Sample records for soft x-ray study

  1. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  2. Analysis of solar X-ray data

    NASA Technical Reports Server (NTRS)

    Teske, R. G.

    1972-01-01

    Type III solar bursts occurring in the absence of solar flares were observed to be accompanied by weak X-radiation. The energy scale of an OSO-3 soft X-ray ion chamber was assessed using realistic theoretical X-ray spectra. Relationships between soft solar X-rays and solar activity were investigated. These included optical studies, the role of the Type III acceleration mechanism in establishing the soft X-ray source volume, H alpha flare intensity variations, and gross magnetic field structure.

  3. Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Coppi, Paolo S.

    1991-01-01

    In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.

  4. Exospheric Neutral Density at the Earth's subsolar magnetopause deduced from the XMM-Newton X-ray observations

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Carter, J. A.

    2017-12-01

    Soft X-rays can be emitted when highly charged solar wind ions and exospheric neutrals exchange electrons. Astrophysics missions, such as XMM-Newton and ROSAT X-ray telescopes, have found that such solar wind charge exchange happens at the Earth's exosphere. The Earth's magnetosphere can be imaged via soft X-rays in order to understand its interaction with solar wind. Consequently, two soft X-ray telescope missions (CuPID and SMILE) are scheduled to launch in 2019 and 2021. They will provide wide field-of-view soft X-ray images of the Earth's dayside magnetosphere. The imagers will track the location and movement of the cusps, magnetopause, and bow shock in response to solar wind variations. To support these missions, an understanding of exospheric neutral density profile is needed. The neutral density is one of the controlling factors of soft X-ray signals. Strong neutral density can help to obtain high-resolution and high-cadence of soft X-ray images. In this study, we estimate the exospheric neutral density at 10 RE subsolar point using XMM X-ray observations, Cluster plasma observations, and OpenGGCM global magnetosphere - ionosphere MHD model. XMM-Newton observes line-of-sight, narrow field-of-view, integrated soft X-ray emissions when it looks through the dayside magnetosphere. OpenGGCM reproduces soft X-ray signals seen by the XMM spacecraft, assuming exospheric neutral density as a function of the neutral density at the 10RE subsolar point and the radial distance. Cluster observations are used to confirm OpenGGCM plasma results. Finally, we deduce the neutral density at 10 RE subsolar point by adjusting the model results to the XMM-Newton soft X-ray observations.

  5. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  6. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  7. Solar flare hard and soft X ray relationship determined from SMM HXRBS and BCS data

    NASA Astrophysics Data System (ADS)

    Toot, G. David

    1989-09-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  8. Intensity correlation measurement system by picosecond single shot soft x-ray laser.

    PubMed

    Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko

    2010-01-01

    We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.

  9. A Multiwavelength Study of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    McCollough, M. L; Robinson, C. R.; Zhang, S. N.; Paciesas, W. S.; Harmon, B. A.; Hjellming, R. M.; Rupen, M.; Waltman, E. B.; Foster, R. S.; Ghigo, F. D.

    1997-01-01

    We present a global comparison of long term observations of the hard X-ray (20-100 keV), soft X-ray (1.5-12 keV), infrared (1-2 micron) and radio (2.25, 8.3 and 15 GHz) bands for the unusual X-ray binary Cygnus X-3. Data were obtained in the hard X-ray band from CGRO/BATSE, in the soft X-ray band from Rossi Xray Timing Explorer (RXTE)/ASM, in the radio band from the Green Bank Interferometer and Ryle Telescope and in the infrared band from various ground based observatories. Radio flares, quenched radio states and quiescent radio emission can all be associated with changes in the hard and soft X-ray intensity. The injection of plasma into the radio jet is directly related to changes in the hard and soft X-ray emission. The infrared observations are examined in the context of these findings.

  10. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less

  11. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  12. Resonant soft X-ray scattering for polymer materials

    DOE PAGES

    Liu, Feng; Brady, Michael A.; Wang, Cheng

    2016-04-16

    Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less

  13. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  14. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  15. Development of In-situ Resonant Soft X-ray Scattering for Soft Materials at Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Hexemer, Alexander; Young, Anthony; Padmore, Howard

    2014-03-01

    Resonant Soft X-ray Scattering was developed at ALS over the past a few years. It combines soft x-ray spectroscopy with x-ray scattering and offers statistical information for 3D chemical morphology over a large sample area. Its unique chemical sensitivity, large accessible size scale, polarization control and high coherence make it a powerful tool for mesoscale chemical/morphological structure characterization for many classes of materials. However, in order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, we will report our development of customize design liquid/gas environmental cells that will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Initial RSoXS result of solar fuel membrane assembly/fuel-cell membrane structure in wet cell will be presented.

  16. Application of Laser Plasma Sources of Soft X-rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies

    NASA Astrophysics Data System (ADS)

    Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.

    In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.

  17. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  18. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  19. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  20. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  1. Weak soft X-ray excesses need not result from the high-frequency tail of the optical/ultraviolet bump in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Czerny, Bozena; Zycki, Piotr T.

    1994-01-01

    The broad-band ROSAT/EXOSAT X-ray spectra of six Seyfert 1 galaxies are fitted by a model consisting of a direct power law and a component due to reflection/reprocessing from a partially ionized, optically thick medium. The reflected spectrum contains emission features from various elements in the soft X-ray range. In all objects but one (Mrk 335), the fit is satisfactory, and no additional soft X-ray excess is required by the data. This means that in most sources there is no need for the thermal 'big blue bumps' to extend into soft X-rays, and the soft X-ray excesses reported previously can be explained by reflection/reprocessing. Satisfactory fits are obtained for a medium ionized by a source radiating at less than or approximately 15% of the Eddington rate. The fits require that the reflection is enhanced relative to an isotropically emitting source above a flat disk. The necessary high effectiveness of reflection in the soft X-ray band requires strong soft thermal flux dominating over hard X-rays.

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  3. Short-duration solar microwave bursts and associated soft X-ray emission. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.

    1972-01-01

    Two hundred and fifty-nine short-duration microwave (15.4 GHz) bursts which occurred during the period of January 1968 to March 1970 were correlated with possible soft X-ray (2-12 A) flares occurring simultaneously. Sixty-six percent of the microwave bursts which were observed during periods of soft X-ray data coverage had associated soft X-ray flares. A study of an index of impulsiveness of the microwave flares failed to show a separation of the events into subclasses which could be attributed to distinctly different physical mechanisms. A weak (0.43) correlation was found between the intensities of the microwave and X-ray flares. A very weak (0.15) and statistically questionable correlation was found between the total energy released in these two energy ranges. Two models for the electron acceleration mechanism are discussed.

  4. Evidence for explosive chromospheric evaporation in a solar flare observed with SMM

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.; Canfield, R. C.; Metcalf, T.

    1986-01-01

    SMM soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflow motions, was observed in the coronal Ca XIX line during the soft X-ray rise phase. H-alpha redshifts, indicative of downward motions, were observed simultaneously in bright flare kernels during the period of hard X-ray emission. It is shown that, to within observational errors, the impulsive phase momentum transported by the upflowing soft X-ray plasma is equivalent to that of the downward moving chromospheric material.

  5. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy

    PubMed Central

    Liu, Xiaosong; Wang, Dongdong; Liu, Gao; Srinivasan, Venkat; Liu, Zhi; Hussain, Zahid; Yang, Wanli

    2013-01-01

    Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries. PMID:24100759

  6. Burning plasmas with ultrashort soft-x-ray flashing

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.

    2012-07-01

    Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.

  7. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less

  8. Soft X-ray results from the Wisconsin experiment on OSO-8

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1978-01-01

    Design features and capabilities of a soft X-ray instrument aboard OSO 8 are discussed, and results are presented for observations of AM Her, Her X-1, and Eta Car. The observations of AM Her indicate that: (1) the spectrum is composite, with a very steep or very-low-temperature component plus a rather flat or very-high-temperature component; (2) the relative phase of soft X-ray minimum and optical V-band primary minimum has remained stable over the interval between 1975 'high-state' observations and 1976 'low-state' observations; and (3) the times of soft X-ray minima and hard X-ray maxima coincide, to within the accuracy of the observations. For Her X-1, soft X-ray turn-on is found to lag behind hard X-ray turn-on by no more than 3 hr. It is suggested that little or no absorption of the soft X-ray component occurs during the on state by cool gas within the Her X-1 system. A strong source with a spectrum peaked between 0.4 and 1.5 keV has been detected which is consistent with a point source at the position of Eta Car.

  9. Momentum balance in four solar flares

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Metcalf, Thomas R.; Zarro, Dominic M.; Lemen, James R.

    1990-01-01

    Solar Maximum Mission soft X-ray spectra and National Solar Observatory (Sacramento Peak) H-alpha spectra were combined in a study of high-speed flows during the impulsive phase of four solar flares. In all events, a blue asymmetry (indicative of upflows) was observed in the coronal Ca XIX line during the soft X-ray rise phase. In all events a red asymmetry (indicative of downflows) was observed simultaneously in chromospheric H-alpha. These oppositely directed flows were concurrent with impulsive hard X-ray emission. Combining the velocity data with estimates of the density based on emission measurements and volume estimates, it is shown that for the impulsive phase as a whole the total momentum of upflowing soft X-ray plasma equaled that of the downflowing H-alpha plasma, to within an order of magnitude, in all four events. Only the chromospheric evaporation model predicts equal total momentum in the upflowing soft X-ray-emitting and downflowing H-alphba-emitting materials.

  10. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Page, A.M.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examinedmore » the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.« less

  11. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  12. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  13. Technological aspects of GEM detector design and assembling for soft x-ray application

    NASA Astrophysics Data System (ADS)

    Kowalska-Strzeciwilk, E.; Chernyshova, M.

    2016-09-01

    Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.

  14. Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinhardt, L.; Fuchs, O.; Fleszar, A.

    2008-09-24

    Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.

  15. The Columbia University proton-induced soft x-ray microbeam.

    PubMed

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  16. Soft X-ray observation of the Rho Ophiuchus dark cloud region

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.; Hayakawa, S.; Hearn, D. R.

    1979-01-01

    Soft X-rays (0.1-0.8 keV) from the region including the Rho Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Rho Oph cloud which is located at a distance of 160-200 pc.

  17. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  18. Complex UV/X-ray variability of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  19. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  20. End-on soft x ray imaging of Field-Reversed Configurations (FRCs) on the Field-Reversal-C (FRX-C)/Large Scale Modification (LSM) experiment

    NASA Astrophysics Data System (ADS)

    Taggart, D. P.; Gribble, R. J.; Bailey, A. D., III; Sugimoto, S.

    Recently, a prototype soft x ray pinhole camera was fielded on FRX-C/LSM at Los Alamos and TRX at Spectra Technology. The soft x ray FRC images obtained using this camera stand out in high contrast to their surroundings. It was particularly useful for studying the FRC during and shortly after formation when, at certain operating conditions, flute-like structures at the edge and internal structures of the FRC were observed which other diagnostics could not resolve. Building on this early experience, a new soft x ray pinhole camera was installed on FRX-C/LSM, which permits more rapid data acquisition and briefer exposures. It will be used to continue studying FRC formation and to look for internal structure later in time which could be a signature of instability. The initial operation of this camera is summarized.

  1. Note: Measurement of the runaway electrons in the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.

    2012-05-01

    The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.

  2. Irreversible metal-insulator transition in thin film VO2 induced by soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Singh, V. R.; Jovic, V.; Valmianski, I.; Ramirez, J. G.; Lamoureux, B.; Schuller, Ivan K.; Smith, K. E.

    2017-12-01

    In this study, we show the ability of soft x-ray irradiation to induce room temperature metal-insulator transitions (MITs) in VO2 thin films grown on R-plane sapphire. The ability of soft x-rays to induce MIT in VO2 thin films is confirmed by photoemission spectroscopy and soft x-ray spectroscopy measurements. When irradiation was discontinued, the systems do not return to the insulating phase. Analysis of valence band photoemission spectra revealed that the density of states (DOSs) of the V 3d band increased with irradiation time, while the DOS of the O 2p band decreased. We use these results to propose a model in which the MIT is driven by oxygen desorption from thin films during irradiation.

  3. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  4. Dante Soft X-ray Power Diagnostic for NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E; Campbell, K; Turner, R

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  5. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    PubMed

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  6. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostko, O.; Xu, B.; Jacobs, M. I.

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less

  7. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    DOE PAGES

    Kostko, O.; Xu, B.; Jacobs, M. I.; ...

    2017-05-05

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less

  8. Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo

    2017-10-01

    We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.

  9. X-ray Variations at the Orbital Period from Cygnus X-1 IN the High/Soft State

    NASA Astrophysics Data System (ADS)

    Boroson, Bram; Vrtilek, Saeqa Dil

    2010-02-01

    Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorer's All-Sky Monitor. We are able to set broad limits on how the mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phi = 0 (defined as the time of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass-loss rate in the soft state (\\dot{M}<2× 10^{-6} M_{⊙} yr-1) than the limit in the hard state (\\dot{M}<4× 10^{-6} M_{⊙} yr-1). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.

  10. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    NASA Astrophysics Data System (ADS)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  11. X-ray tube voltage and image quality in adult and pediatric CT

    NASA Astrophysics Data System (ADS)

    Huda, W.; Ogden, K. M.; Scalzetti, E. M.; Lavallee, R. L.; Samei, E.

    2006-03-01

    The purpose of this study was to investigate how tissue x-ray attenuation coefficients, and their uncertainties, vary with x-ray tube voltage in different sized patients. Anthropomorphic phantoms (newborn, 10 year old, adult) were scanned a GE LightSpeed scanner at four x-ray tube voltages. Measurements were made of tissue attenuation in the head, chest and abdomen regions, as well as the corresponding noise values. Tissue signal to noise ratios (SNR) were obtained by dividing the average attenuation coefficient by the corresponding standard deviation. Soft tissue attenuation coefficients, relative to water, showed little variation with patient location or x-ray voltage (< 0.5%), but increasing the x-ray tube voltage from 80 to 140 kV reduced bone x-ray attenuation by ~14%. All tissues except adult bone showed a reduction of noise with increasing x-ray tube voltage (kV); the noise was found to be proportional to kV n and the average value of n for all tissues was -1.19 +/- 0.57. In pediatric patients at a constant x-ray tube voltage, SNR values were approximately independent of the body region, but the adult abdomen soft tissue SNR values were ~40% lower than the adult head. SNR values in the newborn were more than double the corresponding SNR soft tissue values in adults. SNR values for lung and bone were generally lower than those for soft tissues. For soft tissues, increasing the x-ray tube voltage from 80 to 140 kV increased the SNR by an average of ~90%. Data in this paper can be used to help design CT imaging protocols that take into account patient size and diagnostic imaging task.

  12. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, R.; Ricci, C.; Paltani, S.

    2017-10-01

    A soft X-ray emission in excess of the extrapolation of the hard X-ray continuum is detected in many Seyfert 1 galaxies below 1 keV. To understand the uncertain nature of this soft excess, which could be due to warm Comptonization or to blurred ionized reflection, we consider the different behaviors of these models above 10 keV. We present the results of a study done on 102 Seyfert 1s from the Swift BAT 70-Month Hard X-ray Survey catalog. We have performed the joint spectral analysis of Swift/BAT and XMM-Newton data in order to get a hard X-ray view of the soft excess. We discuss the links between the soft-excess strength and the reflection at high energy, the slope of the continuum and the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. Indeed, we do not find the expected correlation between the reflection and the soft-excess strengths, neither in individual, nor in stacked spectra. We also present our current project of broadband fitting, using different models explaining the soft excess, to simultaneous XMM-Newton and NuSTAR observations of about ten objects of our sample.

  13. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  14. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  15. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Wang, Shoujun; Oliva, E

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less

  16. Multilayer and grazing incidence X-ray/EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1992-01-01

    The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.

  17. Testing the Impulsiveness of Solar Flare Heating through Analysis of Dynamic Atmospheric Response

    NASA Astrophysics Data System (ADS)

    Newton, E. K.; Emslie, A. G.; Mariska, J. T.

    1996-03-01

    One crucial test of a solar flare energy transport model is its ability to reproduce the characteristics of the atmospheric motions inferred from soft X-ray line spectra. Using a recently developed diagnostic, the velocity differential emission measure (VDEM), we can obtain from observations a physical measure of the amount of soft X-ray mitting plasma flowing at each velocity, v, and hence the total momentum of the upflowing plasma, without approximation or parametric fitting. We have correlated solar hard X-ray emission profiles by the Yohkoh Hard X-ray telescope with the mass and momentum histories inferred from soft X-ray line profiles observed by the Yohkoh Bragg crystal spectrometers. For suitably impulsive hard X-ray emission, an analysis of the hydrodynamic equations predicts a proportionality between the hard X-ray intensity and the second time derivative of the soft X-ray mitting plasma's momentum. This relationship is borne out by an analysis of 18 disk-center impulsive flares of varying durations, thereby lending support to the hypothesis that a prompt energy deposition mechanism, such as an energetic electron flux, is indeed responsible for the soft X-ray response observed in the rise phase of sufficiently impulsive solar flares.

  18. Soft X-ray study of solar wind charge exchange from the Earth's magnetosphere : Suzaku observations and a future X-ray imaging mission concept

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.

    2013-12-01

    Soft X-ray observations of solar wind charge exchange (SWCX) emission from the Earth's magnetosphere using the Japanese X-ray astronomy satellite Suzaku are shown, together with our X-ray imaging mission concept to characterize the solar wind interaction with the magnetosphere. In recent years, the SWCX emission from the Earth's magnetosphere, originally discovered as unexplained noise during the soft X-ray all sky survey (Snowden et al. 1994), is receiving increased attention on studying geospace. The SWCX is a reaction between neutrals in exosphere and highly charged ions in the magnetosphere originated from solar wind. Robertson et al. (2005) modeled the SWCX emission as seen from an observation point 50 Re from Earth. In the resulting X-ray intensities, the magnetopause, bow shock and cusp were clearly visible. High sensitivity soft X-ray observation with CCDs onboard recent X-ray astronomy satellites enables us to resolve SWCX emission lines and investigate time correlation with solar wind as observed with ACE and WIND more accurately. Suzaku is the 5th Japanese X-ray astronomy satellite launched in 2005. The line of sight direction through cusp is observable, while constraints on Earth limb avoidance angle of other satellites often limits observable regions. Suzaku firstly detected the SWCX emission while pointing in the direction of the north ecliptic pole (Fujimoto et al. 2007). Using the Tsyganenko 1996 magnetic field model, the distance to the nearest SWCX region was estimated as 2-8 Re, implying that the line of sight direction can be through magnetospheric cusp. Ezoe et al. (2010) reported SWCX events toward the sub-solar side of the magnetosheath. These cusp and sub-solar side magnetosheath regions are predicted to show high SWCX fluxes by Robertson et al. (2005). On the other hand, Ishikawa et al. (2013) discovered a similarly strong SWCX event when the line of sight direction did not transverse these two regions. Motivated by these detections, Ishikawa et al. have conducted the systematic search of the Suzaku's 6 years archival data for the SWCX events. From ~2000 data sets, ~40 showed correlations between the X-ray light curve and solar wind flux. The SWCX emissivity is calculated in each observation by normalizing the observed X-ray flux by the solar wind flux observed as ACE and WIND, and is discussed in the context of the exospheric neutral distribution and magnetospheric structure. These soft X-ray studies with Earth-orbiting satellites are now leading X-ray astronomers and space plasma physicists to propose an X-ray imaging mission of the Earth's magnetosphere. Soft X-ray imaging from high altitude (e.g., the Moon orbit) offers the capability of mapping plasma structures at <0.1 Re scale and time cadence at

  19. Soft X-ray Foucault test: A path to diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  20. X-Ray Spectral Variability Signatures of Flares in BL Lac Objects

    NASA Technical Reports Server (NTRS)

    Boettcher, Markus; Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We are presenting a detailed parameter study of the time-dependent electron injection and kinematics and the self-consistent radiation transport in jets of intermediate and low-frequency peaked BL Lac objects. Using a time-dependent, combined synchrotron-self-Compton and external-Compton jet model, we study the influence of variations of several essential model parameters, such as the electron injection compactness, the relative contribution of synchrotron to external soft photons to the soft photon compactness, the electron- injection spectral index, and the details of the time profiles of the electron injection episodes giving rise to flaring activity. In the analysis of our results, we focus on the expected X-ray spectral variability signatures in a region of parameter space particularly well suited to reproduce the broadband spectral energy distributions of intermediate and low-frequency peaked BL Lac objects. We demonstrate that SSC- and external-Compton dominated models for the gamma-ray emission from blazars are producing significantly different signatures in the X-ray variability, in particular in the soft X-ray light curves and the spectral hysteresis at soft X-ray energies, which can be used as a powerful diagnostic to unveil the nature of the high-energy emission from BL Lac objects.

  1. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  2. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  3. Evolution of Cygnus X-3 through its Radio and X-ray States

    NASA Astrophysics Data System (ADS)

    Szostek, A.; Zdziarski, A. A.; McCollough, M. L.

    2009-05-01

    Based on X-ray spectra and studies of the long-term correlated behavior between radio and soft X-ray, we present a detailed evolution of Cyg X-3 through its radio and X-ray states. We comment on the nature of the hard X-ray tail and possible Simbol X contribution in constraining the models.

  4. ROSAT EUV and soft X-ray studies of atmospheric composition and structure in G191-B2B

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Fleming, T. A.; Finley, D. S.; Koester, D.; Diamond, C. J.

    1993-01-01

    Previous studies of the hot DA white dwarf GI91-B2B have been unable to determine whether the observed soft X-ray and EUV opacity arises from a stratified hydrogen and helium atmosphere or from the presence of trace metals in the photosphere. New EUV and soft X-ray photometry of this star, made with the ROSAT observatory, when analyzed in conjunction with the earlier data, shows that the stratified models cannot account for the observed fluxes. Consequently, we conclude that trace metals must be a substantial source of opacity in the photosphere of G191-B2B.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan

    We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up inmore » the hard X-ray light curve.« less

  6. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    PubMed Central

    Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D.; Sierra, Raymond G.; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L.; Lassalle-Kaiser, Benedikt; Glownia, James M.; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J.; Minitti, Michael P.; Dakovski, Georgi L.; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S.; Tsui, Emily Y.; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S.; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe

    2017-01-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. PMID:28944255

  7. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    DOE PAGES

    Kubin, Markus; Kern, Jan; Gul, Sheraz; ...

    2017-09-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. But, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexesmore » (Mn ~ 6-15 mmol/l) with no visible effects of radiation damage. We then present the first L-edge absorption spectra of the oxygen evolving complex (Mn 4 CaO 5 ) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.« less

  8. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; hide

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These surprising results have called into question our understanding of Jovian auroral x-rays. In this paper, we will present a comparative view of the x-ray observations on planets, comets, and moons, with emphasis on recent results from CXO, and discuss the proposed source mechanisms.

  9. Results from the X-ray polychromator on SMM

    NASA Astrophysics Data System (ADS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  10. Results from the X-ray polychromator on SMM

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    1984-01-01

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  11. Extended X-Ray Emission around Quasars at Intermediate Redshift

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio

    1998-01-01

    We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor of thermal models.

  12. Time-dependent nonequilibrium soft x-ray response during a spin crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veenendaal, Michel

    The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information thatmore » reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.« less

  13. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  14. Overview of options for generating high-brightness attosecond x-ray pulses at free-electron lasers and applications at the European XFEL

    NASA Astrophysics Data System (ADS)

    Serkez, S.; Geloni, G.; Tomin, S.; Feng, G.; Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Meyer, M.

    2018-02-01

    The generation of attosecond, highbrightness x-ray pulses is a matter of great interest given their applications in the study of ultra-fast processes. In recent years, the production of x-ray pulses of high brightness, both in the soft and in the hard x-ray range, has been enabled by x-ray free-electron lasers (XFELs). In contrast to conventional quantum lasers, XFELs are based on the use of an ultra-relativistic electron beam as gain medium. They often work in the self-amplified spontaneous emission (SASE) regime, which provides pulses of duration down to a few femtoseconds, composed of several longitudinal modes. In order to further decrease the duration of these pulses, special methods need to be implemented. In this paper we review available methods, with particular focus on the x-ray laser-enhanced attosecond pulse generation, which is one of the most promising techniques. We illustrate the method using the SASE3 soft x-ray undulator of the European XFEL facility as a case study, emphasizing the importance of high-repetition rate attosecond x-ray pulses. The expected attosecond-level radiation output is used for simulations of sequential ionization processes in atoms in the case of ionization in the soft x-ray regime, demonstrating the importance of this opportunity for the user community.

  15. Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran

    2001-01-01

    The work completed under this project, 'Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission', includes the following presentations: (1) Analysis of H-alpha Observations of High-altitude Coronal Condensations; (2) Multi-spectral Imaging of Coronal Activity; (3) Measurement and Modeling of Soft X-ray Loop Arcades; (4) A Study of the Origin and Dynamics of CMEs; and various poster presentations and thesis dissertations.

  16. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.

    PubMed

    Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A

    2014-11-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.

  17. Observation of soft X-ray spectra from a Seyfert 1 and a narrow emission-line galaxy

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Garmire, G. P.; Nousek, J.

    1985-01-01

    The 0.2-40 keV X-ray spectra of the Seyfert 1 galaxy Mrk 509 and the narrow emission-line galaxy NGC 2992 are analyzed. The results suggest the presence of a steep soft X-ray component in Mrk 509 in addition to the well-known Gamma = 1.7 component found in other active galactic nuclei in the 2-40 keV energy range. The soft X-ray component is interpreted as due to thermal emission from a hot gas, probably associated with the highly ionized gas observed to be outflowing from the galaxy. The X-ray spectrum of NGC 2992 does not show any steepening in the soft X-ray band and is consistent with a single power law (Gamma = 1.78) with very low absorbing column density of 4 x 10 to the 21st/sq cm. A model with partial covering of the nuclear X-ray source is preferred, however, to a simple model with a single power law and absorption.

  18. Temporal cross-correlation of x-ray free electron and optical lasers using soft x-ray pulse induced transient reflectivity.

    PubMed

    Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W

    2012-05-07

    The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.

  19. A multiwavelength study of the Eridanus soft X-ray enhancement

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Singh, K. P.; Nousek, J. A.; Garmire, G. P.; Good, J.

    1993-01-01

    We present soft X-ray, N(H), and IR maps of the Eridanus soft X-ray enhancement. Soft X-ray maps from the HEAO 1 A-2 LED experiment, processed with a maximum entropy method (MEM) algorithm, show that the enhancement consists of two distinct components: a large hook-shaped component and a small circular component at different temperatures. Both of these are located in 'holes' in the IR emission, and they correspond to N(H) features at very different velocities. The dust surrounding the X-ray enhancements appears to be associated with several high-latitude molecular clouds, which allow us to obtain a probable distance of about 130 pc to the near edge of the main enhancement. The total power emitted by the hot gas is then about 10 exp 35 to 10 exp 36 ergs/s. We consider alternative interpretations of these objects as adiabatic supernova remnants or as stellar wind bubbles and conclude that they are more likely to be stellar wind bubbles, possibly reheated by a SN explosion in the case of the main, hook-shaped object.

  20. A search for a cosmological component of the soft X-ray background in the direction of M31

    NASA Technical Reports Server (NTRS)

    Margon, B.; Bowyer, S.; Cruddace, R.; Heiles, C.; Lampton, M.; Troland, T.

    1974-01-01

    Results of an experiment to search for absorption of the soft diffuse X-ray background by M31, the Andromeda Nebula, are presented. Both X-ray and 21-cm observations were obtained with high spatial resolution; the X-ray detector had a 2-degree field of view, and the 21-cm data were taken with 20-minute resolution. The results establish that at least 48 percent of the soft X-ray flux has a local source, but that the remainder may be of distant origin and therefore of cosmological significance.

  1. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.

    PubMed

    Jing, He; Wang, Xiaofei; Wang, Wei-Ning; Biswas, Pratim

    2015-04-01

    Corona discharge based techniques are promising approaches for oxidizing elemental mercury (Hg0) in flue gas from coal combustion. In this study, in-situ soft X-rays were coupled to a DC (direct current) corona-based electrostatic precipitator (ESP). The soft X-rays significantly enhanced Hg0 oxidation, due to generation of electrons from photoionization of gas molecules and the ESP electrodes. This coupling technique worked better in the positive corona discharge mode because more electrons were in the high energy region near the electrode. Detailed mechanisms of Hg0 oxidation are proposed and discussed based on ozone generation measurements and Hg0 oxidation behavior observations in single gas environments (O2, N2, and CO2). The effect of O2 concentration in flue gas, as well as the effects of particles (SiO2, TiO2, and KI) was also evaluated. In addition, the performance of a soft X-rays coupled ESP in Hg0 oxidations was investigated in a lab-scale coal combustion system. With the ESP voltage at +10 kV, soft X-ray enhancement, and KI addition, mercury oxidation was maximized. Mercury is a significant-impact atmospheric pollutant due to its toxicity. Coal-fired power plants are the primary emission sources of anthropogenic releases of mercury; hence, mercury emission control from coal-fired power plant is important. This study provides an alternative mercury control technology for coal-fired power plants. The proposed electrostatic precipitator with in situ soft X-rays has high efficiency on elemental mercury conversion. Effects of flue gas conditions (gas compositions, particles, etc.) on performance of this technology were also evaluated, which provided guidance on the application of the technology for coal-fired power plant mercury control.

  2. A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu

    2017-07-01

    With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.

  3. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  4. Electronic structure and magnetic properties of the half-metallic ferrimagnet Mn2VAl probed by soft x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Nagai, K.; Fujiwara, H.; Aratani, H.; Fujioka, S.; Yomosa, H.; Nakatani, Y.; Kiss, T.; Sekiyama, A.; Kuroda, F.; Fujii, H.; Oguchi, T.; Tanaka, A.; Miyawaki, J.; Harada, Y.; Takeda, Y.; Saitoh, Y.; Suga, S.; Umetsu, R. Y.

    2018-01-01

    We have studied the electronic structure of ferrimagnetic Mn2VAl single crystals by means of soft x-ray absorption spectroscopy (XAS), x-ray absorption magnetic circular dichroism (XMCD), and resonant soft x-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all the constituent elements. The Mn L2 ,3 XAS and XMCD spectra are reproduced by spectral simulations based on density-functional theory, indicating the itinerant character of the Mn 3 d states. On the other hand, the V 3 d electrons are rather localized since the ionic model can qualitatively explain the V L2 ,3 XAS and XMCD spectra. This picture is consistent with local d d excitations revealed by the V L3 RIXS.

  5. Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.

    2000-04-01

    The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.

  6. Flash x-ray radiography of argon jets in ambient air

    NASA Astrophysics Data System (ADS)

    Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.

    1998-09-01

    This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.

  7. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  8. Development of optical choppers for time-resolved measurements at soft X-ray synchrotron radiation beamlines

    PubMed Central

    Osawa, Hitoshi; Ohkochi, Takuo; Fujisawa, Masami; Kimura, Shigeru; Kinoshita, Toyohiko

    2017-01-01

    Two types of optical choppers for time-resolved measurements at synchrotron radiation soft X-ray beamlines have been developed. One type uses an air-spindle-type rotation mechanism with a two-stage differential pumping system to maintain the ultra-high vacuum of the X-ray beamline, and the other uses a magnetic bearing. Both can be installed at the soft X-ray beamlines at SPring-8, greatly improving the accessibility of pump-and-probe spectroscopy. The combination of X-ray chopper and pump-and-probe photoemission electron microscope at SPring-8 provides drastic improvements in signal-to-noise ratio and resolution compared with techniques using high-voltage gating of channel plate detectors. The choppers have the capability to be used not only at synchrotron radiation facilities but also at other types of soft X-ray and VUV beamlines. PMID:28452746

  9. Davisson-Germer Prize in Atomic or Surface Physics Talk: Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies

    NASA Astrophysics Data System (ADS)

    Stöhr, Joachim

    2011-03-01

    My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.

  10. Space Telescope and Optical Reverberation Mapping Project VI. Variations of the Intrinsic Absorption Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Agn Storm Team

    2015-01-01

    The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.

  11. Model of flare lightcurve profile observed in soft X-rays

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Siarkowski, Marek; Gburek, Szymon; Podgorski, Piotr; Sylwester, Janusz; Kepa, Anna; Mrozek, Tomasz

    We propose a new model for description of solar flare lightcurve profile observed in soft X-rays. The method assumes that single-peaked `regular' flares seen in lightcurves can be fitted with the elementary time profile being a convolution of Gaussian and exponential functions. More complex, multi-peaked flares can be decomposed as a sum of elementary profiles. During flare lightcurve fitting process a linear background is determined as well. In our study we allow the background shape over the event to change linearly with time. Presented approach originally was dedicated to the soft X-ray small flares recorded by Polish spectrophotometer SphinX during the phase of very deep solar minimum of activity, between 23 rd and 24 th Solar Cycles. However, the method can and will be used to interpret the lightcurves as obtained by the other soft X-ray broad-band spectrometers at the time of both low and higher solar activity level. In the paper we introduce the model and present examples of fits to SphinX and GOES 1-8 Å channel observations as well.

  12. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    PubMed

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  13. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  14. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  15. Small-Size High-Current Generators for X-Ray Backlighting

    NASA Astrophysics Data System (ADS)

    Chaikovsky, S. A.; Artyomov, A. P.; Zharova, N. V.; Zhigalin, A. S.; Lavrinovich, I. V.; Oreshkin, V. I.; Ratakhin, N. A.; Rousskikh, A. G.; Fedunin, A. V.; Fedushchak, V. F.; Erfort, A. A.

    2017-12-01

    The paper deals with the soft X-ray backlighting based on the X-pinch as a powerful tool for physical studies of fast processes. Proposed are the unique small-size pulsed power generators operating as a low-inductance capacitor bank. These pulse generators provide the X-pinch-based soft X-ray source (hν = 1-10 keV) of micron size at 2-3 ns pulse duration. The small size and weight of pulse generators allow them to be transported to any laboratory for conducting X-ray backlighting of test objects with micron space resolution and nanosecond exposure time. These generators also allow creating synchronized multi-frame radiographic complexes with frame delay variation in a broad range.

  16. Element Selectivity in Second-Harmonic Generation of GaFeO3 by a Soft-X-Ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Yamamoto, Sh.; Omi, T.; Akai, H.; Kubota, Y.; Takahashi, Y.; Suzuki, Y.; Hirata, Y.; Yamamoto, K.; Yukawa, R.; Horiba, K.; Yumoto, H.; Koyama, T.; Ohashi, H.; Owada, S.; Tono, K.; Yabashi, M.; Shigemasa, E.; Yamamoto, S.; Kotsugi, M.; Wadati, H.; Kumigashira, H.; Arima, T.; Shin, S.; Matsuda, I.

    2018-06-01

    Nonlinear optical frequency conversion has been challenged to move down to the extreme ultraviolet and x-ray region. However, the extremely low signals have allowed researchers to only perform transmission experiments of the gas phase or ultrathin films. Here, we report second harmonic generation (SHG) of the reflected beam of a soft x-ray free-electron laser from a solid, which is enhanced by the resonant effect. The observation revealed that the double resonance condition can be met by absorption edges for transition metal oxides in the soft x-ray range, and this suggests that the resonant SHG technique can be applicable to a wide range of materials. We discuss the possibility of element-selective SHG spectroscopy measurements in the soft x-ray range.

  17. A ROSAT high resolution x ray image of NGC 1068

    NASA Technical Reports Server (NTRS)

    Halpern, J.

    1993-01-01

    The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.

  18. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; hide

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  19. Limits on soft X-ray flux from distant emission regions

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.

    1984-01-01

    The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.

  20. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.

    2017-06-01

    The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

  1. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  2. Soft X-ray spectrum of BL Lacertae object AO 0235+164 as a tracer of elemental abundances at z approximately 0.5

    NASA Technical Reports Server (NTRS)

    Madejski, Greg

    1994-01-01

    We report the soft X-ray spectrum of BL Lac object AO 0235+164, observed with the Einstein Observatory Imaging Proportional Counter (IPC). This object (z = 0.94) has an intervening galaxy (or a protogalactic disk) at z = 0.524 present in the line of sight, producing both radio and optical absorption lines in the background BL Lac continuum. The X-ray spectrum exhibits a substantial soft X-ray cutoff, corresponding to several times that expected from our own Galaxy; we interpret that excess cutoff as due to the intervening galaxy. The comparison of the hydrogen column density inferred from the 21 cm radio data and the X-ray absorption allows, in principle, the determination of the elemental abundances in the intervening galaxy. However, the uncertainties in both the H I spin temperature and X-ray spectral parameters only loosely restrict these abundances to be 2 +/- 1 solar, which even at the lower limit appears higher than that inferred from studies of samples of optical absoprtion-line systems.

  3. The beam-driven chromospheric evaporation model of solar flares - A model not supported by observations from nonimpulsive large flares

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1990-01-01

    Most large solar flares exhibit hard X-ray emission which is usually impulsive, as well as thermal soft X-ray emission, which is gradual. The beam-driven chromospheric evaporation model of solar flares was proposed to explain the origin of the soft X-ray emitting flare plasma. A careful evaluation of the issue under discussion reveals contradictions between predictions from the theoretical chromospheric evaporation model and actual observations from a set of large X- and M-type flares. It is shown that although the soft X-ray and hard X-ray emissions are a result of the same flare, one is not a result of the other.

  4. Discovery of the optical counterpart of the transient X-ray burster Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Mcclintock, J. E.; Grindlay, J. E.

    1980-01-01

    The paper deals with the discovery and subsequent study of the optical counterpart to an X-ray nova which is almost certainly the historical transient Centaurus X-4, first discovered in 1969 and then dormant for the past decade. It is shown that Cen X-4 is a clear example of a soft, transient X-ray burster. The most important consequence of the connection between bursters and soft transients is the support it gives to the hypothesis that bursters are accreting neutron stars in binary systems. The observations support the hypothesis that at least some of the light comes from an accretion disk, and that X-ray heating plays an important role in the optical emission.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Long; Zhang, Shu; Chen, YuPeng

    We report on a study of GS 1826-238 using all available Rossi X-Ray Timing Explorer observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30-50 keV prompted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 ± 1.2 s. The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of themore » type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.« less

  6. Soft x-ray imaging using Polaroid Land films

    NASA Astrophysics Data System (ADS)

    Wong, C. S.; Choi, P.; Deeney, C.

    1988-02-01

    It is demonstrated in this note that optical Polaroid Land films can be used as a convenient detector in the soft x-ray region. The performance of Polaroid 667 film has been found to be comparable to that of the Kodak direct exposure film (DEF) for soft x-ray pinhole imaging. By a suitable choice of multiple filters, qualitative information about a dense plasma has been obtained.

  7. Filters for soft X-ray solar telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Grebe, Kurt; Golub, Leon

    1990-01-01

    Soft X-ray telescopes require filters that block visible and infrared light and have good soft X-ray transmission. The optical properties of possible materials are discussed, and the fabrication and testing methods for the filters used in a 10-inch normal incidence telescope for 63 A are described. The best performances in the 44-114-A wavelength range are obtained with foils of carbon and rhodium.

  8. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source

    PubMed Central

    Le Gros, Mark A.; McDermott, Gerry; Cinquin, Bertrand P.; Smith, Elizabeth A.; Do, Myan; Chao, Weilun L.; Naulleau, Patrick P.; Larabell, Carolyn A.

    2014-01-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with ‘water window’ X-rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies. PMID:25343808

  9. Dark jets in the soft X-ray state of black hole binaries?

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.

    2017-04-01

    X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.

  10. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  11. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  12. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  13. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.

  14. The Soft X-ray Imager (SXI) on the SMILE Mission

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Branduardi-Raymont, G.; Drumm, P.; Escoubet, C. P.; Genov, G.; Gow, J.; Hall, D.; Holland, A.; Hudec, R.; Mas-Hesse, J. M.; Kennedy, T.; Kuntz, K. D.; Nakamura, R.; Ostgaard, N.; Ottensamer, R.; Raab, W.; Read, A.; Rebuffat, D.; Romstedt, J.; Schyns, E.; Sibeck, D. G.; Srp, A.; Steller, M.; Sun, T.; Sykes, J. M.; Thornhill, J.; Walsh, B.; Walton, D.; Wang, C.; Wei, F.; Wielders, A.; Whittaker, I. C.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a space mission dedicated to study the interaction of the solar wind with the Earth's magnetic field. SMILE will investigate the dynamic response of the Earth's magnetosphere to the impact of the solar wind in a unique manner, never attempted before: it will combine soft X-ray imaging of the Earth's magnetic boundaries and magnetospheric cusps with simultaneous UV imaging of the Northern aurora, while simultaneously providing context measurements via an in situ plasma and magnetometer instrument package. SMILE is a joint European Space Agency (ESA) and Chinese Academy of Sciences (CAS) collaborative mission due for launch in 2021. This talk will describe the Soft X-ray Imager (SXI) on SMILE. The SXI is designed for good detection sensitivity of the soft X-rays (0.2 - 2.0 keV) produced in the Earth's exosphere by the solar wind charge exchange process. This process is the mechanism by which it is possible to globally image the Earth's dayside magnetosheath, magnetopause boundary, bowshock and cusps. The wide field of view of the instrument (27° x 16°) is achieved by the use of a micropore optic (MPO) with a Lobster-eye focusing geometry. The detector consists of two large format CCDs (each 8.1 cm x 6.8 cm sensitive area) providing high quantum efficiency and medium energy resolution for soft X-rays. The instrument design will be presented along with simulation results indicating the instrument sensitivity and science return.

  15. SLAC Phone Directory: Search Form

    Science.gov Websites

    Facilities LCLS Hard X-Ray LCLS IT & Networking LCLS IT Photon Systems LCLS Instrumentation Dev LCLS Delivery Dept LCLS Science Research & DevDiv LCLS Soft X-Ray LCLS Technical Support LCLS User Beam Line Ops Sup SSRL MSD Hard X-rays SSRL MSD Soft X-rays SSRL MSDBeam Line Elec SSRL MSDBeam Line

  16. Observing the Magnetosphere in Soft X-Rays: The Lunar X-Ray Observatory (LXO)

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Collier, M. R.; Porter, F. S.

    2018-02-01

    Wide field-of-view soft X-ray imagers in lunar orbit or on the lunar surface can be used to address many heliophysics objectives, including the nature of the solar wind magnetosphere-interaction, the lunar exosphere, and the helium focusing cone.

  17. Reprint of: Combining theory and experiment for X-ray absorption spectroscopy and resonant X-ray scattering characterization of polymers

    DOE PAGES

    Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...

    2016-11-01

    An improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here in this paper, we present relevant background on this emerging suite of techniques. We focus on how the combination ofmore » theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less

  18. Combining theory and experiment for X-ray absorption spectroscopy and resonant X-ray scattering characterization of polymers

    DOE PAGES

    Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...

    2016-07-04

    We present that an improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here, we present relevant background on this emerging suite of techniques. Finally, we focus on how the combinationmore » of theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less

  19. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan’ko, S. A.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Krauz, V. I.

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measuredmore » soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.« less

  20. Prediction and observation of tin and silver plasmas with index of refraction greater than one in the soft x-ray range.

    PubMed

    Filevich, Jorge; Grava, Jonathan; Purvis, Mike; Marconi, Mario C; Rocca, Jorge J; Nilsen, Joseph; Dunn, James; Johnson, Walter R

    2006-07-01

    We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.

  1. A versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast.

    PubMed

    Forsberg, J; Englund, C-J; Duda, L-C

    2009-08-01

    We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.

  2. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  3. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

  4. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial surface brightness distribution. The present data may suggest that the X-ray surface brightness is more extended than the optical profile. In this case, a straightforward explanation in terms of stellar sources could not be satisfactory. The available data can be better explained with three different contributions: a very soft component of stellar origin, a hard component from X-ray binaries, and an approximately 0.6 keV hot ISM. The latter can explain the extended X-ray surface brightness profile, if the galaxy has a dark-to-luminous mass ratio of 9, with the dark matter very broadly distributed, and a SN Ia explosive rate of approximately 0.6 the Tammann rate.

  5. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  6. Determine the yield of micronucleated cells in primary human fibroblasts exposed to focused soft X-rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. Prise

    This project was a small part of a larger collaborative study headed by Dr Aloke Chatterjee, (Lawrence Berkeley National Laboratory) and including Drs Les Braby, John Ford (Texas A&M) and Kathy Held (MGH Boston), which was developing an integrated theoretical and experimental model of the radiation-induced bystander response. Our part of the study has been to determine the effectiveness of soft X-rays at inducing chromosomal damage under conditions of direct and bystander exposure. The aim was to compare this with the effectiveness of the low energy 60 kV electron microbeam available at Texas A&M. Previous studies have been performed withmore » primary human fibroblasts measuring micronuclei formation to determine the relative yields of direct versus bystander mediated micronuclei formation after cells were individually irradiated utilizing our novel focused soft X-ray microprobe, which is capable of producing localized submicron beams of carbon-K (278 eV) X-rays. Only a brief overview is given here as the study has been published in several papers. Our original hypothesis was to study yields of bystander-induced micronucleated cells in both wild-type and mutant fibroblast from mouse embryo fibroblasts. Difficulties with the level of background micronuclei in the MEFs prevented systematic studies of bystander responses in the laboratories involved in the collaboration. We then performed these studies with AG1522 primary human fibroblast cells using a siRNA approach developed by John Ford at Texas A&M to knock down DNA PKcs in the first instance. Our soft X-ray source has been in routine use for carbon-K X-rays and is now available with Aluminium-K (1.49 keV) and titanium-K (4.5 keV), although the dose-rate from titanium is still too low at present for most experiments, where large numbers of cells need to be exposed. A separately funded project developed a new soft X-ray microprobe which will give much greater flexibility for changing energies and giving high dose-rates for exposures (See DE-FG02-01ER63236). However, we performed pilot studies measuring bystander responses with titanium-K. To date we have performed studies with V79 cells measuring cell survival as an endpoint and are starting studies in our human fibroblasts to measure micronuclei yields. A significant bystander response is observed in the V79 cells under conditions where only a single cell within a population was irradiated either with carbon-K or titanium-K X-rays. Typically around 10% cell killing is observed under these conditions. These studies are now being extended to measure micronuclei yields in the AG1522 cells under direct and bystander conditions. Our work has suggested that the yield of micronuclei in fibroblasts exposed to soft X-rays may be reduced in comparison to conventional X-ray exposures (Prise et al., 2003). Although further studies are required to confirm this using a range of scoring times.« less

  7. Debris-free soft x-ray source with gas-puff target

    NASA Astrophysics Data System (ADS)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  8. The coolest DA white dwarfs detected at soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Kidder, K. M.; Holberg, J. B.; Barstow, M. A.; Tweedy, R. W.; Wesemael, F.

    1992-01-01

    New soft X-ray/EUV photometric observations of the DA white dwarfs KPD 0631 + 1043 = WD 0631 + 107 and PG 1113 + 413 = WD 1113 + 413 are analyzed. Previously reported soft X-ray detections of three other DAs and the failure to detect a fourth DA in deep Exosat observations are investigated. New ground-based spectra are presented for all of the objects, with IUE Ly-alpha spectra for some. These data are used to constrain the effective temperatures and surface gravities. The improved estimates of these parameters are employed to refer a photospheric He abundance for the hotter objects and to elucidate an effective observational low-temperature threshold for the detection of pure hydrogen DA white dwarfs at soft X-ray wavelengths.

  9. Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength.

    PubMed

    Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng

    2017-08-01

    Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.

  10. Electronic structure and soft-X-ray-induced photoreduction studies of iron-based magnetic polyoxometalates of type {(M)M5}12Fe(III)30 (M = Mo(VI), W(VI)).

    PubMed

    Kuepper, Karsten; Derks, Christine; Taubitz, Christian; Prinz, Manuel; Joly, Loïc; Kappler, Jean-Paul; Postnikov, Andrei; Yang, Wanli; Kuznetsova, Tatyana V; Wiedwald, Ulf; Ziemann, Paul; Neumann, Manfred

    2013-06-14

    Giant Keplerate-type molecules with a {Mo72Fe30} core show a number of very interesting properties, making them particularly promising for various applications. So far, only limited data on the electronic structure of these molecules from X-ray spectra and electronic structure calculations have been available. Here we present a combined electronic and magnetic structure study of three Keplerate-type nanospheres--two with a {Mo72Fe30} core and one with a {W72Fe30} core by means of X-ray absorption spectroscopy, X-ray magnetic circular dichroism (XMCD), SQUID magnetometry, and complementary theoretical approaches. Furthermore, we present detailed studies of the Fe(3+)-to-Fe(2+) photoreduction process, which is induced under soft X-ray radiation in these molecules. We observe that the photoreduction rate greatly depends on the ligand structure surrounding the Fe ions, with negatively charged ligands leading to a dramatically reduced photoreduction rate. This opens the possibility of tailoring such polyoxometalates by X-ray spectroscopic studies and also for potential applications in the field of X-ray induced photochemistry.

  11. Soft X-ray photoemission study of Co2(Cr1-xFex)Ga Heusler compounds

    NASA Astrophysics Data System (ADS)

    Tsunekawa, Masanori; Hattori, Yoshiro; Sekiyama, Akira; Fujiwara, Hidenori; Suga, Shigemasa; Muro, Takayuki; Kanomata, Takeshi; Imada, Shin

    2015-08-01

    We have performed soft X-ray photoemission spectroscopy (SXPES) and X-ray absorption spectroscopy (XAS) of the Co-based Heusler compounds Co2(Cr1-xFex)Ga (x = 0.0, 0.4, and 1.0) in order to study their electronic structures. Band-structure calculation was carried out and compared with the experimental results. SXPES spectra show hν-dependence, revealing the contributions of the Co, Cr, and Fe 3d electronic states in the valence band. The band width observed by the SXPES seems to be narrower than that predicted by the band-structure calculation. XAS spectra depend strongly on the the value of x in Co2(Cr1-xFex)Ga. The electron correlation effects are found to be stronger as x changes from 0.0 to 1.0.

  12. An astrophysics data program investigation of a synoptic study of quasar continua

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    1991-01-01

    A summary of the program is presented. The major product of the program, an atlas of quasar energy distributions, is presented in the appendices along with papers written as a result of this research. The topics covered in the papers include: (1) accurate galactic N(sub h) values toward quasars and active galactic nuclei (AGN); (2) weak bump quasars; (3) millimeter measurements of hard x ray selected active galaxies- implications for the nature of the continuous spectrum; (3) persistence and change in the soft x ray spectrum of the quasar PG1211+143; (4) the soft x ray excess in einstein quasar spectra; and (5) EXOSAT x ray spectra of quasars.

  13. Multiwavelength Observations of the 2002 Outburst of GX 339-4: Two Patterns of X-Ray-Optical/Near-Infrared Behavior

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; Buxton, Michelle; Markoff, Sera; Bailyn, Charles D.; Nespoli, Elisa; Belloni, Tomaso

    2005-05-01

    We report on quasi-simultaneous Rossi X-Ray Timing Explorer and optical/near-infrared (NIR) observations of the black hole candidate X-ray transient GX 339-4. Our observations were made over a time span of more than 8 months in 2002 and cover the initial rise and transition from a hard to a soft spectral state in X-rays. Two distinct patterns of correlated X-ray-optical/NIR behavior were found. During the hard state, the optical/NIR and X-ray fluxes correlated well, with a NIR versus X-ray flux power-law slope similar to that of the correlation found between X-ray and radio fluxes in previous studies of GX 339-4 and other black hole binaries. As the source went through an intermediate state, the optical/NIR fluxes decreased rapidly, and once it had entered the spectrally soft state, the optical/NIR spectrum of GX 339-4 was much bluer, and the ratio of X-ray to NIR flux was higher by a factor of more than 10 compared to the hard state. In the spectrally soft state, changes in the NIR preceded those in the soft X-rays by more than 2 weeks, indicating a disk origin of the NIR emission and providing a measure of the viscous timescale. A sudden onset of NIR flaring of ~0.5 mag on a timescale of 1 day was also observed during this period. We present spectral energy distributions, including radio data, and discuss possible sources for the optical/NIR emission. We conclude that, in the hard state, this emission probably originates in the optically thin part of a jet and that in none of the X-ray states is X-ray reprocessing the dominant source of optical/NIR emission. Finally, comparing the light curves from the all-sky monitor (ASM) and Proportional Counter Array (PCA) instruments, we find that the X-ray/NIR delay depends critically on the sensitivity of the X-ray detector, with the delay inferred from the PCA (if present at all) being a factor of 3-6 times shorter than the delay inferred from the ASM; this may be important in interpreting previously reported X-ray-optical/NIR lags.

  14. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  15. A comprehensive study of high-energy gamma-ray and radio emission from Cyg X-3

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Malyshev, Denys; Dubus, Guillaume; Pooley, Guy G.; Johnson, Tyrel; Frankowski, Adam; de Marco, Barbara; Chernyakova, Maria; Rao, A. R.

    2018-06-01

    We study high-energy γ-rays observed from Cyg X-3 by the Fermi Large Area Telescope and the 15-GHz emission observed by the Ryle Telescope and the Arcminute Microkelvin Imager. We measure the γ-ray spectrum averaged over strong flares much more accurately than before, and find it well modelled by Compton scattering of stellar radiation by relativistic electrons with the power law index of ≃3.5 and a low-energy cutoff at the Lorentz factor of ˜103. We find a weaker spectrum in the soft spectral state, but only upper limits in the hard and intermediate states. We measure strong orbital modulation during the flaring state, well modelled by anisotropic Compton scattering of blackbody photons from the donor by jet relativistic electrons. We discover a weaker orbital modulation of the 15 GHz radio emission, which is well modelled by free-free absorption by the stellar wind. We then study cross-correlations between radio, γ-ray and X-ray emissions. We find the cross-correlation between the radio and γ-ray emissions peaks at a lag less than 1 d, while we detect a distinct radio lag of ˜50 d with respect to the soft X-rays in the soft spectral state.

  16. Advances in photographic X-ray imaging for solar astronomy

    NASA Technical Reports Server (NTRS)

    Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.

    1989-01-01

    The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.

  17. A deep X-ray view of the bare AGN Ark 120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    NASA Astrophysics Data System (ADS)

    Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.

    2018-01-01

    Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe 0.5 keV), optically-thick corona (τ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.

  18. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  19. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    PubMed

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-03

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  20. Assessment of surface roughness by use of soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Meng, Yan-li; Wang, Yong-gang; Chen, Shu-yan; Chen, Bo

    2009-08-01

    A soft x-ray reflectometer with laser produced plasma source has been designed, which can work from wavelength 8nm to 30 nm and has high performance. Using the soft x-ray reflectometer above, the scattering light distribution of silicon and zerodur mirrors which have super-smooth surfaces could be measured at different incidence angle and different wavelength. The measurement when the incidence angle is 2 degree and the wavelength is 11nm has been given in this paper. A surface scattering theory of soft x-ray grazing incidence optics based on linear system theory and an inverse scattering mathematical model is introduced. The vector scattering theory of soft x-ray scattering also is stated in detail. The scattering data are analyzed by both the methods above respectively to give information about the surface profiles. On the other hand, both the two samples are measured by WYKO surface profiler, and the surface roughness of the silicon and zerodur mirror is 1.3 nm and 1.5nm respectively. The calculated results are in quantitative agreement with those measured by WYKO surface profiler, which indicates that soft x-ray scattering is a very useful tool for the evaluation of highly polished surfaces. But there still some difference among the results of different theory and WYKO, and the possible reasons of such difference have been discussed in detail.

  1. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  2. Soft-X-Ray Prefilter for Hot, Bright Objects

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Ortendahl, J. A.

    1985-01-01

    Prefilters consisting of beryllium foil supported on conductive silver mesh transmit soft x-rays but are nearly opaque to visible and infrared light. New Be/AG filters protect imaging X-ray detectors from damage by visible and longer wavelength radiation when viewing such hot, bright emitters as Sun or possibly certain industrial processes.

  3. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  4. Soft X-ray observations of two BL Lacertae objects - Markarian 421 and 501

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Garmire, G. P.

    1985-01-01

    This paper reports on the soft X-ray (0.15-2.8 keV) observations of two BL Lacertae-type objects, viz., Mrk 421 and Mrk 501. The observations were made with the low-energy detectors on the HEAO 1 satellite during the period 1977 August-1978 December. Steep, soft X-ray power-law spectra with photon index Gamma = 3 are found for both Mrk 421 and Mrk 501. The power-law models are found to give a significantly better fit than the thermal models to the observed pulse-height spectra of Mrk 421 and Mrk 501. Day-to-day soft X-ray (0.25 keV band) intensity variations are observed only in Mrk 501. No significant change is found in Gamma from both the BL Lac objects during the period of observations. However, the sum of all the X-ray observations from 1976 until 1980 can be understood in terms of two spectral components of variable intensity to account for the X-ray emission observed between 0.15 and 20 keV from Mrk 421 and Mrk 501.

  5. Soft x-ray streak camera for laser fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV aremore » also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.« less

  6. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

  7. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  8. X-Ray-induced Deuterium Enrichment of N-rich Organics in Protoplanetary Disks: An Experimental Investigation Using Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Remusat, Laurent; Roskosz, Mathieu; Popescu, Horia; Jaouen, Nicolas; Sandt, Christophe; Jäger, Cornelia; Henning, Thomas; Simionovici, Alexandre; Lemaire, Jean Louis; Mangin, Denis; Carrasco, Nathalie

    2017-05-01

    The deuterium enrichment of organics in the interstellar medium, protoplanetary disks, and meteorites has been proposed to be the result of ionizing radiation. The goal of this study is to simulate and quantify the effects of soft X-rays (0.1-2 keV), an important component of stellar radiation fields illuminating protoplanetary disks, on the refractory organics present in the disks. We prepared tholins, nitrogen-rich organic analogs to solids found in several astrophysical environments, e.g., Titan’s atmosphere, cometary surfaces, and protoplanetary disks, via plasma deposition. Controlled irradiation experiments with soft X-rays at 0.5 and 1.3 keV were performed at the SEXTANTS beamline of the SOLEIL synchrotron, and were immediately followed by ex-situ infrared, Raman, and isotopic diagnostics. Infrared spectroscopy revealed the preferential loss of singly bonded groups (N-H, C-H, and R-N≡C) and the formation of sp3 carbon defects with signatures at ˜1250-1300 cm-1. Raman analysis revealed that, while the length of polyaromatic units is only slightly modified, the introduction of defects leads to structural amorphization. Finally, tholins were measured via secondary ion mass spectrometry to quantify the D, H, and C elemental abundances in the irradiated versus non-irradiated areas. Isotopic analysis revealed that significant D-enrichment is induced by X-ray irradiation. Our results are compared to previous experimental studies involving the thermal degradation and electron irradiation of organics. The penetration depth of soft X-rays in μm-sized tholins leads to volume rather than surface modifications: lower-energy X-rays (0.5 keV) induce a larger D-enrichment than 1.3 keV X-rays, reaching a plateau for doses larger than 5 × 1027 eV cm-3. Synchrotron fluences fall within the expected soft X-ray fluences in protoplanetary disks, and thus provide evidence of a new non-thermal pathway to deuterium fractionation of organic matter.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.L.; Rosen, M.D.

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widelymore » known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.« less

  10. Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX.

    PubMed

    Bush, C E; Stratton, B C; Robinson, J; Zakharov, L E; Fredrickson, E D; Stutman, D; Tritz, K

    2008-10-01

    A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results.

  11. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  12. An extreme ultraviolet telescope with no soft X-ray response

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    While EUV grazing incidence telescopes of conventional design exhibit a substantial X-ray response as well as an extreme UV response, and existing bandpass filters for the transmission of radiation longward of 400 A also transmit soft X-rays, the grazing incidence telescope presented suppresses this soft X-ray throughput through the incorporation of a Wolter Schwarzschild Type II mirror with large graze angles. The desirable features of an EUV photometric survey telescope are retained. An instrument of this design will be flown on the EUE mission, in order to make a survey of the sky at wavelengths longer than 400 A.

  13. Erratum: Correction to: Long- and Mid-Term Variations of the Soft X-ray Flare Character in Solar Cycles

    NASA Astrophysics Data System (ADS)

    Chertok, I. M.; Belov, A. V.

    2018-03-01

    Correction to: Solar Phys https://doi.org/10.1007/s11207-017-1169-1 We found an important error in the text of our article. On page 6, the second sentence of Section 3.2 "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± one Carrington rotation with a step of two rotations." should instead read "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± 2.5 Carrington rotations with a step of two rotations." We regret the inconvenience. The online version of the original article can be found at https://doi.org/10.1007/s11207-017-1169-1

  14. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, B.; Ponti, G.; Nandra, K.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less

  15. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  16. Hydrogen line ratios in Seyfert galaxies and low redshift quasars

    NASA Technical Reports Server (NTRS)

    Kriss, G. R.

    1984-01-01

    New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.

  17. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  18. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and halo gas without strongly affecting the gaseous disk, thus creating conditions for virtually free vertical escape of the hot gas at the later, much more violent supernova-dominated phases of the starburst. We calculate the luminosity, mass, and effective temperature of the X-ray emitting gas in the 'soft' (0.1 to 0.7 keV, 0.7 to 2.2 keV, and 0.1 to 2.2 keV) and 'hard' (1.6 to 8.3 keV) energy bands and estimate the contribution of different gaseous components to the X-ray flux in these bands. Analysis of these parameters enables us to make conclusions regarding the nature of the X-ray-emitting material. We have inferred that the bulk of the soft thermal X-ray emission from starbursts arises in the wind-shocked material of the disk and halo gas rather than in the wind material itself. This enables us to predict that the integrated soft X-ray spectra of starbursts need not show an overabundance of heavy elements which are believed to be produced copiously in the centers of starbursts. Unlike soft X-ray emission, the hard component of thermal X-ray emission is found to originate in the wind material ejected from the starburst region. However, the derived ratio of hard-to-soft X-ray luminosities is too small compared to that observed in starbursts. We conclude therefore that the observed hard X-ray emission of starbursts is probably not associated with the thermal emission of hot wind or ambient shocked gas. Typical temperatures of the bulk of the soft X-ray-emitting material in our very different models have been found to agree well with the ones estimated on the basis of the ROSAT data for the soft component of X-ray emission of nearby starbursts. We predict that temperatures of the extranuclear soft X-ray-emitting gas in starburst galaxies with heavy element abundances near solar should be close to T(sub Xs = 2 to 5 x 10(exp 6)K.

  19. A search for soft X-ray emission from red-giant coronae

    NASA Technical Reports Server (NTRS)

    Margon, B.; Mason, K. O.; Sanford, P. W.

    1974-01-01

    Hills has pointed out that if red-giant coronae are weak sources of soft X-rays, then the problems of the identification of the local component of the soft X-ray background and the observed lack of gas in globular clusters may be simultaneously resolved. Using instrumentation aboard OAO Copernicus, we have searched unsuccessfully for emission in the 10-100 A band from four nearby red giants. In all cases, our upper limits are of the order of the minimum theoretically predicted fluxes.

  20. X-ray and optical observations of four polars

    NASA Astrophysics Data System (ADS)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ I ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail appear to be normal polars with luminosities and magnetic field strengths typical for this class of accreting binary. None of the four systems studied shows the strong soft excess thought commonplace in polars prior to the XMM-Newton era. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  1. X-ray observations of two short but intense solar flares

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Dennis, Brian R.; Kiplinger, Alan L.

    1990-01-01

    This paper presents continuum X-ray spectra of impulsive emission in two short but intense solar flares which have relatively weak soft X-ray emissions, combining data obtained with soft X-ray and hard X-ray spectrometers on board two satellites, the SMM and Hinotori. In both flares, photon spectra of the impulsive component are found to flatten toward low energies, suggesting that a low-energy cutoff of the electron spectrum could be greater than about 50 keV and that the total energy contained in the electrons is significantly less than that usually quoted for a cutoff energy of about 20 keV. Different shapes of the X-ray spectrum at energies below 50 keV in other flares can be attributed to the variety in the relative strength of gradual and impulsive emissions. In one of the two flares, observations with the imager on Hinotori suggest that hard X-ray emission is likely to be associated with loop footpoints. It is argued that contamination by the gradual soft X-ray emission and/or the asymmetry of loops could explain the detection of single sources in the majority of flares that have been imaged in hard X-rays.

  2. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  3. Observations of the variability of coronal bright points by the Soft X-ray Telescope on Yohkoh

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Harvey, Karen; Hirayama, Tadashi; Nitta, Nariaki; Shimizu, Toshifumi; Tsuneta, Saku

    1992-01-01

    We present the initial results of a study of X-ray bright points (XBPs) made with data from the Yohkoh Soft X-ray Telescope. High temporal and spatial resolution observations of several XBPs illustrate their intensity variability over a wide variety of time scales from a few minutes to hours, as well as rapid changes in their morphology. Several XBPs produced flares during their lifetime. These XBP flares often involve magnetic loops, which are considerably larger than the XBP itself, and which brighten along their lengths at speeds of up to 1100 km/s.

  4. Soft x-ray spectroscopy of high pressure liquid.

    PubMed

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; Macdougall, James; Pepper, John; Armitage, Kevin; Borsos, Jason; Knauss, Kevin G; Lee, Namhey; Allézy, Arnaud; Gilbert, Benjamin; MacDowell, Alastair A; Liu, Yi-Sheng; Glans, Per-Anders; Sun, Xuhui; Chao, Weilun; Guo, Jinghua

    2018-01-01

    We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3 N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3 N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3 N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length of the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3 N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3 N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (∼350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.

  5. Soft x-ray spectroscopy of high pressure liquid

    DOE PAGES

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; ...

    2018-01-01

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  6. Soft x-ray spectroscopy of high pressure liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  7. Determination of Differential Emission Measure Distribution of Coronal Structures Observed by SphinX During Recent Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kowalinski, Miroslaw

    SphinX is a high-sensitivity soft X-ray spectrophotometer which measures soft X-ray spectra in the energy range between 0.8 keV and 15 keV. From February to November 2009 the instrument has observed unusually quiet solar coronal emission as well as a number of weak solar flares. Based on SphinX spectra it is possible to study the differential emission measure distributions (DEM) in the temperature range roughly between 1 MK and 10 MK. The aim of the present study is to unveil DEM plasma distributions for selected activity conditions and analyze their variability.

  8. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  9. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  10. TWO DISTINCT-ABSORPTION X-RAY COMPONENTS FROM TYPE IIn SUPERNOVAE: EVIDENCE FOR ASPHERICITY IN THE CIRCUMSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuda, Satoru; Tsuboi, Yohko; Maeda, Keiichi

    2016-12-01

    We present multi-epoch X-ray spectral observations of three Type IIn supernovae (SNe), SN 2005kd, SN 2006jd, and SN 2010jl, acquired with Chandra , XMM-Newton , Suzaku , and Swift . Previous extensive X-ray studies of SN 2010jl have revealed that X-ray spectra are dominated by thermal emission, which likely arises from a hot plasma heated by a forward shock propagating into a massive circumstellar medium (CSM). Interestingly, an additional soft X-ray component was required to reproduce the spectra at a period of ∼1–2 years after the SN explosion. Although this component is likely associated with the SN, its origin remained an open question. Wemore » find a similar, additional soft X-ray component from the other two SNe IIn as well. Given this finding, we present a new interpretation for the origin of this component; it is thermal emission from a forward shock essentially identical to the hard X-ray component, but directly reaches us from a void of the dense CSM. Namely, the hard and soft components are responsible for the heavily and moderately absorbed components, respectively. The co-existence of the two components with distinct absorptions as well as the delayed emergence of the moderately absorbed X-ray component could be evidence for asphericity of the CSM. We show that the X-ray spectral evolution can be qualitatively explained by considering a torus-like geometry for the dense CSM. Based on our X-ray spectral analyses, we estimate the radius of the torus-like CSM to be on the order of ∼5 × 10{sup 16} cm.« less

  11. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  12. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  13. Long pulse Soft X-ray Emission from Laser Generated Irradiated Gold Foils

    NASA Astrophysics Data System (ADS)

    Davis, Joshua; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Keiter, Paul; Klein, Sallee; Drake, R. P.; Shvarts, Dov

    2016-10-01

    Long pulse soft x-ray sources (SXS) allow for flexibility in high-energy-density experimental designs by providing a means of driving matter to the high temperatures needed, for example to study radiation waves in different materials. SXSs can be made by using lasers to heat a high-Z thin foil, which then acts as a quasi-blackbody emitter. Previous studies of the x-ray emission characteristics of gold foils have focused on laser pulses of 1ns or less. We performed experiments using a 6.0ns laser pulse with energy of 2kJ on the Omega-60 system to generate and characterize multi-ns laser heated Au foils of thicknesses between 0.5-2.0 μm. We measured the 2D spatial profile of the emission with a soft x-ray camera and the time history of the emission with the Dante photodiode array . Effective temperatures for the emission were then calculated using the Dante measurements. Discussion of experimental results and a comparison with 1-D Rad-Hydro NLTE simulations will be presented.

  14. Effects of rare-earth size on the electronic structure of La1−xLuxVO3.

    PubMed

    Chen, B; Laverock, J; Newby, D; McNulty, J F; Smith, K E; Glans, P-A; Guo, J-H; Qiao, R-M; Yang, W-L; Lees, M R; Tung, L D; Singh, R P; Balakrishnan, G

    2015-03-18

    The electronic structure of La(1-x)Lu(x)VO(3)(x = 0, 0.2, 0.6 and 1) single crystals has been investigated using soft x-ray absorption spectroscopy, soft x-ray emission spectroscopy, and resonant soft x-ray inelastic scattering to study the effects of rare-earth size. The x-ray absorption and emission spectra at the O K-edge present a progressive evolution with R-site cation, in agreement with local spin density approximation calculations. This evolution with R, together with the temperature dependence of the O K-edge spectra, is attributed to changes in the crystal structure of La(1-x)Lu(x)VO(3). The crystal-field dd. excitations probed by resonant inelastic x-ray scattering at the V L(3)-edge exhibit an increase in energy and enhanced intensity with the decrease of R-site ionic radius, which is mainly attributed to the increased tilting magnitude of the VO(6) octahedra. Upon cooling to ~95 K, the dd* excitations are prominently enhanced in relative Intensity, in agreement with the formation of the Jahn.Teller distortion int he orbital ordering phase. Additionally, the dd* transitions of the mixed compounds are noticeably suppressed with respect to those of the pure compounds, possibly owing to the formation of C-type orbital ordering induced by large R-site size variances.

  15. Testing Solar Flare Models with BATSE

    NASA Astrophysics Data System (ADS)

    Zarro, Dominic M.

    1995-07-01

    We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.

  16. On the origin of the soft X-ray background. [in cosmological observations

    NASA Technical Reports Server (NTRS)

    Wang, Q. D.; Mccray, Richard

    1993-01-01

    The angular autocorrelation function and spectrum of the soft X-ray background is studied below a discrete source detection limit, using two deep images from the Rosat X-ray satellite. The average spectral shape of pointlike sources, which account for 40 to 60 percent of the background intensity, is determined by using the autocorrelation function. The background spectrum, in the 0.5-0.9 keV band (M band), is decomposed into a pointlike source component characterized by a power law and a diffuse component represented by a two-temperature plasma. These pointlike sources cannot contribute more than 60 percent of the X-ray background intensity in the M band without exceeding the total observed flux in the R7 band. Spectral analysis has shown that the local soft diffuse component, although dominating the background intensity at energies not greater than 0.3 keV, contributes only a small fraction of the M band background intensity. The diffuse component may represent an important constituent of the interstellar or intergalactic medium.

  17. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  18. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  19. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column density, and also by the requirement that the Rayleigh-Jeans extrapolation of the soft x ray spectrum not exceed the observed blue flux of the faint optical counterpart. This distance estimate implies that Geminga's efficiency for converting spindown power into gamma-rays is near unity, and that there may be significant beaming of the gamma rays as well. These results tend to bolster the prospect that most of the unidentified high-energy gamma ray sources in the Galactic plane are pulsars, some of which may be radio quiet.

  20. Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: a transition in hydrodynamic behavior for plasma columns with widths ranging from 20 μm to 2 mm.

    PubMed

    Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien

    2010-11-01

    Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.

  1. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE PAGES

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; ...

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10 4 achieved routinely today to well above 10 5. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations inmore » matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less

  2. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  3. Nitrogen soft and hard X-ray emissions using different shapes of anodes in a 4-kJ plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahtab, M., E-mail: m.mahtab.83@gmail.com; Habibi, M., E-mail: mortezahabibi@aut.ac.ir

    2013-12-15

    The effect of different anode tip geometries on the intensity of soft and hard X-rays emitted from a 4-kJ plasma focus device is investigated using five different anode tips. The shapes of the uppermost region of these anodes (tips) have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat, and cone-hollow. For time-resolved measurement of the emitted X-rays, several BPX-65 pin diodes covered by different filters and a fast plastic scintillator are used. Experimental results have shown that, the highest intensity of the both soft and hard X-ray is recorded in cone-flat, spherical-convex, and cone-hollow tips, respectively. The use of cone-flat anode tip hasmore » augmented the emitted X-ray three times.« less

  4. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  5. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  6. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    NASA Astrophysics Data System (ADS)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  7. X-ray spectral hardening and radio non-detection of MAXI J1535-571

    NASA Astrophysics Data System (ADS)

    Russell, T. D.; Altamirano, S. Rapisarda. D.; Miller-Jones, J. C. A.; Plotkin, R.; Tetarenko, A. J.; Sivakoff, G. R.; JACPOT XRB Collaboration

    2018-05-01

    MAXI J1535-571 (ATels #10699, #10700, #10702, #10704, #10708, #10711, #10716) has been in a soft X-ray spectral state since late November (ATel #11020). The source has remained in this soft state down to X-ray luminosities much lower than typically seen (ATel #11568), and is currently below MAXI and BAT sensitivity limits.

  8. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales.

    PubMed

    Grunwaldt, Jan-Dierk; Schroer, Christian G

    2010-12-01

    X-ray microscopic techniques are excellent and presently emerging techniques for chemical imaging of heterogeneous catalysts. Spatially resolved studies in heterogeneous catalysis require the understanding of both the macro and the microstructure, since both have decisive influence on the final performance of the industrially applied catalysts. A particularly important aspect is the study of the catalysts during their preparation, activation and under operating conditions, where X-rays have an inherent advantage due to their good penetration length especially in the hard X-ray regime. Whereas reaction cell design for hard X-rays is straightforward, recently smart in situ cells have also been reported for the soft X-ray regime. In the first part of the tutorial review, the constraints from a catalysis view are outlined, then the scanning and full-field X-ray microscopy as well as coherent X-ray diffraction imaging techniques are described together with the challenging design of suitable environmental cells. Selected examples demonstrate the application of X-ray microscopy and tomography to monitor structural gradients in catalytic reactors and catalyst preparation with micrometre resolution but also the possibility to follow structural changes in the sub-100 nm regime. Moreover, the potential of the new synchrotron radiation sources with higher brilliance, recent milestones in focusing of hard X-rays as well as spatiotemporal studies are highlighted. The tutorial review concludes with a view on future developments in the field of X-ray microscopy that will have strong impact on the understanding of catalysts in the future and should be combined with in situ electron microscopic studies on the nanoscale and other spectroscopic studies like microRaman, microIR and microUV-vis on the macroscale.

  9. Generation of the Submicron Soft X-Ray Beam Using a Fresnel Zone Plate

    NASA Astrophysics Data System (ADS)

    Nishikino, M.; Kawazome, H.; Tanaka, M.; Kishimoto, M.; Hasegawa, N.; Ochi, Y.; Kawachi, T.; Sukegawa, K.; Yamatani, H.; Nagashima, K.; Kato, Y.

    We have developed a fully coherent x-ray laser at 13.9 nm and the application research has been started. The generation of submicron x-ray beam is important for the application of high intensity x-ray beam, such as the non-linear optics, the material science, and the biology. The submicron x-ray bee am is generated by the soft x-ray laser with using a Fresnel zone plate. The spot diameter is estimated about 680 nm (290 nm at FWHM) by the theoretical calculation. In this experiment, the diameter of the x-ray beam is measured by the knife-edge scan. The diameter and the intensity are estimated 730 nm (310 nm at FWHM) and 3x1011 W/cm2, respectively.

  10. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  11. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    NASA Astrophysics Data System (ADS)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  12. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser-plasma radiation

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Richardson, Martin C.; Gaebel, Kai; Torres, David S.; Rajyaguru, Jayshree; Muszynski, Michael J.

    1995-09-01

    X-ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichis coli, and Lipopolysacchride from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x-rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50nm spatial resolutions are achieved and images are able to be discussed on the biological view.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Mejia, Fermin; Herrera-Velazquez, J. Julio E.; Gamboa-deBuen, I.

    The Fuego Nuevo II (FN-II) dense plasma focus device is a small machine (4.6 kJ), operating at the Instituto de Ciencias Nucleares, UNAM, in which neutrons, as well as soft and hard X rays have been studied with a number of diagnostics. Neutrons are studied with silver activation counters, and scintillator-photomultiplier detectors, while their angular distribution inside and outside the discharge chamber have been studied with CR-39 plastic track detectors. The soft X rays are studied with a multiple-pin-hole camera and PIN diodes, while the hard X-rays are observed with the scintillator-photomultiplier detectors mentioned above. When a needle is insertedmore » on the inner electrode, a bright spot of hard x-rays can be concentrated, and used for the production of high-contrast radiography. Dosimetric measurements have been made for X-rays crossing a 300 micron aluminum window, through the axis of the machine, showing an average dose of 0.11{+-}0.01 mGy per shot. In contrast, the average dose with a hollow cathode is 0.077{+-}0.006 mGy per shot.« less

  14. Spatial imaging in the soft x-ray region (20--304 A) utilizing the astigmatism of a grazing incidence concave grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nudelfuden, A.; Solanki, R.; Moos, H.W.

    1985-03-15

    Soft x-ray (20--304--A) astigmatic line shapes were measured in order to evaluate the spatial imaging properties of a Rowland mounted concave grating in grazing incidence. The practicability of coarse 1-D spatial imaging in the soft x-ray region is demonstrated. Spatial resolution equivalent to approx.4 cm at a source distance of 2 m can be achieved with practical parameters (e.g., sensitivity and time resolution) for a fusion diagnostic spectrograph. The results are compared to computer-generated ray tracings and found to be in good agreement. The ray tracing program which models the grazing incidence optics is discussed.

  15. Solar-A Prelaunch Mission Operation Report (MOR)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Solar-A mission is a Japanese-led program with the participation of the United States and the United Kingdom. The Japanese Institute of Space and Astronautical Science (ISAS) is providing the Solar-A spacecraft, two of the four science instruments, the launch vehicle and launch support, and the principal ground station with Operational Control Center. NASA is providing a science instrument, the Soft X-ray Telescope (SXT)and tracking support using the Deep Space Network (DSN) ground stations. The United Kingdom s Science and Engineering Research Council (SERC) provides the Bragg Crystal Spectrometer. The Solar-A mission will study solar flares using a cluster of instruments on a satellite in a 600 km altitude, 31 degree inclination circular orbit. The emphasis of the mission is on imaging and spectroscopy of hard and soft X-rays. The principal instruments are a pair of X-ray imaging instruments, one for the hard X-ray range and one for the soft X-ray range. The Hard X-Ray Telescope (HXT), provided by ISAS, operates in the energy range of 10-100 keV and uses an array of modulation collimators to record Fourier transform images of the non-thermal and hot plasmas that are formed during the early phases of a flare. These images are thought to be intimately associated with the sites of primary energy release. The Soft X-Ray Telescope (SXT), jointly provided by NASA and ISAS, operates in the wavelength range of 3-50 Angstroms and uses a grazing incidence mirror to form direct images of the lower temperature (but still very hot) plasmas that form as the solar atmosphere responds to the injection of energy. The SXT instrument is a joint development effort between the Lockheed Palo Alto Research Laboratory and the National Astronomical Observatory of Japan. The U.S. effort also involves Stanford University, the University of California at Berkeley and the University of Hawaii, who provide support in the areas of theory, data analysis and interpretation, and ground-based observations. The hard and soft X-ray telescopes both have an alignment sensor, operating in the visual region of the spectrum, to provide co-alignment information.

  16. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  17. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    DOE PAGES

    Ratner, D.; Abela, R.; Amann, J.; ...

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10 -4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  18. The Advanced Light Source (ALS) Slicing Undulator Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, P. A.; Glover, T. E.; Plate, D.

    2007-01-19

    A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.

  19. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  20. The soft X-ray polychromator for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Finch, M. L.; Gilbreth, C. W.; Culhane, J. L.; Bentley, R. D.; Bowles, J. A.; Guttridge, P.; Gabriel, A. H.; Firth, J. G.; Hayes, R. W.

    1980-01-01

    The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.

  1. The soft X-ray polychromator for the Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Acton, L. W.; Culhane, J. L.; Gabriel, A. H.; Bentley, R. D.; Bowles, J. A.; Firth, J. G.; Finch, M. L.; Gilbreth, C. W.; Guttridge, P.; Hayes, R. W.; Joki, E. G.; Jones, B. B.; Kent, B. J.; Leibacher, J. W.; Nobles, R. A.; Patrick, T. J.; Phillips, K. J. H.; Rapley, C. G.; Sheather, P. H.; Sherman, J. C.; Stark, J. P.; Springer, L. A.; Turner, R. F.; Wolfson, C. J.

    1980-02-01

    The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.

  2. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: New soft X-ray spectrometer to investigate properties of hot plasma in the quiet Sun, active regions, and flares.

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Dennis, B. R.; Woods, T. N.

    2017-12-01

    Detection of soft X-rays from the Sun provides direct information on coronal plasma at temperatures in excess of 1 MK. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats provides new spectrally resolved measurements from 0.8 -12 keV. The MinXSS spectral resolving power (R 40 at 5.9 keV) allows plasma abundances to be determined for Fe, Mg, Ni, Ca, Si, S, and Ar. Long-term temporal variations during quiet-Sun times allow active region contributions to be extracted from the full solar flux. The MinXSS 10 second time cadence allows short-term variations of the soft X-ray flux, temperature, and abundances to be determined during flares. The MinXSS spectroscopic observations, combined with the imaging spectroscopy from the Hinode X-ray Telescope (XRT) and the Reuven Ramaty Solar Spectroscopic Imager (RHESSI), hold great potential for advancing our understanding of solar dynamics.

  3. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  4. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  5. Studies of BL Lacertae objects with the Einstein Observatory - The soft X-ray spectra of OJ 287 and PKS 0735+178

    NASA Technical Reports Server (NTRS)

    Madejski, Greg M.; Schwartz, Daniel A.

    1988-01-01

    Accurate, soft X-ray spectra of two BL Lac objects, OJ 287 and PKS 0735+178, are presented. The X-ray spectra are well described by a power-law model with a low-energy cutoff consistent with photoelectric absorption within the Galaxy. The best-fit values of the energy spectral index in the 0.2-4.0 keV band are 0.91 and 0.76 respectively. The X-ray flux from OJ 287 is variable by a ratio of three from low to high state; PKS 0735+178 shows no indication of X-ray variability. The X-ray emission in OJ 287 is interpreted to be due to the synchrotron process from a volume common with either a beamed radio component or a stationary optical component. In PKS 0735+178, where the X-ray emission is most likely due to the Compton process operating in one of the VLBI radio components. The synchrotron self-Compton process with modest kinematic Doppler factors predicts the measured X-ray flux from PKS 0735+178 and lower than the measured flux in OJ 287.

  6. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    NASA Astrophysics Data System (ADS)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis

    2017-12-01

    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

  7. Preliminary studies of radiation coupling between remote soft X-ray laser amplifiers

    NASA Astrophysics Data System (ADS)

    Cairns, G.; Lewis, C. L. S.; Macphee, A. G.; Neely, D.; Holden, M.; Krishnan, J.; Tallents, G. J.; Key, M. H.; Norreys, P. N.; Smith, C. G.; Zhang, J.; Holden, P. B.; Pert, G. J.; Plowes, J.; Ramsden, S. A.

    1994-01-01

    Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.

  8. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  9. Joule heating and runaway electron acceleration in a solar flare

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  10. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less

  11. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less

  12. Direct index of refraction measurements at extreme-ultraviolet and soft-x-ray wavelengths.

    PubMed

    Rosfjord, Kristine; Chang, Chang; Miyakawa, Ryan; Barth, Holly; Attwood, David

    2006-03-10

    Coherent radiation from undulator beamlines has been used to directly measure the real and imaginary parts of the index of refraction of several materials at both extreme-ultraviolet and soft-x-ray wavelengths. Using the XOR interferometer, we measure the refractive indices of silicon and ruthenium, essential materials for extreme-ultraviolet lithography. Both materials are tested at wavelength (13.4 nm) and across silicon's L2 (99.8 eV) and L3 (99.2 eV) absorption edges. We further extend this direct phase measurement method into the soft-x-ray region, where measurements of chromium and vanadium are performed around their L3 absorption edges at 574.1 and 512.1 eV, respectively. These are the first direct measurements, to our knowledge, of the real part of the index of refraction made in the soft-x-ray region.

  13. Science Objectives for a Soft X-ray Mission

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.

    2016-12-01

    When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.

  14. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    DOE PAGES

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; ...

    2018-01-08

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less

  15. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    NASA Astrophysics Data System (ADS)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T.-C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.

    2018-01-01

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (˜284 eV ) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

  16. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less

  17. Resonant soft X-ray scattering study of twist bend nematic, cholesteric and blue phases.

    NASA Astrophysics Data System (ADS)

    Slamonczyk, Miroslaw; Grecka, Ewa; Vaupotic, Natasa; Pociecha, Damian; Gleesom, Jim; Jakli, Antal; Sprunt, Sam; Wang, Cheng; Hexemer, Alexander; Zhu, Chenhui

    We have demonstrated that, when operated at carbon K-edge, the linearly polarized soft X-rays can enable bond orientation sensitivity, which can be utilized to probe the otherwise forbidden peak from the helices of twist bend nematic and helical nanofilament phase. Here we show that the same principle can be used to probe blue phase and chiral nematic phase. Furthermore, we discuss the relationship between the incoming linearly polarized X-rays, and the anisotropy in the scattering pattern. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231.

  18. Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1994-01-01

    We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.

  19. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  20. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  1. Observations of the structure and evolution of solar flares with a soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Gibson, E. G.; Landecker, P. B.; Mckenzie, D. L.; Underwood, J. M.

    1975-01-01

    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented.

  2. IUE and ROSAT monitoring of the bright QSO H1821+643

    NASA Technical Reports Server (NTRS)

    Halpern, Jules; Kolman, Michiel; Shrader, Chris; Filippenko, Alexei

    1991-01-01

    The analysis is presented of IUE observations of the bright QSO H1821+643, obtained during the ROSAT All Sky Survey (the RIASS program). The objectives were: (1) to establish whether the UV and soft X ray radiation have the same physical origin; and (2) to determine if this physical origin is an accretion disk. Supporting ground based spectrophotometry was also obtained. The analysis shows that the shape and flux level of the UV continuum did not vary among the seven IUE observation spanning one month, to an upper limit of about 8 percent. So it is of great interest to determine whether the soft X ray flux varied during this period. Since X ray variability in AGNs is often more rapid and of higher amplitude than in the UV, detection of X ray variability in the ROSAT data could severely challenge the accretion disk model for the soft X ray excess.

  3. The Soft-X-Ray Emission of Ark 120. XMM-Newton, NuSTAR, and the Importance of Taking the Broad View

    NASA Technical Reports Server (NTRS)

    Matt, G.; Marinucci, A.; Guainazzi, M.; Brenneman, L. W.; Elvis, M.; Lohfink, A.; Arevalo, P.; Boggs, S. E.; Cappi, M.; Stern, D.; hide

    2014-01-01

    We present simultaneous XMM-Newton and NuSTAR observations of the 'bare' Seyfert 1 galaxy, Ark 120, a system in which ionized absorption is absent. The NuSTAR hard-X-ray spectral coverage allows us to constrain different models for the excess soft-X-ray emission. Among phenomenological models, a cutoff power law best explains the soft-X-ray emission. This model likely corresponds to Comptonization of the accretion disc seed UV photons by a population of warm electrons: using Comptonization models, a temperature of approximately 0.3 kiloelectronvolts and an optical depth of approximately 13 are found. If the UV-to-X-ray OPTXAGNF model is applied, the UV fluxes from the XMM-Newton Optical Monitor suggest an intermediate black hole spin. Contrary to several other sources observed by NuSTAR, no high-energy cutoff is detected with a lower limit of 190 kiloelectronvolts.

  4. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delcamp, E.; Lagarde, B.; Polack, F.

    Though optimization softwares are commonly used in visible optical design, none seems to exist for soft X-ray optics. It is shown here that optimization techniques can be applied with some advantages to X-UV monochromator design. A merit function, suitable for minimizing the aberrations is proposed, and the general method of computation is described. Samples of the software inputs and outputs are presented, and compared to reference data. As an example of application to soft X-ray monochromator design, the optimization of the soft X-ray monochromator of the ESRF microscopy beamline is presented. Good agreement between the predicted resolution of a modifiedmore » PGM monochromator and experimental measurements is reported.« less

  6. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  7. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganezer, K; Krmar, M; Cvejic, Z

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less

  8. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  9. X-Ray-induced Deuterium Enrichment of N-rich Organics in Protoplanetary Disks: An Experimental Investigation Using Synchrotron Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavilan, Lisseth; Carrasco, Nathalie; Remusat, Laurent

    The deuterium enrichment of organics in the interstellar medium, protoplanetary disks, and meteorites has been proposed to be the result of ionizing radiation. The goal of this study is to simulate and quantify the effects of soft X-rays (0.1–2 keV), an important component of stellar radiation fields illuminating protoplanetary disks, on the refractory organics present in the disks. We prepared tholins, nitrogen-rich organic analogs to solids found in several astrophysical environments, e.g., Titan’s atmosphere, cometary surfaces, and protoplanetary disks, via plasma deposition. Controlled irradiation experiments with soft X-rays at 0.5 and 1.3 keV were performed at the SEXTANTS beamline ofmore » the SOLEIL synchrotron, and were immediately followed by ex-situ infrared, Raman, and isotopic diagnostics. Infrared spectroscopy revealed the preferential loss of singly bonded groups (N–H, C–H, and R–N≡C) and the formation of sp{sup 3} carbon defects with signatures at ∼1250–1300 cm{sup −1}. Raman analysis revealed that, while the length of polyaromatic units is only slightly modified, the introduction of defects leads to structural amorphization. Finally, tholins were measured via secondary ion mass spectrometry to quantify the D, H, and C elemental abundances in the irradiated versus non-irradiated areas. Isotopic analysis revealed that significant D-enrichment is induced by X-ray irradiation. Our results are compared to previous experimental studies involving the thermal degradation and electron irradiation of organics. The penetration depth of soft X-rays in μ m-sized tholins leads to volume rather than surface modifications: lower-energy X-rays (0.5 keV) induce a larger D-enrichment than 1.3 keV X-rays, reaching a plateau for doses larger than 5 × 10{sup 27} eV cm{sup −3}. Synchrotron fluences fall within the expected soft X-ray fluences in protoplanetary disks, and thus provide evidence of a new non-thermal pathway to deuterium fractionation of organic matter.« less

  10. Imaging the Nearby Seyfert 2 Galaxy NGC 1068, and Spectrum and Variability of Geminga

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1993-01-01

    The results of the research for NASA Grant NAG5-1606 are summarized in the following publications: (1) A ROSAT high resolution image of NGC 1068; (2) Discovery of soft x-ray pulsations from the gamma-ray source Geminga; and (3) Soft x-ray properties of the Geminga pulsar.

  11. Early Soft X-Ray to UV Emission from Double Neutron Star Mergers: Implications from the Long-term Observations of GW170817

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Yu; Huang, Zhi-Qiu

    2018-01-01

    Recent long-term radio follow-up observations of GW170817 reveal a simple power-law rising light curve, with a slope of {t}0.78, up to 93 days after the merger. The latest X-ray detection at 109 days is also consistent with such a temporal slope. Such a shallow rise behavior requires a mildly relativistic outflow with a steep velocity gradient profile, so that slower material with larger energy catches up with the decelerating ejecta and re-energizes it. It has been suggested that this mildly relativistic outflow may represent a cocoon of material. We suggest that the velocity gradient profile may form during the stage that the cocoon is breaking out of the merger ejecta, resulting from shock propagation down a density gradient. The cooling of the hot relativistic cocoon material immediately after it breaks out should have produced soft X-ray to UV radiation at tens of seconds to hours after the merger. The soft X-ray emission has a luminosity of {L}{{X}}∼ {10}45 {erg} {{{s}}}-1 over a period of tens of seconds for a merger event like GW170817. The UV emission shows a rise initially and peaks at about a few hours with a luminosity of {L}{UV}∼ {10}42 {erg} {{{s}}}-1. The soft X-ray transients could be detected by future wide-angle X-ray detectors, such as the Chinese mission Einstein Probe. This soft X-ray/UV emission would serve as one of the earliest electromagnetic counterparts of gravitation waves from double neutron star mergers and could provide the earliest localization of the sources.

  12. The HEAO-A2 soft X-ray survey of cataclysmic variable stars - EX Hydrae during optical quiescence

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Riegler, G. R.

    1979-01-01

    Results are reported for HEAO A2 soft X-ray (below 2 keV) scanning observations of the southern dwarf nova EX Hya. An X-ray light curve is presented which shows no apparent orbital modulation. The best-fitting spectral parameters are derived for the source, and the observations are compared with the spectral behavior of the dwarf nova SS Cyg during optical quiescence. The results are discussed in terms of models for X-ray production by accreting white dwarfs.

  13. Imaging local electric fields produced upon synchrotron X-ray exposure

    DOE PAGES

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...

    2014-12-31

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less

  14. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  15. Experimental demonstration of a soft x-ray self-seeded free-electron laser.

    PubMed

    Ratner, D; Abela, R; Amann, J; Behrens, C; Bohler, D; Bouchard, G; Bostedt, C; Boyes, M; Chow, K; Cocco, D; Decker, F J; Ding, Y; Eckman, C; Emma, P; Fairley, D; Feng, Y; Field, C; Flechsig, U; Gassner, G; Hastings, J; Heimann, P; Huang, Z; Kelez, N; Krzywinski, J; Loos, H; Lutman, A; Marinelli, A; Marcus, G; Maxwell, T; Montanez, P; Moeller, S; Morton, D; Nuhn, H D; Rodes, N; Schlotter, W; Serkez, S; Stevens, T; Turner, J; Walz, D; Welch, J; Wu, J

    2015-02-06

    The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users.

  16. A soft x-ray octadecyl hydrogen maleate crystal spectrograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, P.Z.; Fill, E.E.; Tietang, G.

    1996-03-01

    A crystal spectrograph is described which can be used to investigate laser-produced plasmas in the region of soft x rays at wavelengths of up to 60 A. The spectrograph uses an octadecyl hydrogen maleate crystal with a 2{ital d} of 63.5 A, combined with a very thin carbon filter (3000 A thick). As examples of its application, soft x-ray spectra in the range of 43{endash}51 A from laser plasmas of Si and Cu are presented. A spectral resolution of {lambda}/{Delta}{lambda}=1100 is deduced from the spectra. {copyright} {ital 1996 American Institute of Physics.}

  17. Structural and elemental changes in glioblastoma cells in situ: complementary imaging with high resolution visible light- and X-ray microscopy

    DOE PAGES

    Ducic, Tanja; Paunesku, Tatjana; Chen, Si; ...

    2016-12-09

    The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different samplemore » preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. In conclusion, each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.« less

  18. Structural and elemental changes in glioblastoma cells in situ: complementary imaging with high resolution visible light- and X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducic, Tanja; Paunesku, Tatjana; Chen, Si

    The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different samplemore » preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. In conclusion, each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.« less

  19. X-ray variability of Cygnus X-1 in its soft state

    NASA Technical Reports Server (NTRS)

    Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.

    1997-01-01

    Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.

  20. Two new intermediate polars with a soft X-ray component

    NASA Astrophysics Data System (ADS)

    Anzolin, G.; de Martino, D.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Gänsicke, B. T.; Matt, G.; Mukai, K.

    2008-10-01

    Aims: We analyze the first X-ray observations with XMM-Newton of 1RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as intermediate polars. Methods: For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. Results: We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 h that is longer than previously estimated. Both systems show complex spectra with a hard (temperature up to 40 keV) optically thin and a soft (kT ~ 85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Conclusions: Our observations confirm the two systems as intermediate polars and also add them as new members of the growing group of “soft” systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and with the Observatoire de Haute Provence (CNRS), France.

  1. Numerical experiments on neutron yield and soft x-ray study of a ˜100 kJ plasma focus using the current profile fitting technique

    NASA Astrophysics Data System (ADS)

    Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.

    2014-07-01

    Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.

  2. Hot and dense plasma probing by soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Krůs, M.; Kozlová, M.; Nejdl, J.; Rus, B.

    2018-01-01

    Soft X-ray lasers, due to their short wavelength, its brightness, and good spatial coherence, are excellent sources for the diagnostics of dense plasmas (up to 1025 cm-3) which are relevant to e.g. inertial fusion. Several techniques and experimental results, which are obtained at the quasi-steady state scheme being collisionally pumped 21.2 nm neon-like zinc laser installed at PALS Research Center, are presented here; among them the plasma density measurement by a double Lloyd mirror interferometer, deflectometer based on Talbot effect measuring plasma density gradients itself, with a following ray tracing postprocessing. Moreover, the high spatial resolution (nm scale) plasma images can be obtained when soft X-ray lasers are used.

  3. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; ...

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  4. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  5. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE PAGES

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...

    2017-12-07

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  6. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  7. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  8. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina

    Here we present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction formore » the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. Lastly, this will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.« less

  9. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    DOE PAGES

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; ...

    2016-11-10

    Here we present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction formore » the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. Lastly, this will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.« less

  10. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  11. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  12. Laser power meters as an X-ray power diagnostic for LCLS-II.

    PubMed

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  13. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE PAGES

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  14. Magnetic properties of strained multiferroic CoC r2O4 : A soft x-ray study

    NASA Astrophysics Data System (ADS)

    Windsor, Y. W.; Piamonteze, C.; Ramakrishnan, M.; Scaramucci, A.; Rettig, L.; Huever, J. A.; Bothschafter, E. M.; Bingham, N. S.; Alberca, A.; Avula, S. R. V.; Noheda, B.; Staub, U.

    2017-06-01

    Using resonant soft x-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoC r2O4 , a type-II multiferroic. The film is [110] oriented, such that both the ferroelectric and ferromagnetic moments can coexist in-plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. The transmission measurements utilized x-ray excited optical luminescence from the substrate. Resonant soft x-ray diffraction (RXD) was used to study the magnetic order of the low temperature phase. The XMCD signals of Co and Cr appear at the same ordering temperature TC≈90 K , and are always opposite in sign. The coercive field of the Co and of Cr moments is the same, and is approximately two orders of magnitude higher than in bulk. Through sum rules analysis an enlarged C o2 + orbital moment (mL) is found, which can explain this hardening. The RXD signal of the (q q 0) reflection appears below TS, the same ordering temperature as the conical magnetic structure in bulk, indicating that this phase remains multiferroic under strain. To describe the azimuthal dependence of this reflection, a slight modification is required to the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory for magnetic spinels.

  15. SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may havemore » relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.« less

  16. New developments in ALFT's soft x-ray point sources

    NASA Astrophysics Data System (ADS)

    Cintron, Dario F.; Guo, Xiaoming; Xu, Meisheng; Ye, Rubin; Antoshko, Yuriy; Antoshko, Yuriy; Drew, Steve; Philippe, Albert; Panarella, Emilio

    2002-07-01

    The new development in ALFT soft X-ray point source VSX-400 consists mainly of an improvement of the nozzle design to reduce the source size, as well as the introduction of a novel trigger system, capable of triggering the discharge hundreds of million of times without failure, and a debris removal system. Continuous operation for 8 hours at 20 kHz allows us to achieve 400 mW of useful soft X-ray radiation around 1 nm wavelength. In another regime of operation with a high energy machine, the VSX-Z, we have been able to achieve consistently 10 J of X-rays per pulse at a repetition rate that can reach 1 Hz with an input electrical energy of approximately 3 kJ and an efficiency in excess of 10-3.

  17. The dependence of the soft X ray spectral slope with radio property, luminosity, and redshift, for a large sample of AGN from the Einstein IPC data base

    NASA Technical Reports Server (NTRS)

    Brunner, H.; Worrall, D. M.; Wilkes, Belinda J.; Elvis, Martin

    1989-01-01

    The dependence of the soft X-ray spectral slope on radio, optical and X-ray properties, and on redshift are reported for a large sample of Active Galactic Nuclei (AGN). The sample includes 317 optically and radio-selected AGN from a preliminary version of the Einstein Imaging Proportional Counter (IPC) quasar and AGN data base. The main results are: the difference in X-ray slope between radio-loud and radio-quiet AGN were confirmed for an independent and much larger sample of sources; a difference in X-ray slope between flat and steep radio spectrum AGN is observed only in high luminosity sub-sample; in flat radio spectrum AGNs there is an indication for a dependence of the X-ray spectral index on X-ray luminosity redshift and alpha sub 0x.

  18. The soft x-ray beamline at Frascati Labs

    NASA Astrophysics Data System (ADS)

    Cinque, Gianfelice; Burattini, Emilio; Grilli, Antonio; Dabagov, Sultan

    2005-08-01

    DAΦNE-Light is the Synchrotron Radiation laboratory at the Laboratori Nazionali di Frascati (LNF)1. Three beamlines were commissioned since spring 2003 to exploit parasitically the intense photon emission from DAΦNE, the 0.5 1 GeV storage ring routinely circulating over 1 A of electrons. The soft X-ray beamline utilizes a wiggler source and, by a double-crystal fixed-exit monochromator, it is operational in the distinguishing energy window 1.5 - 4 keV range to be extended from the "water window" toward 6 keV. At present, the research activity is focused on X-ray Absorption Spectroscopy (XAS): precisely, X-ray Absorption Near Edge Spectroscopy (XANES) on the inner electronic levels of light elements and transition metals from Al to Ge and both d- and f-shells of higher Z atoms. Preliminary tests of X-ray imaging have been performed in view of applying different focusing optics, namely policapillary systems in trasmission and/or bent mica diffractor in back-reflection, for X-ray microscopy and spectromicroscopy experiments. The use of polycapillary systems (lenses, halflenses, capillaries) for studying features of radiation transportation by such structures (X-ray channelling, focusing, bending, etc.) has been planned.

  19. Introducing a New Capability at SSRL: Resonant Soft X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Sik; Jang, Hoyoung; Lu, Donghui; Kao, Chi-Chang

    Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC recently developed a setup for the resonant soft x-ray scattering (RSXS). In general, the RSXS technique uniquely probes not only structural information, but also chemical specific information. This is because this technique can explore the spatial periodicities of charge, orbital, spin, and lattice with spectroscopic aspect. Moreover, the soft x-ray range is particularly relevant for a study of soft materials as it covers the K-edge of C, N, F, and O, as well as the L-edges of transition metals and M-edges of rare-earth elements. Hence, the RSXS capability has been regarded as a very powerful technique for investigating the intrinsic properties of materials such as quantum- and energy-materials. The RSXS capability at the SSRL composes of in-vacuum 4-circle diffractometer. There are also the fully motorized sample-motion manipulations. Also, the sample can be cooled down to 25 K via the liquid helium. This capability has been installed at BL 13-3, where the photon source is from elliptically polarized undulator (EPU). Covering the photon energies is from 230 eV to 1400 eV. Furthermore, this EPU system offers more degree of freedoms for controlling x-ray polarizations (linear and circular). Using the advance of controlling x-ray polarization, we can also investigate a morphology effect of local domain/grain in materials. The detailed introduction of the RSXS end-station and several results will be touched in this poster presentation.

  20. Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, M.; Jinno, T.; Yanagihara, M.

    2011-09-09

    An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.

  1. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  2. A new streaked soft x-ray imager for the National Ignition Facility

    DOE PAGES

    Benstead, J.; Moore, A. S.; Ahmed, M. F.; ...

    2016-05-27

    Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less

  3. The Astro-H High Resolution Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  4. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  5. The Astro-H high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarello, Phillipp; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; den Herder, Jan-Willem; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark O.; Kitamoto, Shunji; Konami, Saori; Koyama, Shu; Leutenegger, Maurice A.; McCammon, Dan; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Moseley, Harvey; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. S.; Sakai, Kazuhiro; Sato, Kosuke; Sato, Yohichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew E.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor P.; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2016-07-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  6. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  7. Where is the X-ray emission coming from in RT Cru Symbiotic System?

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-11-01

    RT Cru is a member of a new sub-class of symbiotic interacting binaries with copious hard X-ray emission. It consists of a high-mass WD (>1.3 Ms) accreting from the wind of an M giant, and it is an important system to study in order to constrain precursor conditions for asymmetric PN and SN Ia. The Chandra HRC-I observation (Dec 2012), and an overlapping Swift observation, detected intermittent soft X-ray flaring, and we find evidence for a significant soft component in the spectrum. The flaring could be a consequence of clumped absorption columns moving in and out of the line of sight, or the variations could be due to changes at the accretion boundary layer. Further observations are needed to determine the origin of the soft emission and its relation to the hard emission.

  8. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  9. Nearly simultaneous observations of chromospheric and coronal radiative losses of cool stars

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Dobson, A. K.; Radick, R. R.

    1992-01-01

    The flux-flux relationships of cool stars are studied on the basis of nearly simultaneous measurements of Ca II H+K, Mg II h+k, and soft X-ray fluxes. A linear relationship is derived between IUE Mg II h+k fluxes and Mount Wilson Ca II H+K fluxes which were obtained within 36 hr of each other for a sample of 26 F5-K3 main-sequence stars. Nearly simultaneous EXOSAT soft X-ray fluxes are compared with Ca II H+K fluxes for a sample of 20 dwarfs and gaints with spectral types ranging from F6 to K2, and 72 additional cool stars for which noncontemporaneous Ca II H+K and EINSTEIN soft X-ray fluxes are available are compared. It is confirmed that a nonradiatively heated chromosphere exists on even the least active main-sequence stars. This basal chromosphere is probably independent of stellar magnetic activity.

  10. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  11. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  12. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  13. The soft x ray halo of the spiral galaxy NGC4631

    NASA Technical Reports Server (NTRS)

    Walterbos, Rene A. M.; Steakley, Michael F.; Wang, Q. Daniel; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT PSPC observations of the close to edge-on spiral galaxy NGC4631 are presented. This vigorously star forming galaxy shows extented x ray emission perpendicular to the plane, out to about 6 to 8 kpc. The spatial extent is largest at soft x ray energies. The total x ray luminosity of hot gas can be easily supplied by star formation in the disk, and it is likely that the halo is due to outflow of hot gas from the inner disk. Spectral analysis of the x ray data shows that part of the halo emission may be quite cool, well below 10(exp 6)K. Implications of these results are briefly discussed.

  14. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  15. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  16. An investigation of coronal active region loop structures using AS&E rocket X-ray images

    NASA Technical Reports Server (NTRS)

    Webb, D. F.

    1983-01-01

    Simultaneous high spatial resolution observations at 6 cm in soft X-rays, in photospheric magnetograms, and in optical filtergrams were used to compare the most intense sources of centimetric emission in two active regions to coronal loops, sunspots, chromospheric structures, and photospheric magnetic fields. Results show that the majority of the bright microwave components are not associated with sunspots or X-ray emission. A nonthermal mechanism appears necessary to explain the brightest microwave components, discrete regions of continuous particle acceleration may be common in active regions. Studies of the plasma parameters of selected loops imply that the radio emission is consistent with gyro-resonance absorption at the third and fourth harmonic, at least from part of each loop. Results are presented for: (1) X-ray and microwave observations of active regions; (2) comparison of coronal holes observed in soft X-rays and Hel 10830 A spectrosheliograms; and (3) the reappearance of polar coronal holes and the evolution of the solar magnetic field.

  17. Bright end of the luminosity function of high-mass X-ray binaries: contributions of hard, soft and supersoft sources

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2017-04-01

    Using a spectral analysis of bright Chandra X-ray sources located in 27 nearby galaxies and maps of star-formation rate (SFR) and interstellar medium surface densities for these galaxies, we constructed the intrinsic X-ray luminosity function (XLF) of luminous high-mass X-ray binaries (HMXBs), taking into account absorption effects and the diversity of HMXB spectra. The XLF per unit SFR can be described by a power-law dN/dlog LX,unabs ≈ 2.0(LX,unabs/1039 erg s-1)-0.6 (M⊙ yr-1)-1 from LX,unabs = 1038 to 1040.5 erg s-1, where LX,unabs is the unabsorbed luminosity at 0.25-8 keV. The intrinsic number of luminous HMXBs per unit SFR is a factor of ˜2.3 larger than the observed number reported before. The intrinsic XLF is composed of hard, soft and supersoft sources (defined here as those with the 0.25-2 keV to 0.25-8 keV flux ratio of <0.6, 0.6-0.95 and >0.95, respectively) in ˜ 2:1:1 proportion. We also constructed the intrinsic HMXB XLF in the soft X-ray band (0.25-2 keV). Here, the numbers of hard, soft and supersoft sources prove to be nearly equal. The cumulative present-day 0.25-2 keV emissivity of HMXBs with luminosities between 1038 and 1040.5 erg s-1 is ˜5 × 1039 erg s-1(M⊙ yr-1)-1, which may be relevant for studying the X-ray preheating of the early Universe.

  18. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  19. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory

    DOE PAGES

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...

    2016-01-01

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less

  20. GRO J1655-40: Early Stages of the 2005 Outburst

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, N.; Swank, Jean; Shrader, C. R.; Rupen, M.; Beckmann, V.; Markwardt, C. B.; Smith, D. A.

    2007-01-01

    The black-hole X-ray binary transient GRO J1655-40 underwent an outburst beginning in early 2005. We present the results of our multi-wavelength observational campaign to study the early outburst spectral and temporal evolution, which combines data from X-ray (RXTE, INTEGRAL), radio (VLA) and optical (ROTSE, SMARTS) instruments. During the reported period the source left quiescence and went through four major accreting black hole states: low-hard, hard intermediate, soft intermediate and high-soft. We investigated dipping behavior in the RXTE band and compare our results to the 1996-1997 case, when the source was predominantly in the high-soft state, finding significant differences. We consider the evolution of the low frequency quasi-periodic oscillations and find that the frequency strongly correlates with the spectral characteristics, before shutting off prior to the transition to the high-soft state. We model the broad-band high-energy spectrum in the context of empirical models, as well as more physically motivated thermal and bulk-motion Comptonization and Compton reflection models. RXTE and INTEGRAL data together support a statistically significant high energy cut-off in the energy spectrum at approximately equal to 100 - 200 keV during the low-hard state. The RXTE data alone also show it very significantly during the transition, but cannot see one in the high-soft state spectra. We consider radio, optical and X-ray connections in the context of possible synchrotron and synchrotron self-Compton origins of X-ray emission in low-hard and intermediate states. In this outburst of GRO J1655-40, the radio flux does not rise strongly with the X-ray flux.

  1. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam.

    PubMed

    Kaminaga, Kiichi; Noguchi, Miho; Narita, Ayumi; Hattori, Yuya; Usami, Noriko; Yokoya, Akinari

    2016-11-01

    To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.

  2. Thermal and non-thermal X-rays from the Galactic supernova remnant G348.5+0.1

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Minami, Sari; Ota, Naomi; Koyama, Katsuji

    2014-02-01

    We report on Suzaku results of the two distinct regions in the Galactic supernova remnant G348.5+0.1: extended thermal X-rays ("soft diffuse") at the north-east region and non-thermal X-rays (CXOU J171419.8-383023) at the north-west region. The X-ray spectrum of the soft diffuse X-rays can be fitted with neither an ionization equilibrium nor a non-equilibrium (ionizing) plasma model, leaving saw- tooth residuals in the 1.5-3 keV energy band. The residual structures can be produced when free electrons are recombined to the K-shells of highly ionized Mg and Si ions. In fact, the X-ray spectrum is nicely fitted with a recombination-dominant plasma model. We propose a scenario whereby the plasma in a nearly fully ionized state at high temperature quickly changed to a recombining phase due to selective cooling of electrons to a lower temperature of ˜ 0.5 keV. The spectrum of CXOU J171419.8-383023 is well explained by a simple power-law model with a photon index of 1.9, nearly equal to the typical value for pulsar wind nebulae. Since the distance is estimated to be the same as that of the soft diffuse radiation, we infer that both the soft diffuse X-rays and CXOU J171419.8-383023 are associated with the same object, SNR G348.5+0.1.

  3. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    DOE PAGES

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; ...

    2017-03-17

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  4. Sounding-rocket experiment to study the diffuse soft X-ray background using a Si(Li) detector

    NASA Technical Reports Server (NTRS)

    Delvaille, J. P.

    1981-01-01

    Soft X-ray background in the energy range 0.4 to 10 keV was studied. A payload was developed which uses a wide angle, windowless, cooled, Si(Li) semiconductor detector system. With a resolution of less than 150 eV between 0.3 and 2.0 keV, the system is sensitive to an emission equivalent width of about 10 eV. Carbon and oxygen line emission were detected from the vicinity of the North Galactic Pole and the North Polar Spur.

  5. Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A.

    2017-06-01

    Molecular distribution in mammalian cells was studied by soft X-ray scanning transmission microscopy with respect to the quantitative aspect of analysis. NEXAFS profiles at the C, N and O K-absorption edges were combined and used for the analysis. For the estimation of quantity for nucleic acids and proteins, NEXAFS profiles of DNA and bovine serum albumin (BSA) at the N K-absorption edge were applied assuming that those were their representatives. The method has a potential to explore the other molecular components than nucleic acids and proteins.

  6. Energy dependence of the band-limited noise in black hole X-ray binaries★

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2015-10-01

    Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.

  7. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  8. TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jithesh, V.; Wang, Zhongxiang, E-mail: jithesh@shao.ac.cn

    2016-04-10

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-raymore » luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.« less

  9. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  10. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  11. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  12. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    DOE PAGES

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; ...

    2018-01-09

    Here, we measured the fluorescence photon yield of neon upon soft x-ray ionization (~1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  13. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; hide

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  14. Hard X-Rays can BE Used to Visualize Cochlear Soft Tissue Displacements in a Closed Cochlea

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Fishman, A.; Fan, L.; Shintani, S.; Rau, C.

    2009-02-01

    Experiments were made at the Advanced Photon Source (APS), Argonne National Laboratory. The APS is a synchrotron radiation source of the third generation, for which the particular characteristic is the highly coherent X-ray radiation. X-rays are generated with an undulator, inserted in a straight section of the storage ring. Images taken with hard X-rays at full field. A video flow algorithm by Lucas and Kanade was used to determine and quantify cochlear soft tissue displacements. The results show that displacements as low as 100 nm could be visualized.

  15. Calibration of the Microcalorimeter Spectrometer On-Board the Hitomi (Astro-H) Observatory (invited)

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Boyce, K. R.; Brown, G. V.; Chiao, M. P.; Fujimoto, R.; Haas, D.; Den Herder, J.-W.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

  16. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  17. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  18. Coherent Soft X-ray Diffraction Imaging of Coliphage PR772 at the Linac Coherent Light Source

    DOE Data Explorer

    Reddy, Hemanth, K.N.

    2017-01-05

    A dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source.

  19. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraljic, David; Rummel, Markus; Conlon, Joseph P., E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Markus.Rummel@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP tomore » photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.« less

  20. Phase contrast imaging of cochlear soft tissue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.; Hwang, M.; Rau, C.

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less

  1. Soft x-ray submicron imaging detector based on point defects in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldacchini, G.; Bollanti, S.; Bonfigli, F.

    2005-11-15

    The use of lithium fluoride (LiF) crystals and films as imaging detectors for EUV and soft-x-ray radiation is discussed. The EUV or soft-x-ray radiation can generate stable color centers, emitting in the visible spectral range an intense fluorescence from the exposed areas. The high dynamic response of the material to the received dose and the atomic scale of the color centers make this detector extremely interesting for imaging at a spatial resolution which can be much smaller than the light wavelength. Experimental results of contact microscopy imaging of test meshes demonstrate a resolution of the order of 400 nm. Thismore » high spatial resolution has been obtained in a wide field of view, up to several mm{sup 2}. Images obtained on different biological samples, as well as an investigation of a soft x-ray laser beam are presented. The behavior of the generated color centers density as a function of the deposited x-ray dose and the advantages of this new diagnostic technique for both coherent and noncoherent EUV sources, compared with CCDs detectors, photographic films, and photoresists are discussed.« less

  2. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  3. GAMMA-RAY OBSERVATIONS OF CYGNUS X-1 ABOVE 100 MeV IN THE HARD AND SOFT STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatini, S.; Tavani, M.; Del Santo, M.

    2013-04-01

    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 which includes a remarkably prolonged 'soft state' phase (2010 June-2011 May). Previous 1-10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Ourmore » AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F{sub soft} < 20 Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1} , excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in 2009 October during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of 2010 June (2010 June 30 10:00-2010 July 2 10:00 UT) exactly coinciding with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.« less

  4. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  5. The SMILE Soft X-ray Imager (SXI) CCD design and development

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.

    2018-01-01

    SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.

  6. A soft X-ray flare in the Seyfert I galaxy Markarian 335

    NASA Technical Reports Server (NTRS)

    Lee, M. G.; Balick, Bruce; Halpern, J. P.; Heckman, T. M.

    1988-01-01

    Strong, erratic, and primarily soft X-ray flux variations observed in Mrk 335 with the Einstein high-resolution imager (HRI) and monitor proportional counter (MPC) are reported. The variability time scales lie from about 6000 s to the period of observation, 60,000 s. The variability consisted of a decrease followed by an increase at X-ray energies below 2-3 keV. The variability is most pronounced at the softest energies. The X-ray spectrum was harder before the flare than afterward, even after the flare had ended. Averaged over the time of the observations, the MPC data are well-fitted by a power-law spectrum with a spectral index of 1.25 + or - 0.19 with no evidence of absorption by foreground neutral hydrogen at energies above 1.2 keV. If the observed value of the Galactic H I column density is assumed, then the HRI observations require the existence of an additional soft and variable X-ray component.

  7. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well asmore » at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.« less

  8. The XMM-Newton Wide Angle Survey (XWAS): the X-ray spectrum of type-1 AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Page, M. J.; Watson, M. G.; Corral, A.; Tedds, J. A.; Ebrero, J.; Krumpe, M.; Schwope, A.; Ceballos, M. T.

    2010-02-01

    Aims: We discuss the broad band X-ray properties of one of the largest samples of X-ray selected type-1 AGN to date (487 objects in total), drawn from the XMM-Newton Wide Angle Survey (XWAS). The objects presented in this work cover 2-10 keV (rest-frame) luminosities from 1042-1045 erg s-1 and are detected up to redshift 4. We constrain the overall properties of the broad band continuum, soft excess and X-ray absorption, along with their dependence on the X-ray luminosity and redshift. We discuss the implications for models of AGN emission. Methods: We fitted the observed 0.2-12 keV broad band spectra with various models to search for X-ray absorption and soft excess. The F-test was used with a significance threshold of 99% to statistically accept the detection of additional spectral components. Results: We constrained the mean spectral index of the broad band X-ray continuum to <Γ> = 1.96 ± 0.02 with intrinsic dispersion {σ< Γ >} = 0.27-0.02+0.01. The continuum becomes harder at faint fluxes and at higher redshifts and hard (2-10 keV) luminosities. The dependence of Γ with flux is likely due to undetected absorption rather than to spectral variation. We found a strong dependence of the detection efficiency of objects on the spectral shape. We expect this effect to have an impact on the measured mean continuum shapes of sources at different redshifts and luminosities. We detected excess absorption in ⪆3% of our objects, with rest-frame column densities a few ×1022 cm-2. The apparent mismatch between the optical classification and X-ray properties of these objects is a challenge for the standard orientation-based AGN unification model. We found that the fraction of objects with detected soft excess is 36%. Using a thermal model, we constrained the soft excess mean rest-frame temperature and intrinsic dispersion to kT 100 eV and σkT 34 eV. The origin of the soft excess as thermal emission from the accretion disk or Compton scattered disk emission is ruled out on the basis of the temperatures detected and the lack of correlation of the soft excess temperature with the hard X-ray luminosity over more than 2 orders of magnitude in luminosity. Furthermore, the high luminosities of the soft excess rule out an origin in the host galaxy.

  9. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade.

    PubMed

    Chernyshova, M; Malinowski, K; Czarski, T; Wojeński, A; Vezinet, D; Poźniak, K T; Kasprowicz, G; Mazon, D; Jardin, A; Herrmann, A; Kowalska-Strzęciwilk, E; Krawczyk, R; Kolasiński, P; Zabołotny, W; Zienkiewicz, P

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  10. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  11. The soft x-ray properties of a complete sample of optically selected quasars. 1: First results

    NASA Technical Reports Server (NTRS)

    Laor, Ari; Fiore, Fabrizio; Elvis, Martin; Wilkes, Belinda J.; Mcdowell, Jonathan C.

    1994-01-01

    We present the results of ROSAT position sensitive proportional counter (PSPC) observations of 10 quasars. These objects are part of our ROSAT program to observe a complete sample of optically selected quasars. This sample includes all 23 quasars from the bright quasar survey with a redshift z less than or = 0.400 and a Galactic H I column density N(sup Gal sub H I) less than 1.9 x 10(exp 20)/sq cm. These selection criteria, combined with the high sensitivity and improved energy resolution of the PSPC, allow us to determine the soft (approximately 0.2-2 keV) X-ray spectra of quasars with about an order of magnitude higher precision compared with earlier soft X-ray observations. The following main results are obtained: Strong correlations are suggested between the soft X-ray spectral slope alpha(sub x) and the following emission line parameters: H beta Full Width at Half Maximum (FWHM), L(sub O III), and the Fe II/H beta flux ratio. These correlations imply the following: (1) The quasar's environment is likely to be optically thin down to approximately 0.2 keV. (2) In most objects alpha(sub x) varies by less than approximately 10% on timescales shorter than a few years. (3) alpha(sub x) might be a useful absolute luminosity indicator in quasars. (4) The Galactic He I and H I column densities are well correlated. Most spectra are well characterized by a simple power law, with no evidence for either significant absorption excess or emission excess at low energies, to within approximately 30%. We find mean value of alpha(sub x) = -1.50 +/- 0.40, which is consistent with other ROSAT observations of quasars. However, this average is significantly steeper than suggested by earlier soft X-ray observations of the Einstein IPC. The 0.3 keV flux in our sample can be predicted to better than a factor of 2 once the 1.69 micrometer(s) flux is given. This implies that the X-ray variability power spectra of quasars flattens out between f approximately 10(exp -5) and f approximately 10(exp -8) Hz. A steep alpha(sub x) is mostly associated with a weak hard X-ray component, relative to the near-IR and optical emission, rather than a strong soft excess, and the scatter in the normalized 0.3 keV flux is significantly smaller than the scatter in the normalized 2 keV flux. This argues against either thin or thick accretion disks as the origin of the soft X-ray emission. Further possible implications of the results found here are briefly discussed.

  12. SU-F-T-52: Study of Energy Dependent Effect of Dosimetry Systems Used in Therapeutic Soft X-Ray Energy Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souri, S; Qian, X; Gill, G

    Purpose: To investigate energy dependent effects of different dosimetry systems which can be used as in vivo dosimetry monitoring for intraoperative radiotherapy in therapeutic soft x-ray energy range. Methods: Three dosimetry systems were evaluated in therapeutic soft x-ray energy range: optically stimulated luminescent dosimeter (OSLD) nanoDots, radiochromic EBT2 and EBT3 films. The x-ray photons were produced by a Zeiss Intrabeam 50 kV x-ray radiotherapy system. Solid water and bolus slabs with different thicknesses were used in the process of irradiation. An aluminum filter set was used to measure HVLs of X-rays. Calibration curves were made at different depth of boluses.more » Results: Half Value Layers at depths of 0, 3, 10, and 20 mm of solid water were measured to represent the energy change versus depth, yielding 0.306, 0.482, 0.865 and 0.901 respectively and indicating nearly unchanged HVL beyond 1 cm depth. The responses of each system at different depths were normalized to the response at 2 cm depth. In film dosimetry, the response is calculated as optical density (OD). The results show that there is nearly the same energy dependence for EBT2 and EBT3. At a HVL of 0.482 mm Al, the relative responses of nanoDots and EBT3 are 0.85 ± 0.04 and 0.89 ± 0.03 compared to those at 0.901 mm Al HVL, respectively, indicating no obvious difference between those two systems within the measurement uncertainty. Conclusion: It was observed that the studied dosimeter response increases about 13% from the x-ray energy of 0.48 mm Al to 0.90 mm Al. Therefore, caution should be exercised in using an appropriate calibration curve, and x-ray beam hardening effect has to be taken into account.« less

  13. Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability

    NASA Astrophysics Data System (ADS)

    Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.

    2016-04-01

    We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).

  14. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  15. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  16. The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Doschek, G. A.; Simnett, G. M.; Rilee, M. L.; Mariska, J. T.; Culhane, J. L.; Kosugi, T.; Watanabe, T.

    1994-01-01

    We have investigated the temporal correlation between hard X-ray bursts and the intensity of Doppler blueshifted soft X-ray spectral line emission. We find a strong correlation for many events that have intense blueshifted spectral signatures and some correlation in events with modest blueshifts. The onset of hard X-rays frequently coincides to within a few seconds with the onset of blueshifted emission. The peak intensity of blueshifted emission is frequently close in time to the peak of the hard X-ray emission. Decay rates of the blueshifted and hard X-ray emission are similar, with the decay of the blueshifted emission tending to lag behind the hard X-ray emission in some cases. There are, however, exceptions to these conclusions, and, therefore, the results should not be generalized to all flares. Most of the data for this work were obtained from instruments flown on the Japanese Yohkoh solar spacecraft.

  17. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  18. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible observation time. These results are compared to a Chandra observation to show the overall effectiveness of the new technologies. The current optical module is shown to narrowly meet the minimum success conditions whilst the proposed model comfortably demonstrates the effectiveness of the technologies if a larger effective area is provided.

  19. Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft

    NASA Astrophysics Data System (ADS)

    de Vries, Cor P.; Haas, Daniel; Yamasaki, Noriko Y.; Herder, Jan-Willem den; Paltani, Stephane; Kilbourne, Caroline; Tsujimoto, Masahiro; Eckart, Megan E.; Leutenegger, Maurice A.; Costantini, Elisa; Dercksen, Johannes P. C.; Dubbeldam, Luc; Frericks, Martin; Laubert, Phillip P.; van Loon, Sander; Lowes, Paul; McCalden, Alec J.; Porter, Frederick S.; Ruijter, Jos; Wolfs, Rob

    2018-01-01

    The soft x-ray spectrometer was designed to operate onboard the Japanese Hitomi (ASTRO-H) satellite. In the beam of this instrument, there was a filter wheel containing x-ray filters and active calibration sources. This paper describes this filter wheel. We show the purpose of the filters and the preflight calibrations performed. In addition, we present the calibration source design and measured performance. Finally, we conclude with prospects for future missions.

  20. High spatial resolution soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy tomore » use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.« less

  1. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering.

    PubMed

    Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli

    2018-04-17

    Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.

  2. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  3. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  4. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  5. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  6. Discovery of Rapidly Moving Partial X-Ray Absorbers Within Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2016-01-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called "softness dips" in a approx.100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either approx.40% or approx.70% partial covering absorption to kT approx.12 keV plasma emission by matter with a neutral hydrogen column density of approx.(2-8) ×10(exp 21)/sq cm, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the gamma Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT approx 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.

  7. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering

    NASA Astrophysics Data System (ADS)

    Yang, Wanli; Devereaux, Thomas P.

    2018-06-01

    Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.

  8. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions. We will review the most recent CAT grating fabrication and x-ray test results.

  9. Wide band laser-plasma soft X-ray source using a gas puff target for direct photo-etching of polymers

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Rakowski, Rafał; Szczurek, Mirosław

    2005-09-01

    Organic polymers (PMMA, PTFE, PET, and PI) are considered as the important materials in microengineering, especially for biological and medical applications. Micromachining of such materials is possible with the use of different techniques that involve electromagnetic radiation or charged particle beams. Another possibility of high aspect ratio micromachining of PTFE is direct photo-etching using synchrotron radiation. X-ray and ultraviolet radiation from other sources, for micromachining of materials by direct photo-etching can be also applied. In this paper we present the results of investigation of a wide band soft X-ray source and its application for direct photo-etching of organic polymers. X-ray radiation in the wavelength range from about 3 nm to 20 nm was produced as a result of irradiation of a double-stream gas puff target with laser pulses of energy 0.8 J and time duration of about 3 ns. The spectra, plasma size and absolute energies of soft X-ray pulses for different gas puff targets were measured. Photo-etching process of polymers irradiated with the use of the soft X-ray radiation was analyzed and investigated. Samples of organic polymers were placed inside a vacuum chamber of the x-ray source, close to the gas puff target at the distance of about 2 cm from plasmas created by focused laser pulses. A fine metal grid placed in front of the samples was used as a mask to form structures by x-ray ablation. The results of photo-etching process for several minutes exposition with l0Hz repetition rate were presented. High ablation efficiency was obtained with the use of the gas puff target containing xenon surrounded by helium.

  10. The Soft X-ray Imager (SXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.

    2015-09-01

    The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.

  11. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  12. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used tomore » better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.« less

  13. An extended soft X-ray source in Delphinus - H2027+19

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Walker, A. B. C.; Charles, P. A.; Nugent, J. J.; Garmire, G. P.

    1980-01-01

    A new extended soft X-ray source has been observed with the HEAO 1 A-2 experiment. The source, H2027+19, emits primarily in the 0.16-0.4 keV band with a total flux in this band of 2 x 10 to the -11th erg/sq cm s. It is found that both simple continuum and coronal plasma models provide good fits to the observed pulse-height spectrum. The most likely physical models are either that the source is an old supernova remnant or that it is a region of enhanced soft X-ray emission surrounding an H I cloud imbedded in a coronal plasma, as suggested by Hayakawa et al. (1979) for the Lupus Loop.

  14. Prototype high resolution multienergy soft x-ray array for NSTX.

    PubMed

    Tritz, K; Stutman, D; Delgado-Aparicio, L; Finkenthal, M; Kaita, R; Roquemore, L

    2010-10-01

    A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T(e) in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.

  15. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  16. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons couldmore » not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.« less

  18. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  19. Depth resolved compositional analysis of aluminium oxide thin film using non-destructive soft x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mangalika; Modi, Mohammed H.

    2017-10-01

    In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.

  20. Physics in Europe--A Data File of Selected Research.

    DTIC Science & Technology

    1984-06-18

    Negev Sapir Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 1025 CPBICF laser plasma soft x-ray refractometry France...CPBICF laser plasma Schlieren diagnostic France 623 CPBICF laser plasma self focusing numerics UK 1025 CPBICF laser plasma soft x-ray refractometry

  1. The detection of soft X-rays with charged coupled detectors

    NASA Technical Reports Server (NTRS)

    Burstein, P.; Davis, John M.

    1989-01-01

    The characteristics of an ideal soft X-ray imaging detector are enumerated. Of recent technical developments the CCD or charge coupled device goes furthest to meeting these requirements. Several properties of CCDs are described with reference to experimental work and their application to practical instruments is reviewed.

  2. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  3. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various high-energy feedback processes of the galaxies.

  4. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  5. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  6. A Chandra X-ray Study of Cygnus A. 2; The Nucleus

    NASA Technical Reports Server (NTRS)

    Young, Andrew J.; Wilson, Andrew; Terashima, Yuichi; Arnaud, Keith A.; Smith, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report Chandra Advanced CCD Imaging Spectrometer and quasi-simultaneous Rossi X-Ray Timing Explorer (RXTE) observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (less than a few keV) X-ray emission is spatially unresolved with a size is approximately 1" (1.5 kpc, H(sub 0) = 50 km/s/Mpc) and coincides with the radio and near-infrared nuclei. In contrast, the soft (less than 2 keV) emission exhibits a bipolar nebulosity that aligns with the optical bipolar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] (lambda)5007 and H(alpha) + [N II] lambda(lambda)6548, 6583 nebulosity imaged with Hubble Space Telescope. At the location of the nucleus, there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the six detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power-law spectrum with Gamma(sub h) = 1.52(sup + 0.12, sub -0.12) (similar to other 0.12 narrow-line radio galaxies) and equivalent hydrogen column N(sub H)(nuc) = 2.0(sup +0.1, sub -0.1) x 10(exp 23)/sq cm. This 0.2 column is compatible with the dust obscuration to the near-infrared source for a normal gas-to-dust ratio. The soft (less than 2 keV) emission from the nucleus may be described by a power-law spectrum with the same index (i.e., Gamma(sub l) = Gamma(sub h), although direct fits suggest a slightly larger value for Gamma(sub l). Narrow emission lines from highly ionized neon and silicon, as well as a "neutral" Fe K(alpha) line, are detected in the nucleus and its vicinity (r approximately less than 2 kpc). The equivalent width (EW) of the Fe K(alpha) line (182(sup +40, sub -54) eV) is in good agreement with theoretical predictions for the EW versus N(sub H)(nuc) relationship in various geometries. An Fe K edge is also seen. The RXTE observations indicate a temperature of kT = 6.9(sup +0., sub -1.0) keV for the cluster gas (discussed in Paper III of this series) and cluster emission lines of Fe K(alpha) and Fe K(beta) and/or Ni K(alpha). We consider the possibility that the extended soft X-ray emission is electron-scattered nuclear radiation. Given that 1% of the unabsorbed 2 - 10 keV nuclear radiation would have to be scattered, the necessary gas column [N(sub H)(Scattering) approx. = 3.5 x 10(exp 22)/sq cm] would absorb the X-rays rather than scatter them if the gas is cold. Thus, the scattering plasma must be highly ionized. If this ionization is achieved through photoionization by the nucleus, the ionization parameter zeta greater than 1 ergs cm/s and the electron density n(sub e) approx. = 6 cc given the observed distance of the soft X-ray emission from the nucleus. The electron column density inferred from the X-ray observations is much too low to account for the extended optical scattered light, strongly suggesting that the polarized optical light is scattered by dust. The presence of highly ionized Ne lines in the soft X-ray spectrum requires 20 ergs cm/s approximately less than zeta approximately less than 300 ergs cm/s these lines may originate closer to the nucleus than the extended soft continuum or in a lower density gas. A collisionally ionized thermal model of the extended soft X-rays cannot be ruled out but is unattractive in view of the low metal abundance required (Z = 0.03 Z(mass)). The hard X-ray to far-infrared ratio for the nucleus of Cygnus A is similar to that seen in Seyfert 1 and unobscured radio galaxies. By means of the correlation between hard X-ray luminosity and nuclear optical absolute magnitude for these classes of object, we estimate M(sub B) = -22.4 for Cygnus A, near the .borderline between Seyfert galaxies and QSOs.

  7. OSA Proceedings of the Topical Meeting on Soft-X-Ray Projection Lithography Held in Monterey, California on 10-12 April 1991. Volume 12

    DTIC Science & Technology

    1992-05-22

    Carbide because of its high thermal the mirror on its backside or edge. Shott Zerodur conductivity. Edge cooling causes a larger exceeded the limit by about...Characterization Angstrom-level noncontact profiling of mirrors for soft x-ray lithography............ 134 Paul Glenn Nonspecular Scattering from X-Ray...structed by patterning a Mo/Si Tropel Division of GCA Corporation. multilayer coated silicon wafer. The mirrors were coated at AT&T Bell The multilayer

  8. Measuring Quasar Spin via X-ray Continuum Fitting

    NASA Astrophysics Data System (ADS)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  9. Normal-incidence reflectance of optimized W/B4C x-ray multilayers in the range 1.4 nm < λ < 2.4 nm

    NASA Astrophysics Data System (ADS)

    Windt, David L.; Gullikson, Eric M.; Walton, Christopher C.

    2002-12-01

    We have fabricated W/B4C multilayers having periods in the range d = 0.8-1.2 nm and measured their soft-x-ray performance near normal incidence in the wavelength range 1.4 < λ < 2.4 nm. By adjusting the fractional layer thickness of W we have produced structures having interface widths σ ~ 0.29 nm (i.e., as determined from normal-incidence reflectometry), thus having optimal soft-x-ray performance. We describe our results and discuss their implications, particularly with regard to the development of short-wavelength normal-incidence x-ray optics.

  10. Impact of sub-keV soft excess on warm absorbers

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.

    2009-09-01

    Soft X-ray spectral features of warm absorbers (WA) are often found in Seyfert 1 galaxies. The ionizing continuum coming from the central engine and which photoionizes the WA, can be optimally modeled to have three spectral components a) the 'disk blackbody' at about 10 eV - the spectrum from the accretion disk of the black hole, b) the X-ray powerlaw - representing the dominant component at energies 1 keV and above and c) the soft excess in sub keV - which is seen in most objects after deducting the powerlaw component. We use the thermal equilibrium curves generated by the photoionization code CLOUDY to study the influence of the soft excess component on the nature of the WA. Our studies show that the nature of the WA is strongly dependent on the chemical composition of the absorbing gas, particularly on the abundance of iron, oxygen and the X-ray group (C, Ne, O, Fe) which have important atomic transitions in the energy range 0.3 - 1.5 keV where the soft excess component is supposed to have maximum effect. One of the popular models for the soft excess component is a blackbody with its temperature lying between 100 - 200 eV. We find that the soft excess component seems to decide the stability properties of the gas at 10^5 K; the range of xi/T over which stable warm absorber exists almost doubles if the soft excess luminosity is equal to the luminosity in the powerlaw (0.1 - 10 keV) which is a ratio not unheard of. Even if the soft excess is represented using alternative spectral shapes like the 'comptonized reflection' model, the stability properties of the WA do not change significantly.

  11. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less

  12. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  13. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Datte, P.; ...

    2016-07-21

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  14. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    PubMed

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  15. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The surface evolution of these films is discussed, and the effects of different gas environments on oxygen vacancy concentration are elucidated. LSMO is commonly used in commercial fuel cell devices. Here the resonant soft x-ray emission (RIXS) spectrum of LSMO is examined, and it is shown that the inelastic x-ray emission structure of LSMO arises from local atomic multiplet effects.

  16. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.

    PubMed

    Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E

    2010-10-01

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  17. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  18. Soft X-ray observations of Centaurus X-3 from Copernicus

    NASA Technical Reports Server (NTRS)

    Margon, B.; Mason, K. O.; Hawkins, F. J.; Sanford, P. W.

    1975-01-01

    We have detected soft X-ray emission from Centaurus X-3 in the 0.6-1.9 keV band, using the focusing telescope aboard OAO Copernicus. The flux is compatible with an extrapolation of the harder X-ray spectrum, attenuated by (3-4) times 10 to the 22nd atoms per sq cm of interstellar and/or circumstellar matter. The data are consistent with the distance estimate of 5-10 kpc derived from the spectroscopic modulus of the optical component, and obviate the need to postulate the primary to be an anomalously subluminous hot star. There is currently no compelling evidence that such models must be invoked to explain any of the observed compact X-ray sources.

  19. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V., E-mail: SherbakovAV@ipm.sci-nnov.ru

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lensesmore » with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.« less

  20. Exploratory studies on a passively triggered vacuum spark

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Auluck, S. K. H.; Nagpal, J. S.; Kulkarni, L. V.

    1999-12-01

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 × 106 cm s-1. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>100 µm. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge.

  1. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  3. High Energy Electron Detectors on Sphinx

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  4. Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters

    NASA Technical Reports Server (NTRS)

    Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.

    1993-01-01

    A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.

  5. Tidal disruption events seen in the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Saxton, Richard; Komossa, S.; Read, Andrew; Lira, Paulina; Alexander, Kate D.; Steele, Iain

    XMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t -5/3 but vary greatly in the early phase.

  6. High Spectral Resolution Observation of the Soft Diffuse X-ray Background in the Direction of the Galactic Anti-Center

    NASA Astrophysics Data System (ADS)

    Wulf, Dallas; Eckart, Mega E.; Galeazzi, Massimiliano; Jaeckel, Felix; Kelley, Richard L.; Kilbourne, Caroline A.; McCammon, Dan; Morgan, Kelsey M.; Porter, Frederick S.; Szymkowiak, Andrew E.

    2018-01-01

    High spectral resolution observations in the soft x-rays are necessary for understanding and modelling the hot component of the interstellar medium and its contribution to the Soft X-ray Background (SXRB). This extended source emission cannot be resolved with most wavelength dispersive spectrometers, making energy dispersive microcalorimeters the ideal choice for these observations. We present here the analysis of the most recent sounding rocket flight of the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC), a large area silicon thermistor microcalorimeter. This 111 second observation integrates a nearly 1 steradian field of view in the direction of the galactic anti-center (l, b = 165°, -5°) and features ~5 eV spectral resolution below 1 keV. Direct comparison will also be made to the previous, high-latitude observations.

  7. Soft X-ray streak camera for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.

    1981-04-01

    The development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development is reviewed as well as laser fusion and laser fusion diagnostics. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  8. Two hump-shaped angular distributions of neutrons and soft X-rays in a small plasma focus device.

    PubMed

    Habibi, Morteza

    2018-03-01

    Angular distributions of soft X-rays (SXRs) and neutrons emitted by a small plasma focus device (PFD) were investigated simultaneously using TLD-100 dosimeters and Geiger-Muller activation counters, respectively. The distributions represented two humps with a small dip at the angular position 0° and reduced from the angles of ± 15° and ± 30° for the neutrons and SXRs, respectively. The maximum yield of 2.98 × 10 8 neutrons per shot of the device was obtained at 13.5kV and 6.5mbar. A time of flight (TOF) of 75.2ns between the hard X-ray and the neutron peaks corresponds to neutrons with energy of 2.67MeV. A similar behavior was observed between the angular distributions of neutron and soft X-ray emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Use of soft x-ray diagnostic on the COMPASS tokamak for investigations of sawteeth crash neighborhood and of plasma position using fast inversion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imrisek, M.; Faculty of Mathematics and Physics, Charles University in Prague, Prague; Weinzettl, V.

    2014-11-15

    The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.

  10. FPGA based charge acquisition algorithm for soft x-ray diagnostics system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.

    2015-09-01

    Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.

  11. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians prepare the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  12. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  13. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician prepares the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  14. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is being prepared for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  15. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  16. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  17. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  18. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  19. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl; Malinowski, K.; Czarski, T.

    2016-11-15

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signalmore » include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.« less

  20. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  1. Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH2)·H2O2 Delivery Nanosystem with Soft-X-ray Radiotherapy

    PubMed Central

    Xu, Lei; Shao, Yiran; Chang, Chengkang; Zhu, Yingchun

    2018-01-01

    Tumor hypoxia is known to result in radiotherapy resistance and traditional radiotherapy using super-hard X-ray irradiation can cause considerable damage to normal tissue. Therefore, formamide peroxide (FPO) with high reactive oxygen content was employed to enhance the oxygen concentration in tumor cells and increase the radio-sensitivity of low-energy soft-X-ray. To improve stability of FPO, FPO is encapsulated into polyacrylic acid (PAA)-coated hollow mesoporous silica nanoparticles (FPO@HMSNs-PAA). On account of the pH-responsiveness of PAA, FPO@HMSNs-PAA will release more FPO in simulated acidic tumor microenvironment (pH 6.50) and subcellular endosomes (pH 5.0) than in simulated normal tissue media (pH 7.40). When exposed to soft-X-ray irradiation, the released FPO decomposes into oxygen and the generated oxygen further formed many reactive oxygen species (ROS), leading to significant tumor cell death. The ROS-mediated cytotoxicity of FPO@HMSNs-PAA was confirmed by ROS-induced green fluorescence in tumor cells. The presented FPO delivery system with soft-X-ray irradiation paves a way for developing the next opportunities of radiotherapy toward efficient tumor prognosis. PMID:29649155

  2. Time-dependent nonequilibrium soft x-ray response during a spin crossover

    NASA Astrophysics Data System (ADS)

    van Veenendaal, Michel

    2018-03-01

    A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.

  3. Non-resonant inelastic x-ray scattering spectra of lithiated titanium oxides for battery applications

    NASA Astrophysics Data System (ADS)

    Nagle, Kenneth; Balasubramanian, Mali; Johnson, Christopher; Seidler, Gerald; Belharouak, Ilias

    2008-03-01

    Although lithium-ion batteries now see widespread use, there remain considerable questions concerning the basic solid state chemistry of both electrodes. Improved understanding of the local electronic structure, particularly the mechanism of charge transfer upon insertion and removal of lithium, could lead to innovation in battery design and improved performance. We present non-resonant inelastic x-ray scattering (NRIXS) spectra from 2p initial states in titanium; these spectra are among the first recorded for such states in a transition metal. These spectra were obtained using the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer, which is capable of making simultaneous measurements at nineteen values of momentum transfer. We demonstrate the ability to obtain soft x-ray absorption-like information using a bulk-sensitive, hard x-ray technique. In addition, at high momentum transfer NRIXS provides information about non-dipole transitions that are inaccessible by soft x-ray spectroscopic methods.

  4. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  5. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  6. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  7. Research on Short Duration Pulsed Radiation Sources.

    DTIC Science & Technology

    correlate soft X-ray spots with the hard radiation in a 1 kJ plasma focus showed that field structures leading to the appearance of soft X-ray spots...are always present in this plasma focus . These field structures represent m = 0 plasma instabilities and do have a direct influence upon the observed neutron emission. (Author)

  8. The Water Recovery X-ray Rocket (WRX-R)

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  9. Soft x rays as a tool to investigate radiation-sensitive sites in mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, D.J.; Zaider, M.

    1983-01-01

    It is now clear that the initial geometrical distribution of primary radiation products in irradiated biological matter is fundamental to the observed end point (cell killing, mutation induction, chromosome aberrations, etc.). In recent years much evidence has accumulated indicating that for all radiations, physical quantities averaged over cellular dimensions (micrometers) are not good predictors of biological effect, and that energy-deposition processes at the nanometer level are critical. Thus irradiation of cells with soft x rays whose secondary electrons have ranges of the order of nanometers is a unique tool for investigating different models for predicting the biological effects of radiation.more » We demonstrate techniques whereby the biological response of the cell and the physical details of the energy deposition processes may be separated or factorized, so that given the response of a cellular system to, say, soft x rays, the response of the cell to any other radiation may be predicted. The special advantages of soft x rays for eliciting this information and also information concerning the geometry of the radiation sensitive structures within the cell are discussed.« less

  10. MESSENGER soft X-ray observations of the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard A.; Hudson, Hugh S.; Tolbert, Anne K; Dennis, Brian R.

    2014-06-01

    In a remarkable result from their "SphinX" experiment, Sylwester et al. (2012) found a non-varying base level of soft X-ray emission at the quietest times in 2009. We describe comparable data from the soft X-ray monitor on board MESSENGER (en route to Mercury) which had excellent coverage both in 2009 and during the true solar minimum of 2008. These observations overlap SphinX's and also are often exactly at Sun-MESSENGER-Earth conjunctions. During solar minimum the Sun-MESSENGER distance varied substantially, allowing us to use the inverse-square law to help distinguish the aperture flux (ie, solar X-rays) from that due to sources of background in the 2-5 keV range. The MESSENGER data show a non-varying background level for many months in 2008 when no active regions were present. We compare these data in detail with those from SphinX. Both sets of data reveal a different behavior when magnetic active regions are present on the Sun, and when they are not.Reference: Sylwester et al., ApJ 751, 111 (2012)

  11. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.

    2018-04-01

    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.

  12. Effect of contrast enhancement prior to iteration procedure on image correction for soft x-ray projection microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamsranjav, Erdenetogtokh, E-mail: ja.erdenetogtokh@gmail.com; Shiina, Tatsuo, E-mail: shiina@faculity.chiba-u.jp; Kuge, Kenichi

    2016-01-28

    Soft X-ray microscopy is well recognized as a powerful tool of high-resolution imaging for hydrated biological specimens. Projection type of it has characteristics of easy zooming function, simple optical layout and so on. However the image is blurred by the diffraction of X-rays, leading the spatial resolution to be worse. In this study, the blurred images have been corrected by an iteration procedure, i.e., Fresnel and inverse Fresnel transformations repeated. This method was confirmed by earlier studies to be effective. Nevertheless it was not enough to some images showing too low contrast, especially at high magnification. In the present study,more » we tried a contrast enhancement method to make the diffraction fringes clearer prior to the iteration procedure. The method was effective to improve the images which were not successful by iteration procedure only.« less

  13. Power-law X-ray and gamma-ray emission from relativistic thermal plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1985-01-01

    A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.

  14. Resonant Soft X-ray Scattering studies with Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Fang, Yizhi; Lee, Sangjun; de La Pena, Gilberto; Sun, Xiaolan; Rodolakis, Fanny; McChesney, Jessica; Fowler, Joe; Joe, Young Il; Doriese, William; Morgan, Kelsey; Swetz, Daniel; Ullom, Joel; Abbamonte, Peter

    Resonant Soft X-ray has been one of the key techniques to study charge orders in high Tc cuperates. To solve the issue of unwanted enhancement of inelastic florescence background at resonance, we have developed an energy-resolving superconducting Transition-Edge Sensor microcalorimeters. These superconducting sensors obtain exquisite energy resolution by exploiting the superconducting-to-normal transition to photon energy and by operating at cryogenic temperatures ( 70 mK) where thermal noise is minimal. This TES has demonstrated 1.0 eV resolution below 1 keV. We present first results using this detector to study the (002) Bragg peak and specular elastic scattering from a single crystal of stripe-ordered La 2 - x Bax CuO4 (x=0.125). Use of this detector for studying excitations and rejecting background fluorescence will be discussed.

  15. X-ray emission from Stephan's Quintet and other compact groups

    NASA Technical Reports Server (NTRS)

    Bahcall, N. A.; Harris, D. E.; Rood, H. J.

    1984-01-01

    A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X-ray emission was observed in Stephan's Quintet, which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephan's Quintet and Arp 330 have the largest velocity dispersions among the groups studied, suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies.

  16. The Origin of X-ray Emission from the Enigmatic Be Star γ Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2017-11-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually hard, strong X-ray emission compared with normal main-sequence B stars. The origin has been debated for decades between two theories: mass accretion onto a hidden compact companion and a magnetic dynamo driven by the star-Be disk differential rotation. There has been no decisive signature found that supports either theory, such as a pulse in X-ray emission or the presence of large-scale magnetic field. In a ~100 ksec duration observation of the star with the Suzaku X-ray observatory in 2011, we detected six rapid X-ray spectral hardening events called ``softness dips''. All the softness dip events show symmetric softness ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ~40% or ~70% partial covering absorption to kT ~12 keV plasma emission by matter with a neutral hydrogen column density of ~2 - 8 × 1021cm-2, while the spectrum outside of these dips is almost free of absorption. This result suggests that two distinct X-ray emitting spots in the γ Cas system, perhaps on a white dwarf companion with dipole mass accretion, are occulted by blobs in the Be stellar wind, the Be disk, or rotating around the white dwarf companion. The formation of a Be star and white dwarf binary system requires mass transfer between two stars; γ Cas may have experienced such activity in the past.

  17. DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.

    2016-12-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called “softness dips” in a ∼100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ∼40% or ∼70% partial covering absorption to kT  ∼ 12 keV plasma emission by matter with a neutral hydrogen column density of ∼(2−8) × 10{sup 21} cm{sup −2}, while the spectrum outside these dips is almost free of absorption. This resultmore » suggests the presence of two distinct X-ray-emitting spots in the γ  Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT  ∼ 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; γ  Cas may have experienced such activity in the past.« less

  18. Dante soft x-ray power diagnostic for National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E.L.; Campbell, K.M.; Turner, R.E.

    2004-10-01

    Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic rangemore » using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.« less

  19. Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

    PubMed

    Popmintchev, Dimitar; Hernández-García, Carlos; Dollar, Franklin; Mancuso, Christopher; Pérez-Hernández, Jose A; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L; Tarazkar, Maryam; Romanov, Dmitri A; Levis, Robert J; Gaffney, Jim A; Foord, Mark; Libby, Stephen B; Jaron-Becker, Agnieszka; Becker, Andreas; Plaja, Luis; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching--the constructive addition of x-ray waves from a large number of atoms--favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of ~100 attoseconds. Copyright © 2015, American Association for the Advancement of Science.

  20. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    DOE PAGES

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; ...

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less

  1. Disc-jet quenching of the galactic black hole Swift J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Rushton, A. P.; Shaw, A. W.; Fender, R. P.; Altamirano, D.; Gandhi, P.; Uttley, P.; Charles, P. A.; Kolehmainen, M.; Anderson, G. E.; Rumsey, C.; Titterington, D. J.

    2016-11-01

    We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ˜10 yr period. Presented are daily radio observations at 15 GHz with the Arcminute Microkelvin Imager Large Array (AMI-LA) and X-ray data from Swift X-ray Telescope and Burst Alert Telescope. Also presented is a deep 2 h JVLA observation taken in an unusually low-luminosity soft-state (with a low disc temperature). We show that although the source has remained relatively radio-quiet compared to XRBs with a similar X-ray luminosity in the hard-state, the power-law relationship scales as ζ = 0.96 ± 0.06, I.e. slightly closer to what has been considered for radiatively inefficient accretion discs. We also place the most stringent limit to date on the radio-jet quenching in an XRB soft-state, showing the connection of the jet quenching to the X-ray power-law component; the radio flux in the soft-state was found to be < 21 μJy, which is a quenching factor of ≳ 25.

  2. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  3. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  4. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    PubMed Central

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  5. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE PAGES

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; ...

    2015-08-31

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  6. Impact of ultraluminous X-ray sources on photoabsorption in the first galaxies

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2018-05-01

    In the local Universe, integrated X-ray emission from high-mass X-ray binaries (HMXBs) is dominated by the brightest ultraluminous X-ray sources (ULXs) with luminosity ≳1040 erg s-1. Such rare objects probably also dominated the production of X-rays in the early Universe. We demonstrate that a ULX with LX ˜ 1040-1041 erg s-1 (isotropic-equivalent luminosity in the 0.1-10 keV energy band) shining for ˜105 yr (the expected duration of a supercritically accreting phase in HMXBs) can significantly ionize the ISM in its host dwarf galaxy of total mass M ˜ 107-108 M⊙ and thereby reduce its opacity to soft X-rays. As a result, the fraction of the soft X-ray (below 1 keV) radiation from the ULX escaping into the intergalactic medium (IGM) can increase from ˜20-50 per cent to ˜30-80 per cent over its lifetime. This implies that HMXBs can induce a stronger heating of the IGM at z ≳ 10 compared to estimates neglecting the ULX feedback on the ISM. However, larger galaxies with M ≳ 3 × 108 M⊙ could not be significantly ionized even by the brightest ULXs in the early Universe. Since such galaxies probably started to dominate the global star formation rate at z ≲ 10, the overall escape fraction of soft X-rays from the HMXB population probably remained low, ≲30 per cent, at these epochs.

  7. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  8. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences

  9. OPTICAL AND NEAR-INFRARED MONITORING OF THE BLACK HOLE X-RAY BINARY GX 339-4 DURING 2002-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Michelle M.; Bailyn, Charles D.; Capelo, Holly L.

    We present the optical/infrared (O/IR) light curve of the black hole X-ray binary GX 339-4 collected at the SMARTS 1.3 m telescope from 2002 to 2010. During this time the source has undergone numerous state transitions including hard-to-soft state transitions when we see large changes in the near-IR flux accompanied by modest changes in optical flux, and three rebrightening events in 2003, 2005, and 2007 after GX 339-4 transitioned from the soft state to the hard. All but one outburst show similar behavior in the X-ray hardness-intensity diagram. We show that the O/IR colors follow two distinct tracks that reflectmore » either the hard or soft X-ray state of the source. Thus, either of these two X-ray states can be inferred from O/IR observations alone. From these correlations we have constructed spectral energy distributions of the soft and hard states. During the hard state, the near-IR data have the same spectral slope as simultaneous radio data when GX 339-4 was in a bright optical state, implying that the near-IR is dominated by a non-thermal source, most likely originating from jets. Non-thermal emission dominates the near-IR bands during the hard state at all but the faintest optical states, and the fraction of non-thermal emission increases with increasing optical brightness. The spectral slope of the optical bands indicate that a heated thermal source is present during both the soft and hard X-ray states, even when GX 339-4 is at its faintest optical state. We have conducted a timing analysis of the light curve for the hard and soft states and find no evidence of a characteristic timescale within the range of 4-230 days.« less

  10. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  11. Research in Solar Physics: Analysis of Skylab/ATM S-056 X-Ray Data

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.

    1977-01-01

    Data obtained by the X-ray event analyzer are described as well as methods used for film calibration. Topics discussed include analyses of the 15 June 1973 flare, oscillations in the solar soft X-ray flux, and deconvolution of X-ray images of the 5 September 1973 flare.

  12. Observations of 12-200 keV X-rays from GX 339-4

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1982-01-01

    X-ray spectra of GX 339-4 measured on three occasions in 1977 and 1978 are presented. These are the first reported measurements above 10 keV. The spectra can be described as the superposition of a soft component, which is dominant below about 20 keV, and a hard component at higher energy. Simultaneous measurements at lower energy show that the soft component vanished during the observation in early 1978. The behavior of these two components is similar to that of the spectrum of Cygnus X-1; this reinforces the previously noted resemblance in rapid X-ray variability.

  13. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  14. Variable spreading layer in 4U 1608-52 during thermonuclear X-ray bursts in the soft state

    NASA Astrophysics Data System (ADS)

    Kajava, J. J. E.; Koljonen, K. I. I.; Nättilä, J.; Suleimanov, V.; Poutanen, J.

    2017-11-01

    Thermonuclear (type-I) X-ray bursts, observed from neutron star (NS) low-mass X-ray binaries (LMXB), provide constraints on NS masses and radii and consequently the equation of state of NS cores. In such analyses, various assumptions are made without knowing if they are justified. We have analysed X-ray burst spectra from the LMXB 4U 1608-52, with the aim of studying how the different persistent emission components react to the bursts. During some bursts in the soft spectral state we find that there are two variable components: one corresponding to the burst blackbody component and another optically thick Comptonized component. We interpret the latter as the spreading layer between the NS surface and the accretion disc, which is not present during the hard-state bursts. We propose that the spectral changes during the soft-state bursts are driven by the spreading layer that could cover almost the entire NS in the brightest phases due to the enhanced radiation pressure support provided by the burst, and that the layer subsequently returns to its original state during the burst decay. When deriving the NS mass and radius using the soft-state bursts two assumptions are therefore not met: the NS is not entirely visible and the burst emission is reprocessed in the spreading layer, causing distortions of the emitted spectrum. For these reasons, the NS mass and radius constraints using the soft-state bursts are different compared to the ones derived using the hard-state bursts.

  15. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.

  16. Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  17. Investigating the Galactic supernova remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  18. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  19. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.

  20. Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Manha, D.

    The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less

  1. Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Manha, D.; ...

    2017-03-16

    The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less

  2. Optical performance of W/B4C multilayer mirror in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Majhi, A.; Nayak, M.

    2018-03-01

    W/B4C x-ray multilayers (MLs) with 300 layer pairs and a period in the range of d = 2-1.6 nm are fabricated and investigated for the x-ray optical element in the soft x-ray regime. The structural analyses of the MLs are carried out by using hard x-ray reflectivity (HXR) measurements at 8.047 keV. Well-defined successive higher order Bragg peaks (up to 3rd order) in HXR data collected up to glancing incidence angles of ˜9° reveal a good quality of the periodic structure. The ML mirrors have an average interface width of ˜0.35 nm and have a compressive residual stress of ˜0.183 GPa and 0. 827 GPa for d = 1.62 nm and d = 1.98 nm, respectively. MLs maintain structural stability over a long time, with a slight increase in interface widths of the W layers by 0.1 nm due to self-diffusion. Soft x-ray reflectivity (SXR) performances are evaluated in the energy range of 650 to 1500 eV. At energy ˜ 1489 eV, measured reflectivities (energy resolution, ΔE) are ˜ 10% (19 eV) and 4.5% (13 eV) at glancing incident angles of 12.07° and 15° for MLs having periods of 1.98 nm and 1.62 nm, respectively. The optical performance from 1600 eV to 4500 eV is theoretically analysed by considering the measured structural parameters. The structure-stress-optical performance is correlated on the basis of the mechanism of film growth. The implications of W/B4C MLs are discussed, particularly with respect to the development of ML optics with high spectral selectivity and reflectance for soft x-ray instruments.

  3. Measurement of the point spread function and effective area of the Solar-A Soft X-ray Telescope mirror

    NASA Technical Reports Server (NTRS)

    Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.

    1989-01-01

    A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.

  4. Near-edge X-ray refraction fine structure microscopy

    DOE PAGES

    Farmand, Maryam; Celestre, Richard; Denes, Peter; ...

    2017-02-06

    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less

  5. Compact "diode-based" multi-energy soft x-ray diagnostic for NSTX.

    PubMed

    Tritz, K; Clayton, D J; Stutman, D; Finkenthal, M

    2012-10-01

    A novel and compact, diode-based, multi-energy soft x-ray (ME-SXR) diagnostic has been developed for the National Spherical Tokamak Experiment. The new edge ME-SXR system tested on NSTX consists of a set of vertically stacked diode arrays, each viewing the plasma tangentially through independent pinholes and filters providing an overlapping view of the plasma midplane which allows simultaneous SXR measurements with coarse sub-sampling of the x-ray spectrum. Using computed x-ray spectral emission data, combinations of filters can provide fast (>10 kHz) measurements of changes in the electron temperature and density profiles providing a method to "fill-in" the gaps of the multi-point Thomson scattering system.

  6. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  7. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE PAGES

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath; ...

    2017-01-05

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  8. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE PAGES

    Miao, H.; Downing, K.; Huang, X.; ...

    2009-09-25

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  9. Development and validation of real-time simulation of X-ray imaging with respiratory motion.

    PubMed

    Vidal, Franck P; Villard, Pierre-Frédéric

    2016-04-01

    We present a framework that combines evolutionary optimisation, soft tissue modelling and ray tracing on GPU to simultaneously compute the respiratory motion and X-ray imaging in real-time. Our aim is to provide validated building blocks with high fidelity to closely match both the human physiology and the physics of X-rays. A CPU-based set of algorithms is presented to model organ behaviours during respiration. Soft tissue deformation is computed with an extension of the Chain Mail method. Rigid elements move according to kinematic laws. A GPU-based surface rendering method is proposed to compute the X-ray image using the Beer-Lambert law. It is provided as an open-source library. A quantitative validation study is provided to objectively assess the accuracy of both components: (i) the respiration against anatomical data, and (ii) the X-ray against the Beer-Lambert law and the results of Monte Carlo simulations. Our implementation can be used in various applications, such as interactive medical virtual environment to train percutaneous transhepatic cholangiography in interventional radiology, 2D/3D registration, computation of digitally reconstructed radiograph, simulation of 4D sinograms to test tomography reconstruction tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  12. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  13. The Diffuse Soft X-ray Background: Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.

    2013-01-01

    I joined the University of Wisconsin-Madison sounding rocket group at its inception. It was an exciting time, as nobody knew what the X-ray sky looked like. Our group focused on the soft X-ray background, and built proportional counters with super thin (2 micron thick) windows. As the inter gas pressure of the counters was about 1 atmosphere, it was no mean feat to get payload to launch without the window bursting. On top of that we built all our own software from space solutions to unfolding the spectral data. For we did it then as now: Our computer code modeled the detector response and then folded various spectral shapes through the response and compared the results with the raw data. As far as interpretation goes, here are examples of how one can get things wrong: The Berkeley group published a paper of the soft X-ray background that disagreed with ours. Why? It turned out they had **assumed** the galactic plane was completely opaque to soft X-ray and hence corrected for detector background that way. It turns out that the ISM emits in soft X-rays! Another example was the faux pas of the Calgary group. They didn’t properly shield their detector from the sounding rocket telemetry. Thus they got an enormous signal, which to our amusement some (ambulance chaser) theoreticians tried to explain! So back then as now, mistakes were made, but at least we all knew how our X-ray systems worked from soup (the detectors) to nuts (the data analysis code) where as toady “anybody” with a good idea but only a vague inkling of how detectors, mirrors and software work, can be an X-ray astronomer. On the one hand, this has made the field accessible to all, and on the other, errors in interpretation can be made as the X-ray telescope user can fall prey to running black box software. Furthermore with so much funding going into supporting observers, there is little left to make the necessary technology advances or keep the core expertise in place to even to stay even with today’s observatories. We will need a newly launched facility (or two) or the field will eventually die.

  14. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    USDA-ARS?s Scientific Manuscript database

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  15. Higher-harmonics suppressor for soft x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waki, I.; Hirai, Y.; Momose, A.

    We have developed an apparatus for suppressing higher harmonics contained in the soft x-ray output beam of grazing-incidence grating monochromators. It consists of eight pairs of total-reflection mirrors. Each pair serves as a low-pass filter with the cutoff energy different from one another. The eight pairs are designed to cover an energy range of 80--1600 eV with an efficiency of harmonic suppression better than 97%, while transmitting more than 50% of the fundamental photons. We have tested its preliminary performance on the soft x-ray beamline BL-8A at the Photon Factory. We present the observed transmission efficiencies and the effects ofmore » the harmonic suppressor on measurements of reflectivity and fluorescence spectra.« less

  16. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  17. Multilayer X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  18. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Sho

    2014-06-15

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ∼10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stablemore » output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.« less

  19. Soft X-ray observations of pre-main sequence stars in the chamaeleon dark cloud

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Kriss, Gerard A.

    1987-01-01

    Einstein IPC observations of the nearby Chamaeleon I star forming cloud show 22 well-resolved soft X-ray sources in a 1x2 deg region. Twelve are associated with H-alpha emission line pre-main sequence (PMS) stars, and four with optically selected PMS stars. Several X-ray sources have two or more PMS stars in their error circles. Optical spectra were obtained at CTIO of possible stellar counterparts of the remaining X-ray sources. They reveal 5 probable new cloud members, K7-MO stars with weak or absent emission lines. These naked X-ray selected PMS stars are similar to those found in the Taurus-Auriga cloud. The spatial distributions and H-R diagrams of the X-ray and optically selected PMS stars in the cloud are very similar. Luminosity functions indicate the Chamaeleon stars are on average approximately 5 times more X-ray luminous than Pleiad dwarfs. A significant correlation between L sub x and optical magnitude suggests this trend may continue within the PMS phase of stellar evolution. The relation of increasing X-ray luminosity with decreasing stellar ages is thus extended to stellar ages as young as 1 million years.

  20. Impulsive phase soft X-ray blueshifts at a loop footpoint

    NASA Astrophysics Data System (ADS)

    Zarro, Dominic M.; Slater, Gregory L.; Freeland, Samuel L.

    1988-10-01

    Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrent with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma.

  1. Impulsive phase soft X-ray blueshifts at a loop footpoint

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Slater, Gregory L.; Freeland, Samuel L.

    1988-01-01

    Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrent with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma.

  2. Impulsive phase soft X-ray blueshifts at a loop footpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarro, D.M.; Slater, G.L.; Freeland, S.L.

    Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrentmore » with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma. 13 references.« less

  3. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Zemlicka, J.; Krejci, F.; Karch, J.; Patzelt, M.; Zach, P.; Sykora, V.; Mrzilkova, J.

    2016-03-01

    X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured.

  4. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  5. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  6. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  7. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    PubMed Central

    Socha, John J; Westneat, Mark W; Harrison, Jon F; Waters, James S; Lee, Wah-Keat

    2007-01-01

    Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns. PMID:17331247

  8. Power Spectrum Density of Long-Term MAXI Data

    NASA Astrophysics Data System (ADS)

    Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.

  9. The diversity of soft X-ray spectra in quasars

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Wilkes, B. J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed.

  10. A compact permanent-magnet system for measuring magnetic circular dichroism in resonant inelastic soft X-ray scattering.

    PubMed

    Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa

    2017-03-01

    A compact and portable magnet system for measuring magnetic dichroism in resonant inelastic soft X-ray scattering (SX-RIXS) has been developed at the beamline BL07LSU in SPring-8. A magnetic circuit composed of Nd-Fe-B permanent magnets, which realised ∼0.25 T at the center of an 11 mm gap, was rotatable around the axis perpendicular to the X-ray scattering plane. Using the system, a SX-RIXS spectrum was obtained under the application of the magnetic field at an angle parallel, nearly 45° or perpendicular to the incident X-rays. A dedicated sample stage was also designed to be as compact as possible, making it possible to perform SX-RIXS measurements at arbitrary incident angles by rotating the sample stage in the gap between the magnetic poles. This system enables facile studies of magnetic dichroism in SX-RIXS for various experimental geometries of the sample and the magnetic field. A brief demonstration of the application is presented.

  11. Two-Photon Absorption of Soft X-Ray Free Electron Laser Radiation by Graphite Near the Carbon K-Absorption Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less

  12. Comparison of hard X-ray spectra obtained by spectrometers on Hinotori and SMM and detection of 'superhot' component

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki

    1988-01-01

    Hard X-ray spectra in solar flares obtained by the broadband spectrometers aboard Hinotori and SMM are compared. Within the uncertainty brought about by assuming the typical energy of the background X-rays, spectra by the Hinotori spectrometer are usually consistent with those by the SMM spectrometer for flares in 1981. On the contrary, flares in 1982 persistently show 20-50-percent higher flux by Hinotori than by SMM. If this discrepancy is entirely attributable to errors in the calibration of energy ranges, the errors would be about 10 percent. Despite such a discrepancy in absolute flux, in the the decay phase of one flare, spectra revealed a hard X-ray component (probably a 'superhot' component) that could be explained neither by emission from a plasma at about 2 x 10 to the 7th K nor by a nonthermal power-law component. Imaging observations during this period show hard X-ray emission nearly cospatial with soft X-ray emission, in contrast with earlier times at which hard and soft X-rays come from different places.

  13. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  14. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  15. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  16. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians assist as a crane is used to lift the Neutron star Interior Composition Explorer, or NICER, payload up from its carrier. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  17. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container and loaded onto a truck outside the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  18. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with hard X-ray emission from the innermost accretion region. Since we have identified the elusive accretion component in the emission from a sample of symbiotic stars, our results have implications for the understanding of wind-fed mass transfer in wide binaries, and the accretion rate in one class of candidate progenitors of type Ia supernovae.

  19. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates.

    PubMed

    Gignac, Paul M; Kley, Nathan J

    2014-05-01

    The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CT (µCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy. © 2014 Wiley Periodicals, Inc.

  20. Homepage P. Fischer, LBNL, Berkeley CA | UC Santa Cruz CA

    Science.gov Websites

    mesoscale magnetic x-ray microscopy and spectroscopy (ultra-)fast spin dynamics soft x-ray tomography of condensed matter x-ray optics publications presentations invited talks conference contributions curriculum

  1. V-V compact group of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, N.

    1984-01-01

    A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X-ray emission was observed in Stephan's Quintet which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephan's Quintet and Arp 330 have the largest velocity dispersions among the groups studied suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies.

  2. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    NASA Technical Reports Server (NTRS)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D.

    1989-01-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well.

  3. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  4. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts

    PubMed Central

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R.; Medlin, Donald; Zheng, Leon; Wilson, R. Kevin; Rusin, Matthew; Takacs, Endre

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature. PMID:29300773

  5. The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Malheiro, M.; Rueda, J. A.; Ruffini, R.

    2017-03-01

    Context. Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slow rotating isolated pulsars whose energy reservoir is still matter of debate. Adopting neutron star (NS) fiducial parameters; mass M = 1.4 M⊙, radius R = 10 km, and moment of inertia, I = 1045 g cm2, the rotational energy loss, Ėrot, is lower than the observed luminosity (dominated by the X-rays) LX for many of the sources. Aims: We investigate the possibility that some members of this family could be canonical rotation-powered pulsars using realistic NS structure parameters instead of fiducial values. Methods: We compute the NS mass, radius, moment of inertia and angular momentum from numerical integration of the axisymmetric general relativistic equations of equilibrium. We then compute the entire range of allowed values of the rotational energy loss, Ėrot, for the observed values of rotation period P and spin-down rate Ṗ. We also estimate the surface magnetic field using a general relativistic model of a rotating magnetic dipole. Results: We show that realistic NS parameters lowers the estimated value of the magnetic field and radiation efficiency, LX/Ėrot, with respect to estimates based on fiducial NS parameters. We show that nine SGRs/AXPs can be described as canonical pulsars driven by the NS rotational energy, for LX computed in the soft (2-10 keV) X-ray band. We compute the range of NS masses for which LX/Ėrot< 1. We discuss the observed hard X-ray emission in three sources of the group of nine potentially rotation-powered NSs. This additional hard X-ray component dominates over the soft one leading to LX/Ėrot > 1 in two of them. Conclusions: We show that 9 SGRs/AXPs can be rotation-powered NSs if we analyze their X-ray luminosity in the soft 2-10 keV band. Interestingly, four of them show radio emission and six have been associated with supernova remnants (including Swift J1834.9-0846 the first SGR observed with a surrounding wind nebula). These observations give additional support to our results of a natural explanation of these sources in terms of ordinary pulsars. Including the hard X-ray emission observed in three sources of the group of potential rotation-powered NSs, this number of sources with LX/Ėrot< 1 becomes seven. It remains open to verification 1) the accuracy of the estimated distances and 2) the possible contribution of the associated supernova remnants to the hard X-ray emission.

  6. Tether-Cutting Energetics of a Solar Quiet Region Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2003-01-01

    We study the morphology and energetics of a slowly evolving quiet-region solar prominence eruption occurring on 1999 February 8-9 in the solar north polar crown region, using soft X-ray data from the soft X-ray telescope (SXT) on Yohkoh and Fexv EUV 284 Angstrom data from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO). After rising at approximately equal to l kilometer per second for about six hours, the prominence accelerates to a velocity of approximately equal to 10 kilometers per second, leaving behind EUV and soft X-ray loop arcades of a weak flare in its source region. Intensity dimmings occur in the eruption region cospatially in EUV and soft X-rays, indicating that the dimmings result from a depletion of material. Over the first two hours of the prominences rapid rise, flare-like brightenings occur beneath the rising prominence that might correspond to tether-cutting magnetic reconnection. These brightenings have heating requirements of up to approximately 10(exp 28)-10(exp 29) ergs, and this is comparable to the mechanical energy required for the rising prominence over the same time period. If the ratio of mechanical energy to heating energy remains constant through the early phase of the eruption, then we infer that coronal signatures for the tether cutting may not be apparent at or shortly after the start of the fast phase in this or similar low-energy eruptions, since the plasma-heating energy levels would not exceed that of the background corona.

  7. Tether-Cutting Energetics of a Solar Quiet Region Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2003-01-01

    We study the morphology and energetics of a slowly-evolving quiet region solar prominence eruption occurring on 1999 February 8-9 in the solar north polar crown region, using soft X-ray data from the soft X-ray telescope (SXT) on Yohkoh and Fe xv EUV 284 A data from the EUV Imaging Telescope (EIT) on SOHO. After rising at approx. 1 km/s for about six hours, the prominence accelerates to a velocity of approx. 10 km/s, leaving behind EUV and soft X-ray loop arcades of a weak flare in its source region. Intensity dimmings occur in the eruption region cospatially in EUV and soft X-rays, indicating that the dimmings result from a depletion of material. Over the first two hours of the prominence s rapid rise, flare-like brightenings occur beneath the rising prominence which may correspond to "tether cutting" magnetic reconnection. These brightenings have heating requirements of up to approx. 10(exp 28)-10(exp 29) ergs, and this is comparable to the mechanical energy required for the rising prominence over the same time period. If the ratio of mechanical energy to heating energy remains constant through the early phase of the eruption, then we infer that coronal signatures for the tether cutting may not be apparent at or shortly after the start of the fast phase in this or similar low-energy eruptions, since the plasma-heating energy levels would not exceed that of the background corona.

  8. Imaging mammalian cells with soft x rays: The importance of specimen preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    Studies of mammalian cell structure and spatial organization are a very prominent part of modern cell biology. The interest in them as well as their size make them very accommodating subject specimens for imaging with soft x-rays using the XM-1 transmission microscope built and operated by The Center for X-ray Optics on Beam Line 6.1 at the Advanced Light Source. The purpose of these experiments was to determine if the fixative protocols normally used in electron or visible light microscopy were adequate to allow imaging cells, either fibroblasts or neurons, with minimal visible radiation damage due to imaging with softmore » x-rays at 2.4 nm. Two cell types were selected. Fibroblasts are easily cultured but fragile cells which are commonly used as models for the detailed study of cell physiology. Neurons are complex and sensitive cells which are difficult to prepare and to culture for study in isolation from their connections with surrounding cells. These cell types pose problems in their preparation for any microscopy. To improve the contrast and to prevent postmortem alteration of the chemistry and hence the structure of cells extracted from culture or from living organisms, fixation and staining techniques are employed in electron and visible light microscopy. It has been accepted by biologists for years that these treatments create artifacts and false structure. The authors have begun to develop protocols for specimens of each of these two cell types for soft x-ray microscopy which will preserve them in as near normal state as possible using minimal fixation, and make it possible to image them in either a hydrated or dried state free of secondary addition of stains or other labels.« less

  9. Studying the Warm Layer and the Hardening Factor in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.

  10. Facial soft tissue thickness in skeletal type I Japanese children.

    PubMed

    Utsuno, Hajime; Kageyama, Toru; Deguchi, Toshio; Umemura, Yasunobu; Yoshino, Mineo; Nakamura, Hiroshi; Miyazawa, Hiroo; Inoue, Katsuhiro

    2007-10-25

    Facial reconstruction techniques used in forensic anthropology require knowledge of the facial soft tissue thickness of each race if facial features are to be reconstructed correctly. If this is inaccurate, so also will be the reconstructed face. Knowledge of differences by age and sex are also required. Therefore, when unknown human skeletal remains are found, the forensic anthropologist investigates for race, sex, and age, and for other variables of relevance. Cephalometric X-ray images of living persons can help to provide this information. They give an approximately 10% enlargement from true size and can demonstrate the relationship between soft and hard tissue. In the present study, facial soft tissue thickness in Japanese children was measured at 12 anthropological points using X-ray cephalometry in order to establish a database for facial soft tissue thickness. This study of both boys and girls, aged from 6 to 18 years, follows a previous study of Japanese female children only, and focuses on facial soft tissue thickness in only one skeletal type. Sex differences in thickness of tissue were found from 12 years of age upwards. The study provides more detailed and accurate measurements than past reports of facial soft tissue thickness, and reveals the uniqueness of the Japanese child's facial profile.

  11. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie

    2012-07-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  12. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  13. Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants

    X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less

  14. New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auchettl, Katie; Guillochon, James; Ramirez-Ruiz, Enrico

    We perform a comprehensive study of the X-ray emission from 70 transient sources that have been classified as tidal disruption events (TDEs) in the literature. We explore the properties of these candidates, using nearly three decades of X-ray observations to quantify their properties and characteristics. We find that the emission from X-ray TDEs increase by two to three orders of magnitude, compared to pre-flare constraints. These emissions evolve significantly with time, and decay with power-law indices that are typically shallower than the canonical t {sup −5/3} decay law, implying that X-ray TDEs are viscously delayed. These events exhibit enhanced (relativemore » to galactic) column densities and are quite soft in nature, with no strong correlation between the amount of detected soft and hard emission. At their peak, jetted events have an X-ray to optical ratio ≫1, whereas non-jetted events have a ratio ∼1, which suggests that these events undergo reprocessing at different rates. X-ray TDEs have long T {sub 90} values, consistent with what would be expected from a viscously driven accretion disk formed by the disruption of a main-sequence star by a black hole with a mass <10{sup 7} M {sub ⊙}. The isotropic luminosities of X-ray TDEs are bimodal, such that jetted and non-jetted events are separated by a “reprocessing valley” that we suggest is naturally populated by optical/UV TDEs that most likely produce X-rays, but this emission is “veiled” from observations due to reprocessing. Our results suggest that non-jetted X-ray TDEs likely originate from partial disruptions and/or disruptions of low-mass stars.« less

  15. The Nearest Neutron Stars

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.

  16. In-flight calibration of the Hitomi Soft X-ray Spectrometer. (2) Point spread function

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Sato, Toshiki; Hayashi, Takayuki; Iizuka, Ryo; Angelini, Lorella; Asai, Ryota; Furuzawa, Akihiro; Kelley, Richard; Koyama, Shu; Kurashima, Sho; Ishida, Manabu; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Serlemitsos, Peter J.; Tsujimoto, Masahiro; Yaqoob, Tahir

    2018-03-01

    We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1 {^'.} 2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 σ). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.

  17. Testing a Novel 3D Printed Radiographic Imaging Device for Use in Forensic Odontology.

    PubMed

    Newcomb, Tara L; Bruhn, Ann M; Giles, Bridget; Garcia, Hector M; Diawara, Norou

    2017-01-01

    There are specific challenges related to forensic dental radiology and difficulties in aligning X-ray equipment to teeth of interest. Researchers used 3D printing to create a new device, the combined holding and aiming device (CHAD), to address the positioning limitations of current dental X-ray devices. Participants (N = 24) used the CHAD, soft dental wax, and a modified external aiming device (MEAD) to determine device preference, radiographer's efficiency, and technique errors. Each participant exposed six X-rays per device for a total of 432 X-rays scored. A significant difference was found at the 0.05 level between the three devices (p = 0.0015), with the MEAD having the least amount of total errors and soft dental wax taking the least amount of time. Total errors were highest when participants used soft dental wax-both the MEAD and the CHAD performed best overall. Further research in forensic dental radiology and use of holding devices is needed. © 2016 American Academy of Forensic Sciences.

  18. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  19. Depth-resolved electronic structure of spintronic nanostructures and complex materials with soft and hard x-ray photoemission

    NASA Astrophysics Data System (ADS)

    Gray, Alexander

    In this dissertation we describe several new directions in the field of x-ray photoelectron spectroscopy, with a particular focus on the enhancement and control of the depth sensitivity and selectivity of the measurement. Enhancement of the depth sensitivity is achieved by going to higher photon energies with hard x-ray excitation and taking advantage of the resulting larger electron inelastic mean-free paths. This novel approach provides a more accurate picture of bulk electronic structure, when compared to the traditional soft x-ray photoelectron spectroscopy (XPS) which, for some systems, may be too strongly influenced by surface effects. We present three case-studies wherein such hard x-ray photoelectron spectroscopy (HAXPES) in the multi-keV regime is used to probe the bulk properties of complex thin-film materials, which would be otherwise impossible to investigate using conventional soft x-ray XPS. Namely, (1) we directly observe the opening of a semiconducting gap in epitaxial Cr0.80Al0.20 alloy thin films and confirm this with theory, (2) we study the electronic and structural properties of near-Heusler FexSi1-x alloy thin films of various composition and degrees of crystallinity, and (3) we observe the Mott metal-to-insulator transition in the ultra-thin epitaxial LaNiO3 films via core-level and valence-band spectroscopies. By performing the experiments at the photon energy of 5.95 keV, the bulk-sensitivity of the measurements, characterized by the inelastic mean-free path of the photoemitted electrons, is enhanced by a factor of 4--7 compared to the conventional soft x-ray photoelectron spectroscopy. The experimental results are compared to calculations performed using various first-principle theoretical approaches, such as the density-functional theory and the one-step theory of photoemission. Furthermore, we present the first results of hard x-ray angle-resolved photoemission measurements (HARPES), at excitation energies of 3.24 and 5.95 keV. In a second aspect of this dissertation, depth selectivity is achieved by setting-up an x-ray standing wave field in the sample by growing it on a synthetic periodic multilayer mirror substrate, which in first-order Bragg reflection acts as the standing-wave generator. The antinodes of the standing wave function as "epicenters" for photoemission, and can be moved in the direction perpendicular to the sample surface by either scanning the incidence angle thetainc, or the photon energy through the Bragg condition. Alternatively, provided that one of the underlying layers in the structure is grown in a shape of a wedge with varying thickness, the standing wave can be scanned vertically though the sample simply by moving the sample laterally under the x-ray measurement spot. We present the first study in which the chemical and electronic-structure profiles of a magnetic tunnel junction La 0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) have been quantitatively determined by a combination of soft and hard x-ray standing-wave excited photoemission. By comparing experiment to x-ray optical calculations, the detailed chemical profile of the constituent layers and their interfaces is quantitatively derived with Angstrom precision. Combined with core-hole multiplet theory incorporating Jahn-Teller distortion, these results indicate a change in the Mn bonding state near the LSMO/STO interface. Our results thus further clarify the reduced performance of LSMO/STO magnetic tunnel junction compared to ideal theoretical expectations. Finally, we demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM) as a further aspect of standing-wave photoemission. We show that standing-wave excited photoelectron microscopy can be used to produce element-specific and depth-selective images of patterned samples. In conjunction with x-ray optical theoretical modeling, quantitative information about the depth-dependent chemical composition of the sample can be extracted from the photoemission data. The good agreement between our experimental results and model calculations suggests that future studies with better spatial and spectral resolution will also yield more detailed information about the interfacial regions. This addition of quantitative depth selectivity to the conventional laterally-resolved soft x-ray photoelectron emission microscopy thus should considerably enhance the capabilities of the PEEM as a research, development and metrology tool for science and industry. (Abstract shortened by UMI.)

  20. Numerical simulation of a soft-x-ray Li laser pumped with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozsnyai, B.; Watanabe, H.; Csonka, P.L.

    1985-07-01

    Results of a computer simulation are reported for a lithium soft-x-ray laser pumped by synchro- tron radiation. Coherent stimulated emission of the photons of interest occurs in Li II 1s2p..-->..Li II 1s/sup 2/ transitions. Calculated results include the dominant ion and photon densities and the laser gain.

  1. Soft X-ray properties of Seyfert galaxies. I - Spectra

    NASA Technical Reports Server (NTRS)

    Kruper, J. S.; Canizares, C. R.; Urry, C. M.

    1990-01-01

    Results are presented from a study of soft X-ray spectra of 75 Seyfert galaxies observed by the Einstein Observatory IPC. The spectra in this sample (mostly high-luminosity Seyfert type 1s) are found to be consistent with a single power-law index alpha = 81. The AGN spectra observed with the IPC are compared with those from higher energy experiments, where AGN spectra have power law indices alpha = 0.7. It is found that the IPC spectra are systematically steeper than the HEAO 1 A-2 spectra of the same Seyfert galaxies, indicating a flattening toward higher energies.

  2. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  3. Soft X-ray maps of the Large Magellanic Cloud (LMC)

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Nousek, J. A.; Burrows, D. N.; Garmire, G. P.

    1985-01-01

    Soft X-ray maps of the Large Magellanic Cloud (LMC) were obtained from scanning-observations with the HEAO-1 low energy detectors. Comparison of the 1/4 keV X-ray observations with the neutral hydrogen column densities in the LMC obtained from a 21 cm line survey, shows no evidence for absorption effects in the 1/4 keV X-ray flux from the LMC due to the neutral matter in the LMC. Instead, faint X-ray emission is detected from the LMC. The extent of this emission is smaller than the size of the halo or the disk of the LMC. Assuming this 1/4 keV emission to be diffuse, it is identified with a supergiant shell of optical nebulosity known as Shapley III, and the bar of the LMC. The X-ray luminosities of the regions are estimated to be 9 times 10 to the 38th power ergs/sec and 1.8 times 10 to the 39th power ergs/sec for the Shapley III region and the bar of the LMC respectively. Shapley III could be an X-ray superbubble.

  4. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  5. Resolve Instrument on X-ray Astronomy Recovery Mission (XARM)

    NASA Astrophysics Data System (ADS)

    Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Ichinohe, Y.; Fujimoto, R.; Takei, Y.; Yasuda, S.; Ishida, M.; Yamasaki, N. Y.; Maeda, Y.; Tsujimoto, M.; Iizuka, R.; Koyama, S.; Noda, H.; Tamagawa, T.; Sawada, M.; Sato, K.; Kitamoto, S.; Hoshino, A.; Brown, G. V.; Eckart, M. E.; Hayashi, T.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Mori, H.; Okajima, T.; Porter, F. S.; Soong, Y.; McCammon, D.; Szymkowiak, A. E.

    2018-04-01

    The X-ray Astronomy Recovery Mission (XARM) is a recovery mission of ASTRO-H/Hitomi, which is expected to be launched in Japanese Fiscal Year of 2020 at the earliest. The Resolve instrument on XARM consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput X-ray mirror assembly with the focal length of 5.6 m. Hitomi was launched into orbit in February 2016 and observed several celestial objects, although the operation of Hitomi was terminated in April 2016. The soft X-ray spectrometer (SXS) on Hitomi demonstrated high-resolution X-ray spectroscopy of 5 eV FWHM in orbit for most of the pixels. The Resolve instrument is planned to mostly be a copy of the Hitomi SXS and soft X-ray telescope designs, though several changes are planned based on the lessons learned from Hitomi. We report a brief summary of the SXS performance and the status of the Resolve instrument.

  6. Probing interfacial characteristics of rubrene/pentacene and pentacene/rubrene bilayers with soft X-ray spectroscopy.

    PubMed

    Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N

    2007-08-16

    The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.

  7. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Long; Zhang, Shu; Chen, YuPeng

    Type I X-ray bursts on the surface of a neutron star are a unique probe into accretion in X-ray binary systems. However, we know little about the feedback of the burst emission on accretion. Hard X-ray shortages and enhancements of the persistent emission at soft X-rays have been observed. To put these findings in context with the aim of understanding the possible mechanism underneath, we investigated 68 bursts seen by the Rossi X-ray Timing Explorer from the clocked burster GS 1826-238. We diagnosed jointly the burst influence of both soft and hard X-rays, and we found that the observations canmore » be described by the CompTT model with variable normalization, electron temperature, and optical depth. Putting these results in a scenario of coronal Compton cooling via the burst emission would lead to a shortage of cooling power, which may suggest that additional considerations, like the influence of the burst on corona formation, should be accounted for as well.« less

  9. 1ES 1113+432: Luminous, soft X-ray outburst from a nearby cataclysmic variable (AR Ursae Majoris)

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Schachter, J. F.; Silber, A. D.; Slane, P.

    1994-01-01

    A remarkable X-ray transient from the Einstein Slew Survey, 1 ES 1113+432, is identified with a nearby, short-period cataclysmic variable. Wenzel (1993) has confirmed that the optical counterpart is the variable star, AR UMa (cataloged as 'semiregular'), erroneously reported 5.7 min southeast of the true position. One of the Einstein slew observations recorded a flux of 43 IPC counts/s, which is an order of magnitude above the flux observed from the brightest cataclysmic variables in other X-ray surveys. The outburst spectrum is extremely 'soft,' with an implied blackbody temperature of approximately 22 eV. The optical counterpart (V = 16.5) exhibits a strong UV component, TiO bands from an M star, and broadened Balmer emission lines. Optical states as bright as V approx. 13 were found on photographs from the Harvard Plate Library, confirming outburst behavior in the optical counterpart. The historical photographic record suggests that 1ES 1113+432 remains in a low-accretion state most of the time. Both of the soft X-ray spectrum and the transitions between high and low-accretion states are suggestive of the AM Her (magnetic) subclass. Photometric observations in the I band show 0.18 mag modulations at a period of 0.966 hr. These are interpreted as ellipsiodal variations in the secondary star for a binary period of 1.932 hr, which is near the lower boundary of the 'period gap' in the histogram, of orbital periods of accreting white dwarfs. Thus 1ES 1113+432 provides the rare opportunity to study a secondary star in a cataclysmic binary that has evolved through the period gap. The optical spectral features from the secondary imply a spectral type of approximately M6 and a distance of approximately 88 pc. The peak luminosity in the soft X-ray component (unabsorbed) is then estimated to be 3 X 10(exp 33) ergs/s, assuming emission from a blackbody slab with a temperature of 22 eV. While this luminosity is higher than previous measures of the soft X-ray component, it does not exceed the amount of radiation that could be emitted from the accretion-heated surface of a white dwarf.

  10. Variability in the x-ray emission of H0538+608: An unusual AM Her-type cataclysmic variable. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Catelli, Jennifer

    1992-01-01

    The x-ray emissions of AM Herculis-type object H0538+608 were observed using the ROSAT satellite. Evidence was found for a highly varying soft x-ray component with a much lower intensity than is typical for this class. The spectrum was well fit by a thermal bremsstrahlung model (exponential plus gaunt factor) of 35 +/- 5 KeV plus a 0.05 +/- 0.01 KeV blackbody component, with absorption by interstellar medium with a neutral hydrogen column density of log N(sub H) (atoms/sq cm) = 20.2. No obvious periodic variations were found. There was very little correlation between the hard and soft x-ray bands.

  11. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Bokarev, S. I.; Hilal, R.; Aziz, S. G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  12. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    PubMed

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  13. A Comparative View of X-rays from the Solar System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili

    2005-01-01

    With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.

  14. Transient Astrophysics Probe

    NASA Astrophysics Data System (ADS)

    Camp, Jordan; Transient Astrophysics Probe Team

    2018-01-01

    The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique “Lobster-eye” imaging soft X-ray optics that allow a ~1600 deg2 FoV; a high sensitivity, 1 deg2 FoV soft X-ray telescope; a 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of 8 NaI gamma-ray detectors. TAP’s most exciting capability will be the observation of tens per year of X-ray and IR counterparts of GWs involving stellar mass black holes and neutron stars detected by LIGO/Virgo/KAGRA/LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.

  15. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  16. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  17. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  18. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  19. Phase contrast imaging of buccal mucosa tissues-Feasibility study

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Tripathi, S.; Shripathi, T.; Kulkarni, V. K.; Banda, N. R.; Agrawal, A. K.; Sarkar, P. S.; Kashyap, Y.; Sinha, A.

    2015-06-01

    Phase Contrast Imaging (PCI) technique has been used to interpret physical parameters obtained from the image taken on the normal buccal mucosa tissue extracted from cheek of a patient. The advantages of this method over the conventional imaging techniques are discussed. PCI technique uses the X-ray phase shift at the edges differentiated by very minute density differences and the edge enhanced high contrast images reveal details of soft tissues. The contrast in the images produced is related to changes in the X-ray refractive index of the tissues resulting in higher clarity compared with conventional absorption based X-ray imaging. The results show that this type of imaging has better ability to visualize microstructures of biological soft tissues with good contrast, which can lead to the diagnosis of lesions at an early stage of the diseases.

  20. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    DOE PAGES

    Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...

    2014-08-21

    Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less

Top