... Veneer, Colville Tribal Enterprise Corporation Wood Products Division, Omak, Washington. The notice was... Enterprise Corporation Wood Products Division. The Department has determined that these workers were...

  2. 76 FR 92 - Multilayered Wood Flooring From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... Department'') initiated an investigation of multilayered wood flooring from the People's Republic of China (``PRC''). See Multilayered Wood Flooring From the People's Republic of China: Initiation of...

  3. 76 FR 76693 - Multilayered Wood Flooring From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring...''), the Department is issuing a countervailing duty (``CVD'') order on multilayered wood flooring from the... that countervailable subsidies are being provided to producers and exporters of multilayered wood...

  4. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...

  5. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...

  6. 78 FR 70267 - Multilayered Wood Flooring From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... administrative review of the antidumping duty order on multilayered wood flooring (``MLWF'') from the People's... have preliminarily found that three respondents, Armstrong Wood Products (Kunshan) Co., Ltd...

  7. 40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the wood... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam subcategory...

  8. Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle

    Treesearch

    Alexander Clark; Richard F. Daniels; Lewis Jordan

    2006-01-01

    The length of juvenility or number of years a tree produces juvenile wood at a fixed height can be defined by the age of the wood at which properties change from juvenile to mature wood. This paper estimates the age of transition from juvenile to mature wood based on ring specific gravity (SG), proportion of annual ring in latewood, and ring average microfibril angle (...

  9. Environmental Assessment of Proposed Upgrades to Military Family Housing, Phase I

    DTIC Science & Technology

    2003-03-01

    contributions to the economic, ecological , recreational, and human health of a community or locale. Stormwater flows, which are increased by high proportions...positive at least once include the following: • Metal beams or columns (87 percent positive results) • Wood beams or columns (24 percent) • Wood ...cabinet doors (4 percent) • Wood ceiling (ə percent) • Varnished wood closet door (ə percent) • Wood door frames (ə percent) • Interior metal door

  10. Criterion 6, indicator 32 : exports as a share of wood and wood products production and imports as a share of wood and wood products production

    Treesearch

    James L. Howard; Rebecca Westby; Kenneth E. Skog

    2010-01-01

    The United States has become progressively more reliant on imports to meet consumption needs. In roundwood equivalents, imports of wood and paper products as a share of consumption increased from 13% to 30% between 1965 and 2005. This increase is due largely to increased softwood lumber import share, which increased from 15% in 1965 to 38% in 2006. The import share for...

  11. Safranine fluorescent staining of wood cell walls.

    PubMed

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.

  12. Simulated long-term effects of varying tree retention on wood production, dead wood and carbon stock changes.

    PubMed

    Santaniello, Francesca; Djupström, Line B; Ranius, Thomas; Weslien, Jan; Rudolphi, Jörgen; Sonesson, Johan

    2017-10-01

    Boreal forests are an important source of timber and pulp wood, but provide also other products and services. Utilizing a simulation program and field data from a tree retention experiment in a Scots pine forest in central Sweden, we simulated the consequences during the following 100 years of various levels of retention on production of merchantable wood, dead wood input (as a proxy for biodiversity), and carbon stock changes. At the stand level, wood production decreased with increased retention levels, while dead wood input and carbon stock increased. We also compared 12 scenarios representing a land sharing/land sparing gradient. In each scenario, a constant volume of wood was harvested with a specific level of retention in a 100-ha landscape. The area not needed to reach the defined volume was set-aside during a 100-year rotation period, leading to decreasing area of set-asides with increasing level of retention across the 12 scenarios. Dead wood input was positively affected by the level of tree retention whereas the average carbon stock decreased slightly with increasing level of tree retention. The scenarios will probably vary in how they favor species preferring different substrates. Therefore, we conclude that a larger variation of landscape-level conservation strategies, also including active creation of dead wood, may be an attractive complement to the existing management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency

    NASA Astrophysics Data System (ADS)

    Kong, Lizhuo; Tu, Kunkun; Guan, Hao; Wang, Xiaoqing

    2017-06-01

    Zinc oxide (ZnO) nanorod arrays were successfully assembled on the wood surface in situ via a two-step process consisting of formation of ZnO seeds and subsequent crystal growth under hydrothermal conditions at a low temperature. The morphology and crystalline structure of the formed ZnO nanorods were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Highly dense and uniform arrays of ZnO nanorods with well-defined hexagonal facets were generated on the wood surface by tuning the concentration of the ZnO growth solution during the hydrothermal treatment. Accelerated weathering tests indicated that the assembled ZnO nanorod arrays were highly protective against UV radiation and greatly enhanced the photostability of the coated wood. Meanwhile, the ZnO nanorod-coated wood can withstand continuous exposure to flame with only minor smoldering in contrast with the pristine wood catching fire easily and burning rapidly. Moreover, when further modified with low-surface-energy stearic acid, the ZnO nanorod decorated wood surface can be transformed into a superhydrophobic surface, with a water contact angle (CA) of ∼154°. Such ZnO nanorod-modified woods with enhanced photostability, flame retardancy and water repellency offer an interesting alternative to conventional wood preservation strategies, highlighting their potential applications in some novel wood products.

  14. DNA Barcode Authentication and Library Development for the Wood of Six Commercial Pterocarpus Species: the Critical Role of Xylarium Specimens.

    PubMed

    Jiao, Lichao; Yu, Min; Wiedenhoeft, Alex C; He, Tuo; Li, Jianing; Liu, Bo; Jiang, Xiaomei; Yin, Yafang

    2018-01-31

    DNA barcoding has been proposed as a useful tool for forensic wood identification and development of a reliable DNA reference library is an essential first step. Xylaria (wood collections) are potentially enormous data repositories if DNA information could be extracted from wood specimens. In this study, 31 xylarium wood specimens and 8 leaf specimens of six important commercial species of Pterocarpus were selected to investigate the reliability of DNA barcodes for authentication at the species level and to determine the feasibility of building wood DNA barcode reference libraries from xylarium specimens. Four DNA barcodes (ITS2, matK, ndhF-rpl32 and rbcL) and their combination were tested to evaluate their discrimination ability for Pterocarpus species with both TaxonDNA and tree-based analytical methods. The results indicated that the combination barcode of matK + ndhF-rpl32 + ITS2 yielded the best discrimination for the Pterocarpus species studied. The mini-barcode ndhF-rpl32 (167-173 bps) performed well distinguishing P. santalinus from its wood anatomically inseparable species P. tinctorius. Results from this study verified not only the feasibility of building DNA barcode libraries using xylarium wood specimens, but the importance of using wood rather than leaves as the source tissue, when wood is the botanical material to be identified.

  15. Longevity of Wood-Forced Pools in an Old-Growth Forest

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Woodsmith, R. D.; Johnson, A. C.

    2009-12-01

    Wood debris plays an important role in scouring pools in forest channels and providing resultant habitat for aquatic organisms. We investigated the longevity of such pools in a gravel-bed river flowing through old-growth forest in southeastern Alaska by aging trees and “bear’s bread” fungi (Ganoderma applanatum, Fomitopsis pinicola) growing on pool-forming wood debris. Ages were determined by counting annual growth rings from cores and cross sections of trees and fungi growing on the wood debris. These ages are minimum values because they do not account for lag time between debris recruitment and seedling/spore establishment on the debris, nor do they account for flood scour that may periodically reset tree and fungi growth on the debris. The study stream has a gradient of about 1%, bankfull width and depth of 13.3 and 0.78 m, respectively, median grain size of 18 mm, a high wood loading (0.8 pieces/m), and a correspondingly low pool spacing (0.3 bankfull widths/pool), with 81% of the pools forced by wood debris. The size of wood debris in the study stream is large relative to the channel (average log length of 7.6 m and diameter of 0.35 m), rendering most debris immobile. Eighty-one pool-forming pieces of wood were dated over 1.2 km of stream length, with 28% of these pieces causing scour of more than one pool. In all, 122 wood-forced pools were dated, accounting for 38% of all pools at the site and 47% of the wood-forced pools. Fifty-three percent of the wood-forced pools lacked datable wood because these pieces either: were newly recruited; had been scoured by floods; or were contained below the active channel elevation, prohibiting vegetation establishment on the wood debris (the most common cause). The debris age distribution declined exponentially from 2 to 113 yrs., with a median value of 18 yrs. Similar exponential residence time distributions have been reported in other studies, but our analysis focused specifically on the ages of pool-forming wood as opposed to all in-channel wood. Most pool scour was relatively recent (60% ≤ 25 yrs. old), but 16% of the pools were old features (50-100+ yrs.), indicating long-term availability of pool habitats at the study site. Future studies will use these results to develop a wood budget model that accounts for pool scour and availability of pool habitats. For such modeling, our data suggest that stand-replacing disturbances (e.g. wildfire, riparian clear cutting) will cause a sharp drop in the numbers of wood-forced pools, as most of those are ≤ 25 yrs. old.

  16. Macroinvertebrate community assembly on deep-sea wood falls in Monterey Bay is strongly influenced by wood type.

    PubMed

    Judge, Jenna; Barry, James P

    2016-11-01

    Environmental filtering, including the influence of environmental constraints and biological interactions on species' survival, is known to significantly affect patterns of community assembly in terrestrial ecosystems. However, its role in regulating patterns and processes of community assembly in deep-sea environments is poorly studied. Here we investigated the role of wood characteristics in the assembly of deep-sea wood fall communities. Ten different wood species (substrata) that varied in structural complexity were sunk to a depth of 3,100 m near Monterey Bay, CA. In total, 28 wood parcels were deployed on the deep-sea bed. After 2 yr, the wood parcels were recovered with over 7,000 attached or colonizing macroinvertebrates. All macroinvertebrates were identified to the lowest taxonomic level possible, and included several undescribed species. Diversity indices and multivariate analyses of variance detected significant variation in the colonizing community assemblages among different wood substrata. Structural complexity seemed to be the primary factor altering community composition between wood substrata. For example, wood-boring clams were most abundant on solid logs, while small arthropods and limpets were more abundant on bundles of branches that provided more surface area and small, protected spaces to occupy. Other factors such as chemical defenses, the presence of bark, and wood hardness likely also played a role. Our finding that characteristics of woody debris entering the marine realm can have significant effects on community assembly supports the notion of ecological and perhaps evolutionarily significant links between land and sea. © 2016 by the Ecological Society of America.

  17. State-of-the-art of waste wood supply chain in Germany and selected European countries.

    PubMed

    Garcia, Carlos A; Hora, Guido

    2017-12-01

    According to the statistic office of the European Union (Eurostat), Germany is the main producer of waste wood in Europe followed by France, United Kingdom, Italy and Finland. Based on the characteristics of the waste wood, it can be classified in four (4) categories: A I, A II, A III and A IV. This paper focuses in the A I waste wood since is the only category able to be used directly for both material and energy purposes without a previously pre-treatment. Currently, most of this waste wood is used for direct energy production due to the previous government legislation that promoted its use directly in incineration facilities. However, the newest Renewable Energy Act (EEG 2017) may promote the cascade-use of A I waste wood prior to be intended for energy purposes. Nonetheless, the government incentives to the energy sector is not the only bottleneck that the use of A I waste wood as raw material in the wood-based industry has to overcome. The peak availability, collection logistics (collection centers and transportation) and recycling facility location are some of the parameters that must be considered in order to design the "best" supply chain network for A I waste wood. This work presents a detailed description of the effect of the hierarchical strategic decision in the proper design of the waste wood supply chain. Additionally, the global picture of waste wood recycling in different European countries (UK, Italy and Finland) is briefly presented. Copyright © 2017. Published by Elsevier Ltd.

  18. Aspen Tension Wood Fibers Contain β-(1→4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls1[OPEN

    PubMed Central

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.

    2015-01-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099

  19. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.

    PubMed

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J

    2015-11-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Nine new species of Uramya Robineau-Desvoidy (Diptera: Tachinidae) from Area de Conservación Guanacaste in northwestern Costa Rica, with a key to their identification

    PubMed Central

    Wood, D. Monty; Smith, M. Alex; Hallwachs, Winnie; Janzen, Daniel; Dapkey, Tanya

    2017-01-01

    Abstract Background We describe nine new species in the genus Uramya Robineau-Desvoidy, 1830 from Area de Conservación Guanacaste (ACG) in northwestern Costa Rica. All species were reared from an ongoing inventory of wild-caught caterpillars spanning a variety of families (Lepidoptera: Erebidae; Limacodidae; Megalopygidae; Lasiocampidae and Dalceridae). Our study provides a concise description of each new species using morphology, life history, molecular data, and photographic documentation. In addition to the new species the authors provide a redescription the previously described Uramya sibinivora Guimarães, which was also collected within ACG during this study. We also provide a redescription of the genus, and a revised key to species of Uramya occurring in Central and South America. New information The following nine new species of Uramya, all authored by Fleming & Wood, are described: Uramya albosetulosa Fleming & Wood sp. nov., Uramya constricta Fleming & Wood sp. nov., Uramya contraria Fleming & Wood sp. nov., Uramya infracta Fleming & Wood sp. nov., Uramya lativittata Fleming & Wood sp. nov., Uramya lunula Fleming & Wood sp. nov., Uramya nitida Fleming & Wood sp. nov., Uramya pannosa Fleming & Wood sp. nov., and Uramya penicillata Fleming & Wood sp. nov. The following are proposed by Wood as new synonyms of Uramya: Olinda Townsend, syn. nov. and Procleonice Townsend, syn. nov. The following new combination is proposed as a result of the new synonymies: Uramya brasiliensis Macquart, comb. nov. Procleonice prolixa Townsend is synonymized under Uramya brevicauda Curran, syn. nov. PMID:28325972

Top