Science.gov

Sample records for soft x-ray synchrotron

  1. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Weber, F. A.; Dewald, E. L.; Glenzer, S. H.; Landen, O. L.; Turner, R. E.; Waide, P. A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  2. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  3. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  4. Multilayer-based soft X-ray polarimeter at the Beijing Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Li-Juan; Cui, Ming-Qi; Zhu, Jie; Zhao, Yi-Dong; Zheng, Lei; Wang, Zhan-Shan; Zhu, Jing-Tao

    2013-07-01

    A compact high precision eight-axis automatism and two-axis manual soft-ray polarimeter with a multilayer has been designed, constructed, and installed in 3W1B at the Beijing Synchrotron Radiation Facility (BSRF). Four operational modes in the same device, which are double-reflection, double-transmission, front-reflection-behind-transmission and front-transmission-behind-reflection, have been realized. It can be used for the polarization analysis of synchrotron radiation. It also can be used to characterize the polarization properties of the optical elements in the soft X-ray energy range. Some experiments with Mo/Si and Cr/C multilayers have been performed by using this polarimeter with good results obtained.

  5. A magnetizing system for dichroism measurements in soft x-ray emission excited by synchrotron radiation

    SciTech Connect

    Dallera, C.; Ghiringhelli, G.; Braicovich, L.

    1996-02-01

    We present the design and performance of a magnetic circuit suitable for magnetizing solid samples in the measurements of soft x-ray emission dichroism excited by synchrotron radiation. The system allows a variety of samples to be magnetized and satisfies the rather stringent geometrical constraints due to the need for minimizing the effect of photon self-absorption by the sample. The magnetic circuit is ultrahigh vacuum compatible, can reach about 2800 G, and allows fine adjustment of sample position. {copyright} {ital 1996 American Institute of Physics.}

  6. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  7. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  8. Synchrotron soft X-ray and field-emission electron sources: a comparison.

    PubMed

    Spence, J C H; Howells, M R

    2002-12-01

    The soft X-ray spectral region and the useful range of electron energy-loss spectroscopy are very similar, both including the energy range 100-1000 eV. Moreover, well-developed monochromators and parallel detection devices with comparable resolution exist for both. Despite the differing interactions of electrons and photons, many complementary experiments in imaging, spectroscopy and diffraction have been performed using both techniques. We therefore compare the brightness, degeneracy, monochromaticity, beam size, source size, spatial and temporal coherence of field-emission electron beams and soft X-ray synchrotron radiation from typical undulators. Recent brightness values for nanotip field emitters and undulators, both measured and calculated, are provided with examples from the Advanced Light Source synchrotron-radiation facility at Berkeley USA. The quantum mechanical upper limit on source brightness, as well as relationships among beam brightness, coherence parameters, and degeneracy, are discussed. Factors which limit these parameters and methods of measurement are reviewed, and the implications for diffraction, imaging and spectroscopic experiments as well as radiation damage are briefly commented on.

  9. Soft x-ray emission spectroscopy using monochromatized synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    Nordgren, J.; Bray, G.; Cramm, S.; Nyholm, R.; Rubensson, J.-E.; Wassdahl, N.

    1989-07-01

    Soft x-ray emission spectroscopy is a common tool for the study of the electronic structure of molecules and solids. However, the interpretation of spectra is sometimes made difficult by overlaying lines due to satellite transitions or close-lying core holes. Also, irrelevant inner core transitions may accidentally fall in the wavelength region under study. These problems, which often arise for spectra excited with electrons or broadband photon sources can be removed by using monochromatized synchrotron radiation. In addition, one achieves other advantages as well, such as the ability to study resonant behavior. Another important aspect is the softness of this excitation agent, which allows chemically fragile compounds to be investigated. In this work we demonstrate the feasibility of using monochromatized synchrotron radiation to excite soft x-ray spectra. We also show new results which have been accomplished as a result of the selectivity of the excitation. The work has been carried out using the Flipper I wiggler beamline at HASYLAB in Hamburg using a new grazing incidence instrument designed specifically for this experiment. The photon flux at the Flipper I station (typically 5×1012 photons per second on the sample with a 1% bandpass) is enough to allow soft x-ray fluorescence spectra to be recorded at relatively high resolution and within reasonable accumulation times (typically, the spectra presented in this work were recorded in 30 min). The spectrometer is based on a new concept which allows the instrument to be quite small, still covering a large wavelength range (10-250 Å). The basic idea involves the use of several fixed mounted gratings and a large two-dimensional detector. The grating arrangement provides simple mounting within a limited space and, in particular, large spectral range. The detector can be moved in a three-axis coordinate system in order to cover the different Rowland curves defined by the different gratings. The arrangement permits

  10. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  11. First Observation of a Wooden Foreign Body in Soft Palate by Means of Synchrotron X-Ray Refraction Contrast

    NASA Astrophysics Data System (ADS)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto; Shimao, Daisuke; Shiwaku, Hideaki; Hyodo, Kazuyuki; Ohashi, Kenjirou

    2002-08-01

    A clear image of a wooden chopstick penetrating the soft palate of a pig-head was obtained using highly coherent synchrotron X-ray. The image was recorded on a mammography film with an intensifying screen at an X-ray energy of 35 keV. The tubular tissues as sieve tubes or ducts in the chopsticks appeared as white-black line images by means of X-ray refraction contrast. This method may enable development of an accurate diagnostic method in the field of penetrating trauma by wood.

  12. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed.

  13. YB66 as a new soft x-ray monochromator for synchrotron radiation (abstract)

    NASA Astrophysics Data System (ADS)

    Rek, Z.; Wong, Joe; Tanaka, T.; Shimkaveg, G.; Eckart, M.

    1992-01-01

    YB66, a complex binary semiconducting compound with a cubic crystal structure and a lattice parameter of 23.44 Å, is potentially a very good candidate for monochromatization of soft x-ray synchrotron radiation. The features such as: a large interatomic spacing, lack of absorption edges by the constituent elements in the region 1-2 keV, very narrow intrinsic rocking curves for (400) and (222) reflections and good thermal and mechanical properties make the material very useful. Using the known structure factors for the (400) and (222) reflections, having 2d values of 11.76 and 13.53 Å, respectively, their rocking curves have been calculated and are shown [J. Wang, G. Shimkaveg, W. Goldstein, M. Eckart, T. Tanaka, Z. Rek, H. Tompkins, Nucl. Instrum. Methods A 291, 243 (1990)] to be comparable to or better than that of beryl (101¯0). A novel indirect heating floating zone method for growing large size crystals was used by Tanaka and his coworkers in Japan [T. Tanaka, S. Otani, and Y. Ishizawa, J. Cryst. Growth 73, 31 (1985)]. Numerous modifications of this technique and double-zone passes were applied to reduce sub grain structure and lattice deformations. The crystalline perfection and absence of defects is critical to obtaining high energy resolution and good crystal reflectivity. Crystals large enough to accept 1 mrad of radiation, with growth direction [100] and [110] were grown. Rocking curve measurements, etch pit density, and x-ray white beam topography are used to characterize the quality of these crystals as a function of some critical growth parameters. Most crystals exhibit the existence of sub grain boundaries. Areas perfect enough were observed to give ˜ 0.5 eV energy resolution. Recent experiments in crystal growth, results of crystals characterization, and comparison with theoretical calculations will be discussed.

  14. Synchrotron X-ray Scattering from Self-organized Soft Nanostructures in Clays

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.

    2009-04-01

    In the general context of self-organization of nanoparticles (in our case clay particles), and transitions in such structures, we study interconnected universal complex physical phenomena such as: (i) spontaneous gravitationally induced phase separation and nematic self-organization in systems of anisotropic clay nanoparticles in aqueous suspension, including studies of isotropic to nematic transitions [1,2] (ii) transitions from biaxial to uniaxial nematics by application of external magnetic field to self-organized systems of the same anisotropic (diamagnetic) clay nanoparticle systems [3,4] (iii) guided self-organization into chainlike structures of the same anisotropic clay nanoparticles in oil suspension when subjected to external electrical fields (electrorheological structures of polarized nanoparticles), and the stability of, and transitions of, such structures, when subjected to external mechanical stress [5,6] The experimental techniques used by us include synchrotron X-ray scattering, neutron scattering, rheometry. microscopy and magnetic resonance. We have demonstrated that clays may be used as good model systems for studies of universal physical phenomena and transitions in self-organized nanostructured soft and complex matter. Self-organization and related transitions in clay systems in particular, may have practical relevance for nano-patterning, properties of nanocomposites, and macroscopically anisotropic gels, among many other applications [7]. The synchrotron experiments have been performed at LNLS-Brazil, PLS- Korea, BNL-USA and ESRF-France. Acknowledgments: Collaborators, postdocs and students at NTNU-Norway, UiO-Norway, IFE-Norway, BNL-USA, LNLS-Brazil, UFPE-Brazil, UnB-Brazil, Univ. Amsterdam-Netherlands, Univ.Paris 7-France and other places. This research has been supported by the Research Council of Norway (RCN), through the NANOMAT, SUP and FRINAT Programs. References 1. J.O. Fossum, E. Gudding, D.d.M. Fonseca, Y. Meheust, E. DiMasi, T

  15. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  16. A new method to suppress high-order harmonics for a synchrotron radiation soft X-ray beamline

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Ying; Xing, Hai-Ying; Hong, Cai-Hao; Tang, Kun; Han, Yong; Chen, Dong-Liang; Zhao, Yi-Dong

    2015-04-01

    A feasible and convenient method is proposed to suppress higher-harmonics for a varied-line-spacing plane grating monochromator in the soft X-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of the exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at the Beijing Synchrotron Radiation Facility (BSRF). Supported by National Natural Science Foundation of China (11375227, 61204008)

  17. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  18. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy.

    PubMed

    Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M

    2015-05-14

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  19. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    NASA Astrophysics Data System (ADS)

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-05-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  20. Soft X-ray synchrotron radiation spectroscopy study of molecule-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Kang, J.-S.; Kim, Kyung Hyun; Kim, Pil; Baik, Jaeyoon; Shin, H. J.

    2014-11-01

    The electronic structures of molecule-based nanoparticles, such as biomineralized Helicobacter pylori ferritin (Hpf), Heme, and RbCo[Fe(CN)6]H2O (RbCoFe) Prussian blue analogue, have been investigated by employing photoemission spectroscopy and soft X-ray absorption spectroscopy. Fe ions are found to be nearly trivalent in Hpf and Heme nanoparticles, which provides evidence that the amount of magnetite (Fe3O4) should be negligible in the Hpf core and that the biomineralization of Fe oxides in the high-Fe-bound-state Hpf core arises from a hematite-like formation. On the other hand, Fe ions are nearly divalent and Co ions are Co2+-Co3+ mixed-valent in RbCoFe. Therefore this finding suggests that the mechanism of the photo-induced transition in RbCoFe Prussian blue analogue is not a simple spin-state transition of Fe2+-Co3+ → Fe3+-Co2+. It is likely that Co2+ ions have the high-spin configuration while Fe2+ ions have the low-spin configuration.

  1. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  2. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  3. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy.

    PubMed

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikus, Katarina; Kreft, Ivan

    2011-07-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved.

  4. Internal soft-tissue anatomy of Cambrian 'Orsten' arthropods as revealed by synchrotron X-ray tomographic microscopy.

    PubMed

    Eriksson, Mats E; Terfelt, Fredrik; Elofsson, Rolf; Marone, Federica

    2012-01-01

    The world-famous 'Orsten' Konservat-Lagerstätte has yielded detailed information about Cambrian arthropods and their morphology. Internal organs or soft tissues have, however, rarely been reported, an obvious palaeobiological drawback. In this study, we employed synchrotron radiation X-ray tomographic microscopy (SRXTM) to study microscopic 'Orsten' arthropods from the Cambrian of Sweden: Skara minuta and two phosphatocopine species, Hesslandona sp. and Hesslandona trituberculata. This exceptionally high-resolution technique reveals internal organs or soft tissues that allow detailed comparison with equivalent structures in extant crustaceans and functional inferences to be made. The S. minuta specimen shows the digestive system and muscles that extend to the extremities. The slanting anterior portion of the head and anterior position of the mouth with a straight oesophagus suggest a primarily brushing and scraping way of feeding. The prominent head appendage muscles indicate muscle strength and good capacity for food manipulation. In the phosphatocopines the bulbous labrum is one of the most prominent morphological structures of the body. All specimens analysed reveal pairs of muscle bundles within the labrum. Based on comparisons with extant crustacean relatives, these muscles would fulfil the function of moving the labrum up and down in order to open the buccal cavity. The results of this pilot study demonstrate that there is still much to be learned about the 'Orsten' taxa.

  5. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  6. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    PubMed

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  7. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    PubMed

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  8. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  9. Synchrotron-based in situ soft X-ray microscopy of Ag corrosion in aqueous chloride solution

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; D'Urzo, L.; Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Prasciolu, M.; Tadjeddine, A.

    2009-09-01

    In this paper we report an in situ X-ray microscopy study of a model metal electrochemistry system, incorporating faradaic reactivity: the anodic corrosion and cathodic electrodeposition of Ag in aqueous systems. The information at sub-μm scale about morpho-chemical evolution of the electrified interface, provided by this novel electroanalytical approach fosters fundamental understanding of important issues concerning material fabrication and stability, which are crucial in developing the next generation electrochemical technologies, such as fuel cells and biosensors. The key methodology challenge faced in this pilot electrochemical experiments is combining a three-electrode configuration and wet environment, which required metal electrodes suitable for transmitting soft X-rays and a sealed cell allowing working in high vacuum. This has been solved via lithographic fabrication route fabricating 75 nm thick Ag electrodes and using Si3N4 membranes as X-ray windows and electrode support. Imaging in the STXM mode with phase contrast allowed us to monitor the corrosion morphologies and metal outgrowth features. Localised thickness variation and the build-up of reaction products of electron density different from that of the starting material have been detected with high sensitivity.

  10. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  11. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    SciTech Connect

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  12. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  13. Multilayers for EUV, soft x-ray and x-ray optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Huang, Qiushi; Zhang, Zhong

    2016-02-01

    Driven by the requirements in synchrotron radiation applications, astronomical observation, and dense plasma diagnostics, the EUV, soft X-rays and X-rays multilayer optics have been tremendously developed. Based on the LAMP project for soft X-ray polarimetry, Co/C and Cr/C multilayers have been fabricated and characterized. Both Co/C and Cr/C multilayers reveal good optical performance working at 250 eV. Pd/Y multilayers have been successfully fabricated using reactive sputtering with nitrogen working at around 9.4 nm. EUV normal incidence Schwarzschild and soft X-ray grazing incidence KB microscopes were developed for ICF plasma diagnostics. This paper covers the outline of the multilayer optics and the current status in our lab.

  14. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  15. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  16. Implementation of soft x-ray microscopy with several tens nanometers spatial resolution at NSRL

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Chen, Liang

    2009-09-01

    A transmission soft x-ray microscope (TXM), which is similar to the full-field x-ray microscopes installed on other synchrotron radiation sources in the world, was developed at National Synchrotron Radiation Laboratory (NSRL) in Hefei. An x-ray image taken with the microscope was acquired and its spatial resolution was estimated to be better than 70nm.

  17. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  18. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  19. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J G

    2011-03-17

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  20. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    PubMed Central

    2011-01-01

    Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins) around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF) microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the presence of asbestos fibres

  1. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    PubMed

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

  2. Challenges for Synchrotron X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.

    2002-12-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano

  3. Fabrication of X-ray mirrors for synchrotron applications

    NASA Astrophysics Data System (ADS)

    Thiess, H.; Lasser, H.; Siewert, F.

    2010-05-01

    Application of conic section geometries play an important role for soft X-ray synchrotron beams. Mirror design for collimation or focusing under stringent boundary conditions may end up with very aspheric geometries. In particular, the aspheric departure of these surfaces from "base geometries" in combination with high-quality requirements for slope and roughness is challenging. Mirror manufacturing of very aspheric mirrors at Carl Zeiss Laser Optics will be illustrated by recent examples. Fabrication issues of ellipsoids and 2D-parabolas are discussed. In addition, the close interaction of metrology and polishing will be highlighted.

  4. [Effects of long-term fertilization on organic carbon functional groups in black soil as revealed by synchrotron radiation soft X-ray near-edge absorption spectroscopy].

    PubMed

    Wang, Nan; Wang, Shuai; Wang, Qing-He; Dong, Pei-Bo; Li, Cui-Lan; Zhang, Jin-Jing; Gao, Qiang; Zhao, Yi-Dong

    2012-10-01

    A 20 years (1984-2004) stationary field experiment was conducted to evaluate the effects of long-term application of chemical fertilizers (N or NPK) alone or in combination with low (0.125 kg x hm(-2)) or high dose of corn stalk (0.25 kg x hm(-2)) on organic carbon functional groups in black soil using synchrotron radiation soft X-ray near-edge absorption spectroscopy (C-1s NEXAFS). Compared with the control (CK) treatment, the aromatic C and the carboxyl C of soil increased, whereas the aliphatic C, the carbonyl C and the aliphatic C/aromatic C ratio decreased after the application of chemical fertilizer alone. After the application of chemical fertilizations in combined with corn stalk, the aromatic C decreased while the aliphatic C and the aliphatic C/aromatic C ratio increased as compared to N or NPK fertilizer treatment. And the change tendency was more obvious with the increase in the dose of corn stalk applied. Regardless of corn stalk application, the aromatic C, the aliphatic C, and the aliphatic C/aromatic C ratio were all higher for NPK than for N fertilizer treatment. The above results indicated that, compared with the no-fertilizer control treatment, the application of chemical fertilizers alone resulted in the relative proportion of aromatic compounds increased whereas that of aliphatic hydrocarbon compounds decreased. On the other hand, the relative proportion of the aliphatic hydrocarbon compounds was higher after the application of chemical fertilizers with than without corn stalk, with high than with low dose of corn stalk, and with NPK than with N fertilization. C-1s NEXAFS spectroscopy could characterize in situ the changes of organic carbon functional groups in soil under long-term stationary fertilization.

  5. Quantitative Measurement of the Proportions of High-Order Harmonics for the 4B7B Soft-X-Ray Source at Beijing Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Zhu, Tuo; Shang, Wanli; Zhang, Wenhai; Yang, Jiamin; Xiong, Gang; Zhao, Yang; Kuang, Longyu; Zhao, Yidong; Zheng, Lei; Cui, Mingqi; Tang, Kun; Ma, Chenyan

    2013-12-01

    A transmission grating coupled with an X-ray charge coupled device (CCD) is used to quantitatively measure the proportion of high-order harmonics of the soft-X-ray source of beam line 4B7B. The results show that the monochromatic X-ray has third-order and second-order harmonics. The proportion of second-order harmonic of 4B7B is less than 9.0% and the third-order harmonic is below 0.7% when no suppressing method is applied. When suppression methods are used, the proportion of second-order harmonic is less than 1.7% and the third-order harmonic is ignorable.

  6. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    SciTech Connect

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures.

  7. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  8. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  9. Soft X-ray spectroscopy of astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Kahn, Steven M.

    These lectures are intended to provide a review of the basic physics necessary for the interpretation of high resolution soft X-ray spectra of astrophysical sources. While many of the topics I discuss can be found at the requisite level of sophistication in standard textbooks on atomic physics and spectroscopy, I have made an attempt to highlight those aspects which are especially important for X-ray transitions, and which are relevant at the characteristic temperatures and densities typically found in various types of X-ray emitting astrophysical plasmas. My emphasis is on discrete atomic transitions, which dominate the spectra of most cosmic sources in the soft X-ray band (100eV≤E≤10 keV). I do not discuss basic continuum processes like bremsstrahlung, synchrotron emission, and inverse Compton emission, as these are covered well in the usual texts used to introduce students to radiative processes in astrophysics. The organization is as follows: I provide a brief introduction to the role of X-ray spectroscopy in astrophysics, and the physical conditions in various types of cosmic X-ray sources. Chapters 1 through 3 cover the essentials of atomic physics: classical and quantum radiation theory, atomic structure, and electron-ion collisional processes, respectively. In Chap. 4, I discuss the various types of equilibria that apply in astrophysical plasmas, and in Chap. 5, I provide a relatively brief review of the most important discrete-line spectral diagnostics that fall in the soft X-ray band. Chapter 6 includes a set of concluding remarks and some thoughts on where this field might be headed in the future.

  10. Towards practical soft X-ray spectromicroscopy of biomaterials.

    PubMed

    Hitchcock, A P; Morin, C; Heng, Y M; Cornelius, R M; Brash, J L

    2002-01-01

    Scanning transmission X-ray microscopy (STXM) is being developed as a new tool to study the surface chemical morphology and biointeractions of candidate biomaterials with emphasis on blood compatible polymers. STXM is a synchrotron based technique which provides quantitative chemical mapping at a spatial resolution of 50 nm. Chemical speciation is provided by the near edge X-ray absorption spectral (NEXAFS) signal. We show that STXM can detect proteins on soft X-ray transparent polymer thin films with monolayer sensitivity. Of great significance is the fact that measurements can be made in situ, i.e. in the presence of an overlayer of the protein solution. The strengths, limitations and future potential of STXM for studies of biomaterials are discussed.

  11. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  12. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  13. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  14. Transition radiation very soft X-ray source

    NASA Astrophysics Data System (ADS)

    Umiastowski, K.; Nguyen, A.

    1994-05-01

    There is a growing interest in the transition radiation (TR), as a soft X-ray source, in the last few years. Many papers have been published on calculations or experiments in the 1-10 keV X-ray energy range using 50-200 MeV electron accelerators. We investigate the possibility to generate very soft X-rays (λ = 12 nm) with low-energy electron accelerator (5-20 MeV). Very little information is available on TR in this range of photon wavelength and electron energy. A stack of 20 foils of beryllium placed in vacuum was used in our computer simulation. Calculation shows that for 1 mA electron beam current, radiation with few mW intensity can be produced. Emitted photons are quasi-monoenergetic (FWHM less than 5%), and well collimated. The aim of our study is to investigate the possibility of fabricate a soft X-ray source, much more compact than synchrotron source and producing an intense and quasi-coherent radiation, for industrial applications.

  15. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  16. The metrology of spherical shells using synchrotron x ray microtomography

    NASA Technical Reports Server (NTRS)

    Hmelo, Anthony B.; Allen, James L.; Damico, Kevin L.

    1990-01-01

    With recent advances in solid state imaging technology and the increasing availability of synchrotron x-ray radiation sources, synchrotron x-ray microtomography is emerging as a nondestructive technique for the evaluation of the structure and composition of small specimens with spatial resolution in the micron range. Synchrotron radiation offers the following advantages over conventional x-ray sources: high brightness, continuous emission which is tunable over a large energy range, faster data collection rates, and a highly collimated beam of large cross section permitting the illumination of large specimens. Synchrotron x-ray microtomography enables the structure of individual spheres to be evaluated in order to reveal the concentricity and sphericity of the internal void and the uniformity of the shell wall in the case of high quality spherical shells for Sandia National Laboratories' Inertial Confinement Fusion project.

  17. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-06-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  18. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  19. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial

  20. New soft x-ray emission spectrograph

    NASA Astrophysics Data System (ADS)

    Carson, R. D.; Franck, C. P.; Schnatterly, S.; Zutavern, F.

    1984-12-01

    We have built a new soft x-ray emission spectrograph covering the photon energy range 20-800 eV. It incorporates toroidal holographic grazing incidence diffraction gratings and a position-sensitive photodiode array as a detector. The detector electronics are remote from the array which is under vacuum at nitrogen temperature, and features a double-correlated sampling scheme. The sample is excited with a Pierce-type electron gun using a quadrupole focusing lens. The performance of the instrument is described.

  1. Surface recombination effects in soft X-ray efficiencies

    NASA Astrophysics Data System (ADS)

    Benitez, E. L.; Husk, D. E.; Tarrio, C.; Schnatterly, S. E.

    1991-07-01

    The soft X-ray efficiencies of a silicon p-i-n photodiode and an La2O2S:Tm phosphor were measured over a broad energy range. Also, the inelastic electron scattering spectra of the constituent materials were measured and values of optical absorption coefficients versus energy were obtained. The energy dependence of the efficiencies is well explained by a model based on surface recombination of electron hole pairs, and the quality of data which can now be obtained from synchrotrons makes possible quantitative fits from which diffusion length, surface recombination velocity, and bulk quantum efficiency are obtained.

  2. Soft X-ray Microscopy of Green Cements

    NASA Astrophysics Data System (ADS)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  3. Soft X-ray Microscopy of Green Cements

    SciTech Connect

    Monteiro, P. J. M.; Mancio, M.; Chae, R.; Ha, J.; Kirchheim, A. P.; Fischer, P.; Tyliszczak, T.

    2011-09-09

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO{sub 2} emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  4. Soft X-ray photoemission studies of Hf oxidation

    SciTech Connect

    Suzer, S.; Sayan, S.; Banaszak Holl, M.M.; Garfunkel, E.; Hussain, Z.; Hamdan, N.M.

    2002-02-01

    Soft X-Ray Photoemission Spectroscopy using surface sensitive Synchrotron Radiation has been applied to accurately determine the binding energy shifts and the valence band offset of the HfO2 grown on Hf metal. Charging of oxide films under x-rays (or other irradiation) is circumvented by controlled and sequential in-situ oxidation. Photoemission results show the presence of metallic Hf (from the substrate) with the 4f7/2 binding energy of 14.22 eV, fully oxidized Hf (from HfO2) with the 4f7/2 binding energy of 18.16 eV, and at least one clear suboxide peak. The position of the valence band of HfO2 with respect to the Hf(m) Fermi level is determined as 4.05 eV.

  5. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  6. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  7. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  8. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  9. Tunable Soft X-Ray Oscillators

    SciTech Connect

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  10. X-ray polarization splitting by a single crystal evaluated with synchrotron x-rays.

    PubMed

    Pereira, N R; Presura, R; Wallace, M; Kastengren, A

    2014-07-01

    In hexagonal crystals such as quartz, an asymmetric Bragg reflection from two equivalent internal crystal planes can separate unpolarized x-rays into two linearly polarized components. The perfectly polarized and tunable x-rays from a synchrotron are ideal to evaluate polarization spitting in detail. One unanticipated feature is that additional reflections from the crystal affect the diffraction intensity of the two polarized components, an effect that is unlikely to matter in polarization spectroscopy of radiating plasmas for which the crystal is intended.

  11. X-ray polarization splitting by a single crystal evaluated with synchrotron x-rays

    SciTech Connect

    Pereira, N. R.; Presura, R.; Wallace, M.; Kastengren, A.

    2014-07-15

    In hexagonal crystals such as quartz, an asymmetric Bragg reflection from two equivalent internal crystal planes can separate unpolarized x-rays into two linearly polarized components. The perfectly polarized and tunable x-rays from a synchrotron are ideal to evaluate polarization spitting in detail. One unanticipated feature is that additional reflections from the crystal affect the diffraction intensity of the two polarized components, an effect that is unlikely to matter in polarization spectroscopy of radiating plasmas for which the crystal is intended.

  12. Soft X-ray Spectromicroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Ade, Harald

    1997-03-01

    The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.

  13. Grazing-incidence cylindric mirror with multiple reflection for the soft X-ray spectral range

    NASA Astrophysics Data System (ADS)

    Alexandrov, Yu. M.; Fedin, D. A.; Fedorchuk, R. V.; Koshevoi, M. O.; Kozhevnikov, I. V.; Murashova, V. A.; Pisarzyk, T.; Rupasov, A. A.; Shikanov, A. S.; Yakimenko, M. N.; Vinogradov, A. V.

    1991-10-01

    New possibilities of the SR beam control are opened with the use of grazing incidence elements based on the "whispering gallery" effect. Experimental investigations of such an X-ray optical element have been performed on the S-60 synchrotron at the Lebedev Institute. By using the absolute spectral characteristics of the X-ray photofilm RAR 2497 (Kodak) and the SR spectral shape we have determined the output-angle integral spectral coefficient of reflection of the studied mirror. A high value of the reflection coefficient makes it possible to use such an X-ray optical element as the effective reflector for soft X-ray beams.

  14. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  15. Effects of Galactic absorption on soft X-ray surveys

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Gioia, I. M.; Maccacaro, T.; Wolter, A.

    1988-01-01

    A bias in the spectral distribution of X-ray sources detected in X-ray surveys is discussed which is due to the combination of the intrinsic characteristics of X-ray telescopes and the effects of low-energy photoelectric absorption within the Galaxy. A statistical method for obtaining information on the average spectrum of X-ray sources detected in well-defined surveys is presented. This method can be applied to surveys performed with X-ray telescopes working at relatively soft X-ray energies, such as Einstein, Exosat, and Rosat.

  16. Dante Soft X-ray Power Diagnostic for NIF

    SciTech Connect

    Dewald, E; Campbell, K; Turner, R; Holder, J; Landen, O; Glenzer, S; Kauffman, R; Suter, L; Landon, M; Rhodes, M; Lee, D

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  17. SYNCHROTRON X - RAY OBSERVATIONS OF A MONOLAYER TEMPLATE FOR MINERALIZATION.

    SciTech Connect

    DIMASI,E.; GOWER,L.B.

    2000-11-27

    Mineral nucleation at a Langmuir film interface has been studied by synchrotron x-ray scattering. Diluted calcium bicarbonate solutions were used as subphases for arachidic and stearic acid monolayers, compressed in a Langmuir trough. Self-assembly of the monolayer template is observed directly, and subsequent crystal growth monitored in-situ.

  18. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  19. Laser produced plasma soft x-ray generation

    SciTech Connect

    Cerjan, C.; Rosen, M.D.

    1991-05-20

    The efficiency of soft x-ray production from laser-irradiated plasmas is simulated for two different spectral regions. These two regions, 14{Angstrom} {plus minus} 15% and 130{Angstrom} {plus minus} 1%, were chosen for proximity mask or point-projection technological applications. Relatively large conversion efficiencies were obtained from irradiation of a stainless steel target using the conditions suggested by recent Hampshire Instruments' experiments for proximity masking. Pulse-width and laser frequency parameter studies were performed for point-projection applications which suggest that the conversion applications which suggest that the conversion efficiency is sensitive to pulse-width but not to laser frequency. One of the critical components of any x-ray lithographic scheme is of course the x-ray laser source. There are two primary contenders for a reliable, efficient source currently: synchrotron radiation and spectral emission from laser produced plasma. The dominant issue for laser-plasma emission is the conversion efficiency -- output in the intended operating spectral region relative the required incident laser energy. Simulations are described in the following for both high and low energy spectral regions which have been suggested by either the proximity masking or point-projection technology.

  20. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  1. X-ray microscopy using collimated and focussed synchrotron radiation

    SciTech Connect

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Sutton, S.R.; Thompson, A.C.; Underwood, J.H.; Giauque, R.D.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 ..mu..m for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab.

  2. Rapid combinatorial screening by synchrotron X-ray imaging

    NASA Astrophysics Data System (ADS)

    Eba, Hiromi; Sakurai, Kenji

    2006-01-01

    An X-ray imaging system, which does not require any scans of the sample or an X-ray beam and which, therefore, dramatically reduces the amount of time required, was employed to evaluate combinatorial libraries efficiently. Two-dimensional X-ray fluorescence (XRF) images of an 8 mm × 8 mm area were observed for combinatorial substrates of manganese-cobalt spinel MnCo 2O 4 and lithium ferrite LiFeO 2 via an exposure time of 1-3 s using synchrotron X-rays. Thus, XRF signals from a whole substrate could be observed at once in a short space of time. In order to observe the chemical environment simultaneously for all materials arranged on the substrate, the fluorescent X-ray absorption fine structure (XAFS) was measured by repeating the imaging during the monochromator scans across the absorption edge for metals. This is extremely efficient because XAFS spectra for all materials placed on the common substrate are obtained from only a single energy scan. One can determine the valence numbers, as well as other aspects of the chemical environment of the metal included in each material, from the differences in spectral features and the energy shifts. Hence, combinatorial libraries can be screened very rapidly, and therefore efficiently, using the X-ray imaging system.

  3. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  4. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  5. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  6. Soft X-ray telescope (SXRT)

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    The soft X-ray telescope (SXRT) will provide direct images of the solar corona with spatial resolution of about 1 arcsecond. These images will show the global structure of the corona, the location and area of coronal holes, and the presence of even the smallest active regions and flares. The good spatial resolution will show the fine scale magnetic structure and changes in these phenomena. These observations are essential for monitoring, predicting, and understanding the solar magnetic cycle, coronal heating, solar flares, coronal mass ejections, and the solar wind. These observations complement those of the White Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will detect active regions and coronal holes near the east limb, thereby giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. The instrument consists of a grazing incidence collecting mirror with a full-disk film camera at the primary focus, and a secondary relay optic that feeds a CCD camera with a field of view about the size of an average active region.

  7. Soft X-Ray Telescope (SXRT)

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1985-01-01

    The soft X-ray telescope (SXRT) will provide direct images of the solar corona with spatial resolution of about 1 arcsecond. These images will show the global structure of the corona, the location and area of coronal holes, and the presence of even the smallest active regions and flares. The good spatial resolution will show the fine scale magnetic structure and changes in these phenomena. These observations are essential for monitoring, predicting, and understanding the solar magnetic cycle, coronal heating, solar flares, coronal mass ejections, and the solar wind. These observations complement those of the White Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will detect active regions and coronal holes near the east limb, thereby giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. The instrument consists of a grazing incidence collecting mirror with a full disk film camera at the primary focus, and a secondary relay optic that feeds a CCD camera with a field of view about the size of an average active region.

  8. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  9. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    SciTech Connect

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  10. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  11. Phase Resolved X-ray Spectral Analysis of Soft IPs

    NASA Astrophysics Data System (ADS)

    Pekon, Yakup

    2016-07-01

    As a subclass of Cataclysmic Variables, Intermediate Polars (IPs) are magnetic systems which mainly show hard X-ray emission. However, there have been an increasing number of systems that also show a soft emission component arising from reprocessed X-rays from the white dwarf limbs. Due to their relatively short periods, they pose as good canditates to perform phase resolved analysis. In this work, X-ray phase resolved spectral analysis of selected IPs with soft X-ray emission components (such as PQ Gem, V2069 Cyg etc.) over the orbital and/or spin periods will be presented. The analyses will help a better understanding of the complex absorption mechanisms and the nature of the soft X-ray emissions in soft IPs.

  12. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  13. Calcified-tissue investigations using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X. ); Bockman, R.S. . Medical Coll.); Rabinowitz, M.B. ); Hammond, P.B.; Bornschein, R.L. ); Hoeltzel, D.A. )

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 {mu}m for the emission work and 25 {mu}m for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs.

  14. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    SciTech Connect

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  15. Hard X-Ray, Soft X-Ray, and EUV Studies of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Wagner, William (Technical Monitor)

    2003-01-01

    Document study the hard X-ray (HXR), soft X-ray (SXR) ,EUV, and magnetic nature of solar eruptions, with the objective of elucidating the physics of the eruption process. In particular, it was examine the viability of two specific eruption mechanisms, detailed in our proposal. These mechanisms are the "breakout model", and the "tether cutting model". During the second year, it was a significant progress in the goals to Data Sets Utilized. In the publications during this second year of the grant period, the data was used from the E W Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) instruments on SOHO, and from the Soft X-ray Telescope (SXT), Hard X-ray Telescope (HXT), and the Bragg Crystal Spectrometer (BCS) on Yooh.

  16. Soft-X-Ray Prefilter for Hot, Bright Objects

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Ortendahl, J. A.

    1985-01-01

    Prefilters consisting of beryllium foil supported on conductive silver mesh transmit soft x-rays but are nearly opaque to visible and infrared light. New Be/AG filters protect imaging X-ray detectors from damage by visible and longer wavelength radiation when viewing such hot, bright emitters as Sun or possibly certain industrial processes.

  17. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for

  18. Soft X-Ray Microscopy: Imaging Magnetism at Small Sizes

    NASA Astrophysics Data System (ADS)

    Fischer, Peter

    2010-03-01

    The manipulation of spins on the nanoscale is of both fundamental and technological interest. In spin based electronics the observation that spin currents can exert a torque onto local spin configurations which can e.g. push a domain wall has stimulated significant research activities in order to provide a fundamental understanding of the physical processes involved. Magnetic soft X-ray microscopy is a unique analytical technique combining X-ray magnetic circular dichroism (X-MCD) as element specific magnetic contrast mechanism with high spatial and temporal resolution. Fresnel zone plates used as X-ray optical elements provide a spatial resolution down to currently <12nm [1] thus approaching fundamental magnetic length scales such as the grain size [2] and magnetic exchange lengths. Images can be recorded in external magnetic fields giving access to study magnetization reversal phenomena on the nanoscale and its stochastic character [3] with elemental sensitivity [4]. Utilizing the inherent time structure of current synchrotron sources fast magnetization dynamics with 70ps time resolution, limited by the lengths of the electron bunches, can be performed with a stroboscopic pump-probe scheme. In this talk I will review recent achievements with magnetic soft X-ray microscopy with focus on current induced wall [5] and vortex dynamics in ferromagnetic elements [6]. Future magnetic microscopies are faced with the challenge to provide both spatial resolution in the nanometer regime, a time resolution on a ps to fs scale and elemental specificity to be able to study novel multicomponent and multifunctional magnetic nanostructures and their ultrafast spin dynamics.[4pt] References[0pt] [1] W. Chao, et al., Optics Express 17(20) 17669 (2009) [0pt] [2] M.-Y. Im, et al, Advanced Materials 20 1750 (2008) [0pt] [3] M.-Y. Im, et al., Phys Rev Lett 102 147204 (2009) [0pt] [4] M.-Y. Im, et al., Appl Phys Lett 95 182504 (2009) [0pt] [5] L. Bocklage, et al., Phys Rev B 78 180405(R

  19. Synchrotron X-ray Enhanced Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Rose, Volker; Freeland, John

    2011-03-01

    Proper understanding of complex phenomena occurring in nanostructures requires tools with both the ability to resolve the nanometer scale as well as provide detailed information about chemical, electronic, and magnetic structure. Scanning tunneling microscopy (STM) achieves the requisite high spatial resolution; however, direct elemental determination is not easily accomplished. X-ray microscopies, on the other hand, provide elemental selectivity, but currently have spatial resolution only of tens of nanometers. We present a novel and radically different concept that employs detection of local synchrotron x-ray interactions utilizing a STM that provides spatial resolution, and x-ray absorption directly yields chemical, electronic, and magnetic sensitivity. If during tunneling the sample is simultaneously illuminated with monochromatic x-rays, characteristic absorption will arise. Electrons that are excited into unoccupied levels close to the Fermi level modulate the tunneling current giving rise to elemental contrast. This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

  20. X-ray diffraction microtomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Barroso, R. C.; Lopes, R. T.; de Jesus, E. F. O.; Oliveira, L. F.

    2001-09-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtained diffraction patterns form the basis of a selective tomography technique. Preliminary images are presented.

  1. Novel approaches for correction against the soft matrix effects in the quantitative elemental imaging of human substantia nigra tissue using synchrotron X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Surowka, A. D.; Wrobel, P.; Marzec, M. M.; Adamek, D.; Szczerbowska-Boruchowska, M.

    2016-09-01

    The inherent structural heterogeneity of biological specimens poses a number of problems for analytical techniques to assess for the elemental composition of a sample, and this is the case with quantitative X-ray fluorescence (XRF). Differences in density along with any possible variation in thickness upon frequently used freeze drying of thin samples could influence the results of the quantification and therefore underlie one of the most critical matrix effects in XRF, often referred to as the mass thickness effect. In our study, we analyzed substantia nigra tissue samples of various thicknesses mounted onto silicon nitride membranes. The aim was to show up the variation in the mass thickness of the different substantia nigra tissue compartments: the neuromelanine pigmented neurons and neuropil could influence the final quantitative results. In that respect, the main goal was to derive several semi- and fully-quantitative methods to correct for the mass thickness effects using either a membrane Si transmission signal or the intensity of incoherently scattered primary X-ray radiation. Also, the pioneer topographic studies on dried substantia nigra tissue specimens demonstrated the drying procedure is accompanied by an around 80% reduction in the samples' thickness. The correction scheme is presented together with the semi-theoretical procedure developed to compute for the mass thickness for substantia nigra tissue structures, and the correction scheme's robustness is also presented.

  2. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  3. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  4. Synchrotron X-ray Microbeam Diffraction from Abalone Shell

    NASA Astrophysics Data System (ADS)

    Dimasi, Elaine; Sarikaya, Mehmet

    2004-03-01

    Microstructured biomaterials such as mollusk shells receive much attention, due to the promise that advanced materials can be designed and synthesized with biomimetic techniques that take advantage of self-assembly and aqueous, ambient processing conditions. A satisfactory understanding of this process requires characterization of the microstructure at the growth fronts where control over crystal orientation and morphology is enacted. We present synchrotron x-ray microbeam observations near the nacre-prismatic interface of red abalone shell (Haliotis rufescens). The relative orientations of calcite and aragonite grains exhibit differences from the idealizations reported previously. Long calcite grains impinge the boundary at 45^rc angles, suggestive of nucleation on (104) planes followed by c-axis growth. Within 100 μm of the boundary, crystals lose their bulk orientational order. The calcite crystal mosaic measured by x-ray diffraction rocking curves is resolution limited, comparable to geological calcite.

  5. An imaging photoemission polarimeter for soft X-rays

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Novick, Robert; Heckler, A.; Shaw, P.; Fraser, G. W.

    1990-01-01

    Results of investigations are reviewed to assess the polarization dependence of photoemission in the optical, UV, and soft X-ray bands, as well as present a design for an imaging photoelectric polarimeter. Data regarding the effect of the dependence in the soft X-ray band are emphasized including the quantity of photons produced by each X-ray. The phase shift encountered in some experiments indicates that a third axis is present; the importance of the phase shift in understanding the vectoral photoeffect is emphasized. Measurements of the pulse height show that this measure is proportional to the number of electrons photoemitted by the incident X-ray. The development of X-ray polarimeters can be significantly improved as a result of the study of polarization sensitivity in the photoelectric effect. The design of a photoelectric polarimeter is presented, and the potential uses for the instrument include measuring the polarization of supernova remnants, AGN, and black hole candidates.

  6. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  7. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  8. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  9. ENERGY DEPENDENCE OF SYNCHROTRON X-RAY RIMS IN TYCHO’S SUPERNOVA REMNANT

    SciTech Connect

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Reynolds, Stephen P.

    2015-10-20

    Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths ∼1%–5% of remnant radius and magnetic field strengths ∼50–400 μG assuming Bohm diffusion. X-ray rim widths are ∼1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields ≳20 μG, affirming the necessity of magnetic field amplification beyond simple compression.

  10. Soft-x-ray and vacuum-ultraviolet beamlines at the National Synchrotron Light Source 700-MeV storage ring

    SciTech Connect

    Williams, G.P.; Howells, M.R.

    1982-01-01

    We summarize the characteristics of the first beamlines which are being installed and commissioned at the National Synchrotron Light Source (NSLS) 700 MeV storage ring at Brookhaven National Laboratory. We also give a progress report as of July 1982 on the early stages of beamline alignment and operation in which particular attention is paid to the 5 beamlines which NSLS has developed. The report describes in detail a novel method for beamline alignment which is of general application.

  11. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  12. Synchrotron Radiation and X-ray FEL Projects in Korea

    NASA Astrophysics Data System (ADS)

    Cho, M. H.

    2012-03-01

    There are two on-going major projects in Pohang Accelerator Laboratory (PAL), the PLS-II light source upgrade and the construction of PAL-XFEL facility. PLS-II is a new light source upgraded from PLS(Pohang Light Source) which had been operated for 16 years from 1995 and shut down in Dec. 2010. The performance will be improved from ``18.9 nm-rad, 2.5 GeV, and 200 mA'' to ``5.8 nm-rad, 3 GeV, and 400 mA'' using three superconducting RF cavities. The old storage ring has been completely dismantled and new DBA ring has been re-installed in the same tunnel within 6 months, and is under commissioning now. The unique feature of PLS-II is the compact employment of 20 insertion-devices including 14 in-vacuum undulators. The PALXFEL is a 0.1-nm hard X-ray FEL construction project started in 2011 and to compete in 2014 with a total budget of 400 M. The PAL-XFEL is designed to have hard X-ray undulator lines at the end of 10-GeV linac, and a dog-leg branch line at 2.65 GeV point for a soft X-ray undulator line simultaneously and independently from hard X-ray FEL undulator line. The overview of two projects with current status is presented.

  13. The soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1982-01-01

    Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.

  14. Soft X-ray Polarimetry Development

    NASA Astrophysics Data System (ADS)

    Marshall, Herman; Schulz, Norbert S.; Heine, Sarah

    2016-07-01

    We present continued development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 95%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. We will present results from measurements of new laterally graded multilayer mirrors and new gratings essential to the design. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission could measure the polarization of a blazar such as Mk 421 to 5-10 percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.

  15. A diffuse soft X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Mccammon, D.

    1981-01-01

    A design for a diffuse X-ray spectrometer utilizing Bragg reflection is described. The geometry has a very high throughput for a given physical size and allows simultaneous observation at all wavelengths within its range. Spectral resolving power is about 35 to 50. A similar unit equipped with thallium acid pthallate crystals will cover the 11 - 24 A-range with about half this throughput and twice the resolving power.

  16. Magnetism of the endohedral metallofullerenes M@C82 (M=Gd,Dy) and the corresponding nanoscale peapods: Synchrotron soft x-ray magnetic circular dichroism and density-functional theory calculations

    NASA Astrophysics Data System (ADS)

    Kitaura, R.; Okimoto, H.; Shinohara, H.; Nakamura, T.; Osawa, H.

    2007-11-01

    Synchrotron soft x-ray magnetic circular dichroism (SXMCD) spectroscopy at the Gd and Dy M5 edges is reported on endohedral metallofullerenes ( M@C82 , M=Gd and Dy) and the corresponding nanopeapods [ (M@C82)@SWNT , SWNT represents single wall carbon nanotube] in a temperature range between 10 and 40K . The magnetic moment has also been determined by theoretical calculations, which are based on the Hartree-Fock approximation with relativistic corrections. Because of the element-specific measurement of SXMCD, magnetization processes of Gd and Dy ions of nanopeapods have been selectively observed. The temperature dependence of magnetic moments of the metallofullerenes and nanopeapods follows the Curie-Weiss law with a small Weiss temperature, indicating that the magnetic interaction between encapsulated rare-earth metal atoms is relatively weak. Although the observed differences in Curie constants and Weiss temperatures between Gd@C82 and (Gd@C82)@SWNT are small, those of Dy@C82 and (Dy@C82)@SWNT are significant. This observation is consistently explained by charge transfer-induced crystal-field effects.

  17. In-situ observations of catalytic surface reactions with soft x-rays under working conditions

    NASA Astrophysics Data System (ADS)

    Toyoshima, Ryo; Kondoh, Hiroshi

    2015-03-01

    Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.

  18. CH 3Cl adsorption on a Si(100)2 × 1 surface modified by alkali metal overlayer studied by soft X-ray photoemission using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Gentle, T. M.; Soukiassian, P.; Schuette, K. P.; Bakshi, M. H.; Hurych, Z.

    1988-08-01

    We present the first study of the effect of an alkali metal overlayer on the adsorption of an organic molecule, methylchloride, on a Si(100)2 × 1 surface. In strong contrast to the behavior of molecular oxygen or nitrogen which were found to react with the silicon substrate, there was no significant interaction between methylchloride and silicon, rather, the formation of alkali-chlorine bonds was observed. Core level and valence band spectroscopies using synchrotron radiation were used to study these systems. Sodium was found to exhibit the strongest interaction with mehtylchloride which was dissociated, while the effects produced by K and Cs were weaker.

  19. Synchrotron Area X-ray Detectors, Present and Future

    SciTech Connect

    Gruner, Sol M.

    2010-06-23

    X-ray experiments are very frequently detector limited at today's storage ring synchrotron radiation (SR) sources, and will be even more so at future Energy Recovery Linac and X-ray Free Electron Laser sources. Image plate and phosphor-coupled CCD detectors that predominate at present-day sources were outgrowths of technologies initially developed for the medical and astronomical communities, respectively, with resultant limitations for SR. These limitations are enumerated. The growth of commercial silicon foundries and design tools enabling the production of large, customized integrated circuits is beginning to have a profound impact on SR detectors and is ushering in the age of 'designer detectors'. Novel area Pixel Array Detectors (PADs) are starting to appear in which each pixel has dedicated, complex circuitry capable of high speed and, in some cases, significant data processing power for specific applications. PADs now at, or near the horizon will be described. Integrated circuit methods continue to develop at a rapid pace. Implications for future x-ray detectors will be discussed.

  20. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  1. Review of soft x-ray lasers and their applications

    SciTech Connect

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab.

  2. Super-soft X-ray Spectral Evolution in Novae

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Osborne, J. P.

    2014-12-01

    Swift has performed intensive monitoring of a number of novae as they pass through their super-soft X-ray phase. While Chandra and XMM-Newton can provide high-resolution grating spectra, important for identifying individual emission and absorption features and placing constraints on abundances, few observations are obtained with these instruments, thus providing only rare snapshots of the super-soft spectral evolution. With Swift, however, we can perform daily (if not hourly) monitoring, allowing us to follow the entirety of the super-soft phase in great detail. Spectral evolution is clear, often even when simply comparing the unfitted spectra. Here, we fit stellar atmosphere models to the X-ray spectra of some of the densely-observed Swift novae, investigating the evolution of temperature, emitting radius and X-ray luminosity throughout their super-soft phases.

  3. Development of Ta-based STJ X-ray Detector Arrays for Synchrotron Science

    NASA Astrophysics Data System (ADS)

    Carpenter, M. H.; Friedrich, S.; Hall, J. A.; Harris, J.; Cantor, R.

    2014-08-01

    We are developing a cryogen-free Ta-based superconducting tunnel junction (STJ) detector for soft X-ray spectroscopy at synchrotrons. With an energy resolution 10 times higher than conventional solid-state X-ray detectors and count-rate capabilities above 5 kHz/pixel, STJ detectors offer potentially increased sensitivity for fluorescence-yield X-ray absorption spectroscopy (FY-XAS). We have developed 36-pixel arrays of 208 208 m Ta STJs with an energy resolution of 9 eV FWHM at the 525 eV oxygen K line. Compared to earlier Nb-based STJs, Ta-STJs offer improved energy resolution and absorption efficiency and extend the operating range to several keV. Here we describe the integration of the 36-pixel arrays into a cryogen-free, user-friendly X-ray spectrometer. A computer-controlled adiabatic demagnetization refrigerator coupled to a two-stage pulse tube refrigerator allows operation below 100 mK. The detector chip is located at the end of a 42 cm shielded snout for insertion into the analysis chamber. The system is currently being commissioned at the Advanced Light Source synchrotron.

  4. Fabrication of a focusing soft X-ray collector payload

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Decaprio, A. R.; Manko, H.; Ting, J. W. S.

    1976-01-01

    A large area X-ray focusing collector with arc minute resolution and a position sensitive detector capable of operating in the soft X-ray region was developed for use on sounding rockets in studying stellar X-ray sources. The focusing payload consists of the following components, which are described: (1) a crossed paraboloid mirror assembly; (2) an aspect camera and star tracker; (3) a focal plane assembly containing an imaging proportional counter and its preamplifiers, high voltage power supplies and gas system; (4) a fiducial system; and (5) housekeeping, data handling, instrumentation and telemetry electronics. The design, tests, and operation are described.

  5. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  6. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  7. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  8. In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition

    SciTech Connect

    Devloo-Casier, Kilian Detavernier, Christophe; Dendooven, Jolien

    2014-01-15

    Atomic layer deposition (ALD) is a thin film deposition technique that has been studied with a variety of in situ techniques. By exploiting the high photon flux and energy tunability of synchrotron based x-rays, a variety of new in situ techniques become available. X-ray reflectivity, grazing incidence small angle x-ray scattering, x-ray diffraction, x-ray fluorescence, x-ray absorption spectroscopy, and x-ray photoelectron spectroscopy are reviewed as possible in situ techniques during ALD. All these techniques are especially sensitive to changes on the (sub-)nanometer scale, allowing a unique insight into different aspects of the ALD growth mechanisms.

  9. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  10. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  11. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Poletti, G.; Orsini, F.; Batani, D.; Bernardinello, A.; Desai, T.; Ullschmied, J.; Skala, J.; Kralikova, B.; Krousky, E.; Juha, L.; Pfeifer, M.; Kadlec, Ch.; Mocek, T.; Präg, A.; Renner, O.; Cotelli, F.; Lora Lamia, C.; Zullini, A.

    2004-08-01

    Soft X-ray Contact Microscopy (SXCM) of Caenorhabditis elegans nematodes with typical length ~800 μ m and diameter ~30 μ m has been performed using the PALS laser source of wavelength λ = 1.314~μ m and pulse duration τ (FWHM) = 400 ps. Pulsed soft X-rays were generated using molybdenum and gold targets with laser intensities I ≥ 1014 W/cm2. Images have been recorded on PMMA photo resists and analyzed using an atomic force microscope operating in contact mode. Cuticle features and several internal organs have been identified in the SXCM images including lateral field, cuticle annuli, pharynx, and hypodermal and neuronal cell nuclei.

  12. Fast fluctuations of soft X-rays from active regions

    NASA Technical Reports Server (NTRS)

    Simnett, G. F.; Dennis, B. R.

    1986-01-01

    A selection of short lived small soft X-ray bursts is studied using data from the Hard X-ray Imaging Spectrometer (HXIS), and the results are compared with the data from the Hard X-Ray Burst Spectrometer (HXRBS) with a view to understanding conditions at the onset of flares. Short-lived events provide an opportunity to study the radiation from the primary energy transfer process without confusion from the slowly-varying thermal X-ray emission which characterizes the decay of a large flare. The fast decay of the soft X-rays, only a few tens of seconds, suggests that they occur in the dense chromosphere. The results indicate that the short events may be signatures of several different phenomena, depending on their characteristics. Some events occur in association with reverse-drift type III bursts and simultaneous flaring elsewhere on the Sun, thus suggesting dumping of particles accelerated at a remote site. Some events have hard X-ray bursts and normal type III bursts associated with them, while others have neither. The latter events place strong constraints on the nonthermal electron population present.

  13. X-ray and synchrotron studies of porous silicon

    SciTech Connect

    Sivkov, V. N.; Lomov, A. A.; Vasil'ev, A. L.; Nekipelov, S. V.; Petrova, O. V.

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  14. Synchrotron energy-dispersive X-ray diffraction tomography

    NASA Astrophysics Data System (ADS)

    Hall, C.; Barnes, P.; Cockcroft, J. K.; Colston, S. L.; Häusermann, D.; Jacques, S. D. M.; Jupe, A. C.; Kunz, M.

    1998-04-01

    Energy-dispersive diffraction tomography using white-beam synchrotron X-rays with energies up to 140 keV yields images of the interior features of solid objects up to 50 mm thick. The volume sampled is determined by the geometry of the diffracting lozenge defined by the incident beam, the detector system collimation and the Bragg angle. Using conventional beam slits to form a highly collimated 50 μm × 50 μm incident beam and a 40 μm collimator aperture, we demonstrate on a PEEK phantom that a lateral resolution (transverse to the beam direction) of a few microns can be achieved. The resolution in the direction of the incident beam is necessarily poorer than this since the diffracting lozenge is elongated in this direction, with length increasing rapidly at small angles. There is no evidence of significant contamination of the diffracted intensity by the effects of multiple scattering from outside the primary lozenge.

  15. Efficient alignment scheme for zone-plates-based transmission soft X-ray microscope

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Shin, Hyun-Joon; Hong, Chung Ki

    2010-12-01

    Alignment and operation of a zone-plate (ZP)-based transmission soft X-ray microscope (TXM) is difficult and time consuming, especially when the TXM has no dedicated X-ray source. We introduce here an efficient TXM alignment scheme. The TXM employed is a simple in-situ-experiment-capable setup. It includes ultrahigh-vacuum (UHV)-compatible conflat flanges and is mountable in tandem with any soft X-ray synchrotron radiation beamlines. Obtaining zeroth- and first-order diffracted (condenser-zone-plate [CZP]-focused) beams simultaneously by means of the objective zone plate (OZP) is the most essential step in the alignment scheme. We were able to acquire, in one hour at a radiation wavelength of 2.49 nm, an image of 50 nm spatial resolution.

  16. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  17. Soft X-Ray Imaging of spin dynamics at high spatial and temporalresolution

    SciTech Connect

    Mesler, Brooke L.; Fischer, Peter; Chao, Weilun; Anderson, Erik H.

    2007-06-01

    Soft X-ray microscopy provides element specific magnetic imaging with a spatial resolution down to 15nm. At XM-1, the full-field soft X-ray microscope at the Advanced Light Source in Berkeley, a stroboscopic pump and probe setup has been developed to study fast magnetization dynamics in ferromagnetic elements with a time resolution of 70ps which is set by the width of the X-ray pulses from the synchrotron. Results obtained with a 2 {micro}m x 4 {micro}m x 45nm rectangular permalloy sample exhibiting a seven domain Landau pattern reveal dynamics up to several nsec after the exciting magnetic field pulse. Domain wall motion, a gyrotropic vortex motion, and a coupling between vortices in the rectangular geometry are observed.

  18. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  19. Development of Multilayer Optics in EUV, Soft X-Ray and X-Ray Range at IPOE

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Zhu, Jingtao; Zhang, Zhong; Cheng, Xinbin; Xu, Jing; Wang, Fengli; Wang, Xiaoqiang; Chen, Lingyan

    Multilayer coatings are key optical components in the EUV, soft X-ray and X-ray range. At Institute of Precision Optical Engineering (IPOE), the development of multilayer optics has been impelled for their wide applications in X-ray laser, plasma diagnostics, astronomical observation and synchrotron radiation. The paper presents our recent results of periodic multilayers of Mo/Si, Cr/C, Cr/Sc, La/B4C, Mo/B4C, Si/C, Si/SiC, Mg/SiC Mo/Y and Ru/Y. To improve the reflectivity of Ru/Y multilayer mirrors, Mo layers were inserted between Ru and Y layer. The Mo barrier layers suppress intermixing between Ru and Y, thereby increasing the reflectivity of Ru/Y multilayer. We also discuss the application of Mo/Si, Mo/Y, Mo/B4C, La/B4C non-periodic multilayers in EUV broadband polarization measurement.

  20. Soft x-ray streak camera for laser fusion applications

    SciTech Connect

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  1. Soft X ray properties of the Geminga pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T1 = (5.2 +/- 1.0) x 10 5 K and T2 approximately 3 x 106 K, respectively. The inferred ratio of surface areas, A2/A1, is approximately 3 x 10-5. Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T1. The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 1020 cm-2. Distances less than 150 pc are probably ruled out both by the lower limit on the column density, and also by the requirement that the Rayleigh

  2. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  3. Microspectroscopic soft X-ray analysis of keratin based biofibers.

    PubMed

    Späth, Andreas; Meyer, Markus; Semmler, Sonja; Fink, Rainer H

    2015-03-01

    Scanning soft X-ray transmission microspectroscopy (STXM) and transmission electron microscopy (TEM) have been employed for a high-resolution morphological and chemical analysis of hair fibers from human, sheep and alpaca. STXM allows optimum contrast imaging of the main hair building blocks due to tuneable photon energy. Chemical similarities and deviations for the human hair building blocks as well as for the three investigated species are discussed on the basis of the local near-edge X-ray absorption fine structure (NEXAFS). The spectra of melanosomes corroborate the state-of-the-art model for the chemical structure of eumelanin. Complementary TEM micrographs reveal the occurrence of cortex sectioning in alpaca hair to some extent. A spectroscopic analysis for human hair cortex indicates low mass loss upon soft X-ray irradiation, but transformation of chemical species with decreasing amount of peptide bonds and increasing NEXAFS signal for unsaturated carbon-carbon bonds.

  4. Phase measurement of soft x-ray multilayer mirrors.

    PubMed

    de Rossi, Sébastien; Bourassin-Bouchet, Charles; Meltchakov, Evgueni; Giglia, Angelo; Nannarone, Stefano; Delmotte, Franck

    2015-10-01

    We propose a new model enabling the extraction of the phase of a multilayer mirror from photocurrent measurements in the soft x rays. In this range, the effects of the mean free path of the electrons inside the stack can no longer be neglected, which prevents the phase reconstruction by conventional photocurrent measurements. The new model takes into account this phenomenon and thus extends up to the x rays the applicability range of the technique. This approach has been validated through a numerical and experimental study of chromium/scandium multilayers used near 360 eV. To our knowledge, this work constitutes the first measurement of the phase of a multilayer mirror in the soft x-ray range. PMID:26421544

  5. Phase measurement of soft x-ray multilayer mirrors.

    PubMed

    de Rossi, Sébastien; Bourassin-Bouchet, Charles; Meltchakov, Evgueni; Giglia, Angelo; Nannarone, Stefano; Delmotte, Franck

    2015-10-01

    We propose a new model enabling the extraction of the phase of a multilayer mirror from photocurrent measurements in the soft x rays. In this range, the effects of the mean free path of the electrons inside the stack can no longer be neglected, which prevents the phase reconstruction by conventional photocurrent measurements. The new model takes into account this phenomenon and thus extends up to the x rays the applicability range of the technique. This approach has been validated through a numerical and experimental study of chromium/scandium multilayers used near 360 eV. To our knowledge, this work constitutes the first measurement of the phase of a multilayer mirror in the soft x-ray range.

  6. X-ray and synchrotron methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Koval'chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu.; Prosekov, P. A.; Dyakova, Yu. A.

    2016-09-01

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  7. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  8. Biological X-ray spectroscopy on 3rd generation synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Ralston, Corie Y.; Chen, Jie; Peng, Gang; George, Simon J.; van Elp, Jan; Cramer, Stephen P.

    1995-02-01

    Third generation synchrotron radiation sources such as the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory deliver 1-2 orders of magnitude more monochromatic flux (and many orders of magnitude higher brightness) than previously available. This paper describes the ring and existing beamlines of the advanced light source, and plans for crystallography and elliptical wiggler stations are discussed. Using nickel metalloprotein spectra recorded at NSLS and SSRL as examples, this paper describes how the higher monochromatic flux available from the ALS will be used for biological soft X-ray spectroscopy.

  9. In situ synchrotron radiation X-ray microspectroscopy of polymer microcontainers.

    PubMed

    Graf-Zeiler, Birgit; Fink, Rainer H; Tzvetkov, George

    2011-12-23

    Direct, real-time analytical techniques that provide high-resolution information on the chemical composition and submicrometer structure of various polymer micro- and nanoparticles are in high demand in a range of life science disciplines. Synchrotron-based scanning transmission X-ray microspectroscopy (STXM) combines both local-spot chemical information (assessed via near-edge X-ray absorption fine structure spectroscopy) and imaging with resolution of several tens of nanometers, and thus can yield new insights into the nanoscale properties of these materials. Furthermore, this method allows in situ examination of soft-matter samples in aqueous/gaseous environments and under external stimuli, such as temperature, pressure, ultrasound, and light irradiation. This Minireview highlights some recent progress in the application of the STXM technique to study the temperature-dependent behavior of polymer core-shell microcapsules and to characterize the physicochemical properties of the supporting shells of gas-filled microbubbles in their natural hydrated state.

  10. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  11. Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region

    SciTech Connect

    Zang, H. P.; Wang, C. K.; Gao, Y. L.; Zhou, W. M.; Kuang, L. Y.; Wei, L.; Fan, W.; Zhang, W. H.; Zhao, Z. Q.; Cao, L. F.; Gu, Y. Q.; Zhang, B. H.; Jiang, G.; Zhu, X. L.; Xie, C. Q.; Zhao, Y. D.; Cui, M. Q.

    2012-03-12

    We present a realization of the sinusoidal transmission function using a series of zigzag-profiled strips where the transmission takes on the binary values 0 and 1 in a two-dimensional distribution. A zigzag transmission grating of 1000 line/mm has been fabricated and demonstrated on the soft x-ray beam of synchrotron radiation. The axial single-order diffraction indicates that the zigzag transmission grating is adequate for spectroscopic application.

  12. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGES

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  13. Soft x-ray virtual diagnostics for tokamak simulations

    SciTech Connect

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-15

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  14. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    SciTech Connect

    Guo, Jinghua

    2008-09-22

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  15. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  16. Lasers, extreme UV and soft X-ray

    DOE PAGES

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  17. Shakeup in soft-x-ray emission. II. Plasmon satellites and x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Livins, Peteris; Schnatterly, S. E.

    1988-04-01

    We report the first observation of a plasmon satellite in the K emission spectrum of diamond. The previously identified plasmon satellites of Al and graphite are also presented, and data is compared with an oscillator model applicable to soft-x-ray emission and photoemission. The graphite satellite is shown to exhibit an anomalous location with respect to the parent emission. We report for the Al LI-LII,III core-core transitions a spin-orbit splitting of 0.42+/-0.02 eV with a Lorentzian width of 0.67+/-0.02 eV. The oscillator model applied to x-ray photoemission predicts a shift of the plasmon satellite with respect to the zero loss line as the final-electron kinetic energy is varied.

  18. A soft X-ray spectrometer for diffuse cosmic sources

    NASA Technical Reports Server (NTRS)

    Borken, R. J.; Kraushaar, W. L.

    1976-01-01

    The design of a Bragg crystal spectrometer for the diffuse soft X-ray background is described. The instrument has no moving parts; a 6 degree x 20 degree FWHM field of view; resolution in the range 20-100; and spans wavelength ranges 44-80 A or 13-23 A when lead stearate or KAP crystals are used. If placed on a small spacecraft, integration times of approximately 1000 s will be required to detect the existence of the stronger lines expected in the X-ray background.

  19. The Diffuse Soft X-ray Background: Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.

    2013-01-01

    I joined the University of Wisconsin-Madison sounding rocket group at its inception. It was an exciting time, as nobody knew what the X-ray sky looked like. Our group focused on the soft X-ray background, and built proportional counters with super thin (2 micron thick) windows. As the inter gas pressure of the counters was about 1 atmosphere, it was no mean feat to get payload to launch without the window bursting. On top of that we built all our own software from space solutions to unfolding the spectral data. For we did it then as now: Our computer code modeled the detector response and then folded various spectral shapes through the response and compared the results with the raw data. As far as interpretation goes, here are examples of how one can get things wrong: The Berkeley group published a paper of the soft X-ray background that disagreed with ours. Why? It turned out they had **assumed** the galactic plane was completely opaque to soft X-ray and hence corrected for detector background that way. It turns out that the ISM emits in soft X-rays! Another example was the faux pas of the Calgary group. They didn’t properly shield their detector from the sounding rocket telemetry. Thus they got an enormous signal, which to our amusement some (ambulance chaser) theoreticians tried to explain! So back then as now, mistakes were made, but at least we all knew how our X-ray systems worked from soup (the detectors) to nuts (the data analysis code) where as toady “anybody” with a good idea but only a vague inkling of how detectors, mirrors and software work, can be an X-ray astronomer. On the one hand, this has made the field accessible to all, and on the other, errors in interpretation can be made as the X-ray telescope user can fall prey to running black box software. Furthermore with so much funding going into supporting observers, there is little left to make the necessary technology advances or keep the core expertise in place to even to stay even with

  20. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  1. Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy.

    PubMed

    Zhang, Lijuan; Zhao, Binyu; Xue, Lian; Guo, Zhi; Dong, Yaming; Fang, Haiping; Tai, Renzhong; Hu, Jun

    2013-05-01

    Synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution was used to investigate the existence and behavior of interfacial gas nanobubbles confined between two silicon nitride windows. The observed nanobubbles of SF6 and Ne with diameters smaller than 2.5 µm were quite stable. However, larger bubbles became unstable and grew during the soft X-ray imaging, indicating that stable nanobubbles may have a length scale, which is consistent with a previous report using atomic force microscopy [Zhang et al. (2010), Soft Matter, 6, 4515-4519]. Here, it is shown that STXM is a promising technique for studying the aggregation of gases near the solid/water interfaces at the nanometer scale.

  2. K-Edge Subtraction Angiography with Synchrotron X-Rays

    SciTech Connect

    Giacomini, John C.

    1996-12-31

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  3. Soft X-Ray Polarimetry with a CubeSat

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-07-01

    We describe an instrument capable of measuring the polarization of astrophysical sources in soft X-rays that can be accomplished at modest cost by exploiting CubeSats as novel vehicles for high energy astrophysics. The instrument would re-use technologies that will be demonstrated on the HaloSat cubesat that is currently under construction. Potential target include thermally-emitting isolated neutron stars and blazars. Measurement of the polarization of X-rays emitted from the surface of a highly magnetized neutron star provides a means to test a unique signature of strong-field quantum electrodynamics and probe the neutron star magnetic field and X-ray emission geometry. Polarization measurements of blazars should strongly constrain jet emission models.

  4. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  5. Design Concept and Performance of the Soft X-ray Beamline HiSOR-BL14

    SciTech Connect

    Sawada, M.; Namatame, H.; Yaji, K.; Nagira, M.; Kimura, A.; Taniguchi, M.

    2007-01-19

    The soft X-ray beamline HiSOR-BL14 has been constructed at Hiroshima Synchrotron Radiation Center, aimed at absorption spectroscopy and photoelectron spectroscopy with linearly and circularly polarized light. The beamline layout is based on a Dragon-type design with a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet part of the HiSOR ring with a wide solid angle. The large horizontal angular acceptance and vertical one contribute to high photon flux and controllability of light polarization, respectively. Our performance test indicates that high resolving power has been achieved with sufficient photon flux to carry out spectroscopic experiments.

  6. Characterization of surface carbon films on weathered Japaneseroof tiles by soft x-ray spectroscopy

    SciTech Connect

    Muramatsu, Y.; Yamashita, M.; Motoyama, M.; Hirose, M.; Denlinger, J.D.; Gullikson, E.M.; Perera, R.C.

    2004-07-15

    The effects of weathering on carbon films deposited onJapanese smoked roof tileswere investigated by soft x-ray absorption andemission spectroscopy using synchrotron radiation. X-ray absorptionmeasurements revealed that weathering oxidizes the carbon films and thatpartial carboxy chemical bonding occurs. Incident angle-dependent x-rayabsorption spectra in the C K region confirmed that the degree of theorientation at the surface of the oxidized carbon films decreases withweathering. However, the take-off angle-dependent C K x-ray emissionspectra showed that the orientation of the layered carbon structure ismaintained in the bulk portion when weathered. Therefore, it is confirmedthat oxidation proceeds from the surface of the carbon films. Weatheringdegrades and oxidizes the surface carbon films, which causes the metallicsilver color to change to darker gray.

  7. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  8. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ∼300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  9. Dissociation of the benzene molecule by ultraviolet and soft X-rays in circumstellar environment

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Neves, R.; Pilling, S.; Lago, A. F.; de Souza, G. G. B.

    2009-04-01

    Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by ultraviolet (UV) and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time-of-flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum UV (21.21 eV) and soft X-ray (282-310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50 per cent of the ionized benzene molecules survive to UV dissociation while only about 4 per cent resist to X-rays. Partial ion yields of H+ and small hydrocarbons, such as C2H+2, C3H+3, C4H+2, are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross-sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 was obtained.

  10. Viewing spin structures with soft x-ray microscopy

    SciTech Connect

    Fischer, Peter

    2010-06-01

    The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

  11. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  12. CT imaging of small animals using monochromatized synchrotron x rays

    SciTech Connect

    Dilmanian, F.A.; Rarback, H.; Nachaliel, E.; Rivers, M.; Thomlinson, W.C.; Chapman, L.D.; Oversluizen, T.; Slatkin, D.N.; Spanne, P.; Spector, S. ); Garrett, R.F. ); Luke, P.N.; Pehl, R.; Thompson, A.C. ); Appel, R.; Miller, M.H. (A

    1992-01-01

    Rats and chicken embryos were imaged in vivo with a prototype Multiple Energy Computed Tomography (MECT) system using monochromatized x rays from the X17 superconducting wiggler at the National Synchrotron Light Source. The CT configuration coated of a horizontal low-divergence, fan-shaped beam, 70 mm wide and 0.5 mm high, and a subject rotating about a vertical aids. A linear-array high-purity Ge detector with 140 elements, each 0.5 mm wide and 6 mm thick, was used with a data acquisition system that provides a linear response over almost six orders of magnitude of detector current. The dual photon absorptiometry (DPA) algorithm was applied to images of the rat head acquired at 20 and 45 keV to obtain two new images, one representing the low-Z, and the other the intermediate-Z clement group. The results indicate that the contrast resolution and the quantification accuracy of the images improve stepwise; first, with the monochromatic beam and, second, the DPA method. The system is a prototype for a brain scanner.

  13. Microbial biofilm study by synchrotron X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  14. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  15. Soft x-ray laser microscope. Final report

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  16. Soft X-ray polarimeter-spectrometer SOLPEX

    NASA Astrophysics Data System (ADS)

    Steslicki, Marek; Sylwester, Janusz; Plocieniak, Stefan; Bakala, Jaroslaw; Szaforz, Zaneta Anna; Scislowski, Daniel; Kowalinski, Miroslaw; Hernandez, Jose; Vadimovich Kuzin, Sergey; Shestov, Sergey

    2015-08-01

    We present an innovative soft X-ray polarimeter and spectrometer SOLPEX. The instrument will be mounted aboard the ISS within the Russian science complex KORTES. The measurements to be made by SOLPEX are expected to be of unprecedented quality in terms of sensitivity to detect the soft-X- ray polarization of solar emission emanating from active regions and flares in particular. Simultaneous measurements of the polarization degree and the other characteristics (eg. evolution of the spectra) constitute the last, rather unexplored area of solar X-ray spectroscopy providing substantial diagnostic potential. Second important science task to be addressed are the measurements of Doppler shifts in selected X-ray spectral emission lines formed in hot flaring sources. The novel-type Dopplerometer (flat Bragg crystal drum unit) is planned to be a part of SOLPEX and will allow to measure line Doppler shifts in absolute terms with unprecedented time resolution (fraction of a second) during the impulsive flare phases. We shall present some details of the SolpeX instrument and discuss observing sequences in a view of science objectives to be reached.

  17. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  18. Aperiodic multilayer structures in soft X-ray radiation optics

    SciTech Connect

    Vishnyakov, E A; Kamenets, F F; Kondratenko, V V; Lugin, M S; Panchenko, A V; Pershin, Yu P; Pirozhkov, A S; Ragozin, Evgenii N

    2012-02-28

    We review the works related to the development of aperiodic multilayer structures - optical elements for the soft X-ray range. The potentialities of aperiodic multilayer mirrors as regards reflection of soft X-ray radiation in a broad wavelength range, first and foremost at normal radiation incidence, as well as the capabilities of broadband polariser mirrors are investigated. The results of multiparametric optimisation and experimental results for Mo/Si aperiodic mirrors ({lambda} {>=} 12.5 nm) as well as calculations for several promising material pairs (Pd/Y, Ag/Y, etc.) for {lambda} {<=} 12.5 nm are outlined. The effect of transition layers on the reflectivity is considered, in particular by taking into account the smooth variation of the permittivity near interfacial boundaries. The use of broadband mirrors in laser-plasma spectroscopic experiments is discussed.

  19. The soft X ray excess in Einstein quasar spectra

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Masnou, Jean-Louis; Elvis, Martin; Mcdowell, Jonathan; Arnaud, Keith

    1989-01-01

    The soft X-ray excess component is studied for a signal to noise limited subsample of 14 quasars from the WE87 sample observed with the Einstein Imaging Proportional Counter (IPC). Detailed analysis of the IPC data, combined with Einstein Monitor Proportional Counter (MPC) data where possible, and use of accurate galactic N sub H values allows estimation of the strength of any excess and improvement of constraints on the spectral slope at higher X-ray energies. A significant excess in 9 of the 14 objects is found. It is confined in all but one case to below 0.6 keV and variable in the two cases where there are multiple observations. The relation of the soft excess to other continuum properties of the quasars is investigated.

  20. A compact soft X-ray microscope using an electrode-less Z-pinch source

    NASA Astrophysics Data System (ADS)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  1. The Soft X-ray Spectromicroscopy Beamline at SSRF

    SciTech Connect

    Guo, Z.; Tai, R.; Wand, Y.; Yan, R.; Chen, M.; Wu, Y.; Chen, J.; Xue, S.; Xu, H.

    2011-09-09

    Commissioning of the soft x-ray spectromicroscopy beanmline at SSRF was formally started on Dec 26, 2008. Beamline performance has reached or surpassed the designing goals according to the measurements by domestic experts, especially for its high energy resolution and high spatial resolution. Since its first operation by users on May 6, 2009, tens of experiments have been conducted, and some preliminary exciting results have been acquired.

  2. ASTRO-H Soft X-ray Telescope (SXT)

    NASA Astrophysics Data System (ADS)

    Soong, Yang; Okajima, Takashi; Serlemitsos, Peter J.; Odell, Stephen L.; Ramsey, Brian D.; Gubarev, Mikhail V.; Ishida, Manabu; Maeda, Yoshitomo; Iizuka, Ryo; Hayashi, Takayuki; Tawara, Yuzuru; Furuzawa, Akihiro; Mori, Hideyuki; Miyazawa, Takuya; Kunieda, Hideyo; Awaki, Hisamitsu; Sugita, Satoshi; Tamura, Keisuke; Ishibashi, Kazunori; Izumiya, Takanori; Minami, Sari; Sato, Toshiki; Tomikawa, Kazuki; Kikuchi, Naomichi; Iwase, Toshihiro

    2014-07-01

    ASTRO-H is an astrophysics satellite dedicated for non-dispersive X-ray spectroscopic study on selective celestial X-ray sources. Among the onboard instruments there are four Wolter-I X-ray mirrors of their reflectors' figure in conical approximation. Two of the four are soft X-ray mirrors1, of which the energy range is from a few hundred eV to 15 keV within the effective aperture being defined by the nested reflectors' radius ranging between 5.8 cm to 22.5 cm. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The mirrors were in quadrant configuration with photons being reflected consecutively in the primary and secondary stage before converging on the focal plane of 5.6 m away from the interface between the two stages. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 μm, 229 μm, and 305 μm of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 m nominal and surface gold layer of 0.2 μm. Improvements on angular response over its predecessors, e.g. Astro-E1/Suzaku mirrors, come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. Each soft x-ray telescope (SXT), SXT-1 or SXT-2, were integrated from four independent quadrants of mirrors. The stray-light baffles, in quadrant configuration, were mounted onto the integrated mirror. Thermal control units were attached to the perimeter of the integrated mirror to keep the mirror within operating temperature in space. The completed instrument went through a series of optical alignment, thus made the quadrant images confocal and their optical axes in parallel to achieve highest throughput possible. Environmental tests

  3. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    SciTech Connect

    Paterson, D.; Jonge, M. D. de; Howard, D. L.; Lewis, W.; McKinlay, J.; Starritt, A.; Kusel, M.; Ryan, C. G.; Kirkham, R.; Moorhead, G.; Siddons, D. P.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  4. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  5. Current research activities in the field of multilayer for EUV, soft x-ray and x-rays in IPOE

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Wang, Fengli; Zhang, Zhong; Wang, Hongchang; Wu, Wenjuan; Zhang, Shumin; Gu, Zhongxiang; Cheng, Xinbin; Wang, Bei; Qin, Shuji; Chen, Lingyan

    2006-01-01

    The present status of studies on EUV, soft x-ray and x-ray multilayer in the Institute of Precision Optical Engineering (IPOE) is briefly reviewed. With the aim of realizing a Mach-Zender interferometer working at 13.9nm, we have developed a semitransparent beam splitter with multilayer deposited on the back side of a silicon nitride membrane. On the basis of the experimental optical properties of the beam splitter, design has been performed to define the multilayer structure that provides the highest product of reflectivity and transmission. Optimized Mo/Si multilayer has been successfully deposited on the back side of a silicon nitride membrane by use of the magnetron sputtering. Measurements by means of a reflectometer in Beijing Synchrotron Radiation Facility at 13.9nm and at an angle of 7.2° provide a reflectivity of 20% and a transmission of 22%. Such a beam splitter has been used for X-ray Mach-Zender interferometer at 13.9nm. The broadband multilayer analyzer in the range between 12.4nm and 20nm is designed, and made which can deviate the Quasi-Brewster's angle several degree and show very high polarization. The main feature of our design approach is the use of an analytical solution as a starting point for direct computer search, and the desired results can be given in a reasonable time. The method can be applied in different spectral range for suitable material combination. Supermirrors with broad angular band working at different wavelength such as Cu Kα line are designed, manufactured and measured. The results show that the performance of the supermirrors is in agreement with designed data.

  6. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  7. Optics Design for a Soft X-ray FEL at the SLAC A-Line

    SciTech Connect

    Geng, H; Ding, Y.; Emma, P.; Huang, Z.; Nosochkov, Y.; Woodley, M.; /SLAC

    2009-05-15

    LCLS capabilities can be significantly extended with a second undulator aiming at the soft x-ray spectrum (1-5 nm). To allow for simultaneous hard and soft x-ray operations, 14 GeV beams at the end of the LCLS accelerator can be intermittently switched into the SLAC A-line (the beam transport line to End Station A) where the second undulator may be located. In this paper, we discuss the A-line optics design for transporting the high-brightness LCLS beams using the existing tunnel. To preserve the high brightness of the LCLS beams, special attention is paid to effects of incoherent and coherent synchrotron radiation. Start-to-end simulations using realistic LCLS beam distributions are carried out.

  8. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  9. Soft x-ray measurements from the PDX tokamak

    SciTech Connect

    Silver, E.H.; Bitter, M.; Brau, K.; Eames, D.; Greenberger, A.; Hill, K.W.; Meade, D.M.; Roney, W.; Sauthoff, N.R.; von Goeler, S.

    1982-05-01

    Temporally and spatially-resolved profiles of the PDX soft x-ray spectra have been measured during single tokamak pulses of circular and divertor plasmas with a recently developed pulse height analyzer. This detection system incorporates an array of five vertically displaced sets of lithium-drifted silicon detectors, each consisting of three independent channels optimized for rapid data collection in adjacent energy regions. Simultaneous measurement of x-ray emission integrated along five chords of the plasma cross section can thereby be achieved. Abel inversion of these data yields temporally-resolved radial profiles of the local electron temperature from the slope of the continuum, concentrations of high-Z impurities from the characteristic line intensities, and a measure of Z/sub eff/ from the continuum intensity. The techniques of x-ray pulse height analysis, with illustrations featuring the results from the initial PDX circular plasma experiments are discussed in detail. In addition, comparisons between circular and divertor plasmas on PDX, derived from the x-ray measurements, are also presented.

  10. Coherent X-ray diffraction from collagenous soft tissues

    SciTech Connect

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  11. Soft x-ray measurements from the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Silver, E. H.; Bitter, M.; Brau, K.; Eames, D.; Greenberger, A.; Hill, K. W.; Meade, D. M.; Roney, W.; Sauthoff, N. R.; Von Goeler, S.

    1982-08-01

    Temporally and spatially resolved profiles of the PDX soft x-ray spectra have been measured during single tokamak pulses of circular divertor plasmas with a recently developed pulse-height analyzer. This detection system incorporates an array of five vertically displaced sets of lithium-drifted silicon detectors, each consisting of three independent channels optimized for rapid data collection in adjacent energy regions. Simultaneous measurements of x-ray emission integrated along five chords of the plasma cross section can, thereby, be achieved. Abel inversion of these data yields temporally resolved radial profiles of the local electron temperature from the slope of the continuum, concentrations of high-Z impurities from the characteristic line intensities, and a measure of Zeff from the continuum intensity. The techniques of x-ray pulse-height analysis, with illustrations featuring the results from the initial PDX circular plasma experiments, are discussed in detail. In addition, comparisons between circular and divertor plasmas on PDX, derived from the x-ray measurements, are also presented.

  12. Soft x-ray measurements from the PDX tokamak

    SciTech Connect

    Silver, E.H.; Bitter, M.; Brau, K.; Eames, D.; Greenberger, A.; Hill, K.W.; Meade, D.M.; Roney, W.; Sauthoff, N.R.; Von Goeler, S.

    1982-08-01

    Temporally and spatially resolved profiles of the PDX soft x-ray spectra have been measured during single tokamak pulses of circular divertor plasmas with a recently developed pulse-height analyzer. This detection system incorporates an array of five vertically displaced sets of lithium-drifted silicon detectors, each consisting of three independent channels optimized for rapid data collection in adjacent energy regions. Simultaneous measurements of x-ray emission integrated along five chords of the plasma cross section can, thereby, be achieved. Abel inversion of these data yields temporally resolved radial profiles of the local electron temperature from the slope of the continuum, concentrations of high-Z impurities from the characteristic line intensities, and a measure of Z/sub eff/ from the continuum intensity. The techniques of x-ray pulse-height analysis, with illustrations featuring the results from the initial PDX circular plasma experiments, are discussed in detail. In addition, comparisons between circular and divertor plasmas on PDX, derived from the x-ray measurements, are also presented.

  13. Laboratory soft x-ray source with foil target

    NASA Astrophysics Data System (ADS)

    Stephan, Karl-Heinz; Braeuninger, Heinrich W.

    1993-02-01

    We have developed a comparatively small soft x-ray source for application in our test facilities, which are used at present to support the developments of the astrophysical space projects XMM and AXAF. The instrument comprises a commercially available color television tube for generation of the electron beam, which is focused on exchangeable metal films serving as targets. The x rays are taken off after having transversed the foil target and have a sufficient spectral purity with regard to the experimental requirements. The maximum electric operating parameters correspond to an emission current of 100 (mu) A generated by a filament heating power of 6.6 watt at an accelerating voltage of 25 kV. The technical advantages of the instrument are lightweight construction, no water cooling, small size electric supply, cost efficient manufacturing, small sized focus, and quick access to the desired characteristic spectral line by exchange of a complete tube. We describe the measurements on the local x-ray intensity profile of the focus, the spectral features of the beam, and present the resulting performance data. A special development could be used as calibration sources in x-ray telescopes.

  14. The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Doschek, G. A.; Simnett, G. M.; Rilee, M. L.; Mariska, J. T.; Culhane, J. L.; Kosugi, T.; Watanabe, T.

    1994-01-01

    We have investigated the temporal correlation between hard X-ray bursts and the intensity of Doppler blueshifted soft X-ray spectral line emission. We find a strong correlation for many events that have intense blueshifted spectral signatures and some correlation in events with modest blueshifts. The onset of hard X-rays frequently coincides to within a few seconds with the onset of blueshifted emission. The peak intensity of blueshifted emission is frequently close in time to the peak of the hard X-ray emission. Decay rates of the blueshifted and hard X-ray emission are similar, with the decay of the blueshifted emission tending to lag behind the hard X-ray emission in some cases. There are, however, exceptions to these conclusions, and, therefore, the results should not be generalized to all flares. Most of the data for this work were obtained from instruments flown on the Japanese Yohkoh solar spacecraft.

  15. IRMA-2 at SOLEIL: a set-up for magnetic and coherent scattering of polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Popescu, H.; Gaudemer, R.; Jaouen, N.; Avila, A.; Delaunay, R.; Fortuna, F.; Maier, U.; Spezzani, C.

    2013-03-01

    We have designed, built and tested a new instrument for soft x-ray scattering experiments. IRMA-2 is a UHV set-up for elastic and coherent scattering experiments developed at the SEXTANTS beamline of the SOLEIL synchrotron. Applications will be in the field of solid state physics, with emphasis on the investigation of the magnetic properties of artificially structured materials.

  16. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  17. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  18. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed. PMID:16021423

  19. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  20. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  1. ASTRO-H Soft X-ray Telescope (SXT)

    NASA Astrophysics Data System (ADS)

    Soong, Yang; Serlemitsos, Peter J.; Okajima, Takashi; Hahne, Devin

    2011-09-01

    ASTRO-H is an astrophysics satellite dedicated for X-ray spectroscopic study non-dispersively and to carry out survey complementally, which will be borne out of US-Japanese collaborative effort. Among the onboard instruments there are four conically approximated Wolter-I X-ray mirrors, among which two of them are soft X-ray mirrors1, of which the energy range is from a few hundred eV to 15 keV, currently being fabricated in the X-ray Optics Lab at Goddard Space Flight Center. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 μm, 229 μm, and 305 μm of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 μm nominal and surface gold layer of 0.2 μm. Improvements on angular response over the Astro-E1/Suzaku mirrors come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. In this paper, we report the results of calibration of the engineering model of SXT (EM), and project the quality of the flight mirrors.

  2. Goldhelox: a soft x-ray solar telescope.

    PubMed

    Durfee, D S; Moody, J W; Brady, K D; Brown, C; Campbell, B; Durfee, M K; Early, D; Hansen, E; Madsen, D W; Morey, D B; Roming, P W; Savage, M B; Eastman, P F; Jensen, V

    1995-01-01

    The Goldhelox Project is the construction and use of a near-normal incidence soft x-ray robotic solar telescope by undergraduate students at Brigham Young University. Once it is completed and tested, it will be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle. It will image the sun at a wavelength of 171-181Å with a time resolution of 1 sec and a spatial resolution of 2.5 arcsec. The observational bandpass was chosen to image x-rays from highly ionized coronal Fe lines. The data will be an aid in better understanding the beginning phases of solar flares and how flaring relates to the physics of the corona-chromosphere transition region. Goldhelox is tentatively scheduled to fly on a space shuttle sometime in 1995 or 1996. This paper outlines the project goals, basic instrument design, and the unique aspects of making this an undergraduate endeavor. PMID:21307474

  3. Application of a Theory for Generation of Soft X-Ray by Storage Rings and Its Use For X-Ray Lithography

    SciTech Connect

    Minkov, D.; Yamada, H.; Toyosugi, N.; Morita, M.; Yamaguchi, T.

    2007-01-19

    A theory has been developed for generation of soft X-ray transition radiation (TR) by storage ring synchrotrons. It takes into consideration that the dielectric constant of the TR target material is a complex number, utilizes an explicit expression for the number of passes of an injected electron through the target, and describes more precisely the absorption of TR in the target. Such TR can be used for performing X-ray lithography (XRL), and therefore a formula is included for the sensitivity of the photoresist used in XRL. TR targets for XRL can be optimized, based on finding a maximum of the resist sensitivity. Application of this theory to optimization of Mg target shows that a target containing only one Mg foil, with a thickness of about 245 nm is the best Mg target, for performing XRL by our storage ring synchrotron MIRRORCLE-20SX.

  4. Time-resolved materials science opportunities using synchrotron x-ray sources

    SciTech Connect

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by {approximately}tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities.

  5. Optoelectronic measurement of x-ray synchrotron pulses: A proof of concept demonstration

    SciTech Connect

    Durbin, Stephen M.; Caffee, Marc; Savikhin, Sergei; Mahmood, Aamer; Dufresne, Eric M.; Wen, Haidan; Li, Yuelin

    2013-02-04

    Optoelectronic detection using photoconductive coplanar stripline devices has been applied to measuring the time profile of x-ray synchrotron pulses, a proof of concept demonstration that may lead to improved time-resolved x-ray studies. Laser sampling of current vs time delay between 12 keV x-ray and 800 nm laser pulses reveal the {approx}50 ps x-ray pulse width convoluted with the {approx}200 ps lifetime of the conduction band carriers. For GaAs implanted with 8 MeV protons, a time profile closer to the x-ray pulse width is observed. The protons create defects over the entire depth sampled by the x-rays, trapping the x-ray excited conduction electrons and minimizing lifetime broadening of the electrical excitation.

  6. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  7. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  8. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  9. Imaging local electric fields produced upon synchrotron X-ray exposure.

    PubMed

    Dettmar, Christopher M; Newman, Justin A; Toth, Scott J; Becker, Michael; Fischetti, Robert F; Simpson, Garth J

    2015-01-20

    Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice. PMID:25552555

  10. Imaging local electric fields produced upon synchrotron X-ray exposure.

    PubMed

    Dettmar, Christopher M; Newman, Justin A; Toth, Scott J; Becker, Michael; Fischetti, Robert F; Simpson, Garth J

    2015-01-20

    Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.

  11. A wide-field soft X-ray camera

    NASA Technical Reports Server (NTRS)

    Petre, R.

    1981-01-01

    A wide-field soft X-ray camera (WFSXC) sensitive in the 50 to 250 eV band is described. The camera features Wolter-Schwarzschild optics with an 8 degree field of view and 300 cu cu collecting area. The focal plane instrument is a microchannel plate detector. Broad-band energy discrimination is provided by thin-film filters mounted immediately in front of the focal plane. The WFSXC is capable of detecting sources with intensities greater than 5 percent of HZ 43 during typical sounding rocket exposures, and it would approach the same sensitivity range as EUVE during a typical exposure from the Shuttle.

  12. Soft X-ray microscopy to characterize polyelectrolyte assemblies.

    PubMed

    Köhler, Karen; Déjugnat, Christophe; Dubois, Monique; Zemb, Thomas; Sukhorukov, Gleb B; Guttmann, Peter; Möhwald, Helmuth

    2007-07-26

    Transmission microscopy with soft X-rays (TXM) is applied to image in-situ polyelectrolyte assemblies in aqueous environment. The method is element specific and at this stage exhibits a lateral resolution of 20 nm. With the specific examples of hollow capsules and full spheres made of PAH/PSS polyelectrolyte multilayers, it is shown quantitatively that heat treatment irreversibly reduces the water content in the membrane. These experiments complement those reported recently on the polyion system PDADMAC/PSS, which shows a different glass-transition behavior. Finally, the potential and present limitations of TXM are discussed. PMID:17428089

  13. Superconducting tunnel junction detectors for soft x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Verhoeve, P.; Hijmering, R. A.; Martin, D. D. E.; Jerjen, I.; Peacock, A.; Venn, R.

    2006-06-01

    The requirement on energy resolution for detectors in future X-ray satelite missions such as XEUS (X-ray Evolving Universe Spectroscopy mission) is <2eV in the soft x-ray range of 50-2000 eV, with a detection efficiency >80%. In addition, the requirements for field of view and angular resolution demand a detector array of typically 150x150 micron sized pixels in a 30x30 pixel format. DROIDs (Distributed Read Out Imaging Devices), consisting of a superconducting absorber strip with superconducting tunnel junctions (STJs) as read-out devices on either end, can fulfill these requirements. The amplitudes of the two signals from the STJs provide information on the absorption position and the energy of the incoming photon in the absorber. In this paper we present the development status of Ta/Al 1-D DROIDs, as well as the the short term development program that should result in a full size XEUS array.

  14. Soft x-rays measurements in a dense plasma focus

    SciTech Connect

    Castillo, F.; Milanese, M.; Moroso, R.; Pouzo, J.

    1994-12-31

    Soft X-Rays emitted from a 2 kJ DPF are detected. Deuterium or a mixture of deuterium and argon is used as filling gas. The DPF is operated in static filling D{sub 2} gas pressure ({approximately} 2 mb) or in gas-puff mode. The image of the emitting area (time integrated) is taken with a 5 holes X-Rays pin-hole camera. The visible light is filtered using Al foils of different thickness in each one of the 5 holes. The image is a fine line ({approximately} 1 cm long) on the PF axis, into which several bright points can be observed. An estimation of the emitting zone temperature is performed through measurements of transmittance in each hole using radiographic plates densitometry. The background plasma emission corresponds to a temperature between 1 and 2 keV, in both normal and gas-puff modes. The temperature estimated for the bright points results higher by a factor 2 respect to the plasma bulk. Simultaneous measurements of time resolved X-Rays pulses using a PIN diode with Be filter, and both time resolved and time integrated neutron flux detection are performed.

  15. The Astro-H Soft X-ray Spectrometer (SXS)

    NASA Astrophysics Data System (ADS)

    Porter, F. Scott; Fujimoto, Ryuichi; Kelley, Richard L.; Kilbourne, Caroline A.; Mitsuda, Kazuhiasa; Ohashi, Takaya; Astro-H/SXS Collaboration

    2009-12-01

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81×0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.

  16. Synoptic IPS and Yohkoh soft X-ray observations

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Rappoport, S.; Woan, G.; Slater, G.; Strong, K.; Uchida, Y.

    1995-01-01

    Interplanetary scintillation measurements of the disturbance factor, g, from October 1991 to October 1992 are used to construct synoptic Carrington maps. These maps, which show the structure of the quiet solar wind, are compared with X-ray Carrington maps from the Yohkoh Soft X-ray Telescope (SXT) instrument. For the period studied the global structure outlined by (weakly) enhanced g-values apparent in the interplanetary scintillation (IPS) maps tend to match the active regions (as shown in the X-ray maps) significantly better than the heliospheric current sheet. Contrary to traditional opinion, which views active regions as magnetically closed structures that do not have any significant impact on the solar wind flow, our results suggest that density fluctuations in the solar wind are significantly enhanced over active regions. These results support the suggestion by Uchida et al. (1992), based on Yohkoh observations of expanding active regions, that active regions play a role in feeding mass into the quiet solar wind.

  17. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  18. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  19. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  20. Soft-x-ray polarimeter with multilayer optics: complete analysis of the polarization state of light.

    PubMed

    Schäfers, F; Mertins, H C; Gaupp, A; Gudat, W; Mertin, M; Packe, I; Schmolla, F; Di Fonzo, S; Soullié, G; Jark, W; Walker, R; Le Cann, X; Nyholm, R; Eriksson, M

    1999-07-01

    The design of a versatile high-precision eight-axis ultrahigh-vacuum-compatible polarimeter is presented. This multipurpose instrument can be used as a self-calibrating polarization detector for linearly and circularly polarized UV and soft-x-ray light. It can also be used for the characterization of reflection or transmission properties (reflectometer) or polarizing and phase-retarding properties (ellipsometer) of any optical element. The polarization properties of Mo/Si, Cr/C, Cr/Sc, and Ni/Ti multilayers used in this polarimeter as polarizers in transmission and as analyzers in reflection have been investigated theoretically and experimentally. In the soft-x-ray range, close to the p edges of Sc, Ti, and Cr, resonantly enhanced phase retardation of the transmission polarizers of as much as 18 degrees has been measured. With these newly developed optical elements the complete polarization analysis of soft-x-ray synchrotron radiation can be extended to the water-window range from 300 to 600 eV. PMID:18323885

  1. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  2. Opening the Field of Soft X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Marshall, Herman L.; Schulz, Norbert; Windt, David; Gullikson, Eric

    2015-08-01

    We present development of a telescope for measuring linear X-ray polarization over the 0.2-0.8 keV band. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 90%. We have constructed a source of polarized X-rays that operates at a wide range of energies with a selectable polarization angle. Previously, we demonstrated that the polarimetry beam-line provides 100% polarized X-rays at 0.525 keV (Marshall et al. 2013). Recently, we upgraded the source by installing a mirror with a laterally graded multilayer (LGML) coating, providing a wide energy range. Here, we will present results from continued development that includes LGMls of new material combinations (C/CrCo and La/B4C) with high efficiencies in different soft X-ray bands. We have also sponsored the development of new gratings and anticipate showing results from testing these new gratings. Finally, we will present a design for a small telescope for suborbital or orbital missions. A suborbital mission would be limited to measuring the polarization of a blazar such as Mk 421 to a few percent while an orbital version could measure the polarizations of neutron stars, active galactic nuclei, and blazars.Support for this work was provided by the National Aeronautics and Space Administration through grant NNX12AH12G and by Research Investment Grants from the MIT Kavli Institute.

  3. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  4. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  5. Development of Computer Tomography System for the Soft X-ray Microscope at Ritsumeikan University

    SciTech Connect

    Ohigashi, T.; Fujii, H.; Usui, K.; Namba, H.; Mizutani, H.; Takemoto, K.; Kihara, H.

    2011-09-09

    A synchrotron-based full-field imaging soft x-ray microscope was tuned appropriately to perform computer tomography. The contrast and focal depth of the optical system were evaluated by using a Fresnel zone plate as a test object of variable spatial frequency. A focal depth of 15 {mu}m was obtained at the spatial frequency of 4.3 {mu}m{sup -1} according to Rayleigh's criterion. As a first trial of three-dimensional observation using this system, the cerebral cortex of the brain of a mouse, trimmed to a columnar shape by focused ion beam milling, was studied using a wavelength of 1.87-nm.

  6. Development of Computer Tomography System for the Soft X-ray Microscope at Ritsumeikan University

    NASA Astrophysics Data System (ADS)

    Ohigashi, T.; Fujii, H.; Usui, K.; Namba, H.; Mizutani, H.; Takemoto, K.; Kihara, H.

    2011-09-01

    A synchrotron-based full-field imaging soft x-ray microscope was tuned appropriately to perform computer tomography. The contrast and focal depth of the optical system were evaluated by using a Fresnel zone plate as a test object of variable spatial frequency. A focal depth of 15 μm was obtained at the spatial frequency of 4.3 μm-1 according to Rayleigh's criterion. As a first trial of three-dimensional observation using this system, the cerebral cortex of the brain of a mouse, trimmed to a columnar shape by focused ion beam milling, was studied using a wavelength of 1.87-nm.

  7. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Watanabe, Y.; Watabe, C.; Yamaguchi, N.; Tamano, T.

    2001-07-01

    A grazing incidence flat-field soft X-ray (20-350 Å) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  8. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  9. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect

    Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M.; Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J.; Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W.

    2012-10-15

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

  10. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  11. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  12. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  13. Soft X-ray optics and technology; Proceedings of the Meeting, Berlin, Federal Republic of Germany, Dec. 8-11, 1986

    SciTech Connect

    Koch, E.E.; Schmahl, G.

    1987-01-01

    Recent advances in the design, construction, and application of soft X-ray (SX) sources and optics are discussed in reviews and reports. Topics addressed include VUV and SX sources, high-brightness synchrotron radiation sources, SX mirrors, instruments for X-ray astronomy satellites, and SX instrumentation for synchrotron sources. Consideration is given to VUV and SX optics, multilayers, SX scanning microscopy, microfabrication and zone plates, and SX radiometry and detectors. Diagrams, drawings, graphs, spectra, and sample images are provided.

  14. Soft X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  15. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  16. Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

    NASA Astrophysics Data System (ADS)

    Traulsen, I.; Reinsch, K.; Schwope, A. D.; Schwarz, R.; Walter, F. M.; Burwitz, V.

    2014-02-01

    Context. RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Aims: Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. Methods: We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results: Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36 eV and 7 keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d ≳ 750 pc. Conclusions: The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated. Based on observations obtained with XMM-Newton, an ESA science mission with

  17. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines.

    PubMed

    Kummer, K; Fondacaro, A; Yakhou-Harris, F; Sessi, V; Pobedinskas, P; Janssens, S D; Haenen, K; Williams, O A; Hees, J; Brookes, N B

    2013-03-01

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range. PMID:23556850

  18. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    SciTech Connect

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Brookes, N. B.; Pobedinskas, P.; Janssens, S. D.; Haenen, K.; Williams, O. A.; Hees, J.

    2013-03-15

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  19. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  20. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  1. (Synchrotron studies of x-ray reflectivity from surfaces)

    SciTech Connect

    Pershan, P.S.

    1992-03-03

    Following a long period of theoretical interest, but only limited measurements, there has recently been an increased number of attempts to expand the relative paucity of experimental information on the structure of liquid surfaces using techniques as diverse as ellipsometry, micro-force balances, non-linear optics, Auger and photoelectron spectroscopy, and x-ray scattering. Our group has played a leading role in the currently expanding application of scattering techniques to the general problem of characterizing the microscopic structure of liquid surfaces and we propose here that this work be extended specifically to liquid metals. In the following sections we will briefly describe the salient features of x-ray scattering that are relevant to the current project, the progress that we have made in the current grant period and the work that we propose to carry out in the forthcoming grant period.

  2. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  3. Development of a soft x-ray diffractometer for a wideband multilayer grating with a novel layer structure in the 2-4 keV range

    SciTech Connect

    Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori

    2012-07-11

    We have been developing a wavelength-dispersive soft x-ray spectrograph covering an energy region of 50-4000 eV to attach to a conventional electron microscope. Observation of soft x-ray emission in the 2-4 keV range needs a multilayer coated grating. In order to evaluate the performance of the optical component in the energy region, a goniometric apparatus has been newly developed and the preliminary performance has been tested using synchrotron radiation.

  4. SAS 3 survey of the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Clark, G. W.

    1984-01-01

    The results of a survey of the soft X-ray sky in the C band (0.10-0.28keV) are reported. The observations were carried out using two independent flow proportional counters on board the SAS 3 X-ray satellite which had a total angular resolution of 2.9 deg FWHM, and a total exposure of 2.2 x 10 to the 4th per sq cm s sr. It is found that C band counting rates were generally inversely correlated with the column density of the neutral hydrogen on all angular scales down to the lowest angular resolution of the detectors. In the region 90-180 deg l and 0-10 deg b, the relation between C-band rates and the column densities of neutral hydrogen was fitted with a residual rms deviation of less than 13 percent by a two-component numerical model of the X-ray background. For the apparent attenuation column density a value of 2.7 x 10 to the 20th per sq cm was obtained. On the basis of a computer simulation of the SAS 3 data, it is shown that the observed clumping of interstellar matter was consistent with the magnitude of spatial fluctuations in the C-band map. When the background rates were subtracted from the survey map, the subsequent map showed foreground emission and absorption features with improved sensitivity and clarity. A series of computer-generated maps incorporating the SAS 3 data is given in an appendix.

  5. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  6. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  7. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  8. Design and analysis of soft X-ray imaging microscopes

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Cheng, Wang; Wu, Jiang; Hoover, Richard B.

    1992-01-01

    The spherical Schwarzschild microscope for soft X-ray applications in microscopy and projection lithography consists of two concentric spherical mirrors configured such that the third-order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for X-ray applications, it is desirable to have only two reflecting surfaces in a microscope. To reduce microscope aberrations and increase the field of view, generalized mirror surface profiles are here considered. Based on incoherent and sine wave modulation transfer function calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical Head reflecting two-mirror microscope configurations. The Head microscope with a NA of 0.4 achieves diffraction limited performance for objects with a diameter of 40 microns. Thus, it seems possible to record images with a feature size less than 100 A with a 40x microscope when using 40 A radiation.

  9. Ultrahigh-resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, Waleed S.; Trebes, James E.; Goodman, Dennis M.; Lee, Heung-Rae; McNulty, Ian; Anderson, Erik H.; Zalensky, Andrei O.

    1995-09-01

    Ultra high resolution three-dimensional images of a microscopic test object were made with soft x rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by approximately 5 micrometer. A series of nine 2-D images of the object were recorded at angles between -5 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of approximately 1000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to approximately 6000 angstrom, however some features were clearly reconstructed with a depth resolution of approximately 1000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to approximately 1200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.

  10. Synchrontron VUV and Soft X-Ray Radiation Effects on Aluminized Teflon FEP

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1998-01-01

    Surfaces of the aluminized Teflon FEP multi-layer thermal insulation on the Hubble Space Telescope (HST) were found to be cracked and curled in some areas at the time of the second servicing, mission in February 1997, 6.8 years after HST was deployed in low Earth orbit (LEO). As part of a test program to assess environmental conditions which would produce embrittlement sufficient to cause cracking of Teflon on HST, samples of Teflon FEP with a backside layer of vapor deposited aluminum were exposed to vacuum ultraviolet (VUV) and soft x-ray radiation of various energies using facilities at the National Synchrotron Light Source. Brookhaven National Laboratory. Samples were exposed to synchrotron radiation of narrow energy bands centered on energies between 69 eV and 1900 eV. Samples were analyzed for ultimate tensile strength and elongation. Results will be compared to those of aluminized Teflon FEP retrieved from HST after 3.6 years and 6.8 years on orbit and will he referenced to estimated HST mission doses of VUV and soft x-ray radiation.

  11. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  12. Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Okada, Ikuo; Fukuoka, Takao; Sakurai, Ikuya; Utsumi, Yuichi

    2016-05-01

    The potential to fabricate metallic nanoparticles directly on silicon substrates from liquid solutions is ideal for three-dimensional lithography systems, drug delivery materials, and sensing applications. Here, we report the successful synthesis of Au, Cu, and Fe nanoparticles from the corresponding liquid solutions [gold(I) trisodium disulphite, copper(II) sulfate, and potassium ferricyanide] by synchrotron (SR) X-ray irradiation. The deposition of gold nanoparticles in the gold(I) trisodium disulphite solution was performed by monochromatic X-ray exposure from synchrotron radiation. The use of ethanol as an additive enabled the nucleation and growth of Cu particles, while no Cu particles were produced in the copper sulfate solution without ethanol with polychromatic SR X-ray irradiation. Fe particles were generated by direct polychromatic SR X-ray irradiation. These results demonstrate the behavior of three-dimensional printers, enabling us to build composite material structures with metallic and plastic materials.

  13. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  14. 2-D soft x-ray arrays in the EAST

    NASA Astrophysics Data System (ADS)

    Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong

    2016-06-01

    A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities.

  15. G-133: A soft X ray solar telescope

    NASA Astrophysics Data System (ADS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-10-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  16. VUV and soft x-ray spectroscopy of actinides

    SciTech Connect

    Olson, C. G.; Joyce, J. J.; Durakiewicz, T.; Guziewicz, E.

    2004-01-01

    Optical and photoelectron spectroscopies using VUV and Soft X-ray photons are powerful tools for studies of elemental and compound actinides. Large changes in the relative atomic cross sections of the 5f, 6d and sp electrons allow decomposition of the character of the valence bands using photoemission. Resonant enhancement of photoelectrons and Auger electrons at the 5d core threshold further aids the decomposition and gives a measure of elemental specificity. Angle-resolved photoemission can be used to map the momentum dependence of the electronic states. The large changes in relative cross section with photon energy yields further details when the mapping is done at equivalent points in multiple zones. Spectra for well understood rare earth materials will be presented to establish spectral characteristics for known atomic character initial states. These signatures will be applied to the case of USb to investigate f-d hybridization near the Fermi level.

  17. Soft x-ray microscope with zone plates at UVSOR

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Shimanuki, Yoshio; Taniguchi, Mieko; Kihara, Hiroshi

    1993-01-01

    A soft x-ray microscope with zone plates was set up at UVSOR (Okazaki, Japan). A 0.41 micrometers line and space pattern was clearly distinguished using an objective zone plate with the outermost zone width of 0.41 micrometers . Modulation transfer functions were measured at wavelengths of 3.1 nm and 5.4 nm, and compared with theoretical calculations. Considering the resolution of a microchannel plate used as a detector, the agreement is fairly good. With this microscope, some biological specimens such as diatoms, spicule of trepang, crab and rabbit muscles, human blood cells, human chromosomes, and magnetotactic bacterium were observed at 3.1 nm and 5.4 nm. With an environmental chamber (wet cell) using polypropylene foils as windows, wet specimens were observed at a wavelength of 4.6 nm. Images of spicule of trepang, human blood cell, and cultured protoplast of plant cell stained by methyl mercury were observed with good contrast.

  18. Holography-guided ptychography with soft X-rays.

    PubMed

    Hessing, Piet; Pfau, Bastian; Guehrs, Erik; Schneider, Michael; Shemilt, Laura; Geilhufe, Jan; Eisebitt, Stefan

    2016-01-25

    Ptychography is a lensless imaging technique that aims to reconstruct an object from a set of coherent diffraction patterns originating from different and partially overlapping sample illumination areas. For a successful convergence of the iterative algorithms used, the sample scan positions have to be known with very high accuracy. Here, we present a method that allows to directly encode this information in the diffraction patterns without the need of accurate position encoders. Our approach relies on combining ptychography with another coherent imaging method, namely Fourier-transform holography. We have imaged two different objects using coherent soft-X-ray illumination and investigate the influence of experimental and numerical position refinement on the reconstruction result. We demonstrate that holographically encoded positions significantly reduce the experimental and numerical requirements. Our ptychographic reconstructions cover a large field of view with diffraction-limited resolution and high sensitivity in the reconstructed phase shift and absorption of the objects.

  19. Optical pseudomotors for soft x-ray beamlines.

    PubMed

    Pedreira, P; Sics, I; Sorrentino, A; Pereiro, E; Aballe, L; Foerster, M; Pérez-Dieste, V; Escudero, C; Nicolas, J

    2016-05-01

    Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others. We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.

  20. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  1. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  2. Resonant soft x-ray fluorescence studies of novel materials

    SciTech Connect

    Carlisle, J.A.; Terminello, L.J.; Hudson, E.A.; Shirley, E.L.; Jia, J.J.; Callcott, T.A.; Himpsel, F.J.; Ederer, D.L.; Perera, R.C.C.

    1995-02-08

    The authors are using resonant soft x-ray fluorescence at the Advanced Light Source to probe the electronic and geometric structure of novel materials. In the resonant process, a core electron is excited by a photon whose energy is near the core binding energy. In this energy regime the absorption and emission processes are coupled, and this coupling manifests itself in several ways. In boron nitride (BN), the resonant emission spectra reflect the influence of a ``spectator`` electron in an unoccupied excitonic state. The resonant emission can be used to distinguish between the various bulk phases of BN, and can also be used to probe the electronic structure of a monolayer of BN buried in a bulk environment, where it is inaccessible to electron spectroscopies. For highly-oriented pyrolytic graphite (HOPG) a coherent absorption-emission process takes place in the resonant regime, whereby crystalline momentum is conserved between the core excited electron and the valence hole which remains after emission.

  3. G-133: A soft x ray solar telescope

    NASA Technical Reports Server (NTRS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-01-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  4. Soft-x-ray experiment revisited: a theoretical analysis

    SciTech Connect

    Brenner, D.J.; Zaider, M.

    1982-01-01

    The generalized formulation of the Theory of Dual Radiation Action (TDRA) deals quantitatively with the process of sublesion-lesion production in sensitive sites irradiated with uniform fields of ionizing radiation. In this paper modifications of this formalism necessary to treat the case of attenuated fields of radiations are described. As an application, recent survival data obtained with soft x-ray experiments are analyzed. It is shown that: (1) given a linear-quadratic dose-effect relation with constant ..beta..; (2) the function ..gamma..(x) can be obtained with the aid of Monte-Carlo generated proximity functions; and (3) this ..gamma..(x) may be successfully utilized to account for survival results obtained, with the same cell line, using ..cap alpha.. particles.

  5. Divergence measurements of soft x-ray laser beam

    SciTech Connect

    Suckewer, S.; Skinner, C.H.; Kim, D.; Valeo, E.; Voorhees, D.; Wouters, A.

    1986-07-01

    The divergence of the CVI 182 A lasing line generated in a rapidly recombining, magnetically confined plasma column was measured using soft x-ray spectrometers equipped with multichannel detectors. In addition to measurements of the relative divergence, an absolute divergence of approx.9 mrad at a magnetic field of 20 kG and approx.5 mrad at a magnetic field of 35 or 50 kG was obtained by a direct scan of the 182 A axial radiation. Based on this data a peak 182 A intensity of approx.100 kW is obtained. Calculations of the spatial distribution of gain in the plasma were in very good agreement with the experimental data.

  6. Tracing Chromospheric Evaporation in Radio and Soft X-rays

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.

    1997-01-01

    There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.

  7. Imaging performance and tests of soft x-ray telescopes

    SciTech Connect

    Spiller, E.; McCorkle, R.; Wilczynski, J. . Thomas J. Watson Research Center); Golub, L.; Nystrom, G. ); Takacz, P.Z. ); Welch, C. )

    1990-08-01

    Photos obtained during 5 min. of observation time from the flight of our 10 in. normal incidence soft x-ray ({lambda} = 63.5{Angstrom}) telescope on September 11, 1989 are analyzed and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1{Angstrom}. The photos demonstrate a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corresponding to surface irregularities with spatial periods below 10 {mu}m. Our results are used to predict the possible performance of future flights. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec. Higher resolutions will require flights of longer durations and improvements in mirror testing for the largest spatial periods. 21 refs., 7 figs., 1 tab.

  8. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  9. A Novel Integrating Solid State Detector With Segmentation For Scanning Transmission Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Jacobsen, Chris; Degeronimo, Gianluigi; Rehak, Pavel; Holl, Peter; Strueder, Lothar

    2003-03-01

    Scanning transmission x-ray microscopy (STXM) with soft x-rays has unique detector requirements, which are not readily met by commercially available detectors. For implementation of dark-field and phase contrast imaging modes a segmented detector is needed with the high signal to noise ratio of a counting detector and a high detective quantum efficiency. Since the market for STXM is very small, the development of specialized detector systems relies on the collaboration with detector specialists at research facilities. We report on the successful development of a segmented silicon detector for STXM, which has been carried out in collaboration between the x-ray microscopy research group at SUNY Stony Brook, the instrumentation division at Brookhaven National Laboratory and silicon x-ray detector specialists in Germany. This project illustrates the effectiveness of such arrangements and justifies the support of future efforts in developing dedicated detectors for synchrotron radiation experiments bringing together detector experts and experimenters. The developed detector features eight separate circular segments matched to the STXM geometry. Fast charge integrating electronics have been developed to match the short pixel dwell times in a synchrotron based scanning microscope (in the ms range for the NSLS). The noise level of 5 photons RMS per integration per channel (at 520 eV photon energy) and a 1500 photon capacity (corresponding to the well depth in a CCD detector) is well matched to the characteristics of the experiment. Combining the detector signals in an appropriate way, different imaging modes (i.e. bright field, dark field or phase contrast) can be selected. We discuss recent developments on simultaneous quantitative phase and amplitude contrast imaging using this segmented detector in conjunction with a Fourier filter reconstruction technique.

  10. Early Results from the YOHKOH Soft X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Bruner, M. E.; Acton, L. W.; Lemen, J.; Hirayama, T.; Tsuneta, S.

    1992-05-01

    The The Soft X-ray Telescope on the Yohkoh satellite, launched by Japan on August 30, 1992, has proved to be a resounding success. It is providing a wealth of new information and many surprises, both on flares and on the behavior of the solar corona. Performance of the telescope has met or exceed our most optimistic expectations and it appears to be in perfect focus. Unlike the Skylab instruments, the Yohkoh telescope is not limited by a finite supply of film, permitting long sequences of images to be made with relatively high time resolution. Repetition rates for a given exposure / filter combination are typically a few seconds per frame to a few minutes per frame, depending on the selected field size. Movies assembled from long exposure sequences have shown the corona to be even more dynamic than expected. Major re-structuring, involving large fractions of the visible corona, can take place in an hour or two. Smaller regions are even more dynamic, changing almost continuously. Movies, created from long exposure sequences, have demonstrated the fundamental importance of large-scale coronal loops in connecting widely separated regions such that activity in one region quickly affects the physical conditions at remote sites. The images also show that the majority of the loops have nearly constant cross sections along their lengths, rather than one that increases with height. Several X-class flares have been observed; the surprising result is that they do not appear to be very dynamic in soft X-rays. The flare kernels seem to consist of compact loop structures that brighten and then fade without changing size or shape. Bright points are not as prominent as in the Skylab images; a result of using a CCD (a linear detector) rather than film which has a logarithmic response. The other instruments on Yohkoh are producing equally exciting results; it seems clear that the Yohkoh mission will produce many major advances in our knowledge of the flare mechanism.

  11. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region

    SciTech Connect

    Kuang Longyu; Wang Chuanke; Wang Zhebin; Cao Leifeng; Liu Shenye; Ding Yongkun; Zhu Xiaoli; Xie Changqing

    2010-07-15

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis.

  12. Chemical Mapping of Paleontological and Archeological Artifacts with Synchrotron X-Rays

    NASA Astrophysics Data System (ADS)

    Bergmann, Uwe; Manning, Phillip L.; Wogelius, Roy A.

    2012-07-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak.

  13. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays.

    PubMed

    Bergmann, Uwe; Manning, Phillip L; Wogelius, Roy A

    2012-01-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak. PMID:22524223

  14. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  15. Nitride-MBE system for in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Ishikawa, Fumitaro; Yamaguchi, Tomohiro; Takahasi, Masamitu

    2016-05-01

    A molecular beam epitaxy (MBE) chamber dedicated to nitride growth was developed at the synchrotron radiation facility SPring-8. This chamber has two beryllium windows for incident and outgoing X-rays, and is directly connected to an X-ray diffractometer, enabling in situ synchrotron X-ray measurements during the nitride growth. Experimental results on initial growth dynamics in GaN/SiC, AlN/SiC, and InN/GaN heteroepitaxy were presented. We achieved high-speed and high-sensitivity reciprocal space mapping with a thickness resolution of atomic-layer scale. This in situ measurement using the high-brilliance synchrotron light source will be useful for evaluating structural variations in the initial growth stage of nitride semiconductors.

  16. Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters

    NASA Technical Reports Server (NTRS)

    Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.

    1993-01-01

    A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.

  17. Evaluation of different synchrotron beamline configurations for X-ray fluorescence analysis of environmental samples.

    PubMed

    Barberie, Sean R; Iceman, Christopher R; Cahill, Catherine F; Cahill, Thomas M

    2014-08-19

    Synchrotron radiation X-ray fluorescence (SR-XRF) is a powerful elemental analysis tool, yet synchrotrons are large, multiuser facilities that are generally not amenable to modification. However, the X-ray beamlines from synchrotrons can be modified by simply including X-ray filters or removing monochromators to improve the SR-XRF analysis. In this study, we evaluated four easily applied beamline configurations for the analysis of three representative environmental samples, namely a thin aerosol sample, an intermediate thickness biological sample, and a thick rare earth mineral specimen. The results showed that the "white beam" configuration, which was simply the full, polychromatic output of the synchrotron, was the optimal configuration for the analysis of thin samples with little mass. The "filtered white beam" configuration removed the lower energy X-rays from the excitation beam so it gave better sensitivity for elements emitting more energetic X-rays. The "filtered white beam-filtered detector" configuration sacrifices the lower energy part of the spectrum (<15 keV) for improved sensitivity in the higher end (∼26 to 48 keV range). The use of a monochromatic beam, which tends to be the standard mode of operation for most SR-XRF analyses reported in the literature, gave the least sensitive analysis.

  18. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  19. EUV and Soft X-Ray Emissions From Comets

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2001-05-01

    We analyzed 8 observations of comets with the Extreme Ultraviolet Explorer (EUVE). A soft X-ray camera in the range of 97-165 eV FWHM with a peak effective area of 28 cm2 and three spectrometers at 80-180, 170-360, and 300-720 Å with peak effective areas of 2.1, 0.5, and 0.8 cm2, respectively, were used for those observations. The detection limit of the X-ray camera corresponds to the X-ray luminosity of 1.9x 1014 Δ 2 erg s-1 for photon energy ɛ > 100 eV. (Δ is the geocentric distance in AU.) Five comets were detected with the X-ray camera: Hyakutake, Borrelly, d'Arrest, pre- and postperihelion Hale-Bopp. Their images reveal a crescent-like structure with peak brightness offsets from the nuclei between the sunward and comet orbital velocity directions. X-ray luminosities and their spatial distributions were determined from the observations. The measured luminosities are in excellent correlation with gas production rates in comets, resulting in the efficiency of (6.4 +/- 0.9)x 10-5 AU3/2 in the range of 97-165 eV. Correlation with dust production rates is poor, and this favor a gas-related excitation process. The peak brightnesses scaled to r2 are constant and equal to 26+/- 9 millirayleighs. This means that comae are optically or collisionally thick near the brightness centers. Of a few suggested excitation mechanisms, only charge exchange between solar wind heavy ions and cometary neutrals agrees with both these facts. The EUVE spectra of comets Hale-Bopp and Hyakutake have been analyzed. Due to the close flyby of Hyakutake at 0.1 AU, its spectra are of exceptionally high quality and exceed the currently published spectra of comets by a factor of 3 in resolving power and by two orders of magnitude in photon statistics. The spectra reveal for the first time the emission lines of multiple charged ions which are brought to the comet by the solar wind and excited in charge exchange with cometary neutral species. The most prominent lines are O4+ 215 Å, C4+ 249

  20. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  1. Compton scattering imaging of a working battery using synchrotron high-energy X-rays.

    PubMed

    Itou, Masayoshi; Orikasa, Yuki; Gogyo, Yuma; Suzuki, Kosuke; Sakurai, Hiroshi; Uchimoto, Yoshiharu; Sakurai, Yoshiharu

    2015-01-01

    Results of studies on Compton scattering imaging using synchrotron high-energy X-rays are reported. The technique is applied to a discharging coin cell, and the intensity of Compton scattered X-rays from the inside of the cell has been measured as a function of position and time. The position-time intensity map captures the migration of lithium ions in the positive electrode and reveals the structural change due to the volume expansion of the electrode. This experiment is a critical step in developing synchrotron-based Compton scattering imaging for electrochemical cells at a product level.

  2. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    SciTech Connect

    Agrawal, Ashish Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  3. Imaging local electric fields produced upon synchrotron X-ray exposure

    PubMed Central

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; Becker, Michael; Fischetti, Robert F.; Simpson, Garth J.

    2015-01-01

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. In addition, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice. PMID:25552555

  4. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    SciTech Connect

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  5. ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal

    2012-10-20

    We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

  6. Minimally Invasive Coronary Angiography with Monochromatic X-Rays Developmental Studies Utilizing Synchrotron Radiation.

    NASA Astrophysics Data System (ADS)

    Otis, John Noel

    Iodine-containing compounds are used as contrast agents in obtaining X-ray images of blood vessels for medical diagnosis. If the X-ray contrast produced by iodine can be enhanced sufficiently relative to that produced by the intervening body tissues, it becomes possible to obtain images of arteries by introducing the contrast agent into the venous circulation rather than through an arterial catheter directly into the vessel under examination. This prospect is attractive because invasion of the arterial system is the chief cause of the medical complications that are encountered in the application of current angiographic procedures. An imaging system that shows promise of accomplishing this goal for examination of the coronary arteries has been developed for operation in an X-ray beam at the Stanford Synchrotron Radiation Laboratory. Iodine-selective contrast enhancement is achieved by logarithmic subtraction of two images of the same field. One of these images is formed by monochromatic X-rays of energy just above the characteristic iodine K-absorption edge at 33.17 keV, the other by X-rays of energy just below the edge. The computer-controlled imaging system acquires digitized images line by line while scanning the subject through a stationary X-ray beam of linear profile. At present, only synchrotron radiation can provide monochromatic X-ray beams of intensity sufficient to image the small and rapidly moving coronary arteries. Preliminary studies of static phantoms and in vivo studies of dogs establish the feasibility of using synchrotron radiation as the X-ray source for iodine-selective imaging with sensitivity and speed adequate for providing sharp images of coronary arteries after intravenous introduction of contrast agent. Application of the method to human subjects began with imaging studies of three patients in May, 1986.

  7. Chemically selective soft x-ray patterning of polymers

    SciTech Connect

    Wang, J.; Stover, H.D.; Hitchcock, A.P.; Tyliszczak, T.

    2007-06-19

    The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogeneous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C=N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system.

  8. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    SciTech Connect

    Dicicco, D.; Rosser, R. ); Kim, D.; Suckewer, S. . Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  9. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  10. Diamond for high-heat-load synchrotron x-ray applications

    SciTech Connect

    Lee, Wah-Keat

    1994-12-31

    Synchrotron facilities worldwide provide scientists with useful radiation in the ultraviolet to the x-ray regime. Third-generation synchrotron sources win deliver photon fluxes in the 10{sup 15} photons/s/0.1%BW range, with brilliance on the order of 10{sup 18} photons/s/0.1%BW/mrad{sup 2}/mm{sup 2}. Along with the increase in flux and brilliance is an increase in the power and power densities of the x-ray beam. Depending on the particular insertion device, the x-ray beam can have total power in excess of 10 kW and peak power, density of more than 400 W/mm{sup 2}. Such high heat loads are a major challenge in the design and fabrication of x-ray beamline components. The superior thermal and mechanical properties of diamond make it a good candidate as material in these components. Single crystal diamonds can be used as x-ray monochromators, while polycrystalline or CVD diamonds can be used in a variety of ways on the front-end beamline components. This paper discusses the issues regarding the feasibility of using diamond in third-generation synchrotron beamline components.

  11. Synchrotron Radiation X-Ray Spectroscopy for Investigations of Intracellular Metallointercalators: X-Ray Fluorescence Imaging and X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dillon, Carolyn T.

    In an effort to determine the therapeutic feasibility of DNA metallointercalators as potential anticancer drugs it is important to confirm that they are capable of targeting DNA in cancer cells or tumours - as is the intended purpose of their design. Microprobe synchrotron radiation X-ray fluorescence (micro-SRXRF) spectroscopy is an ideal technique for investigating the cellular uptake and distribution of metallointercalators. The technique is capable of submicron elemental imaging so that samples as small as individual cells (~10 μm diameter), and the features within them, can be resolved. Consequently, the technique can ascertain whether intracellular metallointercalators colocalise with DNA; namely, in the nucleus during interphase or at the chromosomes during middle prophase to late anaphase. Metals, such as those commonly incorporated into metallointercalators (e.g., Cr, Ni, Co, Pd, Pt, Ru, Rh), are often naturally present in negligible quantities in cancer cells. This fact, together with their higher atomic number, Z, makes them ideal for direct probing using hard X-ray microprobes (as discussed in Sect. 11.2). There is no need for the incorporation of fluorescent tracker dyes or radioactive labels into their chemical structure. This is advantageous since it is unknown whether such chemical modifications alter the uptake kinetics of the metallointercalator [1, 2].

  12. Contemporary X-ray electron-density studies using synchrotron radiation

    PubMed Central

    Jørgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Chen, Yu-Sheng; Overgaard, Jacob; Iversen, Bo B.

    2014-01-01

    Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. PMID:25295169

  13. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab C.; Misra, Ranjeev; Pawar, Pramod K.

    2016-03-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II Zw 177 using a 137 ks long and another 13 ks short XMM-Newton observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing 76.9 ± 4.9 per cent in 2012 and 58.8 ± 10.2 per cent in 2001 in the 0.3-2 keV band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of ˜20 ks reveals strong correlation between the soft excess and the power-law components. The fractional variability amplitude Fvar derived from EPIC-pn light curves at different energy bands is nearly constant (Fvar ˜ 20 per cent). This is in contrast to other active galactic nuclei where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the `lamppost' model. Thus, the variations in power-law emission are most likely intrinsic to corona rather than just due to the changes of height of compact corona. The variable UV emission (Fvar ˜ 1 per cent) is uncorrelated to any of the X-ray components on short time-scales suggesting that the UV emission is not dominated by the reprocessed emission. The gradual observed decline in the UV emission in 2012 may be related to the secular decline due to the changes in the accretion rate. In this case, the short term X-ray variability is not due to the changes in the seed photons but intrinsic to the hot corona.

  14. X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Bukowiecki, Nicolas; Lienemann, Peter; Zwicky, Christoph N.; Furger, Markus; Richard, Agnes; Falkenberg, Gerald; Rickers, Karen; Grolimund, Daniel; Borca, Camelia; Hill, Matthias; Gehrig, Robert; Baltensperger, Urs

    2008-09-01

    The determination of trace element mass concentrations in ambient air with a time resolution higher than one day represents an urgent need in atmospheric research. It involves the application of a specific technique both for the aerosol sampling and the subsequent analysis of the collected particles. Beside the intrinsic sensitivity of the analytical method, the sampling interval and thus the quantity of collected material that is available for subsequent analysis is a major factor driving the overall trace element detection power. This is demonstrated for synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) of aerosol samples collected with a rotating drum impactor (RDI) in hourly intervals and three particle size ranges. The total aerosol mass on the 1-h samples is in the range of 10 µg. An experimental detection of the nanogram amounts of trace elements with the help of synchrotron X-rays was only achievable by the design of a fit-for-purpose sample holder system, which considered the boundary conditions both from particle sampling and analysis. A 6-µm polypropylene substrate film has evolved as substrate of choice, due to its practical applicability during sampling and its suitable spectroscopic behavior. In contrast to monochromatic excitation conditions, the application of a 'white' beam led to a better spectral signal-to-background ratio. Despite the low sample mass, a counting time of less than 30 s per 1-h aerosol sample led to sufficient counting statistics. Therefore the RDI-SR-XRF method represents a high-throughput analysis procedure without the need for any sample preparation. The analysis of a multielemental mass standard film by SR-XRF, laboratory-based wavelength-dispersive XRF spectrometry and laboratory-based micro XRF spectrometry showed that the laboratory-based methods were no alternatives to the SR-XRF method with respect to sensitivity and efficiency of analysis.

  15. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    SciTech Connect

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  16. Real space soft x-ray imaging at 10 nm spatial resolution

    SciTech Connect

    Chao, Weilun; Fischer, Peter; Tyliszczak, T.; Rekawa, Senajith; Anderson, Erik; Naulleau, Patrick

    2011-04-24

    Using Fresnel zone plates made with our robust nanofabrication processes, we have successfully achieved 10 nm spatial resolution with soft x-ray microscopy. The result, obtained with both a conventional full-field and scanning soft x-ray microscope, marks a significant step forward in extending the microscopy to truly nanoscale studies.

  17. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C.; Vis, R.D.; Sutton, S.R.; Rivers, M.L.; Jones, K.W.; Bowen, D.K.

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  18. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. ); Vis, R.D. ); Sutton, S.R.; Rivers, M.L. ); Jones, K.W. ); Bowen, D.K. )

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  19. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  20. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  1. On diamond windows for high power synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Kuzay, T.M.

    1991-01-01

    Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

  2. On diamond windows for high power synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Kuzay, T.M.

    1991-12-31

    Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

  3. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  4. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing

    SciTech Connect

    Liu, Chian; Ice, Gene E; Liu, Wenjun; Assoufid, Lahsen; Qian, J; Shi, B.; Khachatryan, Ruben; Wieczorek, M.; Zschack, P.; Tischler, Jonathan Zachary

    2012-01-01

    This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90{sup o} to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a {approx} 0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.

  5. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  6. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  7. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  8. A new miniature microchannel plate X-ray detector for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Rosemeier, Ronald G.; Green, Robert E.

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imagin of X-ray diffraction as well as a radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4″, and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchroton camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications.

  9. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  10. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  11. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  12. DNA nucleobase synthesis at Titan atmosphere analog by soft X-rays.

    PubMed

    Pilling, Sergio; Andrade, Diana P P; Neto, Alvaro C; Rittner, Roberto; Naves de Brito, Arnaldo

    2009-10-22

    Titan, the largest satellite of Saturn, has an atmosphere chiefly made up of N(2) and CH(4) and includes traces of many simple organic compounds. This atmosphere also partly consists of haze and aerosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over the Titan surface. In this work, we investigate the possible effects produced by soft X-rays (and secondary electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. The experiments have been performed inside a high vacuum chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian Synchrotron Light Source, Campinas, Brazil. In-situ sample analyses were performed by a Fourier transform infrared spectrometer. The infrared spectra have presented several organic molecules, including nitriles and aromatic CN compounds. After the irradiation, the brownish-orange organic residue (tholin) was analyzed ex-situ by gas chromatographic (GC/MS) and nuclear magnetic resonance ((1)H NMR) techniques, revealing the presence of adenine (C(5)H(5)N(5)), one of the constituents of the DNA molecule. This confirms previous results which showed that the organic chemistry on the Titan surface can be very complex and extremely rich in prebiotic compounds. Molecules like these on the early Earth have found a place to allow life (as we know) to flourish.

  13. A Versatile Multilayer Polarimeter for the Soft X-Ray Region

    SciTech Connect

    Wagner, U. H.; Wang, H.; Dhesi, S. S; Sawhney, K. J. S.; MacDonald, M. A.; Poole, I. B.; Quinn, F. M.

    2010-06-23

    As modern undulators can generate light with arbitrary polarization states, experiments exploiting this feature in the range of soft x-rays have become increasingly widespread. For the success of these experiments characterising the polarization at the sample position is vital. Therefore a versatile, multi-purpose, UHV compatible, multilayer polarimeter has been designed and developed for measuring the Stokes vector of a soft x-ray beam. This high-precision, ultra high vacuum compatible instrument is supported by a Hexapod to simplify its alignment. Furthermore, the instrument has its own independent control system and has been designed for portability so that it can be moved with relative ease between different synchrotron facilities. The polarization analysis requires the rotation of a phase retarder and a polarization analyser, both about a common axis of the photon beam. The polarimeter employs reflection / transmission multilayers as phase retarders / analysers. Several sets of multilayers are installed inside the UHV chamber so that they may be exchanged in-situ without breaking the vacuum. The polarimeter doubles-up as a reflectometer / ellipsometer that enable determination of the polarization properties of optical elements including multilayers with very small surface roughness and several hundred bi-layers. The design details of the polarimeter and the results of first experiments to characterise the polarization of a beamline will be presented.

  14. Toward a soft x-ray Fourier-transform spectrometer

    SciTech Connect

    Howells, M.R.; Frank, K.; Hussain, Z.; Moler, E.J.; Reich, T. |; Moeller, D.; Shirley, D.A.

    1993-10-29

    The use of Fourier transform spectroscopy (FTS) in the soft x-ray region is advocated as a possible route to spectral resolution superior to that attainable with a grating system. A technical plan is described for applying FTS to the study of the absorption spectrum of helium in the region of double ionization around 60--80 eV. The proposed scheme includes a Mach-Zehnder interferometer deformed into a rhombus shape to provide grazing incidence reflections. The path difference between the interfering beams is to be tuned by translation of a table carrying four mirrors over a range {+-}1 cm which, in the absence of errors generating relative tilts of the wave fronts, would provide a resolving power equal to the number of waves of path difference: half a million at 65 eV, for example. The signal-to-noise ratio of the spectrum is analyzed and for operation on an Advanced Light Source bending magnet beam line should be about 330.

  15. Soft X Ray Telescope (SXT) focus error analysis

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees

    1991-01-01

    The analysis performed on the soft x-ray telescope (SXT) to determine the correct thickness of the spacer to position the CCD camera at the best focus of the telescope and to determine the maximum uncertainty in this focus position due to a number of metrology and experimental errors, and thermal, and humidity effects is presented. This type of analysis has been performed by the SXT prime contractor, Lockheed Palo Alto Research Lab (LPARL). The SXT project office at MSFC formed an independent team of experts to review the LPARL work, and verify the analysis performed by them. Based on the recommendation of this team, the project office will make a decision if an end to end focus test is required for the SXT prior to launch. The metrology and experimental data, and the spreadsheets provided by LPARL are used at the basis of the analysis presented. The data entries in these spreadsheets have been verified as far as feasible, and the format of the spreadsheets has been improved to make these easier to understand. The results obtained from this analysis are very close to the results obtained by LPARL. However, due to the lack of organized documentation the analysis uncovered a few areas of possibly erroneous metrology data, which may affect the results obtained by this analytical approach.

  16. White dwarfs as the maximal soft x-ray scatterers

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-09-15

    In this paper, we explore the effect of density on the structure formation and the electromagnetic wave (EMw) elastic scattering on quantum plasmas, using the generalized quantum hydrodynamic model valid for a wide range of the plasma density and relativistic degeneracy. It is found that the electron quantum diffraction effect caused by the Bohm potential has a fundamental effect on the ion correlations in a degenerate electron fluid and crystallization in quantum plasmas in the solid-density regime and beyond. The ion correlations and structure formation are shown to be fundamentally affected by the plasma density and the relativistic degeneracy parameters. Moreover, distinct behavior is shown to exist between the non-relativistic and relativistic matter density regimes, regarding the normalized EMw elastic scattering cross-sections. It is theoretically discovered that the maximal Thomson scattering coincides with the average density of a typical white dwarf corresponding to the soft X-ray wavelength regime. Current research can be very useful in plasma optical diagnostic methods for a wide range of electron number-density from warm dense matter and inertial confinement fusion to the astrophysical compact objects.

  17. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  18. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  19. The stellar contribution to the galactic soft X-ray background

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Avni, Y.; Bookbinder, J.; Giacconi, R.; Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Topka, K.; Vaiana, G. S.

    1981-01-01

    Log N-log S relations for stars are constructed based on median X-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed X-ray luminosity function derived here for dM stars, and the stellar contribution to the diffuse soft X-ray background is investigated. The principal results are that stars provide approximately 20% of the soft X-ray background in the 0.28-1.0 keV passband and therefore contribute significantly to the soft X-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse X-ray background in the 0.15-0.28 keV passband is less than approximately 3%.

  20. Observation of soft X-rays from extended sources. [such as Perseus star cluster

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.

    1974-01-01

    Efforts were directed toward surveying several supernova remnants for the emission of soft X-rays. Rather than attempt to detect such faint X-ray emission, the program was redirected to observe the spectrum and angular structure of the extended X-ray source in the Perseus cluster of galaxies and the super-nova remnant Puppis A. An attempt was made to detect X-ray line emission from Puppis A with a Bragg crystal spectrometer. Observations provide evidence for the presence of X-ray line emission in the spectrum of Puppis A near .65 keV.

  1. Ground-based x-ray calibration of the Astro-H soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2014-07-01

    The X-ray astronomy satellite Astro-H, planned to be launched in 2015, will have several instruments for covering a wide energy band from a few hundreds eV to 600 keV. There are four X-ray telescopes, and two of them are soft X-ray telescopes (SXTs) covering up to about 15 keV. One is for an X-ray micro-calorimeter detector (SXS) and the other is for an X-ray CCD detector (SXI). The design of the SXTs is a conical approximation of the Wolter Type-I optics, which is also adopted for the telescopes on the previous mission Suzaku launched in 2005. It consists 203 thin-foil reflectors coated with gold monolayer (2000 Å) on the aluminum substrate (101.6 mm length) with the thickness of 0.15, 0.23 and 0.31 mm. These are nested confocally within the radius of 58 to 225 mm. The focal length of SXTs is 5.6 m. The weight is as light as ~ 43 kg per telescope. We present the current status of the calibration activity of two SXTs (SXT-1 and SXT-2). The developments of two SXTs were completed by NASA's Goddard Space Flight Center (GSFC). First X-ray measurements with a diverging beam at the GSFC 100m beamline found an angular resolution at 8.0 keV to be 1.1 and 1.0 arcmin (HPD) for SXT-1 and SXT-2, respectively. The full characterization of the X-ray performance has been now continuously calibrated with the 30m X-ray beamline facility at the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace eXploration Agency (JAXA) in Japan. We adopted a raster scan method with a narrow X-ray pencil beam with the divergence of ~ 15". X-ray characterization of the two SXTs has been measured from May and December 2013, respectively. In the case of SXT-1, the on-axis effective area was approximately 580, 445, 370, 270, 185 and 90 cm2 at energies of 1.5, 4.5, 8.0, 9.4, 11.1 and 12.9 keV respectively. The effective area of SXT-2 is 2% larger than that of SXT-1 irrespective to X-ray energy. The on-axis angular resolution of SXT-1 was evaluated as 1.3 - 1.5 arcmin (HPD) in the 1

  2. Gadolinium Deposition in Nephrogenic Systemic Fibrosis: An Examination of Tissue using Synchrotron X-ray Fluorescence Spectroscopy

    SciTech Connect

    High, W.; Ranville, J; Brown, M; Punshon, T; Lanzirotti, A; Jackson, B

    2010-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder associated with gadolinium (Gd)-based contrast agents dosed during renal insufficiency. In two patients, Gd deposition in tissue affected by nephrogenic systemic fibrosis was quantified using inductively coupled plasma mass spectrometry. The presence of Gd was confirmed and mapped using synchrotron x-ray fluorescence spectroscopy. Affected skin and soft tissue from the lower extremity demonstrated 89 and 209 ppm ({micro}g/g, dry weight, formalin fixed) in cases 1 and 2, respectively. In case 2, the same skin and soft tissue was retested after paraffin embedding, with the fat content removed by xylene washes, and this resulted in a measured value of 189 ppm ({micro}g/g, dry weight, paraffin embedded). Synchrotron x-ray fluorescence spectroscopy confirmed Gd in the affected tissue of both cases, and provided high-sensitivity and high-resolution spatial mapping of Gd deposition. A gradient of Gd deposition in tissue correlated with fibrosis and cellularity. Gd deposited in periadnexal locations within the skin, including hair and eccrine ducts, where it colocalized to areas of high calcium and zinc content. Because of the difficulty in obtaining synchrotron x-ray fluorescence spectroscopy scans, tissue from only two patients were mapped. A single control with kidney disease and gadolinium-based contrast agent exposure did not contain Gd. Gd content on a gravimetric basis was impacted by processing that removed fat and altered the dry weight of the specimens. Gradients of Gd deposition in tissue corresponded to fibrosis and cellularity. Adnexal deposition of Gd correlated with areas of high calcium and zinc content.

  3. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  4. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  5. Soft-x-ray hollow fiber optics with inner metal coating

    SciTech Connect

    Matsuura, Yuji; Oyama, Tadaaki; Miyagi, Mitsunobu

    2005-10-10

    A glass capillary with an inner metal coating is proposed to be used as soft-x-ray fiber optics in medical applications. Based on the results of theoretical calculations, nickel was chosen as the coating material for x rays radiated from a conventional x-ray tube. A nickel-coated capillary was fabricated by electroless deposition, and focusing and collimating effects were observed from measurements of the transmission efficiency of soft x rays. The transmission of a nickel-coated capillary with an inner diameter of 0.53 mm and a length of 300 mm was 10%, which is approximately double that of an uncoated glass capillary.

  6. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  7. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  8. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  9. Optical Design of VLS-PGM Soft X-Ray Beamline on Indus-2

    SciTech Connect

    Prasad, T. T.; Modi, M. H.; Lodha, G. S.

    2010-06-23

    The optical design of a soft x-ray beamline on the bending magnet of Indus-2 synchrotron source is presented. A Varied Line Spacing Plane Grating Monochromator (VLS-PGM) was adopted with Hettrick type optics. The VLS-PGM consists of a spherical mirror and three interchangeable gratings of line densities 1200 l/mm, 400 l/mm and 150 l/mm to efficiently cover the energy region 50-1500 eV. The VLS groove parameters were obtained by minimizing defocus aberration, coma and spherical aberration. The overall performance of the beamline was estimated by detailed raytracing calculations. The beamline design, results of the raytracing calculations and the expected performances are presented.

  10. Soft x-ray coherent scattering: Instrument and methods at ESRF ID08

    SciTech Connect

    Beutier, Guillaume; Marty, Alain; Livet, Frederic; Laan, Gerrit van der; Stanescu, Stefan; Bencok, Peter

    2007-09-15

    An experimental setup has been developed to perform soft x-ray coherent scattering at beamline ID08 of the European Synchrotron Radiation Facility. An intense coherent beam was obtained by filtering the primary beam with the monochromator and a circular pinhole. A pinhole holder with motorized translations was installed inside the UHV chamber of the diffractometer. The scattered intensity was recorded in reflection geometry with a back-illuminated charge coupled device camera. As a demonstration we report experimental results of resonant magnetic scattering using coherent beam. The degree of coherence is evaluated, and it is shown that, while the vertical coherence is much higher than the horizontal one at the source, the situation is reversed at the diffractometer. The intensity of the coherent beam is also discussed.

  11. The Soft X-Ray Spectrometer (SXS) for the ISAS/JAXA New Exploration X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Kilbourne, C. A.; McCammon, D.; Mushotzky, R. F.; Okajima, T.; Petre, R.; Porter, F. S.; Serlemitsos, P. J.; Smith, R. K.; Soong, Y.; Szymkowiak, A. E.; Mitsuda, K.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamasaki, N. Y.; Shinozaki, K.; Fujimoto, R.; Kawaharada, M.

    2008-03-01

    The ISAS/JAXA New Exploration X-Ray Telescope (NEXT) is now under development for launch in 2013. The observatory is designed to provide extremely high spectral resolution with large collecting area below 10 keV using an x-ray calorimeter, and a very large band pass (up to 300 keV) with extraordinary sensitivity over the range 10-80 keV using focusing x-ray optics. In this talk we will discuss plans for the Soft X-Ray Spectrometer (SXS), which uses an x-ray calorimeter array to provide the high spectral resolution. The SXS is a joint effort between ISAS and NASA and recently proposed to NASA as a Mission of Opportunity for the US participation. The SXS incorporates a 6x6 calorimeter array that has strong heritage in the Suzaku program and better than 7 eV energy resolution, with 4-5 eV expected based on recent laboratory tests. The cryogenic system will be a hybrid design with both liquid helium and mechanical coolers to provide a robust, redundant system with long life (> 3 years). The x-ray optical system (6 m focal length) uses thin-foil conical optics to provide at least 220 square cm at 6 keV. The SXS will enable a wide variety of interesting science topics to be pursued, including testing theories of structure formation using velocity measurements of clusters of galaxies and inferring the energy output from the jets and winds of active galaxies. The SXS will accurately measure metal abundances in the oldest galaxies, providing unique information on the origin of the elements, and observe matter in extreme gravitational fields, enabling time-resolved spectra from material approaching the event horizon of a black hole. Along with providing the instrument, we have proposed a well supported guest investigator program that will enable full US participation.

  12. Microscopic x-ray imaging system for biomedical applications using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki

    2007-02-01

    An X-ray direct-conversion type detector with a spatial resolution of 10-11 μm was developed for real-time biomedical imaging. The detector incorporates the X-ray SATICON pickup tube with a photoconductive target layer of amorphous selenium. For high-resolution imaging, the X-ray image is directly converted into an electric signal in the photoconductive layer without image blur. Microangiography experiments were carried out for depicting angiogenic vessels in a rabbit model of cancer using the direct-conversion detector and a third generation synchrotron radiation source at SPring-8. In synchrotron radiation radiography, a long source-to-object distance and a small source spot can produce high-resolution images. After transplantation of cancer cells into the rabbit auricle, small tumor blood vessels with diameters of 20-30 μm in an immature vascular network produced by angiogenesis were visualized by contrast material injection into the auricular artery at a monochromatic X-ray energy of 33.2 keV just above the iodine K-edge energy. The synchrotron radiation system is a useful tool to evaluate the micro-angioarchitecture of malignant tumors in animal models of cancer for in vivo preclinical studies.

  13. Synchrotron-based Scattered Radiation from Phantom Materials used in X-ray CT

    SciTech Connect

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Gigante, G

    2010-01-01

    Synchrotron-based scattered radiation form low-contrast phantom materials prepared from polyethylene, polystyrene, nylon, and Plexiglas is used as test objects in X-ray CT was examined with 8, 10 and 12 keV X-rays. These phantom materials of medical interest will contains varying proportions of low atomic number elements. The assessment will allowed us to estimate the fluorescence to total scattered radiation. Detected the fluorescence spectra and the associated scattered radiation from calcium hydroxyapatite phantom with 8, 10 and 12 keV synchrotron X-rays. Samples with Bonefil (60% and 70% of calcium hydroxyapatite) and Bone cream (35-45% of calcium hydroxyapatite), were used. Utilized the X-ray micro-spectroscopy beamline facility, X27A, available at NSLS, BNL, USA. The primary beam with a spot size of the order of {approx}10 {micro}m, has been used for focusing. With this spatial resolution and high flux throuput, the synchrotron-based scattered radiation from the phantom materials were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector.

  14. The dynamical signature of the ISM in soft X-rays. I. Diffuse soft X-rays from galaxies

    NASA Astrophysics Data System (ADS)

    Breitschwerdt, Dieter; Schmutzler, Thomas

    1999-07-01

    We present the first dynamically and thermally self-consistent calculations of fast adiabatically expanding gas flows from the Galactic disk into the halo. It is shown that in a hot plasma (T >= 10(6) K) with a high overpressure with respect to the ambient medium, the dynamical time scale is much shorter than the intrinsic time scales (e.g. for recombination, collisional excitation and ionization etc.). Therefore dynamical models that use collisional ionization equilibrium (CIE) cooling functions for the evolution of the plasma are in general not correct. In particular, the emission spectra obtained from non-equilibrium calculations are radically different. We describe a method to obtain self-consistent solutions using an iterative procedure. It is demonstrated that soft X-ray background emission between 0.3 and 1.5 keV can be well explained by a superposition of line emission and delayed recombination of an initially hot plasma streaming away from the Galactic disk (outflow and/or winds). In addition to these local winds we also present calculations on global winds from spiral galaxies, which originate from a hot and quiescent galactic corona. We also emphasize that it is dangerous to derive plasma temperatures merely from line ratios of ionized species, such as N v/O vi, unless the dynamical and thermal history of the plasma is known.

  15. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGES

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  16. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  17. Synchrotron X-ray Fluorescence Microtomography in Geo-, Cosmo-, and Bio- chemistry

    NASA Astrophysics Data System (ADS)

    Lanzirotti, A.; Sutton, S. R.; Rivers, M.; Tappero, R.

    2009-05-01

    Synchrotron-based X-ray fluorescence computed microtomography (xrfCMT) is a unique method for imaging major and trace element distributions within natural materials nondestructively and with high spatial resolution. The technique is particularly useful in imaging and quantifying elemental abundance in small objects that may be too precious or too difficult to section, or in the analysis of materials in which sectioning may potentially alter elemental distributions. This presentation will highlight how this technique is being applied at beamlines X26A and X27A at the National Synchrotron Light Source (Brookhaven National Laboratory) and at 13-ID at the Advanced Photon Source (Argonne National Laboratory). These instruments utilize 1-10 μm diameter focused, monochromatic X-ray beams to non- destructively measure x-ray fluorescence from a sample as it is translated and rotated within the beam. The resultant fluorescence intensities are then reconstructed as either two-dimensional cross sectional or three- dimensional elemental distribution using a fast fourier transform based computational reconstruction algorithm. Reconstruction of multi-elemental distributions at concentrations down to approximately 1 μg g-1 (element dependent) can be obtained. By collecting and storing full energy dispersive spectra from a multi-channel analyzer for every pixel (rather than regions of interest), it is possible to evaluate a reconstructed spectrum within the object for more robust elemental analysis. For high density matrices in particular, corrections are necessary to account for x-ray absorption by the object of both incoming X-rays and outgoing fluorescent X-rays. These effects limit the size of objects and elements that can be imaged; however reasonable corrections can be made if an estimate of linear absorption coefficient through the material is made. It is also possible to couple fluorescence tomography with microbeam x-ray absorption and diffraction analysis. When coupled

  18. SASE3: soft x-ray beamline at European XFEL

    NASA Astrophysics Data System (ADS)

    La Civita, Daniele; Gerasimova, Natalia; Sinn, Harald; Vannoni, Maurizio

    2014-09-01

    The European XFEL in Hamburg will be comprised of a linear accelerator and three Free-Electron-Laser beamlines (SASE1, SASE2 and SASE3) covering the energy range from 250 eV to 24 keV. It will provide up to 2700 pulses in trains of 600 microsecond duration at a repetition rate of 10 Hz. SASE3 beamline is the soft X-ray beamline (0.25 - 3 keV) and delivers photon pulses to SQS (Small Quantum System) and SCS (Spectroscopy & Coherent Scattering) experiments. The beamline is able to operate in both monochromatic and non-monochromatic mode. The latter provides the inherent FEL bandwidth at higher intensities. The beamline from photon source to experimental station is about 450 m long. The length of the beamline is related to the optics single-shotdamage issue. The almost diffraction-limited beam is propagated along the beamline with very long (up to 800 mm clear aperture), cooled (with eutectic bath) and super-polished (50 nrad RMS slope error and less than 3 nm PV residual height error) mirrors. The VLS-PG (variable line spacing - plane grating) monochromator covers the entire beamline energy range and its optical design is guided by the optimization of the energy resolving power, the minimization of the pulse broadening and the maximization of optics damage tolerance. Grating substrates are 530 mm long, eutectic cooled and present outstanding surface quality. The VLS parameters of the blazed profile are also a real challenge under manufacturing and measuring point of view. Adaptive optics in the horizontal (the second offset mirror) and vertical (monochromator premirror) plane are foreseen in the optical layout to increase the beamline tunability and to preserve the highly coherent beam properties. Beamline optical design, expected performance and also mechanical aspects of main beamline components are reported.

  19. Deconstructing the Spectrum of the Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2000-01-01

    The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.

  20. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    NASA Astrophysics Data System (ADS)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-08-01

    The behaviour of neutron stars in high mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7±0.2 K and inferred emitting radius of ˜0.2 - 0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  1. Soft-x-ray damage to p-terphenyl coatings for detectors.

    PubMed

    Benitez, E L; Dark, M L; Husk, D E; Schnatterly, S E; Tarrio, C

    1994-04-01

    The organic phosphor p-terphenyl is used as a wavelength-converter coating in some soft-x-ray detectors. We have measured the absolute photoluminescent efficiency of p-terphenyl as a function of incident photon energy from 36 to 191 eV. We have also measured changes in the efficiency caused by soft-x-ray fluence (total photons absorbed per unit area) at several photon energies in this range. We find that efficiency drops rapidly as a function of fluence, with the rate of decrease increasing with higher soft x-ray energies.

  2. Tunable thin film polarizer for the vacuum ultraviolet and soft x-ray spectral regions

    SciTech Connect

    Yang, Minghong; Cobet, Christoph; Esser, Norbert

    2007-03-01

    A low pass polarizer that suppresses higher-order diffraction light from vacuum ultraviolet and soft x-ray monochromators is presented in this paper. This vacuum ultraviolet and soft x-ray polarizer is based on a concept of sandwiched metal-dielectric-metal triple reflection configuration. By appropriate optimization of material and angle of incidence, the proposed Au-SiC-Au polarizer demonstrates the capability of matching to desired cutoff edge of photon energy. Furthermore, the optimized soft x-ray polarizer shows the possibility to tune cutoff photon energy in a broadband spectral region ranging from 80 down to down to 20 eV.

  3. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang, Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  4. Concentration of synchrotron beams by means of monolithic polycapillary x-ray optics

    SciTech Connect

    Ullrich, J.B.; Klotzko, I.L. |; Huang, K.G.; Owens, S.M.; Aloisi, D.C.; Hofmann, F.A.; Gao, N.; Gibson, W.M.

    1995-08-01

    Capillary Optics have proven to be a valuable tool for concentrating synchrotron radiation. Single tapered capillaries are used at several facilities. However, most of these optics collect only over a small area. this can be overcome by using larger capillary structures. Polycapillary optics can deflect x-rays by larger angles than other x-ray optics that use only one or two reflections. Conventional x-ray optics that achieve similar deflections, are much more energy selective than capillaries. Therefore, capillaries achieve very short focal distances for a wide range of energies. The measurements shown here represent first tests performed with polycapillaries of large input diameter. The performance with respect to transmission efficiency and spot size was evaluated for a set of four very different prototypes. It is shown that a significant gain may be achieved if a spot size of the order of 0.1 mm is required. Further, some characteristics of the different optics are discussed.

  5. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-01

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-μm-wide beam to a width of 80 μm with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  6. Vertical synchrotron radiation beamline for proximity X-ray lithography: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Bukreeva, Inna N.; Kozhevnikov, Igor V.

    1997-02-01

    The general physical principles of operation of the vertical beamline of synchrotron radiation (SR) intended for proximity X-ray lithography are considered. An optical system provides a deflection of the SR beam to the vertical plane, a cutoff of the hard X-rays, a uniform illumination of a wafer, a normal incidence of X-ray beam onto a mask, and a small enough divergency of the radiation. A vertical SR beamline makes it possible to circumvent the expensive development of vertical-plane displacement steppers and to use the conventional horizontal ones, to exclude the scanning of the SR beam across the mask and to reduce the requirements imposed on the accuracy of alignment of a gap between the mask and the wafer.

  7. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    SciTech Connect

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-19

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  8. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1993-01-28

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond monochromator system. In this paper, we consider various aspects, advantages and disadvantages, and promises and pitfalls of such a system and evaluate the comparative performance of a diamond monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of a diamond-based monochromator is within present technical means.

  9. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means.

  10. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    SciTech Connect

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-15

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-{mu}m-wide beam to a width of 80 {mu}m with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  11. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    NASA Astrophysics Data System (ADS)

    Fuchs, O.; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bär, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-01

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30×3000) μm2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  12. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

    2009-03-09

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  13. Soft x-ray circular dichroism and scattering using a modulated elliptically polarizing wiggler and double synchronous detection

    SciTech Connect

    Sutherland, J.C.; Polewski, K.; Monteleone, D.C.

    1998-01-23

    We have constructed an experimental station (beamline) at the National Synchrotron Light Source to measure circular dichroism (CD) using soft x-rays (250 {le} hv {le} 900 eV) from a time modulated elliptically polarizing wiggler. The polarization of the soft x-ray beam switches periodically between two opposite polarizations, hence permitting the use of phase-sensitive (lock-in) detection. While the wiggler can be modulated at frequencies up to 100 Hz, switching transients limit the actual practical frequency to {approx}25 Hz. With analog detection, switching transients are blocked by a chopper synchronized to the frequency and phase of the wiggler. The CD is obtained from the ratio of the signal recovered at the frequency of polarization modulation, f, to the average beam intensity, which is recovered by synchronous detection at frequency 2f.

  14. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Chiuzbǎian, Sorin G.; Hague, Coryn F.; Avila, Antoine; Delaunay, Renaud; Jaouen, Nicolas; Sacchi, Maurizio; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Mariot, Jean-Michel

    2014-04-01

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm2 focal spot source with full polarization control.

  15. Validating the scalability of soft X-ray spectromicroscopy for quantitative soil ecology and biogeochemistry research.

    PubMed

    Dynes, James J; Regier, Tom Z; Snape, Ian; Siciliano, Steven D; Peak, Derek

    2015-01-20

    Synchrotron-based soft-X-ray scanning transmission X-ray microscopy (STXM) has the potential to provide nanoscale resolution of the associations among biological and geological materials. However, standard methods for how samples should be prepared, measured, and analyzed to allow the results from these nanoscale imaging and spectroscopic tools to be scaled to field scale biogeochemical results are not well established. We utilized a simple sample preparation technique that allows one to assess detailed mineral, metal, and microbe spectroscopic information at the nano- and microscale in soil colloids. We then evaluated three common approaches to collect and process nano- and micronscale information by STXM and the correspondence of these approaches to millimeter scale soil measurements. Finally, we assessed the reproducibility and spatial autocorrelation of nano- and micronscale protein, Fe(II) and Fe(III) densities in a soil sample. We demonstrate that linear combination fitting of entire spectra provides slightly different Fe(II) mineral densities compared to image resonance difference mapping but that difference mapping results are highly reproducible between among sample replicates. Further, STXM results scale to the mm scale in complex systems with an approximate geospatial range of 3 μm in these samples. PMID:25526317

  16. Plane-grating flat-field soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hague, C. F.; Underwood, J. H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.

    2005-02-01

    We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of ⩽5μm is planned at SOLEIL which, according to simulations, should ensure a resolving power ⩾1000 over the whole energy range. A 1024×1024 pixel charge-coupled device (CCD) with a 13μm×13μm pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.

  17. Design of Molecular Solar Cells via Feedback from Soft X-ray Spectroscopy

    SciTech Connect

    Himpsel, Franz J.

    2015-06-12

    Spectroscopy with soft X-rays was used to develop new materials and novel designs for solar cells and artificial photosynthesis. In order to go beyond the widely-used trial-and-error approach of gradually improving a particular design, we started from the most general layout of a solar cell (or a photo-electrochemical device) and asked which classes of materials are promising for best performance. For example, the most general design of a solar cell consists of a light absorber, an electron donor, and an electron acceptor. These are characterized by four energy levels, which were measured by a combination of spectroscopic X-ray techniques. Tuning synchrotron radiation to the absorption edges of specific elements provided element- and bond-selectivity. The spectroscopic results were complemented by state-of-the-art calculations of the electronic states. These helped explaining the observed energy levels and the orbitals associated with them. The calculations were extended to a large class of materials (for example thousands of porphyrin dye complexes) in order to survey trends in the energy level structure. A few highlights serve as examples: 1) Organic molecules combining absorber, donor, and acceptor with atomic precision. 2) Exploration of highly p-doped diamond films as inert, transparent electron donors. 3) Surface-sensitive characterization of nanorod arrays used as photoanodes in water splitting. 4) Computational design of molecular complexes for efficient solar cells using two photons.

  18. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer.

    PubMed

    Chiuzbăian, Sorin G; Hague, Coryn F; Avila, Antoine; Delaunay, Renaud; Jaouen, Nicolas; Sacchi, Maurizio; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Mariot, Jean-Michel

    2014-04-01

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm(2) focal spot source with full polarization control.

  19. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  20. Validating the scalability of soft X-ray spectromicroscopy for quantitative soil ecology and biogeochemistry research.

    PubMed

    Dynes, James J; Regier, Tom Z; Snape, Ian; Siciliano, Steven D; Peak, Derek

    2015-01-20

    Synchrotron-based soft-X-ray scanning transmission X-ray microscopy (STXM) has the potential to provide nanoscale resolution of the associations among biological and geological materials. However, standard methods for how samples should be prepared, measured, and analyzed to allow the results from these nanoscale imaging and spectroscopic tools to be scaled to field scale biogeochemical results are not well established. We utilized a simple sample preparation technique that allows one to assess detailed mineral, metal, and microbe spectroscopic information at the nano- and microscale in soil colloids. We then evaluated three common approaches to collect and process nano- and micronscale information by STXM and the correspondence of these approaches to millimeter scale soil measurements. Finally, we assessed the reproducibility and spatial autocorrelation of nano- and micronscale protein, Fe(II) and Fe(III) densities in a soil sample. We demonstrate that linear combination fitting of entire spectra provides slightly different Fe(II) mineral densities compared to image resonance difference mapping but that difference mapping results are highly reproducible between among sample replicates. Further, STXM results scale to the mm scale in complex systems with an approximate geospatial range of 3 μm in these samples.

  1. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    SciTech Connect

    Tomczak, M.; Chmielewska, E. E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. The results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.

  2. Image Alignment for Tomography Reconstruction from Synchrotron X-Ray Microscopic Images

    PubMed Central

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the “projected feature points” in the sequence of images. The matched projected feature points in the - plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  3. High resolution hard x-ray microscope on a second generation synchrotron source

    SciTech Connect

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-10-15

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  4. High resolution hard x-ray microscope on a second generation synchrotron source.

    PubMed

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed. PMID:19044720

  5. High resolution hard x-ray microscope on a second generation synchrotron source

    NASA Astrophysics Data System (ADS)

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  6. Fast photoconductor CdTe detectors for synchrotron x-ray studies

    SciTech Connect

    Yoo, Sung Shik; Faurie, J.P.; Wang, Kemei; Montano, P.A. |; Huang Qiang; Rodricks, B.

    1993-09-01

    The Advanced Photon Source will be that brightest source of synchrotron x-rays when it becomes operational in 1996. During normal operation, the ring will be filled with 20 bunches of positrons with an interbunch spacing of 177 ns and a bunch width of 119 ps. To perform experiments with x-rays generated by positrons on these time scales one needs extremely high speed detectors. To achieve the necessary high speed, we are developing MBE-grown CdTe-base photoconductive position sensitive array detectors. The arrays fabricated have 64 pixels with a gap of 100 {mu}m between pixels. The high speed response of the devices was tested using a short pulse laser. X-ray static measurements were performed using an x-ray tube and synchrotron radiation to study the device`s response to flux and wavelength changes. This paper presents the response of the devices to some of these tests and discusses different physics aspects to be considered when designing high speed detectors.

  7. Fast response amplitude scintillation detector for X-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Dementyev, E. N.; Sheromov, M. A.; Sokolov, A. S.

    1986-05-01

    The present paper describes a scintillation detector for X-ray synchrotron radiation. This detector has been created on the basis of a scintillator and a photoelectron multiplier (FEU-130) and its construction allows one to use the specific features of the time characteristics of synchrotron radiation from the electron storage ring. In a given range of amplitudes, the detector electronics makes a 64-channel amplitude analysis of the FEU-130 signal strobed by the revolution frequency of an electron bunch in the storage ring ( f0 = 818 kHz). There is the possibility of operating the detector at high intensities of the monochromatic radiation incident on the scintillator. Such a possibility is directly provided by the time structure of SR and is not realizable with the use of other X-ray sources. The detector will find wide application in studies on X-ray structural analysis, transmission and fluorescent EXAFS- and XANES-spectroscopy, transmission scanning microscopy and microtomography, calibration of X-ray detectors and as a monitor on SR beams from the storage ring VEPP-4.

  8. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    SciTech Connect

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Astolfo, Alberto; Menk, Ralf-Hendrik; Juurlink, Bernhard H. J.

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  9. Synchrotron X-ray diffraction characterization of healthy and fluorotic human dental enamel

    NASA Astrophysics Data System (ADS)

    Colaço, M. V.; Barroso, R. C.; Porto, I. M.; Gerlach, R. F.; Costa, F. N.; Braz, D.; Droppa, R.; de Sousa, F. B.

    2012-10-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory—LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data.

  10. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  11. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  12. Synchrotron-based X-ray-sensitive nanoprobes for cellular imaging.

    PubMed

    Zhu, Ying; Earnest, Thomas; Huang, Qing; Cai, Xiaoqing; Wang, Zhili; Wu, Ziyu; Fan, Chunhai

    2014-12-10

    It is one of the ultimate goals in cell biology to understand the complex spatio-temporal interplay of biomolecules in the cellular context. To this end, there have been great efforts on the development of various probes to detect and localize specific biomolecules in cells with a variety of microscopic imaging techniques. In this Research News, we first summarize several types of microscopy for visualizing specific biomolecular targets. Then we focus on recent advances in the design of X-ray sensitive nanoprobes for applications in synchrotron-based cellular imaging. With the availability of advanced synchrotron techniques, there has been rapid progress toward high-resolution and multi-color X-ray imaging in cells with various types of functional nanoprobes.

  13. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  14. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  15. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed. PMID:20400833

  16. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents.

  17. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents. PMID:26636984

  18. The correlation timescale of the X-ray flux during the outbursts of soft X-ray transients

    NASA Astrophysics Data System (ADS)

    Wu, Yuxiang; Yu, Wenfei; Li, Tipei

    2010-01-01

    Recent studies of black hole and neutron star low mass X-ray binaries (LMXBs) show a positive correlation between the X-ray flux at which the low/hard(LH)-to-high/soft(HS) state transition occurs and the peak flux of the following HS state. By analyzing the data from the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE), we show that the HS state flux after the source reaches its HS flux peak still correlates with the transition flux during soft X-ray transient (SXT) outbursts. By studying large outbursts or flares of GX 339-4, Aql X-1 and 4U 1705-44, we have found that the correlation holds up to 250, 40, and 50 d after the LH-to-HS state transition, respectively. These time scales correspond to the viscous time scale in a standard accretion disk around a stellar mass black hole or a neutron star at a radius of ˜104-5 R g, indicating that the mass accretion rates in the accretion flow either correlate over a large range of radii at a given time or correlate over a long period of time at a given radius. If the accretion geometry is a two-flow geometry composed of a sub-Keplerian inflow or outflow and a disk flow in the LH state, the disk flow with a radius up to ˜105 R g would have contributed to the nearly instantaneous non-thermal radiation directly or indirectly, and therefore affects the time when the state transition occurs.

  19. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    SciTech Connect

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  20. Soft X-ray betatron radiation characterization for warm-dense matter studies at LCLS-MEC

    NASA Astrophysics Data System (ADS)

    Schumaker, W.; Cordamine, F.; Fry, A.; Galtier, E.; Granados, E.; Heimann, P.; Kotick, J.; Lee, Hae Ja; Glenzer, S. H.; Barbrel, B.; Sanders, A.; Falcone, R.; Ravarsio, A.; Gaudin, J.; Pollock, B. B.; Albert, F.

    2015-11-01

    Laser wakefield acceleration (LWFA) can produce high-energy (>100 MeV) electron beams with ultra-short durations (<100 fs) in a compact, mm-scale plasma. Transverse motion of the electrons in the wakefield leads to the emission of synchrotron-like X-ray beams, called betatron radiation, with peak photon energies >10 keV and source sizes of a few microns. These X-ray beams are presumed to retain the short-pulse characteristic of the electrons, resulting in high peak brightness and peak energy, making the source an excellent candidate for ultrafast temporally resolved pump-probe applications, especially for free-electron laser (FEL) and high-energy density (HED) experiments. Presented here are some of first experimental measurements of betatron in the soft X-ray regime (<1 keV) using X-ray mirrors and a grating spectrometer to collect, transport, and focus betatron X-rays for pump-probe experiments at the LCLS Matter-in-Extreme Conditions (MEC) facility.

  1. Tracking picosecond molecular dynamics in solution using a suite of synchrotron-x-ray spectroscopic tools

    NASA Astrophysics Data System (ADS)

    March, Anne Marie; Doumy, Gilles; Kanter, Elliot P.; Lehmann, Stefan; Moonshiram, Dooshaye; Southworth, Stephen H.; Young, Linda; Assefa, Tadesse A.; Bressler, Christian; Gawelda, Wojciech; Németh, Zoltán; Vankó, György

    2015-03-01

    Laser-pump, X-ray-probe techniques are powerful tools for exploring molecular structural changes that occur in complex environments such as solutions, during a photo-initiated reaction. We are developing such methods using hard x-rays from the Advanced Photon Source, combining x-ray emission spectroscopy and x-ray absorption spectroscopy as probes of electronic and geometric structure and using high-power, MHz lasers as pumps. The high-duty-cycle pump-probe measurements efficiently utilize the synchrotron x-ray flux and enable high-fidelity measurements of the structures of transient intermediates. We present measurements on the model system [Fe(II)(CN)6]4- (ferrocyanide) in an aqueous solution after excitation with 355 nm and 266 nm laser light. The system undergoes two wavelength dependent reactions: photooxidation and photoaquation. Iron K-edge absorption spectra were obtained along with iron emission spectra. Our data support the presence of a previously unobserved pentacoordinated intermediate species in the photoaquation reaction. Its lifetime has been measured to be 4.6 ns and details of its structure will be discussed. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  2. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Spanne, P. ); Rivers, M.L.; Sutton, S.R. )

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs.

  3. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  4. Synchrotron radiation X-ray imaging of cavitation bubbles in Al-Cu alloy melt.

    PubMed

    Huang, Haijun; Shu, Da; Fu, Yanan; Wang, Jun; Sun, Baode

    2014-07-01

    Cavitation bubbles in Al-10 wt.%Cu melt has been investigated by adopting synchrotron radiation X-ray imaging technology. In-situ observation reveals that most of bubbles concentrate within an intense cavitation zone nearby the radiation face. The measured near-maximum bubble radii obey a similar truncated Gaussian distribution as in water but increase by nearly the magnitude of one order due to higher ultrasonic intensity applied in aluminum melt.

  5. Characterization of Nano and Mesoscale Deformation Structures with Intense X-ray Synchrotron Sources

    SciTech Connect

    Ice, G.E.; Barabash, R.I.; Walker, F.J.

    2010-07-19

    Advanced polychromatic microdiffraction is sensitive to the organization of dislocations and other defects that rotate the lattice planes. Using ultra-brilliant third-generation synchrotron sources and non-dispersive X-ray focusing optics, it is now possible to analyze individual dislocation cells and walls at a submicron scale that cannot be probed by traditional methods. The method is applied to an Ir weld sample to illustrate how microdiffraction can be used to determine the locally active dislocation system.

  6. Vacuum chamber development for the synchrotron x-ray source at Argonne

    SciTech Connect

    Nielsen, R.; Moenich, J.; Wehrle, R.

    1987-03-01

    A vacuum test chamber 1.6 meters in length for the synchrotron x-ray source has been completed and tested for the evaluation of welding, sealing and ultra high vacuum (UHV) applications. A base pressure of 6.5 x 10/sup -11/ Torr (nitrogen equivalent) has been achieved. The pumping system consists of non-evaporable getter (NeG) strips. The pumpdown procedure, NeG characteristics and results are discussed.

  7. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    SciTech Connect

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2008-06-06

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  8. Characteristics of radiation safety for synchrotron radiation and X-ray free electron laser facilities.

    PubMed

    Asano, Yoshihiro

    2011-07-01

    Radiation safety problems are discussed for typical electron accelerators, synchrotron radiation (SR) facilities and X-ray free electron laser (XFEL) facilities. The radiation sources at the beamline of the facilities are SR, including XFEL, gas bremsstrahlung and high-energy gamma ray and photo-neutrons due to electron beam loss. The radiation safety problems for each source are compared by using 8 GeV class SR and XFEL facilities as an example.

  9. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  10. POLARIZATION STUDIES OF CdZnTe DETECTORS USING SYNCHROTRON X-RAY RADIATION.

    SciTech Connect

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; JAMES, R.B.

    2007-07-01

    New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported.

  11. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece. PMID:27359150

  12. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  13. A fluorescence XAFS measurement instrument in the soft x-ray region toward observation under operando conditions

    SciTech Connect

    Honda, M. Baba, Y.; Shimoyama, I.; Sekiguchi, T.

    2015-03-15

    X-ray absorption fine structure (XAFS) measurements are widely used for the analysis of electronic structure. Generally, XAFS in the soft X-ray region is measured under vacuum, but chemical structures under vacuum are typically different from those under operando conditions, where chemical species exhibit their function. Here, we developed an XAFS measurement instrument, as a step toward operando fluorescent, which yields XAFS measurement using synchrotron radiation in the soft X-ray region. We applied this method to analyze the local electronic structure of the sulfur atoms in L-cysteine in different pH solutions. In water at pH 7, the hydrogen atom does not dissociate from the thiol (-SH) group in L-cysteine, which forms a structure surrounded by and interacting with water molecules. The XAFS spectrum of L-cysteine in solution was altered by changing the pH. At pH 9, the hydrogen atom dissociated and a thiolate anion was formed. Although the -SH group was oxidized to SO{sub 4}{sup 2−} when L-cysteine was adsorbed on a metal surface and dried, no oxidation was observed in solution. This may be because the water molecules were densely packed and protected the -SH group from oxidation. Our results show that this instrument aimed toward operando fluorescence XAFS measurements in the soft X-ray region is useful for structural analysis of sulfur atoms in organic molecules in air and in solution. The instrument will be applied to the structural analysis of materials containing elements that have absorption edges in soft X-ray region, such as phosphorus and alkali metals (potassium and cesium). It will be also particularly useful for the analysis of samples that are difficult to handle under vacuum and materials that have specific functions in solution.

  14. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  15. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGES

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  16. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  17. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    PubMed Central

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts. PMID:25537582

  18. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    PubMed

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  19. A new soft x-ray pulse height analysis array in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu Yi; Yang, J. W.; Song, X. Y.; Liao, M.; Li, X.; Yuan, G. L.; Yang, Q. W.; Duan, X. R.; Pan, C. H.

    2009-12-15

    A new soft x-ray pulse height analysis (PHA) array including nine independent subsystems, on basis of a nonconventional software multichannel analysis system and a silicon drift detector (SDD) linear array consisting of nine high performance SDD detectors, has been developed in the HL-2A tokamak. The use of SDD has greatly improved the measurement accuracy and the spatiotemporal resolutions of the soft x-ray PHA system. Since the ratio of peak to background counts obtained from the SDD PHA system is very high, p/b{>=}3000, the soft x-ray spectra measured by the SDD PHA system can approximatively be regarded as electron velocity distribution. The electron velocity distribution can be well derived in the pure ohmic and auxiliary heating discharges. The performance of the new soft x-ray PHA array and the first experimental results with some discussions are presented.

  20. Homogeneous focusing with a transient soft X-ray laser for irradiation experiments

    NASA Astrophysics Data System (ADS)

    Kazamias, S.; Cassou, K.; Guilbaud, O.; Klisnick, A.; Ros, D.; Plé, F.; Jamelot, G.; Rus, B.; Koslová, M.; Stupka, M.; Mocek, T.; Douillet, D.; Zeitoun, Ph.; Joyeux, D.; Phalippou, D.

    2006-07-01

    We report the work done on a transient soft X-ray laser (SXRL) beam to deliver a proper extreme UV irradiation source for applications. The same optical tool was first demonstrated on a quasi stationnary state (QSS) soft X-Ray laser at the PALS Institute in Prague. The problem set by the transient soft X-Ray laser developed by the LIXAM at the LULI installation in Palaiseau is more crucial, first because the beam spatial profile is more irregular secondly because high repetition rate soft X-ray laser facilities in the future are based on this SXRL type. The spots obtained show a 20 micron average diameter and a rather homogeneous and smooth profile that make them a realistic irradiation source to interact with targets requiring relatively high fluence (near 1 J/cm 2) or intensity (near 10 11 W/cm 2) in the extreme UV domain.

  1. Bright High Average Power Table-top Soft X-Ray Lasers

    SciTech Connect

    Rocca, Jorge; Reagan, Brendon; Wernsing, Keith; Luther, Brad; Curtis, Alden; Nichols,, Anthony; Wang, Yong; Alessi, David; Martz, Dale; Yin, Liang; Wang, Shoujun; Berrill, Mark A; Furch, Federico; Woolston, Mark; Patel, Dinesh; Marconi, Mario; Menoni, Carmen

    2012-01-01

    We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

  2. Characterization of an x-ray phase contrast imaging system based on the miniature synchrotron MIRRORCLE-6X

    SciTech Connect

    Heekeren, Joop van; Kostenko, Alexander; Hanashima, Takayasu; Yamada, Hironari; Stallinga, Sjoerd; Offerman, S. Erik; Vliet, Lucas J. van

    2011-09-15

    Purpose: The implementation of in-line x-ray phase contrast imaging (PCI) for soft-tissue patient imaging is hampered by the lack of a bright and spatially coherent x-ray source that fits into the hospital environment. This article provides a quantitative characterization of the phase-contrast enhancement of a PCI system based on the miniature synchrotron technology MIRRORCLE-6X. Methods: The phase-contrast effect was measured using an edge response of a plexiglass plate as a function of the incident angle of radiation. We have developed a comprehensive x-ray propagation model based on the system's components, properties, and geometry in order to interpret the measurement data. Monte-Carlo simulations are used to estimate the system's spectral properties and resolution. Results: The measured ratio of the detected phase-contrast to the absorption contrast is currently in the range 100% to 200%. Experiments show that with the current implementation of the MIRRORCLE-6X, a target smaller than 30-40 {mu}m does not lead to a larger phase-contrast. The reason for this is that the fraction of x-rays produced by the material (carbon filament and glue) that is used for mounting the target in the electron beam is more than 25% of the total amount of x-rays produced. This increases the apparent source size. The measured phase-contrast is at maximum two times larger than the absorption contrast with the current set-up. Conclusions: Calculations based on our model of the present imaging system predict that the phase-contrast can be up to an order of magnitude larger than the absorption contrast in case the materials used for mounting the target in the electron beam do not (or hardly) produce x-rays. The methods described in this paper provide vital feedback for guiding future modifications to the design of the x-ray target of MIRRORCLE-type system and configuration of the in-line PCI systems in general.

  3. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  4. Absolutely calibrated soft-x-ray streak camera for laser-fusion applications

    SciTech Connect

    Kauffman, R.L.; Medecki, H.; Stradling, G.

    1982-01-01

    The intensity output of a soft-x-ray streak camera was calibrated (SXRSC) in order to make absolute flux measurements of x rays emitted from laser-produced plasmas. The SXRSC developed at LLNL is used to time-resolve x-ray pulses to better than 20 ps. The SXRSC uses a Au photocathode on a thin carbon substrate which is sensitive to x rays from 100 eV to greater than 10 keV. Calibrations are done in the dynamic mode using a small laser-produced x-ray source. The SXRSC is calibrated by comparing its integrated signal to the output of calibrated x-ray diodes monitoring the source strength. The measured SXRSC response is linear over greater than two orders of magnitude. Using these calibrations, absolute intensities can be measured to an accuracy of +-30%.

  5. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    PubMed Central

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  6. The possible effect of solar soft X rays on thermospheric nitric oxide

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Barth, C. A.; Cleary, D. D.

    1990-04-01

    A rocket observation of nitric oxide in the lower thermosphere during a time of high solar activity is compared to the results of calculations from a one-dimensional photochemical model. A solar soft X-ray flux of 0.75 erg/sq cm/s is needed to explain the observed NO densities. This result supports the theory that the variation in the low-latitude thermospheric NO is caused by variation in solar soft X-rays.

  7. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  8. Running Shanghai Soft x-ray FEL with the EEHG scheme

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    With the nominal beam parameters (beam energy: 0.84 GeV, slice energy spread: 168 keV, peak current: 600 A, normalized emittance: 2 mm mrad) of the Shanghai soft X-ray Free Electron Laser (SXFEL) project, we show that using the echo-enabled harmonic generation (EEHG) scheme, 9 nm coherent soft x-ray with peak power exceeding 400 MW can be generated directly from the 270 nm seeding laser.

  9. Observation of soft X-ray emission from the supernova remnant HB9

    NASA Technical Reports Server (NTRS)

    Tuohy, I. R.; Clark, D. H.; Garmire, G. P.

    1979-01-01

    The number of known X-ray emitting supernova remnants in our galaxy has significantly grown as a result of the soft X-ray survey by the HEAO-1 spacecraft. The HEAO-1 A-2 experiment has observed soft X-ray emission from the old supernova remnant HB9 which lies close to the previously identified X-ray source, Capella. Spectral data and the low optical obscuration in the direction of the remnant suggest that HB9 is a good candidate for detecting Fe XIV coronal forbidden-line emission. Mapping of the coronal line emission in association with the imaging X-ray data expected from HEAO-2 would allow the temperature profile of the emitting shell to be determined in a manner similar to that used by Tuohy, Nousek, and Garmire (1979) for the Cygnus Loop, which is in a similar evolutionary phase to HB9.

  10. Synchrotron-based crystal structure, associated morphology of snail and bivalve shells by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Gigante, G. E.; Kumar, Y. Manoj; Cesareo, R.; Brunetti, A.; Schiavon, N.; Akatsuka, T.; Yuasa, T.; Takeda, T.

    2016-10-01

    Synchrotron-based high-resolution X-ray powder diffraction spectra from the body parts of a snail and bivalve (CaCO3), have been recorded with Pilatus area detector. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ=0.82666 Å). The external shell of these living organisms, is composed of calcium carbonate, which carries strong biological signal. It consists of some light elements, such as, Ca, C and O, which constitute part of the soft tissue and other trace elements. The knowledge of these diffraction patterns and hence the understanding of structures at molecular level are enormous. The application of synchrotron radiation to powder diffraction is well suited for samples of biological nature via changes in their patterns and also to investigate crystallographic phase composition. With the use of Rietveld refinement procedure, to the high-resolution diffraction spectra, we were able to extract the lattice parameters of orthorhombic polymorph of CaCO3, the most abundant mineral produced by these living organisms. The small size of the crystallite is a very important factor related to the biological structure. The natural model presents a combination of organic and inorganic phases with nanometer size. For the present study, we also used the scanning electron microscopy (SEM) to explore the associated morphology of the snail and bivalve.

  11. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    SciTech Connect

    Ribeiro, T.; Lopes de Oliveira, R.

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  12. Progress and prospects in soft x-ray holographic microscopy

    SciTech Connect

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab.

  13. Soft X-ray astronomy using grazing incidence optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.

    1989-01-01

    The instrumental background of X-ray astronomy with an emphasis on high resolution imagery is outlined. Optical and system performance, in terms of resolution, are compared and methods for improving the latter in finite length instruments described. The method of analysis of broadband images to obtain diagnostic information is described and is applied to the analysis of coronal structures.

  14. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Ricci, Claudio; Paltani, Stéphane

    2016-04-01

    An excess of X-ray emission below 1 keV, called soft excess, is detected in a large fraction of Seyfert 1-1.5s. The origin of this feature remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we exploit the different behaviors of these models above 10 keV. Ionized reflection covers a broad energy range, from the soft X-rays to the hard X-rays, while Comptonization drops very quickly in the soft X-rays. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5 and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton data allows a hard X-ray view of the soft excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy, to the photon index of the primary continuum and to the Eddington ratio. In particular, we find a positive dependence of the soft excess intensity on the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. By stacking both XMM-Newton and Swift/BAT spectra per soft-excess strength, we see that the shape of reflection at hard X-rays stays constant when the soft excess varies, showing an absence of link between reflection and soft excess. We conclude that the ionized-reflection model as the origin of the soft excess is disadvantaged in favor of the warm Comptonization model in our sample of Seyfert 1s.

  15. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  16. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  17. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  18. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  19. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  20. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    SciTech Connect

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  1. Is the DA white dwarf 1910 + 047 a soft X-ray source?

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1990-01-01

    The possibility that the recently discovered DA white dwarf WD 1910 + 047 might be an Einstein soft X-ray source is studied, applying a complete model atmosphere analyis to both the optical and the soft X-ray data. It is found that the X-ray source in question is at least one order of magnitude too strong to be compatible with the estimated atmospheric parameters of the possible optical counterpart. The spatial coincidence between the two, however, remains extremely intriguing and has left us with the dilemma of accepting the relatively improbable coincidence of two unrelated objects or rejoicing over the discovery of a highly unusual one.

  2. Electronic Structures of Uranium Compounds Studied by Soft X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2016-06-01

    The electronic structures of uranium-based compounds have been studied by photoelectron spectroscopy with soft X-ray synchrotron radiation. Angle-resolved photoelectron spectroscopy with soft X-rays has made it possible to directly observe their bulk band structures and Fermi surfaces. It has been shown that the band structures and Fermi surfaces of itinerant compounds such as UB2, UN, and UFeGa5 are quantitatively described by a band-structure calculation treating all U 5f electrons as itinerant. Furthermore, the overall electronic structures of heavy-fermion compounds such as UPd2Al3, UNi2Al3, and URu2Si2 are also explained by a band-structure calculation, although some disagreements exist, which might originate from the electron correlation effect. This suggests that the itinerant description of U 5f states is an appropriate starting point for the description of their electronic structures. The situation is similar for ferromagnetic superconductors such as UGe2, URhGe, UCoGe, and UIr, although the complications from their low-symmetry crystal structures make it more difficult to describe their detailed electronic structures. The local electronic structures of the uranium site have been probed by core-level photoelectron spectroscopy with soft X-rays. The comparisons of core-level spectra of heavy-fermion compounds with typical itinerant and localized compounds suggest that the local electronic structures of most itinerant and heavy-fermion compounds are close to the U 5f3 configuration except for UPd2Al3 and UPt3. The core-level spectrum of UPd2Al3 has similarities to those of both itinerant and localized compounds, suggesting that it is located at the boundary between the itinerant and localized states. Moreover, the spectrum of UPt3 is very close to that of the localized compound UPd3, suggesting that it is nearly localized, although there are narrow quasi-particle bands in the vicinity of EF.

  3. Calibration of a compact XUV soft X-ray monochromator with a digital autocollimator in situ.

    PubMed

    Yuh, Jih Young; Lin, Shang Wei; Huang, Liang Jen; Lee, Long Life

    2016-09-01

    A digital autocollimator of resolution 0.1 µrad (0.02 arcsec) serves as a handy correction tool for calibrating the angular uncertainty during angular and lateral movements of gratings inside a monochromator chamber under ultra-high vacuum. The photon energy dispersed from the extreme ultraviolet (XUV) to the soft X-ray region of the synchrotron beamline at the Taiwan Light Source was monitored using molecular ionization spectra at high resolution as energy references that correlate with the fine angular steps during grating rotation. The angular resolution of the scanning mechanism was <0.3 µrad, which results in an energy shift of 80 meV at 867 eV. The angular uncertainties caused by the lateral movement during a grating exchange were decreased from 2.2 µrad to 0.1 µrad after correction. The proposed method provides a simple solution for on-site beamline diagnostics of highly precise multi-axis optical manipulating instruments at synchrotron facilities and in-house laboratories. PMID:27577780

  4. Calibration of a compact XUV soft X-ray monochromator with a digital autocollimator in situ.

    PubMed

    Yuh, Jih Young; Lin, Shang Wei; Huang, Liang Jen; Lee, Long Life

    2016-09-01

    A digital autocollimator of resolution 0.1 µrad (0.02 arcsec) serves as a handy correction tool for calibrating the angular uncertainty during angular and lateral movements of gratings inside a monochromator chamber under ultra-high vacuum. The photon energy dispersed from the extreme ultraviolet (XUV) to the soft X-ray region of the synchrotron beamline at the Taiwan Light Source was monitored using molecular ionization spectra at high resolution as energy references that correlate with the fine angular steps during grating rotation. The angular resolution of the scanning mechanism was <0.3 µrad, which results in an energy shift of 80 meV at 867 eV. The angular uncertainties caused by the lateral movement during a grating exchange were decreased from 2.2 µrad to 0.1 µrad after correction. The proposed method provides a simple solution for on-site beamline diagnostics of highly precise multi-axis optical manipulating instruments at synchrotron facilities and in-house laboratories.

  5. X-Tream quality assurance in synchrotron X-ray microbeam radiation therapy.

    PubMed

    Fournier, Pauline; Cornelius, Iwan; Donzelli, Mattia; Requardt, Herwig; Nemoz, Christian; Petasecca, Marco; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2016-09-01

    Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X-ray beam into an array of microbeams using a multi-slit collimator (MSC). After promising pre-clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose-planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X-ray treatment monitoring system (X-Tream) which incorporates a high-spatial-resolution silicon strip detector (SSD) specifically designed for MRT. In-air measurements of the horizontal profile of the intrinsic microbeam X-ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X-Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X-ray imaging with a low-intensity low-energy beam has been developed and is presented in this publication. PMID:27577773

  6. Pushing the Boundaries of Suborbital Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall

    There are two primary objectives for this investigation. First, we propose to launch a preexisting payload to perform scientific investigations. Second, we propose to build a new payload which will integrate and demonstrate key technologies vital to future X-ray observatories. These efforts will train graduate students and prepare junior researchers to be major contributors to the next suite of NASA missions. We propose to increase the ability of gratings to obtain high resolution at energies below 1 keV. The concept that will be developed in this proposed investigation will be capable of meeting the requirements of future X-ray observatories. In addition, the design could be utilized effectively on smaller, Explorer class missions as pathfinders to the larger observatories while providing important scientific insights along the way. For this investigation, we propose to fly two separate, but related, rocket payloads. The first payload, christened OGRESS, has already been constructed and successfully flown three times. OGRESS is optimized to observe diffuse X-ray sources with a wire-grid collimating optic, parallel groove sinusoidal gratings, and Gaseous Electron Multiplier (GEM) detectors and is capable of attaining high resolution of E/dE ~ 25-80 in the 1/4 keV band. OGRESS will take high resolution spectra of the Vela Supernova Remnant (SNR) in the 1/4 keV band. This flight will provide the highest resolution spectra yet taken of Vela in this band and will produce a PhD thesis. The second payload, OGRE, will demonstrate key technologies necessary for the next X-ray observatory and provide even higher resolution of E/dE ~ 1000-2000 between 0.2 1.0 keV. To improve upon the resolution of OGRESS, OGRE will integrate several key technologies which have already been developed in a laboratory setting, but have not been flight proven. OGRE will use a modified Wolter telescope made from slumped glass to provide a smaller focus and increase throughput. Slumped glass

  7. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  8. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  9. Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.

    2014-08-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (≥ 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ≳ 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ≲ 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant

  10. Development of a Time-resolved Soft X-ray Spectrometer for Laser Produced Plasma Experiments

    SciTech Connect

    Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

    2010-05-12

    A 2400 line/mm variable spaced grating spectrometer (VSG) has been used to measure soft x-ray emission (8-22 {angstrom}) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x-rays emitted from the back of mylar and copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx} 120 at 19 {angstrom} with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolution of this diagnostic make it useful for studies of high temperature plasmas.

  11. Ultrastructural and elemental imaging of biological specimens by soft x-ray contact microscopy

    SciTech Connect

    Panessa, B.J.; Hoffman, P. . Dept. of Orthopedics); Warren, J.B. ); Feder, R.; Sayre, D. . Thomas J. Watson Research Center)

    1980-01-01

    Soft X-ray contact microscopy offers a means of visualizing unstained as well as stained biological materials at better than 6 nm resolution. Soft X-ray imaging depends on differential absorption of incident soft (1--10nm wavelength) X-rays by the endogenous elements within a specimen. The advantages of using soft X-rays for imaging are: (1) reduced specimen damage during exposure; (2) ability to image hydrated specimens at atmospheric pressure; (3) ability to image specimens ranging in thickness from less than 40 nm to as much as 10{mu}m; and (4) ability to map the elemental composition of the specimen through observation of the differential absorption of properly chosen incident x-ray wavelengths. This paper explains the principles of image formation and demonstrates the use of soft X-ray contact microscopy with biological samples which could not readily be imaged in their natural form using conventional electron microscopy methods. Data are also presented on the recognition of compositional features in histochemically treated articular joint tissues. 30 refs., 15 figs.

  12. Noninterferometric quantitative phase imaging with soft x rays.

    PubMed

    Allman, B E; McMahon, P J; Tiller, J B; Nugent, K A; Paganin, D; Barty, A

    2000-10-01

    We demonstrate quantitative noninterferometric x-ray phase-amplitude measurement. We present results from two experimental geometries. The first geometry uses x rays diverging from a point source to produce high-resolution holograms of submicrometer-sized objects. The measured phase of the projected image agrees with the geometrically determined phase to within +/-7%. The second geometry uses a direct imaging microscope setup that allows the formation of a magnified image with a zone-plate lens. Here a direct measure of the object phase is made and agrees with that of the magnified object to better than +/-10%. In both cases the accuracy of the phase is limited by the pixel resolution.

  13. The Columbia University proton-induced soft x-ray microbeam.

    PubMed

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  14. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  15. OSO-8 soft X-ray experiment (Wisconsin)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Information for operating and reducing data from the experiment which was designed to map low energy X-ray background emissions from 130 eV to 35 keV is presented. The detectors, counters, data system, and the gas system are discussed along with the functional operation of the subsystems. A command list indicating preconditions and resulting telemetry response for each command is included.

  16. Design considerations for soft X-ray television imaging detectors

    NASA Technical Reports Server (NTRS)

    Kalata, Kenneth; Golub, Leon

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed.

  17. Heat transfer issues in high-heat-load synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.

  18. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  19. Conical geometry for sagittal focusing as applied to X rays from synchrotrons

    SciTech Connect

    Ice, G.E.; Sparks, C.J.

    1993-06-01

    The authors describe a method for simultaneously focusing and monochromatization of X rays from a fan of radiation having up to 15 mrad divergence in one dimension. This geometry is well suited to synchrotron radiation sources at magnifications of one-fifth to two and is efficient for X-ray energies between 3 and 40 keV (0.48 and 6.4 fJ). The method uses crystals bent to part of a cone for sagittal focusing and allows for the collection of a larger divergence with less mixing of the horizontal into the vertical divergence than is possible with X-ray mirrors. They describe the geometry required to achieve the highest efficiency when a conical crystal follows a flat crystal in a nondispersive two-crystal monochromator. At a magnification of one-third, the geometry is identical to a cylindrical focusing design described previously. A simple theoretical calculation is shown to agree well with ray-tracing results. Minimum aberrations are observed at magnifications near one. Applications of the conical focusing geometry to existing and future synchrotron radiation facilities are discussed.

  20. Correlative Analysis of hard and Soft X-rays in Solar Flares using CGRO/BATSE and YOHKOH

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1996-01-01

    The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  1. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    SciTech Connect

    Schwarz, Greg J.; Ness, Jan-Uwe; Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P.; Walter, Frederick M.; Andrew Helton, L.; Woodward, Charles E.; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J.

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  2. Analysis of mirror soft-x-ray-EUV scattering using generalized continuous growth model of multiscale reliefs.

    PubMed

    Goray, Leonid; Lubov, Maxim

    2015-04-20

    Combined computer simulations of the growth of multilayer mirrors and their exact differential reflection coefficients in the soft-x-ray-EUV range have been conducted. The proposed model describes the variation of the surface roughness of the multilayer Al/Zr mirror boundary profiles taking into account a random noise source. Theoretically calculated Al/Zr boundary profiles allow one to know real rough boundary statistics including rms roughnesses and correlation lengths and, to obtain rigorously EUV specular and diffuse reflection coefficients. The proposed integrated approach opens up a way to performing exact theoretical studies similar in accuracy to results obtained by quantitative microscopy investigations of nanoreliefs and synchrotron radiation measurements.

  3. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range.

    PubMed

    Rueff, J P; Ablett, J M; Céolin, D; Prieur, D; Moreno, Th; Balédent, V; Lassalle-Kaiser, B; Rault, J E; Simon, M; Shukla, A

    2015-01-01

    The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.

  4. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range.

    PubMed

    Rueff, J P; Ablett, J M; Céolin, D; Prieur, D; Moreno, Th; Balédent, V; Lassalle-Kaiser, B; Rault, J E; Simon, M; Shukla, A

    2015-01-01

    The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed. PMID:25537606

  5. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  6. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-09-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.

  7. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    PubMed Central

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-01-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms. PMID:27658854

  8. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGES

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Prokhorov, Igor A.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Dennis A.; Jafari, Atefeh; et al

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation densitymore » is observed, though growth rate is not the only parameter impacting the quality.« less

  9. Algorithms for three-dimensional chemical analysis via multi-energy synchrotron X-ray tomography

    NASA Astrophysics Data System (ADS)

    Ham, Kyungmin; Butler, Leslie G.

    2007-08-01

    The conversion of X-ray tomography images into three-dimensional chemical composition requires accurate mass absorption values, high-quality images, and a robust fitting algorithm. The least-squares fits of the images to a three-dimensional chemical composition can proceed with several different options such as minimal vs. over-determined and/or constrained parameters. This project has investigated the impact of XAFS features and a limited CCD dynamic range. These simulated results are compared to a recent experimental project in which synchrotron X-ray tomography was used to image a polymer blend, and from those images, calculated three-dimensional chemical composition maps of the two-component flame retardant, a brominated phthalimide dimer, Saytex ™ BT-93 and a synergist, antimony(III) oxide (Sb 2O 3).

  10. X-ray and synchrotron investigations of heterogeneous systems based on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sivkov, V. N.; Ob"edkov, A. M.; Petrova, O. V.; Nekipelov, S. V.; Kremlev, K. V.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.

    2015-01-01

    This paper presents the results of a complex investigation of heterogeneous systems based on multiwalled carbon nanotubes with the outer surfaces covered by iron oxide (Fe3O4) nanocoatings deposited using iron pentacarbonyl as a precursor. Investigations were performed by the methods of electron microscopy, X-ray diffractometry, and ultrasoft X-ray spectroscopy with synchrotron radiation. It was established that the formed thin coatings are continuous and nonuniform in thickness. It was shown that good adhesion of iron oxide on the multiwalled carbon nanotube surface is provided by the formation of epoxy and double carbon-oxygen bonds; in this case, the outer graphene layer of nanotubes is not destroyed and retains the hexagonal structure.

  11. Small-angle scattering studies of meso-scopic structures with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Dore, J. C.; North, A. N.; Rigden, J. S.

    1995-03-01

    The use of small-angle X-ray scattering techniques for the study of spatial inhomogeneities over the range 20 Å to 2 μm is reviewed. The basic formalism for scattering by an inhomogeneous medium is developed with particular reference to liquid suspensions, porous solids and solid aggregates. The instrumentation available on the Synchrotron Radiation Source at the Daresbury Laboratory is briefly presented and the use of the Bonse-Hart method for studies at ultra-low scattering angles described. The extraction of structural information for a range of natural and synthetic materials is presented with particular reference to microemulsions, porous silicas, clays and composites. The complementarity of X-ray and neutron techniques is critically reviewed and prospects for future developments, particularly for the study of anisotropic systems, are discussed.

  12. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    NASA Technical Reports Server (NTRS)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  13. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  14. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  15. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors

    PubMed Central

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  16. Anisotropic thermal expansion in Sr2RhO4 - A variable temperature Synchrotron X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Ranjbar, Ben; Kennedy, Brendan J.

    2015-11-01

    Synchrotron X-ray diffraction studies of Sr2RhO4, between 100 and 1273 K, demonstrate the presence of anisotropic thermal expansion that is significantly impacted by the progressive reduction in the size of the cooperative tilting of the corner sharing RhO6 octahedra. The tilting results in negative thermal expansion along the c-axis, demonstrating the importance of soft phonon modes. This anisotropy in thermal expansion is reflected in the changes in the individual Rh-O bond distances. Near 850 K Sr2RhO4 undergoes an apparently continuous transition from I41/acd to I4/mmm and above this temperature the material displays typical positive thermal expansion.

  17. Soft X-Ray Measurements of Z-Pinch-Driven Vacuum Hohlraums

    SciTech Connect

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Chandler, G.A.; Deeney, Chris; Varas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J.; Simpson, W.W.; Fehl, D.L.; Chrien, R.E.; Matuska, W.; Idzorek, G.C.

    1999-07-21

    This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10{sup 12} W/cm{sup 2} radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums.

  18. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline.

    PubMed

    Jones, Michael W M; Phillips, Nicholas W; van Riessen, Grant A; Abbey, Brian; Vine, David J; Nashed, Youssef S G; Mudie, Stephen T; Afshar, Nader; Kirkham, Robin; Chen, Bo; Balaur, Eugeniu; de Jonge, Martin D

    2016-09-01

    Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated. PMID:27577770

  19. Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution

    PubMed Central

    Skou, Soren; Gillilan, Richard E

    2015-01-01

    Summary With recent advances in data analysis algorithms, X-ray detectors, and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community than ever before. Although limited to ~10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced usage of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors, and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the non-specialist. Here, we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch, and other common problems. The protein, human serum albumin (HSA), serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity, and solubility be extensively optimized prior to the experiment. PMID:24967622

  20. Experimental comparison between speckle and grating-based imaging technique using synchrotron radiation X-rays.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-08-01

    X-ray phase contrast and dark-field imaging techniques provide important and complementary information that is inaccessible to the conventional absorption contrast imaging. Both grating-based imaging (GBI) and speckle-based imaging (SBI) are able to retrieve multi-modal images using synchrotron as well as lab-based sources. However, no systematic comparison has been made between the two techniques so far. We present an experimental comparison between GBI and SBI techniques with synchrotron radiation X-ray source. Apart from the simple experimental setup, we find SBI does not suffer from the issue of phase unwrapping, which can often be problematic for GBI. In addition, SBI is also superior to GBI since two orthogonal differential phase gradients can be simultaneously extracted by one dimensional scan. The GBI has less stringent requirements for detector pixel size and transverse coherence length when a second or third grating can be used. This study provides the reference for choosing the most suitable technique for diverse imaging applications at synchrotron facility.

  1. Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging

    NASA Astrophysics Data System (ADS)

    Vidal, F. P.; Létang, J. M.; Peix, G.; Cloetens, P.

    2005-06-01

    Qualitative and quantitative use of volumes reconstructed by computed tomography (CT) can be compromised due to artefacts which corrupt the data. This article illustrates a method based on virtual X-ray imaging to investigate sources of artefacts which occur in microtomography using synchrotron radiation. In this phenomenological study, different computer simulation methods based on physical X-ray properties, eventually coupled with experimental data, are used in order to compare artefacts obtained theoretically to those present in a volume acquired experimentally, or to predict them for a particular experimental setup. The article begins with the presentation of a synchrotron microtomographic slice of a reinforced fibre composite acquired at the European Synchrotron Radiation Facility (ESRF) containing streak artefacts. This experimental context is used as the motive throughout the paper to illustrate the investigation of some artefact sources. First, the contribution of direct radiation is compared to the contribution of secondary radiations. Then, the effect of some methodological aspects are detailed, including under-sampling, sample and camera misalignment, sample extending outside of the field of view and photonic noise. The effect of harmonic components present in the experimental spectrum are also simulated. Afterwards, detector properties, such as its impulse response or defective pixels, are taken into account. Finally, the importance of phase contrast effects is evaluated. In the last section, this investigation is discussed by putting emphasis on the experimental context which is used throughout this paper.

  2. Synchrotron X-ray Studies of the Keel of the Short-Spined Sea Urchin Lytechinus variegatus: Absorption Microtomography (microCT) and Small Beam Diffraction Mapping

    SciTech Connect

    Stock, S. R.; Barss, J.; Dahl, T.; Veis, A.; Almer, J. D.; De Carlo, F.

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  3. Soft x-ray laser experiments at Novette Laser Facility

    SciTech Connect

    Matthews, D.; Hagelstein, P.; Rosen, M.; Kauffman, R.; Lee, R.; Wang, C.; Medecki, H.; Campbell, M.; Ceglio, N.; Leipelt, G.

    1984-03-05

    We discuss the results of and future plans for experiments to study the possibility of producing an x-ray laser. The schemes we have investigated are all pumped by the Novette Laser, operated at short pulse (tau/sub L/ approx. 100 psec) and an incident wavelength of lambda /sub L/ approx. 0.53 ..mu..m. We have studied the possibility of lasing at 53.6, 68.0 to 72.0, 119.0, and 153.0 eV, using the inversion methods of resonant photo-excitation, collisional excitation, and three-body recombination.

  4. The soft X-ray excess in Einstein quasar spectra

    NASA Technical Reports Server (NTRS)

    Masnou, J. L.; Wilkes, B. J.; Elvis, M.; Mcdowell, J. C.; Arnaud, K. A.

    1992-01-01

    An SNR-limited subsample of 14 quasars from the Wilkes and Elvis (1987) sample is presently investigated for low-energy excess above a high-energy power law in the X-ray spectra obtained by the Einstein Imaging Proportional Counter. A significant excess that is 1-6 times as strong as the high-energy component at 0.2 keV is noted in eight of the 14 objects. In the case of 3C273, multiple observations show the excess to be variable.

  5. Chemical Contrast in Soft X-Ray Ptychography

    NASA Astrophysics Data System (ADS)

    Beckers, Mike; Senkbeil, Tobias; Gorniak, Thomas; Reese, Michael; Giewekemeyer, Klaus; Gleber, Sophie-Charlotte; Salditt, Tim; Rosenhahn, Axel

    2011-11-01

    The unique strengths of x-ray microscopy are high penetration depth and near-edge resonances that provide chemical information. We use ptychography, a coherent diffractive imaging technique that disposes of the requirement for isolated specimens, and demonstrate resonant imaging by exploiting resonances near the oxygen K edge to differentiate between two oxygen-containing materials. To highlight a biological system where resonant ptychography might be used for chemical mapping of unsliced cells, reconstructions of freeze-dried Deinococcus radiodurans cells at an energy of 517 eV are shown.

  6. Evaluating the quality of images produced by soft X-ray units.

    PubMed

    Bradley, D A; Wong, C S; Ng, K H

    2000-01-01

    For broad-beam soft X-ray sources, assessment of the quality of image produced by such units is made complex by the low penetration capabilities of the radiation. In the present study we have tested the utility of several types of test tool, some of which have been fabricated by us, as part of an effort to evaluate several key image defining parameters. These include the film characteristic, focal-spot size, image resolution and detail detectability. The two sources of X-rays used in present studies were the University of Malaya flash X-ray device (UMFX1) and a more conventional soft X-ray tube (Softex, Tokyo), the latter operating at peak accelerating potentials of 20 kVp. We have established, for thin objects, that both systems produce images of comparable quality and, in particular, objects can be resolved down to better than 45 microm. PMID:11003508

  7. Wide-field MAXI: soft x-ray transient monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki; Tomida, Hiroshi; Yatsu, Yoichi; Mihara, Tatehiro; Ueno, Shiro; Kimura, Masashi; Arimoto, Makoto; Serino, Motoko; Sakamoto, Takanori; Tsunemi, Hiroshi; Kohmura, Takayoshi; Negoro, Hitoshi; Ueda, Yoshihiro; Morii, Mikio; Tsuboi, Yoko; Ebisawa, Ken; Yoshida, Atsumasa

    2014-07-01

    WF-MAXI is a soft X-ray transient monitor proposed for the ISS/JEM. Unlike MAXI, it will always cover a large field of view (20 % of the entire sky) to detect short transients more efficiently. In addition to the various transient sources seen by MAXI, we hope to localize X-ray counterparts of gravitational wave events, expected to be directly detected by Advanced-LIGO, Virgo and KAGRA in late 2010's. The main instrument, the Soft X-ray Large Solid Angle Cameras (SLC) is sensitive in the 0.7-12 keV band with a localization accuracy of ~ 0:1°. The Hard X-ray Monitor (HXM) covers the same sky field in the 20 keV-1 MeV band.

  8. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  9. Soft x-ray imager (SXI) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi Go; Dotani, Tadayasu; Hiraga, Junko S.; Anabuki, Naohisa; Bamba, Aya; Hatsukade, Isamu; Kohmura, Takayoshi; Mori, Koji; Murakami, Hiroshi; Nakajima, Hiroshi; Ozaki, Masanobu; Uchida, Hiroyuki; Yamauchi, Makoto

    2010-07-01

    We are designing an X-ray CCD camera (SXI) for ASTRO-H, including many new items. We have developed the CCD, CCD-NeXT4, that is a P-channel type CCD. It has a thick depletion layer of 200μm with an imaging area of 30mm square. Since it is back-illuminated, it has a good low energy response and is robust against the impact of micro-meteorites. We will employ 4 chips to cover the area of 60mm square. A mechanical rather than peltier cooler will be employed so that we can cool the CCD to -120°C. We will also introduce an analog ASIC that is placed very close to the CCD. It performs well, having a similar noise level to that assembled by using individual parts used on SUZAKU. We also employ a modulated X-ray source (MXS), that improves the accuracy of the calibration. The SXI will have one of the largest SΩ among various satellites.

  10. Time-resolved Soft X-Ray Imaging (SXRI) diagnostic for use at the NIF and OMEGA lasers (version 2)

    SciTech Connect

    Schneider, M B; Holder, J P; James, D L; Bruns, H C; Celeste, J R; Compton, S; Costa, R L; Ellis, A D; Emig, J A; Hargrove, D; Kalantar, D H; MacGowan, B J; Power, G D; Sorce, C; Rekow, V; Widmann, K; Young, B K; Young, P E; Garcia, O F; McKenney, J; Haugh, M; Goldin, F; MacNeil, L P; Cone, K

    2006-07-21

    The soft x-ray imager (SXRI) built for the first experiments at the National Ignition Facility (NIF) has four soft x-ray channels and one hard x-ray channel. The SXRI is a snout that mounts to a four strip gated imager. This produces four soft x-ray images per strip, which can be separated in time by {approx}60psec. Each soft x-ray channel consists of a mirror plus a filter. The diagnostic was used to study x-ray burnthrough of hot hohlraum targets at the NIF and OMEGA lasers. The SXRI snout design and issues involved in selecting the desired soft x-ray channels are discussed.

  11. Stelllar wind induced soft X-ray emission from close-in exoplanets

    NASA Astrophysics Data System (ADS)

    Kislyakova, Kristina; Fossati, Luca; Johnstone, Colin P.; Holmström, Mats; Zaitsev, Valery V.; Lammer, Helmut

    2016-04-01

    We estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX) which produces soft X-ray radiation is very effective for hot Jupiters. In this mechanism, X-ray photons are produces by charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. This mechanism is know to generate X-ray emission of comets in the Solar system. It has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus and Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not effective for the Solar system giants. We present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar Hot Jupiters due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈ 1022 erg s-1, which is 106 times stronger than the emission from the Jovian aurora. We discuss the possibility to observe the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  12. STELLAR WIND INDUCED SOFT X-RAY EMISSION FROM CLOSE-IN EXOPLANETS

    SciTech Connect

    Kislyakova, K. G.; Lammer, H.; Fossati, L.; Johnstone, C. P.; Holmström, M.; Zaitsev, V. V.

    2015-01-30

    In this Letter, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX), which produces soft X-ray emission, is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the solar system, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus, and the Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈10{sup 22} erg s{sup –1}, which is 10{sup 6} times stronger than the emission from the Jovian aurora. We discuss also the possibility of observing the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  13. Stelllar wind induced soft X-ray emission from close-in exoplanets

    NASA Astrophysics Data System (ADS)

    Kislyakova, Kristina; Fossati, Luca; Johnstone, Colin P.; Holmström, Mats; Zaitsev, Valery V.; Lammer, Helmut

    2016-04-01

    We estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX) which produces soft X-ray radiation is very effective for hot Jupiters. In this mechanism, X-ray photons are produces by charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. This mechanism is know to generate X-ray emission of comets in the Solar system. It has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus and Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not effective for the Solar system giants. We present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar Hot Jupiters due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈ 1022 erg s‑1, which is 106 times stronger than the emission from the Jovian aurora. We discuss the possibility to observe the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  14. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  15. Synchrotron X-ray Optics Testing at Beamline 1-BM at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Macrander, Albert; Kujala, Naresh

    2014-03-01

    Beamline 1-BM at the Advanced Photon Source has been reconfigured, in part for testing of synchrotron optics with both monochromatic and white beams. Monochromatic energies between 6 and 30 keV are available. Primary agendas include both white beam and monochromatic beam topography, Talbot grating interferometry for measurement of coherence lengths and wavefronts, and micro-focusing. Recent examples will include topography of sapphire , tests of Kirkpatrick-Baez mirrors, and tests of multilayer Laue lenses. Analyzers for Inelastic X-ray Scattering has also been characterized by two user groups. Supported from U.S. DOE, Office of Science, Contract No. DE-AC-02-06CH11357.

  16. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to ..mu..m spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the ..mu..m range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig.

  17. In-situ synchrotron x-ray transmission microscopy of the sintering of multilayers

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Guillon, Olivier; Martin, Christophe L.; Wang, Steve; Lee, Chul-Seung; Bouvard, Didier

    2013-06-01

    This letter reports on in-situ characterization of the high temperature sintering of multilayer ceramic capacitors by high-resolution synchrotron x-ray imaging. Microstructural evolution was obtained in real time by a continuous recording of 2-dimensional radiographs. Anisotropic strains were measured for different layers. Quantification of defects was conducted with 3-dimensional nano-computed tomography. These in-situ observations prove that electrode discontinuities occur at the early stage of sintering and originate from initial heterogeneities linked to the particulate nature of the starting powders.

  18. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction.

    SciTech Connect

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; The Univ. of Manchester; Queen's Univ.

    2008-02-01

    High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone.

  19. A Optical Synchrotron Nebula around the X-Ray Pulsar 0540-693

    NASA Astrophysics Data System (ADS)

    Chanan, G.; Helfand, D.; Reynolds, S.

    The authors report the discovery of extended optical continuum emission around the recently discovered 50 ms X-ray pulsar in the supernova remnant 0540-693. Exposures in blue and red broadband filters made with the CTIO 4 m telescope and prime focus CCD show a center-brightened but clearly extended nebula about 4arcsec in diameter (FWHM), while an image in an [O III] filter shows an 8arcsec diameter shell (as reported earlier) which encloses the continuum source. 0540-693 is a system very similar to the Crab nebula and represents the second detection of optical synchrotron radiation in a supernova remnant.

  20. An x-ray fluorescence study of lake sediments from ancient Turkey using synchrotron radiation.

    SciTech Connect

    Alatas, A.; Alp, E. E.; Friedman, E. S.; Jennings, G.; Johnson, C. E.; Lai, B.; Mini, S. M.; Sato, Y.; Wilkinson, T. J.; Yener, K. A.

    1999-03-10

    Sediments from relic Lake Golbasi were analyzed by X-ray fluorescence with synchrotrons radiation to determine changes in element concentrations over time with selected elements serving as proxies for environmental change. Increases in Ca and Sr suggest soil formation during a dry period, from ca. 4500 BC to ca. 200 AD at which point K, Rb, Zr, Ti, and Y increase, indicating the return of a wet environment. Soil erosion, represented by Cr and Ni, increases ca. 7000 BC, probably as a consequence of environmental change, prior to suggested exploitation of natural resources by the newly urbanized society of the third millennium BC.

  1. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    SciTech Connect

    Tiwari, M. K. Singh, A. K. Das, Gangadhar Chowdhury, Anupam Lodha, G. S.

    2014-04-24

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  2. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  3. Synchrotron X-ray imaging of nanomagnetism in meteoritic metal (Invited)

    NASA Astrophysics Data System (ADS)

    Bryson, J. F.; Herrero Albillos, J.; Kronast, F.; Tyliszczak, T.; Redfern, S. A.; van der Laan, G.; Harrison, R. J.

    2013-12-01

    It is becoming increasingly apparent that a wealth of paleomagnetic information is stored at the nanoscale within natural samples. To date, this nanopaleomagetism has been investigated using high resolution magnetic microscopies, such as electron holography. Although unparalleled in its spatial resolution, electron holography produces images that are indirectly related to the magnetisation state of the sample, introducing ambiguity when interpreting magnetisation information. Holography also requires extensive off-line processing, making it unsuitable for studying dynamic processes, and the sample preparation negates the study of natural remanences. Here we demonstrate the capabilities of a new generation of nanomagnetic imaging methods using synchrotron X-ray radiation. X-rays tuned to an elemental absorption edge can display differing excitation probabilities depending on the orientation of an electron's magnetic moment relative to that of the X-ray beam. This is achieved by introducing an angular momentum to the photon through circular polarisation, resulting in an absorption signal that is proportional to the projection of the magnetic moment on to the X-ray beam direction. We introduce and compare two experimental set-ups capable of spatially resolving these signals to form a high-resolution magnetisation map: photoemission electron microscopy and scanning transmission electron microscopy. Both techniques provide measurements of magnetisation with 30-50nm resolution and elemental specificity. Photoemission electron microscopy can be used also to create maps of all three of the spatial components of magnetisation and investigate dynamic magnetic switching processes. The full capabilities of X-ray imaging are demonstrated through the application of both of these techniques to meteoritic metal. We show that the 'cloudy zone' within iron meteorites contains nanoscale islands of tetrataenite (FeNi) that are populated equally by all three possible magnetic easy axes

  4. Calibration of a high resolution grating soft x-ray spectrometer

    SciTech Connect

    Magee, E. W.; Dunn, J.; Brown, G. V.; Beiersdorfer, P.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2010-10-15

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 A waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  5. Calibration of a high resolution grating soft x-ray spectrometer.

    PubMed

    Magee, E W; Dunn, J; Brown, G V; Cone, K V; Park, J; Porter, F S; Kilbourne, C A; Kelley, R L; Beiersdorfer, P

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. PMID:21034013

  6. Ultra soft X-ray Microbeam: optical analysis and intensity measurements

    NASA Astrophysics Data System (ADS)

    Emilio, M. Di Paolo; Palladino, L.; Del Grande, F.

    2016-06-01

    In this work, optical analysis and intensity measurements of the Ultra Soft x-ray microbeam (100 eV–1 keV) are presented. X-ray emission at 500 eV are generated from a plasma produced by focusing Nd-YAG laser beam on the Yttrium target. In particular, we will report the study of x-ray intensity and the measurement of focal spot dimension. Moreover, the software/hardware control of sample holder position and the alignment of biological sample to the microbeam will be described.

  7. Imaging of lateral spin valves with soft x-ray microscopy

    SciTech Connect

    Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

    2009-05-01

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

  8. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  9. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  10. Emission Line Spectra in the Soft X-ray Region 20 - 75 Angstroms

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Chen, H.; Behar, E.; Kahn, S. M.

    2002-01-01

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EDIT-II, emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region were studied. Observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 Angstrom are presented to illustrate our work.

  11. The Soft X-ray research instrument at the Linac Coherent Light Source

    DOE PAGES

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; European XFEL, Hamburg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; et al

    2015-04-02

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  12. Three-Dimensional Electron Realm in VSe2 by Soft-X-Ray Photoelectron Spectroscopy: Origin of Charge-Density Waves

    NASA Astrophysics Data System (ADS)

    Strocov, Vladimir N.; Shi, Ming; Kobayashi, Masaki; Monney, Claude; Wang, Xiaoqiang; Krempasky, Juraj; Schmitt, Thorsten; Patthey, Luc; Berger, Helmuth; Blaha, Peter

    2012-08-01

    The resolution of angle-resolved photoelectron spectroscopy (ARPES) in three-dimensional (3D) momentum k is fundamentally limited by ill defined surface-perpendicular wave vector k⊥ associated with the finite photoelectron mean free path. Pushing ARPES into the soft-x-ray energy region sharpens the k⊥ definition, allowing accurate electronic structure investigations in 3D materials. We apply soft-x-ray ARPES to explore the 3D electron realm in a paradigm transition metal dichalcogenide VSe2. Essential to break through the dramatic loss of the valence band photoexcitation cross section at soft-x-ray energies is the advanced photon flux performance of our synchrotron instrumentation. By virtue of the sharp 3D momentum definition, the soft-x-ray ARPES experimental band structure and Fermi surface of VSe2 show a textbook clarity. We identify pronounced 3D warping of the Fermi surface and show that its concomitant nesting acts as the precursor for the exotic 3D charge-density waves in VSe2. Our results demonstrate the immense potential of soft-x-ray ARPES to explore details of 3D electronic structure.

  13. Soft X-ray imaging techniques for calculating the Earth's dayside boundaries

    NASA Astrophysics Data System (ADS)

    Connor, Hyunju; Kuntz, Kip; Sibeck, David; Collier, Michael; Aryan, Homayon; Branduardi-Raymont, Graziella; Collado-Vega, Yaireska; Porter, Frederick; Purucker, Michael; Snowden, Steven; Raeder, Joachim; Thomas, Nicholas; Walsh, Brian

    2016-04-01

    Charged particles and neutral atoms exchange electrons in many space plasma venues. Soft X-rays are emitted when highly charged solar wind ions, such as C6+. O7+, and Fe13+, interact with Hydrogen and Helium atoms. Soft X-ray images can be a powerful technique to remotely probe the plasma and neutral density structures created when the solar wind interacts with planetary exospheres, such as those at the Earth, Moon, Mars, Venus, and comets. The recently selected ESA-China joint spacecraft mission, "Solar wind - Magnetosphere - Ionosphere Link Explorer (SMILE)" will have a soft X-ray imager on board and provide pictures of the Earth's dayside system after its launch in 2021. In preparation for this future mission, we simulate soft X-ray images of the Earth's dayside system, using the OpenGGCM global magnetosphere MHD model and the Hodges model of the Earth's exosphere. Then, we discuss techniques to determine the location of the Earth's dayside boundaries (bow shock and magnetopause) from the soft X-ray images.

  14. Laser Plasma Soft X-Ray Contact Microscopy of Polymer Composites

    NASA Astrophysics Data System (ADS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1994-08-01

    Microstructures of polymer composites are observed with a good contrast and with a submicron spatial resolution by contact soft X-ray microscopy with a laser plasma as a soft X-ray source. An iron target was irradiated by a YAG laser ( 2ω=532 nm, 0.4 J) at laser power density of 2.5×1012 W/cm2 and the emitted soft X-rays were filtered with a thin aluminum foil. For a 0.1-µ m-thick poly acrylonitrile-butadiene-styrene specimen, poly-butadiene or copolymer of butadiene spheres of about 500 nm diameter, which are selectively stained with osmium, is observed with soft X-rays in the wavelength region between 17 and 20 nm. For a 4-µ m-thick polyvinyl chloride film specimen formed by polymer powder compaction, peripheral areas of holes, grain boundaries, and areas probably degraded by HCl reduction are observed with soft X-rays in the wavelength region mainly around 2 nm.

  15. Electron-multiplying CCDs for future soft X-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Tutt, J. H.; Holland, A. D.; Murray, N. J.; Harriss, R. D.; Hall, D. J.; Soman, M.

    2012-02-01

    CCDs have been used in several high resolution soft X-ray spectrometers for both space and terrestrial applications such as the Reflection Grating Spectrometer on XMM-Newton and the Super Advanced X-ray Emission Spectrometer at the Paul Scherrer Institut in Switzerland. However, with their ability to use multiplication gain to amplify signal and suppress readout noise, EM-CCDs are being considered instead of CCDs for future soft X-ray spectrometers. When detecting low energy X-rays, EM-CCDs are able to increase the Signal-to-Noise ratio of the device, making the X-rays much easier to detect. If the signal is also significantly split between neighbouring pixels, the increase in the size of the signal will make complete charge collection and techniques such as centroiding easier to accomplish. However, multiplication gain from an EM-CCD does cause a degradation of the energy resolution of the device and there are questions about how the high field region in an EM-CCD will behave over time in high radiation environments. This paper analyses the possible advantages and disadvantages of using EM-CCDs for high resolution soft X-ray spectroscopy and suggests in which situations using them would not only be possible, but also beneficial to the instrument.

  16. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  17. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  18. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts. PMID:27359151

  19. Synchrotron-based Imaging and tomography with hard X-rays.

    SciTech Connect

    Rau, C.; Crecea, V.; Liu, W.; Richter, C. P.; Peterson, K. M.; Jemian, P. R.; Neuhausler, U.; Schneider, G.; Yu, X.; Braun, P. V.; Chiang, T. C.; Robinson, I. K.; X-Ray Science Division; Univ. of Illinois; Purdue Univ.; Northwestern Univ.; Univ. Bielefeld; Univ. Coll. London; Bessy GmbH; NIST

    2007-03-28

    Hard X-ray imaging with synchrotron radiation is a powerful tool to study opaque materials on the micro- and nano-lengthscales. Different imaging methods are available with an instrument recently built at Sector 34 of the Advanced Photon Source. In-line phase contrast imaging is performed with micrometer resolution. Increased spatial resolution is achieved using cone-beam geometry. The almost parallel beam is focused with a Kirkpatrick-Baez mirror system. The focal spot serves as a diverging secondary source. An X-ray magnified image of the sample is projected on the detector. For imaging and tomography with sub-100 nm resolution, an X-ray full-field microscope has been built. It uses a Kirkpatrick-Baez mirror (KB) as a condenser optic, followed by a micro-Fresnel zone plate (FZP) as an objective lens. The zone plates presently provide 50-85 nm spatial resolution when operating the microscope with photon energy between 6 and 12 keV. Tomography experiments have been performed with this new device.

  20. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    PubMed

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.